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Small pelagic fish are known to aggregate into schools and clusters of schools. It is
commonly assumed that the number of such schools and clusters, as well as their size
and densities, will vary with the stock abundance. We have carried out a PCA based
meta-analysis, using series of acoustic survey data from five different locations in
Europe to examine this assumption. The study concluded that there was no discernible
relationship between stock abundance and the number of schools seen, or on the
clustering of those schools. The study also showed that the number and structure of
the school clusters was strongly correlated with the number of schools seen. An
increased number of schools in an area tended to be linked with denser clusters (more
schools per kilometre) and a higher occupation of the survey area by those clusters.
There was also a weaker tendency to find more clusters. It is not clear whether these
relationships and the absence of a link to abundance are due to density independence
in aggregation patterns or whether such density dependence is only functional at
relatively low stock abundance levels.
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Introduction

Density dependence of spatial distribution in marine fish
stocks is an important subject for fisheries scientists
because it may affect both stock catchability and the
results of assessment surveys. Paloheimo and Dickie
(1964) first raised the issue of density-dependent catch-
ability in pelagic fish and suggested that pelagic fish may
reduce their spatial extension to maintain constant den-
sity within schools. MacCall (1990) explained changes in
spatial distribution with abundance using density-
dependent habitat selection and competition: the ‘‘basin
1054–3139/01/061150+11 $35.00/0
effect’’. Range-collapse together with abundance-
collapse has been observed in stocks and different stat-
istical tools have been proposed to identify how local
densities are related with global abundance (Myers and
Stokes, 1989; Swain and Sinclair, 1994; Petitgas, 1998).
All the above are largely concerned with the overall area
occupied by the stock, rather than the spatial organis-
ation of that stock. The relationships between the
schools, their spatial distribution, and the stock abun-
dance have attracted much less attention. An under-
standing of this would be needed in modelling the
interaction between fish aggregation pattern and fishing
� 2001 International Council for the Exploration of the Sea
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strategy. Different modelling approaches have been
undertaken (Mangel and Beder, 1985; Petitgas and
Laloë, 1998; Maury and Gascuel, 1999) but they were all
based on theoretical scenarios. For a review of these
scenarios together with their potential consequences on
fishing catches see Fréon and Misund (1999). The EU
funded CLUSTER project (1997–1999) was dedicated to
filling this perceived gap by characterising schools and
clusters of schools in European pelagic fish stocks and
analysing how these characteristics varied with overall
population abundance. In essence, the project set out to
determine the pattern of spatial occupation in a variety
of different pelagic stocks across a range of stock-state
scenarios.

We can regard fish aggregation at three distinct
scales: fish are aggregated into schools, schools are
aggregated into clusters, and clusters are aggregated into
stock units. The organisation of schools in clusters of
schools has already been described in many pelagic
stocks (Cram and Hampton 1976; MacLennan and
MacKenzie, 1988; Swartzman et al., 1994; Petitgas and
Lévénez, 1996; Mackinson et al., 1999) but the details of
these school clusters and their spatial organisation have
not been studied. In this study we have grouped the
schools into clusters and have estimated parameters to
characterise both scales of spatial organisation. We then
examined how the school parameters and the cluster
parameters inter-related and how both related to the
overall population abundance; i.e. how the different
scales in the spatial organisation interacted.

The object of this paper then is to determine the
relationship between the spatial organisation of the
stock and the state of that stock, i.e. its abundance.
Intuitively, and most straightforward, if stock biomass
increased one might expect to encounter more schools,
or larger, denser schools. Given that there may be a
higher scale of aggregation, i.e. at the cluster level, one
might expect more clusters, or larger, denser clusters or
that the stock may occupy a larger area. The converse,
of smaller, less dense schools and clusters would be
expected as stock biomass decreased. First, interactions
between school and cluster parameters were analysed
using Principal Component Analysis (PCA; Lebart
et al., 1995). Then, to understand how the interactions
were related to population abundance, population abun-
dance was positioned in the factorial space as a passive
variable. Because we intended to work with a set of
parameters describing different aspects and scales in the
spatial organisation in the population, a large number of
surveys (i.e. population observations) were needed.
Therefore we have used a meta-analysis approach by
pooling together different surveys on a range of different
pelagic stocks. Such an approach is now common in
fisheries science (Myers and Mertz, 1998) because it
allows the highlighting of common general features of
fish stock populations.
Materials and methods

Fisheries surveys and school echo-traces

Historical acoustic fisheries assessment surveys were
analysed. For this study 26 surveys were available which
were carried out in the period 1991–1997 in the follow-
ing European areas: (i) the Aegean Sea: The Gulf of
Thessaloniki, Greece; (ii) the western Mediterranean: the
Gulf of Lions, France and the Catalan Sea, Spain; (iii)
Western European platform: Spanish and French coasts
of the Bay of Biscay; and (iv) the northern North Sea:
Orkney/Shetland area, Scotland, UK.

Details of the surveys are summarised in Table 1 and
Figure 1. All stocks were of small pelagic species. The
target species were anchovy (Engraulis encrasicholus)
and sardine (Sardina pilchardus) in all areas except the
North Sea where it was herring (Clupea harengus).
Non-target species were also present in the survey data
including mackerel (Scomber scombrus), horse-mackerel
(Trachurus trachurus), blue-whiting (Micromesistius pou-
tassou) and norway pout (Trisopterus esmarki). Digital
echo-sounders now permit digital echograms to be saved
as sequences of pixels or as images. Image-analysis
algorithms have been applied on digital echograms to
identify school echo-traces and estimate parameters of
their characterisation and classification. A review of
different procedures is given in are report by ICES
(2000). All surveys were analysed and school databases
extracted using the same acoustic processing threshold
of �60 dB. Daytime school echo-traces for each survey
were extracted and characterised using different
image-analysis softwares (Reid and Simmonds, 1993;
Georgakarakos and Paterakis, 1993; Weill et al., 1993)
in the different areas. Schools were not identified to
species except for the Orkney-Shetland areas. This was
because, apart from the North Sea, identification of
schools to species using only the school echo-trace
parameters at the 38 kHz frequency was considered to
be too imprecise (Scalabrin et al., 1996). All schools for
all species were considered for all surveys except for the
Orkney-Shetland surveys for which only herring schools
were considered as these surveys provide assessments for
herring only.
Choice of school parameters

Reid et al. (2000) proposed a list of parameters for the
characterisation of schools and clusters. These par-
ameters can be grouped into three categories, morpho-
logical (length, height, area, perimeter, outline rugosity,
etc.), energetic (acoustic back-scattering energy, density,
internal variability, etc.) and positional (latitude, longi-
tude, time, depth from surface, altitude from bottom).
Standard definitions and notations were proposed in
ICES (2000) for school parameters and these have
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been used here. For species identification purposes,
Haralabous and Georgakarakos (1996) have shown the
importance of including many or all of these descriptors.
However for this analysis we have selected a reduced
parameter set from each category to characterise the
schools. The school parameters selected for this study
were: (i) SMsca: School cross-sectional area (m2); (ii)
SEtot: School acoustic back-scattered total energy as an
index of school biomass (m2 nmi�2); and (iii) SPdep:
School depth, i.e. the distance between sea surface and
school centre (m).

School echo-traces are actually a distorted image of
cross sections of real schools. Therefore it is necessary to
correct school echo-trace parameters to estimate school
parameters. An algorithm was developed by Diner
(ICES, 2000) to make these corrections and we used it
for all the surveys in this analysis in the estimation of the
school area. More details on the protocol used for the
surveys are given in Petitgas et al. (1998).
Choice of cluster parameters

Cluster parameters were chosen to characterise the spa-
tial organisation at this scale. They were grouped into
two categories: first, the occupation of space by clusters
and second, the occupation of clusters by schools.

Two parameters were selected to characterise the
occupation of space by clusters: (i) Nclu: the number of
clusters; and (ii) Lclu/Lsur: the ratio of the summed
cluster lengths to the summed transect lengths.

Two parameters were selected to characterise the
occupation of clusters by schools: (i) Slop: the slope of
the regression between the number of schools and cluster
lengths. The regression was forced to pass through the
origin thus the slope estimates the average number of
schools per km in the clusters; and (ii) Lsch/Lclu: the
ratio of the summed school lengths to the summed
cluster lengths.

Cluster length was defined as the distance between
centres of the first and last school in the cluster. The
Grouping schools in clusters of schools

We considered schools as being discrete events in space
(i.e. a point process). The distance to the next-neighbour
(NND) was computed for each school along the sur-
veyed acoustic transects. We then attempted to group
schools into clusters based on these distances. Essen-
tially this involved setting a threshold NND beyond
which the next school was taken to be in a different
cluster (i.e. maximum distance between schools in a
cluster). There is little behavioural knowledge with
which to define such threshold distance a priori and
historically this has always been done using an empirical
approach. Basically the researcher defines a distance
based on his observations. Here we used a statistical
approach based on a multi-criteria algorithm to define
the threshold distance. The algorithm divides the spatial
point process of school occurrence into clusters of
schools that have similar internal characteristics. The
reference conceptual Point Process model was the
Matern cluster process (Stoyan and Stoyan, 1994)
although the algorithm did not explicitly estimate the
parameters of such model.

For a given threshold distance schools were grouped
into clusters and the following parameters were then
estimated: (i) the number of clusters; (ii) their length;
(iii) the number of schools per unit-cluster-length;
(iv) the number of solitary schools; and (v) the
homogeneity of the spatial distribution of schools within
a cluster.

A range of thresholds were considered and one
retained which minimised the following empirical cri-
teria: (i) not too many clusters; (ii) not too many solitary
schools; (iii) homogeneous spatial distribution within
clusters; and (iv) high r2 for the regression of the number
of schools in clusters on the length of clusters.

Schools can occur at different depths in the water
column. For the purposes of this analysis the school
locations were vertically collapsed to two dimensions
(latitude and longitude), with no reference to depth.
The distance between schools was computed as the
horizontal distance between their centres.
35°
25°E

60°N

–10°

40°

45°

50°
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20°15°10°5°0°–5°
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Figure 1. Map of the areas surveyed by the different institutes
who collaborated in the present study. FRS-MLA: Marine
Laboratory Aberdeen, Scotland, UK. IFREMER: Institut
Français de Recherche pour l’Exploitation de la Mer, France.
IEO: Instituto Español de Oceanografı́a, Spain. IMBC: Insti-
tute of Marine Biology of Crete, Greece. See Table 1 for details
on the acoustic survey series.
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average for each parameter was computed for each
survey.
Principal Component Analysis (PCA) allows the sum-
marising of the multi-variate correlations using factors
of a limited number by grouping and ordering the many
relations between the parameters (Lebart et al., 1995).
PCA was thus used on the correlation matrix of the
seven spatial structure parameters to analyse their linear
interactions. The technique of passive variables (Lebart
et al., 1995) was then used to analyse the correlation
between population abundance, school number, and
the set of spatial structure parameters. Population
abundance and school number were projected on the
factors resulting from the PCA.

In the factorial space the proximity between the
position of the parameters is interpreted in terms of
correlation. Let Cjj� denote the correlation coefficient
between parameter j and j�, the distance between point
variables Pj and Pj� is 2(1�Cjj�). Consider the vector for
parameter j between the point origin O and the point
PCA with added passive variables

From the above steps we produced a table, table Z (see
Table 2), comprising n=26 surveys (lines) and p=7
parameters (columns) characterising the spatial organis-
ation (schools and clusters of schools). The aim was then
to analyse the relationship between: (i) Abu: Population
abundance: the survey biomass estimate in thousand
tonnes; (ii) Ntot: The total school number: the survey
estimate of the average number of schools per km
multiplied by the area surveyed in km2; and (iii) and the
seven school and cluster parameters.

Because the number of observations is limited (26
surveys), we restricted the list of school and cluster
parameters.
Table 2. Matrix of parameter values characterising schools and clusters (active variables, i.e. matrix Z
in the text) and of population parameters to be explained (passive variables, i.e. matrix Z+ in the text).
SMcsa=School area (m2), SEtot=School acoustic backscatter (m2 nmi�2), SPdep=School depth (m),
Nclu=Number of clusters, Lclu/Lsur=summed cluster lengths/survey length, Slop=average school
number per km in the clusters, Lsch/Lclu=average ratio for summed school lengths/cluster length.
Abu=survey biomass estimate (thousand tonnes), Ntot=survey estimate of total school number.
Codes for surveys are detailed in Table 1. The variable TD is the threshold distance (m) defining the
maximum distance between two schools in a cluster.

Code TD

Active variables Passive variables

Schools Clusters Population

SMcsa SEtot SPdep Nclu Lclu/Lsur Slop Lsch/Lclu Ntot Abu

A91 2 947 30.0 194.8 127.1 164 0.145 3.092 0.073 135 050 1 259
A93 6 004 47.9 261.9 102.7 150 0.217 1.807 0.053 116 596 865
A94 4 803 45.7 201.0 105.0 137 0.195 2.409 0.056 130 856 740
A95 4 603 64.6 486.6 109.6 73 0.112 2.261 0.073 79 408 797
A96 2 802 56.7 536.9 122.0 170 0.188 3.784 0.089 166 086 1 376
A97 3 923 58.2 261.4 127.0 159 0.207 2.772 0.073 157 418 1 480
H96a 410 21.2 44.2 22.6 33 0.147 18.7 0.706 54 487 97
H96b 420 28.5 202.4 27.6 57 0.177 8.5 0.368 10 134 86
H97 1 140 30.2 95.3 12.1 109 0.443 5.3 0.211 13 280 50
P92 2 356 46.7 250.5 46.7 27 0.114 1.729 0.053 8 063 178
P93 2 178 24.0 161.2 28.3 42 0.18 2.79 0.056 18 700 147
P95 2 889 37.3 151.0 40.9 28 0.156 2.015 0.043 11 315 100
P96 3 000 32.4 113.0 37.9 56 0.277 2.874 0.052 24 358 93
S93 2 211 20.8 49.3 20.3 55 0.417 2.79 0.059 20 334 179
S95 1 945 3.3 28.8 21.0 62 0.534 4.16 0.067 34 885 122
S96 1 945 2.1 16.4 18.3 61 0.636 8.4 0.061 69 211 97
S97 2 000 6.8 23.5 12.8 59 0.542 3.2 0.048 28 916 93
C92 4 111 105.2 152.0 70.5 64 0.126 0.92 0.05 52 878 318
C93 2 778 79.5 179.1 51.6 81 0.076 1.569 0.068 56 918 792
C95 2 806 72.3 209.3 60.9 53 0.167 1.439 0.068 71 938 125
C96 2 111 41.8 156.4 48.2 44 0.085 4.238 0.098 9 398 326
C97 2 522 77.5 206.8 52.1 46 0.052 1.735 0.081 55 688 457
N91 3 334 30.5 123.7 46.8 60 0.495 2.36 0.061 63 716 431
N92 2 080 19.0 84.9 31.2 46 0.581 5.21 0.091 165 565 361
N94 4 445 20.2 107.1 32.0 52 0.327 1.77 0.03 31 754 213
N97 3 334 9.9 115.7 30.9 79 0.532 2.66 0.028 81 951 682
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variable Pj, OPj, the cosine between OPj and OPj� is Cjj�.
Therefore if one projects in the factorial space a supple-
mentary parameter which has not served in the principal
component analysis, its position allows the interpret-
ation of how the added passive parameter correlates
with the interaction of the active parameters.

Let X denote the matrix such that XtX is the corre-
lation matrix of the parameters. The diagonalisation of
XtX gives the eigen vectors �� corresponding to the
eigen values ��:

Xt���=�� ��

In the factorial space of the parameters the coordinates
of the point- surveys on the principal axis � are the
components of the vector:

��=X ��

In the factorial space of the observations the coordinates
of the active point- parameters on the principal axis �
are the components of the vector:

��=XtX ��/√��=�� √��

Let X+ denote the matrix made of p+ columns of added
passive variables and n lines. In the factorial space of the
observations the coordinates of the passive added point-
parameters on the principal axis � are the components of
the vector:

�+
� =X+t X ��/√��

More details can be found in Lebart et al. (1995).
Now from table Z we deduce matrix X. The different

areas and stocks have different mean values for their
parameters. In order to pool all surveys in a single
Results

Table 2 presents the average parameter values estimated
for the schools and the clusters. It also includes the
survey abundance estimate (biomass) and the total
number of schools. These can be denoted as matrices Z
and Z+. Table 2 also includes the threshold NND
allowing the grouping of schools in clusters although
this parameter is not included in the PCA analysis. It is
worth noting that there often appears to be one survey
in each area for which one parameter is very different
from the other surveys in that area. For instance, the
1995 North Sea survey (A95) found much fewer schools
than the other North Sea surveys. The overall corre-
lation matrix (XtX ) is given in Table 3. The Principal
Component Analysis of this matrix allows the descrip-
tion of the structure of the linear interactions between
the school and cluster parameters.

Table 4 gives the ‘‘percent of variance’’ explained by
the principal components. The first three components
meta-analysis we first computed standardised residuals
for each area. For survey i, parameter j and area a, the
residual was:

rija=(zija�mja)/(�ja √na)

where z is the parameter value, m its mean for the
surveys of the area, � its standard deviation for
the surveys of the area and n the number of surveys for
the area. Let Ya denote the matrix of residuals with
element rija. We considered matrix Y made by append-
ing the sub matrices Ya. The matrix X considered was
X=Y/√6 as we have six areas (see Table 1). The corre-
lation matrix analysed by PCA was XtX=YtY/6, the
average correlation matrix for all areas.
Table 3. Correlation coefficients between variables. The matrix corresponding to the active variables is XtX on which PCA was
performed. The two columns for the passive variables were appended. SMcsa=School area, SEtot=School energy, SPdep=School
depth, Nclu=Number of clusters, Lclu/Lsur=summed cluster lengths/survey length, Slop=average school number per km in the
clusters, Lsch/Lclu=average of summed school lengths/cluster length. Abu=survey biomass estimate, Ntot=survey estimate of
total school number.

Active variables Passive variables

SMcsa SEtot SPdep Nclu Lclu/Lsur Slop Lsch/Lclu Abu Ntot

SMcsa 1.000 0.511 0.385 �0.202 �0.129 �0.610 �0.293 0.003 �0.354
SEtot 0.511 1.000 0.212 �0.478 �0.586 �0.311 0.073 0.228 �0.687
SPdep 0.385 0.212 1.000 �0.101 �0.173 �0.090 0.173 0.354 0.056
Nclu �0.202 �0.478 �0.101 1.000 0.600 0.030 �0.203 �0.002 0.314
Lclu/Lsur �0.129 �0.586 �0.173 0.600 1.000 0.219 �0.136 �0.414 0.529
Slop �0.610 �0.311 �0.090 0.030 0.219 1.000 0.730 0.092 0.620
Lsch/Lclu �0.293 0.073 0.173 �0.203 �0.136 0.730 1.000 0.368 0.347
Abu 0.003 0.228 0.354 �0.002 �0.414 0.092 0.368 1.000 0.067
Ntot �0.354 �0.687 0.056 0.314 0.529 0.620 0.347 0.067 1.000
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accounted for 80% of the variance of matrix X. Figure 2
shows the results of the PCA in the factorial planes (1,2)
and (1,3). The first component was defined by the
opposition between the school parameters (SEtot,
SPdep, and SMcsa) and the cluster parameters (particu-
larly Lclu/Lsur and Nclu) and represented 38% of total
variance. When the average school size was larger (high
SMcsa and SEtot), there were fewer clusters and these
Table 4. Cumulative percent of variance explained by the principal components.

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7

%var 0.377 0.653 0.807 0.886 0.952 0.982 1.000
–0.6

0.6

0.6

comp1

co
m

p2

–0.6

0.0

0.2

0.4

0.0

–0.2

–0.4

0.40.2–0.4 –0.2

A95 C97

H96b
P92

S93

N94N91 A97

P95

C92

H97

A93
S97 N97

C95C93A94

P96

S96S95

N92

P93A96
A91

C96 H96a

–0.6

0.4

0.4

comp1

co
m

p3

–0.6

0.0

0.2

0.0

–0.2

–0.4

0.2–0.4 –0.2

A95
C97

H96bP92

S93

N94

N91

A97

P95

C92

H97

A93

S97

N97

C95

C93

A94

P96

S96

S95

N92

P93

A96

A91

C96

H96a

–1.0

1.0

1.0

comp1

co
m

p2

–1.0

0.0

0.5

0.0

–0.5

0.5–0.5

Lsch/Lclu

Slop

Ntot

Lclu/Lsur
Nclu

SMcsa

SEtot
SPdep

Abu

–1.0

1.0

1.0

comp1

co
m

p3

–1.0

0.0

0.5

0.0

–0.5

0.5–0.5

Lsch/Lclu

Slop

Ntot
Lclu/LsurNcluSMcsa

SEtot

SPdep

Abu
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occupied less of the overall surveyed area. The index of
school biomass (SEtot) was the parameter most corre-
lated with the first component. Component 2 was
defined by the occupation of clusters by schools (princi-
pally Lsch/Lclu but also Slop). This component repre-
sented 28% of the total variance. Component 3 was
largely defined by the vertical position of the schools and
represented 15% of the variance.

The total school number (Ntot) was correlated with
component 1 (Figure 2 and Table 3) and was positioned
between the occupation of the area by clusters (Lclu/
Lsur and Nclu) and the occupation of clusters by
schools (Lsch/Lclu and Slop). It was diametrically oppo-
site the school descriptors and in particular school
biomass index (SEtot). So when we have more schools,
we would expect: (i) smaller and lower biomass schools;
(ii) more clusters; (iii) clusters to occupy more of the
survey area; and (iv) more densely packed schools within
clusters.

The abundance (Abu) showed only a weak relation-
ship to any of the other variables (Figure 2 and Table 3)
the correlation coefficients being less than 0.4. Also the
abundance (Abu) showed no relationship with the
number of schools (Ntot) (coefficient of correlation of
0.07). On Figure 2 in the factorial space of the three first
components the position of abundance could be inter-
preted as standing a little closer to the school descrip-
tors, and in opposition to the number of clusters and
their occupation of space (Lclu/Lsurv).

To investigate in more detail the relationship between
school size and abundance we examined the proportion
of ‘‘rich’’ schools in each area. A rich school was defined
as one with a value greater than that of the 0.9 quartile
in each area. Hence for each survey area we pooled all
the schools and computed the value corresponding to
the 0.9 quantile. Then we computed the percentage of
schools in each individual year that was greater than this
value. Figures 3 and 4 show the percentage of ‘‘rich’’
schools plotted by survey and year against the average
school biomass (SEtot) and population abundance
(Abu). These are presented as deviations from the area
mean. So a positive value represents a year in which the
average school biomass was above the mean for that
area. Figure 3 shows that there is a strong link (corre-
lation coefficient of 0.816) between average school bio-
mass and the presence of more rich schools. Figure 4
shows a weaker link (correlation coefficient of 0.394)
between rich schools and the stock abundance.
also found such an absence for North Sea herring. More
fish did not mean more schools but more fish resulted in
some schools being larger in biomass, as shown in
Figure 4. This suggests that stock size was not the
primary factor driving schooling aggregation. The
pattern of schooling aggregation was driven by other
factors which could be of an environmental and behav-
ioural nature. Indeed the number of schools and the
school parameters have been shown to vary under a
variety of such factors, e.g. time of day (Beare et al.,
2000; Fréon and Misund, 1999), distance to coast
(Petitgas and Lévénez, 1996), heterogeneity of the sea
bed (Reid, 2000), oceanographic conditions (Swartzman
et al., 1994), predator, prey, and fish community
(Swartzman, 1991; Schneider, 1989; Massé et al., 1996)
Discussion

Number of schools and stock abundance

A key result from this meta-analytical approach is that
there was no discernible relationship between school
number and stock abundance. Aukland and Reid (1998)
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and seasonal behavioural change in feeding, spawning,
and wintering (Fréon and Misund, 1999).
Implications of the present findings

The implication of these findings is that the aggregation
pattern is density-independent, i.e. independent of the
biomass of the stock, at least in the small pelagic stocks
studied and for the range of variation observed in the
stock sizes. Another possibility is that the stocks studied
here do not include a wide enough range of stock size
scenarios to allow density dependence to be seen acting.
In the present study the limits of stock size are best
known for North Sea herring where the stock varied
between 500 000 and 1 000 000 tonnes over the period
under review when its historical low was at less than
100 000 tonnes.

The occupation of space is related to the notion of
habitat. The present results suggest that the ‘‘basin
effect’’ based on density dependent habitat selection and
intra-specific competition (McCall, 1990) which relates
stock size to spatial organisation, would act only for
extreme values of abundance, high and low. For inter-
mediate values of stock size fish abundance would not be
the limiting factor and thus the spatial organisation of
the stock would be more dependent on environmental
parameters than on straight abundance. One conse-
quence of this is that because fishermen exploit aggrega-
tions, the catchability of the stock would largely be
dependent on the environmentally induced aggregation
pattern.
Number of schools and clusters

The number of schools found on a survey is clearly
linked to the pattern of spatial organisation in clusters.
In the correlation matrix school number showed higher
correlation with the occupation of the survey area by
clusters and the density of schools (number of schools
per kilometre) in those clusters. School number showed
weaker correlation with the number of clusters and the
area occupied by schools within those clusters. Along
the first principal component the number of schools
(Ntot) was strongly linked with the number of clusters,
the occupation of the survey area by clusters and the
density of schools in those clusters. Our interpretation of
these observations is that when there are more schools
the strongest effect is that the density of schools in the
clusters increases (Slop). At the same time the pro-
portion of the survey track occupied by the clusters
increases (Lclu/Lsur). To a lesser extent the number of
clusters (Nclu) also increases. There is little evidence that
the schools are occupying more of the area of the
clusters (Lsch/Lclu).
School size and number of schools

There was a strong negative link between school number
(Ntot) and school area (SMcsa) along the first principal
component. So more schools means a smaller average
school size. This fits well with the previous observation
that school number shows a weak link with the
occupation of cluster area (Lsch/Lclu).
School size and stock abundance

There was evidence that higher stock biomass was
associated with some schools being larger in biomass but
the number of schools and their pattern of aggregation
in clusters was not related to stock size. This suggests
that when the stock level was high, there was a slight
tendency to find a larger average for the school biomass.
The average value itself may increase as a result of all
schools generally being bigger or because the proportion
of ‘‘rich’’ schools increases. In other words any
additional biomass may contribute to a pro rata increase
in size of all schools or it may preferentially increase the
number of large schools. Fréon and Misund (1999)
reviewed the variation in school size across a variety of
stocks, ecosystems, years and seasons. They identified no
general rule and, in particular, no fixed value of school
biomass which could be used to define a rich school.
Therefore we used the simple statistical approach
described above. The percent of rich schools was well
correlated to the average school biomass suggesting that
the variation in the mean school biomass can be attrib-
uted to the variation in the proportion of rich schools.
There was also a relationship between the proportion of
rich schools and the overall abundance. So when the
stock abundance was high in a particular year there were
more rich schools. This may partly explain why an
increase in abundance was not linked to an increase in
school number in the analysis. What appears to happen
is that, in situations of high stock abundance, we get
larger schools and we get more very large schools, rather
than simply more schools. Petitgas and Lévénez (1996)
showed a similar relationship between the proportion
of rich schools and biomass in small pelagic fish in
Senegalese waters.
Clusters and stock abundance

The stock abundance showed only slight relationships
with any of the parameters describing the occupation of
space in clusters of schools. This may now not be
surprising given the lack of a link between abundance
and number of schools, and the existence of a link
between number of schools and their spatial aggregation
pattern. Petitgas and Samb (1998) also found no rela-
tionship between abundance and cluster parameters
(number and length) in Senegalese waters.
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This can be considered as analogous to the search for
meaningful stock recruit relationships. It is self evident
that if we have no fish there will be no recruitment, and
here, no schools or clusters. When the stock is reason-
ably healthy we often get substantial variation in recruit-
ment which links poorly to the stock abundance.
Equally in this case we have no link between abundance
and aggregation parameters. This may explain why the
literature provides a variety of situations: e.g. range
collapse at low stock size (Myers and Stokes, 1989;
Swain and Sinclair 1994; Petitgas, 1998) and density
independence of spatial pattern (Swain and Morin,
1996; Petitgas and Lévénez, 1996).

Other confounding factors may include our inability
to desegregate into species (except for the North Sea
herring data). The surveys may not in all cases cover the
whole range of the stocks and so effects may be taking
place beyond the boundaries. Second, schools were
grouped in clusters based on a threshold distance and
this value plays a determinant role. Most commonly in
ecology the threshold distance for clustering is set
empirically. The operator chooses a distance based on
his observations. Soria et al. (1998) used a fixed
threshold distance of 1 km. Here we used a variable
threshold based on the features in the data, particularly
internal cluster homogeneity. Either approach will be an
approximation. Schools are dynamic objects which
interact with one another. Any single threshold is
unlikely to capture this process fully. Finally, in our
approach, empty segments inside clusters would be
counted as occupied area (area occupied by clusters),
while areas counted as empty would include only those
empty segments between the clusters. This also may
impact the relation between occupied stock area and
stock size.

A conceptual model can be proposed from our find-
ings to allow the modelling of the relationship between
fish capture and the stock spatial aggregation pattern.
First, envisage a scenario of a few schools and a few
clusters in an area. What happens if we add more
schools to the picture? From our results it would appear
that the extra schools would mostly join the existing
clusters, making them denser (more schools per kilome-
tre) and longer (more of the survey track occupied by
clusters). At the same time some of the schools go to
make up new clusters and so the number of clusters
increases with school number. However, the correlation
here is much lower than for cluster density and length so
this effect would be less important than the ‘‘strengthen-
ing’’ of the original clusters. There was a strong negative
link between school number (Ntot) and school area
(SMcsa). So more schools means smaller schools. In this
conceptual model the extra schools added tend to be
smaller, so the area occupied within the clusters does not
vary as much as would be expected if the school size
was not related to school number. Clusters can be
interpreted as groups of schools sharing the same habi-
tat and interacting with each other more than with other
schools.
Conclusion

To our knowledge this study is the first attempt in the
fisheries literature to estimate from survey data par-
ameters characterising various levels in the spatial
organisation of pelagic fish and investigate the relation-
ships between schools, school clusters, and population
parameters. School parameters were anti-correlated with
cluster parameters meaning that larger schools meant
smaller clusters occupying less space and vice versa. The
total number of schools in the area was well correlated
with the schooling aggregation pattern: more schools
meant smaller schools organised in more denser clusters
occupying more space. In contrast population abun-
dance showed less correlation either with school or
cluster parameters. Further, population abundance was
not correlated with total school number. We interpreted
this result by the fact that population abundance was
not seen at extreme values for the years studied and,
therefore, would not have been a forcing parameter on
the spatial aggregation of schools. The schooling organ-
isation being one component of catchability, catchability
would not have been density dependent for the years
studied here. An important implication is that stock
catchability could vary for other causes than abundance
at intermediate abundance levels.
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Petitgas, P., and Lévénez, J. J. 1996. Spatial organisation of
pelagic fish: echogram structure, spatio-temporal condition
and biomass in senegalese waters. ICES Journal of Marine
Science, 53: 147–154.

Petitgas, P., and Samb, B. 1998. On the clustered occurrence of
fish schools along acoutic survey transcets and its relation
with population abundance. ICES CM 1998/J: 5, 20 pp.

Reid, D. 2000. The relationship of herring school size to seabed
structure and local school abundance in the NW North Sea.
ICES CM 2000/K: 29, 15 pp.

Reid, D., Scalabrin, C., Petitgas, P., Massé, J., Aukland, R.,
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