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Abstract

Spotted cDNA microarrays are emerging as a powerful and cost-effective
tool for large scale analysis of gene expression. Microarrays can be used to
measure the relative quantities of specific mRNAs in two or more tissue sam-
ples for thousands of genes simultaneously. As the power of this technology
has been recognized, many open questions remain about appropriate analysis
of microarray data. One question is how to make valid estimates of the rela-
tive expression for genes that are not biased by ancillary sources of variation.
Recognizing that there is inherent “noise” in microarray data, how does one
estimate the error variation associated with an estimated change in expression,
i.e., how does one construct the error bars? We demonstrate that ANOVA
methods can be used to normalize microarray data and provide estimates of
changes in gene expression that are corrected for potential confounding effects.
This approach establishes a framework for the general analysis and interpreta-
tion of microarray data.
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Introduction

The regulation of gene expression in a cell begins at the level of transcription
of DNA into mRNA. Although subsequent processes such as differential degra-
dation of mRNA in the cytoplasm and differential translation also regulate the
expression of genes, it is of great interest to estimate the relative quantities
of mRNA species in populations of cells. The circumstances under which a
particular gene is up- or down-regulated provide important clues about gene
function. The simultaneous expression profiles of many genes can provide addi-
tional insights into physiological processes or disease etiology that is mediated
by the coordinated action of sets of genes.

Spotted cDNA microarrays (Brown and Botstein 1999) are emerging as a
powerful and cost-effective tool for large scale analysis of gene expression. In
the first step of the technique, samples of DNA clones with known sequence
content are spotted and immobilized onto a glass slide or other substrate, the
microarray. Next, pools of mRNA from the cell populations under study are
purified, reverse-transcribed into cDNA, and labeled with one of two fluorescent
dyes, which we will refer to as “red” and “green.” Two pools of differentially
labeled cDNA are combined and applied to a microarray. Labeled cDNA in
the pool hybridizes to complementary sequences on the array and any unhy-
bridized cDNA is washed off. Hybridization efficiency may vary from clone to
clone, confounding comparisons between genes. However, if we assume that
the efficiency of an individual clone is not altered by the type of the dye label,
then the relative abundance of a particular mRNA in the two samples can be
measured.

Microarray technology has the potential to address many interesting ques-
tions in genetics by revealing patterns of expression for genes and classifying
samples (such as tumor samples) based on such patterns. However, basic ques-
tions about microarray data persist without satisfactory answers. The simplest
microarray experiment studies the variation in gene expression across the cate-
gories of a single factor, such as tissue types, strains of mice, or drug treatments.
(We refer to the categories of the factors under study as varieties, as is com-
mon in the statistical design literature.) The purpose of such an experiment is
to identify differences in gene expression among the varieties. Since there are
other sources of variation in these experiments, such as the two dyes and the
arrays themselves, how does one estimate the magnitude of differences for the
spotted genes? Further, given that there is inherent “noise” in the data, how
does one state one’s confidence in the estimates? In particular, how does one
determine what level of observed differential expression is statistically signifi-
cant? Error estimates are necessary for making valid, rigorous inferences from
the experiment (Fisher, 1935, p.60). Looking ahead, we believe they will also
be useful in assessing the quality of the results from higher-order analyses such
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as clustering (Eisen et al. 1999; Tamayo et al. 1999).
In this work, we perform analysis of variance on microarray data from two

designed experiments that used independent arrays to study the same tissue
samples. We employ a bootstrapping technique to construct confidence inter-
vals for the estimates of interest. Comparing the results of the two separate
analyses demonstrates the reproducibility of estimated changes in expression
levels.

Results

ANOVA Models for Microarray Data. A microarray experiment may
involve multiple arrays to compare multiple samples. Every measurement in a
microarray experiment is associated with a particular combination of an array in
the experiment, a dye (red or green), a variety, and a gene. Let yijkg denote the
measurement from the ith array, jth dye, kth variety, and gth gene. To account
for the multiple sources of variation in a microarray experiment, consider the
model

log(yijkg) = µ+Ai +Dj + Vk +Gg + (AG)ig + (V G)kg + εijkg, (1)

where µ is the overall average signal, Ai represents the effect of the ith array, Dj

represents the effect of the jth dye, Vk represents the effect of the kth variety,
Gg represents the effect of the gth gene, (AG)ig represents a combination of
array i and gene g (i.e., a particular spot on a particular array), and (V G)kg
represents the interaction between the kth variety and the gth gene. The error
terms εijkg are assumed to be independent and identically distributed with mean
0. The array effects Ai account for differences between arrays averaged over
all genes, dyes, and varieties. These may arise, for example, because arrays
are hybridized. Similarly, the dye effects Dj account for differences between
the average signal from each dye. One dye may be inherently “brighter” than
the other, and this must be taken into account in the analysis. The terms Vk
account for overall differences in the varieties. Such differences could arise if
some varieties have more transcription activity in general, or simply because
of differential concentration of mRNA in the labeled sample. The terms Gg
account for average effects of individual genes spotted on the arrays in the
experiment. The (AG)ig account for the average effect of the spot on array i
for gene g. Essentially, this is a “spot” effect, and may arise because there is
not complete control over the amount and concentration of cDNA immobilized
from one array to the next. All of these effects are generally not of interest,
but account for sources of variation in microarray data. It is also possible to
include other effects such as dye×gene interactions. However, as we discuss
below, including additional effects uses degrees of freedom that may need to
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be reserved to estimate the error variance in the experiment. The effects of
interest in model (1) are the interactions between varieties and genes, (V G)kg.
These terms capture departures from the overall averages that are attributable
to the specific combination of a variety k and a gene g. Non-zero differences in
variety×gene interactions across varieties for a given gene indicate differential
expression.

Our decision to analyze the data on the log scale was based on several con-
siderations. The log transform is the natural method for analyzing data with
an additive model where the effects in the data are believed to be multiplica-
tive. The common use of ratios to analyze microarray data illustrates that this
is a prevalent assumption, and in fact some tools for clustering genes based on
microarray data advise using the log transform on ratios (Eisen 1999). Further,
exploration of untransformed data and the examination of others transforma-
tions (square-root, reciprocal, etc.) led us to conclude that the log transform
is a good choice (Sapir and Churchill 2000).

The terms A, D, and V in the ANOVA model are used to capture differences
that occur between different arrays, dyes, and varieties. However, these terms
also capture all of the higher order interactions among these factors. This is
a consequence of the constraints on the design of microarray experiments that
are imposed by pairing samples on arrays. For example, if the array number
and dye of an observation are given, one knows which variety is associated with
that observation. In this situation, the array ×dye interaction (AD) is said to
be confounded with the variety main effect (V ). Confounding is an advantage
in this setting. If there is significant variation in the rate of dye incorporation
from one labeling reaction to another, this will result in a large dye×variety
interaction (DV ) effect. In our first experiment, DV is confounded with array
(A), and a large A effect is observed.

The A, D, and V terms effectively normalize the data without the need to
introduce preliminary data manipulation. Thus we combine the normalization
process with the data analysis. We believe this integrated approach has sev-
eral advantages. First, the normalization is based on a clearly stated set of
assumptions that can be evaluated using information in the data. Second, the
ANOVA analysis systematically estimates the normalization parameters based
on all of the relevant data, as opposed to a piecemeal approach. In so doing,
it properly accounts for the degrees of freedom used to normalize. In the event
that further study shows pre-processing is necessary, we believe that ANOVA
methods will remain useful and valuable in some modified form.

Finally, the model (1) is designed for experiments in which each gene is
spotted only once on each array. Ideally, genes could be replicated on multiple
spots on an array, thus providing a direct method to asses experimental error
variance. Model (1) can be generalized to this situation by breaking down the
“spot” effects AG to account for replication. As one would expect, replication
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would lead to more precise estimation. In addition, it would provide degrees of
freedom that would allow one to assess the importance of additional effects in
the model. Lack of replication limits our ability to assess some effects. We will
return to this point in our data analysis examples.

The Latin Square Experiment In the first experiment, we compared a
mRNA sample obtained from human liver tissue to a second sample obtained
from muscle tissue. The design used two arrays such that on array 1 the
liver sample is assigned to the “red” dye and the muscle sample is assigned
to the “green” dye. On array 2 the dye assignments were reversed (Table
1). We assigned the array index to be i = 1, 2; the dye index to be j = 1, 2
for red and green respectively; and the tissue index to k = 1, 2 for liver and
muscle respectively. This design can be summarized by the index set (i, j, k) ∈
{(1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)}. Each clone index g = 1, . . . , N occurs once
with each combination of (i, j, k). Notice that specifying any two of array,
dye and tissue automatically determines the third. With respect to the design
factors, array and dye, the layout of the tissue varieties forms a 2 × 2 latin
square (Cochran and Cox 1992). We therefore refer to this as the latin square
design (it is sometimes called a “dye-swap” experiment).

Given the factors in our model, there are sixteen possible effects when we
consider interactions of all orders. It turns out that the latin square design
has a particularly neat structure. Each of the sixteen effects is completely
confounded with one other effect, meaning one effect is estimable only assuming
the other is zero. Table 2 shows the pairs of confounded effects. Effects that are
not completely confounded are orthogonal in the latin square. Orthogonality
arises when a factor is completely balanced with respect to another factor. For
example, if every variety in a microarray experiment appears in the design
labeled with the red and green dyes equally often, variety is orthogonal to
dye. One consequence of orthogonality is that the estimates of the two factors
are uncorrelated. A second consequence is that including or excluding one
effect in the model does not alter the estimates obtained for the other effect.
In general, effects that are neither confounded nor orthogonal are said to be
partially confounded.

Examining Table 2, we see there is one pair of effects not represented in
the model (1), DG ∼ AV G. It is possible that DG effects could be present in a
microarray experiment. However, leaving them out of the latin square analysis
will not alter the estimates of other terms in the model. This is only true for
designs in which the DG effect is orthogonal to the other effects. Omitting DG
effects leaves degrees of freedom for estimating error. Assigning some effects to
be “error” is essential when there is no replication of clones within the arrays.
Otherwise, there is no basis for statistical inference.

We computed the least-squares fit of the model (1) subject to the parameter
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constraints
∑
Ai =

∑
Dj =

∑
Vk =

∑
Gg =

∑
g(AG)ig =

∑
i(AG)ig =∑

g(V G)kg =
∑

k(V G)kg = 0. Some details about estimating model parameters
are provided in the appendix. Table 3 gives the analysis of variance. We present
the sums of squares as a gauge of the relative contribution of each set of effects.
For example, one sees from the sums of squares that there is a large difference
between the two arrays, compared to a modest tissue effect and an even smaller
dye effect. The large array effect may be large due to variety×dye (i.e. labeling)
variation — recall from Table 2 that A is completely confounded with DV .

Accounting for degrees of freedom, the smallest effects are the array×gene
or “spot” effects. We did not want to rely on the F-distribution to test the
significance of these effects as we have not established normally distributed
error. Instead, we employed a nonparametric version of the F-test to determine
the significance of these interactions, following an example in Manly (1997,
p.128) motivated by Still and White (1981). We first adjusted the data to
remove the overall effects of the other factors. In other words, we created a
dataset from the residuals from fitting the model log(yijkg) = µ+Ai+Dj+Vk+
Gg + (V G)kg. We then randomly assigned residuals to factor combinations by
sampling with replacement, fit the full model (1), and calculated the F-statistics
testing for array×gene interactions. The F-statistics from 19,999 simulations
ranged from 0.81 to 1.27, compared to 1.93 for the original data. We therefore
concluded array×gene effects are statistically significant, although relatively
small.

The estimated gene effects, Gg, and variety×gene interactions, (V G)kg are
summarized as histograms in Figures 1a and 1b, respectively. The estimated
gene effects reflect the expression levels of individual genes averaged across
varieties, dyes, and arrays. As noted in the introduction, these effects are
confounded by variation in the hybridization properties of individual spotted
clones. The value of such estimates is yet to be established and will depend
on the magnitude of clone to clone variation. We simply present a summary of
these estimates and note that they are skewed right, suggesting that the bulk
of genes may be expressed at low levels with fewer genes being expressed at
moderate and high levels in these samples. We note that unexpressed genes
may have been eliminated when we pre-screened the data for signal quality
(see section on data preparation below). The variety×gene interactions are
centered around zero with heavy tails in either direction, indicating differential
expression of genes across the tissue samples.

For the latin square design, the estimated differences in the variety×gene
interaction terms for a given gene g0 can be expressed as

(V̂ G)1g0 − (V̂ G)2g0 =
1
2

log
(
y111g0y221g0

y122g0y212g0

)
− 1

2N
log

(∏
g

y111gy221g

y122gy212g

)
. (2)

We again note that this estimator does not change if we alter model (1) by
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including DG effects or dropping AG effects or both. This is a consequence of
the balanced (orthogonal) design.

Despite its rather intimidating appearance, the interpretation of (2) is straight-
forward. The second term is simply a centering constant that does not depend
on the particular gene g0. It corrects for the overall difference in treatments
across genes. The first term is the log of the ratio of the geometric means of
the observations for the gene g0 in the two treatment groups. Thus, the ex-
ponentiated differences can be interpreted as estimates of “fold change” This
interpretation is one motivation for working on the log scale However, instead
of relying on raw ratios as error-free measures of relative expression, we can
further estimate the error-variation in the estimates (2) resulting from model
(1). We discuss this next.

We wish to determine which of the differences (2) are significantly differ-
ent from zero. Least-squares estimates are averages, so under the assumption
of independent, identically distributed error, the central limit theorem tells us
that they are asymptotically normal. However, this justification is problematic
for the variety×gene interactions because they are essentially averages of just
two observations, too few to invoke large sample arguments. Furthermore, the
fitted residuals appear to be heavy-tailed, as illustrated in Figure 2a. These
observations suggest that the usual confidence intervals based on normal the-
ory are not appropriate. Therefore we employed a bootstrap analysis of the
residuals (Efron and Tibshirani, 1986) to address this question.

Using the bootstrap, we produced a set of simulated datasets log(yijkg)∗,
where

log(yijkg)∗ = µ̂+ Âi + D̂j + V̂k + Ĝg + ̂(AG)ig + ̂(V G)kg + ε∗ijkg.

The notationˆindicates an estimated parameter value based on the original fit
of the model. The ε∗ijkg are drawn independently from

√
4N/(N − 4)F̂ , where

F̂ is the empirical distribution of residuals from the original fit. Rescaling F̂
produces an empirical distribution with the same variance as the true residuals
(Wu, 1986). Thus, we are resampling, with replacement, from the rescaled
fitted residuals to generate a new set of observations. We fit the model (1)
to each of 20,000 bootstrap data sets and recorded the parameter estimates.
We then used the percentile method to obtain 99% confidence intervals for the
differences (V G)1g−(V G)2g. The bootstrap confidence interval width was 1.61,
which implies that an estimated fold change of e1.61/2 = 2.24 is significant at
the 0.01 level. The normal confidence interval for these data has width 1.29.
We note that multiple testing has not been taken into account, which may or
may not be necessary depending on the intended purpose of the analysis.

The bootstrap procedure assumes that residuals are identically distributed.
Figure 2b shows a scatterplot of residuals against the fitted values ̂log(yijkg).
There is no obvious trend in the residual plot to cast doubt on the assumption
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of constant error variance σ2. To further examine the distribution of residuals,
we plotted the absolute value of each residual against the fitted values ̂log(yijkg)
and fit a local regression curve (Hastie and Tibshirani 1990, p. 29). Figure 3a
shows there is no overwhelming trend in the absolute size of the residuals, with
only a very slight trend towards larger residuals for the smallest and largest
fitted values. The fact that the residual plot is unremarkable is also evidence
that the log scale is the appropriate transform of the data.

The Reference Sample Experiment. In the second experiment we
made an independent comparison of the same samples used in the first. Again
we used two arrays, but in this case we used placenta as a “reference” sam-
ple. Each of the muscle and liver samples were directly compared to the
placenta sample on one array such that the test samples (liver and muscle)
were assigned to the green dye and the reference sample (placenta) was as-
signed to the red dye, as in Table 4. The array and dye indices are as-
signed as before. The tissue index is expanded to k = 1, 2, 3 for liver, muscle
and placenta respectively. This design can be summarized by the index set
(i, j, k) ∈ {(1, 1, 3), (1, 2, 1), (2, 1, 3), (2, 2, 2)}. We refer to this design as the
reference sample design.

One advantage of the reference sample design is that it is readily extendable.
Additional varieties can be added to the experiment by adding another array on
which a new variety is compared to the reference sample. A second advantage
is that each sample needs only to be labeled with one dye. However, one can
intuitively appreciate some of the drawbacks of this design. More data are
collected on the reference variety than any other, although this variety will
generally be of least interest. In this case, there is only one measurement per
gene for liver and muscle tissues, as compared to two measurements in the latin
square design.

More problems with this design become apparent when one considers model
(1). First, varieties are completely confounded with dyes because each variety
is labeled with only one dye. Thus, one cannot include both variety effects
and dye effects in an ANOVA model. This in itself is not a great concern
because these main effects are not of interest. The more substantial problem
is the large cost in degrees of freedom that comes with the additional reference
variety. With N genes on each array there are 4N−1 degrees of freedom. Array
main effects account for 1 degree of freedom, variety main effects account for
2, gene effects use N − 1, V G effects use 2(N − 1), and AG account for the
remaining N−1 degrees of freedom. At least one set of effects must be excluded
to be able to estimate error and allow statistical inference. We note that if genes
were spotted more than once on the arrays, it would be possible to include AG
terms in the model and still have degrees of freedom to estimate error.

The confounding of effects in the reference design is more complex than for
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the latin square design. There is no counterpart to the simple confounding
structure presented in Table 2. As mentioned, varieties are completely con-
founded with dyes. In addition, since the varieties are not balanced with respect
to arrays, variety main effects and array main effects are partially confounded,
as are variety×gene interactions (the effects of interest) and array×gene interac-
tions. When effects are partially confounded instead of completely confounded,
it is possible to obtain separate estimates for each effect, although they are
correlated. Generally, the estimators have a more complicated functional form
because the effects must be “disentangled.” This usually means less precise
estimation, i.e. larger error bars. Failure to account for potentially important
effects, such as DG orAG, that are confounded or partially confounded with
effects of interest can produce biases in the estimates of the latter.

We first consider the model

log(yijkg) = µ+Ai + Vk +Gg + (V G)kg + εijkg, (3)

where the Vk nominally represent tissue effects but are also measuring dye
effects. The Ai, Gg, and (V G)kg terms are interpreted as in model (1). Dye
effects Dj cannot be explicitly included because they are completely confounded
with variety effects Vk. It is possible to extend model (3) to include AG effects,
but this would leave no degrees of freedom to estimate error and thus it would
not be possible to asses the significance of any effects or produce confidence
intervals for estimated changes in expression. The limitations of the design
force us to exclude at least one set of effects to be able to estimate error.
The array×gene interactions were the smallest effects in our analysis of the
latin square experiment. However, because these are partially confounded with
variety×gene effects, excluding them leads to potentially biased estimates of
V G effects.

We fit model (3) to the data by least squares, subject to the constraints∑
Ai =

∑
Gg =

∑
g(V G)kg = V1+V2+2V3 = (V G)1g+(V G)2g+2(V G)3g = 0.

Because genes are balanced with respect to all other factors, the estimates of
gene and variety×gene effects are uncorrelated with the other effect estimates
in model (3). We can partition the total sums of squares into four sources of
variation, as in Table 5.

The estimated gene effects for the reference sample experiment are shown
in Figure 1c. The range and shape of the distribution are almost identical
to the latin square experiment. The distribution of estimated differences in
the variety×gene effects is shown in Figure 1d. The distribution is centered
around zero with a mild left skew, but is somewhat tighter than the distribution
obtained from the latin square experiment. Long tails on this distribution
indicate differentially expressed genes in the liver and muscle samples. Under
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model (3), these estimates are given by

(V̂ G)1g0 − (V̂ G)2g0 = log
(
y121g0

y222g0

)
− 1
N

log

(∏
g

y121g

y222g

)
. (4)

For a gene g, the estimates are based on a single pair of observations of the
liver and muscle samples for that gene.

All of the measurements on liver and muscle tissue (half of the data) are
fit exactly here, that is, with zero residual. This is because there is only one
observation for these tissues for any given gene. A normal quantile plot of the
non-zero residuals (from the reference sample) is shown in figure 2b. Again,
we see that the residual distribution is heavy-tailed. To look for trends in
the residuals contrary to our modeling assumptions, we plotted the absolute
value of each residual against the corresponding fitted value and fit a local
linear regression smooth (Figure 3b). Other than the largest residuals that are
more frequent for medium values, the smooth does not detect any remarkable
non-uniformity. Overall, the residuals are smaller in this experiment. Even
after adjusting for degrees of freedom, the estimate of error variance is half as
large as for the latin square experiment. This is a property of these particular
experiments, probably reflecting an overall difference in data quality between
the two experiments. The smaller estimate of error variance is not a general
property of the designs.

We again employed the bootstrap to obtain confidence intervals for the esti-
mated differences in expression. The non-zero residuals, rescaled by

√
2N/(N − 1),

were used in the bootstrap simulation. Figure 4b shows the bootstrap 99% con-
fidence intervals, based on 20,000 bootstrap simulations, for the liver−muscle
differences. These intervals have width 1.62, as compared to 1.23 for normal
intervals. Thus a 2.25 fold estimated difference is significant. Although the
estimate of error variance is smaller for this experiment compared to the latin
square experiment, the confidence intervals for the comparisons of interest have
about the same size because of the lesser efficiency of the reference design.

We were concerned about possible bias in our estimates due to the omission
of AG effects in model (3). To examine the possible bias, we fit an extended
version of model (3), including array×gene effects:

log(yijkg) = µ+Ai + Vk +Gg + (V G)kg + (AG)ig + εijkg. (5)

Although we could not evaluate the fit of this model because there are no
residual degrees of freedom, we can compare the estimates ̂(V G) from (5) with
those from (3) to evaluate the extent to which the latter might be biased. The
estimates from model (5) are different because they account for AG effects.
The expression is more complicated because of the confounding structure in
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the design:

(V̂ G)1g0 − (V̂ G)2g0 = 2[log
(
y121g0

y222g0

)
− 1
N

log

(∏
g

y121g

y222g

)
]−

2[log
(
y113g0y121g0

y213g0y222g0

)
− 1
N

log

(∏
g

y113gy121g

y213gy222g

)
] (6)

Notice that observations from variety 3 do not come into play at all in (4)
because that estimator comes from a model that assumes no “spot” effects.
Observations from variety 3 appear in (6) because this estimator corrects for
spot-to-spot variation.

Figure 5 compares the differences of interest, ̂(V G)1g− ̂(V G)2g, for the mod-
els (3) and (5), i.e. compares the estimators in equations (4) and (6). There is
a fairly substantial difference in the estimates for a handful of genes, suggesting
there is some spot-to-spot variation biasing our estimates from (3). Fortunately,
there appears to have been enough uniformity among spots from array to array
so that most estimates of V G effects from fitting model (3) are not too severely
biased.

Comparison of the Experiments We used two approaches to compare
the results from these two experiments. The first approach takes advantage
of spots for which the same gene is represented by different clones on a single
array. The second uses a subset of the clones that were common across all four
arrays.

For those genes that are represented by two spots on an array, we were
not able to determine whether the same clones were used and thus we treated
these spots as distinct genes when fitting the ANOVA models. However, it
seems desirable that a gene duplicated within an experiment, should produce
similar results. In particular, one would like the two confidence intervals for
liver−muscle differences to either both contain 0 or both not contain 0. To
study this question we separately produced 1000 bootstrap datasets for each
experiment, and recorded ̂(V G)

∗
1g − ̂(V G)

∗
2g for the duplicated genes. Let g

and g′ be indices for spots that are the same gene. For each bootstrap dataset
we plotted the estimate of (V G)1g − (V G)2g against the estimate of (V G)1g′ −
(V G)2g′ . Figure 6 presents the results. The first eleven plots (reading left to
right, top to bottom) are for the genes that were duplicated on arrays in both
experiments. Gene 931 was duplicated only in the latin square experiment. The
remaining eight genes were duplicated only in the reference design experiment.
The clouds of symbols generally fall along the line of identity indicating that
the two estimates from within an experiment are close to one another. However
comparison of the genes common to both experiments (the first eleven subplots)
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shows that different conclusions were obtained for three genes (116, 256, and
840) in the two experiments.

An alternative approach to assessing reproducibility that is not subject to
doubts raised by non-identity of clones is to compare 1177 genes common to
both experiments. For each experiment, we categorized genes into groups for
which expression was higher in liver, not significantly different, or higher in
muscle as determined by the bootstrap 99% confidence intervals. Table 6 shows
the cross-tabulation for the two experiments. The two analyses agree on 88% of
the 1177 genes. The largest source of disagreement is genes for which the latin
square confidence interval contains 0 while the reference design interval does
not. In general, when AG effects are accounted for, the confidence intervals
for the reference design should be larger than those for the latin square design
by a factor of

√
3. However, we were not able to account for AG effects and

estimate error in the same analysis of the reference design experiment. Without
accounting for AG effects, confidence intervals for the reference design should
still be larger by a factor of

√
2. However, in these particular experiments,

the reference design yielded a smaller estimate of residual error, perhaps reflect
higher overall data quality, resulting in confidence intervals of about the same
size for the two experiments.

Finally, we generated scatterplots of the estimated differences ̂(V G)1g −̂(V G)2g for the 1177 common genes. On the whole, there is remarkable agree-
ment between the two experiments. Figure 7a shows the estimates for the
reference design experiment using model (3)and Figure 7b shows estimates
from model (5). Each plot contains an orthogonal regression line (Casella and
Berger 1991, pp. 581). In both plots the regression line has slope close to 1 and
intercept close to 0. Agreement appears somewhat better for model (5). In any
case, the agreement of the independent estimates confirms our assertion that
ANOVA analysis correctly normalizes microarray data and yields reproducible
estimates.

Discussion

A common practice with microarray data is to compute ratios of the raw
signals as estimates of differential expression (Chen et al. 1997). We find this
approach to be inadequate for several reasons. It is natural and convenient to
speak of fold-change in expression, but it can also be misleading because ratios
expressing fold change in fluorescence do not necessarily correspond to fold
changes in expression. Simple ratios do not necessarily account for differential
behavior of dyes or variations between samples or arrays. These effects must
be accounted for to obtain unbiased estimates of expression ratios. Indirect
approaches to normalization require pre-processing steps and ratios can be very
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sensitive to how these steps are carried out. ANOVA methods provide an
automatic correction for the extraneous effects in a microarray experiment as
an integral part of the data analysis.

Changes in gene expression across experimental samples are captured in the
variety×gene interaction terms of the ANOVA model. In this study we have
simply looked at differences among these terms in order to test the hypothesis
of differential expression for individual genes. The estimates ̂(V G)kg can be
subject to alternative analyses, depending on the questions of interest. Hier-
archical clustering (Eisen et al. 1999) and self organizing maps (Tamayo et
al. 1999) are two popular approaches to microarray data analysis that could
be directly applied. The “normalized” estimates of differential expression ob-
tained from ANOVA analysis should provide a more suitable and robust input
for these analyses than raw ratios.

The properties of ANOVA estimates are tied to the experimental design. In
practice, full factorial designs are impossible for microarrays because only one
sample can correspond to each array-dye combination. However it is possible to
derive efficient designs that satisfy the constraints imposed by this technology
(John and Mitchell, 1977; Cheng, 1978). In general, for a given number of
arrays, designs that are balanced across the samples of interest will provide the
greatest efficiency. In our studies, using two arrays each, we prefer the latin
square design to the reference sample design. The latin square design produces
more data on the varieties of interest and allows more degrees of freedom for
estimating error variance.

It is common practice in applied statistics to seek a transformation of the
raw data to obtain normal residuals with constant variance (Draper and Smith
1998). In this study we have applied a logarithm transformation to the fluores-
cent intensities. The residual distribution on the log-scale is non-normal, but
we did not detect any dramatic evidence against our assumption of constant
error variance. The ease of interpretation provided by the logarithmic transfor-
mation gives it a unique advantage over all other transformations. Biologists
are quite accustomed to interpreting ratios and “fold change” for a good rea-
son. Many natural phenomena occur on multiplicative scales, i.e., a system
is more likely to “double” in response to a change of conditions than to shift
by an additive constant amount. Non-normality is a problem only in so far as
it complicates the data analysis and results in inefficient estimators. In this
study we have used a bootstrap approach to obtain confidence intervals with-
out relying on normality assumptions. Other approaches to obtain confidence
intervals could be considered. The model fit and parameter estimates in our
study were obtained by the method of least squares, which is most efficient for
normal data. Alternative methods, such as minimum absolute deviation, can
improve the efficiency of estimators for non-normal data. Finally, we wish to
note that when large numbers of similar quantities are being estimated, the es-
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timates of the highest and lowest effects will tend to be too extreme. This can
be addressed by treating the gene and variety×gene terms as random effects
in the ANOVA model (Robinson 1991). This approach leads to “shrinkage”
estimators for these terms (Newton et al. 2000). We view these problems as
areas that are ripe for further investigation in the context of the analysis of
well-designed microarray experiments.

Methods

Tissue acquisition. Human liver and skeletal muscle samples from a 24 yr
old male donor and placenta from a 26 yr old female donor were obtained from
the BioChain Institute, Inc. (www.biochain.com). These tissues were collected
expressly for mRNA isolation and were quick frozen within minutes of biopsy.

Probe preparation. Total RNA was isolated using a guanidine thiocyan-
tate solution. For mRNA preparation, polyadenylated mRNA was isolated
using oligo-dT cellulose. Fluorescently labeled cDNA was prepared from 3 ug
mRNA by oligo dT-primed (21-mer) polymerization using SuperScriptII reverse
transcriptase (LTI Inc.) and 0.5 mM dGTP, dATP, dTTP and 0.2 mM dCTP.
Fluorescent nucleotides Cy3-dCTP or Cy5-dCTP (Amersham) were present at
0.1 mM. Residual RNA was degraded by NaOH, neutralized and precipitated in
ethanol. Washed pellets from 3ug mRNA were suspended in 5ul hybridization
buffer (5X SSC, 0.2%SDS).

Hybridization and scanning. Labeled probe mixtures were aliquoted
onto the cDNA microarray surface under a coverslip and incubated for 6-12 hrs
at 60 C in a hybridization chamber. Following washes the arrays were scanned
in 0.1X SSC using a fluorescence laser scanning device (D. Shalon, S.J. Smith
and P.O. Brown (1996) Genome Res. 6, 639-645). A separate scan, at the
appropriate excitation wavelength, was done for each fluorophore. Differential
expression measurements were obtained by taking the average of the ratios of
two independent hybridizations.

Data preparation. Data were pre-screened for quality using Synteni “Gem
Tools” software. We did not have access to raw images and thus excluded
all data pointed marked by the software as unreliable. The data for the first
experiment is comprised of red and green fluorescence readings for 1556 spots on
array 1 representing 1540 different genes and 1455 spots on array 2 representing
1442 different genes. Spots that are indicated as representing the same gene
may not contain the same clones. For each array, gene–identifiers were re-
coded to clone identifiers so that each dataset contained as many distinct clone
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identifiers as spots. This maintained a balanced design, and also allowed an
appraisal of the methodology. For analysis, a combined dataset was created
containing readings for clone identifiers appearing for both array 1 and array 2.
The final dataset had 1286 clone identifiers representing 1274 different genes.

The data for the second experiment is comprised of red and green fluores-
cence readings for 2125 spots on array 1 representing 2103 different genes and
2098 spots on array 2 representing 2078 different genes. As before, we assigned
unique clone identifiers to different spots and created a combined dataset con-
taining clone identifiers appearing on both arrays. The final data set had 1905
clone identifiers representing 1886 different genes.

Data analysis. All computations for the data analysis were carried using
Matlab software (Mathworks Inc., Natick, MA). Data and routines are available
at
www.jax.org/research/churchill/.
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Appendix: Deriving Least-Squares Estima-

tors

Generally, to fit a linear model it is not necessary to derive the functional
form of least-squares parameter estimates because the estimates can be calcu-
lated by constructing the design matrix X, which depends on the model and
the experimental design (Draper and Smith 1998). To fit the model one inverts
the p×p matrix XtX, where p is the number of parameters in the model. In our
case p is very large because thousands of genes are spotted on microarrays and
our models have G,V G, and AG effects for every gene. This makes inverting
XtX computationally infeasible for general matrix inversion programs. To get
around the hurdle, we derived the functional form of the parameter estimators.

The name “least-squares” comes from the fact that the estimates minimize
the residual sum of squares RSS, the total squared difference between all data
points and the estimated value under the fitted model. Let tijkg = log(yijkg)
be the log transformed data. For example, considering model (1), RSS =∑

ijkg(tijkg−µ−Ai−Dj−Vk−Gg−(AG)ig−(V G)kg)2. The summation is over
all combinations of indices i, j, k, and g that appear in the design. Estimators
are derived by taking partial derivatives of RSS with respect to the parameters
and setting them equal to zero. The result is a set of linear equations that can
be solved for the least-squares estimates.

For example, taking partial derivatives with respect to the parameters of
interest, V G, in model (1) yields

δRSS

δV Gkg
∝
∑
ij

(tijkg − µ−Ai −Dj − Vk −Gg − (AG)ig − (V G)kg).
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Note k and g are fixed, so the sum is over all pairs i, j such that i, j, k, g is a set
of indices in the design. For the latin square design and for any fixed k and g,
i ranges over all arrays, so the constraints

∑
iAi =

∑
i(AG)ig = 0 cause the A

and AG terms to drop out of this expression. Similarly for the Dj terms. The
resulting equation simplifies to

∑
ij(tijkg −µ− Vk −Gg − (V G)kg) = 0. Taking

partial derivatives with respect to µ, Vk, and Gg yields similar equations whose
simultaneous solution gives

(V̂ G)kg = t··kg − t··k· − t···g − t····,

where a “·” as an index means to average over that index. This expression
for (V̂ G) does not depend on whether AG effects are included in the model
because of the special orthogonality properties of the latin square design.

In contrast, consider the reference design. For the smaller model (3), the
form of (V̂ G) is the same as above. Model (5) includes AG effects, which are
partially confounded with V G effects in the reference design. The reference
variety is balanced across arrays but variety 1 is only on array 1 and variety 2
is only on array 2. Calculating δRSS

δV Gkg
for k = 1, 2, none of the other effects in

(5) drops out. In the end, one finds that

̂(V G)3g = t·13g − t·13· − t···g + t····,

while for k = 1, 2,

̂(V G)kg = 2(tk2kg − tk2k· − tk··g + tk···) + t·13g − t·13· − t···g + t····,

and the estimator (6) follows by taking differences.



Kerr, Martin, and Churchill 20

Figure Captions

Figure 1: Distribution of the estimated effects. Histograms of the
estimated gene effects Gg are shown for (a) the latin square and (b) the reference
design. Histograms of the differences (V̂ G)1g − (V̂ G)2g between variety×gene
interaction effects for liver and muscle samples are shown for (c) the latin
square design and (d) the reference design. Dotted lines indicate the threshold
for estimated difference that are significantly different from 0 according to the
bootstrap 99% confidence interval.

Figure 2: Distribution of the fitted residuals. Normal quantile plots
of fitted residuals are shown for the (a) latin square and (b) reference sample
experiments. The distribution of residuals is clearly heavier-tailed than normal.
Scatterplots of the residuals by fitted values for the (c) latin square and (d)
reference design show no apparent trend. The residuals are re-scaled to adjust
for the different degrees of freedom in the two analyses.

Figure 3: Absolute value of residuals compared to fitted values.
Plots (a) for the latin square design and (b) for the reference design contain a
loess smooth with span 0.35 (Hastie and Tibshirani 1990, p. 29). In each case
the curve does not show any prominent departure from homoscedasticity.

Figure 4: Bootstrap confidence intervals. Estimated differences (liver
− muscle) of the variety×gene interactions are shown for (a) the 1286 genes
in the latin square experiment fitting model (1) and (b) the 1905 genes in
reference sample experiment fitting model (3). The estimates are plotted in
increasing order along with their 99% bootstrap confidence limits. There is an
optical illusion that the confidence intervals shrink at the ends because the lines
are steeper, but the vertical distance between the upper and lower confidence
bounds is constant in each plot.

Figure 5: Difference in estimated log fold change for the ref-
erence design when array×gene effects are taken into account.

Comparison of estimated differences ̂(V G)1g− ̂(V G)2g with estimator (4), which
does not account for AG effects, and with estimator (6), which does account for
these effects. The plot summarizes the magnitude of bias in estimates from (4)
due to excluding AG effects. There is little change for most genes but notable
change for a handful of genes.

Figure 6: Comparison of genes duplicated within an array. Boot-
strap samples of estimated differences (liver − muscle) of the variety×gene
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interactions for the 20 genes that are duplicated in one or both experiments
are shown. Each subplot corresponds to one of the duplicated genes, with the
gene identifier shown in the upper left corner. Each point represents the es-
timated difference (V G)1g − (V G)2g obtained for the two spots from one of
1000 bootstrap datasets. The latin square estimates are indicated by dots and
the reference sample estimates are indicated by crosses. The clouds of points
generally fall along the line of identity, indicating that pairs of estimates from
within an experiment are close to one another. There are eleven plots (contain-
ing both dots and crosses) for genes that were duplicated in both experiments.
Disagreement between the experiments is noted for genes 116, 256, and 840.

Figure 7: Comparison of estimates for genes duplicated across
experiments. A scatterplot of the latin square and reference sample esti-
mates of log fold change for the 1177 genes common to the two experiments are
shown. In (a) the estimates for the reference design come from fitting model
(3); in (b) estimates for the reference design come from model (5), which in-
cludes AG effects. The orthogonal least squares regression line in both plots is
essentially the line of identity. The high correlation confirms that the ANOVA
results are reproducible and the near identity relationship demonstrates that
the methodology properly normalizes the effect estimates.
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Tables

Array
Dye 1 2
Red Liver Muscle

Green Muscle Liver

Table 1: The latin square design.

mean ∼ ADV
A ∼ DV
D ∼ AV
V ∼ AD
G ∼ ADVG

VG ∼ ADG
AG ∼ DVG
DG ∼ AVG

Table 2: Confounding structure for the latin square design. This design partitions
the sixteen experimental factor effects into eight pairs. The members of each pair
are completely confounded, i.e. one member of a pair is estimable only by assuming
the other is zero. The latin square design results in uncorrelated estimates for all
effects not in the same pair. The proposed model (1) includes an effect from every
pair except the last. Thus it accounts for all data effects except DG and AV G, which
are assume to be zero.
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Source df SS MS

Array 1 92.34 92.34
Dye 1 0.74 0.74

Variety 1 2.97 2.97
Gene 1285 1885.89 1.47

Array×Gene 1285 160.01 0.12
Variety×Gene 1285 1357.28 1.06

Residual 1285 82.75 0.0644
Corrected Total 5143 3581.99

Table 3: Analysis of variance for the latin square design. The correlation coefficient
of the fitted model is R2=0.977. Abbreviations: df – degrees of freedom; SS – sum of
squares; MS – mean square.

Array
Dye 1 2
Red Placenta Placenta

Green Liver Muscle

Table 4: The reference sample design.

Source df SS MS

Array,Variety 3 761.97 253.99
Gene 1904 3394.17 1.78

Gene×Variety 3808 1264.43 0.33
Residual 1904 55.21 0.0290

Corrected Total 7619 5475.78

Table 5: Analysis of variance for the reference design. The correlation coefficient of
the fitted model is R2 = 0.990. Abbreviations are as in Table 3.
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Latin Reference Design
Square Liver<Muscle Liver=Muscle Liver>Muscle

Liver<Muscle 164 37 0 17.1%
Liver=Muscle 49 780 43 74.1%
Liver>Muscle 0 17 87 8.8%

18.1% 70.9% 11.1% 1177

Table 6: Concordance of the liver−muscle differences, by gene, for the 1177 genes
in common to the latin square and reference design analyses. The genes are binned
depending on whether the bootstrap 99% confidence intervals contain zero or do not.
In the latter case we conclude that there is significantly greater expression in either
liver or muscle. The analyses agree that 780 of the genes do not have differential
expression. There are no cases in which the experiments found differential expression
in opposite directions. Overall, the experiments agree on 87.6% of the genes.
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