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Abstract:

This study seeks to understand the spatial variability of monthly and daily rainfall in Alabama, Georgia, and Florida, USA.
Monthly spatial statistics are needed to improve downscaling from climate models producing seasonal rainfall forecasts,
and spatial correlation of daily rainfall is needed to inform spatial weather generators used in climate risk analysis. We
first determined the historical record length that is stationary followed by an analysis of the monthly spatial characteristics
of rainfall variables. Rainfall data from 523 weather stations (National Climate Data Center) were obtained for the period
1915–2004 and divided into 15-year subsets for comparisons. Differences in rainfall were found between the most recent
15-year period and all others occurring during the 90-year period of record. Thus only data from 1990 to 2004 (208
weather stations) were used to avoid the detected changes in climate in the region. Correlation, covariance and variance
matrices of daily and monthly rainfall amounts were calculated at monthly steps. The same statistics were also computed for
frequency of rainfall events and monthly number of rainy days. Results show different spatial patterns at different temporal
scales; two spatial patterns were well established. A widely spread correlation in a northeast – southwest direction was
found around weather stations during the frontal rainy season, and a concentric short distance-decay in correlations existed
around weather stations during the summer convective season. Spatial correlations among daily rainfall amounts are needed
for spatial weather generators in a storm-by-storm basis while monthly spatial statistics are needed to ensure the validity
of downscaled data from numerical seasonal rainfall forecasts. Copyright  2006 Royal Meteorological Society
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INTRODUCTION

Rainfall varies considerably over space and time. Agri-
cultural systems have evolved in response to this variabil-
ity, but in most regions of the world, rainfall variability
continues to be a major source of risks that farmers face.
Depending on spatial extent and persistence of drought,
for example, entire communities and regions risk eco-
nomic and food security problems. Research is being
conducted to better understand climate variability, its
impacts on agricultural systems, and how to reduce those
risks through decisions and policies that consider climate
variability.

Crop models (Jones et al., 2003) are now widely used
to analyze climate variability impacts on agricultural
systems. The availability of daily weather variables
over long time periods continues to be a problem in
most regions of the world. Variability is so high that
only a few years’ data cannot capture its magnitude.
In order to have sufficient lengths of record, statistical
methods are used to generate daily realizations of rainfall
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and other variables for use in crop models for many
applications (Podestá et al., 2002; Hansen and Indeje,
2004; Baigorria, 2005). These daily stochastic weather
generators are also used to downscale climate forecasts
for use in models (Briggs and Wilks, 1996; Grondona
et al., 2000; Wilks, 2002). One goal of our research is
to use daily weather generators to downscale 6-month
climate forecasts from The Florida State University
global/regional climate model (Cocke and LaRow, 2000)
coupled with the Community Land Model (Bonan et al.,
2002; Zeng et al., 2002) – FSUCLM (Shin et al., 2005)
to any point in SE-USA.

The problem with most currently available weather
generators (Richardson and Wright, 1984; Racsko et al.,
1991; Parlange and Katz, 2000; Schoof et al., 2005) is
that they create daily realizations for points in space with-
out considering spatial correlation or persistence of rain-
fall events and amounts over space (Clark et al., 2004;
Fowler et al., 2005). This is not a problem if one’s inter-
est is in statistical properties of rainfall, other weather
variables, and crop production at points or fields. But if
spatially independently generated weather data are used
to aggregate rainfall or crop model outputs over space, for
subsequent analyses of these aggregated variables, spatial
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correlations of the variables must be taken into account
for the same timescale at which the data are used as inputs
to models. Because crop models respond to rainfall on a
daily basis, even if 2 months have the same rainfall but
different temporal distributions during the month, simu-
lated results may differ widely. One example is analyzing
statewide production variability over time (years) where
state production is aggregated over model simulations
at many locations with significant correlations in daily
rainfall among locations. In hydrological modeling, the
spatial distribution of precipitation may have considerable
effects on the discharge of a river and the occurrence of
floods or droughts (Baigorria and Romero, 2006).

A number of questions arose as we were considering
how to incorporate spatial correlations in generating rain-
fall over large areas. For example, what are the inherent
correlations of rainfall across the SE-USA, and how do
those correlations vary with time? Are correlations of
rainfall over space the same for monthly and daily rain-
fall amounts? This study was conducted to help answer
these questions and to guide us in designing a daily
weather generator that will produce realizations of daily
weather that preserves spatial patterns of the original data.
Objectives were: (1) to quantify spatial correlations of
daily rainfall events and daily amounts over this region,
(2) to determine how these correlations vary during the
year, and (3) to compare spatial correlations at daily and
monthly timescales.

STUDY AREA

The study area includes the states of Alabama, Florida
and Georgia in the SE-USA between 35°23′ N, 88°59′
W and 24°57′ N, 79°26′ W. The area ranges between 0
and 1435 meters above sea level and covers a total area
of 421 072 km2. These three states constitute the work-
ing area of the Southeast Climate Consortium – SECC
(http://www.agclimate.org; Vedwan et al., 2005). This is
a group of six universities in the SE-USA working in
research and extension of the effects of climate variabil-
ity and risk management in agriculture, forestry and water
resources.

This region has some of the warmest conditions in
the United States. However, it is the only region in the
United States to show widespread but discontinuous cool-
ing periods of 1–2 °C over almost the entire area during
the past 100 years (Karl et al., 1993; Fraisse et al., 2006).
The annual rainfall ranges from 1100 mm to 1400 mm,
with the highest annual precipitation occurring along
the Gulf of Mexico coast and in south Florida (USGS,
2006). Rainfall occurs throughout the year caused by
two different processes. During most of fall and winter,
rainfall occurs mainly by fronts coming from the north-
western United States crossing the area (Frontal rainy
season; FR). During most of spring and summer, rain-
fall occurs mainly by convective processes and tropical
storms (convective rainy season; CR). The temporal trend
in annual precipitation shows that rainfall has increased
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Figure 1. Weather station network.

by 20–30% or more over the past 100 years across Mis-
sissippi, Arkansas, South Carolina, Tennessee, Alabama,
and parts of Louisiana, with mixed changes across most
of the remaining area (SRAT, 2002).

Trends in wet and dry spells during the twentieth
century, as indicated by the Palmer drought severity
index (PDSI), are spatially consistent with the region’s
annual precipitation trends, showing a strong tendency to
more wet spells in the Gulf Coast states, and a moderate
drought tendency in most other areas. The percentage of
the southeastern landscape experiencing severe wetness
(periods in which the PDSI averages more than +3)
increased approximately by 10% between 1910 and 1997
(Soule, 1993; SRAT, 2002).

DATA AND METHODOLOGY

Weather station network

The historical daily weather data record from 1048
weather stations was obtained from the National Cli-
mate Data Center (http://nndc.noaa.gov/?home.shtml).
The period from 1915 to 2004 was selected from this
record due to the quality and quantity of the rainfall data.
This information was organized and checked for errors
and missing values. Range errors and zeros substituted for
replacing missing values were identified and deleted. For
monthly analyses, months with fewer than 20 days for
which data were recorded were not considered. Weather
stations beyond their state and county limits for which
coordinates could not be corrected were deleted. After
this screening process, 523 weather stations remained for
further analyses; Figure 1 shows the spatial distribution
of the weather stations.
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Figure 2(a) shows a histogram summarizing the num-
ber of weather stations and their lengths of record. Fewer
than 25 weather stations had the 90-year historical record
almost complete. Figure 2(b) shows the temporal vari-
ability of the network. This variability reflects the chang-
ing support for collecting this kind of information by
governmental agencies.

Selecting the historical record length for spatial analyses

Before analyzing the spatial correlations of daily and
monthly rainfall data, we analyzed the data to determine
whether significant shifts in rainfall had occurred over the
90 years of record. Few weather stations had a complete
90-year historical record, making it difficult to identify
these shifts. Therefore all available monthly weather
station data across the 90-year period were spatially
interpolated using ordinary Kriging. This interpolation
method estimates data as weighted linear combinations of
the available data, trying to have the mean residual equal
to zero, and minimizing the variance of the error (Isaaks
and Srivastava, 1989). The interpolation was performed
in the residuals after removing the spatial trends. In doing
so, we avoid the need to interpolate the geographical
trend due to not fulfilling the stationary assumption
of semi-variogram models (Clark and Harper, 2001;
Goovaerts, 1997). Observed data at weather stations were
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Figure 2. Temporal analysis of the weather station network.

preserved during these interpolations. Resulting monthly
maps were divided into 6 periods of 15 years each
and statistically compared using analysis of variance F

statistic followed by a Duncan’s multiple range test for
each grid cell.

De-trending the spatial data. Most geo-statistical tech-
niques assume that sample data come from a fixed distri-
bution. Because there were spatial trends in the rainfall
values, the trends were modeled by a polynomial equa-
tion using latitude and longitude as predictors (Clark and
Harper, 2001). Polynomial equations from first to third
degree were fitted by using least squares method. The
degree of the polynomial equation for each month and
year was selected by comparing the sum of the squared
residuals as a percentage of the original variation. This
process yielded 1080 polynomial equations of first and
third degrees. Afterwards, trend values were calculated
and subtracted from the monthly-observed rainfall values
to compute residuals. These residuals were not signifi-
cantly different from a normal distribution for all cases.
Then, for each month and year, semivariograms were
calculated using the following algorithm (Isaaks and Sri-
vastava, 1989; Table I):

γ (h) = 1

2N(h)

∑
(i,j)|hij ≈h

(xi − xj )
2 (1)

Table I. Variable description.

Symbol Definition Units

i, j Weather stations Unitless
xi , xj Rainfall amount at weather stations i

and j

mm

µi , µj Mean rainfall amount at weather
stations i and j

mm

σi , σj Standard deviation rainfall amount mm
γ (h) Semi-variance at distance h mm2

γ̂ (h) Estimated semi-variance at distance h mm2

n Number of observations Unitless
N(h) Number of pairs of weather stations

whose location are separated by h

Unitless

h Distance Km
δ0 Nugget (vertical jump from the value

of 0 at the origin to the value of the
semivariogram at small distances)

mm2

δ1 Sill (the semi-variance at which
semivariogram reaches a plateau after
adding δ0)

mm2

A Range (the distance at which the
semivariogram reaches a plateau)

Km

β A parameter ranging from 0 to 2 Unitless
ρij Correlation between weather stations

i and j

Unitless

Cij Covariance between weather stations
i and j

mm2

Vij Variance between weather stations i

and j

mm2
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After obtaining the γ (h) values, models were fit to
describe the changes in variance of rainfall amounts
versus distance from each station, using a weighted
nonlinear least-squares method (Jian et al., 1996; Whelan
et al., 2001). The model used to fit the semivariograms
was the Stable model (Whelan et al., 2001) defined as
(Table I):

γ̂ (h) = δ0 + δ1

[
1 − e−(h/A)β

]
(2)

The Range (A), Nugget (δ0) and Sill (δ1) were then
analyzed. To preserve the observed data where weather
stations were located, the Nugget was always forced
to 0. The sum of squared error (SSE), the root mean
square error (RMSE) and Akaike information criterion
(AIC; Webster and McBratney, 1989) were evaluated
to determine the best-fit model. The AIC evaluates the
goodness of fit as well as the parsimony of the model.
Smaller values of AIC determine the best model.

After the semivariogram models were fit, monthly rain-
fall residuals were interpolated by using ordinary Kriging
to obtain monthly maps of the residuals in a 5 km × 5 km
grid resolution. The spatial trends were added to these
interpolated residuals, yielding the monthly rainfall maps
for all the 90 years of historical record. Interpolation
errors related to the sample spatial variation are discussed
in more detail in Section Analysis using Daily Data.

Statistical analysis of climate. These statistical anal-
yses were performed to find areas where rainfall mean
and variance were statistically different in time, i.e.
areas affected by changes in climate. The 90-year his-
torical record was divided into six periods of 15 years
each (1915–1929, 1930–1944, 1945–1959, 1960–1974,
1975–1989 and 1990–2004). All analyses were per-
formed monthwise.

The six 15-year periods were statistically compared
through an analysis of variance F statistic (ANOVA F

statistic) for each grid cell (5 km × 5 km cell size). The
probability value (P -value) that the F test statistic is at
least as large as the observed F value was assessed by
using the F distribution table (α = 0.05) with 5 and 84
degrees of freedom. After the P -values were calculated
for each grid cell, they were spatially aggregated to
obtain probability maps of statistical differences. Each
map showed areas where statistically significant changes
of monthly rainfall amounts were found in at least one
of the six 15-year periods.

Because some areas showed statistically significant
differences, the next step was to determine when these
differences occurred. This was done in order to select the
number of years to use to analyze spatial variability of
current climate conditions for use in this study. Duncan’s
multiple range tests were performed for each grid cell
across the domain. Results were spatially aggregated
producing maps; however in this case, five maps for each
month were generated. Each map compared the latest
period of record (1990 through 2004) versus one of the
five remaining 15-year periods.

Correlation, covariance and variance of rainfall over
space

To avoid the effects of climatic shifts detected in time in
the study area, only the period from 1990 to 2004 was
used for further analysis. For this period, 208 weather
stations were available. In this section, we determined
how the correlation (ρij ), covariance (Cij ) and variance
(Vij ) vary monthly during the year by using daily and
monthly rainfall amounts and frequencies.

Analyses using daily data

Rainfall amount. Daily rainfall data from this 15-year
period were split into 12 monthly subsets. Each subset,
containing 15 years of daily rainfall data, was used to
calculate ρij , Cij and Vij among all the weather stations,
thus forming matrices of rank 208. To avoid overestima-
tion of ρij , and Cij as well as the underestimation of Vij ,
days without rainfall at both weather stations were not
used. The calculations were performed using the follow-
ing equations (Table I):

ρij = Cij

σiσj

(3)

Cij = 1

n

∑
(xi − µi)(xj − µj) (4)

Vij = 1

n

∑
(xi − xj )

2 (5)

The distance, in kilometers, between each pair of weather
stations was calculated by using its geographical coor-
dinates and applying the Pythagorean theorem. Results
from the three statistics at different distances were ana-
lyzed as monthly scatter plots. Because of the scatter in
the data, results were classified into five distance classes:
0–50 km, 50–150 km, 150–350 km, 350–700 km and
700–1400 km. For each class, the means and the stan-
dard deviations of the three statistics were calculated.

To visualize the spatial variability of ρij of one
weather station (i) against the remaining (j ), one weather
station from each state was used as an example. The
selected weather stations were: Sylacauga, Talladega,
Alabama (33° 12′ N latitude, 86° 16′ W longitude, and
149 m altitude), Mountain Lake, Polk, Florida (28° 56′
N latitude, 81° 36′ W longitude, and 38 m altitude),
and Hawkinsville, Pulaski, Georgia (32° 17′ N latitude,
83° 28′ S longitude, and 83 m altitude). Thus, values of
ρij were assigned at the geographical coordinates of the
remaining 207 weather stations. At the selected weather
stations (i), ρii was assigned the value of 1.0. Finally,
all the values were interpolated using ordinary Kriging.
The analysis was performed taking only one of the three
selected weather stations at a time. Results are presented
for the months of January and July.

Occurrence of rainfall events. To calculate the ρij , Cij

and Vij matrices of occurrence of rainfall events, values
of 1 and 0 replaced the values of rainfall amount for days
with and without rainfall, respectively, over the 15-year
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period used in the study. As in the previous step, the data
were divided into monthly subsets. Afterwards, Equa-
tions (3)–(5) were applied to each sub-dataset containing
the 208 weather stations, thus producing the respective
matrices. The data were further divided into the same
five distance-based classes of the previous step for fur-
ther analysis. To visualize the spatial correlation (ρij ) of
one weather station versus the remaining stations, the
same three weather stations selected in the previous step
were used. Ordinary Kriging was used to interpolate the
ρij values.

Analyses using monthly data

Rainfall amount. Rainfall data aggregated at different
temporal scales explain different spatial processes and
relationships among weather stations. To understand the
effects of this temporal aggregation, for each year and
weather station, the total monthly rainfall amount was
computed by summing all daily values in the month.
Next, the 15-year period was divided into subsets for
each of the 12 months of the year. Equations (3)–(5)
were then modified for analyzing monthly rainfall values.
These modified equations were applied to the monthly
sub-datasets for obtaining the ρij , Cij and Vij matrices.
As before, results were classified according to their
distances between stations. Finally mean and standard
deviation of each distance-based class were calculated.

To visualize the spatial variability of ρij , the same
three weather stations selected in the previous step were
used. Ordinary Kriging was used to interpolate the ρij

values.

Monthly number of rainy days. To perform this anal-
ysis, the number of rainy days was computed for each
month of each year of the 15-year period. As in the
previous step, the dataset was divided into subsets for
the 12 months of the year. For each subset, Equa-
tions (3)–(5) were modified to compute ρij , Cij and
Vij for the number of rainy days per month. The same
methodologies used in the steps before for estimating
mean and standard deviation of ρij in the distance-based
classes as well as the correlation’s spatial variability visu-
alization were used for this variable.

RESULTS AND DISCUSSION

Changes in rainfall over the 90-year time period

The spatial trends of monthly rainfall amounts over
90 years from December to April followed first-degree
polynomial equations. For the remaining months, the
trends corresponded to a third degree polynomial equa-
tion. These monthly spatial trends were used for inter-
polation, and will also be used later to evaluate the
spatial structure of seasonal rainfall forecasts and spatial
weather generator performance. These polynomial equa-
tions explained from 40 to 81% of the rainfall spatial
variability when aggregated over the 90-year period. Ana-
lyzing individual trends by month and by year (Table II),

these percentages explained on average from 31 to 55%
of the spatial variability. However, for individual months
and years, these trends explained up to 91% of the spatial
variability.

Figure 3 shows maps of probabilities (P -values) of
monthly rainfall amounts that were significantly different
for the different 15-year periods of time for January and
July. Areas shown as dark brown indicate areas where
at least one of the 15-year periods was significantly
different from the others. White represents areas where
there were no significant differences in rainfall amounts
in any of the time periods. Areas where statistical
differences were found varied monthly. This suggests that
the processes leading to the changes were not due to
local conditions but are more related to broader climatic
processes.

After finding these significant differences, Duncan’s
Multiple Range Test was used to determine whether
each 15-year period(s) of time differed from the latest
period of record (1990 through 2004). Figure 4 shows the
areas for January and July where significant differences
occurred. January maps indicated that the Panhandle of
Florida, southeastern Alabama and part of southwestern
Georgia showed significantly different rainfall regimen in
the last 15 years. July maps indicated that central western
Georgia showed a significantly different rainfall regimen
in the last 30 years when compared to earlier periods.
For January, monthly rainfall in those changed areas
increased over time while during July, monthly rainfall
decreased. This is consistent with the report by Maul and
Hanson (1990) and Stahle and Cleaveland (1992) and is
possibly related to the less common summer blocking
pattern of the Atlantic Subtropical Anticyclone reported
by Davis et al. (1997).

These results demonstrated statistically significant spa-
tial and temporal changes in the rainfall regimens during
the last 90 years. Climate was not stationary in time, and
as a consequence, a large number of years did not nec-
essarily produce the lowest errors in forecasts based on
climate normals (Huang et al., 1996). Our goal was to

Table II. Statistics of the monthly coefficients of determination
(r2) obtained from the year by year polynomial equation fitting.

Month Mean Standard
deviation

Maximum Minimum

January 0.408 0.228 0.823 0.002
February 0.380 0.231 0.798 0.011
March 0.378 0.236 0.837 0.000
April 0.313 0.199 0.794 0.001
May 0.396 0.173 0.823 0.068
June 0.434 0.182 0.832 0.099
July 0.387 0.159 0.780 0.099
August 0.431 0.149 0.874 0.114
September 0.506 0.166 0.832 0.153
October 0.532 0.189 0.908 0.133
November 0.545 0.180 0.836 0.070
December 0.403 0.219 0.807 0.014
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Figure 3. Maps of probability value where the f test statistics from ANOVA is at least as large as the observed f value (α = 0.05). Comparison
between the months of January and July.

provide information on spatial characteristics of current
rainfall regimes for downscaling numerical climate fore-
casts and for generating spatially coherent rainfall events
and amounts. Under this framework, the optimal time
period to maximize the skill in predicting the upcoming
year condition corresponded to the last 15-year period.
Thus, further spatial analyses used only the 1990 through
2004 rainfall data.

CORRELATION, COVARIANCE AND VARIANCE

Analyses using daily data

Rainfall amount. Each point in Figure 5 represents the
covariance of rainfall between each station and one other
specific station, computed using the daily data for the
15 years for each month. Thus, there was a maximum of
about 450 days of data to estimate each point, but this
was reduced since only days when rainfall occurred in at
least in one station were used. The shape of the cloud of
points and the absolute values were similar during both
Spring–Summer and Fall–Winter seasons, and similar
between those seasons. However at short distances,
March and September showed higher covariance values
than the other months. These are the transitional months
(around the solstices of winter and summer, respectively,
for the northern hemisphere). These months are also the
transition between the frontal rainy (FR) season from
October to March, and the convective rainy (CR) season
from April to September.

As expected, the correlation of rainfall amounts over
space decayed versus distance, and the variance increased
with distance (Sumner, 1983). Correlation indices at all
distances were higher during the FR season than during

the CR season (Table IIIa). Correlations during the CR
season were statistically nonsignificant at closer distances
than during the FR season. On the other hand, monthly
standard deviations increased versus distance but did
not show any apparent relationship to the FR and CR
seasons. During the CR season, correlations did not
exceed values of 0.8, while values near 1.0 did occur
during the FR season. High variance values were found
at short distances during the CR season in comparison to
the FR season.

At short distances, there were also some low correla-
tion and covariance values as well as high values of vari-
ance. Different rainfall regimens can be expected when
daily data are analyzed (Romero and Baigorria, 2006). In
the Peninsula of Florida, for example, weather stations
located near the Atlantic coastline had a different rain-
fall regime than those near the Gulf of Mexico coastline.
Similarly, weather stations near the coastline may dif-
fer from those further from the inland. Thus, rainfall is
not stationary over space, which would violate assump-
tions used in computing semivariograms with only one
realization of spatial data unless the data are de-trended.

Figures 6 and 7 showed spatial patterns in ρij in
all directions. Variations in the absolute values of ρij

showed higher correlations (lower variances) around
the selected weather stations during the FR season
(Figure 6) than during the CR season (Figure 7). This
is explained by the size of the weather fronts or cells
involved in the precipitation process. Areas with high
correlations and low variances were larger during the
FR season than during the CR season. Correlations were
less concentric in January than in July. Both correlations
and variances showed a more diagonal pattern during the
FR season than during the CR season. There was more
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Figure 4. Maps of Duncan’s multiple range tests (α = 0.05) for the
months of January and July.

directionality (anisotropy) (northeast–southwest) in the
spatial variation of ρij during the FR season than during
the CR season. This directionality was parallel to the
usual weather front patterns in this region as documented
by Robinson and Henderson (1992) and Walsh et al.
(1982). In the case of daily spatial variation of ρij and
in concordance with Sharon (1974), rainfall occurring
from convective systems (CR season) typically showed
correlations that decrease rapidly in all directions over
short distances.

Occurrence of rainfall events. These results showed
how each rainfall event was correlated with rainfall
events at other weather stations on a daily basis. This
variable responded similarly to that for ρij values relative
to the FR season versus the CR season (Table IVa). How-
ever, monthly variations in the maximum and minimum
correlations for rainfall occurrences were less than those

for daily rainfall amounts. Individual correlation values
for July showed a maximum of 0.65 compared with the
maximum in January of 0.9; however, both of these val-
ues were lower than those obtained for rainfall amount.
The Vij cloud shape in July (not shown) increased faster
over short distances than in January, where low variance
values were found at about 400 km or less. Despite vari-
ances during January and July reaching values greater
than 0.4, in general terms, variance in January reached a
plateau of around 0.23, while in July it reached a plateau
around 0.30, both around 250 km from the station.

Spatial variations of daily rainfall event correlations
showed similar characteristics as those for daily rain-
fall amount in terms of seasonal differences (Figures 6
and 7). Concentric and short distance decay functions
occurred around selected weather stations for the CR sea-
son (Figure 7), while they were widely spread in a north-
east–southwest direction for the FR season (Figure 6).
For all weather stations, the FR season showed higher
correlations than the CR season.

Analyses of monthly data

Rainfall amount. High correlations in monthly rainfall
amounts were found as far away as 600 km from the
selected stations during January (Figures 6 and 7). In
July however, these same values occurred around 200 km
or less. Larger numbers of negative correlations as well
as higher variances were reached at shorter distances
during July than during January, which corresponds to
the different atmospheric physics producing the rainfall.
Variances during the CR season had maximum values
around 24 000 mm2, while for the FR season values
reached a maximum of only 16 000 mm2.

There were differences in spatial patterns of rainfall
amount correlation values relative to those found for daily
rainfall data (Table IIIa) (versus) monthly rainfall data
(Table IIIb). Positive correlation values higher than 0.8
were found using monthly rainfall amounts, while for
daily data, all correlations were less than 0.7 (Tables IIIb
(versus) 3a, respectively). Higher standard deviations of
correlation values were found using monthly data com-
pared to daily data. Correlation values and homogeneous
correlation areas using monthly data were respectively
higher and larger than the ones using daily data, inde-
pendent of the analyzed month (Figures 6 and 7). This
was because using daily data, rainfall amounts were cor-
related on a storm-by-storm basis. This, together with
the rainfall event data, showed the size of the rainfall
cell producing rainfall in a specific event. For using in
a daily spatial weather generator, the highly correlated
areas showed the size of the areas that would be involved
in a storm event and how much rainfall would fall in
every rain gauge. Spatial relationships among different
monthly rainfall variables are governed by different cli-
matic, oceanic, topographic and/or geographic drivers at
different times. Thus, monthly spatial statistics would be
useful to ensure the validity of downscaling data from
numerical seasonal rainfall forecasts, which are produced
based on atmospheric circulation patterns.
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Figure 5. Monthly variation of the covariance matrices for daily rainfall amounts versus distance for six months of the year (1990–2004).
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Figure 6. Correlation’s spatial variability of daily rainfall amount, daily frequency of rainfall events, monthly rainfall amount and monthly
number of rainy days for the month of January (1990–2004). (a) Sylacauga, (b) Mountain Lake and (c) Hawkinville.
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Monthly number of rainy days. The number of rainy
days (days with measured rainfall larger >0.1 mm)
divided by the total number of days was an estimate
of the probability of rainfall in a specific month and
weather station. Thus, the correlation among weather
stations showed how rainfall occurrence was likely to
persist over space. Table IVb showed that even though
the absolute number of rainy days varied from season to
season, there was no seasonal pattern in the correlation
values. Figures 6 and 7 showed that homogeneous areas
of correlation were larger compared with the daily

occurrences of rainfall events. Correlation values were
less concentric around the weather station using monthly
data than daily data.

CONCLUSIONS

In the SE-USA, changes in rainfall amounts during the
last 90 years were observed. These changes varied over
space and time of the year. To avoid influences of climate
change in our study, only the last 15-year period was used
to characterize rainfall spatial variability. For this time

R
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Figure 7. Correlation’s spatial variability of daily rainfall amount, daily frequency of rainfall events, monthly rainfall amount and monthly
number of rainy days for the month of July (1990–2004). (a) Sylacauga, (b) Mountain Lake and (c) Hawkinville.

Table III. Monthly correlation’s statistics of (a) daily and (b) monthly rainfall amount, according to distance-based classes.

(a) Distance (km)
Month

0–50 50–150 150–350 350–700 700–1400

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

January 0.663 0.185 0.527 0.208 0.348 0.208 0.138 0.182 0.036 0.132
February 0.648 0.152 0.493 0.202 0.311 0.207 0.157 0.158 0.104 0.162
March 0.671 0.184 0.534 0.197 0.381 0.191 0.193 0.183 0.104 0.164
April 0.594 0.180 0.427 0.203 0.278 0.181 0.129 0.162 0.039 0.170
May 0.473 0.174 0.270 0.210 0.157 0.189 0.057 0.175 0.009 0.166
June 0.383 0.157 0.194 0.159 0.097 0.148 0.039 0.134 0.013 0.136
July 0.368 0.177 0.191 0.199 0.088 0.162 0.024 0.133 0.005 0.124
August 0.376 0.195 0.163 0.172 0.066 0.161 0.014 0.140 −0.001 0.137
September 0.586 0.179 0.398 0.236 0.230 0.225 0.037 0.179 −0.036 0.138
October 0.651 0.163 0.495 0.228 0.345 0.226 0.182 0.214 0.006 0.163
November 0.616 0.187 0.445 0.220 0.279 0.207 0.126 0.167 0.027 0.165
December 0.662 0.148 0.520 0.203 0.322 0.209 0.144 0.199 0.012 0.162
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(b) Distance (km)
Month

0–50 50–150 150–350 350–700 700–1400

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

January 0.735 0.203 0.646 0.261 0.470 0.329 0.294 0.362 0.218 0.313
February 0.823 0.165 0.765 0.184 0.668 0.215 0.576 0.232 0.374 0.308
March 0.802 0.187 0.734 0.204 0.609 0.244 0.482 0.273 0.271 0.332
April 0.660 0.311 0.589 0.294 0.421 0.329 0.225 0.346 0.083 0.326
May 0.635 0.289 0.588 0.276 0.494 0.308 0.392 0.321 0.379 0.297
June 0.640 0.252 0.532 0.276 0.428 0.294 0.301 0.313 0.124 0.338
July 0.515 0.303 0.425 0.315 0.304 0.349 0.123 0.359 −0.091 0.341
August 0.447 0.320 0.338 0.330 0.256 0.336 0.176 0.348 0.124 0.347
September 0.648 0.299 0.547 0.319 0.372 0.357 0.188 0.382 −0.027 0.351
October 0.751 0.192 0.679 0.228 0.549 0.288 0.350 0.349 0.321 0.363
November 0.755 0.205 0.662 0.273 0.525 0.325 0.338 0.377 −0.010 0.327
December 0.723 0.279 0.632 0.327 0.437 0.400 0.407 0.378 0.134 0.416

Table IV. Monthly correlation’s statistics of (a) daily rainfall events and (b) monthly number of rainy days, according to
distance-based classes.

(a) Distance (km)
Month

0–50 50–150 150–350 350–700 700–1400

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

January 0.597 0.184 0.524 0.193 0.442 0.195 0.315 0.183 0.122 0.131
February 0.617 0.168 0.519 0.198 0.446 0.193 0.309 0.183 0.073 0.126
March 0.623 0.159 0.539 0.188 0.449 0.183 0.307 0.173 0.116 0.126
April 0.615 0.162 0.519 0.170 0.432 0.166 0.289 0.162 0.085 0.117
May 0.533 0.201 0.426 0.190 0.326 0.173 0.201 0.156 0.043 0.115
June 0.467 0.158 0.368 0.165 0.273 0.149 0.157 0.129 0.010 0.109
July 0.402 0.150 0.290 0.151 0.204 0.134 0.100 0.117 −0.005 0.101
August 0.418 0.161 0.322 0.161 0.239 0.148 0.122 0.123 −0.012 0.104
September 0.549 0.187 0.436 0.188 0.347 0.164 0.192 0.151 0.001 0.102
October 0.598 0.158 0.497 0.166 0.411 0.167 0.265 0.168 0.048 0.118
November 0.633 0.140 0.545 0.175 0.458 0.180 0.290 0.179 0.063 0.120
December 0.593 0.177 0.513 0.198 0.447 0.192 0.311 0.186 0.106 0.122

(b) Distance (km)
Month

0–50 50–150 150–350 350–700 700–1400

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

January 0.555 0.307 0.539 0.298 0.485 0.303 0.379 0.322 0.287 0.309
February 0.673 0.241 0.676 0.213 0.621 0.244 0.485 0.297 0.159 0.342
March 0.636 0.254 0.573 0.310 0.469 0.368 0.408 0.376 0.195 0.368
April 0.623 0.270 0.578 0.273 0.476 0.305 0.280 0.349 0.020 0.349
May 0.637 0.293 0.607 0.295 0.544 0.312 0.449 0.318 0.265 0.321
June 0.663 0.273 0.647 0.241 0.563 0.265 0.414 0.309 0.171 0.374
July 0.553 0.247 0.503 0.273 0.405 0.306 0.246 0.330 −0.072 0.343
August 0.499 0.296 0.479 0.272 0.413 0.288 0.287 0.310 0.125 0.341
September 0.608 0.285 0.542 0.280 0.402 0.312 0.197 0.337 0.014 0.357
October 0.738 0.181 0.691 0.243 0.637 0.257 0.459 0.347 0.145 0.314
November 0.631 0.281 0.584 0.306 0.539 0.310 0.356 0.376 0.166 0.369
December 0.566 0.316 0.498 0.319 0.416 0.333 0.253 0.366 0.017 0.385
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period, rainfall amounts in Alabama, Florida and Georgia
were found to have a geographical trend described by a
first degree polynomial during December to April and a
third degree polynomial during the remaining months.

Using both daily and monthly rainfall data, two well-
defined rainfall spatial correlation patterns were found
corresponding to the frontal and the convective rainy
seasons. Spatial correlations during the frontal rainy sea-
son were characterized by a widely spread pattern in a
northeast–southwest direction around weather stations,
which is perpendicular to the usual weather front paths.
During the convective rainy season, correlations were
characterized by small concentric patterns in which corre-
lations decreased rapidly over short distances from each
weather station. However, larger areas of higher corre-
lations were found using monthly rainfall amounts than
when using daily rainfall amounts. Spatial correlations
among daily rainfall amounts and occurrence of events
are needed for spatial weather generators on a storm-by-
storm basis. Spatial correlations among monthly rainfall
amounts and rainfall persistence are needed to ensure the
validity of downscaled data from numerical seasonal rain-
fall forecasts.
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