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Abstract. Twenty-two decision tree, nine statistical, and two neural network algorithms are
compared on thirty-two datasets in terms of classification accuracy, training time, and (in the
case of trees) number of leaves. Classification accuracy is measured by mean error rate and mean
rank of error rate. Both criteria place a statistical, spline-based, algorithm called Polyclass at the
top, although it is not statistically significantly different from twenty other algorithms. Another
statistical algorithm, logistic regression, is second with respect to the two accuracy criteria. The
most accurate decision tree algorithm is Quest with linear splits, which ranks fourth and fifth,
respectively. Although spline-based statistical algorithms tend to have good accuracy, they also
require relatively long training times. Polyclass, for example, is third last in terms of median
training time. It often requires hours of training compared to seconds for other algorithms. The
Quest and logistic regression algorithms are substantially faster. Among decision tree algorithms
with univariate splits, C4.5, Ind-Cart, and Quest have the best combinations of error rate and
speed. But C4.5 tends to produce trees with twice as many leaves as those from Ind-Cart and
Quest.

Keywords: Classification tree, decision tree, neural net, statistical classifier.

1. Introduction

There is much current research in the machine learning and statistics communities
on algorithms for decision tree classifiers. Often the emphasis is on the accuracy of
the algorithms. One study, called the StatLog Project [34], compares the accu-
racy of several decision tree algorithms against some non-decision tree algorithms
on a large number of datasets. Other studies that are smaller in scale include Brod-
ley and Utgoff (1992), Brown, Corruble and Pittard (1993), Curram and Mingers
(1994), and Shavlik, Mooney and Towell (1991).
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Council.
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Recently, comprehensibility of the tree structures has received some attention.
Comprehensibility typically decreases with increase in tree size and complexity. If
two trees employ the same kind of tests and have the same prediction accuracy, the
one with fewer leaves is usually preferred. Breslow and Aha (1997) survey methods
of tree simplification to improve their comprehensibility.

A third criterion that has been largely ignored is the relative training time of
the algorithms. The StatLog Project finds that no algorithm is uniformly most
accurate over the datasets studied. Instead, many algorithms possess comparable
accuracy. For such algorithms, excessive training times may be undesirable [19].

The purpose of our paper is to extend the results of the StatLog Project in the
following ways:

1. In addition to classification accuracy and size of trees, we compare the training
times of the algorithms. Although training time depends somewhat on imple-
mentation, it turns out that there are such large differences in times (seconds
versus days) that the differences cannot be attributed to implementation alone.

2. We include some decision tree algorithms that are not included in the StatLog

Project, such as S-Plus tree [14], T1 [3, 25], Oc1 [38], Lmdt [9], and Quest

[30].

3. We also include several of the newest spline-based statistical algorithms. Their
classification accuracy may be used as benchmarks for comparison with other
algorithms in the future.

4. We study the effect of adding independent noise attributes on the classification
accuracy and (where appropriate) tree size of each algorithm. It turns out that
except possibly for three algorithms, all the others adapt to noise quite well.

5. We examine the scalability of some of the more promising algorithms as the
sample size is increased.

Our experiment compares twenty-two decision tree algorithms, nine classical and
modern statistical algorithms, and two neural network algorithms. Several datasets
are taken from the University of California, Irvine, Repository of Machine Learning
Databases (UCI) [33]. Fourteen of the datasets are from real-life domains and two
are artificially constructed. Five of the datasets were used in the StatLog Project.
To increase the number of datasets and to study the effect of noise attributes, we
double the number of datasets by adding noise attributes to them. This yields a
total of thirty-two datasets.

Section 2 briefly describes the algorithms and Section 3 gives some background
to the datasets. Section 4 explains the experimental setup used in this study and
Section 5 analyzes the results. The issue of scalability is studied in Section 6 and
conclusions and recommendations are given in Section 7.
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2. The algorithms

Only a short description of each algorithm is given. Details may be found in the
cited references. If an algorithm requires class prior probabilities, they are made
proportional to the training sample sizes.

2.1. Trees and rules

CART: We use the version of Cart [6] implemented in the cart style of the Ind

package [13] with the Gini index of diversity as the splitting criterion. The
trees based on the 0-se and 1-se pruning rules are denoted by IC0 and IC1
respectively. The software is obtained from the http address:

ic-www.arc.nasa.gov/ic/projects/bayes-group/ind/IND-program.html.

S-Plus tree: This is a variant of the Cart algorithm written in the S language
[4]. It is described in Clark and Pregibon (1993). It employs deviance as the
splitting criterion. The best tree is chosen by ten-fold cross-validation. Pruning
is performed with the p.tree() function in the treefix library [47] from the
StatLib S Archive at http://lib.stat.cmu.edu/S/. The 0-se and 1-se trees
are denoted by ST0 and ST1 respectively.

C4.5: We use Release 8 [41, 42] with the default settings including pruning
(http://www.cse.unsw.edu.au/~quinlan/). After a tree is constructed, the
C4.5 rule induction program is used to produce a set of rules. The trees are
denoted by C4T and the rules by C4R.

FACT: This fast classification tree algorithm is described in Loh and Vanichse-
takul (1988). It employs statistical tests to select an attribute for splitting each
node and then uses discriminant analysis to find the split point. The size of the
tree is determined by a set of stopping rules. The trees based on univariate splits
(splits on a single attribute) are denoted by FTU and those based on linear com-
bination splits (splits on linear functions of attributes) are denoted by FTL. The
Fortran 77 program is obtained from http://www.stat.wisc.edu/~loh/.

QUEST: This new classification tree algorithm is described in Loh and Shih
(1997). Quest can be used with univariate or linear combination splits. A
unique feature is that its attribute selection method has negligible bias. If all
the attributes are uninformative with respect to the class attribute, then each
has approximately the same chance of being selected to split a node. Ten-fold
cross-validation is used to prune the trees. The univariate 0-se and 1-se trees
are denoted by QU0 and QU1, respectively. The corresponding trees with linear
combination splits are denoted by QL0 and QL1, respectively. The results in
this paper are based on version 1.7.10 of the program. The software is obtained
from http://www.stat.wisc.edu/~loh/quest.html.
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IND: This is due to Buntine (1992). We use version 2.1 with the default settings.
Ind comes with several standard predefined styles. We compare four Bayesian
styles in this paper: bayes, bayes opt, mml, and mml opt (denoted by IB,
IBO, IM, and IMO, respectively). The opt methods extend the non-opt methods
by growing several different trees and storing them in a compact graph struc-
ture. Although more time and memory intensive, the opt styles can increase
classification accuracy.

OC1: This algorithm is described in Murthy, Kasif and Salzberg (1994). We
use version 3 (http://www.cs.jhu.edu/~salzberg/announce-oc1.html) and
compare three styles. The first one (denoted by OCM) is the default that uses a
mixture of univariate and linear combination splits. The second one (option -a;
denoted by OCU) uses only univariate splits. The third one (option -o; denoted
by OCL) uses only linear combination splits. Other options are kept at their
default values.

LMDT: The algorithm is described in Brodley and Utgoff (1995). It constructs
a decision tree based on multivariate tests that are linear combinations of the
attributes. The tree is denoted by LMT. We use the default values in the software
from http://yake.ecn.purdue.edu/~brodley/software/lmdt.html.

CAL5: This is from the Fraunhofer Society, Institute for Information and Data
Processing, Germany [36, 37]. We use version 2. Cal5 is designed specifi-
cally for numerical-valued attributes. However, it has a procedure to handle
categorical attributes so that mixed attributes (numerical and categorical) can
be included. In this study we optimize the two parameters which control tree
construction. They are the predefined threshold s and significance level α. We
randomly split the training set into two parts, stratified by the classes: two-
thirds are used to construct the tree and one-third is used as a validation set to
choose the optimal parameter configuration. We employ the C-shell program
that comes with the Cal5 package to choose the best parameters by varying
α between 0.10 and 0.90 and s between 0.20 and 0.95 in steps of 0.05. The
best combination of values that minimize the error rate on the validation set is
chosen. The tree is then constructed on all the records in the training set using
the chosen parameter values. It is denoted by CAL.

T1: This is a one-level decision tree that classifies examples on the basis of only
one split on a single attribute [25]. A split on a categorical attribute with b
categories can produce up to b + 1 leaves (one leaf being reserved for missing
attribute values). On the other hand, a split on a continuous attribute can yield
up to J + 2 leaves, where J is the number of classes (one leaf is again reserved
for missing values). The software is obtained from
http://www.csi.uottawa.ca/~holte/Learning/other-sites.html.
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2.2. Statistical algorithms

LDA: This is linear discriminant analysis, a classical statistical method. It models
the instances within each class as normally distributed with a common covari-
ance matrix. This yields linear discriminant functions.

QDA: This is quadratic discriminant analysis. It also models class distributions
as normal, but estimates each covariance matrix by the corresponding sample
covariance matrix. As a result, the discriminant functions are quadratic. Details
on LDA and QDA can be found in many statistics textbooks, e.g., Johnson and
Wichern (1992). We use the Sas Proc Discrim [45] implementation of LDA
and QDA with the default settings.

NN: This is the Sas Proc Discrim implementation of the nearest neighbor
method. The pooled covariance matrix is used to compute Mahalanobis dis-
tances.

LOG: This is logistic discriminant analysis. The results are obtained with a poly-
tomous logistic regression (see, e.g., Agresti, 1990) Fortran 90 routine written
by the first author (http://www.stat.wisc.edu/~limt/logdiscr/).

FDA: This is flexible discriminant analysis [23], a generalization of linear discrim-
inant analysis that casts the classification problem as one involving regression.
Only the Mars [17] nonparametric regression procedure is studied here. We
use the S-Plus function fda from the mda library of the StatLib S Archive.
Two models are used: an additive model (degree=1, denoted by FM1) and a
model containing first-order interactions (degree=2 with penalty=3, denoted
by FM2).

PDA: This is a form of penalized LDA [21]. It is designed for situations in which
there are many highly correlated attributes. The classification problem is cast
into a penalized regression framework via optimal scoring. PDA is implemented
in S-Plus using the function fda with method=gen.ridge.

MDA: This stands for mixture discriminant analysis [22]. It fits Gaussian mixture
density functions to each class to produce a classifier. MDA is implemented in
S-Plus using the library mda.

POL: This is the Polyclass algorithm [28]. It fits a polytomous logistic regres-
sion model using linear splines and their tensor products. It provides estimates
for conditional class probabilities which can then be used to predict class labels.
POL is implemented in S-Plus using the function poly.fit from the polyclass
library of the StatLib S Archive. Model selection is done with ten-fold cross-
validation.
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2.3. Neural networks

LVQ: We use the learning vector quantization algorithm in the S-Plus class li-
brary [47] at the StatLib S Archive. Details of the algorithm may be found
in Kohonen (1995). Ten percent of the training set are used to initialize the
algorithm, using the function lvqinit. Training is carried out with the opti-
mized learning rate function olvq1, a fast and robust LVQ algorithm. Additional
fine-tuning in learning is performed with the function lvq1. The number of it-
erations is ten times the size of the training set in both olvq1 and lvq1. We use
the default values of 0.3 and 0.03 for α, the learning rate parameter, in olvq1
and lvq1, respectively.

RBF: This is the radial basis function network implemented in the Sas tnn3.sas
macro [44] for feedforward neural networks (http://www.sas.com). The net-
work architecture is specified with the ARCH=RBF argument. In this study, we
construct a network with only one hidden layer. The number of hidden units is
chosen to be 20% of the total number of input and output units [2.5% (5 hidden
units) only for the dna and dna+ datasets and 10% (5 hidden units) for the tae
and tae+ datasets because of memory and storage limitations]. Although the
macro can perform model selection to choose the optimal number of hidden
units, we did not utilize this capability because it would have taken too long for
some of the datasets (see Table 6 below). Therefore the results reported here
for this algorithm should be regarded as lower bounds on its performance. The
hidden layer is fully connected to the input and output layers but there is no
direct connection between the input and output layers. At the output layer,
each class is represented by one unit taking the value of 1 for that particular
category and 0 otherwise, except for the last one which is the reference cate-
gory. To avoid local optima, ten preliminary trainings were conducted and the
best estimates used for subsequent training. More details on the radial basis
function network can be found in Bishop (1995) and Ripley (1996).

3. The datasets

We briefly describe the sixteen datasets used in the study as well as any modifica-
tions that are made for our experiment. Fourteen are from real domains while two
are artificially created. Fifteen of the datasets are available from UCI.

Wisconsin breast cancer (bcw). This is one of the breast cancer databases at
UCI, collected at the University of Wisconsin by W. H. Wolberg. The problem is
to predict whether a tissue sample taken from a patient’s breast is malignant or
benign. There are two classes, nine numerical attributes, and 699 observations.
Sixteen instances contain a single missing attribute value and are removed from
the analysis. Our results are therefore based on 683 records. Error rates are
estimated using ten-fold cross-validation. A decision tree analysis of a subset
of the data using the Fact algorithm is reported in Wolberg, Tanner, Loh and
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Vanichsetakul (1987) and Wolberg, Tanner and Loh (1988, 1989). The dataset
has also been analyzed with linear programming methods [32].

Contraceptive method choice (cmc). The data are taken from the 1987 Na-
tional Indonesia Contraceptive Prevalence Survey. The samples are married
women who were either not pregnant or did not know if they were pregnant at
the time of the interview. The problem is to predict the current contraceptive
method choice (no use, long-term methods, or short-term methods) of a woman
based on her demographic and socio-economic characteristics [29]. There are
three classes, two numerical attributes, seven categorical attributes, and 1473
records. The error rates are estimated using ten-fold cross-validation. The
dataset is available from UCI.

StatLog DNA (dna). This UCI dataset in molecular biology was used in the
StatLog Project. Splice junctions are points in a DNA sequence at which
“superfluous” DNA is removed during the process of protein creation in higher
organisms. The problem is to recognize, given a sequence of DNA, the bound-
aries between exons (the parts of the DNA sequence retained after splicing)
and introns (the parts of the DNA sequence that are spliced out). There are
three classes and sixty categorical attributes each having four categories. The
sixty categorical attributes represent a window of sixty nucleotides, each having
one of four categories. The middle point in the window is classified as one of
exon/intron boundaries, intron/exon boundaries, or neither of these. The 3186
examples in the database were divided randomly into a training set of size 2000
and a test set of size 1186. The error rates are estimated from the test set.

StatLog heart disease (hea). This UCI dataset is from the Cleveland Clinic
Foundation, courtesy of R. Detrano. The problem concerns the prediction of the
presence or absence of heart disease given the results of various medical tests
carried out on a patient. There are two classes, seven numerical attributes,
six categorical attributes, and 270 records. The StatLog Project employed
unequal misclassification costs. We use equal costs here because some algo-
rithms do not allow unequal costs. The error rates are estimated using ten-fold
cross-validation.

Boston housing (bos). This UCI dataset gives housing values in Boston sub-
urbs [20]. There are three classes, twelve numerical attributes, one binary at-
tribute, and 506 records. Following Loh and Vanichsetakul (1988), the classes
are created from the attribute median value of owner-occupied homes as follows:
class = 1 if log(median value) ≤ 9.84, class = 2 if 9.84 < log(median value) ≤
10.075, class = 3 otherwise. The error rates are estimated using ten-fold cross-
validation.

LED display (led). This artificial domain is described in Breiman, Friedman,
Olshen and Stone (1984). It contains seven Boolean attributes, representing
seven light-emitting diodes, and ten classes, the set of decimal digits. An at-
tribute value is either zero or one, according to whether the corresponding light
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is off or on for the digit. Each attribute value has a ten percent probability of
having its value inverted. The class attribute is an integer between zero and
nine, inclusive. A C program from UCI is used to generate 2000 records for
the training set and 4000 records for the test set. The error rates are estimated
from the test set.

BUPA liver disorders (bld). This UCI dataset was donated by R. S. Forsyth.
The problem is to predict whether or not a male patient has a liver disorder
based on blood tests and alcohol consumption. There are two classes, six nu-
merical attributes, and 345 records. The error rates are estimated using ten-fold
cross-validation.

PIMA Indian diabetes (pid). This UCI dataset was contributed by V. Sigillito.
The patients in the dataset are females at least twenty-one years old of Pima
Indian heritage living near Phoenix, Arizona, USA. The problem is to predict
whether a patient would test positive for diabetes given a number of physiologi-
cal measurements and medical test results. There are two classes, seven numeri-
cal attributes, and 532 records. The original dataset consists of 768 records with
eight numerical attributes. However, many of the attributes, notably serum in-
sulin, contain zero values which are physically impossible. We remove serum
insulin and records that have impossible values in other attributes. The error
rates are estimated using ten-fold cross validation.

StatLog satellite image (sat). This UCI dataset gives the multi-spectral values
of pixels within 3 × 3 neighborhoods in a satellite image, and the classification
associated with the central pixel in each neighborhood. The aim is to predict
the classification given the multi-spectral values. There are six classes and
thirty-six numerical attributes. The training set consists of 4435 records while
the test set consists of 2000 records. The error rates are estimated from the test
set.

Image segmentation (seg). This UCI dataset was used in the StatLog Project.
The samples are from a database of seven outdoor images. The images are
hand-segmented to create a classification for every pixel as one of brickface,
sky, foliage, cement, window, path, or grass. There are seven classes, nine-
teen numerical attributes and 2310 records in the dataset. The error rates are
estimated using ten-fold cross-validation.

The algorithm T1 could not handle this dataset without modification, because
the program requires a large amount of memory. Therefore for T1 (but not for
the other algorithms) we discretize each attribute except attributes 3, 4, and 5
into one hundred categories.

Attitude towards smoking restrictions (smo). This survey dataset [11] is ob-
tained from http://lib.stat.cmu.edu/datasets/csb/. The problem is to
predict attitude toward restrictions on smoking in the workplace (prohibited,
restricted, or unrestricted) based on bylaw-related, smoking-related, and so-
ciodemographic covariates. There are three classes, three numerical attributes,
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and five categorical attributes. We divide the original dataset into a training
set of size 1855 and a test set of size 1000. The error rates are estimated from
the test set.

Thyroid disease (thy). This is the UCI ann-train dataset contributed by R.
Werner. The problem is to determine whether or not a patient is hyperthyroid.
There are three classes (normal, hyperfunction, and subnormal functioning), six
numerical attributes, and fifteen binary attributes. The training set consists of
3772 records and the test set has 3428 records. The error rates are estimated
from the test set.

StatLog vehicle silhouette (veh). This UCI dataset originated from the Turing
Institute, Glasgow, Scotland. The problem is to classify a given silhouette as
one of four types of vehicle, using a set of features extracted from the silhouette.
Each vehicle is viewed from many angles. The four model vehicles are double
decker bus, Chevrolet van, Saab 9000, and Opel Manta 400. There are four
classes, eighteen numerical attributes, and 846 records. The error rates are
estimated using ten-fold cross-validation.

Congressional voting records (vot). This UCI dataset gives the votes of each
member of the U. S. House of Representatives of the 98th Congress on sixteen
key issues. The problem is to classify a Congressman as a Democrat or a
Republican based on the sixteen votes. There are two classes, sixteen categorical
attributes with three categories each (“yea”, “nay”, or neither), and 435 records.
Error rates are estimated by ten-fold cross-validation.

Waveform (wav). This is an artificial three-class problem based on three wave-
forms. Each class consists of a random convex combination of two waveforms
sampled at the integers with noise added. A description for generating the data
is given in Breiman, Friedman, Olshen and Stone (1984) and a C program is
available from UCI. There are twenty-one numerical attributes, and 600 records
in the training set. Error rates are estimated from an independent test set of
3000 records.

TA evaluation (tae). The data consist of evaluations of teaching performance
over three regular semesters and two summer semesters of 151 teaching assistant
(TA) assignments at the Statistics Department of the University of Wisconsin–
Madison. The scores are grouped into three roughly equal-sized categories
(“low”, “medium”, and “high”) to form the class attribute. The predictor
attributes are (i) whether or not the TA is a native English speaker (binary),
(ii) course instructor (25 categories), (iii) course (26 categories), (iv) summer or
regular semester (binary), and (v) class size (numerical). This dataset is first
reported in Loh and Shih (1997). It differs from the other datasets in that there
are two categorical attributes with large numbers of categories. As a result, de-
cision tree algorithms such as Cart that employ exhaustive search usually take
much longer to train than other algorithms. (Cart has to evaluate 2c−1 − 1
splits for each categorical attribute with c values.) Error rates are estimated
using ten-fold cross-validation. The dataset is available from UCI.
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A summary of the attribute features of the datasets is given in Table 1.

Table 1. Characteristics of the datasets. The last three columns give the number and type of
added noise attributes for each dataset. The number of values taken by the class attribute is
denoted by J . The notation “N(0,1)” denotes the standard normal distribution, “UI(m,n)” a
uniform distribution over the integers m through n inclusive, and “U(0,1)” a uniform distribution
over the unit interval. The abbreviation C(k) stands for UI(1,k).

No. of original attributes Noise attributes
Num. Categorical Tot. Numerical Categor.

Set Size J 2 3 4 5 25 26

bcw 683 2 9 9 9 UI(1,10)
cmc 1473 3 2 3 4 9 6 N(0,1)
dna 2000 3 60 60 20 C(4)
hea 270 2 7 3 2 1 13 7 N(0,1)
bos 506 3 12 1 13 12 N(0,1)
led 2000 10 7 7 17 C(2)
bld 345 2 6 6 9 N(0,1)
pid 532 2 7 7 8 N(0,1)
sat 4435 6 36 36 24 UI(20,160)
seg 2310 7 19 19 9 N(0,1)
smo 1855 3 3 3 1 1 8 7 N(0,1)
thy 3772 3 6 15 21 4 U(0,1) 10 C(2)
veh 846 4 18 18 12 N(0,1)
vot 435 2 16 16 14 C(3)
wav 600 3 21 21 19 N(0,1)
tae 151 3 1 2 1 1 5 5 N(0,1)

4. Experimental setup

Some algorithms are not designed for categorical attributes. In these cases, each
categorical attribute is converted into a vector of 0-1 attributes. That is, if a
categorical attribute X takes k values {c1, c2, . . . , ck}, it is replaced by a (k −
1)-dimensional vector (d1, d2, . . . , dk−1) such that di = 1 if X = ci and di = 0
otherwise, for i = 1, . . . , k − 1. If X = ck, the vector consists of all zeros. The
affected algorithms are all the statistical and neural network algorithms as well as
the tree algorithms FTL, OCU, OCL, OCM, and LMT.

In order to increase the number of datasets and to study the effect of noise at-
tributes on each algorithm, we created sixteen new datasets by adding independent
noise attributes. The numbers and types of noise attributes added are given in the
right panel of Table 1. The name of each new dataset is the same as the original
dataset except for the addition of a ‘+’ symbol. For example, the bcw dataset with
noise added is denoted by bcw+.

For each dataset, we use one of two different ways to estimate the error rate of
an algorithm. For large datasets (size much larger than 1000 and test set of size at
least 1000), we use a test set to estimate the error rate. The classifier is constructed
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using the records in the training set and then it is tested on the test set. Twelve of
the thirty-two datasets are analyzed this way.

For the remaining twenty datasets, we use the following ten-fold cross-validation
procedure to estimate the error rate:

1. The dataset is randomly divided into ten disjoint subsets, with each containing
approximately the same number of records. Sampling is stratified by the class
labels to ensure that the subset class proportions are roughly the same as those
in the whole dataset.

2. For each subset, a classifier is constructed using the records not in it. The clas-
sifier is then tested on the withheld subset to obtain a cross-validation estimate
of its error rate.

3. The ten cross-validation estimates are averaged to provide an estimate for the
classifier constructed from all the data.

Because the algorithms are implemented in different programming languages and
some languages are not available on all platforms, three types of Unix workstations
are used in our study. The workstation type and implementation language for
each algorithm are given in Table 2. The relative performance of the workstations
according to Spec marks is given in Table 3. The floating point Spec marks
show that a task that takes one second on a Dec 3000 would take about 1.4 and
0.8 seconds on a Sparcstation 5 (SS5) and Sparcstation 20 (SS20), respectively.
Therefore, to enable comparisons, all training times are reported here in terms of
Dec 3000-equivalent seconds—the training times recorded on a SS5 and a SS20 are
divided by 1.4 and 0.8, respectively.

5. Results

We only report the summary results and analysis here. Fuller details, including the
error rate and training time of each algorithm on each dataset, may be obtained
from http://id001.wkap.nl/mach/ml-appe.htm.

5.1. Exploratory analysis of error rates

Before we present a formal statistical analysis of the results, it is helpful to study
the summary in Table 4. The mean error rate for each algorithm over the datasets
is given in the second row. The minimum and maximum error rates and that of
the plurality rule are given for each dataset in the last three columns. Let p denote
the smallest observed error rate in each row (i.e., dataset). If an algorithm has an
error rate within one standard error of p, we consider it to be close to the best and
indicate it by a

√
in the table. The standard error is estimated as follows. If p is

from an independent test set, let n denote the size of the test set. Otherwise, if p is
a cross-validation estimate, let n denote the size of the training set. The standard
error of p is estimated by the formula

√
p(1 − p)/n. The algorithm with the largest
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Table 2. Hardware and software platform for each algorithm. The workstations are Dec 3000
Alpha Model 300 (Dec), Sun Sparcstation 20 Model 61 (SS20), and Sun Sparcstation 5 (SS5).

Algorithm Platform Algorithm Platform

Tree & Rules ST1 S-Plus tree, 1-se Dec/S
QU0 Quest, univar. 0-se Dec/F90 LMT Lmdt, linear Dec/C
QU1 Quest, univar. 1-se Dec/F90 CAL Cal5 SS5/C++

QL0 Quest, linear 0-se Dec/F90 T1 T1, single split Dec/C
QL1 Quest, linear 1-se Dec/F90

FTU Fact, univariate Dec/F77 Statistical
FTL Fact, linear Dec/F77 LDA Linear discriminant anal. Dec/Sas

C4T C4.5 trees Dec/C QDA Quadratic discriminant anal. Dec/Sas

C4R C4.5 rules Dec/C NN Nearest-neighbor Dec/Sas

IB Ind bayes style SS5/C LOG Linear logistic regression Dec/F90

IBO Ind bayes opt style SS5/C FM1 Fda, degree 1 SS20/S
IM Ind mml style SS5/C FM2 Fda, degree 2 SS20/S
IMO Ind mml opt style SS5/C PDA Penalized Lda SS20/S
IC0 Ind-Cart, 0-se SS5/C MDA Mixture discriminant anal. SS20/S
IC1 Ind-Cart, 1-se SS5/C POL Polyclass SS20/S
OCU Oc1, univariate SS5/C
OCL Oc1, linear SS5/C Neural Network
OCM Oc1, mixed SS5/C LVQ Learning vector quantization SS20/S
ST0 S-Plus tree, 0-se Dec/S RBF Radial basis function network Dec/Sas

Table 3. Spec benchmark summary

Workstation Specfp92 Specint92 Source

Dec Dec 3000 Model 300 91.5 66.2 Spec Newsletter
(150MHz) Vol. 5, Issue 2, June 1993

SS20 Sun Sparcstation 20 102.8 88.9 Spec Newsletter
Model 61 (60MHz) Vol. 6, Issue 2, June 1994

SS5 Sun Sparcstation 5 47.3 57.0 Spec Newsletter
(70MHz) Vol. 6, Issue 2, June 1994

error rate within a row is indicated by an X. The total numbers of
√

and X-marks
for each algorithm are given in the third and fourth rows of the table.

The following conclusions may be drawn from the table:

1. Algorithm POL has the lowest mean error rate. An ordering of the other algo-
rithms in terms of mean error rate is given in the upper half of Table 5.

2. The algorithms can also be ranked in terms of total number of
√

- and X-marks.
By this criterion, the most accurate algorithm is again POL, which has fifteen

√
-

marks and no X-marks. Eleven algorithms have one or more X-marks. Ranked
in increasing order of number of X-marks (in parentheses), they are:

FTL(1), OCM(1), ST1(1), FM2(1), MDA(1), FM1(2),
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Table 4. Minimum, maximum, and ‘naive’ plurality rule error rates for each dataset. A ‘
√

’-mark
indicates that the algorithm has an error rate within one standard error of the minimum for the
dataset. A ‘X’-mark indicates that the algorithm has the worst error rate for the dataset. The mean
error rate for each algorithm is given in the second row.
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8 8 10 9 4 12 7 8 3 8 5 6 4 5 9 4 4 5 5 1 4 4 10 4 4 13 12 12 10 9 15 4 8
#X 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 1 0 1 0 0 11 0 3 4 0 2 1 0 1 0 4 0
bcw

√ √ √
X

√ √√
.03 .09 .35

bcw+
√ √

X
√ √ √ √ √√

.03 .08
cmc

√ √
X

√
.43 .60 .57

cmc+
√ √

X
√

.43 .58
dna

√
X

√ √ √
.05 .38 .49

dna+
√

X
√ √

.04 .38
hea

√ √ √ √ √ √
X .14 .34 .44

hea+
√ √ √ √

X .15 .31
bos

√ √ √ √ √ √ √
X
√

.22 .31 .66
bos+

√ √ √
X

√
.23 .42

led
√ √ √ √ √ √ √ √ √

X
√ √ √ √ √ √ √ √

.27 .82 .89
led+

√ √
X

√ √ √ √ √ √ √
.27 .81

bld
√ √ √

X
√ √ √

.28 .43 .42
bld+ X

√
.29 .44

pid
√ √ √ √ √ √ √ √ √

X
√ √ √ √ √ √ √ √ √ √

.22 .31 .33
pid+

√ √ √ √ √ √ √
X

√ √ √ √ √ √ √
.22 .32

sat X
√

.10 .40 .77
sat+

√
X .12 .41

seg
√ √

X .02 .52 .86
seg+

√
X .03 .57

smo
√ √ √ √ √ √ √ √ √ √ √ √ √ √√ √ √ √

X
√ √ √ √ √ √ √

.30 .45 .31
smo+

√ √ √ √ √ √ √ √ √ √ √ √ √√ √ √ √ √
X

√ √ √ √ √ √
.31 .45

thy
√ √ √ √ √ √ √√

X .01 .89 .07
thy+

√ √ √ √ √
X .01 .88

veh X
√

.15 .49 .74
veh+ X

√
.16 .49

vot
√ √ √ √ √ √ √ √ √ √ √

X .04 .06 .39
vot+

√ √ √ √ √ √ √ √ √ √ √ √
X
√√ √ √ √ √ √ √ √ √ √

.04 .07
wav X

√ √
.15 .48 .67

wav+
√

X
√ √ √ √

.16 .45
tae X

√ √
.33 .69 .66

tae+
√ √

X
√ √ √ √ √

.45 .70

OCL(3), QDA(3), NN(4), LVQ(4), T1(11).

Excluding these, the remaining algorithms rank in order of decreasing number
of

√
-marks (in parentheses) as:

POL(15), LOG(13), QL0(10), LDA(10), PDA(10), QL1(9), OCU(9), (1)
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Table 5. Ordering of algorithms by mean error rate and mean rank of error rate

Mean POL LOG MDA QL0 LDA QL1 PDA IC0 FM2 IBO IMO

error .195 .204 .207 .208 .208 .211 .213 .215 .217 .219 .219
rate C4R LMT IM C4T QU0 QU1 OCU IC1 IB OCM ST0

.220 .220 .220 .220 .221 .226 .227 .227 .229 .230 .232
ST1 FTL FTU FM1 RBF OCL LVQ CAL NN QDA T1

.233 .234 .238 .242 .257 .260 .269 .270 .281 .301 .354

Mean POL LOG FM1 FM2 QL0 LDA QU0 C4R IMO MDA PDA

rank 8.3 12.1 12.2 12.2 12.6 13.7 13.9 14.0 14.0 14.3 14.5
of C4T IBO QL1 IC0 IM FTL OCU QU1 IC1 ST0 ST1

error 14.5 14.7 14.8 14.9 14.9 15.4 16.6 16.7 16.8 17.0 17.6
rate LMT OCM IB RBF FTU QDA LVQ OCL CAL NN T1

18.5 18.9 19.0 19.1 20.7 22.8 24.0 24.3 25.1 25.5 27.5

QU0(8), QU1(8), C4R(8), IBO(8), RBF(8), C4T(7), IMO(6),
IM(5), IC1(5), ST0(5), FTU(4), IC0(4), CAL(4), IB(3), LMT(1).

The top four algorithms in (1) also rank among the top five in the upper half
of Table 5.

3. The last three columns of the table show that a few algorithms are sometimes
less accurate than the plurality rule. They are NN (at cmc, cmc+, smo+), T1 (bld,
bld+), QDA (smo, thy, thy+), FTL (tae), and ST1 (tae+).

4. The easiest datasets to classify are bcw, bcw+, vot, and vot+; the error rates all
lie between 0.03 and 0.09.

5. The most difficult to classify are cmc, cmc+, and tae+, with minimum error
rates greater than 0.4.

6. Two other difficult datasets are smo and smo+. In the case of smo, only T1 has a
(marginally) lower error rate than that of the plurality rule. No algorithm has
a lower error rate than the plurality rule for smo+.

7. The datasets with the largest range of error rates are thy and thy+, where the
rates range from 0.005 to 0.890. However, the maximum of 0.890 is due to QDA.
If QDA is ignored, the maximum error rate drops to 0.096.

8. There are six datasets with only one
√

-mark each. They are bld+ (POL), sat
(LVQ), sat+ (FM2), seg+ (IBO), veh and veh+ (QDA both times).

9. Overall, the addition of noise attributes does not appear to increase significantly
the error rates of the algorithms.
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5.2. Statistical significance of error rates

5.2.1. Analysis of variance A statistical procedure called mixed effects analysis
of variance can be used to test the simultaneous statistical significance of differences
between mean error rates of the algorithms, while controlling for differences between
datasets [39]. Although it makes the assumption that the effects of the datasets act
like a random sample from a normal distribution, it is quite robust against violation
of the assumption. For our data, the procedure gives a significance probability less
than 10−4. Hence the null hypothesis that all the algorithms have the same mean
error rate is strongly rejected.

Simultaneous confidence intervals for differences between mean error rates can be
obtained using the Tukey method [35]. According to this procedure, a difference
between the mean error rates of two algorithms is statistically significant at the
10% level if they differ by more than 0.058.

To visualize this result, Figure 1(a) plots the mean error rate of each algorithm
versus its median training time in seconds. The solid vertical line in the plot is
0.058 units to the right of the mean error rate for POL. Therefore any algorithm
lying to the left of the line has a mean error rate that is not statistically significantly
different from that of POL.

The algorithms are seen to form four clusters with respect to training time. These
clusters are roughly delineated by the three horizontal dotted lines which correspond
to training times of one minute, ten minutes, and one hour. Figure 1(b) shows a
magnified plot of the eighteen algorithms with median training times less than ten
minutes and mean error rate not statistically significantly different from POL.

5.2.2. Analysis of ranks To avoid the normality assumption, we can instead
analyze the ranks of the algorithms within datasets. That is, for each dataset, the
algorithm with the lowest error rate is assigned rank one, the second lowest rank
two, etc., with average ranks assigned in the case of ties. The lower half of Table 5
gives an ordering of the algorithms in terms of mean rank of error rates. Again POL
is first and T1 last. Note, however, that the mean rank of POL is 8.3. This shows
that it is far from being uniformly most accurate across datasets.

Comparing the two methods of ordering in Table 5, it is seen that POL, LOG,
QL0, and LDA are the only algorithms with consistently good performance. Three
algorithms that perform well by one criterion but not the other are MDA, FM1, and
FM2. In the case of MDA, its low mean error rate is due to its excellent performance
in four datasets (veh, veh+, wav, and wav+) where many other algorithms do poorly.
These domains concern shape identification and the datasets contain only numerical
attributes. MDA is generally unspectacular in the rest of the datasets and this is the
reason for its tenth place ranking in terms of mean rank.

The situation for FM1 and FM2 is quite different. As its low mean rank indicates,
FM1 is usually a good performer. However, it fails miserably in the seg and seg+
datasets, reporting error rates of more than fifty percent when most of the other
algorithms have error rates less than ten percent. Thus FM1 seems to be less robust
than the other algorithms. FM2 also appears to lack robustness, although to a
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Figure 1. Plots of median training time versus mean error rate. The vertical axis is in log-scale.
The solid vertical line in plot (a) divides the algorithms into two groups: the mean error rates of
the algorithms in the left group do not differ significantly (at the 10% simultaneous significance
level) from that of POL, which has the minimum mean error rate. Plot (b) shows the algorithms
that are not statistically significantly different from POL in terms of mean error rate and that have
median training time less than ten minutes.
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lesser extent. Its worst performance is in the bos+ dataset, where it has an error
rate of forty-two percent, compared to less than thirty-five percent for the other
algorithms. The number of X-marks against an algorithm in Table 4 is a good
predictor of erratic if not poor performance. MDA, FM1, and FM2 all have at least
one X-mark.

The Friedman (1937) test is a standard procedure for testing statistical signif-
icance in differences of mean ranks. For our experiment, it gives a significance
probability less than 10−4. Therefore the null hypothesis that the algorithms are
equally accurate on average is again rejected. Further, a difference in mean ranks
greater than 8.7 is statistically significant at the 10% level [24]. Thus POL is not
statistically significantly different from the twenty other algorithms that have mean
rank less than or equal to 17.0. Figure 2(a) shows a plot of median training time
versus mean rank. Those algorithms that lie to the left of the vertical line are not
statistically significantly different from POL. A magnified plot of the subset of algo-
rithms that are not significantly different from POL and that have median training
time less than ten minutes is given in Figure 2(b).

The algorithms that differ statistically significantly from POL in terms of mean
error rate form a subset of those that differ from POL in terms of mean ranks. Thus
the rank test appears to be more powerful than the analysis of variance test for this
experiment. The fifteen algorithms in Figure 2(b) may be recommended for use in
applications where good accuracy and short training time are desired.

5.3. Training time

Table 6 gives the median Dec 3000-equivalent training time for each algorithm and
the relative training time within datasets. Owing to the large range of training
times, only the order relative to the fastest algorithm for each dataset is reported.
The fastest algorithm is indicated by a ‘0’. An algorithm that is between 10x−1 to
10x times as slow is indicated by the value of x. For example, in the case of the
dna+ dataset, the fastest algorithms are C4T and T1, each requiring two seconds.
The slowest algorithm is FM2, which takes more than three million seconds (almost
forty days) and hence is between 106 to 107 times as slow. The last two columns
of the table give the fastest and slowest times for each dataset.

Table 7 gives an ordering of the algorithms from fastest to slowest according to
median training time. Overall, the fastest algorithm is C4T, followed closely by FTU,
FTL, and LDA. There are two reasons for the superior speed of C4T compared to the
other decision tree algorithms. First, it splits each categorical attribute into as
many subnodes as the number of categories. Therefore it wastes no time in forming
subsets of categories. Second, its pruning method does not require cross-validation,
which can increase training time several fold.

The classical statistical algorithms QDA and NN are also quite fast. As expected,
decision tree algorithms that employ univariate splits are faster than those that use
linear combination splits. The slowest algorithms are POL, FM2, and RBF; two are
spline-based and one is a neural network.
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Figure 2. Plots of median training time versus mean rank of error rates. The vertical axis is in
log-scale. The solid vertical line in plot (a) divides the algorithms into two groups: the mean ranks
of the algorithms in the left group do not differ significantly (at the 10% simultaneous significance
level) from that of POL. Plot (b) shows the algorithms that are not statistically significantly
different from POL in terms of mean rank and that have median training time less than ten
minutes.
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Table 6. Dec 3000-equivalent training times and relative times of the algorithms. The second and
third rows give the median training time and rank for each algorithm. An entry of ‘x’ in the each of
the subsequent rows indicates that an algorithm is between 10x−1–10x times slower than the fastest
algorithm for the dataset. The fastest algorithm is denoted by an entry of ‘0’. The minimum and
maximum training times are given in the last two columns. ‘s’, ‘m’, ‘h’, ‘d’ denote seconds, minutes,
hours, and days, respectively.
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bcw+ 2 2 2 2 1 1 0 1 1 3 1 3 2 2 1 3 3 3 3 2 3 1 1 1 1 2 3 3 2 2 4 2 4 4s 2.7h
cmc+ 2 2 3 3 0 1 1 2 1 3 1 3 2 2 2 3 3 3 3 2 4 2 1 1 1 2 3 4 2 2 4 2 4 12s 23.9h
dna+ 3 3 3 3 1 2 0 2 1 2 1 2 1 1 3 3 3 3 3 4 5 0 2 2 3 3 5 7 3 3 5 4 6 2s 39.6d
hea+ 2 2 2 2 1 1 0 1 1 4 1 3 2 2 1 2 2 3 3 2 4 1 1 1 1 2 3 3 1 2 3 1 4 4s 3.3h
bos+ 2 2 2 2 0 0 1 1 1 3 1 3 2 2 1 3 3 3 3 2 4 2 1 1 1 2 3 2 1 2 4 1 4 9s 5.5h
led+ 3 3 4 4 1 1 1 2 1 3 1 3 2 1 2 3 3 3 3 3 4 0 1 2 2 3 3 4 2 3 4 2 5 1s 12.4h
bld+ 2 2 2 2 1 0 1 1 1 4 1 4 2 2 1 3 3 3 3 2 3 1 1 1 1 1 2 3 1 2 3 1 3 5s 1.5h
pid+ 2 2 2 2 0 0 1 1 1 3 1 3 2 2 1 3 3 3 3 2 3 1 1 1 1 1 2 3 1 2 4 1 3 7s 2.5h
sat+ 3 3 3 3 0 1 1 2 2 3 2 3 2 2 2 4 3 3 3 3 4 2 1 1 2 3 4 5 2 2 4 3 5 8s 6.1d
seg+ 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 3 3 2 2 2 4 2 0 1 1 3 3 4 2 2 4 2 5 28s 6.3d
smo+ 3 3 3 3 0 0 1 2 2 3 2 3 2 2 2 3 3 3 3 3 4 2 1 1 1 2 3 4 2 2 5 2 4 1s 3.8h
thy+ 2 2 3 3 1 1 0 1 1 2 1 2 1 1 2 3 2 3 3 3 3 2 1 1 2 2 3 4 2 2 5 3 5 3s 16.1h
veh+ 2 2 2 2 1 1 1 1 2 3 2 3 2 2 1 3 3 3 3 2 4 3 0 1 1 2 4 4 1 2 4 2 4 14s 1.2d
vot+ 2 2 2 2 1 1 0 1 2 4 2 3 2 2 2 3 3 3 3 3 4 0 1 1 2 3 4 5 2 3 4 2 5 2s 2.1d
wav+ 2 2 2 2 1 1 1 1 1 3 1 3 2 2 1 2 2 2 2 2 3 2 0 1 1 2 3 4 1 2 4 1 4 4s 4.3h
tae+ 2 2 2 2 0 0 1 1 1 2 1 3 1 1 1 1 2 4 4 2 3 1 1 1 1 2 3 4 1 2 3 1 4 6s 10.2h

Table 7. Ordering of algorithms by median training time

C4T FTU FTL LDA QDA C4R NN IB IM T1 OCU

5s 7s 8s 10s 15s 20s 20s 34s 34s 36s 46s

IC1 IC0 PDA LVQ MDA QU1 QU0 LOG LMT QL1 QL0

47s 52s 56s 1.1m 3m 3.2m 3.2m 4m 5.7m 5.9m 5.9m

OCM ST1 OCL ST0 FM1 IBO IMO CAL POL FM2 RBF

13.7m 14.4m 14.9m 15.1m 15.6m 27.5m 33.9m 1.3h 3.2h 3.8h 11.3h

Although IC0, IC1, ST0 and ST1 all claim to implement the Cart algorithm, the
Ind versions are faster than the S-Plus versions. One reason is that IC0 and IC1
are written in C whereas ST0 and ST1 are written in the S language. Another reason
is that the Ind versions use heuristics (Buntine, personal communication) instead
of greedy search when the number of categories in a categorical attribute is large.
This is most apparent in the tae+ dataset where there are categorical attributes
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with up to twenty-six categories. In this case IC0 and IC1 take around forty seconds
versus two and a half hours for ST0 and ST1. The results in Table 4 indicate that
Ind’s classification accuracy is not adversely affected by such heuristics; see Aronis
and Provost (1997) for another possible heuristic.

Since T1 is a one-level tree, it may appear surprising that it is not faster than
algorithms such as C4T that produce multi-level trees. The reason is that T1 splits
each continuous attribute into J + 1 intervals, where J is the number of classes.
On the other hand, C4T always splits a continuous attribute into two intervals only.
Therefore when J > 2, T1 has to spend a lot more time to search for the intervals.

5.4. Size of trees

Table 8 gives the number of leaves for each tree algorithm and dataset before noise
attributes are added. In the case that an error rate is obtained by ten-fold cross-
validation, the entry is the mean number of leaves over the ten cross-validation
trees. Table 9 shows how much the number of leaves changes after addition of noise
attributes. The mean and median of the number of leaves for each classifier are
given in the last columns of the two tables. IBO and IMO clearly yield the largest
trees by far. Apart from T1, which is necessarily short by design, the algorithm with
the shortest trees on average is QL1, followed closely by FTL and OCL. A ranking
of the algorithms with univariate splits (in increasing median number of leaves) is:
T1, IC1, ST1, QU1, FTU, IC0, ST0, OCU, QU0, and C4T. Algorithm C4T tends
to produce trees with many more leaves than the other algorithms. One reason
may be due to under-pruning (although its error rates are quite good). Another is
that, unlike the binary-tree algorithms, C4T splits each categorical attribute into as
many nodes as the number of categories.

Addition of noise attributes typically decreases the size of the trees, except for C4T
and CAL which tend to grow larger trees, and IMO which seems to fluctuate rather
wildly. These results complement those of Oates and Jensen (1997) who looked
at the effect of sample size on the number of leaves of decision tree algorithms
and found a significant relationship between tree size and training sample size for
C4T. They observed that tree algorithms which employ cost-complexity pruning are
better able to control tree growth.

6. Scalability of algorithms

Although differences in mean error rates between POL and many other algorithms
are not statistically significant, it is clear that if error rate is the sole criterion, POL
would be the method of choice. Unfortunately, POL is one of the most compute-
intensive algorithms. To see how training times increase with sample size, a small
scalability study was carried out with the algorithms QU0, QL0, FTL, C4T, C4R, IC0,
LDA, LOG, FM1, and POL.

Training times are measured for these algorithms for training sets of size N =
1000, 2000, . . . , 8000. Four datasets are used to generate the samples—sat, smo+,
tae+, and a new, very large UCI dataset called adult which has two classes and six
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continuous and seven categorical attributes. Since the first three datasets are not
large enough for the experiment, bootstrap re-sampling is employed to generate the
training sets. That is, N samples are randomly drawn with replacement from each
dataset. To avoid getting many replicate records, the value of the class attribute
for each sampled case is randomly changed to another value with probability 0.1.
(The new value is selected from the pool of alternatives with equal probability.)
Bootstrap sampling is not carried out for the adult dataset because it has more
than 32,000 records. Instead, the nested training sets are obtained by random
sampling without replacement.

The times required to train the algorithms are plotted (in log-log scale) in Fig-
ure 3. With the exception of POL, FM1 and LOG, the logarithms of the training
times seem to increase linearly with log(N). The non-monotonic behavior of POL
and FM1 is puzzling and might be due to randomness in their use of cross-validation
for model selection. The erratic behavior of LOG in the adult dataset is caused by
convergence problems during model fitting.

Many of the lines in Figure 3 are roughly parallel. This suggests that the relative
computational speed of the algorithms is fairly constant over the range of sample
sizes considered. QL0 and C4R are two exceptions. Cohen (1995) had observed that
C4R does not scale well.

7. Conclusions

Our results show that the mean error rates of many algorithms are sufficiently
similar that their differences are statistically insignificant. The differences are also
probably insignificant in practical terms. For example, the mean error rates of
the top ranked algorithms POL, LOG, and QL0 differ by less than 0.013. If such a
small difference is not important in real applications, the user may wish to select
an algorithm based on other criteria such as training time or interpretability of the
classifier.

Unlike error rates, there are huge differences between the training times of the
algorithms. POL, the algorithm with the lowest mean error rate, takes about fifty
times as long to train as the next most accurate algorithm. The ratio of times is
roughly equivalent to hours versus minutes, and Figure 3 shows that it is maintained
over a wide range of sample sizes. For large applications where time is a factor, it
may be advantageous to use one of the quicker algorithms.

It is interesting that the old statistical algorithm LDA has a mean error rate
close to the best. This is surprising because (i) it is not designed for binary-
valued attributes (all categorical attributes are transformed to 0-1 vectors prior to
application of LDA), and (ii) it is not expected to be effective when class densities
are multi-modal. Because it is fast, easy to implement, and readily available in
statistical packages, it provides a convenient benchmark for comparison against
future algorithms.

The low error rates of LOG and LDA probably account for much of the performance
of the better algorithms. For example, POL is basically a modern version of LOG. It
enhances the flexibility of LOG by employing spline-based functions and automatic
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Figure 3. Plots of training time versus sample size in log-log scale for selected algorithms.
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model selection. Although this strategy is computationally costly, it does produce
a slight reduction in the mean error rate—enough to bring it to the top of the pack.

The good performance of QL0 may be similarly attributable to LDA. The Quest

linear-split algorithm is designed to overcome the difficulties encountered by LDA
in multi-modal situations. It does this by applying a modified form of LDA to
partitions of the data, where each partition is represented by a leaf of the decision
tree. This strategy alone, however, is not enough, as the higher mean error rate
of FTL shows. The latter is based on the Fact algorithm which is a precursor to
Quest. One major difference between the Quest and Fact algorithms is that the
former employs the cost-complexity pruning method of Cart whereas the latter
does not. Our results suggest that some form of bottom-up pruning may be essential
for low error rates.

If the purpose of constructing an algorithm is for data interpretation, then perhaps
only decision rules or trees with univariate splits will suffice. With the exception
of CAL and T1, the differences in mean error rates of the decision rule and tree
algorithms are not statistically significant from that of POL. IC0 has the lowest
mean error rate and QU0 is best in terms of mean ranks. C4R and C4T are not far
behind. Any of these four algorithms should provide good classification accuracy.
C4T is the fastest by far, although it tends to yield trees with twice as many leaves
as IC0 and QU0. C4R is the next fastest, but Figure 3 shows that it does not scale
well. IC0 is slightly faster and its trees have slightly fewer leaves than QU0. Loh
and Shih (1997) show, however, that Cart-based algorithms such as IC0 are liable
to produce spurious splits in certain situations.

Acknowledgments

We are indebted to P. Auer, C. E. Brodley, W. Buntine, T. Hastie, R. C. Holte,
C. Kooperberg, S. K. Murthy, J. R. Quinlan, W. Sarle, B. Schulmeister, and W.
Taylor for help and advice on the installation of the computer programs. We
are also grateful to J. W. Molyneaux for providing the 1987 National Indonesia
Contraceptive Prevalence Survey data. Finally, we thank W. Cohen, F. Provost,
and the reviewers for many helpful comments and suggestions.

References

1. A. Agresti. Categorical Data Analysis. John Wiley & Sons, New York, NY, 1990.

2. J. M. Aronis and F. J. Provost. Increasing the efficiency of data mining algorithms with
breadth-first marker propagation. In D. Heckerman, H. Mannila, D. Pregibon, and R. Uthu-
rusamy, editors, Proceedings of the Third International Conference on Knowledge Discovery
and Data Mining, pages 119–122, Menlo Park, CA, 1997. AAAI Press.

3. P. Auer, R. C. Holte, and W. Maass. Theory and applications of agnostic PAC-learning with
small decision trees. In A. Prieditis and S. Russell, editors, Proceedings of the Twelfth Inter-
national Conference on Machine Learning, pages 21–29, San Francisco, CA, 1995. Morgan
Kaufmann.

4. R. A. Becker, J. M. Chambers, and A. R. Wilks. The New S Language. Wadsworth, 1988.

5. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, New York,
NY, 1995.



228 T.-S. LIM, W.-Y. LOH AND Y.-S. SHIH

6. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Chapman and Hall, New York, NY, 1984.

7. L. A. Breslow and D. W. Aha. Simplifying decision trees: A survey. Knowledge Engineering
Review, 12:1–40, 1997.

8. C. E. Brodley and P. E. Utgoff. Multivariate versus univariate decision trees. Technical
Report 92-8, Department of Computer Science, University of Massachusetts, Amherst, MA,
1992.

9. C. E. Brodley and P. E. Utgoff. Multivariate decision trees. Machine Learning, 19:45–77,
1995.

10. D. E. Brown, V. Corruble, and C. L. Pittard. A comparison of decision tree classifiers with
backpropagation neural networks for multimodal classification problems. Pattern Recogni-
tion, 26:953–961, 1993.

11. S. Bull. Analysis of attitudes toward workplace smoking restrictions. In N. Lange, L. Ryan,
L. Billard, D. Brillinger, L. Conquest, and J. Greenhouse, editors, Case Studies in Biometry,
pages 249–271. John Wiley & Sons, New York, NY, 1994.

12. W. Buntine. Learning classification trees. Statistics and Computing, 2:63–73, 1992.

13. W. Buntine and R. Caruana. Introduction to IND Version 2.1 and Recursive Partitioning.
NASA Ames Research Center, Moffet Field, CA, 1992.

14. L. A. Clark and D. Pregibon. Tree-based models. In J. M. Chambers and T. J. Hastie,
editors, Statistical Models in S, pages 377–419. Chapman & Hall, New York, NY, 1993.

15. W. W. Cohen. Fast effective rule induction. In A. Prieditis and S. Russell, editors, Proceedings
of the Twelfth International Conference on Machine Learning, pages 115–123, San Francisco,
CA, 1995. Morgan Kaufmann.

16. S. P. Curram and J. Mingers. Neural networks, decision tree induction and discriminant
analysis: an empirical comparison. Journal of the Operational Research Society, 45:440–450,
1994.

17. J. Friedman. Multivariate adaptive regression splines (with discussion). Annals of Statistics,
19:1–141, 1991.

18. M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association, 32:675–701, 1937.

19. D. J. Hand. Construction and Assessment of Classification Rules. John Wiley & Sons,
Chichester, England, 1997.

20. D. Harrison and D. L. Rubinfeld. Hedonic prices and the demand for clean air. Journal of
Environmental Economics and Management, 5:81–102, 1978.

21. T. Hastie, A. Buja, and R. Tibshirani. Penalized discriminant analysis. Annals of Statistics,
23:73–102, 1995.

22. T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures. Journal of the
Royal Statistical Society, Series B, 58:155–176, 1996.

23. T. Hastie, R. Tibshirani, and A. Buja. Flexible discriminant analysis by optimal scoring.
Journal of the American Statistical Association, 89:1255–1270, 1994.

24. M. Hollander and D. A. Wolfe. Nonparametric Statistical Methods. John Wiley & Sons, New
York, NY, 2nd edition, 1999.

25. R. C. Holte. Very simple classification rules perform well on most commonly used datasets.
Machine Learning, 11:63–90, 1993.

26. R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Prentice Hall,
Englewood Cliffs, NJ, 3rd edition, 1992.

27. T. Kohonen. Self-Organizing Maps. Springer-Verlag, Heidelberg, 1995.

28. C. Kooperberg, S. Bose, and C. J. Stone. Polychotomous regression. Journal of the American
Statistical Association, 92:117–127, 1997.

29. C. Lerman, J. W. Molyneaux, S. Pangemanan, and Iswarati. The determinants of contracep-
tive method and service point choice. In Secondary Analysis of the 1987 National Indonesia
Contraceptive Prevalence Survey, volume 1: Fertility and Family Planning, Honolulu, HI,
1991. East-West Population Institute.

30. W.-Y. Loh and Y.-S. Shih. Split selection methods for classification trees. Statistica Sinica,
7:815–840, 1997.



COMPARISON OF CLASSIFICATION ALGORITHMS 229

31. W.-Y. Loh and N. Vanichsetakul. Tree-structured classification via generalized discriminant
analysis (with discussion). Journal of the American Statistical Association, 83:715–728,
1988.

32. O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming. Siam
News, 23:1–18, 1990.

33. C. J. Merz and P. M. Murphy. UCI Repository of Machine Learning Databases. Depart-
ment of Information and Computer Science, University of California, Irvine, CA, 1996.
(http://www.ics.uci.edu/~mlearn/MLRepository.html).

34. D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Machine Learning, Neural and
Statistical Classification, London, 1994. Ellis Horwood.

35. Ruppert G. Miller, Jr. Simultaneous Statistical Inference. Springer-Verlag, New York, 2nd
edition, 1981.

36. W. Müller and F. Wysotzki. Automatic construction of decision trees for classification.
Annals of Operations Research, 52:231–247, 1994.

37. W. Müller and F. Wysotzki. The decision-tree algorithm CAL5 based on a statistical ap-
proach to its splitting algorithm. In G. Nakhaeizadeh and C. C. Taylor, editors, Machine
Learning and Statistics: The Interface, pages 45–65. John Wiley & Sons, New York, NY,
1997.

38. S. K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique decision trees.
Journal of Artificial Intelligence Research, 2:1–33, 1994.

39. J. Neter, W. Wasserman, and M. H. Kutner. Applied Linear Statistical Models. Irwin,
Boston, MA, 3rd edition, 1990.

40. T. Oates and D. Jensen. The effects of training set size on decision tree complexity. In
D. H. Fisher, Jr., editor, Proceedings of the Fourteenth International Conference on Machine
Learning, pages 254–262, San Francisco, CA, 1997. Morgan Kaufmann.

41. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA,
1993.

42. J. R. Quinlan. Improved use of continuous attributes in C4.5. Journal of Artificial Intelli-
gence Research, 4:77–90, 1996.

43. B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, Cam-
bridge, 1996.

44. W. S. Sarle. Neural networks and statistical models. In Proceedings of the Nineteenth
Annual SAS Users Groups International Conference, pages 1538–1550, Cary, NC, 1994.
SAS Institute, Inc. (ftp://ftp.sas.com/pub/neural/neural1.ps).

45. SAS Institute, Inc. SAS/STAT User’s Guide, Version 6, volume 1 & 2. SAS Institute, Inc.,
Cary, NC, 1990.

46. J. W. Shavlik, R. J. Mooney, and G. G. Towell. Symbolic and neural learning algorithms:
an empirical comparison. Machine Learning, 6:111–144, 1991.

47. W. N. Venables and B. D. Ripley. Modern Applied Statistics with S-Plus. Springer, New
York, NY, 2nd edition, 1997.

48. W. H. Wolberg, M. A. Tanner, and W.-Y. Loh. Diagnostic schemes for fine needle aspirates
of breast masses. Analytical and Quantitative Cytology and Histology, 10:225–228, 1988.

49. W. H. Wolberg, M. A. Tanner, and W.-Y. Loh. Fine needle aspiration for breast mass
diagnosis. Archives of Surgery, 124:814–818, 1989.

50. W. H. Wolberg, M. A. Tanner, W.-Y. Loh, and N. Vanichsetakul. Statistical approach to
fine needle aspiration diagnosis of breast masses. Acta Cytologica, 31:737–741, 1987.


