

Session 08

GAMs an Introduction

Overview

• Model assumes that the mean response is a sum of terms each depending on (usually) a single predictor:

$$Y = \alpha + \sum_{j=1}^{p} f_j(x_j) + \varepsilon$$

- if the f_j s are linear terms, this is just regression
- if they are step functions main effect of a factor term
- in general they may be smooth terms, with the degree of smoothness chosen by cross validation

Choices of terms

- In some cases the additive terms may be known
- Smoothing splines
- Local regression
- Splines with fixed degrees of freedom
- Splines with known knots and boundary knot positions
- Harmonic terms, &c

Similarities to, and differences from GLMs

- Additive models are analogous to regression models
- Generalized additive models are akin to the GLMs they may employ a link function to relate the linear predictor to the mean of the response, they may have a non-normal distribution, &c
- Fitting GAMs is the same process as fitting GLMs (but with one letter different in the function name).
- The fitting process is NOT maximum likelihood if there are any smoother terms present. A likelihood penalized by a roughness term is maximised, with the tuning constant chosen (usually) by cross-validation
- Inference for GAMs is difficult and somewhat contentious. Best regarded as an exploratory technique with standard models to follow (see examples)

Example: the lowa wheat yield data

- A toy example from Draper N R, and Smith H, *Applied regression analysis*, 2nd Ed., John Wiley & Sons, New York, 1981.
 - Response: Yield of wheat in bushels/acre for the state of Iowa for the years 1930-1962
 - Predictors: Year (as surrogate), Rain0, 1, 2, 3, Temp1, 2, 3, 4
- Problem: Build a predictor for Yield from the predictors available.
 - Note: with only 33 observations and 9 possible predictors some care has to be taken in choosing a model.

An initial linear model

```
iowa.lm1 <- lm(Yield ~ ., Iowa)
iowa.step <- stepAIC(iowa.lm1, scope = list(lower = ~ Year,
    upper = ~ .), k = log(nrow(Iowa)), trace = F)
dropterm(iowa.step, test = "F", k = log(nrow(Iowa)),
    sorted = T)</pre>
```

Single term deletions

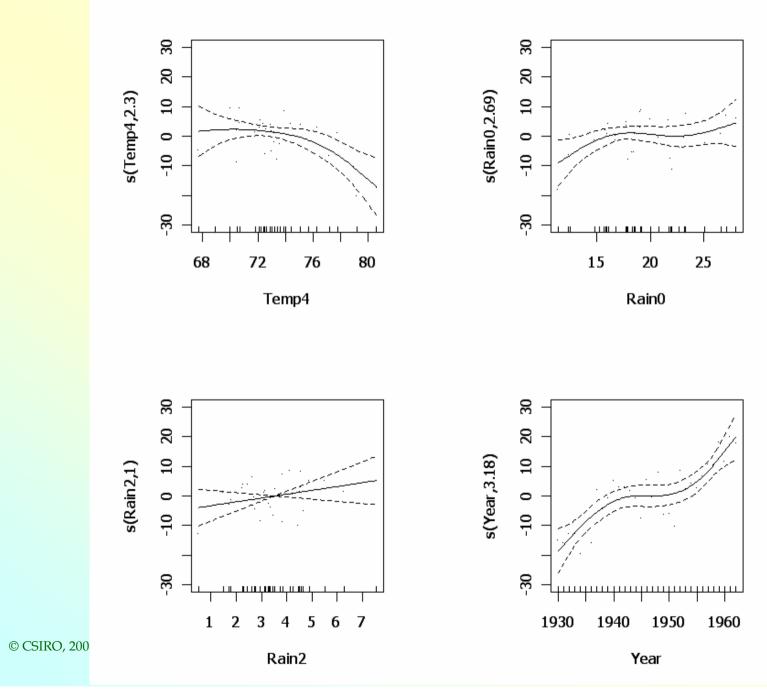
Model: Yield ~ Year + Rain0 + Rain2 + Temp4 Df Sum of Sq RSS AIC F Value Pr(F) <none> 1554.605 144.6140 Temp4 1 187.951 1742.556 144.8838 3.38519 0.07640894 Rain0 1 196.008 1750.612 145.0361 3.53029 0.07070429 Rain2 1 240.204 1794.809 145.8589 4.32632 0.04679808 Year 1 1796.216 3350.821 166.4610 32.35167 0.0000425

Initial reflections

- Even with the more stringent BIC penalty on model complexity, two of the terms found are only borderline significant in the conventional sense – a consequence of the small sample size.
- Nevertheless the terms found are tentatively realistic:
 - Year: surrogate for crop improvements
 - Rain0: a measure of pre-season sowing conditions
 - Rain2: rainfall during the critical growing month
 - Temp4: climatic conditions during harvesting
- Are strictly linear terms in these variables reasonable?

Additive models

- Consider a non-parametric smoother in each term:
 library(mgcv)
 iowa.gam <- gam(Yield ~ s(Temp4,k=5) + s(Rain0,k=5) + s(Rain2,k=5) + s(Year,k=5), data = Iowa, trace=T)
 par(mfrow = c(2,2))
 plot(iowa.gam, se = T, ylim = c(-30, 30), resid = TRUE)
- It can be important to keep the y-axes of these plots approximately the same to allow comparisons between terms.



Speculative comments

- Temp4: Two very hot years had crop damage during harvest?
- Rain0: Wide range where little difference, but very dry years may lead to a reduced yield and very wet years to an enhanced one?
- Rain2: One very dry growing month led to a reduced yield?
- Year: Strongest and most consistent predictor by far.
 Some evidence of a pause in new varieties during the war and immediately post-war period?

Tentative inference

> summary(iowa.gam)

Family: gaussian Link function: identity

```
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.000 1.035 48.32 <2e-16
```

Approximate significance of smooth terms:

	edf	Est.rank	F	p-value	
s(Temp4)	2.303	4	4.067	0.0124	
s(Rain0)	2.686	4	2.343	0.0852	
s(Rain2)	1.000	1	1.682	0.2076	
s(Year)	3.180	4	14.477	5.02e-06	
R-sq.(ad)	j) = ().797 De	eviance	explained	= 85.5%

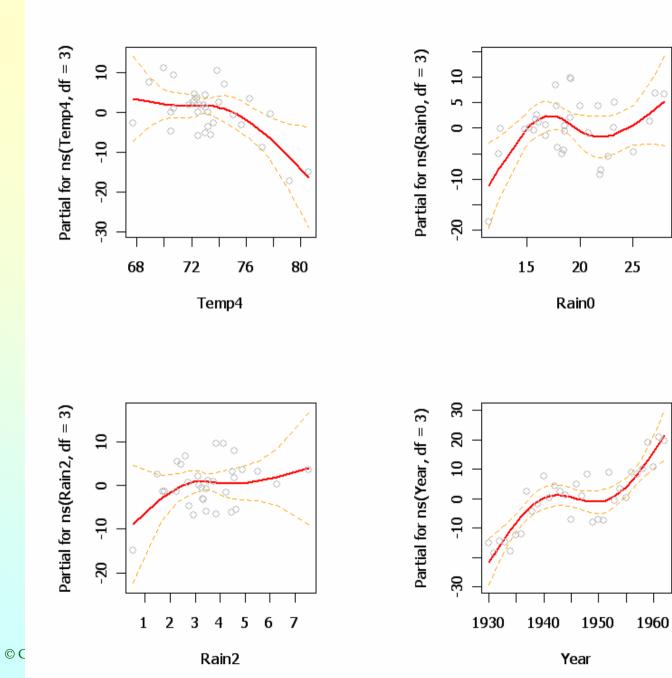
GCV score = 51.074 Scale est. = 35.334 n = 33

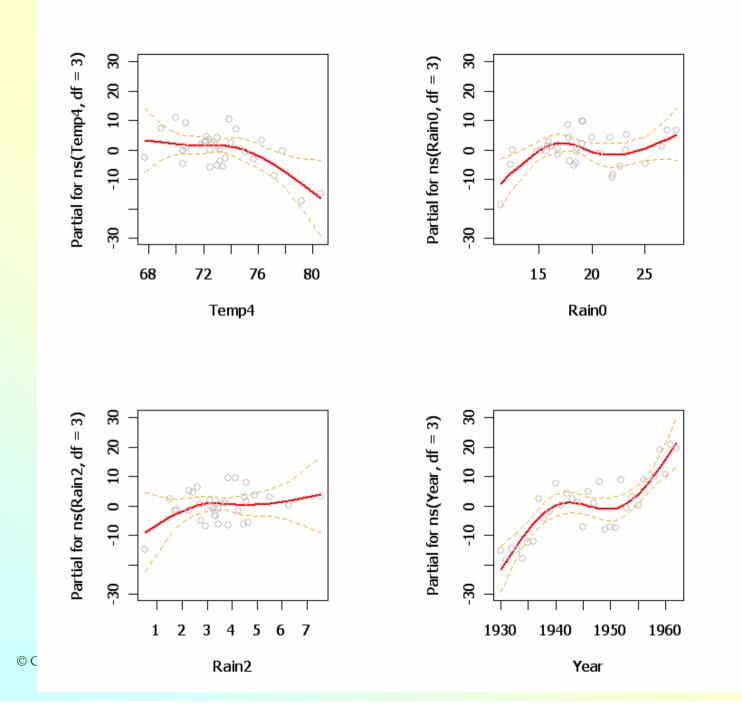
© CSIRO, 2000-2007

Can we get to the same place with GLMs?

- Spline terms: specified with ns(x, ...) or bs(x, ...), differ only in behaviour near the end points
- May specify the knot and boundary knot positions (recommended if prediction will be needed) or the equivalent degrees of freedom (OK for exploratory purposes)
- Each spline term is a collection of ordinary linear terms, but the coefficients have no simple meaning and the individual significance tests are meaningless.
 Best regarded as a single composite term and retained or removed as a block.


```
library(splines)
iowa.ns <- lm(Yield ~ ns(Temp4, df=3) + ns(Rain0, df=3) +</pre>
  ns(Rain2, df = 3) + ns(Year, df=3), Iowa)
termplot(iowa.ns, se=T, partial.resid = T)
dropterm(iowa.ns, test = "F", k = log(nrow(Iowa)))
Single term deletions
Model:
Yield ~ ns(Temp4, df = 3) + ns(Rain0, df = 3) + ns(Rain2, df = 3)
   ns(Year, df = 3)
                Df Sum of Sq RSS AIC F Value Pr(F)
                             726.26 147.47
<none>
ns(Temp4, df = 3) 3 274.60 1000.86 147.56 2.52 0.08706
ns(Rain0, df = 3) 3 332.31 1058.57 149.41 3.05 0.05231
ns(Rain2, df = 3) 3 70.61 796.87 140.04 0.65 0.59327
ns(Year, df = 3) 3 2022.93 2749.19 180.91 18.57 5.339e-06
```



Final remarks

- Very similar pattern to the components as for the additive model
- Now clear that the term in Rain2 is not useful and Temp4 and Rain0 terms will need to be re-assessed.
- The term in Year stands out as dominant with a clear pattern in the response curve and the partial residuals following it closely
- Small data sets like this can be very misleading! Extreme caution is needed.

Second example: Rock data (V&R p. 233 ff)

- Response: permeability
- Predictors: area, perimeter and shape
- Problem: build a predictor for log(perm) using the available predictors

```
rock.lm <- lm(log(perm) ~ area + peri + shape, data = rock)
summary(rock.lm)</pre>
```

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	5.3331	0.5487	9.7200	0.0000
area	0.0005	0.0001	5.6021	0.0000
peri	-0.0015	0.0002	-8.6228	0.0000
shape	1.7565	1.7559	1.0003	0.3226

Strategy

```
rock.gam <- gam(log(perm) ~ s(area) + s(peri) +
    s(shape),
    control = gam.control(maxit = 50), data = rock)
summary(rock.gam)
anova(rock.lm, rock.gam) # shows no improvement
par(mfrow = c(2, 3), pty = "s")
plot(rock.gam, se = T)
rock.gam1 <- gam(log(perm) ~ area + peri +
    s(shape), data = rock)</pre>
```

```
plot(rock.gam1, se = T)
```

anova(rock.lm, rock.gam1, rock.gam)


```
> summary(rock.gam)
```

```
Family: gaussian
Link function: identity
```

```
Formula:
log(perm) ~ s(area) + s(peri) + s(shape)
```

```
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.1075 0.1222 41.81 <2e-16
```

Approximate significance of smooth terms:

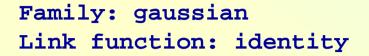
	ear	Est.rank	F.	p-va⊥ue
s(area)	1.000	1	29.878	2.09e-06
s(peri)	1.000	1	72.664	7.77e-11
s(shape)	1.402	3	1.324	0.279

R-sq.(adj) = 0.735 Deviance explained = 75.4% GCV score = 0.78865 Scale est. = 0.71631 n = 48

Testing Im within a gam model

> anova(rock.lm, rock.gam)
Analysis of Variance Table

```
> summary(rock.gam1)
```



```
Formula:
log(perm) ~ area + peri + s(shape)
```

```
Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

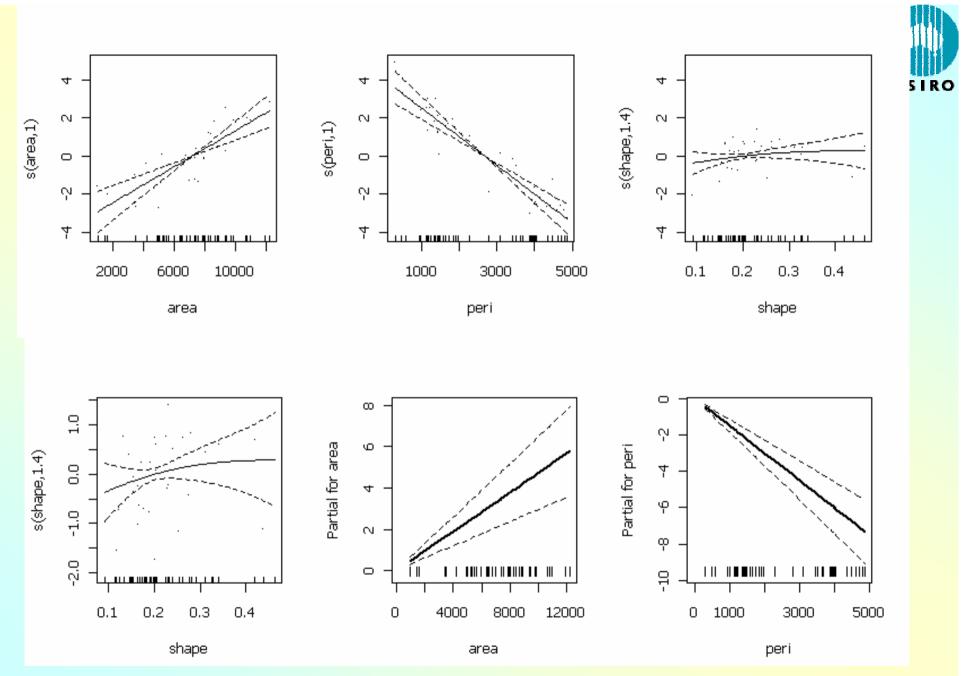
(Intercept) 5.747e+00 3.615e-01 15.896 < 2e-16

area 4.727e-04 8.648e-05 5.466 2.09e-06

peri -1.505e-03 1.766e-04 -8.524 7.77e-11
```

```
Approximate significance of smooth terms:
edf Est.rank F p-value
s(shape) 1.402 3 1.324 0.279
```

```
R-sq.(adj) = 0.735 Deviance explained = 75.4%
GCV score = 0.78865 Scale est. = 0.71631 n = 48
```



© CSIRO, 2000-2007

22

Comparing 3 models

Lessons

- Although suggestive, the curve in shape is not particularly convincing.
- In this case, bruto also suggests essentially linear terms, at most, in all three variables (V&R p 235)