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SPATIAL PREDICTION OF SOIL PARTICLE-SIZE FRACTIONS AS
COMPOSITIONAL DATA

Inakwu O.A. Odehl, Alison J. Todd', and John Triantafilisl

Particle-size fractions (psf) of mineral soils and, hence, soil texture, are
the most important attributes affecting physical and chemical processes
in the soil. More often, psf data are available only at a few locations for
a given area and, therefore, require some form of interpolation or spatial
prediction. However, psf data are compositional and, therefore, require
special treatment before spatial prediction. This includes ensuring posi-
tive definiteness and a constant sum of interpolated values at a given lo-
cation, error minimization, and lack of bias. In order to meet these re-
quirements, this study applied two methods of data transformation prior
to kriging of the psf of soils in two regions of eastern Australia. The two
methods are additive log-ratio transformation of the psf (ALROK) and
modified log-ratio transformation (mALROK). The performance of the
transformed values by ordinary kriging was compared with the spatial
prediction of the untransformed psf data using ordinary kriging, com-
positional kriging (CK) (UTOK), and cokriging, based on the criteria-
prediction bias or mean error (ME) and precision (root mean square er-
ror (RMSE)), and validity of textural classification. ALROK and mALROK
outperformed UTOK and CK in terms of prediction ME and RMSE. Be-
cause of the closure effect on the psf data, UTOK, and, to a lesser extent,
CK, did not meet all of the requirements for spatially predicting compo-
sitional data and, therefore, performed poorly. mALROK outperformed
all of the interpolation methods in terms of misclassification of soils into
textural classes. The results show that without considering the special re-
quirements of compositional data, spatial interpolation of psf data will
necessarily produce uncertain and unreliable interpolated psf values. (Soil
Science 2003;168:501-515)

Key words: Compositional soil data, particle-size fractions, log-ratio
transformation, kriging, spatial prediction.

A regionalized composition is characterized by
components that (i) can be modeled by a spa-

tial random ifiunctioni, (ii) are positive definite, and (iii)
suimI to a conistanit (Pawlowsky, 1984). The study of
compositional data therefore should be con-
cerned with the relative values or ratios of the
components. It is meaningless to evaluate each
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component in isolation. Pearson (1897) was the
first to identify this problem of statistical analysis
of compositional data. The problem has been
referred to as a "fallacy of interpretation"
(Woronow and Love, 1990) or "spurious spatial
correlation" as a result of the "closure effect"
(Pawlowsky, 1984). That a composition must have
at least one negative correlation between a pair of
its components is caused by the closure effect. A
change in one component, therefore, results in a
shift of all other components. However, an infi-
nite number of different combinations or changes
of the composition of the components could pro-
duce the same shifts without showing evidence of
what changes have actually occurred. This invari-
ably leads to difficulties in interpreting the corre-
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The first requirement,;

ance, the covariance is (Sinowski et al., 1997). In some situations it may
ices, singular variance- be necessary to predict spatially all of the compo-
ie cokriging equations nents of the particle-size data at unknown loca-
.dition, kriging of sep- tions before they are used for pedotransfer func-
ionalized composition tions or modeling of other soil processes.
that sum to a constant. Either ordinary kriging or cokriging has gen-
npositions. Therefore, erally been used by researchers in the spatial analy-
ndamental to kriging sis ofpsf (e.g., Lookman et al., 1995; Mapa and Ku-

maragamage, 1996; Oberthur et al., 1999: Odeh
)rediction of compo- and McBratney, 2000). These kriging techniques
a caused by the prob- do not take into consideration requirements 1-4
voided if four basic re- (Eqs. (1-4)), especially requirement (2) above.
uijter et al., 1997): Choice of an appropriate geostatistical method for

spatial analysis is, therefore, critical for producing
) valid estimates with minimal prediction error vari-
ance. A number of statistical methods have been

- constant (2) demonstrated to meet some of the requirements in
Eqs. (1-4). The first is data transformation before
kriging or cokriging, as suggested by several au-
thors (McBratney et al., 1992; Pawlowsky et al.,

Ai-1j -. k (3) 1993). Another method is compositional kriging,
developed by de Gruijter et al. (1997). In soil sci-
ence, these methods were developed for spatial in-
terpolation of fuzzy (continuous) soil class mem-

(4) bership values, a form of composition. However,
they have rarely been used for interpolation of

ite of a compositional particle-size data. The aim of this study is to assess
e jth component (out the performance of these methods on particle-size
)mposition) at the ith data obtained for a region in New South Wales

Australia. First, however, the statistical theory and
as indicated in Eq. (1), the methods will be described briefly.

means that each of the components of a region-
alized composition must be nonnegative. In the
case of the second requirement (Eq. (2)), a re-
gionalized composition must sum to a constant at
every location. A third requirement (Eq. (3)) en-
sures that the estimate, Z* (x) are unbiased, and
the fourth (Eq. (4)) is indicative of variance min-
imization in the kriging system of equations.
Most of the spatial interpolation methods used
for regionalized compositions in soil studies do
not meet all four requirements.

Particle-size data are the most familiar com-
position in soil science. The relative proportions
of the individual particle-size fraction (psf) are
what constitute the soil texture. The importance
of soil texture cannot be overemphasized. The
soil texture, and indeed the particle-size distribu-
tion, determine, in part, water, heat, and nutrient
fluxes, water and nutrient holding capacity, and
soil structural form and stability. The clay frac-
tion, in particular, as the active constituent of the
composition, could be incorporated in pedo-
transfer functions to predict material fluxes (e.g..
Arya, et al., 1999) and other soil properties

PREDICTION METHODS USED ON
COMPOSITIONAL SOIL DATA

Log-Ratio Transfonnation before Kriging
or Cokriging

Modeling any data requires identification of
the appropriate sample space.A restricted part of
real space (R), termed the positive simplex (Rh, is
identified by Aitchison (1986, 1990a) as the ap-
propriate sample space for compositions. A sim-
plex is a geometric representation of attribute
space, where a composition Z of D parts is rep-
resented by a minimum number of vertices for a
space of a given number of dimensions (McBrat-
ney et al., 1992). To gain the advantage of sym-
metry, the d-dimensional simplex (in terms of
the subvector) is embedded in D-dimensional
real space (Aitchison, 1986):

Sd= (Z -, Z.D) Zl >.ZD > O; zl+PPP+zD- 11 (5)

The symmetric positive simplex dovetails well
with the requirements defined in Eq. (1). How-
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ever, the simplex does not, cater adequately for
independence and measures of dependence of
the components in the absence of a satisfactory
class of distributions (St (Aitchison, 1982). And,
although the constant-sum constraint (R" con-
fines compositional vectors to a simplex, there is
no guarantee that the patterns perceived in such
a constrained space will necessarily have the same
interpretation as in the more familiar spaces such
as (Rd) (Aitchison, 1986). A solution to the prob-
lem is the transformation of the natural space (S'
to the real space (R') via additive log-ratio trans-
formation (ALR), defined as:

zi

yi = ln Zd+1

where y, is the log-ratio transformation of zi. I
a regionalized composition this is expressed as

y, (x) ln fU x k = d + 1; i1.

j = l,...k

with inverse transformation:

(X) exp y((x)

exp yk (x)
j=I

The effect of ALR transformation is twofold
the closure effect is removed (Aitchison,19
1990b), and (ii) through perturbation, tra
formed values may be closer to a normal distr
ution than the untransformed data. Transforr
tion, therefore, makes the data better suited
classical statistical procedures (Aitchison, 19E
ALR has been applied to compositional geolc
cal data (e.g., Zhou et al., 1991; Pawlowsky et
1993; Cardenas et al., 1996) and has been u
only rarely in the analysis of soil particle-size c
(e.g.,Lark, 1999).

Membership grades resulting from fu
classification of soil types into continuous cla
are the new compositional data in soil scier
Continuous classes have membership values
that describe the degree of membership to a c
(j, j = 1, . . ., c) (McBratney et al., 1992; Ode]
al., 1992). The result of fuzzy classification
matrix of membership values, such as a comp,
tional matrix, Z = c x n. The matrix Z = Zi
isfies all the requirements of a composition.
resolve the specific case of transforming me
bership values of k continuous classes bel
kriging, McBratney et al. (1992) modified
Aitchison (1986) log-ratio transformation eq

(6)

tion. Because of the presence of zero membership
data, it is necessary to replace the zeros before
transformation (Martin-Fernandez et al., 2000;
Fry et al., 2000). The constant rj was, therefore,
introduced to cater for zero values in the data, r
being one-half of the smallest membership other
than zero, and Eq. (7) was modified accordingly.
The modified log-ratio transformation (mALR)
is expressed as:

yY(x) = ln k i k

T1et(Zik (X)+i)n

The inverse trarnsformation is defined as:

(9)

For z e(X)( y -(-) )(j ) (10)

E~ exp YJ.(X) +D,7 j=1
j=i j=-

For strictly positive compositional values, inclu-
(7) sion of the constant X is unnecessary, and Eqs. (7)

and (8) are more appropriate.

Comipositional Kriging

(8) Compositional kriging (CK) was recently de-
veloped by de Gruijter et al. (1997) and used on
membership classes resulting from fuzzy k means
of classification of soil. They needed to produce

(i) continuous soil maps that relate soil distribution
82, patterns to the general landscape structure. Com-
nbs- positional kriging is an extension of OK. It is dis-
ib similar to cokriging, however, in that it does not

na- assume linear correlations among the composi-
for tional components. Moreover, cross-variogram
?6) models are not required.

)gi- As with OK, CK also minimnizes the error
al.. variance with respect to the unbiased constraint. In
sed this case, the error variance can be minimized by
data setting its partial first derivatives, with respect to its

associated Lagrange multip]ier (i.e. w, a , or f3
zY equal to zero with the following linear equations:

ice. n
:laes j-I Aj Qj + ,a + a z. + 6 zic = Cio, Vi,

lass. i=l

2 Ai, = 1
i=1

AjCi, = 0 and a,- 0
i=l

Vc
(11)

Vc

k )I,

C I Aiz-i = I
c=l i=l
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where X. = weight assigned to observation point
j for the membership (composition) class c; C; =
covariance between observation points i andj for
the membership class c; C,0. = covariance be-
tween observation point i and the prediction
point for the membership class c; and it, = num-
ber of observation points used to predict the
membership class c.

Therefore, the memberships at a specific pre-
diction point are estimated by:

n

z, = I Ao1
i=l

Vc

and the error variances obtained by substituting
weights via algebraic manipulation (de Gruijter
et al., 1997) into a computationally more efficient
expression as:

02 ,= 2-, AC, - (- (a+/3)z Vc (13)
i=l

where o2 = variance of the prediction error in
membership class c and ou2 = variance of the
memberships to class c.

MATERIALS AND METHODS

The methods described above were applied
to the spatial analysis of particle-size data ob-
tained for the two regions, the lower Macintyre
and Namoi valleys, both situated in east central
Australia. First, however, we describe the two re-
gions and also the methods of data analysis and
validation.

The Study Regions

The first study region, the lower Macintyre
valley, is approximnately 5100 km2 in extent and is
located on the border between New SouthWales
and Queensland, two of the eastern states ofAus-
tra]ia (Fig. 1). The second region is in the lower
Namoi valey, which is about 200 km south of
the Macintyre.Both regions are part of the Mur-
ray Darling Basin, just west of Great Dividing
Range of Eastern Australia. They are of very low
relief: a gentle east-west slope of approximately
1:3000. The dominant soil on the plains is deep,
self-mulching cracking clays; gray clays are found
on the open plains and in depressions, and brown
clays are found on the slightly elevated areas
(Odeh et al., 1998). Soil information for the two
areas was sparse and, until recently, was sourced
mainly from the "Atlas of Australian Soils"
(Northcote, 1966) at a scale of 1:2 mifDion. This
study was part of a bigger project initiated to pro-
vide soil attribute information important for sus-

tainable cotton production, a major agricultural
activity in both regions.

In the lower Macintyre valley, a total of 119
sites (Fig. la) were visited and sampled, and-more
detailed sampling was conducted in the lower
Namoi (Fig. lb)).Auger samples were obtained at
six prespecified depths down to 2 meters. The
sampling strategy adopted for the lower Macin-
tyre valley and part of the lower Namoi valley
is described elsewhere (Odeh and McBratney,
1994). The sampling design used for the eastern
part of the lower Namoi valley is described in
McGarry et al., 1989. The particle-size fractions
were determined by an in-house developed mi-
cropipette method. We utilized only the topsoil
(0-10 cm) particle-size data for this study. Each
soil sample was assigned to one of 12 texture
classes as described in Soil Survey Staff (1962).
Clay was differentiated into light-medium clay
(40-50% clay) and heavy clay (>50% clay), mak-
ing 13 overall potential classes for the purposes of
the study.

Data Analysis
The following methods were examined and

compared:

* kriging of each untransformed (UTOK) psf di-
rectly as has been the practice;

* additive log-ratio (ALR) and modified log-
ratio transformation (mALR) prior to ordinary
kriging (ALROK, rnALROK) and cokriging
of the transformed value, followed by back-
transformation of the kriged results;

* compositional kriging (CK) (de Gruijter et al.,
1997) using all of the fractions.

Ordinary kriging (OK) and cokriging are
well known within the soil science community
(e.g., Wackernagel, 1995; Goovaerts, 1997) and
thus will not be described here. It should be
noted, however, that cokriging compositional
data make sense only after log-ratio transforma-
tion as ALR removes the effect of closure (Zhou
et al., 1991). Isotropic spherical variogram mod-
els were fitted to the experimental variogram of
the untransformed and transformed data for all of
the kriging methods.

The FORTRAN program, COKRIG (Carr et
al., 1985) was used for generalized cokriging.
Compositional kriging was performed using the
program developed by de Gruijter et al. (1997).
The semivariogram and cross-variogram needed
for cokriging and compositional kriging were
computed and modeled using the geostatistical
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package VESPER (Minasny et al., 1999). Another
program, ISATIS (Geovariances, 1997) was used
for OK analysis of both the untransformed and
transformed particle-size data.

Validationi of the Prediction jlWetlhods

The primary validations used to test the qual-
ity of spatial prediction of soil attributes are the
mean error (ME) and root mean square error
(RMSE) (Voltz and Webster, 1990). Mean error
can be estimated using Eq. (13):

,,

z'i-~

ME i=

RMSE is expressed as:

(13)

RMSE (14)

Mean error is a measure of bias (or unbias), and
RMSE is a measure of precision and bias. As
RMSE is sensitive to both systematic and random
errors, it could be used to estimate the accuracy
of prediction (Atkinson and Foody, 2002), and it
could be based on a validation sample set selected
independent of the training set.

When the data set used is large, simple di-
chotomous sets, one for validation and the other
for training, would not pose a problem. However,
when the sample size is small (as is the case here:
119 for the Macintyre valley and 237 for the
Namoi valley), it becomes difficult to have suffi-
cient (and separate) sample data sets for modeling
and validation. Moreover it has been suggested in
the literature that a sample size of 100 is the barest
minimum required for variogram estimation
(Webster and Oliver, 1992). For this reason a

modified jackknifing technique (Good, 1999)
was used to resample the base sample data 20
times for the purpose of validation. The resam-
pling size for validation was maintained at ap-
proximately one-sixth of the available data, i.e.,
19 of 119 for the lower Macintyre valley and 58
of 328 for the lower Namoi valley. Mean error
(Eq. 13), as a measure of bias, and RMSE (Eq. 14),
as a measure of precision and bias, were esti-
mated, for each of the resampled validation sets.
The prediction quality of each prediction
method was determined by averaging the MEs
and RMSEs of the 20 jackknifed samples.

RESULTS AND DISCUSSION

The summaly statistics of the two sets of data
are shown in Table 1. The distributions of the
sample data are typical of a composition. None of
the fractions (clay, silt or sand) approximates a
normal distribution. All are skewed, either posi-
tively (silt and sand) or negatively (clay). Percent
clay content is by far the most variable of the
fractions (SD = 13.6%), followed by sand (SD =
10.6%) and, lasdy, silt (SD = 9.6%). The standard
deviation (SD) is higher than one may expect for
particle-size data, probably because of the large
geographical extent of the study area (Fig. 1).
This occurs because, although the area is rela-
tively flat and geologically homogenous, small
depressions (gilgai) are pedologically diverse from
their surroundings (Hubble et al., 1983).

Illustrated here as examplesi the histograms of
the untransformed and transformed data for the
lower Mcintyre valley are shown in Fig. 2. mALR
improved normality slightly. Both transformation
methods reduce skewness for sand and silt
markedly, but ALR actually increased skewness
for clay. Similar results were obtained for the
lower Namoi valley. The correlation coefficient

TABLE I
Summary statistcs of the topsoil (0-10cm) particle size fl-actions data

Lower Macintyre Lowor Namoi

Clay (/o) Silt Sand Clay Silt Sand
Minimum (/O) 10.3 18.1 1.7 2.5 0.1 0.1
1st quartile (Q1) (/O) 44.7 26.9 11.1 39.1 16.1 17.9
Median (Q2) '/o) 51.4 31.5 16.3 51.3 19.6 25.5
Mean (%o) 48.0 32.6 17.7 47.4 20.9 29.6
3rd quartile (Q3) (%O) 56.3 38.5 22.8 58.4 24.4 38.1
Maximum (%) 77.4 60.0 62.2 71.8 73.3 95.5
Range (%) 67.1 41.9 60.5 69.3 73.2 95.4
((Q3-Q1)/2) (%) 23.0 10.2 10.6 28.0 12.2 19.0
Std (/o) 13.9 9.6 10.6 14.6 8.0 17.1
Skewness -1.03 0.95 131 -0.76 1.47 1.02
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Fig. 2. Histograms and boxplots of the Macintyre particle-size data (n= 119), including clay (%),sand (%), and silt
(%), comparing (a) untransformed (UT), (b) additive log-ratio (ALR), and (c) modified additive log-ratio (mALR)
transformations.

of the untransformed (UT) with transformed
data are shown in Table 2. ALR decreased the
correlation between clay and silt and clay and
sand but improved slightly the correlation be-
tween silt and sand. iALR improved consider-
ably the correlation beween sand and clay, and

between sand and silt, but the correlation be-
tween silt and clay deteriorated.

A map of the spatial distribution of the sum
of psf predicted by ordinary kriging of untrans-
formed psf (UTOK) for the lower Macintyre val-
ley is shown in Fig. 3. It is evident that (UT0 1,)

TABLE2

Correlation matrix of untransformed (UTOK) and transformed sample data (ALROK and JiiALROK)

Variable UtOK ALROR siiALROK

Clay Silt Sand Clay Silt Sand Clay Silt Sand

a) Lower Macintyre
Clay 1.00 1.00 1.00

Silt -0.57 1.00 -0.49 1.00 -0.01 1.00
Sand -0.73 -Q.15 1.00 -0.60 -0.18 1.00 -0.81 -0.57 1.00

b) Lower Namoi
Clay 1.00 1.00 1.00

Silt 0.12 1.00 0.23 1.00 -0.01 1.00
Sand 0.81 -0.54 1.00 -0.33 -0.58 1.00 -0.81 -0.57 1.00

(a)

i%
0%; 20 40 60%

0
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Fig. 3. Sum of the particle-size fraction produced by ordinary kriging of the untransformed particle-size data from
the Macintyre valley (UTOK); expected sum = 100%.

both overestimated and underestimated values of
soil psf. only 35% of the predicted sites sum to
100%. It is not surprising that the constant sum
requirement is not wholly met by (UTOK) as the
dependencies between fractions are discarded
and the separate fractions are estimated indepen-
dently at each point on the spatial grid. The same
results were obtained for the lower Namoi valley.
The results of (UTOK) concur with those of
other researchers who have investigated the effi-
cacy of the approach in compositional analysis
(see Pawlowsky et al., 1995; de Gruijter et al..
1997).

An operation to overcome the problem of in-
terpolated values of untransformed psf not sum-
ming to a constant involves kriging all the frac-
tions but one and then calculating the remaining
fraction by difference. This operation. however, is
not order invariant. By contrast ALROK (and
n2ALROK) are order invariant (McBratney et al.,
1992; de Gruijter et al., 1997) in the sense that the
multivariate normality is preserved under permu-
tation of the components of the composition
(Barcel6 et al., 1996). These methods (and CK)
produced kriged particle-size values that sum to
a constant (100%). Therefore, the methods based
on log-ratio transformation and CK meet the re-
quirements in Eqs. (1)-(3). This outcome high-
lights the need to reassess applying OK to psf
without transformation, especially psf commonly
imbedded in pedotransfer functions (e.g., Sin-
owski et al., 1997).

Cokriging of the log-transformed two data
sets produced very poor results. There are several
possible reasons for this. As Table 1 and Fig. 2
show, the sample data are highly skewed, and all
fractions have outliers. Although the (cross-) var-
iogram estimator is unbiased, it is susceptible to
outliers and shows nonrobust behavior toward
distributional deviations (Armstrong, 1984;
Dowd, 1984; Omre, 1984). In addition to out-
liers, the data also shows a weak trend and lack of
spatial co-dependence. Surprisingly, the more in-
tensively sampled data in the lower Namoi valley
did not produce better cokriging results.

Figure 4 shows the relative proportions of the
texture classes identified for the sample data
set and the results of UTOK CK, and the back-
transformed particle-size values resulting from
ALROK, nlALROK for the lower Macintyre val-
ley. For the sample data set (n = 119) the pro-
portions are sandy loam (SaLm) 2% of sites, loam
(Lm) 7%, silty loam (SiLm) 2.5%, clay loam
(CLm) 2.5%, silty clay loam (SiCLm) 4%. silty
clay (SiC) 8%, light-medium clay (LMC) 21%.
and heavy clay (HC) 53%. UTOK had only half
(4) the number of classes of the original sample
sites. There are only five texture classes resulting
from each ofALROK, miiALROK, and CK. Figure
4 also shows the similarity of texture class distri-
bution between ALROK and inALROK and the
sample data set. However, whether kriging trans-
formed or untransformed data, all of the kriging
methods have the effect of smoothing the final
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Fig. 4. Histogram of texture classes of sample particle-size data from the Macintyre valley (n = 119) and of the tex-
ture classes produced by compositional kriging (CK - n = 18722), and ordinary kriging of untransformed data
(UTOK -n = 18722) and kriging of transformed data (additive log-ratio transformation - ALRoK; modified additive
log-ratio transformation - mALR n = 18722 for both)

results. This is illustrated in maps of the soil tex-
ture classes presented in Fig. 5.

The patterns of texture class distribution pro-
duced by UTOK (Fig. 5a) and CK (Fig. 5d) are
similar. ALROK1 and mALROK have similar pat-
terns also (Fig. 5 a and c), which is not surprising
considering the similarity of the two methods.
However, nALROK gives slightly better spatial
continuity in the prediction. To a lesser extent,
the spatial pattern of texture classes produced by
CK is similar to those of ALROK and mALROK
(Figs. 5b and c) except for the northeastern cor-
ner of the map of the CK results (Fig. 5d). Some
patches in Fig. 5d also show some discrepancy
compared with the other two methods. The his-
togram in Fig. 4 illustrates this, with CK clearly
overestimating LMC and underestimating HC
compared with ALROK and iiALROK. This is
supported by the results of assessing the accuracy
of textural classification for the two study areas as
presented in Table 3.

Validationi Results

Recall that we used repeated resampling of the
available data to validate the prediction method. As
an example, Fig. 6 shows the histograms of the
RMSE of prediction for the resampled validation
sets for the Macintyre valley using different pre-
diction methods. Only the RMSE of the clay frac-
tion exhibits distribution close to normal. This is
not surprising as the clay fraction is generally char-
acterized by a large range ofvalues compared with
silt and sand fractions (Table 1). The study regions
are characterized mainly by Vertisols (which have
a preponderance of clay) and a few Alfisols and In-

ceptisols (Soil Survey Staff, 1998). However, the
histograms demonstrate that RMSE obtained by
repeated resampling (multiple jackknifing) is more
representative of the population than that obtained
by a single jackknifmg. The average values of
RMSE are used to compare the quality of the pre-
diction methods.

As shown in Table 3, ALRoK is the most ac-
curate predictor of textural classification for the
lower Macintyre valley, with 72% of the valida-
tion sites classified correctly compared with 65%
with mALROK and 44% for UTOK. Only 55% of
the validation sites were correctly classified by
CK. This trend is also repeated for the lower
Namoi valley. Evidently, the ME values, shown in
Table 3, also indicate that all methods overesti-
mated the silt fraction, except for UTOK of the
percent silt for the lower Namoi. Conversely, in
most cases the methods underestimated the clay
fraction. RMSE indicates that ALROK and mAL-
ROK are equally accurate for predicting percent
clay, with UT as the most precise for predicting
sand. Statistical testing, using the mean RMSE for
ordinary kriging of the raw psf, indicates that the
performance by ALROK and mALROK is signi-
ficantly superior (P = 0.05) to that of
UTOK(Table 3). Although the difference be-
tween RMSE of ALROK rnALROK, and CK is
minimal, what is surprising is the greater misclas-
sification of texture classes by CK compared with
the other methods. The poor performance in
textural classification by CK is probably caused
by the algebraic manipulation in the CK pro-
gram, which was probably not as order invariant
as we would like it to be.
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a) Ordinary kriging of untransformed psf data
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b) Compositional kriging of psf data
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c) Modified log-ratio kriging of psf data
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Fig. 6. Histograms of root mean square errors (RMSE) for a) Ordinary kriging of particle-size fractions (psf); b) Com-
positional kriging of psf; and c) Ordinary kriging of modified log-ratio transformed psf.

Figure 7 shows some of the results of mAL-
ROK on the lower Namoi psf data. Figure 7a also
shows the distribution pattern of the texture
classes produced by niALROK. It is apparent that
a broad band of heavier clay soil runs diagonally
from the southwest corner near Pilliga to the
northeast corner north of Edgeroi. Most of the
irrigated cotton-growing farms are located in this
area, particularly to the northeast and northwest
of Wee Waa. To the south, the soil is much
coarser in texture, ranging from sand to loamy
sand and sandy clay loam. This is consistent with
the soils derived from Pilliga Sandstone (Tri-
antafilis et al., 2001). The area' near Edgeroi is
similarly characterized by silt loams and sandy
clay loams, which were probably derived from
washed sediments from the nearby Nandewar
Range (Triantafilis et al., 2001).

The spatial distribution pattern of each of the
topsoil clay fractions, as produced by inALROK
for the lower Namoi valley, is shown in Fig. 7b.
In the areas south of Edgeroi and southeast of
Wee Waa, the clay fraction (Fig., 7d) is low
(<40%). In the area to the north of Wee Waa,
however, the clay fraction is relatively large
(>55%). This is because this area coincides with
the area where the Namoi River flows into a very

flat alluvial plains landscape, and, as a result, the
area has seen various depositional and erosional
events, and the soil tends to be predominantly
fine-textured (Triantafilis et al., 2001).

In general, critics of CK may not be support-
ive of the embedded model in the CK program,
which involves algebraic manipulation in order
to solve the problem of the constraint caused by
error minimization. Even though CK produced
numerically valid output, inasmuch as our results
are concerned, the statistical validity of the
method is more or less heuristic and may not jus-
tify its being more computationally efficient. The
time involved in data transformation bebfore
kriging or the overparameterization and the la-
boriousness of constructing so many variograms
or cross-variograms for kriging (de Gruijter et
al., 1997) may not be reason enough to discard
these techniques. However, the data transforma-
tion methods are not without problems.

CONCLUSIONS
The two study sites were large geographical

areas, one of which was sparsely sampled. We
identified five main texture classes in the surface
-layer of the soil, the dominant class of which was
heavy clay. The performance of each of the pre-
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TABLE 3

Validity of textural classification, and bias and accuracy of the prediction methods

Texture correcdy Bias Accuracy
Method classified ME (%) -- -RMSE (%)-

(%6) Clay Silt Sand Clay Silt Sand

a) Lower Macintyre
UTOK 44 -0.83 1.40 0.86 12.13 9.26 738
ALROK 72 0.75 1.85 -1.01 9.56' 5.26*' 5.89"S
mALROK 65 -0.58 1.38 0.52 9.40*' 5.17*" 6.07n'
CK 55 -1.43 2.54 0.85 10.58n, 7.17' 6.36"'

b) Lower Namoi
UTOK 49 -1.12 -0.02 0.11 11.10 8.58 8.18
ALROK 69 -0.25 1.84 -0.89 8.66"6 6.01" 8.12"
niALROK 66 -1.00 0.56 -0.73 8.85- 5.81' 8.26a"
CK 52 -4.58 2.15 -0.94 10.47"1 7.18'" 6.36*

"Statistically different from mean for UTOK (bold underlined) at 0.01 alpha level
Statistically different from mean for UTOK (bold underlined) at 0.05 alpha level

ns - Not statistically different from mean for UToK (bold underlined) at 0.05 alpha level

sat 6M M 6 7a= 77t= 72a7 73 7 47 7WKr5 7a10 7TAM 7WC72 7X

Fig. 7. Some results of mALROK on particle-size fractions of soils in the lower Namoi valley (a) pattems of topsoil tex-
tural classes, and (b) spatial patterns of topsoil % clay fraction. (continued)
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s
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7ax= 74= = 71r= 7/ 7a= ;9

Fig. 7. (b) spatial patterns of topsoil % clay fraction.

diction methods was assessed based on four con-
straints: (i) predictions should be greater than or
equal to zero, (ii) each prediction point should
sum to a constant, (iii) the predictions should be
unbiased, and (iv) the variance of the prediction
errors should be minimized.

We, like other authors (Pawlowsky et al.,
1995; de Gruijter et al., 1997), were unable to as-
sess requirement (iv) using ALRoK and inALROK,
although the problem has recently been solved by
Pawlowsky-Glahn and Egozcue (2002). However,
all methods predicted the particle-size values
which were greater than zero. Ordinary kriging
on the untransformed psf led to output values not
summing to a constant at many locations. All
other methods (CK,ALROK,and inALROK) pro-
duced results that sum to a constant at every lo-
cation. Nevertheless, although the accuracy of
CK was similar to that of the other methods, it
performed poorly in predicting texture classes.
ALR and tnALR transformation before kriging
usually outperformed UTOK and CK. In this case
we believe the success was the result of the trans-
formation before kriging. There was evidence of
a slight trend in the data for both study areas. Per-

haps further improvement can be achieved using
universal cokriging after ALR (Stein and
Corsten, 1991). Nevertheless, data cannot always
be modeled adequately using log-ratio transfor-
mation, and alternatives such as Box-Cox faniily
(Barcel6 et al., 1996) or an adaptation of the
Renner (1996) transformation may need to be
assessed. The use of standardized residual sum of
square (STRESS) has also recently been proposed
(Martin-Fernandez et al., 2001) as an alternative
criterion for testing prediction quality. We will
focus on these issues in a future work.

This study also highlights the problem of re-
lying on one method to validate a particular
method of data analysis. An obvious example is
the use of RMSE. RMSE of prediction for
UTOK and CK seems not to reflect the inaccu-
racy of predicting the texture classes across the
study area.

The analysis and regionalization of composi-
tional data present specific problems for soil sci-
entists. There are new compositional soil data
(e.g., fuzzy membership dlasses). There is also a
need to incorporate components of psf in pedo-
transfer functions. Therefore, to ensure that we

N

10 0 10 20 Kiloneters w+ E

s
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do not make use of spurious interpolated results,
it is important that we use the appropriate
method (such as ALR or, perhaps, CK) rather
than rely on interpolation of untransformed
components of compositions, which has previ-
ously been the practice.
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