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SPATIAL PATTERN DETECTION MODELING OF ONION THRIPS (THRIPS 13 

TABACI) ON ONION FIELDS 14 

 15 

ABSTRACT: Onion (Allium caepa) is one of the most cultivated and consumed 16 

vegetables in Brazil and its importance is due to the large workforce involved. One of the 17 

main pest that affect this crop is the onion thrips (Thrips tabaci), but the spatial 18 

distribution of the insect, although important, has not been considered in crop 19 

management recommendations, experiment planning or sampling plans. Our purpose 20 

here is to consider statistical tools to detect and model spatial patterns in the occurrence of 21 

onion thrips. In order to characterize the spatial distribution pattern of the onion thrips a 22 

survey was carried out to record the number of insects in each development phase on 23 

onion plant leaves, on different dates and sample locations, in four rural properties with 24 

neighboring farms with different infestation levels and planting methods. The Mantel 25 

randomization test proved to be a useful tool to test for spatial correlation which when 26 

detected was described by a mixed spatial Poisson model with a geostatistical random 27 

component and parameters allowing for a characterization of the spatial pattern as well as 28 

the production of prediction maps of susceptibility to levels of infestation throughout the 29 

area. 30 

Key words: spatial statistics, randomization tests, geostatistics, Poisson distribution 31 

 32 

DETECÇÃO DE PADRÕES ESPACIAIS NA OCORRÊNCIA DO TRIPES 33 

DO PRATEAMENTO THRIPS TABACI NA CULTURA DA CEBOLA 34 

 35 

RESUMO: A cebola é uma das hortaliças mais cultivadas e consumidas no Brasil e sua 36 
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importância social se deve à grande demanda por mão-de-obra. Uma das principais 37 

pragas que afeta essa cultura é o tripes do prateamento (Thrips tabaci) e sua distribuição 38 

espacial, embora importante, não tem sido considerada nas recomendações de manejo da 39 

cultura, planejamento de experimentos ou estudos amostrais. O objetivo desse artigo foi 40 

considerar métodos estatísticos para detectar e modelar padrões espaciais na ocorrência 41 

do tripes do prateamento da cebola. Para caracterizar o padrão espacial da dispersão do 42 

tripes do prateamento da cebola foi feito um levantamento anotando-se o número de 43 

insetos por fase de desenvolvimento em folhas de plantas de cebola, em diferentes datas e 44 

pontos amostrais dentro de quatro propriedades com fazendas vizinhas apresentando 45 

diferentes níveis de infestação e métodos de plantio. O teste de aleatorização de Mantel 46 

mostrou-se útil para testar a presença de padrão espacial, que quando detectado foi 47 

descrito por um modelo de Poisson misto espacial com componente aleatório 48 

geoestatístico com parâmetros que possibilititam a caracterização do padrão espacial bem 49 

como a obtenção de mapas de predição dos níveis de susceptibilidade à infestação na 50 

área. 51 

Palavras-chave: estatística espacial, testes de aleatorização, geoestatística, distribuição de 52 

Poisson  53 

 54 

INTRODUCTION 55 

Onion (Allium caepa) is one of the most cultivated and consumed vegetables in 56 

Brazil. The social importance of the crop is due to the large workforce involved. It is 57 

estimated that 70% of the production is small scale, because it is typically grown on small 58 

and medium sized properties. It is an annual plant for bulb production, biannual for seed 59 

production, and propagated by direct sowing, bulbs or seedlings planted in beds and 60 
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transplanted to the field. 61 

One of the main pest that affects onion crops is the onion thrips (Thrips tabaci), 62 

which in high infestation levels can damage the harvest (Workman & Martin, 2002), with 63 

reduction in the production of up to 80% during hot and dry periods (Sato, 1989). The 64 

insect is typically found at the base of leaves. It feeds from the sap and the leaves 65 

parenchyma causing gray spots, which gradually change to silver as a result of the 66 

external tissue damage of the leaves. Massive attacks on the aerial part of the plant cause 67 

loss in bulb production, which reduces the size and quality, damaging the commercial 68 

value and creating obstacles to exports. When an attack is very intense, the leaves get 69 

yellowish, dry and with wrenched tips, causing the wilting and the death of the plant (Sato, 70 

1989), and also allowing for the entrance of water to the bulb, which gets rotten. The 71 

insect is also considered a vector of a phytopathological agent with the capacity to 72 

transmit a virus to the plant. 73 

 The insect development occurs in the four phases of egg, nymph, pupa and adult, 74 

with the nymph and adult stages damaging the production, because the pupa phase is 75 

restricted to the soil. The nymph has low mobility, while the adult, although winged, has 76 

restricted movement. The development cycle varies typically from 14 to 30 days, 77 

changing to 10 and 11 days when the temperature is over 30oC. 78 

 The spatial distribution of thrips in commercial fields is important for the efficient 79 

application of insecticides. However, this has not been considered in crop management 80 

recommendations, experiment planning and sampling plans. Considering the low 81 

mobility of nymphs and adults it is reasonable to assume that the wind is the main 82 

dispersion factor for the thrips that potentially determines the spatial pattern. 83 

 A spatial pattern can be classified as random, aggregate or uniform. The random 84 
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pattern occurs when there is a constant and independent probability of infestation for all 85 

the plants, while the aggregate pattern is associated with low insect mobility. The uniform 86 

pattern rarely occurs naturally, but can be induced, for instance, by alternated planting of 87 

resistant and susceptible plants. In order to study whether infant leukemia cases tend to be 88 

close in space and time, Mantel (1967) proposed a randomization test, based on matrices 89 

of time and space distances between observations. This test can be used to test for spatial 90 

correlation in an insect distribution, but its usage has not being considered in practical 91 

applications, and in particular, in studies of the spatial distribution of the onion thrips. 92 

 It is common in insect distribution studies, to find the use of indices based on the 93 

relationship between the variance and the mean, such as the David & More index, the 94 

Taylor power law, and the aggregate indices of Lloyd and Iwao, among others (Ruiz et al., 95 

2003). However, these indices ignore the spatial location of the samples, have limited 96 

capacity to describe spatial patterns, and strongly depend on the size of the sample unit. 97 

 Geostatistical methods (Isaaks & Srisvastava, 1989; Goovaerts, 1997) have been 98 

used to describe insect spatial patterns as, for instance, in Grego et. al. (2006). Such 99 

methods were originally developed for continuous response variables, with several 100 

computational implementations available for data analysis. The insect counts are discrete 101 

and typically distributed in clusters, with many zero counts.  Therefore, the data cannot 102 

have a covariance structure of the type assumed by traditional methods of geostatistical 103 

analysis, with a stationary spatial covariance structure in the study area (Ruiz, 2002).  For 104 

this reason it is appropriate to use models that incorporate explicitly a data generating 105 

mechanism such as the Poisson distribution, combined with structures that describe the 106 

spatial pattern of the counts. These kinds of models have been proposed in the statistical 107 

literature (Diggle et al., 1998) but have had few practical applications. 108 
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 This paper describes a study of the spatial distribution of onion thrips with data 109 

from surveys of four different properties with different infestation levels and planting 110 

methods. We aimed to detect spatial patterns in the occurrence of onion thrips at different 111 

production fields and propose an statistical model for such patterns. We adopt the Mantel 112 

randomization test (Manly, 2006) to decide for the presence of spatial autocorrelation 113 

which when detected was modeled by a mixed spatial Poisson model with a random term 114 

given by a geostatistical component. This model allows the characterization of the spatial 115 

pattern as well as the production of maps of levels of susceptibility to infestation in 116 

different areas. 117 

 118 

MATERIAL AND METHODS 119 

Data description 120 

 This work is motivated by a set of data originated from a study involving sampling 121 

onion thrips in onion crop in four different farms, located in the municipality of São José 122 

do Rio Pardo, São Paulo State, Brazil (21°36’S, 43°53’W; altitude 705m), from June to 123 

September, 1996. The aim is to study the spatial and temporal distribution of thrips. The 124 

four chosen properties used the onion hybrid Granex 33 and the seedling planting method. 125 

The trial areas were chosen with neighbors who adopted different kinds of planting and 126 

had different infestation levels. 127 

 Details referring to the kind of planting in the neighborhood and collection dates 128 

and numbers of samples collected in the different farms are shown in the Table 1. The São 129 

Paulo farm is located at a high elevation of the region and the nearest neighboring onion 130 

crop is situated over one kilometer away. The neighborhood of Estância Bela Vista had 131 

already had some crops attacked by onion thrips pest. 132 
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 133 

Table 1 - Characteristics about the data precedence, types of neighbors, sample times and 134 

number of samples.  135 

Farm Neighborhood Sampling dates Number of samples 
Fazenda  
São Paulo 

Isolated from  
other plantings 

07/10, 07/24, 07/31, 08/07, 
08/14, 08/21, 08/28, 09/04 

100, 100, 100, 98 100, 
100, 100, 100 

Estância  
Bela Vista 

Bulbs 07/11, 08/01, 08/08, 
08/14, 09/09 

100, 100, 84, 
99, 99 

Sítio  
Rosário 

Seedlings 06/21, 06/29, 07/07, 07/14, 
07/21, 07/28, 08/04, 08/11, 

08/18, 08/25, 09/03 

50, 50, 48, 50, 50, 
50, 50, 50, 50, 50, 50 

Sítio  
Novo II 

Seedlings 06/04, 06/19, 06/27, 06/28, 
07/04, 07/11, 07/24, 07/31, 08/07 

100, 100, 100, 100, 
100, 100, 100, 100, 100 

 136 

 The sampling unit was a 1m radius circle with a center stake. One plant was then 137 

randomly selected from within the circle. The position of the stakes in the four studied 138 

farms, in general with a 10x10m grid, but with some variations at Fazenda São Paulo is 139 

shown in Figure 1. The measured variables were the stake location on the coordinate axes, 140 

the number of nymphs, the number of adult insects and the number of leaves per plant. 141 

The number of samples and sampling times varied from farm to farm as shown in Table 1. 142 

The response variables are discrete because of result of counting. In some cases, the 143 

counts are multiples of 5 or 10 and some values over 100 were truncated to 100. 144 
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 145 

Figure 1- Localization of the stakes in each farm. 146 

 Figure 2 shows box-plots for the average number of insects per leaf, at the four 147 

farms, for the various sample times. There is great variability in the counts and also some 148 

outliers, not all of them being influential on the model fitting. At the São Paulo farm the 149 

average number of insects and the variability increased with time, while at the other farms, 150 

the average increased and then decreased. In all cases the observations above the median 151 

are more variable showing positive asymmetry, with some extreme values. 152 

 153 

 154 

 155 
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 156 

 157 

Figure 2 - Box-plots for the average number of insects per leaf. 158 

 At the São Paulo farm the lowest average number of insects per leaf and also the 159 

lowest variance wer found at 07/31, with one insect per leaf as the maximum value. In 160 

contrast on 09/04 this farm had a much larger average number of insects per leaf and 161 

much greater variability. The percentage of infested plants ranged from 35% to 100%. 162 

For the Estância Bela Vista, the lowest average number of insects per leaf occurred on 163 

07/11 and 08/14 with 89% to 100% plants infested. The Rosário farm had only 50 plants 164 

sampled and the highest average number of insects per leaf on 08/11 and 08/18. Sítio 165 

Novo II had the least average for the number of insects per leaf with low variability 166 

except for one outlier count of 30. 167 

 168 
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Mantel’s test for the detection of spatial pattern 169 

The non existence of spatial pattern in the dispersion of insects may be considered 170 

a randomization hypothesis, and the existence of a spatial pattern can be tested through 171 

the randomization of the order of the observed values (Manly, 2006). 172 

Randomization tests are based on the fact that, if the null hypothesis is true, then 173 

all of the possible orders of the data have the same chance of occurrence. Therefore, the 174 

value eo of a statistic E is calculated for a set of observations, and then a large number of 175 

randomizations are made. For spatial data these randomizations are made by randomly 176 

reordering the data. For each randomization a value ea is calculated and the set of the ea 177 

values generate an approximation of the randomization distribution of E. Just as for 178 

classic statistical tests, the decision is guided by a p-value, which in the case of 179 

randomized tests is given by the proportion of the ea values that are larger than or equal to 180 

eo, for a one-sided test. For instance, if p < 0.05, it’s concluded that there is evidence that 181 

the null hypothesis is not true (Manly, 2006). 182 

Randomized tests have some advantage in comparison to classic statistical tests. 183 

For example, the statistics are usually easy to calculate, relatively to the classic statistical 184 

tests. They are based on non standard statistics and they do not need previous information 185 

about the population from which the samples were taken. Also, they can be applied with 186 

non-random samples which can consist only of the data that need to be analyzed (Manly, 187 

2006). However, the randomization tests are easier to justify when the analyzed samples 188 

are random or the experimental design suggests a randomization test.  189 

Usually, when considering spatial data, it is desired to test the null hypothesis of a 190 

random spatial pattern versus the alternative of a non-random spatial pattern. A test for 191 

this hypothesis was proposed by Mantel (1967). The test is implemented as follows. Let a 192 
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variable be observed in n locations. Two symmetric matrices A and B are obtained, each 193 

with n x n dimensions. The elements represent distances between the observations. These 194 

matrices can be denoted as 195 
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The matrix A is the Euclidian distances between the stakes with locations given 197 

by )( 1i 2ix,x  and ),( 1j 2jx,x  i.e., with elements of the form 2
2j2i

2
1j1i )()( xx+xx=aij −−  198 

and B is the matrix with elements 2)( jiij zz=b − , where Z is the mean of the number of 199 

insects per leaf. The test statistic is given by the Pearson correlation coefficient between 200 

the correspondent elements of A and B, i.e., 201 
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which produces the 0r  value when calculated for the observed values. For the 203 

randomization test the rows and columns of one of the matrices are permutated a large 204 

number (N) of times, and the values akr   are obtained, for k = 1, 2,…, N. The proportion p 205 

of values 0rrak >  is then compared with a pre-fixed significance level α (for example, 206 

0.05) and the null hypothesis is rejected if p < α (Manly, 2006).  207 

As the matrices A and B are symmetric, the correlation amongst all the elements 208 

outside the main diagonal is the same as the correlation of the 
( )

2
1−nn

=m  elements in 209 

the upper or lower triangular part of the matrix. Note that the only term of (1) that is 210 
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altered by changing the order of the elements in one of the two matrices is the sum of 211 

products  ijijba=Z . 212 

Other possible metrics used for the calculation of the distances are Euclidian with 213 

standardized data, Euclidian squared, Euclidian squared with standardized data, 214 

proportional distance and sample difference. The alternative is given by Snäll et. al. 215 

(2003) who built a randomized test using flexible forms for the relation between the 216 

distance measurements, given by the structure of additive generalized models. 217 

When the Mantel test rejects the null hypothesis there may be interest in knowing 218 

the kind of association amongst the variables. This can be shown by the graph of ijb  219 

versus .ija  One of the possible models of association is the simple linear regression, in 220 

which the elements of the A matrix give an explanatory variable and the elements of the B 221 

matrix a response variable, so that, 222 

ijij10ij �+a�+�=b  223 

where 0�  e 1�  are parameters to be estimated and ij�  is the error associated with the 224 

response assumed to be Gaussian, independently and identically distributed. This 225 

assumption is a pragmatic approach avoiding more complex structures for the error term 226 

which would require further modeling assumptions we wish to avoid at this exploratory 227 

stage. Also, more complex forms of spatial dependence than given by the linear relation 228 

can, in principle, also occur. Our approach is to rely on simple assumptions for the 229 

randomization tests and leaving more complex structures to be considered by the model 230 

discussed in the next Section. 231 

In this study, the randomization test for spatial pattern was carried out on the 232 

observations for each sampling date. The test can be extended for the detection of time 233 
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patterns. However, this raises the question of how to combine the information from 234 

several units of observation. Although such alternative has been studied for the data on 235 

thrips occurrences, it was decided not to include the results here because of the small 236 

number of observations in time and the lack of a specific interest in testing for time 237 

patterns. 238 

 239 

Modeling the spatial pattern 240 

Having detected a spatial pattern, it may be of interest to describe the pattern by 241 

means of a stochastic model. Modeling allows not only the characterization of the 242 

dependence pattern but also for the prediction of quantities of interest such as a map of 243 

expected levels of infestation over the area, the proportion of the area with infestation 244 

above or below a certain threshold, and areas with high and low infestation, among others 245 

possible quantities of interest. 246 

One possible way of modeling the spatial distribution is by adopting the 247 

geostatistical framework, which associates the level of spatial dependency with distances 248 

between sampled plots. Usually the description of the spatial dependence assumes that 249 

the closest sampled plots are more alike than those farthest apart (Montagna, 2001). 250 

Diggle et al. (2003) uses the term geostatistics to identify a part of the spatial statistical 251 

methods in which the used model describes a continuous variation of the observations 252 

over the space. 253 

The basic geostatistical data format is ),( i iy,x  i=1, 2, ..., n, in which 254 

)( 1ii 2ix,x=x  identifies the spatial location, generally in the two dimensions and iy  is 255 

the measure of interest at the ix  position of the ith observation. The response variable 256 

can be potentially measured at any point within the studied region (Diggle & Ribeiro Jr., 257 
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2007). 258 

The geostatistical model is specified by assuming two processes over the study 259 

region (Diggle et al., 1998; Diggle & Ribeiro Jr., 2007) described as follows. 260 

( ) Ax:xY ∈  is a measure process within the study region A which is observed at  a set of 261 

locations x  to obtain the 'iy s, the observed data. This first process is related to a 262 

underlying Gaussian process ( ){ }2Rx:xS=S ∈  with mean ,µ  variance 2σ  and 263 

correlation function )(uϕ , where u  is the distance between pairs of observations. The 264 

values of ( )xS  are usually not directly observed. Conditional independence is assumed in 265 

the sense that the ( )xY  are independent, conditionally on the values of ( )xS  meaning all 266 

the spatial dependency is modeled through ( )xS . The exact form of the relation between 267 

the two processes may vary according to the type of variable being measured. For 268 

instance, when Y  follows the Gaussian distribution, the model can be written as 269 

( ) iii Z+xS=Y , in which the iZ  values are mutually independent and follow the normal 270 

distribution, with mean 0 and variance 2τ  . In this case the observations yi can be seen as 271 

a noisy version of ( )ixS  at the location ,ix  and, for a finite set of plots, the random vector 272 

Y  follows a multivariate Gaussian distribution. More generally, Y  may follow other 273 

distributions and Diggle et al., (1998) specify a model within the class of the generalized 274 

linear model (McCullagh &  Nelder, 1989) in which the S process defines random effects 275 

with spatial dependence structure. Diggle and Ribeiro Jr. (2007) call this a generalized 276 

linear geostatistical model (GLGM). This model allows the explicit specification of a 277 

Poisson distribution for the observations, which is compatible with the insect counting 278 

structure of the data considered here.  279 

The GLGM is a special case of a mixed generalized linear model, in which the iY , 280 
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i=1, 2, …, n are conditionally independent given ),(xS  with expected values given by 281 

( )[ ] ii �=xS|YE  and linear predictor ( ) ( ),ii xS=�h  i=1, 2, …, n with a known link 282 

function (.)h , which, for the Poison model considered here is typically given by the 283 

logarithm function. The model can extended allowing for covariates considering 284 

�xd+xS=xS T
iii )()()( , in which )( ixd  is the observed covariate values and �  is the 285 

regression parameter vector. (Diggle et al., 1998, Diggle et al., 2003).  286 

Let ( ) ( )ii xS|xY  be the observed total number of insects with a Poisson 287 

distribution with mean )](exp[ ii xSt , i=1, 2, …, n in which it  represents the number of 288 

leaves. Then the probability function is given by 289 

( )
.
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 290 

  The likelihood function is often considered for inference about the model 291 

parameters within the context of generalised linear models. However, in this case the 292 

likelihood function does not have a closed form and is given by  293 
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where R  is the correlation matrix for S  and with dimension equal to the number of 295 

observations which cannot be solved by analytical or numerical methods. Each element 296 

of R  is given by the corresponding value of the correlation function of the S  process and 297 

therefore having model parameters within non-linear functions which explains the lack of 298 

such solutions. A possible solution is to use Monte Carlo Markov Chain (MCMC) 299 

methods and a computational implementation is available through the package geoRglm 300 

(Christensen & Ribeiro Jr., 2002) for the R statistical environment (R Development Core 301 
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Team, 2007).  302 

For discrete random variables, the variogram is not a natural summary of the data, 303 

but it may be useful as a diagnosis tool, after fitting the mixed generalized linear model 304 

(Diggle & Ribeiro Jr., 2007). In this case, the variogram obtained from the estimated 305 

parameters can be compared to the experimental variogram, obtained through the 306 

residuals from a GLM model fit. The variogram if given, respectively, by 307 

)]()([)]([
2
1

)]([
2
1

)( h+xY,xYCovh+xYVar+xYVar=h�Y −  308 

which can be written as  309 

.)]}(exp[)exp(){2�(exp)
2

(exp)( 22
2

u����++
�

+�=h� 2
Y −  310 

However, this approach must be used with caution because the variogram is even 311 

more erratic then the one usually obtained for data with a symmetric and continuous 312 

distribution, because of the asymmetric data. 313 

After the choice of a specific model, a map that describes the behaviour of the 314 

study variable over the region can be obtained. Supposing that the parameters are known 315 

and that the interest is in the expected insects number given by )]([exp)( 00 xS+�=x� , 316 

for the location ,)( 100 20x,x=x  from the S  marginal distribution and the SY |  317 

conditional distribution, it is possible to simulate the conditional distribution of ]|[ yS , 318 

using the MCMC method. The predicted surface is given (Diggle et al., 1998) by  319 

,
xVar

+xS+�
2

)(
)(ˆˆ  320 

where �̂  is the process mean in this case because there are no explanatory variables or 321 

trend, and ( )xŜ  is the linear kriging predictor and Var(x) is the prediction variance. 322 

 323 
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RESULTS AND DISCUSSION 324 

Spatial pattern detection through Mantel’s randomization test 325 

 The Mantel’s test was applied separately for each sampling date and each farm 326 

and the obtained p-values contrasted with the adopted 5% significance level. For the 327 

Fazenda São Paulo, there was evidence of spatial pattern in the number of insects per leaf 328 

for the first three data collections on 10th , 24th and 31th of July. These patterns can be 329 

observed in the dispersion plots shown in Figure 3 where symbols sizes are proportional 330 

to the number of insects per leaf. In general, considering all the farms and dates, the 331 

distribution of the mean number of insects per leaf is asymmetric and, does not show 332 

trends against the spatial coordinates. Also, the linear regression between the number of 333 

insects by leaf distances and the stakes location distances shows that, for the above 334 

mentioned dates, there is evidence of positive association in conformity with Table 2 335 

which shows, as well, analogous results for the dates that detected spatial pattern at the 336 

other farms. 337 

 338 

 339 

Figure 3 – Dispersion graphs for the mean number of insects, Fazenda São Paulo 340 

(symbol sizes are proportional to the number of insects per leaf). 341 

 342 



 18 

 343 

Table 2 – Regression models for the distance matrices from the randomization test. 344 

Farm Data Model p-value 

Fazenda São Paulo 10/07 Insects/leaf=0.2102+0.002325loc 0.0205 

 24/07 Insects/leaf=0.6024+0.004216loc 0.0022 

 31/07 Insects/leaf=0.0932+0.000417loc 0.0264 

Estância Bela Vista 08/08 Insects/leaf=6.2180+0.009037loc 0.0334 

Sítio Novo II 04/06 Insects/leaf=0.3035+0.007206loc 0.0012 

 27/06 Insects/leaf=1.1810+0.004034loc 0.0258 

 04/07 Insects/leaf=1.5240+0.003371loc 0.0455 

 345 

 For Estância Bela Vista, the spatial pattern was detected only for the third data 346 

collection on 8th of August. The dispersion plot for this date are shown in Figure 4. For 347 

Sítio Rosário, evidence of spatial patterns was not found for any of the dates. At least, 348 

analysis for Sítio Novo II, suggests presence of spatial pattern for the 2nd, 4th and 6th 349 

data collections on 4th and 27th of June and for 4th of July, with data shown in Figure 5. 350 

 351 

Figure 4 – Dispersion graphs for the mean number of insects, Estância Bela Vista 352 

(symbol sizes are proportional to the number of insects per leaf). 353 
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 354 

Figure 5 – Dispersion graphs for the mean number of insects, Sítio Novo II (symbol 355 

sizes are proportional to the number of insects per leaf). 356 

 357 

 Geostatistical generalized linear models with Poisson distributions and 358 

logarithmic link functions were used for the modeling for the data for farms and dates that 359 

showed some evidence of spatial pattern. Maximum likelihood parameter estimates were 360 

obtained by the MCMC algorithm and results are summarized in Table 3. A total of 361 

120,000 iterations chains were obtained, with a burn in cycle of 20,000, keeping the first 362 

of every 100 generated samples, amounting to a total of 1,000 samples. The obtained 363 

chain for each parameter was analyzed to verify the convergence of the MCMC algorithm. 364 

The estimates for the φ  parameter reflects the spatial correlation, and for the case of an 365 

exponential correlation model the practical range of spatial dependence corresponds to 366 

three times the parameter value. The interpretation of the extent of the correlation also 367 

depends on the distances between points within the area, which vary from 10 to 170 368 

meters at the Fazenda São Paulo, 10 to 200 at the Estância Bela Vista and 10 to 204 369 

meters at the Sítio Novo II. There were cases in which the estimate is smaller than the 370 

minimum distance between sampled points, reflecting short range correlation which 371 

would be better captured with sampling points at closer locations. 372 
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 373 

Table 3 - Point estimates and confidence intervals for the parameters of the geoestatistical 374 

model. 375 

Farm Date β  2σ  φ  2τ  

Fazenda São Paulo 10/07 -1.55 0.15 30.33 0.47 

 24/07 -1.11 1.25 18.00 0.00 

 31/07 -1.50 0.15 3.25 0.00 

Estância Bela Vista 08/08 2.35 0.19 18.15 0.95 

Sítio Novo II 04/06 -0.73 0.62 50.00 1.11 

 27/06 0.26 0.37 19.08 0.14 
 04/07 0.34 0.53 22.35 0.14 

 376 

 The parameter β  is associated with the link function and 2σ , φ  and 2τ  are 377 

parameters associated with the surface )(xS . Outliers values at a location on the top right 378 

corner of the area were removed for Fazenda São Paulo since this local feature was highly 379 

influential on the global model. The negative values for the estimates of β  parameter at 380 

the Fazenda São Paulo reflect the fact that this farm was isolated from other onion 381 

plantations, which resulted in low means of infestation. High values of the estimates were 382 

observed at the Estância Bela Vista, which was surrounded by onion plantations infested 383 

by thrips. At the Sítio Novo II estimates near zero were the result of the low mean for the 384 

number of insects per leaf. 385 

 386 
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 387 

Figure 6 - Prediction maps for Fazenda São Paulo. 388 

 389 

From the fitted models prediction maps of the susceptibility infestation in the area 390 

were produced. Comparing the prediction maps showed in Figures 6, 7 and 8 where the 391 

lighter colours indicate low infestation and the dark colours indicate high infestation with 392 

the dispersion plot in Figure 3, Figure 4 and Figure 5 it is possible to see a pattern in the 393 

second, as the low and high infestation areas are the same. The white points on the 394 

prediction map shown on the right hand panel of the Figure 6 are centered on the 395 

sampling points as an artefact of the fitted model. 396 

 397 

Figure 7 - Prediction maps for Estância Bela Vista. 398 
 399 
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 400 

Figure 8 - Prediction maps for Sítio Novo II 401 

 402 
Apparently there is some influence of the kind of the plantation in the neighborhood 403 

on the number of insects per leaf on plants. Estância Bela Vista had as the neighborhood 404 

an area already infested with thrips and showed the highest means for the number of 405 

insects per leaf and the greatest proportions of infested plants, whereas Fazenda São 406 

Paulo, isolated from other plantations of onion, was the one with the smallest proportion 407 

of infested plants, however increasing with times. This conjecture cannot be tested 408 

statistically with the available data, but can be considered for future studies. 409 

 410 

CONCLUSIONS 411 

The adopted methods allow for testing for the presence of spatial patterns in the 412 

distributions of onion thrips using Mantel’s randomization test, as well as suggest 413 

mechanisms for describing the processes by means of the geostatistical generalized linear 414 

model which provides a possible model for the data which also allows for covariates that 415 

could affect the insect distribution. The usage of such methods is new in the application 416 

context and they should be considered for the detection and description of the spatial 417 

patterns of pests in field conditions. 418 

Overall, the data analysis using Mantel´s test supports the conjecture of the 419 
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presence of a spatial patterns, although not consistently detects for all dates which may be 420 

influenced by the high variability of the observations, with a possible effect of the 421 

imprecise recording of high values. Also, the effects of non-measured covariates may 422 

have generated heterogeneous conditions of sampling, hiding spatial patterns. 423 

It is recommended that future sampling should be carried out including some pairs 424 

of observations with smaller spaces between them to allow a better description of the 425 

spatial patterns. This is especially relevant considering the limited mobility of the insect. 426 

 427 
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