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Abstract: Indicator kriging (IK) is a spatial interpolation technique devised for
estimating a conditional cumulative distribution function (ccdf) at an unsampled
location. The result is a discrete approximation to the ccdf, and its corresponding
probability density function can be viewed as a composition. This suggests a
compositional approach to IK, which by construction avoids all the standard
drawbacks, like estimates outside the (0, 1) interval or order-relation problems.
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1 Introduction

Indicator kriging (IK) is a geostatistical technique used to approximate
the conditional cumulative distribution function (ccdf) at each point of a
grid based on the correlation structure of indicator transformed data points
(Journel, 1983). The major drawback of IK is that it might yield impossi-
ble estimates, such as negative probabilities, probabilities larger than one,
or a non-monotonic ccdf. Several methods have been developed to correct
the order relations violation, but none of them reconsiders the underlying
hypothesis of the model itself, namely that probabilities are real numbers
and obey the rules of real space as a Euclidean space. Here we discuss
an approach based on the fact that relative frequencies and probabilities
can be viewed as compositions with sample space a D part simplex, SD.
This allows the application of interpolation techniques devised for compo-
sitional data (Pawlowsky-Glahn and Olea, 2004) to approximate the ccdf
at an unsampled location by means of an estimating function satisfying
all the required constraints. An extensive presentation of the mathematical
foundations and of the method can be found in Tolosana-Delgado (2005).

2 Methodology

The new procedure relies on the fact that the D-part simplex has a Eu-
clidean space structure different from the usual one in real space (Billheimer
et al., 2001; Pawlowsky-Glahn and Egozcue, 2001), and comprises the fol-
lowing steps:
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1) Select D − 1 thresholds: As usual in IK, for a regionalised variable
Z(x) with range A = [a0, aD), a set of thresholds {a1, ..., aD−1} is defined,
which leads to a partition A =

⋃D
i=1 Ai, with Ai = [ai−1, ai).

2) Express each observation as a D-multinomial probability vec-
tor: At each sampling point the partition defines a categorical random
vector J(x) = (j1(x), ..., jD(x)), with ji(x) = 1 if Z(x) ∈ Ai and 0 other-
wise. J(x) follows a multinomial distribution with probabilities P[ji(x) =
1] = P[Z(x) ∈ Ai]. Interpreting the vector of probabilities as a composi-
tion in SD, one can estimate it from a single observation of J(x), either
using Bayesian methods (Tolosana-Delgado, 2005) or a zero substitution
technique (Mart́ın-Fernández et al., 2000). If jk(x) = 1, the latter leads to
pk(x) = 1 − α and pi(x) = α/(D − 1) for i 6= k; it corresponds to a prior
model which treats all categories equal. α is interpreted as the probability
of error in the observation. This approach does not take into account the
order of the categories, as the underlying model is a multinomial one.

3) Represent the vectors of estimated probabilities by their co-
ordinates with respect to an orthonormal basis in the simplex:
p(x) = (p1(x), ..., pD(x)) is an element of SD, since the parts are strictly
positive and sum up to one. The Euclidean space structure of SD allows to
represent compositions as coordinates with respect to an orthonormal basis
(Egozcue et al., 2003). One standard option (Tolosana-Delgado, 2005) is to
compute c(x) = Ψ lg p(x), using the (D − 1)×D Helmert matrix
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4) Use standard variography and co-kriging techniques to obtain
estimates of coordinates at unsampled locations: The vector of co-
ordinates c(x) has D−1 unbounded real components, suitable to be treated
with any existing software.

5) Represent the estimated coordinates as compositions: Estimates
ĉ(x) are expressed as compositions using p̂(x) = C(exp[Ψ · ĉ(x)]), where
C(·) represents the closure operation, which divides all components by their
total sum, thus forcing the result to sum up to one. The properties of the
exponential and the closure operation guarantee that p̂(x) will always be
valid multinomial probabilities, from which the desired ccdf is obtained.
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3 Properties

When working in a Euclidean space, basic linear algebra guarantees that
properties satisfied by estimators in coordinates are automatically satisfied
by the same estimators when represented in any other way, although one
has to be aware that not only the vector space operations and the inner
product change, but also the reference measure (Eaton, 1983). Thus, the
fact that co-kriging estimators are BLU in real space (the space of coordi-
nates) guarantees that the estimators expressed as compositions are BLU
in the simplex with respect to the Aitchison geometry (Pawlowsky-Glahn
and Egozcue, 2002) and the associated measure (Pawlowsky-Glahn, 2003).
Also, assuming the random function p(x) to have a joint normal distribu-
tion on the simplex, simple kriging prediction of the coordinates c(x) and
their error variance-covariance matrix give the parameters of the true dis-
tribution of p(x0) conditional on the observed data set, which is a normal
distribution on SD (Mateu-Figueras et al., 2003). Moreover, ordinary or
universal kriging represent valid approximations to this conditional distri-
bution up to the same extent they are for a conventional Gaussian random
function, and it can be shown that the estimator and the conditional dis-
tribution do not depend on the chosen basis in the simplex SD.

4 Discussion

The proposed technique can be applied to interpolate discrete probability
density functions if a certain degree of uncertainty is accepted when es-
timating the probability distribution at sampled locations. The obtained
predictor leads by construction to valid probabilities, which are strictly
positive and summing up to one, thus this technique overcomes the main
flaws of IK. It is a BLU estimator and has all desirable properties owned by
co-kriging estimators, although with respect to a different geometry and a
measure different from the Lebesgue one. Also, the fact that the Euclidean
structure of SD can be extended to a Hilbert space structure for an infi-
nite number of parts (Egozcue et al., 2006), opens a field of further study
for the continous case. The question how results compare to estimates ob-
tained using standard IK techniques has no answer at the present moment.
Each technique relies on a different geometry and a different measure, and
is thus best in a different sense. The real question is which model relies on
underlying hypothesis that make sense to our understanding of probability,
and which model leads to consistent results. For us the answer is simplicial
indicator kriging.
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Fernández (Eds.), Compositional Data Analysis Workshop – CoDa-
Work’03. Universitat de Girona, ISBN 84-8458-111-X,
http://ima.udg.es/Activitats/CoDaWork03/.

Pawlowsky-Glahn, V. (2003). Statistical modelling on coordinates. In: Thió-
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