## Lecture 13: Noncentral $\chi^{2}-$, t-, and F-distributions

The results on transformation lead to many useful results based on transformations of normal random variables.

## Ratio of two normal random variables

If $X_{1}$ and $X_{2}$ are independent and both have the normal distribution $N(0,1)$, then, the pdf of $V_{1}=X_{1} / X_{2}$ is

$$
\begin{aligned}
f_{V_{1}}\left(v_{1}\right) & =\int_{-\infty}^{\infty}\left|v_{2}\right| \frac{e^{-\left(v_{1} v_{2}\right)^{2} / 2}}{\sqrt{2 \pi}} \frac{e^{-v_{2}^{2} / 2}}{\sqrt{2 \pi}} d v_{2} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|v_{2}\right| e^{-\left(1+v_{1}^{2}\right) v_{2}^{2} / 2} d v_{2} \\
& =\frac{1}{\pi} \int_{0}^{\infty} v_{2} e^{-\left(1+v_{1}^{2}\right) v_{2}^{2} / 2} d v_{2} \\
& =\frac{1}{\pi} \int_{0}^{\infty} e^{-\left(1+v_{1}^{2}\right) s} d s \\
& =\frac{1}{\pi\left(1+v_{1}^{2}\right)}
\end{aligned}
$$

which is the pdf of Cauchy $(0,1)$.

The next result concerns a ratio of independent chi-squares random variables, or sums of squared independent normal random variables.

## Ratio of chi-square random variables and F-distribution

Let $X_{1}$ and $X_{2}$ be independent random variables having the chi-square distributions with degrees of freedom $n_{1}$ and $n_{2}$, respectively. By the transformation theorem, the p.d.f. of $Z=X_{1} / X_{2}$ is

$$
\begin{aligned}
f_{Z}(z) & =\int_{0}^{\infty} x_{2} \frac{\left(z x_{2}\right)^{n_{1} / 2-1} e^{-z x_{2} / 2}}{2^{n_{1} / 2} \Gamma\left(n_{1} / 2\right)} \frac{x_{2}^{n_{2} / 2-1} e^{-x_{2} / 2}}{2^{n_{2} / 2} \Gamma\left(n_{2} / 2\right)} d x_{2} \\
& =\frac{z^{n_{1} / 2-1}}{2^{\left(n_{1}+n_{2}\right) / 2} \Gamma\left(n_{1} / 2\right) \Gamma\left(n_{2} / 2\right)} \int_{0}^{\infty} x_{2}^{\left(n_{1}+n_{2}\right) / 2-1} e^{-(1+z) x_{2} / 2} d x_{2} \\
& =\frac{\Gamma\left[\left(n_{1}+n_{2}\right) / 2\right]}{\Gamma\left(n_{1} / 2\right) \Gamma\left(n_{2} / 2\right)} \frac{z^{n_{1} / 2-1}}{(1+z)^{\left(n_{1}+n_{2}\right) / 2}}, \quad z>0
\end{aligned}
$$

where the last equality follows from the fact that

$$
\frac{1}{2^{\left(n_{1}+n_{2}\right) / 2} \Gamma\left[\left(n_{1}+n_{2}\right) / 2\right]} x_{2}^{\left(n_{1}+n_{2}\right) / 2-1} e^{-x_{2} / 2} \quad x_{2}>0
$$

is the pdf of the chi-square distribution with degrees of freedom $n_{1}+n_{2}$.

Making another transformation $Y=\left(n_{2} / n_{1}\right) Z=\left(X_{1} / n_{1}\right) /\left(X_{2} / n_{2}\right)$ and applying the (univariate) transformation theorem, we obtain that the pdf of $Y$ is

$$
\frac{n_{1}^{n_{1} / 2} n_{2}^{n_{2} / 2} \Gamma\left[\left(n_{1}+n_{2}\right) / 2\right]}{\Gamma\left(n_{1} / 2\right) \Gamma\left(n_{2} / 2\right)} \frac{y^{n_{1} / 2-1}}{\left(n_{1} y+n_{2}\right)^{\left(n_{1}+n_{2}\right) / 2}}, \quad y>0
$$

which is the pdf of the well-known F-distribution with degrees of freedom $n_{1}$ and $n_{2}$.

## t-distribution

Let $U_{1}$ and $U_{2}$ be independent random variables, $U_{1} \sim N(0,1)$ and $U_{2}$ has the chi-square distribution with degrees of freedom $n$.
What is the distribution of $T=U_{1} / \sqrt{U_{2} / n}$ ?
Let $X_{1}=U_{1}^{2}$ and $X_{2}=U_{2}$.
Then $X_{1}$ and $X_{2}$ are independent, because $U_{1}$ and $U_{2}$ are independent. By a result obtained previously, $X_{1}$ has the chi-square distribution with degree of freedom 1.
From the previous proof, $Y=X_{1} /\left(X_{2} / n\right)$ has the F-distribution with degrees of freedom 1 and $n$.

The pdf of $Y$ is

$$
\frac{n^{n / 2} \Gamma[(n+1) / 2] y^{-1 / 2}}{\sqrt{\pi} \Gamma(n / 2)(n+y)^{(n+1) / 2}} \quad y>0
$$

Applying the univariate transformation theorem, we obtain that the pdf of $W=\sqrt{Y}$ is $\left(d y=2 w d w\right.$ when $\left.y=w^{2}\right)$

$$
\frac{2 n^{n / 2} \Gamma[(n+1) / 2]}{\sqrt{\pi} \Gamma(n / 2)\left(n+w^{2}\right)^{(n+1) / 2}} \quad w>0
$$

Note that

$$
T= \begin{cases}W & U_{1} \geq 0 \\ -W & U_{1}<0\end{cases}
$$

and

$$
P(T<-t)=P(T>t) . \quad t>0
$$

Hence the pdf of $T$ is

$$
\frac{n^{n / 2} \Gamma[(n+1) / 2]}{\sqrt{\pi} \Gamma(n / 2)\left(n+t^{2}\right)^{(n+1) / 2}} \quad t \in \mathscr{R}
$$

This is the pdf of the well-known t-distribution with degrees of freedom n.

When $n=1$, the pdf of the $t$-distribution is

$$
\frac{\Gamma(1)}{\sqrt{\pi} \Gamma(1 / 2)\left(1+t^{2}\right)}=\frac{1}{\pi\left(1+t^{2}\right)} \quad t \in \mathscr{R}
$$

which is the pdf of Cauchy $(0,1)$.
Hence, if $X_{1} \sim N(0,1)$ and $X_{2} \sim N(0,1)$ are independent, then we have just shown that $X_{1} /\left|X_{2}\right| \sim \operatorname{Cauchy}(0,1)$.
But previously we showed that $X_{1} / X_{2} \sim \operatorname{Cauchy}(0,1)$.
If they are both true, then $X_{1} / X_{2} \sim X_{1} /\left|X_{2}\right|$.
This is in fact true, because for $t \in \mathscr{R}$,

$$
\begin{aligned}
P\left(X_{1} / X_{2}<t\right) & =P\left(X_{1}<t X_{2}, X_{2}>0\right)+P\left(X_{1}>t X_{2}, X_{2}<0\right) \\
& =P\left(X_{1}<t\left|X_{2}\right|, X_{2}>0\right)+P\left(X_{1}>-t\left|X_{2}\right|, X_{2}<0\right) \\
& =P\left(X_{1}<t\left|X_{2}\right|, X_{2}>0\right)+P\left(-X_{1}<t\left|X_{2}\right|, X_{2}<0\right) \\
& =P\left(X_{1}<t\left|X_{2}\right|, X_{2}>0\right)+P\left(X_{1}<t\left|X_{2}\right|, X_{2}<0\right) \\
& =P\left(X_{1}<t\left|X_{2}\right|\right)=P\left(X_{1} /\left|X_{2}\right|<t\right)
\end{aligned}
$$

and the 4th equality holds since $\left(X_{1}, X_{2}\right) \sim\left(-X_{1}, X_{2}\right)$.

The previously defined chi-square ( $\left.\chi^{2}-\right)$, t-, and F-distributions previously defined are special cases of the non-central $\chi^{2}$-, t-, and F-distributions, respectively, which are useful in statistics.

## Definition (the noncentral chi-square distribution)

Let $X_{1}, \ldots, X_{n}$ be independent random variables and $X_{i} \sim N\left(\mu_{i}, \sigma^{2}\right)$, $i=1, \ldots, n$. The distribution of the random variable $Y=\left(X_{1}^{2}+\cdots+X_{n}^{2}\right) / \sigma^{2}$ is called the noncentral chi-square distribution with degrees of freedom $n$ and the noncentrality parameter $\delta=\left(\mu_{1}^{2}+\cdots+\mu_{n}^{2}\right) / \sigma^{2}$.

The chi-square distribution defined earlier is a special case of the noncentral chi-square distribution with $\delta=0$ and, therefore, is sometimes called a central chi-square distribution.
It follows from the definition of noncentral chi-square distributions that if $Y_{1}, \ldots, Y_{k}$ are independent random variables and $Y_{i}$ has the noncentral chi-square distribution with degrees of freedom $n_{i}$ and the

## noncentrality parameter $\delta_{i}, i=1, \ldots, k$, then $Y=Y_{1}+\cdots+Y_{k}$ has the

 noncentral chi-square distribution with degrees of freedom $n_{1}+\cdots+n_{k}$ and the noncentrality parameter $\delta_{1}+\cdots+\delta_{k}$.
## Theorem (properties of the noncentral chi-square distribution)

Let $Y$ be a random variable having the noncentral chi-square distribution with degrees of freedom $k$ and noncentrality parameter $\delta$.
(i) The pdf of $Y$ is

$$
g_{\delta, k}(x)=e^{-\delta / 2} \sum_{j=0}^{\infty} \frac{(\delta / 2)^{j}}{j!} f_{2 j+k}(x)
$$

where $f_{v}(x)$ is the pdf of the central chi-square distribution with degrees of freedom $v, v=1,2, \ldots$;
(ii) The mgf of $Y$ is

$$
\frac{e^{\delta t /(1-2 t)}}{(1-2 t)^{k / 2}}, \quad t<1 / 2
$$

(iii) $E(Y)=k+\delta$; (iv) $\operatorname{Var}(Y)=2 k+4 \delta$.

## Proof.

We first prove result (ii).
Let $X_{k}$ be a random variable having the standard normal distribution and $\mu=\sqrt{\delta}$ be a positive number.
For $t<1 / 2$, the mgf of $\left(X_{k}+\mu\right)^{2}$ is

$$
\begin{aligned}
\psi_{\delta}(t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{t(x+\mu)^{2}} d x \\
& =\frac{e^{\mu^{2} t /(1-2 t)}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(1-2 t)[x-2 \mu t /(1-2 t)]^{2} / 2} d x \\
& =\frac{e^{\delta t /(1-2 t)}}{\sqrt{1-2 t}} .
\end{aligned}
$$

By definition, $Y \sim X_{1}^{2}+\cdots+X_{k-1}^{2}+\left(X_{k}+\sqrt{\delta}\right)^{2}$, where $X_{i}$ 's are independent and have the standard normal distribution.
From the obtained result, the mgf of $Y$ is

$$
E\left\{e^{t\left[X_{1}^{2}+\cdots+X_{k-1}^{2}+\left(X_{k}+\sqrt{\delta}\right)^{2}\right]}\right\}=\left[\psi_{0}(t)\right]^{k-1} \psi_{\sqrt{\delta}}(t)=\frac{e^{\delta t /(1-2 t)}}{(1-2 t)^{k / 2}} .
$$

We now use the proved result (ii) to show result (i).
By the uniqueness of the mfg , it suffices to show that the pdf $g_{\delta, k}(x)$ in (i) has mgf exactly the same as the one in (ii).

Note that the mgf of the central chi-square distribution with degrees of freedom $v$ is,

$$
\frac{1}{(1-2 t)^{v / 2}}, \quad t<1 / 2
$$

The mgf of the pdf $g_{\delta, k}(x)$ in (i) is, for $t<1 / 2$,

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{t x} g_{\delta, k}(x) d x & =e^{-\delta / 2} \int_{-\infty}^{\infty} \sum_{j=0}^{\infty} \frac{(\delta / 2)^{j}}{j!} e^{t x} f_{2 j+k}(x) d x \\
& =e^{-\delta / 2} \sum_{j=0}^{\infty} \frac{(\delta / 2)^{j}}{j!} \int_{-\infty}^{\infty} e^{t x} f_{2 j+k}(x) d x \\
& =e^{-\delta / 2} \sum_{j=0}^{\infty} \frac{(\delta / 2)^{j}}{j!(1-2 t)^{(j+k / 2)}} \\
& =\frac{e^{-\delta / 2}}{(1-2 t)^{k / 2}} \sum_{j=0}^{\infty} \frac{\{\delta /[2(1-2 t)]\}^{j}}{j!}
\end{aligned}
$$

$$
=\frac{e^{-\delta / 2+\delta /[2(1-2 t)]}}{(1-2 t)^{k / 2}}=\frac{e^{\delta t /(1-2 t)}}{(1-2 t)^{k / 2}}
$$

To establish (iii), let $X_{i}$ 's be as defined in the proof of (i). Then,

$$
\begin{aligned}
E(Y) & =E\left(X_{1}^{2}\right)+\cdots+E\left(X_{k-1}^{2}\right)+E\left(X_{k}+\sqrt{\delta}\right)^{2} \\
& =k-1+E\left(X_{k}^{2}\right)+\delta+E\left(2 \sqrt{\delta} X_{k}\right) \\
& =k+\delta
\end{aligned}
$$

because $E\left(X_{i}^{2}\right)=1$ and $E\left(X_{i}\right)=0$.
To show (iv), note that $\operatorname{Var}\left(X_{i}^{2}\right)=2$ and $\operatorname{Cov}\left(X_{k}^{2}, X_{k}\right)=E\left(X_{k}^{3}\right)=0$.
Then,

$$
\begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}\left(X_{1}^{2}\right)+\cdots+\operatorname{Var}\left(X_{k-1}^{2}\right)+\operatorname{Var}\left(\left(X_{k}+\sqrt{\delta}\right)^{2}\right) \\
& =2(k-1)+\operatorname{Var}\left(X_{k}^{2}+2 \sqrt{\delta} X_{k}\right) \\
& =2(k-1)+\operatorname{Var}\left(X_{k}^{2}\right)+4 \delta \operatorname{Var}\left(X_{k}\right)+4 \sqrt{\delta} \operatorname{Cov}\left(X_{k}^{2}, X_{k}\right) \\
& =2 k+4 \delta
\end{aligned}
$$

## Definition (the noncentral t-distribution)

Let $X \sim N(\delta, 1), \delta \in \mathscr{R}, U \sim$ the central chi-square with degrees of freedom $n$, and $X$ and $U$ be independent. The distribution of
$T=X / \sqrt{U / n}$ is the noncentral t-distribution with degrees of freedom $n$ and noncentrality parameter $\delta$.

The t-distribution previously defined can be called a central t-distribution, since it is a special case of the noncentral t-distribution with $\delta=0$.
Using the formula for the ratio of two independent random variables, we can show that $T$ has the following pdf:

$$
\frac{1}{2^{(n+1) / 2} \Gamma(n / 2) \sqrt{\pi n}} \int_{0}^{\infty} y^{(n-1) / 2} e^{-\left[(x \sqrt{y / n}-\delta)^{2}+y\right] / 2} d y
$$

Since $U \sim$ the central chi-square with degrees of freedom $n$, $W=\sqrt{U / n}$ has pdf

$$
\frac{2 n^{n / 2}}{\Gamma(n / 2) 2^{n / 2}} w^{n-1} e^{-n w^{2} / 2}, \quad w>0
$$

Then, $T$ has pdf

$$
\begin{aligned}
& \int_{0}^{\infty} w\left(\frac{n^{n / 2}}{\Gamma(n / 2) 2^{n / 2-1}} w^{n-1} e^{-n w^{2} / 2}\right)\left(\frac{1}{\sqrt{2 \pi}} e^{-(x w-\delta)^{2} / 2}\right) d w \\
= & \frac{n^{n / 2}}{\Gamma(n / 2) 2^{(n-1) / 2} \sqrt{\pi}} \int_{0}^{\infty} w^{n} e^{\left[(x w-\delta)^{2}+n w^{2}\right] / 2} d w
\end{aligned}
$$

Letting $y=n w^{2}$, we obtain the desired result.
By the independence of $X$ and $U$ and the fact that $X \sim N(\delta, 1)$ and $U \sim$ the central chi-square,

$$
\begin{aligned}
E(T) & =E\left(\frac{X}{\sqrt{U / n}}\right)=\sqrt{n} E(X) E\left(\frac{1}{\sqrt{U}}\right) \\
& =\sqrt{n} \delta \int_{0}^{\infty} \frac{1}{\sqrt{u}}\left(\frac{1}{\Gamma(n / 2) 2^{n / 2}} u^{n / 2-1} e^{-u / 2}\right) d u \\
& =\frac{\sqrt{n} \delta}{\Gamma(n / 2) 2^{n / 2}} \int_{0}^{\infty} u^{(n-1) / 2-1} e^{-u / 2} d u=\frac{\sqrt{n} \delta \Gamma((n-1) / 2)}{\sqrt{2} \Gamma(n / 2)}
\end{aligned}
$$

when $n>1$ and is $\infty$ when $n=1$.

$$
\begin{aligned}
E\left(T^{2}\right) & =E\left(\frac{X^{2}}{U / n}\right)=n E\left(X^{2}\right) E\left(\frac{1}{U}\right) \\
& =n\left(1+\delta^{2}\right) \frac{1}{\Gamma(n / 2) 2^{n / 2}} \int_{0}^{\infty} u^{n / 2-2} e^{-u / 2} d u \\
& =\frac{n\left(1+\delta^{2}\right)}{\Gamma(n / 2) 2^{n / 2}} \Gamma(n / 2-1) 2^{n / 2-1}=\frac{n\left(1+\delta^{2}\right)}{n-2}
\end{aligned}
$$

when $n>2$ and is $\infty$ when $n \leq 2$.
Hence, when $n>2$,

$$
\operatorname{Var}(T)=\frac{n\left(1+\delta^{2}\right)}{n-2}-\frac{n \delta^{2}}{2}\left[\frac{\Gamma((n-1) / 2)}{\Gamma(n / 2)}\right]^{2}
$$

## Definition (the noncentral F-distribution)

Let $X_{1} \sim$ the noncentral chi-square distribution with degrees of freedom $n_{1}$ and noncertrality parameter $\delta \geq 0, X_{2} \sim$ the central chi-square distribution with degrees of freedom $n_{2}$, and $X_{1}$ and $X_{2}$ be independent. The distribution of $F=\left(X_{1} / n_{1}\right) /\left(X_{2} / n_{2}\right)$ is called the noncentral F-distribution with degrees of freedom $n_{1}$ and $n_{2}$ and noncentrality parameter $\delta$.

The F-distribution introduced previously can be called a central
F-distribution, since it is a special case of the noncentral F-distribution with $\delta=0$.
Using the formula for the ratio of two independent random variables and the pdf of $X_{1}$ we derived previously, we can obtain the pdf for $F=\left(X_{1} / n_{1}\right) /\left(X_{2} / n_{2}\right)$.
Let $f_{v}$ denote the pdf of the central chi-square with degrees of freedom $v$ and $f_{k_{1}, k_{2}}(x)$ be the pdf of the central F-distribution with degrees of freedom $k_{1}$ and $k_{2}$.
Then the pdf of $F$ is

$$
\begin{aligned}
& \int_{0}^{\infty} y\left[e^{-\delta / 2} \sum_{j=0}^{\infty} \frac{(\delta / 2)^{j}}{j!n_{1} n_{2}} f_{2 j+k}\left(\frac{x y}{n_{1}}\right)\right] f_{n_{2}}\left(\frac{y}{n_{2}}\right) d y \\
= & e^{-\delta / 2} \sum_{j=0}^{\infty} \frac{(\delta / 2)^{j}}{j!} \int_{0}^{\infty} \frac{y}{n_{1} n_{2}} f_{2 j+k}\left(\frac{x y}{n_{1}}\right) f_{n_{2}}\left(\frac{y}{n_{2}}\right) d y \\
= & e^{-\delta / 2} \sum_{j=0}^{\infty} \frac{(\delta / 2)^{j}}{j!} \frac{n_{1}}{\left(2 j+n_{1}\right)^{2 j}} f_{2+n_{1}, n_{2}}\left(\frac{n_{1} x}{2 j+n_{1}}\right)
\end{aligned}
$$

Here, we used the following result: if $g_{j}(x) \geq 0$ for all $j=0,1,2, \ldots$ and $x \in \mathscr{R}$, then

$$
\int_{-\infty}^{\infty} \sum_{j=0}^{\infty} g_{j}(x) d x=\sum_{j=0}^{\infty} \int_{-\infty}^{\infty} g_{j}(x) d x
$$

which holds even when one of side is $\infty$.
To show this, note that $G_{n}(x)=\sum_{j=0}^{n} g_{j}(x)$ is increasing in $n$ for each $x$. By the monotone convergence theorem,

$$
\begin{aligned}
\sum_{j=0}^{\infty} \int_{-\infty}^{\infty} g_{j}(x) d x & =\lim _{n \rightarrow \infty} \sum_{j=0}^{n} \int_{-\infty}^{\infty} g_{j}(x) d x=\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} \sum_{j=0}^{n} g_{j}(x) d x \\
& =\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} G_{n}(x) d x=\int_{-\infty}^{\infty} \lim _{n \rightarrow \infty} G_{n}(x) d x \\
& =\int_{-\infty}^{\infty} \lim _{n \rightarrow \infty} \sum_{j=0}^{n} g_{j}(x) d x=\int_{-\infty}^{\infty} \sum_{j=0}^{\infty} g_{j}(x) d x
\end{aligned}
$$

Finally, let's calculate the mean and variance of $F$.

From the previous calculation,

$$
E\left(\frac{1}{X_{2}}\right)= \begin{cases}\frac{1}{n_{2}-2} & n_{2}>2 \\ \infty & n_{2} \leq 2\end{cases}
$$

Then, when $n_{2}>2$,

$$
E(F)=E\left(\frac{X_{1} / n_{1}}{X_{2} / n_{2}}\right)=E\left(\frac{X_{1}}{n_{1}}\right) E\left(\frac{n_{2}}{X_{2}}\right)=\frac{n_{1}+\delta}{n_{1}} \frac{n_{2}}{n_{2}-2}=\frac{n_{2}\left(n_{1}+\delta\right)}{n_{1}\left(n_{2}-2\right)}
$$

Also,
$E\left(\frac{1}{X_{2}^{2}}\right)=\frac{1}{\Gamma\left(n_{2} / 2\right) 2^{n_{2} / 2}} \int_{0}^{\infty} x^{n_{2} / 2-3} e^{-x / 2} d x= \begin{cases}\frac{1}{\left(n_{2}-2\right)\left(n_{2}-4\right)} & n_{2}>4 \\ \infty & n_{2} \leq 4\end{cases}$
Thus, when $n_{2}>4$,

$$
\begin{aligned}
\operatorname{Var}(F) & =E\left(\frac{X_{1}^{2} / n_{1}^{2}}{X_{2}^{2} / n_{2}^{2}}\right)-[E(F)]^{2}=\frac{n_{2}^{2}}{n_{1}^{2}} E\left(X_{1}^{2}\right) E\left(\frac{1}{X_{2}}\right)-\left(\frac{n_{2}\left(n_{1}+\delta\right)}{n_{1}\left(n_{2}-2\right)}\right)^{2} \\
& =\frac{n_{2}^{2}}{n_{1}^{2}}\left(\frac{2 n_{1}+4 \delta+\left(n_{1}+\delta\right)^{2}}{\left(n_{2}-2\right)\left(n_{2}-4\right)}-\frac{\left(n_{1}+\delta\right)^{2}}{\left(n_{2}-2\right)^{2}}\right) \\
& =\frac{2 n_{2}^{2}\left[\left(n_{1}+\delta\right)^{2}+\left(n_{2}-2\right)\left(n_{1}+2 \delta\right)\right]}{n_{1}^{2}\left(n_{2}-2\right)^{2}\left(n_{2}-4\right)}
\end{aligned}
$$

