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Abstract

Studies of recurring infection or chronic disease often collect longitudinal data on the

disease status of subjects. Multi-state transitional models are commonly used for

describing the development of such longitudinal data. In this setting, we model a

stochastic process, which at any point in time will occupy one of a discrete set of

states and interest centers on the transition process between states. For example,

states may refer to the number of recurrences of an event or the stage of a disease.

Geographic referencing of data collected in longitudinal studies is progressively

more common as scientific databases are being linked with GIS systems. This has

created a need for statistical methods addressing the resulting spatial-longitudinal

structure of the data. In this thesis, we develop hierarchical mixed multi-state models

for the analysis of such longitudinal data when the processes corresponding to different

subjects may be correlated spatially over a region. Methodological developments have

been strongly driven by studies in forestry and spatial epidemiology.

Motivated by an application in forest ecology studying pine weevil infestations,

the second chapter develops methods for handling mixtures of populations for spa-

tial discrete-time two-state processes. The two-state discrete-time transitional model,

often used for studying chronic conditions in human populations, is extended to set-

tings where subjects are spatially arranged. A mixed spatially correlated mover-stayer

model is developed. Here, clustering of infection is modelled by a spatially correlated

random effect reflecting the density or closeness of the individuals under study. Analy-

sis is carried out using maximum likelihood with a Monte Carlo EM algorithm for

implementation and also using a fully Bayesian analysis.

The third chapter presents continuous-time spatial multi-state models. Here, joint
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modelling of both the spatial correlation as well as correlation between different transi-

tion rates is required and a multivariate spatial approach is employed. A proportional

intensities frailty model is developed where baseline intensity functions are modelled

using both parametric Weibull forms as well as flexible representations based on cu-

bic B-splines. The methodology is applied to a study of invasive cardiac procedure in

Quebec examining readmission and mortality rates over a four-year period.

Finally, in the fourth chapter we return to the two-state discrete-time setting.

An extension of the mixed mover-stayer model is motivated and developed within

the Bayesian framework. Here, a multivariate conditional autoregressive (MCAR)

model is incorporated providing flexible joint correlation structures. We also consider

a test for the number of mixture components, quantifying the existence of a hidden

subgroup of ‘stayers’ within the population. Posterior summarization is based on a

Metropolis-Hastings sampler and methods for assessing the model goodness-of-fit are

based on posterior predictive comparisons.
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Dr. Abbas Hemiari, Dr. Josiane Courteau and all other members of our GEOIDE

research team for their support and friendship.

Many thanks go to the faculty and staff of the Department of Statistics and Ac-

tuarial Science of Simon Fraser University for providing an excellent environment for

graduate studies. I have many fond memories of my time here, especially playing on

the departmental basketball team. A special thanks also goes to my friends and fel-

low students: Laurie Ainsworth, David Beaudoin, Suman Jiwani, Crystal Linkletter,

Chunfang Lin, Jason Nielsen, Pritam Ranjan, Giovanni Silva, Darby Thompson and

many more...

I would also like to acknowledge Dr. Bovas Abraham from the Department of

Statistics and Actuarial Science at the University of Waterloo and Dr. Harry Joe and

Dr. Jim Zidek from the Department of Statistics at the University of British Columbia

all for encouraging me to pursue statistics at a higher level.

I am grateful for the financial support provided by Simon Fraser University and

the GEOIDE network throughout the course of my studies.

Finally, and most importantly, I would like to thank my family. Especially my

dad who has been a constant source of support and wisdom and Yasmin Vasanji for

her love and patience.

vi



Contents

Approval ii

Abstract iii

Dedication v

Acknowledgments vi

Contents vii

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Multi-State Models . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Hierarchical Spatial Modelling . . . . . . . . . . . . . . . . . . 4

1.1.3 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . 6

1.1.4 Splines and Temporal Smoothing . . . . . . . . . . . . . . . . 7

1.2 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



2 A Discrete-Time Spatial Two-State Process 12

2.1 Spatio-Temporal Mixed Two-State Model . . . . . . . . . . . . . . . . 14

2.2 Inference Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Observed Information Matrix . . . . . . . . . . . . . . . . . . 20

2.3 Study of Weevil Infestation . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Continuous-Time Spatial Multi-State Processes 35

3.1 Spatial Continuous-Time Multi-State Models . . . . . . . . . . . . . . 38

3.1.1 A Joint Spatial Model for Random Effects . . . . . . . . . . . 41

3.1.2 Computational Implementation . . . . . . . . . . . . . . . . . 42

3.2 Study of Invasive Cardiac Procedure . . . . . . . . . . . . . . . . . . 45

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Extending the Spatial Mover-Stayer Model 62

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 An Extended Spatial Mover-Stayer Model . . . . . . . . . . . . . . . 65

4.2.1 Hypothesis Testing for Stayers . . . . . . . . . . . . . . . . . . 67

4.2.2 Computational Implementation . . . . . . . . . . . . . . . . . 69

4.3 Analysis of Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Analysis of Tree Infection data . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Future Work 91

5.1 Spatially Correlated Mover-Stayer Allocations . . . . . . . . . . . . . 91

5.2 Spatial Adaptive Splines and P-Splines . . . . . . . . . . . . . . . . . 92

5.3 Accelerated Failure Time Models with Spatial Frailties . . . . . . . . 93

5.4 Spatial Finite Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 96

viii



List of Tables

2.1 Parameter estimates for the spatial mover-stayer model. Bayes esti-

mates are posterior means and standard deviations. Maximum likeli-

hood estimates are obtained using the Monte Carlo EM algorithm. . . 28

3.1 DIC scores (after subtracting 340,000) and pD for the eight models

considered for Quebec cardiac data. . . . . . . . . . . . . . . . . . . . 51

3.2 Posterior summaries of regression coefficients associated with each of

the three transitions associated with mortality . . . . . . . . . . . . . 53

3.3 Posterior summaries of regression coefficients associated with each of

the two transitions associated with readmission . . . . . . . . . . . . 54

3.4 Posterior summaries for the conditional covariance matrix, Σ, obtained

from the final chosen model. . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Calibration of the posterior probability assuming a fair prior Pr(H0) =

Pr(H1) = 1
2 . The table is adapted from Raftery (1996), where it was

use to calibrate the Bayes factor. . . . . . . . . . . . . . . . . . . . . 68

4.2 Posterior summaries obtained from the analysis of three simulated

datasets. For each parameter we give the 95% credible interval. Esti-

mates of Pr(pM = 1|Y) are also given along with Monte Carlo stan-

dard errors (computed using the method of batch means employing 100

batches each of size 2000). . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Posterior summaries obtained from fitting the extended spatial mover-

stayer model to the weevil infestation data. Here, we have defined

σb0 =
√

Σ11, σb1 =
√

Σ22 and ρ = Σ12√
Σ11Σ22

. . . . . . . . . . . . . . . . 81

ix



4.4 DIC scores and pD for three models fit to the weevil infestation data

which consider different structures for the random effects. . . . . . . 86

x



List of Figures

1.1 State structures commonly employed for modelling chronic diseases (a)

a typical state structure used for modelling a recurring disease process;

(b) a state structure for joint modelling of disease and mortality. . . . 3

2.1 Positions of trees within the plantation. The boundary is taken to be

the convex hull of these positions. . . . . . . . . . . . . . . . . . . . . 23

2.2 Raw estimates of the conditional probabilities of infection in each year. 24

2.3 Estimates from initial model exploring spatial scale and spatial corre-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Monte Carlo EM estimates by iteration for selected parameters in the

spatial mover-stayer model (a) β01 ; (b) β02 ; (c) β11 ; (d)β12 ; (e) σb0 ; (f)

σb1 ; (g) PI ; (h) PM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Maximum likelihood estimates of temporal trends from the spatial

mover-stayer model with 95% confidence intervals (a) g0(t,α0); (b)

g1(t,α1). Bayesian (posterior mean) estimates of temporal trends with

95% credible sets (c) g0(t,α0); (d) g1(t,α1). . . . . . . . . . . . . . . 30

2.6 Locations of the 100 largest (triangles) and smallest (circles) estimated

random effects from the spatial mover-stayer model (a) b0 - Likelihood

Analysis; (b) b1 - Likelihood Analysis; (c) b0 - Bayesian Analysis; (d)

b1 - Bayesian Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Locations of the 100 trees having the highest estimated posterior prob-

ability of resistance (a) Likelihood Analysis - Pr(zi = 0|Y, Θ̂); (b)

Bayesian Analysis - Pr(zi = 0|Y). . . . . . . . . . . . . . . . . . . . . 32

xi



3.1 State structure for the Quebec cardiac study. . . . . . . . . . . . . . . 39

3.2 Site map of Quebec divided into 139 local health units. . . . . . . . . 46

3.3 Estimated cumulative baseline intensities associated with mortality af-

ter 0, 1 and 2 readmissions (posterior means and 95% credible intervals)

a) Q014(t) - Spline; b) Q014(t) - Weibull; c) Q024(t) - Spline; d) Q024(t)

- Weibull; e) Q034(t) - Spline; f) Q034(t) - Weibull. For comparison, the

step-function estimates obtained from the semiparametric analysis are

indicated within each plot by the grey curve. . . . . . . . . . . . . . . 48

3.4 Estimated cumulative baseline intensities of first and second readmis-

sion (posterior means and 95% credible intervals) a) Q012(t) - Spline;

b) Q012(t) - Weibull; c) Q023(t) - Spline; d) Q023(t) - Weibull. For com-

parison, the step-function estimates obtained from the semiparametric

analysis are indicated within each plot by the grey curve. . . . . . . . 49

3.5 Matrix scatter plot comparing the posterior mean estimates of b14, b24,

b34, b12 and b23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Boxplots (arranged in increasing order by posterior median) obtained

from posterior samples of random effects associated with mortality a)

b14; b) b24; c)b34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Posterior mean maps of random effects associated with mortality a)

b14; b) b24; c)b34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Boxplots (arranged in increasing order by posterior median) obtained

from posterior samples of random effects associated with readmission

a) b12; b) b23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.9 Posterior mean maps of those random effects associated with first and

second readmission a) b12; b) b23. . . . . . . . . . . . . . . . . . . . 60

4.1 Scatter plot comparing posterior mean estimates of b0 and b1: a) Es-

timates obtained in Chapter 2 assuming bl
ind∼ IAR(σl), l = 0, 1; b)

Estimates obtained from expanded model assuming b ∼ 2CAR(κ,Σ). 64

xii



4.2 Maps of simulated random effects. Each map plots the exponential of

the simulated random effect as a circle, where larger circles correspond

to larger values (a) exp(b0i), i = 1, ..., 400; (b) exp(b1i), i = 1, ..., 400. . 77

4.3 Scatter plot comparing simulated values of b0 and b1. . . . . . . . . . 78

4.4 Posterior mean estimates of the temporal trends with 95% credible sets

(a) g0(t,α0); (b) g1(t,α1). . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Locations of the 100 largest (triangles) and smallest (circles) estimated

random effects from the extended spatial mover-stayer model (a) b0;

(b) b1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Locations of trees which may be resistant (a) Those 100 trees having

the highest posterior probability of resistance Pr(zi = 0|Y); (b) Those

715 trees which were never infected. . . . . . . . . . . . . . . . . . . . 85

4.7 Posterior predictive distributions obtained from the extended spatial

mover-stayer model (a) T1(Y) - the total number of 0 → 1 transitions;

(b) T2(Y) - the total number of 1 → 0 transitions; (c) T3(Y) - the

overall total number of transitions; (d) T4(Y) - total number of trees

which were never infected; the dashed vertical line on each histogram

represents the observed value of the test statistic. . . . . . . . . . . . 88

4.8 Posterior predictive distributions obtained from the submodel which

sets pM = 1 (a) T1(Y) - the total number of 0 → 1 transitions; (b)

T2(Y) - the total number of 1 → 0 transitions; (c) T3(Y) - the overall

total number of transitions; (d) T4(Y) - total number of trees which

were never infected; the dashed vertical line on each histogram repre-

sents the observed value of the test statistic. . . . . . . . . . . . . . . 89

xiii



Chapter 1

Introduction

1.1 Background

Multi-state modelling is a powerful and convenient approach for describing the pro-

gression of longitudinal data. The framework is broad and encompasses techniques

for the analysis of multivariate censored event-time data as well as methods for the

analysis of longitudinal discrete data. In this thesis, multi-state transitional models

are considered in a spatial setting. In essence, the work blends ideas adapted from lon-

gitudinal data analysis and spatial statistics. Methodological developments have been

strongly motivated by studies in: 1) forest ecology, where interest lies in managing

trees, forests and their associated resources for human benefit, and 2) epidemiologic

studies, where investigators are interested in the spatial distribution of health-related

states or events.

In the forest ecological setting, we have developed methods for analysis of data

arising from a study of recurrent white pine weevil (Pissodes strobi) infestation in

a white pine plantation in British Columbia. In this seven-year longitudinal study,

conducted by the Ministry of Forests in British Columbia, each tree within the plan-

tation was inspected each Fall for the presence of infection. Our main interest was to

describe the pattern of weevil infestation throughout the area over the seven years of

observation. White pine weevil infection poses a significant threat to British Columbia

forests and there has been enormous investment recently on studying this disease.

1



CHAPTER 1. INTRODUCTION 2

In the spatial epidemiological setting, we have developed techniques for analysis

of spatial data arising from a study of revascularization intervention in Quebec. In

this four-year longitudinal study, patients hospitalized for acute coronary syndrome

were followed over time and information regarding subsequent hospital readmissions

and mortality was obtained. Additional demographic and treatment information was

also obtained for each patient along with the local health unit in which the subject

resides. The local health units serve as a geographical stratification of the subjects

involved in the study. Here, interest lies in the identification of spatial heterogeneity

in both mortality and readmission rates across the various local health units of the

province.

We begin, in this section, with a review of some preliminary ideas that form the

basis for model building and inference in later chapters. We then outline the remainder

of the thesis in the next section.

1.1.1 Multi-State Models

In the multi-state modelling framework we assume that individuals in some population

will occupy one of states 1, ..., k over a period of time. As subjects are observed over

time, they may make changes from one state to another and we refer to such changes of

state as transitions. Examining transitions can give insight into the dynamic aspects

of the process under consideration. The state structure, often depicted graphically,

specifies the states and which state-to-state transitions are possible. Figure 1.1 gives

examples of two state structures which are often employed for models of chronic

disease. The state structure depicted in Figure 1.1a will be employed in Chapters

2 and 4 where we consider models for recurring tree infection. The structure shown

in Figure 1.1b, the so-called illness-death model (Hougaard 2000), is appropriate for

modelling both disease and mortality simultaneously.

Models describing the evolution of a discrete-time process Y (t), t = 0, 1, 2, ... are

typically specified through transition probabilities

pij(t) = Pr(Y (t) = j|Y (t− 1) = i,H(t)) (1.1)

where H(t) = {Y (u), u = 0, ..., t − 1} denotes the history of the process up to time
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 

 
Disease Free 
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Diseased 
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Disease Free 

0 

 
Diseased 
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Dead 

2 
 

Figure 1.1: State structures commonly employed for modelling chronic diseases (a)
a typical state structure used for modelling a recurring disease process; (b) a state
structure for joint modelling of disease and mortality.
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t. In the continuous-time setting, the transition process is governed by transition

intensity functions which are defined by

qij(t) = lim
s→0

Pr(Y (t + s) = j|Y (t−) = i,H(t))

s
(1.2)

where H(t) = {Y (u), 0 ≤ u < t}. Typically, a Markov assumption is made where it

is assumed that the entire history of the process is captured by the current state. In

this case, (1.1) reduces to pij(t) = Pr(Y (t) = j|Y (t − 1) = i) (for a 1st order chain)

and (1.2) reduces to qij(t) = lims→0
Pr(Y (t+s)=j|Y (t−)=i)

s . In more complex situations,

Markov processes can be used as building blocks in a hierarchical framework used to

specify mixed Markov models. This approach was considered by Cook and Ng (1997),

Ng and Cook (1997) and Albert and Waclawiw (1998) in non-spatial settings.

1.1.2 Hierarchical Spatial Modelling

The modelling of non-Gaussian spatially correlated data typically proceeds in a hier-

archical framework. Within such a framework, observations are assumed conditionally

independent at the lowest level of the hierarchy and dependence is introduced at the

second level through spatially correlated random effects. The random effects account

for heterogeneity and, in many settings, represent covariates that are missing from

the model. Within the realm of generalized linear models, the incorporation of spatial

random effects has been studied extensively (see e.g., Besag et al., 1991, Bernardinelli

and Montomoli, 1992, Best et al., 1999, Zhang 2002). In this thesis we adopt a similar

approach, introducing random effects into the second level of hierarchical multi-state

Markov processes.

A convenient distributional form for a vector of N spatially correlated random

effects b = (b1, ..., bN) is the multivariate Gaussian with mean 0 and spatially struc-

tured covariance matrix Σ. Here, associated with each bi is either a point location

(xi, yi) ∈ R2 or a position on a (possibly irregular) lattice. Typically, one of two

approaches is adopted for specifying Σ. A direct and simple approach, known as geo-

statistical modelling (Cressie, 1993, Diggle et al. 1998), requires knowledge of the point

locations (xi, yi), i = 1, ..., N , and specifies Σ as a parametric function of these loca-

tions. A simple example is the exponential form which sets Σij = σ2 exp(−ρd(i, j))
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and is based on two parameters ρ > 0 and σ2 > 0 and the distance, d(i, j), be-

tween points i and j. An alternative approach, known as conditional autoregressive

modelling (CAR) (Besag, 1974, Cressie 1993, Carlin and Louis 1996) is the spatial

analogue of autoregressive time-series modelling and specifies Σ indirectly through

the set of conditional distributions bi|bj $=i ∼ N(µi,σ2
i ), i = 1, ..., N . Here, each con-

ditional distribution is assumed univariate normal with conditional variance σ2
i > 0

and conditional mean µi =
∑N

j=1 wijbj with wii = 0, i = 1, ..., N . The weight wij ≥ 0

can be based on either the distance between units i and j or indicators for their adja-

cency on a lattice and reflects the influence of bj on the conditional mean of bi. With

these conditional specifications, the results of Besag (1974) can be used to show that

Σ = (I−W)−1M where W = (wij), M = diag{σ2
1, ...,σ

2
N} and we impose the restric-

tion wijσ2
j = wjiσ2

i to ensure the symmetry of Σ. A special case which has been used

extensively in disease mapping is the intrinsic autoregression which sets wij = Cij

Ci·

and σ2
i = σ2

Ci·
where the Cij’s are known user defined weights and Ci· =

∑
j Cij. This

specification leads to a singular multivariate Gaussian distribution for b.

Geostatistical models, due to their direct specification of Σ are easily interpreted;

whereas, CAR models are most sensibly interpreted in a conditional sense. On the

other hand, CAR models can be based on either point locations or derived at a

lower spatial resolution using only the adjacency structure of a lattice. In addition,

the conditional specification of CAR models makes them ideal for use with Markov

chain Monte Carlo methods described in the next subsection. We adopt here the

CAR modelling approach. Finally, we note that multivariate generalizations of the

CAR modelling framework have been developed (see e.g. Kim et al. 2001, Carlin

and Banerjee, 2002, Gelfand and Vounatsou 2003) which allow for the joint spatial

modelling of k > 1 random effects associated with each spatial unit. We incorporate

such joint spatial structures into our multi-state modelling framework in Chapters 3

and 4 of this thesis.
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1.1.3 Markov chain Monte Carlo

Markov chain Monte Carlo is a collection of numerical simulation methods which

allow the approximation of integrals that are analytically intractable. Even though

the theory behind MCMC was developed much earlier (Metropolis et al. 1953), the

techniques have become increasingly popular within the last decade, a result owing

to the availability of cheap computing power.

The principle behind MCMC is the ergodic theorem applied to Markov chains.

Inference with respect to some target distribution π is based on the construction of a

Markov chain having π as its invariant distribution. The ergodic theorem then links

expected values under π with observations, x0, x1, x2,..., from the Markov chain via

lim
J→∞

1

J + 1

J∑

i=0

f(xi) = Eπ[f(x)]

for any function f , integrable with respect to π. Expected values under π may then be

approximated using realizations of the Markov chain. The technique is most useful

when drawing realizations directly from π is not feasible and π is sufficiently high

dimensional and complex so that importance sampling methods cannot be employed.

This is typically the case with hierarchical spatial models involving large numbers of

random effects.

The two most common MCMC algorithms are the Gibbs sampler (Geman and Ge-

man 1984) and the Metropolis-Hastings algorithm (Hastings 1970). The Gibbs sam-

pler is based on drawing from full conditional distributions. Suppose x = (x1, ..., xN)

and it is feasible to obtain realizations from the full conditional distribution π(xj|x−j)

where x−j denotes x with xj removed. The Gibbs sampler changes the state of the

chain xi to xi+1 by updating each xj, j = 1, ..., N , in turn by sampling the replacement

value from the corresponding full conditional distribution π(·|xi+1
1 , ..., xi+1

j−1, x
i
j+1, ..., x

i
N).

The algorithm depends on the ability to draw from full conditional distributions. Of-

ten, the full conditional distributions will not take standard forms but the correspond-

ing densities will be log-concave. In this case, adaptive rejection sampling (Gilks and

Wild 1992) may be employed.

In situations where it is difficult to sample from full conditional distributions, the
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Metropolis-Hastings algorithm, a generalization of the Gibbs sampler, may be used.

In this case, the update from xi to xi+1 proceeds by first generating a candidate x′

from a proposal distribution q(·|xi). The proposed value, x′, is accepted as the new

state of the chain, xi+1, with probability

α(xi,x′) = min{1, π(x′)q(xi|x′)
π(xi)q(x′|xi)

} (1.3)

Otherwise we set xi+1 = xi and the chain does not move. Note also that π only needs

to be known up to a normalizing constant. When the proposal density is symmetric

(1.3) reduces to α(xi,x′) = min{1, π(x′)
π(xi)} and the resulting special case is referred to as

the Metropolis algorithm. Often, it is not feasible to update the whole of x in one step.

In this case, as in the Gibbs sampler, we divide x into components x = (x1, ..., xN)

and apply a Metropolis-Hastings step to each component. This scheme includes, as

a special case, the so-called hybrid samplers (Gilks et al. 1996) that update some

components via Gibbs steps and others using Metropolis-Hastings steps.

In practice, an initial portion of the realized Markov chain is discarded as burn-in,

a period required for the chain to ‘forget’ its initial state and converge to the stationary

distribution. Determination of convergence is best assessed through running multiple

chains, each initialized at different points in the sample space of π. Analysis then

compares the output of each chain using diagnostics (see eg. Gelman and Rubin

1992) and through the examination of sample trace plots, most importantly plots

which display the value of the log(π) (up to an additive constant) at each state of the

chain.

In Chapter 2, we employ the Gibbs sampler within each iteration of an EM al-

gorithm to approximate the conditional expectations required at each E-step. In

Chapters 3 and 4 we use the Metropolis-Hastings algorithm to draw samples from

posterior distributions arising from Bayesian model specifications.

1.1.4 Splines and Temporal Smoothing

Splines provide a conceptually simple approach for approximating complex nonlinear

functions (De Boor 1978). In this thesis, splines of one variable are employed for
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modelling temporal variation in the process governing the state-to-state transitions of

a multi-state model. The basic idea behind splines is the representation of a possibly

complicated curve through a combination of relatively simple smooth segments where

each segment is represented by a polynomial of order D. To ensure smoothness of

the composite curve, constraints are imposed on each segment at the joining points

which are called inner knots. Given a set of L inner knots t1 < t2 < ... < tL a spline

S of degree D may be written as

S(x) =
L∑

l=0

Sl(x)I(x ∈ [tl, tl+1)) (1.4)

where

Sl(x) =
D∑

d=0

al
d(x− tl)

d, l = 0, ..., L

where t0 < tL+1 are boundary knots typically defined by the range of the data; and the

al
ds are constrained to ensure that S has continuous derivatives of all degrees ≤ D−1.

As discussed by MacNab (1999), the collection of all functions taking the form (1.4)

forms a linear space of dimension D +L+1. It is therefore spanned by any D +L+1

linearly independent members of the space forming a basis. The approximation of

a function f over the interval [t0, tL+1] using a spline of degree D and inner knots

t1 < t2 < ... < tL is therefore given by

f(t) ≈
D+L∑

j=0

αjpj(t) (1.5)

where p(t) = {p0(t), ..., pD+L(t)} is any such basis and α0, ..., αD+L are unknown

parameters. A convenient choice, which we employ in this thesis, is the B-spline basis

that is easily computed using the recursive algorithm of De Boor (1978). In addition,

our functional approximations will take D = 3 and incorporate an intercept yielding

f(t) ≈ α0 +
3+L∑

j=1

αjpj(t)

where we exclude the first B-spline basis function p0(t) in order to identify the inter-

cept.
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1.2 Outline of Thesis

This thesis consists of three projects examining spatial variation in longitudinal multi-

state processes. Chapters 2 and 4 deal with processes in discrete-time and methods

developed therein are applied to the aforementioned forest ecological study. Chapter

3 develops methods for continuous-time processes in a spatial epidemiological setting.

Each chapter is written in a style similar to that for publication and the summaries

of the chapters provided below reflect the corresponding abstracts. As a result, some

introductory material is repeated.

1.2.1 Chapter 2

Studies of recurring infection or chronic disease often collect longitudinal data on the

disease status of subjects. Two-state transitional models are useful for analysis in

such studies where, at any point in time, an individual may be said to occupy either

a diseased or disease-free state and interest centers on the transition process between

the two states. Here, two additional features are present. The data are spatially

arranged and it is important to account for spatial correlation in the transitional

processes corresponding to different subjects. In addition there are subgroups of

individuals with different mechanisms of transitions. These subgroups are not known

a priori and hence group membership must be estimated. Covariates modulating

transitions are included in a logistic additive framework. Inference for the resulting

mixture spatial Markov regression model is not straightforward. We develop here a

Monte Carlo EM algorithm for maximum likelihood estimation and a Markov Chain

Monte Carlo sampling scheme for summarizing the posterior distribution in a Bayesian

analysis. The methodology is applied to a study of recurrent weevil infestation in

British Columbia forests.
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1.2.2 Chapter 3

Follow-up medical studies often collect longitudinal data on patients. Multi-state

models can be employed for analysis in such studies where at any point in time, in-

dividuals may be said to occupy one of a discrete set of states and it is of interest

to examine the process governing state-to-state transitions. For example, states may

refer to the number of recurrences of an event, or the stage of a disease. We de-

velop a hierarchical Bayesian model for the analysis of such longitudinal data when

the processes corresponding to different subjects may be correlated spatially over a

region. Continuous-time Markov chains incorporating spatially correlated random

effects are introduced. Here, joint modelling of both spatial correlation as well as

correlation between different transition rates is required and a multivariate spatial

approach is employed. A proportional intensities frailty model is developed, where

baseline intensity functions are modelled using both parametric Weibull forms and

flexible representations based on cubic B-splines. The methodology is applied to a

study of revascularization intervention in Quebec. We consider patients admitted for

acute coronary syndrome throughout the 139 local health units of the province and

examine readmission and mortality rates over a four-year period.

1.2.3 Chapter 4

In this final chapter we return to the discrete-time setting of Chapter 2 and develop

an extended model with inference conducted from a Bayesian perspective. A joint

spatial random effects model is incorporated into the transitional process of a hier-

archical mover-stayer model. In this case, the random effects allow for two types of

correlation. In addition to allowing for spatial correlation, we also permit correlation

between subject specific transition probabilities. This flexible correlation structure

is accommodated through a multivariate conditional autoregressive (MCAR) model.

The chapter also develops a test for the number of mixture components, quantifying

the existence of a hidden subgroup within the population. That is, we develop a test

for ‘stayers’ in the mover-stayer model. The test is based on assigning a discrete mass
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prior to the mixing probability. Testing of this point null hypothesis was of substan-

tial interest to investigators in our forest ecological application. Inference is based

on samples drawn from the posterior distribution using a Metropolis-Hastings algo-

rithm. Finally, methods for assessing the model goodness-of-fit are developed based

on posterior predictive comparisons.

1.2.4 Chapter 5

The thesis closes with a discussion of future work.



Chapter 2

A Discrete-Time Spatial Two-State

Process

Studies of recurring infection or chronic disease often collect longitudinal data on the

disease status of subjects. In many such studies, subjects are observed at regular

time intervals and assessed for the presence/absense of a condition, such as a disease.

Statistical analysis of the resulting longitudinal binary data is conveniently conducted

through the use of two-state transitional models; in particular, when interest lies in

the probabilities of transition between the diseased and disease-free states. In such

analyses, it is typically assumed that individuals under observation are independent.

Markov chain modelling is a commonly used approach for describing a process

which yields temporally dependent binary sequences. Inference in such models was

considered in an early paper by Anderson and Goodman (1957) for the simple case

where all subjects share the same transition probabilities. Muenz and Rubinstein

(1985) allow the transition process to vary from subject to subject through regres-

sion modelling of the transition probabilities. In many scenarios there exists extra-

variation which is not explained by the available covariates. To account for this extra

variation, two stage, conditionally Markov processes can be employed. At the first

stage, the data obtained from each subject are assumed to be drawn from a two-state

Markov chain. At the second stage, continuous mixing distributions are used to model

heterogeneity in transitions. Cook and Ng (1997) develop such a model incorporating

12
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bivariate Gaussian random effects into transition probabilities and conduct maximum

likelihood estimation using numerical integration. Albert and Waclawiw (1998) de-

velop a similar model but specify only the first two moments of the independent

random effects and conduct inference using generalized estimating equations.

An alternative approach to account for heterogeneity in a Markov Chain analysis is

based on finite mixtures. In particular, this is useful when it is thought that a subgroup

of individuals, known as ‘stayers’, will remain in their initial state throughout the

course of observation. Such an approach can be employed for studying disease in

populations where it is hypothesized that some members are resistant or immune to

the condition studied. Models of this sort have been discussed by Frydman (1984),

Fuchs and Greenhouse (1988) and Cook, Kalblfleisch and Yi (2002).

Independence between subjects is an assumption that is made in all models dis-

cussed above. In the application we consider, the subjects under observation are

spatially arranged and it is of essence to describe the spatial correlation. Our moti-

vating example is a study of recurrent weevil infestation in a white pine plantation

in British Columbia. In this seven-year longitudinal study conducted by the Ministry

of Forests in British Columbia each tree within the plantation was examined in the

fall for the presence of infection. Of primary interest was to describe the pattern of

weevil infestation throughout the area over the seven years of observation. White

pine weevil infection poses a significant threat to British Columbia forests and there

has been enormous investment recently on studying this disease.

In this chapter we present a transitional model for spatio-temporal two-state

processes. There are several features of this model and our analysis which distin-

guish them from the usual two-state model analysis. Importantly, spatial random

effects are incorporated into transition probabilities to accommodate correlation. In

our study it was hypothesized that heterogeneity might arise through the presence

of trees which were resistant to infection. In fact a major scientific objective in a

follow-up analysis would be to identify and characterize such resistant trees with the

goal of populating secondary forests with such qualities. To address this statistically,

excess heterogeneity is accommodated by allowing for a subgroup of individuals whose

initial state is absorbing. The resulting two-component model is of the mover-stayer
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type with spatially correlated random effects introduced into the component associ-

ated with ‘movers’. With the two layers of mixing distributions, one discrete and one

involving a high dimensional spatial mixture, analytic tools for conducting inference

need careful consideration. We develop these in both the likelihood and Bayesian

frameworks and present a comparison of such methods in our analysis. Estimation is

approached by maximum likelihood using a Monte Carlo EM algorithm in the classical

framework and through Markov Chain Monte Carlo summarization of the posterior

distribution in the Bayesian setting.

The remainder of the chapter is organized as follows. In Section 2.1 we specify

the mixed spatially correlated mover-stayer model. Section 2.2 develops maximum

likelihood inference for our model. A spatio-temporal analysis of weevil infestation

in a white pine plantation in British Columbia is discussed in Section 2.3. In Section

2.4 we discuss extensions involving multivariate spatial processes and continuous time

modelling.

2.1 Spatio-Temporal Mixed Two-State Model

Suppose there are N subjects, spatially arranged throughout some region and subject

i is observed over a sequence of ni equally spaced time points. Upon observation,

each individual will occupy one of two possible states representing say, the presence

or absence of some condition, for example an infection. We let state 1 denote the

infected state and state 0, the infection-free state. Let yi(t) be the binary variable

denoting the state occupied by subject i at time t and yi = (yi(0), ..., yi(ni − 1))′ the

sequence of states occupied by subject i, i = 1, ..., N .

The mixed mover-stayer model is specified hierarchically where, at the first stage

of the model, we assume each response vector, yi, is independently drawn from a

compartmental model having density

fMS(yi|Z,b0,b1) =





I(yi = 0) if zi = 0,

fMC(yi|b0, b1) if zi = 1
(2.1)

where Z = {z1, z2, ..., zN} is a vector of latent variables with zi ∈ {0, 1} allocating
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subject i into one of two mixture components and we adopt independent allocations

to these components, zi
ind∼ Bernoulli(pMi) i = 1, ..., N , where pMi = Pr(zi = 1).

Extensions, allowing the components of Z to be spatially correlated, are considered

in section 5. In (2.1), one mixture component places all its mass on the zero vector

while the other component distributes mass according to the density fMC(yi|b0, b1),

which is that of a 1st order, two-state Markov chain given by

fMC(yi|b0, b1) = pyi(0)
Ii

(1− pIi)
1−yi(0)

∏

t∈D0i

p01i(t)
yi(t)(1− p01i(t))

1−yi(t)

×
∏

t∈D1i

p10i(t)
1−yi(t)(1− p10i(t))

yi(t) (2.2)

where Dli = {t > 0|yi(t−1) = l}, l = 0, 1, pIi is an initial state probability and p01i(t)

and p10i(t) are transition probabilities. The transition probabilities are modelled using

additive logistic specifications

logit(p01i(t)) = β0
′xi(t) + g0(t,α0) + b0i,

logit(p10i(t)) = β1
′xi(t) + g1(t,α1) + b1i, (2.3)

i = 1, ..., N, t = 1, ..., ni − 1, where xi(t) is a p-vector of covariates associated with

subject i at time t; β a vector of regression parameters; g0(t,α0) and g1(t,α1) are

functions of time describing temporal trends in transitions and b0i and b1i are random

effects accounting for spatial correlation.

Several types of temporal trends can be considered. We allow for flexible forms

using cubic B-splines. The cubic B-spline representations used here are given by

gl(t,αl) = αl0 +
Kl+3∑

j=1

αljplj(t), l = 0, 1 (2.4)

where αl = (αl0 , ..., αlKl+3), l = 0, 1, are vectors of unknown coefficients and

{pl1(t), ..., plKl+3(t)}, l = 0, 1, are sets of known B-spline basis functions with Kl,

l = 0, 1, representing the number of inner knots used in the representations. For the

spatial random effects, b0 = (b01, ..., b0N)
′
and b1 = (b11, ..., b1N)

′
, we adopt Gaussian

intrinsic autoregressive (IAR) models based on conditional specifications of the form

bli|{blj, j += i} ∼ N

(∑
j Cijblj∑

j Cij
,

σ2
bl∑

j Cij

)
, l = 0, 1 (2.5)
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where Cij are user-defined weights measuring the closeness or adjacency of subjects i

and j (Cii = 0) with b0, b1 and Z assumed independent. As a result of (2.5), each

vector bl, l = 0, 1, is distributed as N(0,Σl), with Σl having generalized inverse

Σ−1
l = 1

σ2
bl
(D−C), l = 0, 1; C = (Cij) is often called the neighbourhood matrix and

D = diag{C1., C2., ..., CN.} with Ci. =
∑N

j=1 Cij.

Under this model, the marginal likelihood for Y = {y1, ...,yN} takes the form

L(Θ) = E
{ N∏

i=1

fMS(yi|Z,b0,b1)
}

(2.6)

where Θ = {β0,β1,σ2
b0,σ

2
b1, {pIi}, {pMi},α0,α1} denotes the model parameters and

the expectation in (2.6) is taken with respect to the distributions of b0, b1 and Z.

There are two situations where the above compartmental model may be considered.

Empirically, the data may suggest that several individuals never change states over

time; additionally, scientific considerations may point to a need to address the presence

of subgroups even if this is not empirically obvious. The mixed mover-stayer model

allows for a subgroup of subjects whose initial state is absorbing. These so called

‘stayers’ can represent individuals who are immune to infection and will therefore be

observed in the disease-free state (state 0) at all times.

2.2 Inference Procedures

In this section we outline procedures for maximum likelihood inference. As the mar-

ginal likelihood function (2.6) is analytically intractable, we develop a Monte Carlo

maximum likelihood scheme.

The EM algorithm (Dempster et al., 1977) is a popular tool for conducting maxi-

mum likelihood inference in situations involving missing data. We outline maximum

likelihood procedures based on a Monte Carlo implementation of the algorithm (Wei

and Tanner 1990), where the random effects and latent variables are treated as miss-

ing data. In situations where the E-step of the EM algorithm does not admit a closed

form, Wei and Tanner (1990), among others, proposed that the E-step can be carried
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out using Monte Carlo integration resulting in what has been called the MCEM algo-

rithm. This algorithm is useful for estimation in our model since the expectation in

(2.6) involves an integral of high dimension. Alternative approaches could use analytic

approximations to these integrals. For example MacNab and Dean (2000) investigate

the use of penalized quasi-likelihood (Breslow and Clayton, 1993) for estimation in

spatial random effect models. Such an approach, while being less computationally

intensive than MCEM, can yield severely biased estimates in the case of binary data

(Lin and Breslow, 1993). Previous applications of the MCEM algorithm include Chan

and Ledolter (1995), who study a model for count data incorporating temporally cor-

related random effects, and Chan and Kuk (1997) who examine probit-linear mixed

models with correlated random effects. Most recently, Zhang (2002) developed a

Monte Carlo version of the EM gradient algorithm, in a geostatistical setting.

Procedures for Bayesian inference are more carefully detailed in the following sec-

tion where the application is considered. To simplify the presentation we assume

pIi = pI and pMi = pM , i = 1, ..., N . Permitting variation, for example, regression

modelling of the initial probabilities is easily accommodated. Note that a prime focus

here is on investigating transition probabilities so we direct attention to modelling

these.

Under the mixed mover-stayer model, a sufficient statistic for Θ is given by T =

(Y0,Y1) where

Y0 = {yi(0), I{yi = 0}, {yi(t)|t ∈ D0i}; i = 1, ..., N} (2.7)

and

Y1 = {{yi(t)|t ∈ D1i}; i = 1, ..., N}. (2.8)

The marginal likelihood function for Y, given in (2.6), can be correspondingly factor-

ized into two terms

L(Θ,Y) = L0(Θ0,Y0)× L1(Θ1,Y1)

where Θ0 = (β0,σb0, pI , pM , α0)
′
and Θ1 = (β1,σb1, α1)

′
divide the model parameters

into two disjoint sets. As a result, maximum likelihood estimates can be obtained by
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maximizing L0(·) and L1(·) separately with

L1(·) = E
{ N∏

i=1

∏

t∈D1i

exp(β1
′xi(t) + g1(t,α1) + b1i)1−yi(t)

1 + exp(β1
′xi(t) + g1(t,α1) + b1i)

}
(2.9)

where the expectation in (2.9) is taken with respect to the distribution of b1 and

L0(·) = E
{

q(Y0, Z, pI)
N∏

i=1

∏

t∈D0i

exp(β0
′xi(t) + g0(t,α0) + b0i)ziyi(t)

[1 + exp(β0
txi(t) + g0(t,α0) + b0i)]zi

}
(2.10)

where

q(Y0,Z, pI) = p
∑N

i=1 ziyi(0)
I (1− pI)

∑N
i=1 zi(1−yi(0))

∏

{i|zi=0}

I{yi = 0}

and the expectation in (2.10) is taken with respect to the distributions b0 and Z.

Both (2.9) and (2.10) are maximized using separate MCEM algorithms; however, we

note that the form of (2.10) reduces to that of (2.9) when Z = 1 and q(Y0,Z, pI) ≡ 1.

We therefore outline the MCEM procedure for (2.10), maximization of (2.9) being a

special case.

Treating b0 and Z as missing data, the complete-data loglikelihood associated

with (2.10) takes the form:

lc(Θ0,Y0,b0,Z) = l(1)c (pI ,Y0,Z) + l(2)c (pM ,Z)

+l(3)
c (β0, α0,Y0,b0,Z) + l(4)c (σb0,b0)

where,

l(1)
c (pI ,Y0,Z) = log(pI)

N∑

i=1

ziyi(0) + log(1− pI)
N∑

i=1

zi(1− yi(0)),

l(2)
c (pM ,Z) = log(pM)

N∑

i=1

zi + log(1− pM)(N −
N∑

i=1

zi),

l(3)c (β0, α0,Y0,b0,Z) =

N∑

i=1

∑

t∈D0i

ziyi(t)[β0
′xi(t) + g0(t,α0) + b0i]− zi log(1 + exp(β0

′xi(t) + g0(t,α0) + b0i)),
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l(4)
c (σb0,b0) = −(N − 1) log(σb0)−

b0
′(D − C)b0

2σ2
b0

Starting with initial parameter estimates, Θ(0)
0 and setting h = 0, the algorithm

consists of four steps:

1. Run the Gibbs sampler and generate J realizations, b(1)
0 ,Z(1), ...,b(J)

0 ,Z(J), from

the conditional distribution f(b0,Z|Y0,Θ
(h)
0 )

2. Calculate Q(Θ0;Θ
(h)
0 ) = 1

J

∑J
k=1 lc(Θ0,Y0,b

(k)
0 ,Z(k))

3. Maximize Q(Θ0;Θ
(h)
0 ) over Θ0 to obtain Θ(h+1)

0

4. Assess convergence. If convergence has been achieved then stop. Else Set h =

h + 1 and go to step 1

In implementing this algorithm, two important issues arise: first is the choice of

Monte Carlo sample size, J , to be used at each iteration and second is monitoring

convergence of the algorithm. Wei and Tanner (1990) suggest using small values of J

in the initial stages of the algorithm and increasing J as the algorithm moves closer

to convergence. Regarding convergence, they recommend plotting estimates at each

iteration of the algorithm. Convergence is then indicated by the stabilization of the

process with random fluctuations about some fixed value.

Gibbs sampling at the (h + 1)st iteration requires simulation from the full con-

ditional distributions, [b0i|Y0,b
(−i)
0 ,Z,Θ(h)

0 ] and [zi|Y0,Z(−i), b0,Θ
(h)
0 ], i = 1, ..., N .

These full conditional distributions are given by fi(b0i|Y0,b
(−i)
0 ,Z,Θ(h)

0 )

∝






exp(−
Ci.(b0i− 1

Ci.

∑n
j=1 Cijb0j)2

2σ
(h)2

b0

) if zi = 0,

exp(−
Ci.(b0i− 1

Ci.

∑n
j=1 Cijb0j)2

2σ
(h)2

b0

)
∏

t∈D0i

exp(β
(h)
0 xi(t)+g0(t,α

(h)
0 )+b0i)yi(t)

1+exp(β
(h)
0 xi(t)+g0(t,α

(h)
0 )+b0i)

if zi = 1.

(2.11)

and [zi|Y0,Z(−i), b0,Θ
(h)
0 ] ∼ Bernoulli(pzi) with

pzi =





1 if yi += 0,

p(h)
M (1−p(h)

I )
∏ni−1

t=1 [1+exp(β(h)
0 xi(t)+g0(t,α(h)

0 )+b0i)]−1

(1−p
(h)
M )+p

(h)
M (1−p

(h)
I )

∏ni−1
t=1 [1+exp(β

(h)
0 xi(t)+g0(t,α

(h)
0 )+b0i)]−1

if yi = 0
(2.12)
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To sample from (2.11) we generate a Gaussian deviate if zi = 0 or, if zi = 1,

realizations are obtained using rejection sampling (Ripley, 1987). Since the joint dis-

tribution of b0, specified conditionally via (2.5), is improper, we impose an identifying

sum-to-zero constraint in our Gibbs sampler by recentering the simulated values of

b0 around zero after each iteration.

Having generated values, b(1)
0 ,Z(1), ...,b(J)

0 ,Z(J), using the Gibbs sampler, the

updated parameter estimates for pI and pM are given by: p(h+1)
I =

∑N
i=1 yi(0)z̄i∑N

i=1 z̄i
and

p(h+1)
M =

∑N
i=1 z̄i

N where z̄i = 1
J

∑J
k=1 z(k)

i . To obtain β0
(h+1) and α0

(h+1) we maximize

the following objective function:

f(β0,α0) =
N∑

i=1

∑

t∈D0i

z̄iyi(t)[β0
′xi(t) + g0(t,α0)]

− 1

J

J∑

k=1

N∑

i=1

∑

t∈D0i

z(k)
i log(1 + exp(β0

′xi(t) + b(k)
0i + g0(t,α0)))

Numerical maximization is accomplished using a standard quasi-Newton routine (Fletcher

1987). The variance component is updated via: σ(h+1)
b0 = [ 1

(N−1)J

∑J
k=1 b(k)′

0 (D −
C)b(k)

0 ]
1
2 .

2.2.1 Observed Information Matrix

Following Chan and Ledolter (1995), Chan and Kuk (1997) and Zhang (2002) we

obtain standard errors using a Monte Carlo approximation of the observed information

matrix. We describe the technique in a general setting. Let Y denote the observed

data and r denote a vector of unobserved stochastic quantities (for example, random

effects) which we treat as missing data in an EM framework to obtain maximum

likelihood estimates of some parameter Θ. We let l(Θ,Y) denote the observed data

log-likelihood and lc(Θ,Y, r) the corresponding complete data log-likelihood. From

Louis (1982) we have

∂l(Θ,Y)

∂Θ∂Θ′ = E[
∂lc(Θ,Y, r)

∂Θ∂Θ′ |Y] + E[
∂lc(Θ,Y, r)

∂Θ

∂lc(Θ,Y, r)′

∂Θ
|Y]

−E[
∂lc(Θ,Y, r)

∂Θ
|Y]E[

∂lc(Θ,Y, r)

∂Θ
|Y]′ (2.13)
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Having obtained an estimate, Θ̂, from our MCEM algorithm, we run one final Gibbs

sampler and obtain a set of realizations, r(1), ..., r(J), from the conditional distribution

with density f(r|Y, Θ̂). We then approximate the conditional expectations in (2.13)

using ergodic averages and obtain an estimate of the observed information matrix

evaluated at Θ̂.

−∂l(Θ̂,Y)

∂Θ∂Θ′ ≈ −
1

J

J∑

k=1

∂lc(Θ̂,Y, r(k))

∂Θ∂Θ′ − 1

J

J∑

k=1

∂lc(Θ̂,Y, r(k))

∂Θ

∂l′c(Θ̂,Y, r(k))

∂Θ

+{ 1

J

J∑

k=1

∂lc(Θ̂,Y, r(k))

∂Θ
}{ 1

J

J∑

k=1

∂lc(Θ̂,Y, r(k))

∂Θ
}′ (2.14)

We apply this technique to the complete data log-likelihood functions associated with

both (2.9) and (2.10) to obtain standard errors. In our analysis, the Monte Carlo

sample size, J , is increased until the standard errors become stable to a desired

number of decimal places.

2.3 Study of Weevil Infestation

The weevil infestation data were obtained over a seven year period beginning in 1996

and ending in 2002. The study region is a plantation in British Columbia covering

an area of 21, 960m2 and containing a population of N = 2662 trees susceptible to

weevil attack. The positions of trees within the plantation are depicted in Figure 2.1.

Each tree was inspected for the presence of weevil attack in the fall. In any given

year, each tree is therefore classified into one of two states, either weevil-infected or

not. The event history of the ith tree is represented with a binary response vector

yi = (yi(0), ..., yi(6)) where yi(t) indicates infection at year t. The purpose of the

analysis is to provide a spatio-temporal description of the transition process between

the infected and uninfected states.

For each year following 1996, the proportion of infected trees, conditioning on the

infection status of the previous year, are shown in Figure 2.2. Two key features are

evident. First, it seems that the state occupied at time t depends on the state of time
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t− 1 since, in each year, the raw estimates indicate

Pr(infected at t|infected at t− 1) > Pr(infected at t|not infected at t− 1).

Second, the process governing transitions seems to be inhomogeneous over time.

It was hypothesized by ecologists that some pine trees may be resistant to weevil

attack. This seemed reflected in our study where 27 percent of the 2662 trees under

investigation were not infected during the 7 years of observation. Such resistant trees

are accommodated by our spatial mover-stayer model which allows for a group of

‘stayers’ in the uninfected state. Conversely, only 1 tree had been infected every year;

therefore, a model accounting for ‘stayers’ in the infected state seems unnecessary.

To investigate the possibility and scale of spatial correlation in transitions we fit a

preliminary model where each yi is assumed to be independently drawn from a two-

state Markov chain incorporating independent random effects with transition prob-

abilities given by logit(p01i(t)) = g0(t,α0) + u0i and logit(p10i(t)) = g1(t,α1) + u1i,

i = 1, ..., 2662, t = 1, ..., 6 with uli
iid∼ N(0,σ2

l ) l = 0, 1. The terms g0(t,α0) and

g1(t,α1) account for temporal variation and are modelled using cubic B-splines with

one inner knot placed at t = 4 years. The random effects, u1 = (u11 , ..., u12662)

and u0 = (u01 , ..., u02662), account for tree-to-tree variation in transitions. Figure 2.3

displays the fitted temporal trends g0(t, α̂0), g1(t, α̂1) as well as the empirical semivar-

iograms of û1 and û0 based on a bin size of 1 meter. Examining the semivariograms,

there appears to be spatial correlation in both û1 and û0 at the smaller distances,

each having a range of about 5 to 10 meters. Dependence of this scale in our spatial

mixed mover-stayer model is accommodated by setting the weights associated with

the spatial random effects defined in (2.5) to Cij = I{d(i, j) ≤ 10m} where d(i, j)

denotes the distance between trees i and j. In addition, we define spatially varying

covariates Di =
∑

j $=i Cij, a local measure of tree density and Ai(t) =
∑

j $=i Cijyj(t),

a local measure of infection density at year t. The regression specifications are then
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Figure 2.1: Positions of trees within the plantation. The boundary is taken to be the
convex hull of these positions.



CHAPTER 2. A DISCRETE-TIME SPATIAL TWO-STATE PROCESS 24

1997 1998 1999 2000 2001 2002

0.
1

0.
2

0.
3

0.
4

0.
5

Year

Pr
op

or
tio

n 
of

 D
ise

as
ed

 T
re

es

Disease−free −> Diseased
Diseased −> Diseased

Figure 2.2: Raw estimates of the conditional probabilities of infection in each year.



CHAPTER 2. A DISCRETE-TIME SPATIAL TWO-STATE PROCESS 25

given by

logit(p01i(t)) = β01Di + β02Ai(t− 1) + g0(t,α0) + b0i

logit(p10i(t)) = β11Di + β12Ai(t− 1) + g1(t,α1) + b1i

i = 1, ..., 2662, t = 1, ..., 6

where g0(t,α0) and g1(t,α1) are cubic splines with Kl = 1, l = 0, 1, and an inner

knot at t = 4 years as in the preliminary analysis.

Starting values for α1, α0, β1 and β0 in the MCEM algorithm were based on

estimates from simpler models incorporating no spatial dependence. Starting values

for pI and pM were based on the raw proportions obtained from the data. A burn-in

of 1000 samples was used at each iteration of the algorithm. The Monte Carlo sample

size was set to J = 500 for the first 100 iterations and then increased to J = 1000

until trace plots of the MCEM estimates indicate convergence had been achieved. The

resulting trace plots of MCEM estimates are shown for several parameters in Figure

2.4. Upon convergence, an additional 100 iterations were run with J = 5000 to reduce

Monte Carlo error.

For the purpose of comparison, a Bayesian analysis was also conducted. In this

setting, the model specification is made complete by assigning a prior distribution to

Θ. The resulting posterior distribution can be summarized using MCMC sampling. A

program for drawing MCMC samples from the posterior distribution has been imple-

mented in WinBUGS 1.4. which is freely available from the Medical Research Council

Biostatistics Unit in Cambridge in the U.K. (www.mrc-bsu.cam.ac.uk/bugs). We em-

ployed weakly informative prior distributions for the model parameters. All regression

coefficients and parameters of the cubic spline terms were assigned N(0, 103) priors,

except for the intercepts α00 and α10 which were assigned Uniform(−∞,∞) distrib-

utions. Variance components were assigned Uniform(0, 10) priors and Uniform(0, 1)

prior distributions were assigned to pM and pI . Sensitivity with respect to these prior

distributions was assessed by comparisons from repeating the analysis with other

weakly informative prior specifications. This comparison indicated results to be fairly

robust over the forms of prior considered. Markov Chain Monte Carlo sampling was

based on two chains run in parallel and convergence to the posterior distribution was
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Figure 2.3: Estimates from initial model exploring spatial scale and spatial correlation.
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Figure 2.4: Monte Carlo EM estimates by iteration for selected parameters in the
spatial mover-stayer model (a) β01 ; (b) β02 ; (c) β11 ; (d)β12 ; (e) σb0 ; (f) σb1 ; (g) PI ; (h)
PM .
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assessed through the examination of sample trace plots and Gelman-Rubin (1992) sta-

tistics. A burn-in of 20,000 iterations was used with an additional 80,000 iterations

from each chain retained for posterior summarization.

Parameter estimates of the regression coefficients and variance components are

presented in Table 2.1. The Bayesian and maximum likelihood estimates are very

similar. From the estimates of pM , we see that roughly 10 percent of the trees under

study are estimated to be resistant to weevil infection. Regarding covariate effects,

local tree density, Di, seems to have an effect on both types of transitions. Trees

located in denser regions tend to have lower probability of transition into the infected

state and higher probability of transition out of the infected state. Local attack

density, Ai(t− 1), appears to affect transitions out of the uninfected state such that

trees surrounded by a larger number of infected trees at time t − 1 have a higher

probability of making a transition from the uninfected to the infected state at time t.

Uninfected → Infected Infected → Uninfected
Parameter MLE (SE) Bayes (Sd) MLE (SE) Bayes (Sd)
Intercept -0.505 (0.142) -0.496 (0.132) -0.189 (0.195) -0.169 (0.198)

Di -0.017 (0.003) -0.018 (0.003) 0.014 (0.005) 0.014 (0.005)
Ai(t− 1) 0.016 (0.008) 0.017 (0.008) -0.0174 (0.011) -0.015 (0.011)
σb0/σb1 2.064 (0.561) 1.98 (0.340) 2.25 (0.449) 2.619 (0.494)

pI 0.177 (0.008) 0.178 (0.009) - -
pM 0.895 (0.018) 0.894 (0.021) - -

Table 2.1: Parameter estimates for the spatial mover-stayer model. Bayes estimates
are posterior means and standard deviations. Maximum likelihood estimates are
obtained using the Monte Carlo EM algorithm.

Estimates of the temporal trends, g0(t,α0) and g1(t,α1), are shown in Figure

2.5 and correspond with the patterns observed in the preliminary analysis. Posterior

mean (from the Bayes analysis) and empirical Bayes (from the likelihood analysis)

estimates of the random effects b0 and b1 are also obtained. To gain insight into tree-

specific residual risks of transitions in and out of the infected state we have marked,

in Figure 2.6, the locations within the plantation associated with the 100 largest and



CHAPTER 2. A DISCRETE-TIME SPATIAL TWO-STATE PROCESS 29

smallest of these estimates. These maps of unmodeled heterogeneity can be useful for

postulating additional covariates missing from the current model. Spatial clustering

of the largest and smallest values is apparent. For b0, the largest estimates appear to

be clustered in the far north of the plantation; whereas, the smallest estimates occur

in two clusters lying on the boundary of the region, one located in the far west and the

other occurring in the south. For b1, the largest estimates occur towards the south

and south-east and the smallest estimates occur towards the far north and north-west.

In Figure 2.7 we have located those 100 trees having the highest estimated posterior

probability of resistance, Pr(zi = 0|Y), the majority of these being located in the

mid-north section of the plantation. Maps identifying such trees can be useful in

determining the characteristics which may lead to resistance.

2.4 Discussion

Some alternatives to our modelling above should be mentioned. First, other forms for

the weights, Cij, in the IAR model (2.5) could be entertained. Our choice of Cij =

I{d(i, j) ≤ 10m} could be expanded to forms such as Cij = I{d(i, j) ≤ w}×f(d(i, j))

where f(·) is a positive, decreasing function of distance and w > 0 is an unknown para-

meter. The flexible neighbourhood structures proposed by Conlon and Waller (1998)

may also be fruitfully employed here. As discussed by Besag and Kooperberg (1995)

and Waller and Gotway (2005) the relationship between the neighbour weights Cij

in the IAR model and the spatial covariance range suggested by the semivariograms

in Figure 2.3 is complex and the adequacy of determining the weights based on the

semivariogram range will be investigated in future work. As a second alternative,

one might consider Gaussian geostatistical models for the random effects. Indeed,

examination of the empirical semivariograms in Figure 2.3 suggests a spherical corre-

lation function might be employed (Cressie, 1993). Implementation of geostatistical

covariance structures would increase the computational burden involved in model fit-

ting whereas Markov random field models are ideally suited for computation within

a Gibbs sampler. In addition, geostatistical models are typically used when predic-

tion of random effects at unsampled sites is of interest which was not the case in our
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Figure 2.5: Maximum likelihood estimates of temporal trends from the spatial mover-
stayer model with 95% confidence intervals (a) g0(t,α0); (b) g1(t,α1). Bayesian
(posterior mean) estimates of temporal trends with 95% credible sets (c) g0(t,α0);
(d) g1(t,α1).
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(a) (b)

(c) (d)

Figure 2.6: Locations of the 100 largest (triangles) and smallest (circles) estimated
random effects from the spatial mover-stayer model (a) b0 - Likelihood Analysis; (b)
b1 - Likelihood Analysis; (c) b0 - Bayesian Analysis; (d) b1 - Bayesian Analysis.
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a)

b)

Figure 2.7: Locations of the 100 trees having the highest estimated posterior proba-
bility of resistance (a) Likelihood Analysis - Pr(zi = 0|Y, Θ̂); (b) Bayesian Analysis
- Pr(zi = 0|Y).
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analysis.

More flexible correlation structures for the random effects could be considered.

In particular, the assumption of independence between b0 and b1 could be relaxed

allowing for joint modelling of the spatial random effects associated with the two

types of transitions. Such modelling will allow for the borrowing of information across

spatial units as well as across different transition types within units. The required joint

correlation structures can be accommodated using multivariate Markov random field

models which have received some recent attention in the literature (Kim et al., 2001;

Gelfand and Vounatsou, 2003; Carlin and Banerjee, 2002). Another useful extension

would allow for spatial correlation in the mixture allocation variables, Z, allowing

for spatial clusters of resistant trees. In our application resistance was thought to be

the result of genetic factors and spatial correlation in resistance was not expected. In

other cases; however, such correlation might be postulated and would represent latent

environmental factors contributing to resistance. Along these lines, Wu and Huffer

(1997) and Huffer and Wu (1998) considered spatial autologistic models for describing

the distribution of plant species. Their approach might be incorporated into our model

by assuming that the latent variables, Z, are drawn from an autologistic model.

Regarding the state structure, extended models allowing for more than two states

are easily conceived. These extended models might prove useful in applications of

infectious disease modelling where models typically incorporate three states: (1) a

state representing individuals who are uninfected but susceptible to infection (2) a

state representing individuals who are currently infected and infectious and (3) a state

representing individuals who have recovered with lifelong immunity. Such models

may be employed for examining infectious disease in animal studies; however, these

applications require care for example when modelling spatial correlation due to the

possibility of migration or in handling the mechanisms of the infectious transmission

process.

Related models for continuous time data where spatially correlated random effects

are incorporated into the transition intensities of a multi-state Markov process are

reported in the next chapter. Here, joint modelling of both spatial correlation as well

as correlation between transition rates is required and multivariate spatial approaches
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need be employed.



Chapter 3

Continuous-Time Spatial

Multi-State Processes

Clinical trials and medical studies are often concerned with the event histories of

individuals in a population. In such studies, subjects are observed over time and

significant events or changes in their health status are recorded. Statistical analysis

of the resulting longitudinal data is conveniently conducted within the multi-state

modelling framework. In this setting, we model a stochastic process, which at any

point in time, will occupy one of a discrete set of states and interest centers on the

transition process between states. For example, states may refer to the number of

recurrences of an event, or the stages of a disease. Multi-state modelling provides a

broad framework for the analysis of longitudinal data which encompasses, as a special

case, methods for the analysis of censored event-time data including methods for the

analysis of competing risks.

Most commonly employed are the Markov models which have found wide appli-

cation in many fields including biostatistics, demography and the social sciences (see

e.g. Clayton, 1988; Hougaard, 2000). In many situations, it is useful to account

for heterogeneity in the state-to-state transition processes corresponding to different

subjects. In the simplest of such cases, this heterogeneity can be explained entirely

through covariates and Markov chain regression models are employed (Muenz and

35
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Rubenstein 1985, Prentice et al. 1981). In cases where the extra-variation is not ad-

equately explained by the available covariates, random effects can be introduced in

a hierarchical setting. Several authors have examined such mixed-effects models for

the analysis of heterogeneous multi-state data. Aalen (1982) explored mixing dis-

tributions on a Markov process in a general setting. More recently, Cook and Ng

(1997), Ng and Cook (1997) and Albert and Waclawiw (1998) developed two-state

mixed Markov models incorporating subject specific random effects. In these mod-

els, the focus has been accounting for within-subject heterogeneity and subjects were

assumed independent. Extensions to handle bivariate two-state processes have been

recently considered by Zeng and Cook (2004) in context of paired data arising from

studies examining visual acuity. We consider a multivariate setting where subjects

are clustered into geographical strata such as provincial districts or local health units.

In this case, the assumptions of between-subject or between-cluster independence of

processes may not be viable as subjects arising from the same or neighbouring strata

may yield correlated outcomes. Such correlation can be attributed to latent, spatially-

varying factors such as shared environmental influences. A thorough analysis must

therefore address the possibility of spatial correlation in the longitudinal outcomes of

different subjects in a broad multivariate setting and this is a fundamental focus of

our work.

Generalized linear mixed models incorporating spatially correlated random effects

have been studied extensively in disease mapping applications (see e.g., Besag et al.,

1991, Bernardinelli and Montomoli, 1992, Best et al., 1999) where data typically take

the form of spatially correlated counts or proportions. In a similar vein, several authors

have recently developed random effect models for the analysis of spatially correlated

survival data (Li and Ryan 2002, Henderson et al. 2002, Carlin and Banerjee 2002,

Banerjee et al. 2003). In the more general multi-state setting, spatial models have

received considerably less attention. A two-state model of this sort was developed in

Chapter 2 in a discrete-time setting. There, a mixed mover-stayer model was devel-

oped for describing a spatio-temporal recurring disease process; however, more general

continuous-time spatial multi-state models have not been considered previously and

would serve usefully in many situations.
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In this chapter we present spatial continuous-time multi-state models for the analy-

sis of geographically referenced event history data. Mixed Markov transitional models

are developed. Transition intensity functions are modelled through a proportional

intensities frailty model that incorporates covariates and correlated random effects.

Baseline transition intensity functions are modelled using both parametric Weibull

forms as well as flexible representations based on cubic B-splines. Here, modelling of

both spatial correlation across regions as well as correlation between different transi-

tion rates is desirable and a joint spatial model is required. In particular, we employ

a multivariate Gaussian Markov random field as a prior distribution for the random

effects operating across different transition rates. The use of a joint spatial model in

this context is particularly novel as it allows for the borrowing of information, not

only spatially, but also across different transition rates. When certain transitions cor-

respond to rare events, the resulting joint correlation structure enables information

to be obtained from other related events.

Our work is motivated by a study of invasive cardiac procedure in Quebec, in

which patients hospitalized for acute coronary syndrome were followed over time and

information regarding subsequent hospital readmissions and mortality was obtained.

Additional demographic and treatment information was also obtained from each pa-

tient along with the local health unit (LHU) in which the subject resides. The local

health units serve as the geographical strata in this study. Interest lies in the iden-

tification of spatial heterogeneity in the disease profile of subjects across the various

local health units of the province. Our analysis reveals interesting trends in this

heterogeneity.

In Section 3.1 we specify our models. We discuss joint spatial modelling of the

random effects as well as two alternative representations for the baseline intensity

functions. Model fitting and inference using Markov Chain Monte Carlo (MCMC) is

also discussed. Section 3.2 presents an analysis of the Quebec cardiac study data. In

Section 3.3 we summarize our findings and discuss future work.
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3.1 Spatial Continuous-Time Multi-State Models

Suppose there are N subjects followed over time and each subject is located in one

of J regions. Associated with the lth subject is a continuous-time stochastic process,

Yl(t), t ≥ 0, which takes values in a finite state-space, S = {1, ..., k} and which we

observe over a finite time interval [0, Cl]. In addition, we assume that associated with

the lth subject, l = 1, ..., N , there are two vectors of covariates zl and rl each described

below.

We further assume that all N processes have the same state structure specifying

which state-to-state transitions are allowable. Depending on the application, the state

structure may not allow the maximum of k(k − 1) possible state-to-state transitions.

This occurs, for example, when some states are absorbing or if the state structure

is progressive. For any particular state structure, we define the set T = {(i, j) ∈
S×S|Pr(i→ j) > 0}, so that T contains all ordered pairs, (i, j), i += j, corresponding

to i → j transitions which are allowed by the state structure. We further assume that

the elements (i, j) of T are sorted in ascending order in terms of the first index, i, and

then by the second index, j, and we let NT denote the cardinality of T which is the

number of allowable transitions. As an example, the state structure employed for the

modelling in our application is depicted in Figure 3.1. Here, there are k = 4 states,

with T = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4))} and NT = 5 allowable transitions.

To model the processes corresponding to all subjects, we work in a hierarchical

Bayes framework. At the first level of the model, we assume that the processes,

Yl(t), l = 1, ..., N , are independent with each following a continuous-time Markov

chain with state-space S and transition intensity functions {qlij(t), (i, j) ∈ T}. To

model the intensity functions, we assume that covariates and spatial terms have a

multiplicative effect given by

qlij(t) = q0ij(t) exp(βij
′
zl + bij

′
rl), (i, j) ∈ T (3.1)

where, for each (i, j) ∈ T , zl is a vector of covariates corresponding to fixed effects βij

(including an intercept); rl is a vector of covariates corresponding to random effects

bij; and q0ij(t) is a baseline transition intensity function common to all subjects. This
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Figure 3.1: State structure for the Quebec cardiac study.

mixed transitional model is general and can be applied usefully in many situations

where clustered multi-state processes are observed and there exists correlation both

within and between clusters. This broad framework is similar to that adopted by

Breslow and Clayton (1993) in their development of generalized linear mixed mod-

els. For spatial modelling in our application, we assume that bij = (bij1 , ..., bijJ )
′
is

a vector of region specific random effects accounting for spatial correlation in tran-

sitions from state i to state j. The vector of covariates rl is taken to be a binary

vector of length J , indicating the region associated with subject l and is defined by:

rli = I{Subject l is located in region i}, i = 1, ..., J with I{·} denoting the indicator

function.

We consider two alternative representations for modelling the baseline intensity

functions. The first allows for flexible forms using cubic B-splines. The B-spline
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representation is given by

log(q0ij(t)) =

kij+3∑

h=1

αijh
Bijh

(t), (i, j) ∈ T (3.2)

where, for each (i, j) ∈ T , αij = (αij1 , ...,αijkij+3
)
′
is a vector of unknown coefficients,

Bij(t) = (Bij1(t), ..., Bijkij+3
(t))

′
is a set of known B-spline basis functions and kij

represents the number of inner knots used in the representation. A second, simpler,

representation assumes a standard parametric form, for example a Weibull form

q0ij(t) = ρijt
ρij−1, (i, j) ∈ T (3.3)

where ρij > 0 is a shape parameter.

Upon observation of the lth process, we denote by El ≥ 0, the number of observed

state-to-state transitions; sl0 ∈ S, the initial state occupied at time tl0 = 0; tlm, m =

1, ..., El, the time at which the mth transition occurs and slm ∈ S the state entered at

the mth transition, m = 1, ..., El. From these, we define indicators

Dlijm = I{sl(m−1) = i, slm = j}, m = 1, ..., El, (i, j) ∈ T

and risk set functions

Rli(t) = I{Yl(t
−) = i} =

Kl∑

m=1

I{sl(m−1) = i, Tl(m−1) < t ≤ Tlm}, i = 1, ..., k

where Kl = El + 1 and TlKl
= Cl. Letting Θ = {{αij}, {βij}, {bij}, (i, j) ∈ T} for

the spline model (3.2) and Θ = {{ρij}, {βij}, {bij}, (i, j) ∈ T} for the Weibull model

(3.3), Xl = {El, {slm, m = 0, ..., El}, {Tlm, m = 0, ..., El + 1}} and X = {Xl, l =

1, ..., N}, the likelihood takes the form

L(X|Θ) =
∏

(i,j)∈T

Lij (3.4)

where

Lij = [
N∏

l=1

El∏

m=1

qlij(Tlm)Dlijm ]× exp(−
N∑

l=1

∫ Cl

0

Rli(u)qlij(u)du) (3.5)
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3.1.1 A Joint Spatial Model for Random Effects

The model contains a separate set of region specific random effects, bij, for each allow-

able i → j transition. As a result, there are a total of NT such sets, where the vector

bij = (bij1 , ..., bijJ )
′
contains a set of spatially correlated random variables operating

on transitions from state i to state j. Examining Figure 3.1, we see that for modelling

in our application, there are five such sets, b12, b14, b23, b24, b34, of local health unit

specific random effects. In addition to allowing for spatial correlation across regions

(within each bij) we also wish to accommodate correlation in the different transition

rates (across the bij). For example, given the transition structure displayed in Figure

3.1, it was postulated that there may be positive correlation across the three sets

of random effects, b14, b24, b34, operating on mortality rates. We thus seek a joint

spatial model for the NT sets of random effects bij, (i, j) ∈ T .

To accommodate the joint correlation structure, we assume at the second level of

the model, that the random effects are drawn from a multivariate generalization of the

intrinsic Gaussian autoregression (Besag et al. 1991). Initially proposed by Mardia

(1988) in an image processing context, multivariate conditional autoregressive models

of this sort have received recent attention in the literature by Kim et al. (2001)

and Knorr-Held and Rue (2002) for the joint mapping of several disease rates over

a geographical region; by Gamerman et al. (2002) where they are employed as prior

distributions in space-varying regression models and by Gelfand and Vounatsou (2003)

for other applications in Bayesian hierarchical modelling. We let bh
′ = {bijh

| (i, j) ∈
T}, denote the vector of random effects, having length NT , associated with region

h, h = 1, ..., J , and b = (b1
′, ..., bJ

′)′ be the vector of all random effects, grouped by

regions. The model for b is a Markov random field, where the joint distribution is

determined through a set of local specifications. In particular, for each region h, we

define a neighbourhood ∂h = {k|k ∼ h} where k ∼ h is typically meant to represent

the adjacency of regions k and h. The model for b is then specified through the

conditional distributions

bh|{bk, k += h},Σ ∼ NNT (µh,Σh), h = 1, ..., J (3.6)

where µh = 1
nh

∑
k∈∂h bk, Σh = 1

nh
Σ and nh denotes the number of neighbours of
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region h. The conditional mean vector, µh, in (3.6) is taken as an average of the

random effects associated with the neighbours of region h. The NT × NT positive

definite and symmetric matrix Σ is a hyperparameter representing the (conditional)

within region covariance of the random effects. With these conditional specifications,

the joint distribution for b is a (singular) normal distribution, b ∼ NJ×NT (0, B) with

B having generalized inverse B−1 = (D − C)
⊗

Σ−1, where D = diag{n1, ..., nJ},
and C, the so-called neighbourhood matrix, is defined by Cij = I{j ∼ i} and Cii = 0.

As discussed by Gamerman et al. (2002), this distribution for b is improper, due to

the rank deficiency of B−1. When employing this prior in our MCMC setting, we

adopt the usual convention of working with the proper conditional distributions (3.6)

and imposing a set of NT identifying linear constraints, bij
′1 = 0, (i, j) ∈ T . Posterior

propriety is then ensured by assigning a proper hyperprior to Σ (see eg. Sun et al.

1999 or Besag et al. 1995). Other approaches to dealing with this impropriety involve

extending the model to incorporate so-called propriety parameters (see e.g. Carlin and

Banerjee, 2002; Gelfand and Vounatsou, 2003) and such extensions will be considered

in Chapter 4.

The model specification is made complete by assigning prior distributions to the

remaining parameters: π({βij}), π({αij}) (or π({ρij}), (i, j) ∈ T and a hyperprior,

π(Σ). Our analysis in section 3 employs relatively vague priors for these parameters.

The posterior distribution for the representation (3.2) is then

π(Θ,Σ|X) ∝ L(X|Θ)π(b|Σ)π({αij})π({βij})π(Σ) (3.7)

where, π(b|Σ) is the density of the multivariate normal distribution associated with

the random effects. When the Weibull representation (3.3) is used, the posterior

replaces π({αij}) with π({ρij}).

3.1.2 Computational Implementation

Posterior summarization is based on MCMC samples drawn from (3.7) using a com-

ponent-wise Metropolis sampler. We have coded our algorithm in the C programming

language. The full conditional distribution of each regression coefficient is easily
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computed and is log-concave. As such, these are updated individually using Gibbs

steps in conjunction with Adaptive Rejection Sampling. The shape parameters, ρij, in

the representation (3.3) are individually updated in a similar fashion. For the model

based on (3.2), each vector αij is block updated using a random walk Metropolis step

employing a multivariate Gaussian proposal. The random effects are block updated

by region in a similar manner. Finally, Σ is easily updated with a Gibbs step when

a conditionally conjugate inverse-Wishart prior is employed. The variance of the

proposal distributions in Metropolis steps are tuned in an adaptive phase to ensure

acceptance rates of between 20 and 50 percent. Inference is then based on a second

phase where these values are held fixed. When computing the likelihood terms (3.5)

a large number of 1-dimensional integrals must be evaluated. For the Weibull model

(3.3) these integrals have closed form expressions and are thus easily computed. This

is not the case for the spline model (3.2) and we therefore use Romberg numerical

integration for evaluation. This leads to a higher computational overhead when fitting

the model based on splines. Details of the sampling algorithm for the spline model

are given below. Modifications to the algorithm required for fitting the Weibull model

are straightforward.

Denoting by ({αij}, {βij}, b,Σ) the current state of the chain, we follow steps 1

to 4 below. One iteration of the sampler consists of a complete sweep through the

four steps, at the end of which the new state is recorded.

1. Update spline coefficients αij, (i, j) ∈ T :

We update each vector of spline coefficients, αij, separately. The full condi-

tional distribution for αij based on the prior αij
ind∼ Nkij+3(0, a2I) has p.d.f.

proportional to

exp(− 1

2a2

kij+3∑

h=1

α2
ijh

)× Lij

where Lij is given by (3.5). We use a random walk Metropolis step with candi-

date generated from a multivariate normal distribution.
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2. Update regression coefficients βij, (i, j) ∈ T :

For each (i, j) ∈ T and k = 1, ..., p, we update each scalar parameter βijk

separately. The full conditional distribution for βijk
based on the prior βij

iid∼
Np(0, a2I) has p.d.f. proportional to

exp(− 1

2a2
β2

ijk
)× Lij

and is easily shown to be log-concave. As such, we employ adaptive rejection

sampling to obtain draws from this full conditional distribution in a Gibbs step.

3. Update random effects b:

We update the random effects associated with each region sequentially. Let bh

denote the vector of random effects, having length NT , associated with region

h, h = 1, ..., J . The full conditional distribution of bh has p.d.f. proportional to

[
∏

(i,j)∈T

Lijh
]× exp(−nh

2
(bh−

1

nh

∑

k∈∂h

bk)
′Σ−1(bh−

1

nh

∑

k∈∂h

bk))

where the terms Lijh
are likelihood contributions associated with the set of

subjects arising from region h. We use a random walk Metropolis step with

candidate generated from a multivariate normal distribution.

4. Update variance components Σ:

A convenient prior for the NT ×NT positive definite and symmetric matrix Σ is

the conditionally conjugate inverse-Wishart having degrees of freedom ν ≥ NT

and positive definite scale parameter A. The resulting full conditional distrib-

ution is also inverse-Wishart with degrees of freedom ν ′ = ν + J and scale

A′ = (
J∑

i=1

J∑

j=1

(Dij −Cij)bjbi
′ + A−1)−1

from which we can draw directly in a Gibbs step.



CHAPTER 3. CONTINUOUS-TIME SPATIAL MULTI-STATE PROCESSES 45

3.2 Study of Invasive Cardiac Procedure

The cardiac study involves patients, aged 25 years and older, who had been hospital-

ized for acute coronary syndrome (ACS) throughout the J = 139 local health units of

Quebec during the period beginning January 1, 1996 and ending December 31, 1999.

A total of 61,107 patients were recruited into the study, of which 40,031 were male.

Upon discharge from index hospitalization, that corresponding to the first incidence

of ACS, patients were followed over time and monitored for additional readmissions

for the disease or death. Each patient was observed from discharge until December

31, 1999 or until the time of their death if this came first. All patients had either 0,1

or 2 readmissions for the disease and there were no subjects having more than two

readmissions. Thus, at any time following discharge, each subject in the study can

be said to occupy one of the four states depicted in Figure 3.1. Roughly one-third

of the study subjects received some sort of invasive cardiac procedure during index

hospitalization. This consisted of either angiography, angioplasty or aorto-coronary

bypass. In addition to information on invasive cardiac procedure, other covariate in-

formation included the age (at discharge) and the gender of each subject. Of primary

interest was the identification of residual spatial differences in mortality and readmis-

sion rates over the local health units, that is, spatial variation not accounted for by

the covariates. A site-map of the local health unit structure is provided in Figure 3.2.

We fit the spatial continuous-time multi-state models described in the previous

section with state space S = {1, 2, 3, 4} depicted in Figure 3.1 and both Weibull

and cubic B-spline representations for the baseline intensity functions. The B-spline

representation for each q0ij(t) is based on kij = 1 inner knot placed at the median of

the observed i → j transition times. The spline representations are then based on

dim(αij) = 4 parameters; whereas, the Weibull forms use only 1 parameter, ρij, for

each (i, j) ∈ T . Regarding prior distributions, we assume αij
iid∼ N4(0, 102I) for the

spline coefficients and ρij
iid∼ Gamma(0.1, 0.1) for the shape parameters in the Weibull

model. For the remaining parameters, both models assume βij
iid∼ Np(0, 102I) with

p = 4 (three covariates plus intercept) and Σ−1 ∼ Wishart(ν,A) where setting ν = 5

and A = I ensure a relatively vague prior. Each model was fit by running four
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Figure 3.2: Site map of Quebec divided into 139 local health units.



CHAPTER 3. CONTINUOUS-TIME SPATIAL MULTI-STATE PROCESSES 47

MCMC chains in parallel and convergence of the samplers to posterior distributions

was assessed through the examination of trace plots, log-posterior monitoring and

Gelman-Rubin (1992) statistics. For the Weibull model, a burn-in of 7,000 iterations

was followed by an additional 9,000 iterations from each chain yielding a total of

36,000 samples to be used for posterior summarization. The spline model required

a greater number, 15,000, of burn-in iterations followed by another 11,000 iterations

resulting in 44,000 posterior samples.

Defining cumulative baseline transition intensities: Q0ij(t) =
∫ t

0 q0ij(u)du, poste-

rior summaries of Q014(t), Q024(t) and Q034(t), the cumulative intensities associated

with mortality (state 4) are displayed in Figure 3.3 for both the spline and Weibull

models. To assess and compare the fit of each model, Figure 3.3 also displays the

semiparametric step-function estimates obtained from a simpler analysis. The sim-

pler analysis ignores the random effects altogether and for each (i, j) ∈ T : estimates

regression coefficients using partial likelihood (via the coxph() function in R) and ob-

tains nonparametric estimates of the cumulative baseline intensity function using the

Breslow generalization of the Nelson-Aalen estimator (via the survfit() function in

R). Along the same lines, posterior summaries of the cumulative baseline intensities

associated with first and second readmission, Q012(t) and Q023(t) are given in Figure

3.4. Comparing with the semiparametric estimates, the spline model appears to fit

very well in all cases. In contrast, the simple 1-parameter Weibull representations do

not perform as well particularly for estimation of Q014(t) (Figure 3.3b) and Q012(t)

(Figure 3.4b).

In addition, we have also considered several submodels which make simplified as-

sumptions on the spatial random effects, bij, (i, j) ∈ T . In the first, we simplify

the conditional specifications (3.6) by setting µh = 0 and Σh = Σ, h = 1, ..., J .

As a result, we have bh
iid∼ N5(0,Σ), h = 1, ..., J , for each 5-vector of region spe-

cific random effects. Such a model assumes spatial independence across regions

but allows for within region dependence across transitions within each vector bh =

(b12h
, b14h

, b23h
, b24h

, b34h
)′. In the second submodel, we assume independent Gaussian
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Figure 3.3: Estimated cumulative baseline intensities associated with mortality after
0, 1 and 2 readmissions (posterior means and 95% credible intervals) a) Q014(t) -
Spline; b) Q014(t) - Weibull; c) Q024(t) - Spline; d) Q024(t) - Weibull; e) Q034(t) -
Spline; f) Q034(t) - Weibull. For comparison, the step-function estimates obtained
from the semiparametric analysis are indicated within each plot by the grey curve.
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Figure 3.4: Estimated cumulative baseline intensities of first and second readmission
(posterior means and 95% credible intervals) a) Q012(t) - Spline; b) Q012(t) - Weibull;
c) Q023(t) - Spline; d) Q023(t) - Weibull. For comparison, the step-function estimates
obtained from the semiparametric analysis are indicated within each plot by the grey
curve.
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intrinsic autoregressions for each bij, bij
ind∼ IAR(σij), (i, j) ∈ T which implies

Σ = diag{σ12,σ14, σ23,σ24,σ34}.

This model allows for spatial dependence across regions but assumes independence

between the random effects operating on different types of transitions. Finally, our

third submodel sets the random effects bij ≡ 0, ∀(i, j) ∈ T . Such a model ignores

the spatial aspect altogether and is a standard continuous-time Markov regression

model. For each of the three submodels we examine both Weibull and spline rep-

resentations for the intensity functions. In total, eight models are fit, representing

different assumptions on the spatial effects and intensity functions.

To compare the various models we employ the deviance information criterion

(DIC), a ‘fit plus penalty’ model selection tool, proposed by Spiegelhalter et al. (2002).

The criterion is given by

DIC = D(Θ) + pD

where the deviance, D(Θ), is defined in terms of (3.4) via D(Θ) = −2 log L(X|Θ)

and D(Θ), the posterior mean of the deviance, is a measure of model fit. The penalty

term, pD, is defined by pD = D(Θ) − D(Θ̄) where Θ̄ is the posterior mean of Θ.

The term pD measures the effective number of model parameters and will be lower

when the data imposes a higher level of shrinkage in the random effects. Models with

lower DIC scores are preferred as they achieve more optimal combinations of fit and

parsimony.

Table 3.1 lists the DIC and pD values for all eight models considered. The DIC

scores for the B-spline models are uniformly lower than those for the Weibull models.

For each row in Table 3.1, the pD values for the B-spline models are greater than those

for the Weibull models by about 16, a value slightly larger than the raw difference

of 15 parameters. The spline representations prove to be more flexible however as

they result in substantial improvement in model fit with the DIC scores differing

by over 700 in each case. Comparing the various models for the random effects,

the criterion seems to favor the joint spatial model defined in (3.6) over the various

submodels. Among the submodels, submodel 1 which assumes spatial independence

across regions but incorporates within region dependence in each bh is preferred over
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submodel 2 which assumes that each vector, bij, of spatial effects is independently

drawn from an IAR(σij) model. Indeed, the data seem to encourage a greater level

of shrinkage in the random effects for submodel 1 compared with submodel 2 as the

pD values of the former are smaller than those of the latter. Finally, the non-mixed

models (submodel 3) preform the worst. As expected, the pD values for these models

are the lowest and are essentially equal to the raw parameter counts of 40 (spline

model) and 25 (Weibull model); however, the resulting poor fits yield the largest DIC

scores in both cases. Overall, the model which employs B-spline representations for

intensity functions and the joint spatial model for the random effects is considered

most optimal according to the criterion. We therefore summarize the results of this

model further.

B-Spline Weibull
Model for random effects pD DIC pD DIC
b ∼ N5J(0,B), B−1 = (D −C)

⊗
Σ−1 268 71 252 787

bh
iid∼ N5(0,Σ), h = 1, ..., J 353 128 336 839

bij
ind∼ IAR(σij), (i, j) ∈ T 426 156 410 873

bij ≡ 0, ∀(i, j) ∈ T 40 612 24 1,336

Table 3.1: DIC scores (after subtracting 340,000) and pD for the eight models consid-
ered for Quebec cardiac data.

Table 3.2 presents posterior summaries for the regression coefficients, β14, β24 and

β34, associated with each of the three transitions related to mortality (transitions into

state 4). Invasive cardiac procedure is associated with substantially lower mortality

rates in all three cases. The posterior mean (95% CI) age and gender adjusted relative

risks are 0.44 (0.40,0.47) for patients with no readmissions, 0.53 (0.45,0.62) for patients

with one readmission and 0.50 (0.37,0.66) for those who have been admitted twice

for the disease. Table 3.3 presents posterior summaries of the regression coefficients

associated with the remaining two transitions, those related to readmission. We note

that invasice cardiac procedure is associated with decreased rates of first readmission.

The age and gender adjusted posterior mean (95 % CI) relative risk is 0.76 (0.73,0.79).
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From Tables 3.2 and 3.3 we also note that event histories depend on the age of subjects.

Older patients tend to have higher rates of mortality and readmission, an intuitive

result.

Table 3.4 gives posterior summaries of the variances and correlations associated

with the hyperparameter Σ. Interpretation here is delicate as Σh = 1
nh

Σ is not di-

rectly interpretable as the variance matrix of bh. Rather, it is the variance of bh

conditional on the random effects at the neighbouring sites. Most striking in the

table is the relatively large and positive conditional correlation between b12h
and b23h

suggesting that regions which have above average residual first readmission rates will

also tend to have above average residual second readmission rates. The positive cor-

relation also suggests that missing (area level) covariates, represented by the random

effects, would have consistent effects on the two types of transitions (see e.g. Cook and

Ng 1997). Figure 3.5 compares the estimates of each bij in a matrix scatter plot. The

plots seem to indicate positive correlation among the estimates of b14h
, b24h

and b34h
,

the random effects which operate on mortality rates as well as positive correlation

between estimates of b12h
and b23h

.

The random effects capture residual variation in mortality and readmission rates

over the local health units. To examine the extent of this variation, Figure 3.6 dis-

plays boxplots summarizing the posterior samples of b14, b24 and b34. The posterior

distributions of these spatial effects seem to vary considerably across the local health

units, perhaps further justifying their inclusion in the model. The posterior means of

these random effects are mapped in Figure 3.7. The three maps reveal similar patterns

and indicate higher residual mortality risks towards the southern most regions of the

province. The fact that residual mortality risks are higher in these predominantly

urban areas might be further studied as in Kunzli et al. (2005) who report associa-

tions between air pollution and cardiovascular morbidity and mortality. The posterior

samples of b12 and b23 are summarized and estimates mapped in Figures 3.8 and 3.9

respectively. Figure 3.8 reveals substantial differences in the posterior distributions

across the local health units and the maps indicate higher risks of readmission towards

the southwest and northeast regions of the province. These are primarily rural areas,

in contrast with the higher mortality risks for urban areas noted above. The higher
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Table 3.3: Posterior summaries of regression coefficients associated with each of the
two transitions associated with readmission

1 → 2 2 → 3
Parameter Mean 95% CI Mean 95% CI
Intercept −5.90 (-6.029,-5.77) −6.77 (-7.11,-6.48)
Revasc −0.27 (-0.32,-0.23) −0.0056 (-0.10,0.088)
Age 0.0049 (0.0034,0.0065) 0.013 (0.0094,0.016)
Gender(Male) −0.0085 (-0.050,0.033) −0.15 (-0.24,-0.060)

Table 3.4: Posterior summaries for the conditional covariance matrix, Σ, obtained
from the final chosen model.

Parameter Mean 95% CI
Σ11 (variance component b12h

) 0.12 (0.083, 0.17)

Σ22 (variance component b14h
) 0.086 (0.053,0.13)

Σ33 (variance component b23h
) 0.21 (0.12,0.34)

Σ44 (variance component b24h
) 0.17 (0.095, 0.30)

Σ55 (variance component b34h
) 0.16 (0.078, 0.31)

Σ12√
Σ11Σ22

(conditional correlation b12h
and b14h

) −0.20 (-0.47,0.090)
Σ13√

Σ11Σ33
(conditional correlation b12h

and b23h
) 0.52 (0.26,0.71)

Σ14√
Σ11Σ44

(conditional correlation b12h
and b24h

) −0.43 (-0.67, -0.13)
Σ15√

Σ11Σ55
(conditional correlation b12h

and b34h
) −0.25 (-0.62, 0.21)

Σ23√
Σ22Σ33

(conditional correlation b14h
and b23h

) −0.33 (-0.60, 0.00082)
Σ24√

Σ22Σ44
(conditional correlation b14h

and b24h
) 0.39 (0.066, 0.64)

Σ25√
Σ22Σ55

(conditional correlation b14h
and b34h

) 0.18 (-0.27, 0.54)
Σ34√

Σ33Σ44
(conditional correlation b23h

and b24h
) −0.35 (-0.66, 0.022)

Σ35√
Σ33Σ55

(conditional correlation b23h
and b34h

) −0.21 (-0.63,0.35)
Σ45√

Σ44Σ55
(conditional correlation b24h

and b34h
) 0.34 (-0.16, 0.69)
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Figure 3.5: Matrix scatter plot comparing the posterior mean estimates of b14, b24,
b34, b12 and b23.
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residual readmission rates could be reflecting differing health policy in these regions.

Geographic trends such as those revealed in Figures 3.7 and 3.9 can be useful as they

may give clues regarding missing variables that underlie the autocorrelation observed

in the maps.

3.3 Discussion

There are several directions for future work which are currently being investigated.

First, the methodology presented here will be extended to accommodate processes

under panel observation. In this scenario, subjects can only be observed at discrete

and irregular time points and the exact timing of events is unknown. With panel data,

the complexity of the likelihood increases significantly compared with the form (3.4)

considered here. The Bayesian framework adopted here, allows for data augmentation

which may prove useful in such a missing data setting.

In our modelling we have allowed the spatial effects, bij, to be correlated across

different transition types (i, j) ∈ T ; whereas, the regression coefficients, βij, are

assumed independent. This assumption could be relaxed allowing for correlation in

the covariate effects across transitions. For example, examination of Table 3.2 reveals

that both invasive cardiac procedure and age have similar effects on all transitions

into state 4. In addition, models containing subject specific (in addition to the region

specific) frailty terms are also being investigated.

Techniques for the modelling of intensity functions using splines will also be re-

fined by addressing the crucial problem of choosing the number and positions of the

knots. In situations where the transition intensities follow more complicated func-

tional forms, a larger number of knots and advanced knot selection techniques may

prove useful. For example, a close examination of Figures 3.3 and 3.4 suggests the

need for an additional knot at some point during early time periods to model the ‘dip’

apparent when compared to the semiparametric estimates. We are examining several

approaches including the use of penalized splines (P-splines) as well as adaptive knot

selection where inference is conducted within a reversible jump MCMC setting.

Finally, moving beyond the spatial epidemiologic setting considered here, it is
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Figure 3.6: Boxplots (arranged in increasing order by posterior median) obtained from
posterior samples of random effects associated with mortality a) b14; b) b24; c)b34.
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a)     

 
b)              

 
c) 

 

Figure 3.7: Posterior mean maps of random effects associated with mortality a) b14;
b) b24; c)b34.
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Figure 3.8: Boxplots (arranged in increasing order by posterior median) obtained from
posterior samples of random effects associated with readmission a) b12; b) b23.
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a) 
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Figure 3.9: Posterior mean maps of those random effects associated with first and
second readmission a) b12; b) b23.
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envisioned that our methodology can be applied in other areas where multi-state data

are collected and spatial aspects are present but perhaps more subtle. For example,

this may be the case in longitudinal studies in physiology, where several joints on the

human body are examined and dependence between joints is a factor.



Chapter 4

Extending the Spatial

Mover-Stayer Model

In this Chapter we return to the discrete-time setting and refocus our attention on

the spatially correlated mover-stayer model developed in Chapter 2. There, method-

ological developments focussed primarily on inference through maximum likelihood

although a supplementary Bayesian analysis was carried out for comparison. In this

Chapter, we focus on Bayesian inference and develop methodological extensions within

this framework.

We begin in Section 4.1 by motivating an expansion of the model. Such an ex-

pansion incorporates a joint spatial structure for the random effects. As with the

multivariate intrinsic autoregression employed in Chapter 3, the model for the ran-

dom effects, which we present in Section 4.2, allows for both spatial correlation as

well as correlation across transition probabilities. Section 4.2 also takes up the issue

of hypothesis testing with respect to the number of mixture components. Specifically,

we develop a test for ‘stayers’ in our mover-stayer model. Such a test is based on the

assignment of a discrete mass prior to the mixing probability. A Metropolis-Hastings

algorithm is then developed to produce posterior summaries including the posterior

probability associated with the hypothesis of interest. We illustrate the techniques

through an analysis of synthetic data in Section 4.3 and through a re-analysis of the

weevil infestation data in Section 4.4. Section 4.4 also considers model validation

62
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based on posterior predictive methods (Gelman et al. 1996).

4.1 Motivation

The mover-stayer model presented in Chapter 2 allowed for spatial correlation through

the incorporation of two vectors of random effects: b0 = (b01, ..., b0N)
′

and b1 =

(b11, ..., b1N)
′
. For the ith subject, b0i and b1i operate on transition probabilities ac-

counting for spatial correlation in transitions out of states 0 and 1 respectively. Each

vector of spatial effects b0 and b1 was assumed independently drawn from a Gaussian

intrinsic autoregression: bl
ind∼ IAR(σl), l = 0, 1. While allowing for spatial correla-

tion, this prior assumes independence within each pair b(i) = (b0i, b1i)′ and thus the

prior can be factorized π(b0, b1|σ0,σ1) = π(b0|σ0)π(b1|σ1). Upon observation of the

data, Y , this prior independence, when combined with the likelihood which factorizes

in a similar manner, results in a separable posterior

π(b0, b1,Θ|Y ) = π(b0,Θ0|Y0)× π(b1,Θ1|Y1 ) (4.1)

where Θ = Θ0 ∪ Θ1 denotes the remaining model parameters separated into two

disjoint sets, and Y0 and Y1 are defined in (2.7) and (2.8) respectively. The resulting

a posteriori independence of b0 and b1, when justified, can be used advantageously

for model fitting allowing the use of standard software. In this case, the posterior

factorization (4.1) implies that two separate and independent MCMC samplers may

be used: one to draw posterior samples of b0 and Θ0 and another to draw posterior

samples of b1 and Θ1. Sampling from the individual posterior factors π(b0,Θ0|Y0)

and π(b1,Θ1|Y1 ) can be accomplished using the WinBugs software.

Figure 4.1a compares the posterior mean estimates of b0i and b1i in a scatter

plot obtained from the analysis of the weevil infestation data in Chapter 2. Under

the model (4.1), these estimates should not display correlation (as posterior samples

should be independent). Nevertheless, the scatter plot appears to indicate a residual

negative correlation within each pair b(i) = (b0i, b1i)′ of estimates. Considering the

context of the analysis, the negative correlation is intuitive. It implies that those trees

having an above average probability of transition into the infected state (large b0i) will
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Figure 4.1: Scatter plot comparing posterior mean estimates of b0 and b1: a) Esti-

mates obtained in Chapter 2 assuming bl
ind∼ IAR(σl), l = 0, 1; b) Estimates obtained

from expanded model assuming b ∼ 2CAR(κ,Σ).
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have a correspondingly lower than average probability of transition into the uninfected

state (small b1i). An expanded model, accommodating such correlation is presented

in the next section. Moving beyond our specific application, such an extended model

will serve usefully in a wide variety of scenarios where random effects represent hetero-

geneity arising from missing covariates. The within-pair correlation accommodated

by the extended model can lend insight into the nature of this heterogeneity.

4.2 An Extended Spatial Mover-Stayer Model

Following the notation of Chapter 2, we assume there are N spatially arranged sub-

jects and each subject is observed over a set of equally spaced time points. As before,

we let yi = (yi(0), ..., yi(ni − 1))′, i = 1, ..., N , denote the response vector of binary

values obtained from subject i, where yi(t) indicates the state occupied by subject i

at time t and xi(t) is a corresponding vector of covariates.

We let Θ denote the collection of all model parameters (now including the random

effects). At the first level of the model, we assume, conditional on Θ, that each yi is

independently drawn from a two-component mixture having density fMS(yi|Θ) given

by

fMS(yi|Θ) = pMfMC(yi|Θ) + (1− pM)I(yi = 0) (4.2)

where pM ∈ [0, 1] is a mixing probability; and fMC(yi|Θ) is the density of a 1st order

two-state Markov chain, which, upon adopting the mixed logistic specifications (2.3)

takes the form

fMC(yi|Θ) = pyi(0)
I (1− pI)

1−yi(0) × L0i × L1i (4.3)

where

L0i =
∏

t∈D0i

exp(β0
′xi(t) + g0(t,α0) + b0i)yi(t)

1 + exp(β0
′xi(t) + g0(t,α0) + b0i)

(4.4)

L1i =
∏

t∈D1i

exp(β1
′xi(t) + g1(t,α1) + b1i)1−yi(t)

1 + exp(β1
′xi(t) + g1(t,α1) + b1i)

(4.5)

and, as before, pI is an initial state probability; g0(t,α0) and g1(t,α1) are temporal

trends modelled using the B-spline representations (2.4); and
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Dli = {t > 0|yi(t− 1) = l}, l = 0, 1. At this lowest level of the hierarchy, the model

is the same as that presented in Chapter 2. Changes in the model structure occur at

the second level, where we assign a prior distribution to the random effects.

To jointly model the two vectors of spatial random effects, b0 and b1, we adopt a

bivariate conditional autoregressive model. We let b denote the vector of all random

effects, grouped by subjects b = (b′(1), ...,b
′
(N))

′. As with the joint spatial model

employed in Chapter 3, the prior for b is a Markov random field specified through a

set of conditional distributions:
(

b0i

b1i

) {(
b0j

b1j

)}

j $=i

∼ N2(µi,Σi), i = 1, ..., N (4.6)

where

µi =
κ

Ci·

∑

j

Cijb(j) (4.7)

and Σi = 1
Ci·

Σ. Here, as in Chapter 2, Cij is a scalar weight measuring the closeness

or adjacency of subjects i and j (Cii = 0); Ci· =
∑

j Cij; and κ is a so-called propriety

parameter. With these conditional specifications, the joint distribution for the vector

of all random effects (grouped by subjects) is given by b ∼ N2N(0,B) with B having

generalized inverse B−1 = (D−κC)
⊗

Σ−1, where D = diag{C1., C2., ..., CN.}. Note

that by taking κ = 1 we obtain a 2-dimensional version of the multivariate intrin-

sic autoregression employed in Chapter 3. Along the same lines, taking κ = 1 and

Σ = diag{σ2
b0,σ

2
b1} we obtain the spatial structure used in Chapter 2. As discussed

by Cressie (1993) and Sun et al. (1999) in the univariate spatial setting and by Carlin

and Banerjee (2002) and Gelfand and Vounatsou (2003) in the multivariate setting,

restricting κ to an appropriate range ensures that the joint prior for the random effects

is proper. In particular, taking κ ∈ [0, 1) will result in propriety (a wider range allow-

ing negative values is allowable but not desirable). Within this range, lower values

of κ imply a lesser degree of spatial dependence with κ = 0 corresponding to spatial

independence. Following Carlin and Banerjee (2002) we denote this distribution by

2CAR(κ,Σ).

The model specification is made complete by assigning prior distributions to the
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remaining components of Θ = {b,κ,Σ, β0,β1,α0,α1, pM , pI}. The posterior distri-

bution then takes the form

π(Θ|Y) ∝ [
N∏

i=1

fMS(yi|Θ)]× π(b|κ,Σ)π(κ)π(Σ)π(β0)π(β1)π(α0)π(α1)π(pM)π(pI)

(4.8)

In section 4.2.2 we outline two separate Metropolis-Hastings algorithms to draw sam-

ples from this distribution.

4.2.1 Hypothesis Testing for Stayers

Consider testing the point-null hypothesis: H0 : pM = 1 against H1 : pM += 1 cor-

responding to the mixing probability. In this case, H0 corresponds to a particular

submodel of interest: that model which reduces the number of mixture components

from two to one. In the forest ecological setting, such a test is of scientific interest

and relates to the existence of infection resistant trees. Examining (4.2) it is clear

that pM = 1 implies that the Markov component, fMC(yi|Θ), completely describes

the transition process and the point mass, I(yi = 0), corresponding to stayers, has no

role to play.

Within the frequentist framework, testing for stayers in the mover-stayer model

was considered by Albert (1999) in a purely longitudinal setting. There, a likelihood

ratio (LR) test was employed. Such a test is slightly non-standard as the null hy-

pothesis occurs on the boundary of the parameter space. The resulting asymptotic

distribution of the LR statistic, under the null, was presented as a mixture of the

standard chi-squared (with 1 d.f.) and a point mass at zero. An alternative testing

procedure might have employed methods based on the score statistic. In our more

complicated spatial-longitudinal setting, such an approach might be integrated within

a Monte Carlo maximum likelihood framework such as that developed in Chapter 1.

For example, a simulated version of the score test could be conceived. While such an

approach warrants further investigation, we proceed here within the Bayesian frame-

work.

The Bayesian approach to hypothesis testing is less formal and is typically based
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on the posterior probability Pr(H0|Y) =
∫

H0
dπ(Θ|Y), with large values providing

evidence in favor of H0. The posterior probability is an appealing measure of evidence;

it is easily interpreted and communicated to subject matter specialists. A closely

related approach employs the Bayes factor (Kass and Raftery 1995) which is defined

as the posterior odds in favor of H0 over the prior odds in favor of H0: BF =
Pr(H0|Y)
Pr(H1|Y)/

Pr(H0)
Pr((H1) . In fact, when a fair prior, Pr(H0) = Pr(H1) = 1

2 , is employed (as

we shall do here), the two approaches are equivalent. Assuming such a fair prior,

Table 4.1, adapted from Raftery (1996), gives a scale for interpreting the posterior

probability as a summary of evidence for H0 provided by the data.

Pr(H0|Y) evidence for H0

< 1
2 negative (supports H1)

1
2 to 3

4 barely worth mentioning
3
4 to 12

13 positive
12
13 to 150

151 strong

> 150
151 very strong

Table 4.1: Calibration of the posterior probability assuming a fair prior Pr(H0) =
Pr(H1) = 1

2 . The table is adapted from Raftery (1996), where it was use to calibrate
the Bayes factor.

A critical issue is the choice of prior for pM . A continuous prior distribution

such as the Uniform(0, 1) which we employed in Chapter 2, or more generally, a beta

distribution are not compatible with a point-null hypothesis. Such continuous priors

would imply that H0 is a priori impossible. The data will not modify this absolute

information and the posterior probability of H0 will also be zero. As a solution, we

adopt a discrete mass approach adopting the prior

pM ∼ ωI(pM = 1) + (1− ω)Beta(α, β) (4.9)

which is a mixture of a beta distribution with a point mass on the null value. Such

discrete mass priors were considered by Geweke (1996) and George and McCullough
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(1997) for variable selection problems in regression. Here, we set ω = 0.5 correspond-

ing to the fair prior mentioned above. By choosing a prior for pM with a point mass

at 1, prior probability is allocated to the submodel with only one mixture component.

Finally, we note that a simpler approach would avoid testing the point-null hy-

pothesis altogether and simply examine the posterior distribution of pM under the full

mover-stayer model. Indeed, such an approach is advocated by Gelman et al. (2003

p.339) in a related problem. Along these lines, our analysis of the weevil infestation

data in Chapter 2 produced a posterior 95% credible interval for pM of (0.86, 0.93).

From this, we might conclude that the posterior places a sufficiently small amount

of mass in the neighbourhood of pM = 1 and there no need to consider the simpler

model. Nevertheless, in other applications of our model, the posterior interval may

not be so clearly bounded away from pM = 1 and the choice between the full model

and the submodel will be less clear. In addition, the scientific importance of the null

hypothesis in our application seems to warrant a more rigorous approach.

4.2.2 Computational Implementation

Posterior summarization is based on MCMC samples drawn from (4.8) using a com-

ponent-wise Metropolis-Hastings sampling algorithm. We present two such algorithms

which have both been coded in the C programming language. Following the data

augmentation strategy of Chapter 2, we introduce N latent allocation variables, zi
iid∼

Bernoulli(pM), i = 1, ..., N , where each zi allocates subject i into one of two mixture

components

fMS(yi|Z,Θ) =





I(yi = 0) if zi = 0,

fMC(yi|Θ) if zi = 1
(4.10)

This alternative representation of the mixture model through the use of hidden allo-

cation variables simplifies computation.

The full conditional distribution of each regression and B-spline coefficient is log-

concave. As such, we employ adaptive rejection sampling obtaining draws from each

full conditional distribution in a Gibbs update step. The initial state probability, pI ,

is assigned a conditionally conjugate beta prior and is thus also updated in a Gibbs
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step. The random effects are blocked into subject pairs and updated using a random

walk Metropolis step employing a bivariate Gaussian proposal. As in Chapter 3,

we assign the hyper-parameter, Σ, a conditionally conjugate inverse-Wishart prior

and draw directly from the full conditional distribution. The hyper-parameter κ is

updated using a Metropolis-Hastings step employing a logit-normal proposal. In other

words, we transform κ to the real line and update via random walk Metropolis using

a Gaussian proposal (after re-transforming the proposal is not symmetric and hence

this is a Metropolis-Hastings step). Each allocation variable, zi, is easily updated by

drawing directly from the corresponding full conditional distribution. Finally, careful

consideration must be given to the update of the mixing probability, pM , due to the

discrete mass prior (4.9). We consider two different methods for updating pM and this

leads to two different algorithms. The first is based on a Metropolis-Hastings update

where the allocation variables, zi, i = 1, ..., N , have been integrated out. The second

is based on a Gibbs update which includes the allocation variables.

A Metropolis-Hastings update may be employed with careful choice of the proposal

distribution. For example, a standard random walk Metropolis step is not available

here. Gottardo and Raftery (2004) discuss the measure theoretic details of defining a

Markov transition kernel in this setting and more general settings involving Bayesian

computation with mixtures of singular distributions. In our case, we must employ

a proposal distribution which places an atom at pM = 1. In doing so, the usual

Metropolis-Hastings formula for the acceptance probability will yield a valid update

step. This leads to our first algorithm, which we present below in full detail.

Algorithm 1

Denoting by (pM , {zi}, pI , b,Σ, κ, β0,β1,α0,α1) the current state of the chain, we

follow steps 1 to 8 below. One iteration of the sampler consists of a complete sweep

through the eight steps, at the end of which the new state is recorded.

1. Update pM :

If the current value of pM does not equal 1, then follow step (a); otherwise,

follow step (b).
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(a) pM += 1 : Propose a new value p∗M = 1. The Metropolis-Hastings accep-

tance probability for this move, assuming the prior (4.9) is p = Min(1, A)

where

A =
1

pN−N0
M

× ω

1− ω
× f(pM |a, b)

f(pM |α, β)
×

∏

{i|yi=0}

(1− pI)L0i

pM(1− pI)L0i + (1− pM)

(4.11)

(b) pM = 1 : Propose a new value p∗M from a Beta(a,b) distribution. The

Metropolis-Hastings acceptance probability for this move, assuming the

prior (4.9) is p = Min(1, A) where

A = (p∗M)N−N0 × 1− ω

ω
× f(p∗M |α, β)

f(p∗M |a, b)
×

∏

{i|yi=0}

p∗M(1− pI)L0i + (1− p∗M)

(1− pI)L0i

(4.12)

In (4.11) and (4.12), N0 = #{i|yi = 0}; f(·|x, y) is the density of a beta distrib-

ution with mean x
x+y and variance xy

(x+y)2(x+y+1) ; a and b are tuning parameters;

and finally, L0i is a likelihood contribution given by (4.4).

Overall, starting from pM , the proposal sets the candidate value p∗M to 1 if

pM += 1. Otherwise, the proposal generates a candidate p∗M += 1 from a Beta(a, b)

distribution. From theorem 1 of Gottardo and Raftery (2004) the density of this

proposal is given by

q(p∗M |pM) = [1− I(pM = 1)]I(p∗M = 1) + I(pM = 1)f(p∗M |a, b)[1− I(p∗M = 1)]

To set the tuning parameters a and b, we run a pilot analysis and fit a simpler

model that assumes a uniform(0, 1) prior for pM . The values of a and b are then

chosen so that the mean and variance of the corresponding beta distribution

match the posterior mean and variance of pM obtained from the pilot run.

2. Update zi, i = 1, ..., N :

If pM = 1 set zi = 1, i = 1, ..., N . Otherwise, the full conditional distribution of
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each zi is Bernoulli(pzi) where

pzi =






1 if yi += 0,
pM (1−pI)

∏ni−1
t=1 [1+exp(β0

′xi(t)+g0(t,α0 )+b0i)]−1

(1−pM )+pM (1−pI)
∏ni−1

t=1 [1+exp(β0 ′xi(t)+g0(t,α0 )+b0i)]−1
if yi = 0

(4.13)

We draw directly from this distribution in a Gibbs step.

3. Conditional update of pM :

If pM = 1 we skip this step. Otherwise, we perform another update of pM , by

obtaining a draw from the full conditional distribution of pM given pM += 1.

This full conditional is a Beta(α +
∑N

i=1 zi, N + β −
∑N

i=1 zi) distribution from

which we draw directly.

This conditional update, is not strictly necessary for the Markov chain to be

ergodic; nevertheless, it is included with the aim of improving mixing of the

sampler.

4. Update pI :

Assuming a uniform(0, 1) prior, the full conditional distribution for pI is Beta(1+
∑N

i=1 yi(0)zi, 1+
∑N

i=1 zi[1−yi(0)]) from which we draw directly in a Gibbs step.

5. Update random effects b:

We update the pair of random effects associated with each subject sequentially.

The full conditional distribution of each pair, b(i), i = 1, ..., N , has p.d.f. pro-

portional to

Lzi
0i × Lzi

1i × exp(−Ci·

2
(b(i) −

κ

Ci·

∑

j

Cijb(j))
′Σ−1(b(i) −

κ

Ci·

∑

j

Cijb(j)))

where L0i and L1i are given by (4.4) and (4.5) respectively. We use a random

walk Metropolis step with candidate generated from a bivariate normal distrib-

ution.
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6. Update variance components Σ:

A convenient prior for the 2×2 positive definite and symmetric matrix Σ is the

conditionally conjugate inverse-Wishart having degrees of freedom ν ≥ 2 and

positive definite scale parameter A. The resulting full conditional distribution

is also inverse-Wishart with degrees of freedom ν ′ = ν + N and scale

A′ = (
N∑

i=1

N∑

j=1

(Dij − κCij)b(j)b(i)
′ + A−1)−1

from which we can draw directly in a Gibbs step.

7. Update κ:

We employ a uniform(0,0.99) prior for κ. The resulting full conditional distrib-

ution then has p.d.f. proportional to

fc(κ) = [
N∏

i=1

(1− κλi)]

× exp(−1

2
trace{

N∑

i=1

N∑

j=1

(Dij − κCij)b(j)b(i)
′Σ−1})× I(0 ≤ κ ≤ 0.99)

where λ1, ...,λN are the eigenvalues of D−1C. A candidate value κ∗ is obtained

by transforming κ to the real line and applying a random walk Metropolis step

as follows:

(a) Obtain a draw, x, from a normal(0, c) distribution, where c > 0 is a tuning

parameter.

(b) Let y∗ = log( κ
0.99−κ) + x

(c) Let κ∗ = 0.99 ∗ exp(y∗)
1+exp(y∗)

The Metropolis-Hastings acceptance probability for this move, is p = Min(1, A)

where

A =
fc(κ∗)

fc(κ)
× κ∗(0.99− κ∗)

κ(0.99− κ)
(4.14)

The second term on the right hand side of (4.14) arises from the Jacobian of

the transformation.
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8. Update regression coefficients β0:

We update each scalar parameter β0k
separately. The full conditional distribu-

tion for β0k
based on the prior β0k

iid∼ N(0, a2) has p.d.f. proportional to

exp(− 1

2a2
β2

0k
)×

∏

{i|zi=1}

L0i

and is easily shown to be log-concave. As such, we employ adaptive rejection

sampling to obtain draws from this full conditional distribution in a Gibbs step.

The parameters β1,α1 and α0 are updated analogously.

We note a connection between this algorithm and the reversible jump MCMC method-

ology proposed by Green (1995) for Bayesian model determination. In the reversible

jump setting, a Markov chain is constructed for sampling over both parameter and

model space where the dimension of the parameter space is allowed to vary from one

model to another. In our problem, there are two competing models: the full spatial

mover-stayer model and the model with only one mixture component obtained by

setting pM = 1. Within the reversible jump literature, step 1 of our algorithm would

be referred to as a between-model move and all other steps would be termed within-

model moves. As the two models are nested, the only dimension change necessary

is the addition or deletion of pM from the parameter vector. As such, the standard

Metropolis-Hastings formula holds provided the proposal incorporates a point mass

at pM = 1. The reversible jump formalism is therefore not explicitly needed. Never-

theless, if such an approach were employed, we would obtain the same algorithm.

Algorithm 2

In step 1 of our first algorithm, the allocation variables, zi, i = 1, ..., N , were

integrated out. If they are included, the full conditional distribution for pM is available

full conditional [pM ] ≡ p∗I(pm = 1) + (1− p∗)Beta(α +
N∑

i=1

zi, N + β−
N∑

i=1

zi) (4.15)

where p∗ is the full conditional probability of H0 and is given by

p∗ =
ωI(zi = 1, ∀i = 1, ..., N)

ωI(zi = 1, ∀i = 1, ..., N) + (1− ω)B(α+
∑N

i=1 zi,N+β−
∑N

i=1 zi)
B(α,β)
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where B(·, ·) denotes the beta function. Our second algorithm, is obtained as a

modification of the first by replacing step 1 with a Gibbs update. That is, we draw

pM directly from the full conditional (4.15). In addition, step 3, the conditional update

of pM in algorithm 1, is removed. All other steps remain the same.

To test our sampling algorithms, we analyze three synthetic datasets in Section

4.3. We then conduct a reanalysis of the weevil infestation data in Section 4.4.

4.3 Analysis of Synthetic Data

To test our MCMC algorithms, we fit our model to synthetic data. We simulate

data from the spatial mover-stayer model under three different scenarios. Spatially,

we assume that data are collected on a 20 × 20 regular lattice corresponding to 400

subjects under observation; where, associated with each subject is a position on the

lattice given by coordinates (x, y), x = 1, ..., 20, y = 1, ..., 20. Data are generated

for each subject over seven time points corresponding to t = 0, ..., 6. For all three

simulation scenarios, we assume an initial state probability of pI = 0.15 and time-

homogeneous subject specific transition probabilities given by logit(p01i(t)) = β0 + b0i

and logit(p10i(t)) = β1 + b1i, i = 1, ..., 400, t = 1, ..., 6. Transitions are therefore

governed by two intercepts, β0 and β1 and random effects which we assume follow the

2CAR(κ,Σ) model. We set the intercepts to β0 = −0.1 and β1 = 0.1. For the random

effects, we assume a 1st order neighbourhood system. That is, we set the weights, Cij,

in (4.7) to Cij = I{d(i, j) ≤ 1} where d(i, j) denotes the distance between subjects i

and j. Depending on their position, each subject will therefore have either 4, 3 or 2

neighbours. The hyperparameters in the 2CAR model are set to κ = 0.9 and

Σ =

(
1 −0.75

−0.75 1

)

Using these values of the hyperparameters in conjunction with the full conditionals

(4.6), we ran the Gibbs sampler to obtain a realization of the random effects b. This

realization is displayed in Figure 4.2, where we have mapped the simulated random

effects on their corresponding lattice positions, and in Figure 4.3 where a scatter plot



CHAPTER 4. EXTENDING THE SPATIAL MOVER-STAYER MODEL 76

illustrates the negative correlation between each pair b(i) = (b0i, b1i)′ of simulated

values. Finally, the three different data sets correspond to three different values for

the mixing probability: pM = 0.90, pM = 0.93 and pM = 1.0.

For each simulated dataset, we fit the extended spatial mover-stayer model as-

suming: g0(t,α0) ≡ 0 and g1(t,α1) ≡ 0; independent N(0, 103) priors for the two

intercepts; a Uniform(0, 1) prior for pI ; a Uniform(0, 0.99) prior for κ; a vague inverse-

Wishart(ν,A) prior Σ, with ν = 2 and A = I; and finally, we take α = β = 1 in the

discrete mass prior (4.9) assigned to pM . We apply both of our sampling algorithms

to obtain draws from the corresponding posterior distribution. For each algorithm,

we run one chain for 50,000 burn-in iterations, followed by an additional 200,000 it-

erations used for posterior summarization. Posterior 95% credible intervals for each

parameter are given in Table 4.2 along with estimates of Pr(pM = 1|Y). These esti-

mates are obtained from the Monte Carlo output as P̂ r(H0|Y) = 1
J

∑J
j=1 I(p(j)

M = 1),

where p(j)
M , j = 1, ..., J , are the posterior draws of pM . The Monte Carlo error for this

estimate is computed based on the method of batch means.

In each case, both algorithms give similar results. Regarding the model parame-

ters, the results are in line with our expectations as all 95% credible intervals cover

the true values. When data are simulated with a true value pM = 1 (simulation 3),

support for the null hypothesis H0 : pM = 1, as measured by the posterior probability

Pr(pM = 1|Y), is strong. In simulation 2, where the true value is set to pM = 0.93,

the evidence for H0 is negative as the posterior supports pM += 1. Finally, we note

that in simulation 1, where the true value of pM was set to its smallest value of 0.90,

neither of the two algorithms produce a single iteration where pM = 1 (resulting in

P̂ r(pM = 1|Y) = 0). This is presumably due to an essentially negligible amount of

posterior mass placed on this value for data simulated under this scenario. In all three

cases, results seem reasonable and intuitive given the simulation settings. As our two

algorithms employ vastly different mechanisms for updating pM , we are encouraged

by the similarity of the estimates, P̂ r(H0|Y), obtained from each one.
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a)

b)

Figure 4.2: Maps of simulated random effects. Each map plots the exponential of the
simulated random effect as a circle, where larger circles correspond to larger values
(a) exp(b0i), i = 1, ..., 400; (b) exp(b1i), i = 1, ..., 400.
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Figure 4.3: Scatter plot comparing simulated values of b0 and b1.
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4.4 Analysis of Tree Infection data

In this section we build upon the analysis of the weevil infestation data conducted

in Chapter 2 by fitting the extended spatial mover-stayer model developed in this

chapter. We employ the same regression regression specifications as Chapter 2

logit(p01i(t)) = β01Di + β02Ai(t− 1) + g0(t,α0) + b0i

logit(p10i(t)) = β11Di + β12Ai(t− 1) + g1(t,α1) + b1i

i = 1, ..., 2662, t = 1, ..., 6

where, Di is a local measure of tree density; Ai(t− 1) is a local measure of infection

density; and g0(t,α0) and g1(t,α1) are cubic B-splines with one inner knot placed at

t = 4 years. For the random effects, we define the weights in the 2CAR(κ,Σ) model

by Cij = I{d(i, j) ≤ 10m}, as justified in Chapter 2. Regarding prior distributions,

we assume a Uniform(0, 1) prior for pI and assign independent N(0, 103) priors for the

regression coefficients and parameters of cubic spline terms. The hyperparameters,

κ and Σ, are assigned Uniform(0, 0.99) and inverse-Wishart(ν,A) priors respectively

where we again set ν = 2 and A = I. Finally, for the discrete mass prior assigned

to pM , we take α = β = 1. The prior is then a mixture of a point mass and a

Uniform(0, 1) distribution.

We fit the model using both of our MCMC algorithms. For each algorithm, we

ran two initially overdispersed sampling chains in parallel. With regards to initial

values for pM , one chain was initialized at pM = 1 while the other was initialized at

pM = 0.89, the point estimate obtained from the Chapter 2 analysis. Each chain was

run for an initial 50,000 burn-in iterations followed by an additional 500,000 iterations.

This resulted in a total of 1,000,000 iterations to be used for posterior inference. As

with our analysis of the simulated data in Section 4.3, the results obtained from both

algorithms are virtually identical. As such, we only present the results obtained from

algorithm 1. Posterior summaries of model parameters are given in Table 4.3. Results

regarding regression coefficients and the initial probability, pI , are very similar to those

obtained from the simpler model fit in Chapter 2 (see Table 2.1 for comparison).

Estimates of the temporal trends are shown in Figure 4.4. These are also similar to



CHAPTER 4. EXTENDING THE SPATIAL MOVER-STAYER MODEL 81

Uninfected → Infected Infected → Uninfected
Parameter Mean Sd Mean Sd
Intercept −0.52 0.15 0.027 0.21

Di −0.018 0.0032 0.0092 0.0047
Ai(t− 1) 0.013 0.0079 −0.0062 0.011
σb0/σb1 2.86 0.35 3.26 0.48

pI 0.18 0.0084 − −
pM 0.90 0.017 − −
ρ −0.96 0.030 − −
κ 0.98 0.015 − −

Table 4.3: Posterior summaries obtained from fitting the extended spatial mover-
stayer model to the weevil infestation data. Here, we have defined σb0 =

√
Σ11,

σb1 =
√

Σ22 and ρ = Σ12√
Σ11Σ22

.

the estimates obtained from the simpler model (see Figure 2.5 for comparison). The

estimate of κ is close to its upper bound, indicating that an intrinsic autoregression,

which sets κ = 1, is likely sufficient in this case. Regarding variance components, the

posterior distribution of the conditional correlation parameter, ρ = Σ12√
Σ11Σ22

, indicates

a strong negative correlation within each pair b(i) = (b0i, b1i). A 95% credible interval

for ρ is given by (−0.99,−0.88). This strong correlation is also evident in Figure

4.1b where we compare posterior mean estimates of b0i and b1i. Allowing for such

correlation has attenuated point estimates of the variance components,
√

Σ11 and
√

Σ22, as both estimates are larger compared to those obtained in Chapter 2. Thus it

seems that the bivariate spatial model, by allowing for the borrowing of information

across the two transition types, indicates a greater level of heterogeneity than was

initially estimated in Chapter 2, where the simplifying independence assumption was

made. This increased variability is also evident when comparing Figures 4.1a and 4.1b

as the estimates of b0 and b1 obtained from the extended model encompass a larger

range than those obtained in Chapter 2. In Figure 4.5 we have mapped the extreme

random effects, locating those trees having the 100 largest and 100 smallest estimates

of b0 (4.5a) and b1 (4.5b). As before, spatial clustering of the largest and smallest

values is apparent; however, compared to the maps obtained in Chapter 2 (see Figure
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Figure 4.4: Posterior mean estimates of the temporal trends with 95% credible sets
(a) g0(t,α0); (b) g1(t,α1).
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2.6 for comparison), the map of extreme b̂0 corresponds more closely to that of b̂1;

a result owing to the correlation we have allowed between the two. In Figure 4.6 we

locate those trees which may be resistant. Figure 4.6a locates those 100 trees which,

based on our model, have the highest estimated posterior probability of resistance,

Pr(zi = 0|Y), and Figure 4.6b simply locates all trees which were never infected.

The latter is easily obtained but not very informative; whereas, the former selects a

subset of trees whose known characteristics can not adequately explain a long period

without infection. These trees are the prime candidates for further study.

For testing the hypothesis H0 : pM = 1, we obtain an estimate of the posterior

probability P̂ r(pM = 1|Y) = 2.6×10−5 with a Monte Carlo standard error of 2.5×10−5

(based on a batch means estimate employing 100 batches each of size 10,000). Even

after accounting for Monte Carlo error, it is clear that the posterior lends very little

support to the null hypothesis.

Finally, we compare the 2CAR(κ,Σ) specification for the random effects with two

submodels. The first sets κ = 1 leading to a bivariate intrinsic autoregression. The

second sets κ = 1 and Σ = diag{σ2
b0,σ

2
b1} leading to the original model presented in

Chapter 2. As in Chapter 3, we use the DIC criterion to compare across random effect

specifications. Table 4.4 lists the DIC and pD values for the three models considered.

The lowest DIC score belongs to the full model; however, the DIC score associated

with the intrinsic version which sets κ = 1 is very close and the two models can not

be distinguished. This is in agreement with our estimate of κ in Table 4.3 which was

very close to its upper bound. Finally, allowing for a joint spatial structure appears

to be beneficial as both models are preferred over the original model which assumes

bl
ind∼ IAR(σl), l = 0, 1.

4.4.1 Model Validation

In this section we discuss how to employ Bayesian model checking for our spatial

mover-stayer model using the posterior predictive distribution. As before, we let Y

denote the observed data, L(Y|Θ) =
∏N

i=1 fMS(yi|Θ) denote the (normalized) like-

lihood of the data under our model and π(Θ|Y) denote the posterior distribution.
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(a)

(b)

Figure 4.5: Locations of the 100 largest (triangles) and smallest (circles) estimated
random effects from the extended spatial mover-stayer model (a) b0; (b) b1.
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a)

b)

Figure 4.6: Locations of trees which may be resistant (a) Those 100 trees having the
highest posterior probability of resistance Pr(zi = 0|Y); (b) Those 715 trees which
were never infected.
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Model for random effects pD DIC
2CAR(κ,Σ) 469 679
2CAR(1,Σ) 406 683

bl
ind∼ IAR(σl), l = 0, 1 254 759

Table 4.4: DIC scores and pD for three models fit to the weevil infestation data which
consider different structures for the random effects.

Posterior predictive model checking is based upon the notion of a hypothetical replica-

tion of the data, Yrep, drawn from the sampling distribution assumed by our model,

L(Y|Θ), and under the same conditions as the observed data. If it were possible to

simulate Yrep from L(Yrep|Θ) we could compare the observed data, Y, to the data

simulated under our model, Yrep, to assess how well the hypothesized model repli-

cates the observed data. Unfortunately, Θ is unknown. A natural approach within

the Bayesian setting is to integrate out Θ against the posterior π(Θ|Y). This yields

P (Yrep|Y) =

∫
L(Yrep|Θ)dπ(Θ|Y) (4.16)

the posterior predictive distribution.

To simulate from (4.16) we first obtain J draws from the posterior Θ1, ...,ΘJ.

Using these draws, we then simulate J replicate datasets, Yrep
1 , ...,Yrep

J , where Yrep
i

is drawn from the sampling distribution assumed by our model, given the simulated

parameters Θi. As discussed by Gelman et al. (1996), if the model is reasonably

accurate, the replications should look similar to the observed data.

To compare the observed data to the data simulated under the model, we de-

fine a test statistic, T (Y), and compare the observed value to the simulated values

T (Yrep
1 ), ..., T (Yrep

J ). Such comparisons can be accomplished visually by comparing

the histogram of simulated values to the observed value. If the data are in conflict

with the proposed model, the observed value, T (Y), will lie in or beyond the tails

of the histogram. Several test statistics can be chosen, each reflecting a particular

aspect of the model we wish to check. To examine the fit of our model, we define four



CHAPTER 4. EXTENDING THE SPATIAL MOVER-STAYER MODEL 87

test statistics

T1(Y) =
N∑

i=1

ni−1∑

t=1

[1− yi(t− 1)]yi(t)

T2(Y) =
N∑

i=1

ni−1∑

t=1

yi(t− 1)[1− yi(t)]

T3(Y) = T1(Y) + T2(Y)

T4(Y) =
N∑

i=1

I(yi = 0)

Here, T1(Y) is the total number of transitions from state 0 to state 1 (summed over

all subjects); T2(Y) is the total number of transitions from state 1 to state 0; T3(Y)

is the overall total number of transitions; and T4(Y) is the total number of subjects

who remain in state 0 throughout the course of observation.

To check the fit of our extended mover-stayer model to the weevil infestation

data, we drew J = 500 replicate datasets from the posterior predictive distribution,

Yrep
1 , ...,Yrep

500, and obtained the corresponding histograms for each of the four test

statistics. The histograms are displayed in Figure 4.7 along with the observed values.

Comparing the observed values to the histograms, we see no indication of a lack of fit.

For the purpose of comparison, we fit the submodel obtained by setting pM = 1 with

all other aspects of the model remaining the same. Posterior predictive comparisons

for this model, based on J = 500 replications are shown in Figure 4.8. It is clear

from Figure 4.8d that the submodel is a poor fit with respect to the total number

of trees which were never infected. In addition, by not allowing for trees that never

make transitions between the diseased and disease-free states (‘stayers’), the predicted

number of 0 → 1 and 1 → 0 transitions under the submodel is substantially greater

than the number of such transitions in the observed data. These results are consistent

with our results concerning the posterior probability Pr(pM = 1|Y).
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Figure 4.7: Posterior predictive distributions obtained from the extended spatial
mover-stayer model (a) T1(Y) - the total number of 0 → 1 transitions; (b) T2(Y)
- the total number of 1 → 0 transitions; (c) T3(Y) - the overall total number of
transitions; (d) T4(Y) - total number of trees which were never infected; the dashed
vertical line on each histogram represents the observed value of the test statistic.
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Figure 4.8: Posterior predictive distributions obtained from the submodel which sets
pM = 1 (a) T1(Y) - the total number of 0 → 1 transitions; (b) T2(Y) - the total
number of 1 → 0 transitions; (c) T3(Y) - the overall total number of transitions; (d)
T4(Y) - total number of trees which were never infected; the dashed vertical line on
each histogram represents the observed value of the test statistic.
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4.5 Discussion

This Chapter has presented an extension of the spatial mover-stayer model initially

proposed in Chapter 2. A joint spatial model has been incorporated, allowing for cor-

relation within each pair of subject specific random effects. In addition, a hypothesis

test for stayers was developed. In our application this test relates to the existence

of infection resistance trees. A discrete mass prior was incorporated for the mixing

probability and this enabled the calculation of the required posterior probability. Two

MCMC algorithms were developed to draw samples from the posterior distribution

of our model. A reanalysis of the weevil infestation data was conducted based on the

extended model. This analysis revealed a strong negative correlation within each pair

of tree specific random effects. From this, we can conclude that missing covariates

may which underlie the spatial autocorrelation are likely to have opposite effects on

the two types of transitions. Applying our hypothesis test, we found overwhelming

evidence in favor of the model containing two mixture components and thus it seems

viable that some trees may be resistant to infection. Finally, we discussed a goodness-

of-fit procedure based on the posterior predictive distribution. Applying this to our

analysis of the weevil infestation data, we found no evidence indicating a lack of fit

for the mover-stayer model.

The mover-stayer model developed for our forestry application assumes that those

trees which make transitions (‘movers’) between the infected and uninfected states do

so without restriction. Future work will consider extensions allowing for subjects who,

upon infection, are no longer susceptible to reinfection. Tests for such monotonicity

in infection might also be developed using the discrete-mass prior approach. Moving

beyond the random intercepts employed here, a more general model allowing covari-

ate effects to vary from subject to subject would be interesting to explore. Other

extensions will incorporate spatial adaptive splines and allow for spatial correlation

in mover-stayer allocations. The next chapter discuss these extensions in detail.



Chapter 5

Future Work

Directions for future work will consider refinements of the multi-state models devel-

oped here as well as new directions in the arena of mixture models.

5.1 Spatially Correlated Mover-Stayer Allocations

In Chapters 2 and 4 of this thesis we have examined methods for handling mixtures

of populations for spatial discrete-time two-state processes. There, spatial correlation

was imbedded into the transitional process of a two-state Markov chain. This, in

turn, was then fused into a two-component mixture model. Allocation of subjects to

each of the mixture components was assumed spatially independent. While this was

suited to the forestry application considered, more general forms of mixture alloca-

tion could be constructed which would serve usefully in many other situations, for

example, incorporating spatial clustering into the mixture allocations. In the forest

ecological setting, this relates to spatial clusters of infection-resistant trees. In the

spirit of Fernandez and Green (2002), such spatial allocation to mixture components

could be accomplished through a logistic transformation of an autoregressive Gaussian

process. Alternatively, a latent autologistic process may be used to govern mixture

allocations. Tests for spatial correlation in the mixture allocations will be useful in

this context. Methods based on Bayes factors (Kass and Raftery 1995) could be em-

ployed. As discussed by Sinharay and Stern (2005), computation of Bayes factors

91



CHAPTER 5. FUTURE WORK 92

in high dimensional spatial settings is challenging. Several techniques for computing

Bayes factors in this context might be considered: Bridge sampling (Meng and Wong

1996), Reversible jump MCMC (Green 1995), Importance sampling and the MCMC

based approaches proposed by Chib and Jeliazkov (2001).

5.2 Spatial Adaptive Splines and P-Splines

Regression splines are an attractive approach for modelling nonlinear smooth trends.

The methodology is based on the representation of such trends through a sequence of

piecewise polynomials. A crucial problem with regression splines is the choice of the

number and positions of the knots defining the piecewise polynomials. In this thesis,

where splines have been used for modelling temporal trends and intensity functions,

we have addressed this problem primarily through exploratory methods, fixing the

number of knots and their positions. Alternative, more rigorous, approaches will

incorporate sophisticated techniques developed in the smoothing literature.

In the context of additive models, Denison et al. (1998) set up a joint distribution

over the number and location of the knots and conduct inference in the Bayesian

framework using Reversible Jump MCMC (Green 1995). The resulting adaptive

splines avoid over-fitting resulting from the incorporation of too many knots while

maintaining sufficient flexibility. An alternative approach is based on penalized re-

gression splines (P-splines) and was considered in the context of Bayesian additive

mixed models by Lang and Brezger (2004). In the P-spline approach, a moderate

number of equally spaced knots are chosen and sufficient smoothness of the fitted

curve is achieved through a difference penalty imposed on adjacent spline coefficients.

Both techniques will be investigated and incorporated into methodology for spatial

multi-state processes. In addition, extensions will allow temporal trends to vary by

location in a smooth manner. That is, region specific temporal trends will be incorpo-

rated by assuming that the spline coefficients are themselves a realization of a spatial

process. Such an extension would prove useful for analysis in longitudinal agricultural

studies where growth curves or incidence rates vary substantially across the region

under study. As discussed by Gelfand et al. (2003) and Gamerman et al. (2002),
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who considered similar ideas in the context of space-varying regression models for

Gaussian data, a multivariate spatial process would be required to jointly model all

spline coefficients. Methods for adaptive space-varying splines based on multivariate

spatial processes have not been considered previously. Such methods would represent

a significant contribution to the spatio-temporal modelling literature.

5.3 Accelerated Failure Time Models with Spatial

Frailties

The modelling of clustered or multivariate event-time data arises in many applications

of statistics including, but not limited to: health, biology, ecology, demography as well

as industrial applications (see e.g., Hougaard 2000). A popular approach for modelling

such data introduces random effects or ‘frailties’ into the widely used proportional

hazards regression model. Recently, several authors have extended the proportional

hazards frailty model to the spatial setting by incorporating spatial correlation in

the random effects. These include Li and Ryan (2002) who develop the proportional

hazards spatial frailty model in the classical framework and Henderson et al. (2002)

and Banerjee et al. (2003) who develop Bayesian methods. These methods were

then further extended by Carlin and Banerjee (2002) and Jin and Carlin (2005) who

develop joint spatial models based on multivariate spatial mixing distributions. Along

these lines, the continuous-time models presented in Chapter 4 of this thesis are an

extension of these methods to the more general state-space encompassed by multi-

state models. All such work has been based upon the proportional hazards regression

framework.

An important alternative to the proportional hazards model is the accelerated fail-

ure time (AFT) model (Kalbfleisch and Prentice 1980). Models in this framework are

appealing due to their ease of interpretability. The basic models in this class assume

observations are independent and adopt parametric distributional forms. More flexible

AFT models adopt a semi-parametric approach and avoid distributional assumptions.

In the Bayesian setting, semiparametric AFT regression models for univariate survival
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times have been considered by, among others, Christenson and Johnson (1988) and

Kuo and Mallick (1998), who develop methods based on the Dirichlet process and

Walker and Mallick (1998) who employ a Polya tree prior for the error distribution.

More recently, Komrek and Lesaffre (2004) develop a semiparametric approach which

models the error distribution as a normal mixture with an unknown number of com-

ponents and further allow for multivariate event-times through the inclusion of a

random effect. Accelerated failure time models for multivariate event-time data have

not been considered in the spatial setting. These spatial AFT models would serve

usefully in forest ecological applications for examining the survival times of white

spruce trees with respect to infection by the white pine weevil. Indeed, ecologists (see

e.g., He and Alfaro 2000) have used simplified parametric AFT survival models for

precisely this purpose but have ignored the possibility of spatial correlation. Exten-

sions which develop semiparametric AFT models incorporating spatial frailties would

prove extremely useful for the analysis of forest ecological time-to-event data. Various

specifications for the spatial random effects might be explored and compared includ-

ing: Gaussian Markov random fields, non-Gaussian Markov random fields (pairwise

interaction random fields employing absolute value or log cosh potential functions)

and Gaussian geostatistical forms.

5.4 Spatial Finite Mixtures

In this thesis, spatial correlation in the transition processes of multi-state models has

been represented by spatially correlated random effects. Continuous mixture models

of this sort have been widely used for modelling spatial and spatio-temporal corre-

lation in many other settings. In the context of generalized linear mixed models, a

broad framework for spatio-temporal analysis has been developed over the last decade

through numerous publications in the literature: see for example, Waller et al. 1997,

Diggle et al. 1998, Zhang 2002, Zhu et al. 2005 and references therein. In the spa-

tial epidemiological setting, the random effects-Poisson model introduced by Besag

et al. (1991) has been used extensively. Indeed, application of these models has been
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made relatively straightforward through the freely available and user-friendly Win-

Bugs software. What is often ignored in the spatial setting is the possibility that

the random effects distribution, typically assumed multivariate normal, has been mis-

specified. This is particularly problematic when the underlying spatial heterogeneity

may be subject to sharp boundaries, as random effect models do not naturally allow

for such discontinuities. As discussed by Knorr-Held and Rasser (2000), the resulting

oversmoothing may mask such boundaries and these may be of substantial interest.

Finite mixtures provide a robust alternative to random effect models. While

methodology for finite mixtures has been studied extensively (see e.g., Lindsay 1995),

they have received limited attention in the spatial realm. Often, as in Chapters

2 and 4 of this thesis, finite mixtures are used to represent hidden subpopulations

corresponding to different models for the quantity of interest. Alternatively, they

may be viewed as a flexible, semiparametric specification for a mixing distribution,

particularly when the number of mixture components is left unspecified (Richardson

and Green 1997). In recent ground-breaking work, Fernandez and Green (2002) and

Green and Richardson (2002) have developed finite mixture Poisson models for the

analysis of spatially indexed count data. Future work will consider the development

of a flexible class of spatial finite mixtures, providing an alternative to random effect

models. Spatial allocation to mixture components could be based on discrete val-

ued latent processes. Several latent process models will be considered including the

Gibbs random fields, which have been employed in statistical mechanics and image

processing (Geman and Geman 1984). As discussed in Qian and Titterington (1991),

estimation for models containing latent Gibbs fields is extremely challenging. Both

Bayesian and Likelihood based inferential methods could be developed, with the for-

mer being based on reversible jump MCMC and the later achieved through Monte

Carlo maximum likelihood techniques (Geyer and Thompson 1992). Within the spa-

tial finite mixture context, several extensions could also be investigated including: 1)

spatio-temporal data 2) multivariate spatial structures for joint modelling of several

response variables and 3) censored event-time data.
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