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Many multivariate statistical tools assume the data is drawn from a continuous and unbounded 
sample space, such as the d-dimensional set of real numbers ℜd. In these spaces, variables can take 
on values ranging from −∞ to +∞, including zero.  In contrast, many of the data that appear in 
quantitative microanalysis experiments are drawn from more restricted spaces. The counts in an 
XEDS detector channel, for example, are constrained to be non-negative.  It does not make sense to 
speak of a 10 eV wide X-ray channel with negative counts, and when commonly-applied algorithms 
such as Principal Components Analysis (PCA) return results with negative values, many analysts 
are confused. Compositional data are even more constrained than count data. Consider the 
microanalysis of a Ni-Al-Fe alloy in an SEM using XEDS. The measured composition at each pixel 
on the sample is expressed in terms of the mass fraction of each component of the mixture, such as 
Ni0.25Al0.5Fe0.25.  The mass fraction data for each component is constrained to vary from 0 to 1, an 
extremely narrow range. To complicate matters further, the three component values are jointly 
constrained to sum to one, i.e. xNi + xAl + xFe = 1.  Mathematically, the components are said to fall 
within a simplex, a severely restricted subspace of ℜd.   
 
The practical implications of these constraints, and the resulting pitfalls in interpretation of 
unconstrained statistical analyses, were described by Karl Pearson as early as 1897 in a paper on 
spurious correlations [1].  The effect of the unit-sum constraint on bulk compositional data was first 
investigated by geologists in the early 1960s [2,3]. Since then many descriptions of the 
consequences of these effects have appeared in the statistical literature, such as the negative-bias 
difficulty, the basis difficulty, the null-correlation difficulty, and the absence of interpretable 
covariance structure when using crude PCA and crude multivariate curve resolution (MCR).Only 
recently has a mathematically-mature approach for “stay-in-the-simplex” analysis appeared, based 
on an alternative form of linear algebra where the arithmetic operations of addition and 
multiplication are replaced with the binary operations of perturbation and powering [4]. 
 
Here, these techniques are applied to microanalysis data using custom scripts for the R open source 
statistical environment [5]. Experimental k-ratios, compositions from ZAF and ϕ(ρz) corrections, 
and synthetic spectrum images from NISTMonte and DTSA can be processed using the new 
approach. Figure 1 shows the effect on compositional error ellipses when Ni-Al-Fe data are 
analyzed using conventional (“crude”) covariance structure vice “stay-in-the-simplex” methods. 
Figure 2 shows the same for PCA loadings. 
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Figure 1.  Differences between compositional error ellipses using (a) crude covariance structure, 
and (b) simplex-based analyses. The Ni-Al-Fe compositional data points are clustered around three 
phases with different covariance matrices. The ellipses in (a) are one sigma in radius (r=0.5 for 
green) and are ignorant of the ternary diagram boundaries. Those in (b) are three sigma ellipses and 
obey the simplex constraints. 
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Figure 2.  Differences between the first two principal component directions for the green phase 
only, using (a) conventional PCA, and (b) Aitchison simplex compositional PCA (with three sigma 
error ellipse drawn for reference). These differences apply to all multivariate statistical analyses 
performed using the crude covariance (including pixel classification schemes) and are not limited to 
PCA and MCR. 
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