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1.1 SUMMARY

This chapter gives a broad overview of the philosophy and techniques of
ecological modeling. A small data set on seed removal illustrates the three
most common frameworks for statistical modeling in ecology: frequentist,
likelihood-based, and Bayesian. The chapter also reviews what you should
know to get the most out of the book, discusses the R language, and spells
out a step-by-step process for building models of ecological systems.

If you’re impatient or hate philosophical discussion, you can read Sec-
tion 1.5 and the R supplement at the end of the chapter and move on to
Chapter 2.

1.2 INTRODUCTION

This book is about combining models with data to answer ecological ques-
tions. Pursuing this worthwhile goal will lead to topics ranging from the
cutting edge of modern statistics, to the nuts and bolts of computer pro-
gramming, to the philosophy of science. Remember as we go along not to
miss the ecological forest for the statistical trees; all of these complexities
are in the service of answering ecological questions, and the most important
thing is to keep your common sense about you and your focus on the biologi-
cal questions you set out to answer. “Does this make sense?” and“What does
this answer really mean?” are the two questions you should ask constantly.
If you can’t answer them, back up to the last point you understood.

If you want to combine models with data, you need to use statistical
tools. Ecological statistics has gotten much more complicated in the last
few decades. Research papers in ecology now routinely refer to likelihood,
Markov Chain Monte Carlo, and other arcana. This new complexity arises
from the explosion of cheap computing power, which allows us to run com-
plicated tests quickly and easily — or at least more easily than before. But
there is still a lot to know about how these tests work, which is what this
book is about. The good news is that we can now develop statistical methods
that directly answer our ecological questions, adapting statistics to the data
rather than vice versa. Instead of asking “what is the probability of observ-
ing at least this much variability among the arcsine-square-root-transformed
counts of seeds in different treatments?”, we can ask “is the number of seeds
removed consistent with standard foraging theory, and what are the attack
rates and handling times of predators? Do the attack rates or handling
times increase with mean seed size? With the time that the seeds have been
available? Is there evidence for variability among seeds?”. By customiz-
ing statistical tests we can squeeze more information, and more relevant
information, from expensive data. Building your own statistical tests is not
easy, but it is not really harder than using any of the other tools ecologists
have picked up in their ongoing effort to extract meaning from the natural
world (stable isotope techniques, radiotelemetry, microsatellite population
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genetics, geographic information systems, otolith analysis, flow cytometry,
mist netting . . . you can probably identify several more from your own field).
Custom statistical techniques are just another set of tools in the modern
ecologist’s toolbox; the information this book presents should show you how
to use them on your own data, to answer your own questions.

For example, Sandin and Pacala (2005) combined population counts through
time with remote underwater video monitoring to analyze how the density
of reef fishes in the Caribbean affected their risk of predation. The clas-
sic approach to this problem would be to test for a significant correlation
between density and mortality rate, or between density and predator activ-
ity. A positive correlation between prey population density and the number
of observed predator visits or attacks would suggest that prey aggregations
attract predators. If predator attacks on the prey population are propor-
tional to population density, then the predation rate per prey individual will
be independent of density; predator attacks would need to accelerate with
increasing population density in order for predators to regulate the prey pop-
ulation. One could test for positive correlations between prey density and
per capita mortality to see whether this is so.

However, correlation analysis assumes the data are bivariate normally dis-
tributed, while linear regression assumes a linear relationship between a pre-
dictor variable and a normally distributed response variable. While one can
sometimes transform data to satisfy these assumptions, or simply ignore
minor violations, Sandin and Pacala took a more powerful approach: they
built explicit models to describe the how absolute and per capita predator
visits or mortality depended on prey population density. For example, the
absolute mortality probability would be r0 + r1n and the per capita mor-
tality probability would be (r0 + r1n)/n if predator visits are proportional
to prey density. They also used realistic binomial and Poisson probability
distributions to describe the variation in the data, rather than assuming nor-
mality (a particularly awkward assumption when there are lots of zeros in
the data). By doing so, they were able to choose among a variety of possible
models and conclude that predators induce inverse density dependence in
this system (i.e., that smaller prey populations experience higher per capita
mortality, because predators are present at relatively constant numbers in-
dependent of prey density). Because they fitted models rather than running
classical statistical tests on transformed data, they were also able to estimate
meaningful parameter values, such as the increase in predator visits per hour
for every additional prey individual present. These values are more useful
than p (significance) values, or than regression slopes from transformed data,
because they express statistical information in ecological terms.
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1.3 WHAT THIS BOOK IS NOT ABOUT

1.3.1 What you should already know

To get the most out of the material presented here you should already have
a good grasp of basic statistics, be comfortable with computers (e.g. have
used Microsoft Excel to deal with data), and have some rusty calculus. But
attitude and aptitude are more important than previous classroom experi-
ence. Getting into this material requires some hard work at the outset, but
it will become easier as you brush up on basic concepts∗.

Statistics

I assume that you’ve had the equivalent of a one-semester undergraduate
statistics course. The phrases hypothesis test, analysis of variance, linear
regression, normal distribution (maybe even Central Limit Theorem) should
be familiar to you, even if you don’t remember all of the details. The ba-
sics of experimental design — the meaning of and need for randomization,
control, independence, and replication in setting up experiments, the idea
of statistical power, and the concept of pseudoreplication (Hurlbert, 1984;
Hargrove and Pickering, 1992; Heffner et al., 1996; Oksanen, 2001) — are
essential tools for any working ecologist (whether theoretical or empirical),
but you can learn them from a good basic statistics class or textbook such
as Gotelli and Ellison (2004) or Quinn and Keogh (2002)∗.

Further reading: If you need to review statistics, try Crawley (2002),
Dalgaard (2003), or Gotelli and Ellison (2004). Gonick and Smith’s 1993
Cartoon Guide to Statistics gives a gentle introduction to some basic con-
cepts, but you will need to go beyond what they cover. Sokal and Rohlf
(1995), Zar (1999), and Crawley (2005) cover a broader range of classical
statistics. For experimental design, try Underwood (1996), Scheiner and
Gurevitch (2001), or Quinn and Keogh (2002) (the latter two discuss statis-
tical analysis as well).

Computers

This book will teach you how to use computers to understand data. You
won’t be writing full-blown computer programs, but you will have to go
beyond pointing and clicking. You need to be comfortable with computers,
and with using spreadsheets like Excel to manipulate data. It will be useful to
be familiar with a mainstream statistics package like SPSS or SAS, although

∗After teaching with Hilborn and Mangel’s excellent book The Ecological Detective I
wanted to a write a book that included enough nitty-gritty detail for students to tackle
their own problems. If this book feels too hard for you, consider starting with The
Ecological Detective — but consider reading ED in any case.

∗Ideally, you would think about how you will analyze your data before you go into the
field to collect it. This rarely happens. Fortunately, if your observations are adequately
randomized, controlled, independent, and replicated, you will be able to do something
with your data. If they aren’t, no fancy statistical techniques can help you.
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you should definitely use R to work through this book instead of falling back
on a familiar software package. (If you have used R already you’ll have a big
head start.) You needn’t have done any programming.

Math

Having “rusty” calculus means knowing what a derivative and an integral
are. While it would be handy to remember a few of the formulas for deriva-
tives, a feeling for the meanings of logarithms, exponentials, derivatives and
integrals is more important than the formulas (you’ll find the formulas in the
Appendix). In working through this book you will have to use algebra, as
much as calculus, in a routine way to solve equations and answer questions.
Most of the people who have taken my classes were very rusty when they
started.

Further reading: Adler (2004) gives a very applied review of basic cal-
culus, differential equations, and probability, while Neuhauser (2003) covers
calculus in a more rigorous and traditional way, but still with a biological
slant.

Ecology

I have assumed you know some basic ecological concepts, since they are the
foundation of ecological data analysis. You should be familiar, for example,
with exponential and logistic growth from population ecology; functional
responses from predator-prey ecology; and competitive exclusion from com-
munity ecology.

Further reading: For a short introduction to ecological theory, try Hast-
ings (1997) or Vandermeer and Goldberg (2004) (the latter is more general).
Gotelli (2001) is more detailed. Begon et al. (1996) gives an extremely thor-
ough introduction to general ecology, including some basic ecological models.
Case (1999) provides an illustrated treatment of theory, while Roughgarden
(1997) integrates ecological theory with programming examples in MAT-
LAB.

1.3.2 Other kinds of models

Ecologists sometimes want to “learn how to model” without knowing clearly
what questions they hope the models will answer, and without knowing what
kind of models might be useful. This is a bit like saying “I want to learn
to do experiments”, or “I want to learn molecular biology”: do you want to
analyze microsatellites? Use RNA inactivation to knock out gene function?
Sequence genomes? What people usually mean by “I want to learn how to
model” is “I have heard that modeling is a powerful tool and I think it could
tell me something about my system, but I’m not really sure what it can do”.

Ecological modeling has many facets. This book covers only one: sta-
tistical modeling, with a bias towards mechanistic descriptions of ecological
patterns. The next section briefly reviews a much broader range of modeling
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frameworks, and gives some starting points in the modeling literature in case
you want to learn more about other kinds of ecological models.

1.4 FRAMEWORKS FOR MODELING

This book is primarily about how to combine models with data and how to
use them to discover the answers to theoretical or applied questions. To help
fit statistical models into the larger picture, Table 1.1 presents a broad range
of dichotomies that cover some of the kinds and uses of ecological models.
The discussion of these dichotomies starts to draw in some of the statistical,
mathematical and ecological concepts I suggested you should know. How-
ever, if a few are unfamiliar, don’t worry — the next few chapters will review
the most important concepts. Part of the challenge of learning the material
in this book is a chicken-and-egg problem: in order to know why certain
technical details are important, you need to know the big picture, but the
big picture itself involves knowing some of those technical details. Iterating,
or cycling, is the best way to handle this problem. Most of the material
introduced in this chapter will be covered in more detail in later chapters.
If you don’t completely get it this time around, hang on and see if it makes
more sense the second time.

1.4.1 Scope and approach

The first set of dichotomies in the table subdivides models into two cat-
egories, one (theoretical/strategic) that aims for general insight into the
workings of ecological processes and one (applied/tactical) that aims to de-
scribe and predict how a particular system functions, often with the goal of
forecasting or managing its behavior. Theoretical models are often mathe-
matically difficult and ecologically oversimplified, which is the price of gen-
erality. Paradoxically, although theoretical models are defined in terms of
precise numbers of individuals, because of their simplicity they are usually
only used for qualitative predictions. Applied models are often mathemati-
cally simpler (although they can require complex computer code), but tend
to capture more of the ecological complexity and quirkiness needed to make
detailed predictions about a particular place and time. Because of this com-
plexity their predictions are often less general.

The dichotomy of mathematical vs. statistical modeling says more about
the culture of modeling and how different disciplines go about thinking about
models than about how we should actually model ecological systems. A
mathematician is more likely to produce a deterministic, dynamic process
model without thinking very much about noise and uncertainty (e.g. the
ordinary differential equations that make up the Lotka-Volterra predator
prey model). A statistician, on the other hand, is more likely to produce a
stochastic but static model, that treats noise and uncertainty carefully but
focuses more on static patterns than on the dynamic processes that produce
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Scope and approach
abstract concrete
strategic tactical
general specific

theoretical applied
qualitative quantitative
descriptive predictive

mathematical statistical
mechanistic phenomenological

pattern process

Technical details
analytical computational
dynamic static

continuous discrete
population-based individual-based

Eulerian Lagrangian
deterministic stochastic

Sophistication
simple complex
crude sophisticated

Table 1.1 Modeling dichotomies. The loose association of descriptors in each col-
umn gets looser as you work downwards.



book May 21, 2007

8 CHAPTER 1

them (e.g. linear regression)∗.
The important difference between phenomenological (pattern) and mech-

anistic (process) models will be with us throughout the book. Phenomeno-
logical models concentrate on observed patterns in the data, using func-
tions and distributions that are the right shape and/or sufficiently flexible
to match them; mechanistic models are more concerned with the underly-
ing processes, using functions and distributions based on theoretical expec-
tations. As usual, there are shades of gray; the same function could be
classified as either phenomenological or mechanistic depending on why it
was chosen. For example, you could use the function f(x) = ax/(b + x) (a
Holling type II functional response) as a mechanistic model in a predator-
prey context because you expected predators to attack prey at a constant
rate and be constrained by handling time, or as a phenomenological model
of population growth simply because you wanted a function that started
at zero, was initially linear, and leveled off as it approached an asymptote
(see Chapter 3). All other things being equal, mechanistic models are more
powerful since they tell you about the underlying processes driving patterns.
They are more likely to work correctly when extrapolating beyond the ob-
served conditions. Finally, by making more assumptions, they allow you to
extract more information from your data — with the risk of making the
wrong assumptions.∗

Examples of theoretical models include the Lotka-Volterra or Nicholson-
Bailey predator-prey equations (Hastings, 1997); classical metapopulation
models for single (Hanski, 1999) and multiple (Levins and Culver, 1971;
Tilman, 1994) species; simple food web models (May, 1973; Cohen et al.,
1990); and theoretical ecosystem models (Ågren and Bosatta, 1996). Ap-
plied models include forestry and biogeochemical cycling models (Blanco
et al., 2005), fisheries stock-recruitment models (Quinn and Deriso, 1999),
and population viability analysis (Morris and Doak, 2002; Miller and Lacy,
2005).

Further reading: books on ecological modeling overlap with those on
ecological theory listed on p. 5. Other good sources include Nisbet and
Gurney (1982) (a well-written but challenging classic) Gurney and Nisbet
(1998) (a lighter version) Haefner (1996) (broader, including physiological
and ecosystem perspectives) Renshaw (1991) (good coverage of stochastic
models), Wilson (2000) (simulation modeling in C), Ellner and Gucken-
heimer (2006) (dynamics of biological systems in general), and Otto and
Day (2007) (??).

∗Of course, both mathematicians and statisticians are capable of more sophisticated
models than the simple examples given here.

∗For an alternative, classic approach to the tradeoffs between different kinds of models,
see Levins (1966) (criticized by Orzack and Sober (1993); Levins (1993) Levins’s defense
invokes the fluidity of model-building in ecology).
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1.4.2 Technical details

Another set of dichotomies characterizes models according to the methods
used to analyze them or according to the decisions they embody about how
to represent individuals, time, and space.

An analytical model is made up of equations solved with algebra and
calculus. A computational model consists of a computer program which you
run for a range of parameter values to see how it behaves.

Most mathematical models and a few statistical models are dynamic; the
response variables at a particular time (the state of the system) feed back
to affect the response variables in the future. Integrating dynamical and
statistical models is challenging (see Chapter 11). Most statistical models
are static; the relationship between predictor and response variables is fixed.

One can specify how models represent the passage of time or the structure
of space (both can be continuous or discrete); whether they track continuous
population densities (or biomass or carbon densities) or discrete individuals;
whether they consider individuals within a species to be equivalent or divide
them by age, size, genotype, or past experience; and whether they track
the properties of individuals (individual-based or Eulerian) or the number
of individuals within different categories (population-based or Lagrangian).

Deterministic models represent only the average, expected behavior of a
system in the absence of random variation, while stochastic models incor-
porate noise or randomness in some way. A purely deterministic model al-
lows only for qualitative comparisons with real systems; since the model will
never match the data exactly, how can you tell if it matches closely enough?
For example, a deterministic food-web model might predict that introduc-
ing pike to a lake would cause a trophic cascade, decreasing the density of
phytoplankton (because pike prey on sunfish, which eat zooplankton, which
in turn consume phytoplankton); it might even predict the expected magni-
tude of the change. In order to test this prediction with real data, however,
you would need some kind of statistical model to estimate the magnitude of
the average change in several lakes (and the uncertainty), and to distinguish
between observed changes due to pike introduction and those due to other
causes (measurement error, seasonal variation, weather, nutrient dynamics,
population cycles . . . ).

Most ecological models incorporate stochasticity crudely, by simply as-
suming that there is some kind of (perhaps normally distributed) variation,
arising from a combination of unknown factors, and estimating the magni-
tude of that variation from the variation observed in the field. We will go be-
yond this approach, specifying different sources of variability and something
about their expected distributions. More sophisticated models of variabil-
ity enjoy some of the advantages of mechanistic models: models that make
explicit assumptions about the underlying causes of variability can both pro-
vide more information about the ecological processes at work and can get
more out of your data.

There are essentially three kinds of random variability:
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� Measurement error is the variability imposed by our imperfect ob-
servation of the world; it is always present, except perhaps when we
are counting a small number of easily detected organisms. It is usu-
ally modeled by the standard approach of adding normally distributed
variability around a mean value.

� Demographic stochasticity is the innate variability in outcomes due to
random processes even among otherwise identical units. In experimen-
tal trials where you flip a coin 20 times you might get 10 heads, or 9, or
11, even though you’re flipping the same coin the same way each time.
Likewise, the number of tadpoles out of an initial cohort of 20 eaten
by predators in a set amount of time will vary between experiments.
Even if we controlled everything about the environment and genotype
of the predators and prey, we would still see different numbers dying
in each run of the experiment.

� Environmental stochasticity is variability imposed from “outside” the
ecological system, such as climatic, seasonal, or topographic variation.
We usually reserve environmental stochasticity for unpredictable vari-
ability, as opposed to predictable changes (such as seasonal or latitudi-
nal changes in temperature) which we can incorporate into our models
in a deterministic way.

The latter two categories, demographic and environmental stochasticity,
make up process variability∗ which unlike measurement error affects the fu-
ture dynamics of the ecological system. (Suppose we expect to find three
individuals on an isolated island. If we make a measurement error and mea-
sure zero instead of three, we may go back at some time in the future and
still find them. If an unexpected predator eats all three individuals (process
variability), and no immigrants arrive, any future observations will find no
individuals.) The conceptual distinction between process and measurement
error is most important in dynamic models, where the process error has a
chance to feed back on the dynamics.

The distinctions between stochastic and deterministic effects, and between
demographic and environmental variability, are really a matter of definition.
Until you get down to the quantum level, any “random” variability can in
principle be explained and predicted. What determines whether a tossed
coin will land heads-up? Its starting orientation and the number of times
it turns in the air, which depends on how hard you toss it Keller (1986).
What determines exactly which and how many seedlings of a cohort die?
The amount of energy with which their mother provisions the seeds, their
individual light and nutrient environments, and encounters with pathogens
and herbivores. Variation that drives mortality in seedlings — e.g. vari-
ation in available carbohydrates among individuals because of small-scale
variation in light availability — might be treated as a random variable by

∗Process variability is also called process noise or process error (Chapter 10).
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a forester at the same time that it is treated as a deterministic function
of light availability by a physiological ecologist measuring the same plants.
Climatic variation is random to an ecologist (at least on short time scales)
but might be deterministic, although chaotically unpredictable, to a meteo-
rologist. Similarly, the distinction between demographic variation, internal
to the system, and environmental variation, external to the system, varies
according to the focus of a study. Is the variation in the number of trees
that die every year an internal property of the variability in the population
or does it depend on an external climatic variable that is modeled as random
noise?

1.4.3 Sophistication

I want to make one final distinction, between simple and complex models
and between crude and sophisticated ones. One could quantify simplicity vs.
complexity by the length of the description of the analysis, or the number
of lines of computer script or code required to implement a model. Crudity
and sophistication are harder to recognize; they represent the conceptual
depth, or the amount of hidden complexity, involved in a model or statisti-
cal approach. For example, a computer model that picks random numbers
to determine when individuals give birth and die and keeps track of the to-
tal population size, for particular values of the birth and death rates and
starting population size, is simple and crude. Even simpler, but far more
sophisticated, is the mathematical theory of random walks (Okubo, 1980)
which describes the same system but — at the cost of challenging mathemat-
ics — predicts its behavior for any birth and death rates and any starting
population sizes. A statistical model that searches at random for the line
that minimizes the sum of squared deviations of the data is crude and sim-
ple; the theory of linear models, which involves more mathematics, does the
same thing in a more powerful and general way. Computer programs, too,
can be either crude or sophisticated. One can pick numbers from a binomial
distribution by virtually flipping the right number of coins and seeing how
many come up heads, or by using numerical methods (built into R) that ar-
rive at the same result far more efficiently. A simple R command like rbinom,
which picks random binomial deviates, hides a lot of complexity.

The value of sophistication is generality, simplicity, and power; its costs
are opacity and conceptual and mathematical difficulty. In this book, I
will take advantage of many of R’s sophisticated tools for optimization and
random number generation (since in this context it’s more important to have
these tools available than to learn the details of how they work), but I will
avoid many of its sophisticated statistical tools, so that you can learn from
the ground up how statistical models really work and make your models
work the way you want them to rather than being constrained by existing
frameworks. Having reinvented the wheel, however, we’ll briefly revisit some
standard statistical frameworks like generalized linear models and see how
they can solve some problems more efficiently.
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1.5 FRAMEWORKS FOR STATISTICAL INFERENCE

This section will explore three different ways of drawing statistical conclu-
sions from data — frequentist, Bayesian, and likelihood-based. While the
differences among these frameworks are sometimes controversial, most mod-
ern statisticians know them all and use whatever tools they need to get
the job done; this book will teach you the details of those tools, and the
distinctions among them.

To illustrate the ideas I’ll draw on a seed predation data set from Duncan
and Duncan (2000) that quantifies how many times seeds of two different
species disappeared (presumably taken by seed predators, although we can’t
be sure) from observation stations in Kibale National Park, Uganda. The
two species (actually the smallest- and largest-seeded species of a set of eight
species) are Polyscias fulva (pol: seed mass < 0.01 g) and Pseudospondias
microcarpa (psd: seed mass ≈ 50 g).

1.5.1 Classical frequentist

Classical statistics, which are part of the broader frequentist paradigm, are
the kind of statistics typically presented in introductory statistics classes.
For a specific experimental procedure (such as drawing cards or flipping
coins), you calculate the probability of a particular outcome, which is de-
fined as the long-run average frequency of that outcome in a sequence of
repeated experiments. Next you calculate a p-value, defined as the proba-
bility of that outcome or any more extreme outcome given a specified null
hypothesis. If this so-called tail probability is small, then you reject the null
hypothesis: otherwise, you fail to reject it. But you don’t accept the alter-
native hypothesis if the tail probability is large, you just fail to reject the
null hypothesis.

The frequentist approach to statistics (due to Fisher, Neyman and Pear-
son) is useful and very widely used, but it has some serious drawbacks (which
are repeatedly pointed out by proponents of other statistical frameworks
(Berger and Berry, 1988)). It relies on the probability of a series of outcomes
that didn’t happen (the tail probabilities), and which depend on the way the
experiment is defined; its definition of probability depends on a series of hy-
pothetical repeated experiments that are often impossible in any practical
sense; it forces us into constructing straw-man null hypotheses and making
convoluted arguments about why we have failed to reject them. Probably the
most criticized aspect of frequentist statistics is their reliance on p-values,
which when (frequently) misused are poor tools for scientific inference. It
seems to be human nature to abuse p-values, acting as though alternative
hypotheses (which are usually what we’re really interested in) are “true” if
we can reject the null hypothesis with p < 0.05 and “false” if we can’t. In
fact, if p = 0.05 the null hypothesis is still true one time in twenty (we falsely
reject the null hypothesis 5% of the time, by definition), or if p > 0.05 it
could be false but we have insufficient data to reject it. We could also reject
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the null hypothesis, in cases where we have lots of data, even though the size
of the effect we are looking at is ecologically irrelevant (e.g. a 0.01% increase
in plant growth rate with a 30◦C increase in temperature) — the results
are statistically but not biologically significant. More fundamentally, if we
use a so-called point null hypothesis (such as “the slope of the relationship
between plant productivity and temperature is zero”), common sense tells
us that the null hypothesis must be false, because it can’t be exactly zero
— which makes the p value into a statement about whether we have enough
data to detect a non-zero slope, rather than about whether the slope is ac-
tually different from zero. Working statisticians will tell you that it is better
to focus on estimating the values of biologically meaningful parameters and
finding their confidence limits rather than worrying too much about whether
p is greater or less than 0.05 (Yoccoz, 1991; Johnson, 1999; Osenberg et al.,
2002) (although Stephens et al. (2005) remind us that hypothesis testing can
still be useful).

Looking at the seed data, we have the following 2 × 2 table:

pol psd
any taken (t) 26 25
none taken 184 706
total (N) 210 731

If ti is the number of times that species i seeds disappear and Ni is the total
number of observations of species i then the observed proportions of the time
that seeds disappeared for each species are (pol) t1/N1 = 0.124 and (psd)
t2/N2 = 0.034. The overall proportion taken (which is not the average of
the two proportions since there are different total numbers of observations
for each species) is (t1 + t2)/(N1 + N2)=0.054. The ratio of the predation
probabilities (proportion for pol/proportion for psd) is 0.124/0.034= 3.62.
The ecological question we want to answer is “is there differential predation
on the seeds on these two species?” (Given the sample sizes and the size
of the observed difference, what do you think? Do you think the answer
is likely to be statistically significant? How about biologically significant?
What assumptions or preconceptions does your answer depend on?)

A frequentist would translate this biological question into statistics as
“what is the probability that I would observe a result this extreme, or more
extreme, given the sampling procedure?” More specifically, “what proportion
of possible outcomes would result in observed ratios of proportions greater
than 3.62, or smaller than 1/3.62 = 0.276?” (Figure 1.1). Fisher’s ex-
act test (fisher.test in R) calculates this probability, as a one-tailed test
(proportion of outcomes with ratios greater than 3.62) or a two-tailed test
(proportion with ratios greater than 3.62 or less than its reciprocal, 0.276);
the two-tailed answer in this case is 5.26× 10−6. According to Fisher’s orig-
inal interpretation, this number represents the strength of evidence against
the null hypothesis, or (loosely speaking) for the alternative hypothesis —
that there is a difference in seed predation rates. According to the Neyman-
Pearson decision rule, if we had set our acceptance cutoff at α = 0.05, we
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could conclude that there was a statistically significant difference in preda-
tion rates.

We needn’t fixate on p-values: the R command for Fisher’s test, fisher.test,
also tells us the 95% confidence limits for the difference between rates∗. In
terms of probability ratios, this example gives (2.073, 6.057), which as ex-
pected does not include 1. Do you think a range of a 110% to a 510% increase
in seed predation probability† is significant?

1.5.2 Likelihood

Most of the book will focus on frequentist statistics, but not the standard
version that you may be used to. Most modern statistics uses an approach
called maximum likelihood estimation, or approximations to it. For a partic-
ular statistical model, maximum likelihood finds the set of parameters (e.g.
seed removal rates) that makes the observed data (e.g. the particular out-
comes of predation trials) most likely to have occurred. Based on a model for
both the deterministic and stochastic aspects of the data, we can compute
the likelihood (the probability of the observed outcome) given a particular
choice of parameters. We then find the set of parameters that makes the
likelihood as large as possible, and take the resulting maximum likelihood
estimates (MLEs) as our best guess at the parameters. So far we haven’t
assumed any particular definition of probability of the parameters. We could
draw confidence limits by deciding on a likelihood-based cutoff, for example
by saying that any parameters that make the probability of the observed
outcomes at least 1/10 as likely as the maximum likelihood are “reason-
able”. For mathematical convenience, we often work with the logarithm of
the likelihood (the log-likelihood) instead of the likelihood; the maxima of
the log-likelihood and the likelihood occur in the same place. On the log
scale, statisticians have traditionally suggested a cutoff of 2 log-likelihood
units Edwards (1992); that means we consider any parameter reasonable
that is at least e−2 ≈ 1/7.4 = 14% as likely as the maximum likelihood.

However, most modelers add a frequentist interpretation to likelihoods,
using a mathematical proof that says that, across the hypothetical repeated
trials of the frequentist approach, the distribution of the negative logarithm
of the likelihood itself follows a χ2 (“chi-squared”) distribution‡. This fact
means that we can set a cut-off for differences in log-likelihoods based on
the 95th percentile of the χ2 distribution, which corresponds to 1.92 log-

∗R expresses the difference in predation rates in terms of the odds ratio — if there are
t1 seeds taken and N1−t1 seeds not taken for species 1, then the odds of a seed being taken
are t1/(N1−t1) and the odds ratio between the species is (t1/(N1−t1))/(t2/(N2−t2)). The
odds ratio and its logarithm (the logit or log-odds ratio) have nice statistical properties.

†These values are the confidence limits on the probability ratios, minus 1, converted
into approximate percentages: for example, a probability ratio of 1.1 would represent a
10% increase in predation.

‡This result holds in the asymptotic case where we have lots of data, which happens
less than we would like — but we often gloss over the fact of limited data and use it
anyway.
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Figure 1.1 Classical frequentist analysis. Fisher’s exact test calculates the prob-
ability of a given number of pol stations having seeds taken under
the null hypothesis that both species have the same predation prob-
ability. The total probability that as many or more pol stations had
seeds taken, or that the difference was more extreme in the other di-
rection, is the two-tailed frequentist p-value (3.56×10−6+1.70×10−6=
5.26×10−6). The top axis shows the equivalent in seed predation prob-
ability ratios. (Note: I put the y-axis on a log scale because the tails
of the curve are otherwise too small to see, even though this change
means that the area under the curve no longer represents the total
probability.)
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likelihood units, or parameters that lower the likelihood by a factor of 6.82.
The theory says that the estimated value of the parameter will fall farther
away than that from the true value only 5% of the time in a long series of
repeated experiments. This rule is called the Likelihood Ratio Test (LRT)§.
We will see that it lets us both estimate confidence limits for parameters and
choose between competing models.

Bayesians also use the likelihood — it is part of the recipe for computing
the posterior distribution — but they take it as a measure of the informa-
tion we can gain from the data, without saying anything about what the
distribution of the likelihood would be in repeated trials.

How would one apply maximum likelihood estimation to the seed preda-
tion example? Lumping all the data from both species together at first, and
assuming that (1) all observations are independent of each other and (2) the
probability of at least one seed being taken is the same for all observations,
it follows that the number of times at least one seed is removed is binomially
distributed (we’ll get to the formulas in Chapter 4). Now we want to know
how the probability of observing the data (the likelihood, L) depends on the
probability ps that at least one seed was taken from a particular station by a
predator∗, and what value of ps maximizes the likelihood. The likelihood L
is the probability that seeds were taken in 51 out of the total of 941 observa-
tions. This probability varies as a function of ps (Figure 1.2): for ps = 0.05
L = 0.048, while for p = 0.04 L is only 6.16 × 10−3. As it turns out, the
MLE for the probability that seeds were taken in any one trial (ps) is exactly
what we’d expect—51/941, or 0.054—and the likelihood is L = 0.057. (This
likelihood is small, but it just means that the probability of any particular
outcome — seeds being taken in 51 trials rather than 50 or 52 — is small.)

To answer the questions that really concern us about the different preda-
tion probabilities for different species, we need to allow different probabilities
for each species, and see how much better we can do (how much higher the
likelihood is) with this more complex model. Now we take the separate values
for each species (26 out of 210 and 25 out of 731) and, for a per-observation
probability for each species, compute the likelihoods of each species’ data
and multiply them (see Chapter 4 for basic probability calculations), or add
the log-likelihoods. If I define the model in terms of the probability for
psd and the ratio of the probabilities, I can plot a likelihood profile for the
maximum likelihood I can get for a given value of the ratio (Figure 1.3).

The conclusions from this frequentist, maximum-likelihood analysis are
essentially identical to those of the classical frequentist (Fisher’s exact test)
analyses. The maximum-likelihood estimate equals the observed ratio of

§The difference between log-likelihoods is equivalent to the ratio of likelihoods.
∗One of the most confusing things about maximum likelihood estimation is that there

are so many different probabilities floating around. The likelihood L is the probability of
observing the complete data set (i.e., Prob(seeds were taken 51 times out of 941 observa-
tions)); ps is the probability that seeds were taken in any given trial; and the frequentist
p-value is the probability, given a particular value of ps, that seeds were taken 51 or more
times out of 941 observations.
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Figure 1.3 Likelihood curve for the ratio of the predation probabilities, showing
the maximum likelihood estimate and 95% confidence limits. The null
value (ratio equal to 1) is just below the lower limit of the graph.
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the probabilities, 3.62; the confidence limits are (2.13, 6.16), which do not
include 1; and the LRT-based p-value for rejecting the null hypothesis that
the probabilities are the same is 3.83× 10−6.

Likelihood and classical frequentist analysis share the same philosophical
underpinnings. Likelihood analysis is really a particular flavor of frequentist
analysis, one that focuses on writing down a likelihood model and then
testing for significant differences in the likelihood ratio rather than applying
frequentist statistics directly to the observed outcomes. Classical analyses
are usually easier because they are built into common statistics packages,
and they may make fewer assumptions than likelihood analyses (for example,
Fisher’s test is exact while the LRT is only valid for large data sets), but
likelihood analyses are often better matched with ecological questions.

1.5.3 Bayesian

Frequentist statistics assumes that there is a “true” state of the world (e.g.
the difference between species in predation probability) which gives rise to
a distribution of possible experimental outcomes. The Bayesian framework
says instead that the experimental outcome — what we actually saw happen
— is the truth, while the parameter values or hypotheses have probability
distributions. The Bayesian framework solves many of the conceptual prob-
lems of frequentist statistics: answers depend on what we actually saw and
not on a range of hypothetical outcomes, and we can legitimately make state-
ments about the probability of different hypotheses or parameter values.

The major fly in the ointment of Bayesian statistics is that in order to make
it work we have to specify our prior beliefs about the probability of different
hypotheses, and these prior beliefs actually affect our answers! One hard-
core frequentist ecologist says“Bayesianism means never having to say you’re
wrong”(Dennis, 1996). It is indeed possible to cheat in Bayesian statistics by
setting unreasonably strong priors∗. The standard solution to the problem of
subjectivity is to assume you are completely ignorant before the experiment
(setting a flat prior, or “letting the data speak for themselves”), although for
technical reasons this isn’t always possible. For better or worse, Bayesian
statistics operates in the same way as we typically do science: we down-
weight observations that are too inconsistent our current beliefs, while using
those in line with our current beliefs to strengthen and sharpen those beliefs
(statisticians are divided on whether this is good or bad).

The big advantages of Bayesian statistics, besides their ease of interpreta-
tion, come (1) when we actually have data from prior observations we want
to incorporate; (2) in complex models with missing data and several layers
of variability; (3) when we are trying to make (e.g.) management decisions
based on our data (the Bayesian framework makes it easier to incorporate
the effect of unlikely but catastrophic scenarios in decision-making). The
only big disadvantage (besides the problem of priors) is that problems of

∗But if you really want to cheat with statistics you can do it in any framework!
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small to medium complexity are actually harder with Bayesian approaches
than with frequentist approaches — at least in part because most statistical
software is geared toward classical statistics.

How would a Bayesian answer our question about predation rates? First
of all, they would say (without looking at the data) that the answer is “yes”
— the true difference between predation rates is certainly not zero. (This
discrepancy reflects the difference in perspective between frequentists, who
believe that the true value is a fixed number and uncertainty lies in what
you observe [or might have observed], and Bayesians, who believe that ob-
servations are fixed numbers and the true values are uncertain.) Then they
might define a parameter, the ratio of the two proportions, and ask questions
about the posterior distribution of that parameter—our best estimate of the
probability distribution given the observed data and some prior knowledge
of its distribution (see Chapter 4). What is the mode (most probable value)
of that distribution? What is its expected value, or mean? What is the
credible interval, which is the interval with equal probability cutoffs below
and above the mean within which 95% of the probability falls?

The Bayesian answers, in a nutshell: using a flat prior distribution, the
mode is 3.48 (near the observed proportion of 3.62). The mean is 3.87,
slightly larger than the mode since the posterior probability density is slightly
asymmetric — the density is skewed to the right (Figure 1.4)∗. The 95%
credible interval, from 2.01 to 6.01, doesn’t include 1, so a Bayesian would
say that there was good evidence against the hypothesis: even more strongly,
they could say that the probability that the predation ratio is greater than
1 is 0.998 (the probability that it is less than 1 is 0.002).

If the details of Bayesian statistics aren’t perfectly clear at this point,
don’t worry. We’ll explore Bayes’ Rule and revisit Bayesian statistics in
future chapters.

In this example all three statistical frameworks have given very similar
answers, but they don’t always. Ecological statisticians are still hotly de-
bating which framework is best, or whether there is a single best framework.
My own approach is eclectic, agreeing with the advice of Crome (1997) and
Stephens et al. (2005) to try to understand the strengths and weaknesses
of several different approaches and use each one as appropriate. We will
revisit these frameworks in more detail later. Chapter 4 will cover Bayes’
rule, which underpins Bayesian statistics; Chapters 6 and 7 will return to a
much more detailed look at the practical details of maximum likelihood and
Bayesian analysis. (Textbooks like Dalgaard (2003) cover classical frequen-
tist approaches very well.)

∗While Figure 1.1 showed the probability of each possible discrete outcome (number of
seeds taken), Figure 1.4 shows a posterior probability density of a continuous parameter,
i.e. the relative probability that the parameter lies in a particular range. Chapter 4 will
explain this distinction more carefully.
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Figure 1.4 Bayesian analysis of seed predation. We calculate the probability den-
sity of the ratio of proportions of seeds taken being equal to some par-
ticular value, based on our prior (flat, assuming perfect ignorance —
and in this case improper because it doesn’t integrate to 1 [Chapter 4])
and on the data. The most probable value is the mode; the expected
value is the mean. The gray shaded areas contain 5% of the area under
the curve and cut off at the same height (probability density); the range
between them is therefore the 95% credible interval.
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1.6 FRAMEWORKS FOR COMPUTING

In order to construct your own models, you will need to learn some of the
basics of statistical computing. There are many computer languages and
modeling tools with built-in statistical libraries (MATLAB, Mathematica)
and several statistics packages with serious programming capabilities (SAS,
IDL). We will use a system called R that is both a statistics package and a
computing language.

1.6.1 What is R?

R’s developers (http://www.r-project.org) call it a “language and envi-
ronment for statistical computing and graphics”. This awkward phrase gets
at the idea that R is more than just a statistics package. R is closest in spirit
to other higher-level modeling languages like MATLAB, MathCAD, Math-
ematica, or Maple. It is a dialect of the S computing language, which was
written at Bell Labs in the 1980s as a research tool in statistical computing.
MathSoft, Inc. (now Insightful Corporation) bought the rights to S and de-
veloped it into a commercial package with a graphical front-end, S-PLUS.
In the 1990s two New Zealand statisticians, Ross Ihaka and Robert Gentle-
man, re-wrote S from scratch, again as a research project. The re-written
(and free) version became immensely popular and is now maintained by an
international “core team” of about a dozen well-respected statisticians and
computer scientists.

1.6.2 Why use R?

R is an extremely powerful tool. It is a full-fledged modern computer lan-
guage with sophisticated data structures; it supports a wide range of com-
putations and statistical procedures; it can produce graphics ranging from
exploratory plots to customized publication-quality graphics.

R is free in the sense that you can download it from the Internet, make
as many copies as you want, and give them away∗. While I don’t begrudge
spending money on software for research, it is certainly convenient not to
have to pay — or to deal with licensing paperwork. This cheapness is vital,
rather than convenient, for teachers, independent researchers, people in less-
developed countries, and students who are frustrated with limited student
versions (or pirated versions) of commercial software.

More important, R is also free in the sense that you can inspect any of
the code and change it in any way that you want†. This form of freedom is
probably abstract to you at this point — you probably won’t need to modify
R in the course of your modeling career — but it is a part of the same basic
philosophy of the free exchange of information that underlies scientific and
academic research in general.

∗In programming circles, this freedom is called “gratis” or “free as in beer”.
†“Libre” or “free as in speech”
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R is the choice of many academic and industrial statisticians, who work
to improve it and to write extension packages. If a statistical method has
made it into print, the odds are good that there’s an R package somewhere
that implements it.

R runs well on many computer platforms, including the “big three” (Mi-
crosoft Windows, Mac OS X, and Linux). There are only tiny, mostly cos-
metic differences among the way that R runs on different machines. You can
nearly always can move data files and code between operating systems and
get the same answers.

R is rapidly gaining popularity. The odds are good that someone in your
organization is using R, and there are many resources on the Internet in-
cluding a very active mailing list. There are a growing number of introduc-
tory books using R (Dalgaard, 2003; Verzani, 2005; Crawley, 2005), books
of examples (Maindonald and Braun, 2003; Heiberger and Holland, 2004;
Everitt and Hothorn, 2006), more advanced and encyclopedic books cover-
ing a range of statistical approaches (Venables and Ripley, 2002; Crawley,
2002), and books on specific topics such as regression analysis Fox (2002);
Faraway (2004), mixed-effect models (Pinheiro and Bates, 2000), phyloge-
netics (Paradis, 2006), generalized additive models (Wood, 2006), etc. that
are geared toward R and S-PLUS users.

1.6.3 Why not use R?

R is harder to use than mainstream statistics packages like SYSTAT or SPSS.
It’s difficult mostly because it does much more; it would be hard to squeeze
all of R’s capabilities into a simple graphical user interface (GUI) with menus
to guide you through the process of analyzing your data. R’s creators haven’t
even tried very hard to write a GUI, though, because they have a do-it-
yourself philosophy that emphasizes knowing procedures rather than letting
the program try to tell you what to do next. John Fox has written a simple
GUI for R (called Rcmdr), and the commercial version of R, S-PLUS, does
have a graphical user interface — if you can afford it. However, for most of
what we will be doing in this book a GUI would not be very useful.

While R comes with a lot of documentation, it’s mostly good for reminding
you of the syntax of a command rather than for finding out how to do
something. Unlike SAS, for which you can buy voluminous manuals that
tell you the details of various statistical procedures and how they can be run
in SAS, R more typically assumes that you have a general knowledge of the
procedure you want to use and can figure out how to make it work in R by
reading the on-line documentation or a separately published book (including
this one).

R is slower than so-called lower-level languages like C and FORTRAN
because it is an interpreted language that processes strings of commands
typed in at the command line or stored in a text file, rather than a com-
piled language that first translates commands into machine code. However,
computers are so fast these days that there’s speed to burn, and for most
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problems you will encounter the limiting factor will be how fast and easily
you can write (and debug) the code, not how long the computer takes to
process it. Interpreted languages make writing and debugging faster.

R is memory-hungry. Unlike SAS, which was developed with a metaphor
of punch cards being processed one at a time, R tries to operate with the
whole data set at once. If you are lucky enough to have a gigantic data
set (e.g. hundreds of thousands of observations), you will need to find ways
(such as using R’s capability to connect directly to database software) to do
your analysis in chunks rather than loading it all into memory at once.

Unlike Maple, Mathematica, or MathCAD, R can’t do symbolic calculation
— for example, it can’t tell you that the integral of x2 is x3/3+C, although
it can actually compute some simple derivatives (with the deriv function).

No commercial organization supports R — which may not matter as much
as you think. The largest software company in the world supports Microsoft
Excel, but its statistical procedures are notoriously unreliable (McCullough
and Wilson, 2005). On the other hand, the community of researchers who
build and use R are among the best in the world, and R compares well
in numerical analysis with commercial software (Keeling and Pavur, 2007).
While every piece of software has bugs, the core components of R have been
used so extensively by so many people that the chances of your finding a
bug in R are about the same as the chances of finding a bug in a commercial
software package like SAS or SPSS — and if you do find one and report it,
it will probably be fixed within a few days.

It is certainly possible to do the kinds of modeling presented in this book
with other computing platforms — particularly MATLAB (with appropriate
toolboxes), Mathematica, SAS (using the macro language), Excel/Visual
Basic, and lower-level languages such as Delphi, C, or FORTRAN (with
appropriate libraries). However, I have found R’s combination of flexibility,
power, and cost make it the best — if not the only — option for statistical
modeling in ecology.

1.7 OUTLINE OF THE MODELING PROCESS

After all these caveats and admonitions and before jumping into the nitty
gritty details of modeling particular data, we need an outline or road map
of the modeling process (Figure 1.5).

1. Identify the ecological question: you have to know what you want
to find out before you can start trying to model. You should know
what your question is at both a general, conceptual level (“does dis-
ease select against cannibalism in tiger salamander populations?”) and
at a specific level (“what is the percentage difference in probability of
becoming a cannibal for tiger salamander individuals taken from pop-
ulations A and B?”). Practice switching back and forth between these
two levels. Being either too vague (“I want to explore the population
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genetics of cannibalism”) or too specific (“what is the difference in the
intercepts of these two linear regressions?”) can impede your progress.
Ultimately, knowing how to ask good questions is one of the fundamen-
tal skills for any ecologist, or indeed any scientist, and (unfortunately)
there is no recipe telling you how to do it. Even though I can’t teach
you to ask good questions, I included it in the list because it is the first
and most important step of any analysis and motivates all the other
steps. ∗

2. Choose deterministic model(s): next, you need to choose a partic-
ular mathematical description of the pattern you are trying to describe.
The deterministic part is the average, or expected pattern in the ab-
sence of any kind of randomness or measurement error. It’s tempting
to call this an“ecological”model, since traditional ecological models are
described in deterministic terms, but ecological models can be either
deterministic or stochastic.

The deterministic model can be phenomenological (as simple as“preda-
tor density is a linear function of prey density, or P = a + bV ”); mech-
anistic (e.g., a type II functional response for predation rate); or even
a complex individual-based simulation model. Chapter 3 will remind
you of, or introduce you to, a broad range of mathematical models
that are useful building blocks for a deterministic model, and provide
general tools for getting acquainted with the mathematical properties
of deterministic models.

3. Choose stochastic model(s): in order to estimate the parameters
of a model, you need to know not just the expected pattern but also
something about the variation around the expected pattern. Typically,
you describe the stochastic model by specifying a reasonable probabil-
ity distribution for the variation. For example, we often assume that
variation that comes from measurement error is normally distributed,
while variation in the number of plants found in a quadrat of a spe-
cific size is Poisson distributed. Ecologists tend to be less familiar
with stochastic building blocks (e.g. the negative binomial or gamma
distributions) than with deterministic building blocks (e.g. linear or
Michaelis-Menten functions). The former are frequently covered in the
first week of introductory statistics courses and then forgotten as you
learn standard statistical methods. Chapter 4 will (re)introduce some
basics of probability as well as a wide range of probability distributions
useful in building stochastic models.

4. Fit parameters: once you have defined your model, you can esti-
mate both the deterministic parameters (slope, attack rate, handling

∗In an ideal world, you would identify ecological questions before you designed your
experiments and gathered data (!!), but in this book I will assume you’ve already got data
(either your own or someone else’s) to work with and think about.
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time, . . . ) and stochastic parameters (the variance or parameters con-
trolling the variance . . . ). This step is a purely technical exercise in
figuring out how to get the computer to fit the model to the data. Un-
like the previous steps, it provides no particular insight into the basic
ecological questions. The fitting step does require ecological insight
both as input (for most fitting procedures, you must start with some
order-of-magnitude idea of reasonable parameter values) and output
(the fitted parameters are essentially the answers to your ecological
question). Chapters 6 and 7 will go into great detail about the prac-
tical aspects of fitting: the basic methods, how to make them work in
R, and troubleshooting tips.

5. Estimate confidence intervals/test hypotheses/select models:
you need to know more than just the best-fit parameters of the model
(the point estimates, in statistical jargon). Without some measure-
ment of uncertainty, such estimates are meaningless. By quantifying
the uncertainty in the fit of a model, you can estimate confidence lim-
its for the parameters. You can also test ecological hypotheses, from
both an ecological and a statistical point of view (e.g., can we tell
the difference statistically between the handling times on two different
prey types? are these differences large enough to make any practical
difference in the population dynamics?). You also need to quantify
uncertainty in order to choose the best out of a set of competing mod-
els, or to decide how to weight the predictions of different models. All
of these procedures — estimating confidence limits, testing the differ-
ences between parameters in two models or between a parameter and
a null-hypothesis value such as zero, and testing whether one model is
significantly better than another — are closely related aspects of the
modeling process that we will discuss in Chapter 6.

6. Put the results together to answer questions/ return to step
#1: modeling is an iterative process. You may have answered your
questions with a single pass through steps 1–5, but it is far more likely
that estimating parameters and confidence limits will force you to re-
define your models (changing their form or complexity or the ecological
covariates they take into account) or even to redefine your original eco-
logical questions. You may need to ask different questions, or collect
another set of data, to further understand how your system works.
Like the first step, this final step is a bit more free-form and general,
but there are tools (likelihood ratio testing, model selection) that will
help (Chapter 6).

I use this approach for modeling ecological systems every day. It answers
ecological questions and, more importantly, it shapes the way I think about
data and about those ecological questions. There is a growing number of
studies in ecology that use simple but realistic statistical models that do
not fit easily into classical statistical frameworks (Butler and Burns, 1993;
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Ribbens et al., 1994; Pascual and Kareiva, 1996; Ferrari and Sugita, 1996;
Damgaard, 1999; Strong et al., 1999; Ricketts, 2001; Lytle, 2002; Dalling
et al., 2002; Ovaskainen, 2004; Tracey et al., 2005; Fujiwara et al., 2005;
Sandin and Pacala, 2005; Canham and Uriarte, 2006; Ness et al., 2006; Win-
tle and Bardos, 2006; Sack et al., 2006; Agrawal and Fishbein, 2006; Horne
and Garton, 2006). Like any tool, these tools also bias my thinking (“if you
have a hammer, everything looks like a nail”), and the kinds of questions I
like to think about. They are most useful for ecological systems where you
want to test among a well-defined set of plausible mechanisms, and where
you have measured a few potentially important predictor and response vari-
ables. They work less well for generalized “fishing expeditions” where you
have measured lots of variables and want to try to sort them out.

The first seven chapters of the book cover all the basics you need to con-
struct and fit your own models. Chapter 8 puts the pieces together with
some worked examples. The remaining chapters go beyond the basics to put
the core methods in a more general statistical context (Chapter 9), describe
how to fit models with more than one kind of variability (Chapter 10), and
deal with models of ecological processes varying through time (Chapter 11).
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1.8 R SUPPLEMENT

Each chapter ends with a set of notes on R, providing more details of the
commands and ideas introduced in the chapter or examples worked in more
detail. For this largely conceptual chapter, the notes are about how to get
R and how to get it working on your computer.

1.8.1 Installing R; pre-basics

� Download R: if R is already installed on your computer, skip this step.
If not, here’s how to get it from the web. ∗ go to the R project home
page (http://www.r-project.org) or to CRAN, the repository for R
materials (http://cran.r-project.org), and navigate to the binary
(precompiled) distributions. Find the latest version for your operating
system, download it, and follow the instructions to install it. The
installation file is moderately large by modern standards (the Windows
installer for R version 2.5.0 is ?? megabytes) but should download easily
over a fast connection. Unless you have reason to do otherwise, accept
all the defaults in the installation process.

After you have played with R a bit, you may want to take a moment
to install extra packages (see below).

� Start R: if you are using Windows or MacOS there is probably an R icon
on your desktop — click on it. Or use the menus your operating system
provides to find R. If you are on a Unix system, you can probably just
type R on the command line.

� Play with R a little bit : when you start R, you will see a “command
prompt” — a > that waits for you to type something and hit ENTER.
When you type in an expression, R evaluates it and prints the answer:

[1] 16

[1] 5

(the number [1] before the answer says that the answer is the first
element in a vector; don’t worry about this now).

If you use an equals sign to assign a value to a variable, then R will
silently do what you asked. To see the value of the variable, type its
name at the command prompt:

> x = sqrt(36)

> x

[1] 6

∗These instructions are accurate at press time — but all software, and stuff from the
web in particular, is subject to change. So details may vary.
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A variable name can be any sequence of alphanumeric characters, as
well as “_” or “.” (but no spaces), that does not start with a numeral.
Variable names are case-sensitive, so x and X are different variables.

For more information, you can read the Introduction to R that comes
with your copy of R (look in the documentation section of the menus),
get one of the introductory documents from the R web site, dip into an
introductory book (Dalgaard, 2003; Crawley, 2005), or get lab 1 from
http://www.zoo.ufl.edu/bolker/emdbook.

� Stopping R: to stop R, type q() (with the parentheses) at the command
prompt, or choose“Quit” from the appropriate menu. You can say“no”
when R asks if you want to save the workspace.

To stop a long computation without stopping R, type Control-C (in
Unix or MacOS if using the command-line version), or type ESCAPE or
click on the stop sign on the toolbar (in Windows or R.app on MacOS).

� The help system: if you type help.start(), R will open a web browser
with help information. If you type ?cmd, R will open a help page with
information on a particular command (e.g. ?sqrt to get information
on the square-root command). example(cmd) will run any examples
that are included in the help page for command cmd. If you type
help.search("topic") (with quotes), R will list information related
to topic available in the base system or in any extra installed packages:
use ?topic to see the information, perhaps using library(pkg) to load
the appropriate package first. help(package="pkg") will list all the
help pages for a loaded package. If you type RSiteSearch("topic"),
R will do a search in an on-line database for information on topic.
Try out one or more of these aspects of the help system.

� Install extra packages: R has many extra packages. You may be able
to install new packages from a menu within R. You can always type

> install.packages("plotrix")

(for example — this installs the plotrix package). You can install
more than one package at a time:

> install.packages(c("ellipse", "plotrix"))

(c stands for“concatenate”, and is the command for combining multiple
things into a single object.) If the machine on which you use R is not
connected to the Internet, you can download the packages to some
other medium (such as a flash drive or CD) and install them later,
using the menu or

> install.packages("plotrix", repos = NULL)

Here are all the packages used in this book that are not included with
R by default:
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adapt bbmle chron coda ellipse gplots gtools
gdata MCMCpack odesolve plotrix R2WinBUGS reshape
rgl scatterplot3d

If you install the emdbook package first (install.packages("emdbook"))
and then run the command get.emdbook.packages() it will install
most of these packages for you automatically.

(R2WinBUGS is an exception to R’s normally seamless cross-platform
operation: it depends on a program called WinBUGS that runs on
Windows. WinBUGS will also run on Linux, and possibly MacOS on
Intel hardware, with the help of a program called WINE; see Chap-
ter 6.)

It will save time if you install these packages now.

1.8.2 Sample session

Start R. Then:
Start the web interface to the help system:

> help.start()

Seed the pseudo-random-number generator, using an arbitrary integer, to
make results match if you start a new session (it’s fine to skip this step, but
the particular values you get from the random-number commands will be
different every time — you won’t get exactly the results shown below):

> set.seed(101)

Create the variable frogs (representing the number of adult frogs in each
of 20 populations) from scratch by entering 20 numbers with the c com-
mand. Create a second variable tadpoles (the number of tadpoles in each
population) by generating 20 normally distributed random numbers, each
with twice the mean of the corresponding frogs population and a standard
deviation of 0.5:

> frogs = c(1.1, 1.3, 1.7, 1.8, 1.9, 2.1, 2.3, 2.4,

+ 2.5, 2.8, 3.1, 3.3, 3.6, 3.7, 3.9, 4.1, 4.5,

+ 4.8, 5.1, 5.3)

> tadpoles = rnorm(n = 20, mean = 2 * frogs, sd = 0.5)

The + at the beginning of the second line is a“continuation character”. If you
hit ENTER and R recognizes that your command is unfinished, it will print a
+ to tell you that you can continue on the next line. (You sometimes get the
continuation character when you forgot to close parentheses or quotes. To
discard what you’ve done so far and start again, type ESCAPE (on Windows)
or Control-C (on Linux) or click on the stop sign on the menu.)

You can name the arguments [n, mean, sd above] in an R function, but
R can also recognize the order: tadpoles = rnorm(20,2*frogs,0.5) will
give the same answer.
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Figure 1.6 Plotting example.

Notice that R doesn’t tell you what’s in these variables unless you ask it:

> tadpoles

[1] 2.036982 2.876231 3.062528 3.707180 3.955385 4.786983
[7] 4.909395 4.743633 5.458514 5.488370 6.463224 6.202578
[13] 7.913878 6.666590 7.681658 8.103331 8.575123 9.629233
[19] 9.791165 9.574846

(the numbers at the beginning of the line are indices).
Plot tadpoles against frogs (frogs on the x axis, tadpoles on the y

axis) and add a straight line with intercept 0 and slope 2 to the plot (the
result should appear in a new window, looking like Figure 1.6):

> plot(frogs, tadpoles)

> abline(a = 0, b = 2)

Try calculating the (natural) logarithm of tadpoles and plot it instead:

> log_tadpoles = log(tadpoles)

> plot(frogs, log_tadpoles)

(you can get the same result by typing plot(frogs,log(tadpoles)) or a
similar result from plot(frogs,tadpoles,log="y"). Use log10(tadpoles)
to get the logarithm base 10).
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Set up a variable n with integers ranging from 1 to 20 (the length of the
frogs variable) and plot frogs against it:

> n = 1:length(frogs)

> plot(n, frogs)

(you’d get almost the same plot typing plot(frogs)).
Calculate the mean, standard deviation, and a set of summary statistics

for tadpoles:

> mean(tadpoles)

[1] 6.081341

> sd(tadpoles)

[1] 2.370449

> summary(tadpoles)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.037 4.547 5.845 6.081 7.961 9.791

(the summary statistics are rounded to three significant digits).
Calculate the correlation between frogs and tadpoles:

> cor(frogs, tadpoles)

[1] 0.9870993

Test the statistical significance of the correlation:

> cor.test(frogs, tadpoles)

Pearson's product-moment correlation

data: frogs and tadpoles
t = 26.1566, df = 18, p-value = 8.882e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9669568 0.9949946
sample estimates:

cor
0.9870993

Look for more information on correlations:

> help.search("correlation")

Now move onto Chapter 2 to see how to deal with real data.
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Exploratory data analysis and graphics
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2.1 SUMMARY

This chapter covers both the practical details and the broader philosophy
of (1) reading data into R and (2) doing exploratory data analysis, in par-
ticular graphical analysis. To get the most out of the chapter you should
already have some basic knowledge of R’s syntax and commands (see the R
supplement of the previous chapter).

2.2 INTRODUCTION

One of the basic tensions in all data analysis and modeling is how much
you have all your questions framed before you begin to look at your data.
In the classical statistical framework, you’re supposed to lay out all your
hypotheses before you start, run your experiments, come back to your office
and test those (and only those) hypotheses. Allowing your data to suggest
new statistical tests raises the risk of “fishing expeditions”or“data-dredging”
— indiscriminately scanning your data for patterns ∗. Data-dredging is a
serious problem; humans are notoriously good at detecting patterns even
when they don’t exist. Strictly speaking, interesting patterns that you find
in your data after the fact should not be treated statistically, only used as
input for the next round of observations and experiments†. Most statisti-
cians are leery of procedures like stepwise regression that search for the best
predictors or combinations of predictors from among a large range of op-
tions, even though some have elaborate safeguards to avoid overestimating
the significance of observed patterns (Whittingham et al., 2006). The worst
part about using such techniques may be that you have to be conservative
and discard real patterns, patterns that you originally had in mind, because
you are screening your data indiscriminately.

But these injunctions may be too strict for ecologists. Unexpected pat-
terns in the data can inspire you to ask new questions, and it is foolish not
to explore your hard-earned data. Exploratory data analysis (EDA: Tukey,
1977; Hoaglin et al., 2000, 2006; Cleveland, 1993) is a set of graphical tech-
niques for finding interesting patterns in data. EDA was developed in the
late 1970s when computer graphics first became widely available. It em-
phasizes robust and nonparametric methods, which make fewer assumptions
about the shapes of curves and the distributions of the data and hence are
less sensitive to nonlinearity and outliers. Most of the rest of this book will
focus on models that, in contrast to EDA, are parametric (i.e., they specify

∗“Bible Codes”, where people find hidden messages in the Bible, illustrate an extreme
form of data-dredging. Critics have pointed out that similar procedures will also detect
hidden messages in War and Peace or Moby Dick (McKay et al., 1999).

†Or you should apply a post hoc procedure [see ?TukeyHSD and the multcomp package
in R] that corrects for the fact that you are testing a pattern that was not suggested in
advance — however, even these procedures only apply corrections for a specific set of
possible comparisons, not all possible patterns that you could have found in your data.
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particular distributions and curve shapes) and mechanistic. These methods
are more powerful and give more ecologically meaningful answers, but are
also susceptible to being misled by unusual patterns in the data.

The big advantages of EDA are that it gets you looking at and think-
ing about your data (whereas stepwise approaches are often substitutes for
thought), and that it may reveal patterns that standard statistical tests
would overlook because of their emphasis on specific models. However, EDA
isn’t a magic formula for interpreting your data without the risk of data
dredging. Only common sense and caution can keep you in the zone be-
tween ignoring interesting patterns and over-interpreting them. It’s useful
to write down a list of the ecological patterns you’re looking for and how
they relate your ecological questions before you start to explore your data,
so that you can clearly distinguish (1) patterns you were initially looking
for, (2) unanticipated patterns that answer the same questions in different
ways, and (3) interesting (but possibly spurious) patterns that suggest new
questions.

The rest of this chapter describes how to get your data into R and how
to make some basic graphs in order to search for expected and unexpected
patterns. The text covers both philosophy and some nitty-gritty details.
The supplement at the end of the chapter gives a sample session and more
technical details.

2.3 GETTING DATA INTO R

2.3.1 Preliminaries

Electronic format

Before you can analyze your data you have to get them into R. Data come in
a variety of formats — in ecology, most are either plain text files (space- or
comma-delimited) or Excel files.∗ R prefers plain text files with“white space”
(arbitrary numbers of tabs or spaces) or commas between columns. Text files
are less structured and may take up more disk space than more specialized
formats, but they are the lowest common denominator of file formats and so
can be read by almost anything (and, if necessary, examined and adjusted in
any text editor). Since plain text formats are readable with a wide variety of
text editors, they are unlikely to be made obsolete by changes in technology
(you could say they’re already obsolete), and less likely to be made unusable
by corruption of a few bits of the file; only hard copy is better†.

R is platform-agnostic. While text files do have very slightly different
formats on Unix, Microsoft Windows, and Macintosh operating systems, R
handles these differences. If you later save data sets or functions in R’s own

∗Your computer may be set up to open comma-delimited (.csv) files in Excel, but
underneath they are just text files.

†Unless your data are truly voluminous, you should also save a hard-copy, archival
version of your data (Gotelli and Ellison, 2004).
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format (using save to save and load to load them), you will be able to
exchange them freely across platforms.

Many ecologists keep their data in Excel spreadsheets. The read.xls
function in the gdata package allows R to read Excel files directly, but the
best thing to do with an Excel file (if you have access to a copy of Excel,
or if you can open it in an alternative spreadsheet program) is to save the
worksheet you want as a .csv (comma-separated values) file. Saving as a
.csv file will also force you to go into the worksheet and clean up any random
cells that are outside of the main data table — R won’t like these. If your
data are in some more exotic form (e.g. within a GIS or database system),
you’ll have to figure out how to extract them from that particular system
into a text file. There are ways of connecting R directly with databases or
GIS systems, but they’re beyond the scope of this book. If you have trouble
exporting data or you expect to have large quantities of data (e.g. more
than tens of thousands of observations) in one of these exotic forms, you
should look for advice at the R Data Import/Export manual, which should
be accessible through R’s help system.

Metadata

Metadata is the information that describes the properties of a data set:
the names of the variables, the units they were measured in, when and
where the data were collected, etc.. R does not have a structured system
for maintaining metadata, but it does allow you to include a good deal of
this metadata within your data file, and it is good practice to keep as much
of this information as possible associated with the data file. Some tips on
metadata in R:

� Column names are the first row of the data set. Choose names that
compromise between convenience (you will be typing these names a
lot) and clarity; larval_density or larvdens are better than either
x or larval_density_per_m3_in_ponds. Use underscores or dots to
separate words in variable names, not spaces.

� R will ignore any information on a line following a #. Use this comment
character (1) at the beginning of general metadata at the beginning of
your file and (2) at the ends of particular lines to make notes about
the data (but you can’t use # to make a comment in the middle of a
line).

� if you have other metadata that can’t easily be represented in plain-
text format (such as a map), you’ll have to keep it separately. You
can reference the file in your comments, keep a separate file that lists
the location of data and metadata, or use a system like Morpho (from
ecoinformatics.org) to organize it.

Whatever you do, make sure that you have some workable system for main-
taining your metadata. Eventually, your R scripts — which document how
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you read in your data, transformed it, and drew conclusions from it — will
also become a part of your metadata. As mentioned in Chapter 1, this is one
of the advantages of R over (say) Excel: after you’ve done your analysis, if
you were careful to document your work sufficiently as you went along, you
will be left with a set of scripts that will allow you to verify what you did;
make minor modifications and re-run the analysis; and apply the same or
similar analyses to future data sets.

Shape

Just as important as electronic or paper format is the organization or shape
of your data. Most of the time, R prefers that your data have a single
record (typically a line of data values) for each individual observation. This
basically means that your data should usually be in “long” (or “indexed”)
format. For example, the first few lines of the seed removal data set look
like this, with a line giving the number of seeds present for each station/date
combination:

station date dist species seeds
1 1 1999-03-23 25 psd 5
2 1 1999-03-27 25 psd 5
3 1 1999-04-03 25 psd 5
4 2 1999-03-23 25 uva 5
5 2 1999-03-27 25 uva 5
6 2 1999-04-03 25 uva 5

Because each station has seeds of only one species and can only be at a single
distance from the forest, these values are repeated for every date. During
the first two weeks of the experiment no seeds of psd or uva were taken by
predators, so the number of seeds remained at the initial value of 5.

Alternatively, you will often come across data sets in “wide” format, like
this:

station species dist seeds.1999-03-23 seeds.1999-03-27
1 1 psd 25 5 5
2 2 uva 25 5 5
3 3 pol 25 5 4
4 4 dio 25 5 5
5 5 cor 25 5 4
6 6 abz 25 5 5

(I kept only the first two date columns in order to make this example narrow
enough to fit on the page.)

Long format takes up more room, especially if you have data (such as dist
above, the distance of the station from the edge of the forest) that apply to
each station independent of sample date or species (which therefore have
to be repeated many times in the data set). However, you’ll find that this
format is typically what statistical packages request for analysis.
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It is possible to read data into R in wide format and then convert it to long
format. R has several different functions — reshape and stack/unstack in
the base package, and melt/cast/recast in the reshape package∗ — that
will let you switch data back and forth between wide and long formats.
Because there are so many different ways that data can be structured, and
so many different ways you might want to aggregate or rearrange them,
software tools designed to reshape arbitrary data are necessarily complicated
(compare Excel’s pivot tables).

� stack and unstack are simple but basic functions — stack converts
from wide to long format and unstack from long to wide; they aren’t
very flexible

� reshape is very flexible and preserves more information than stack/unstack,
but its syntax is tricky: if long and wide are variables holding the data
in the examples above, then

> reshape(wide, direction = "long", timevar = "date",

+ varying = 4:5)

> reshape(long, direction = "wide", timevar = "date",

+ idvar = c("station", "dist", "species"))

convert back and forth between them. In the first case (wide to long) we
specify that the time variable in the new long-format data set should be
date and that columns 4–5 are the variables to collapse. In the second
case (long to wide) we specify that date is the variable to expand and
that station, dist and species should be kept fixed as the identifiers
for an observation.

� the reshape package contains the melt, cast, and recast functions,
which are similar to reshape but sometimes easier to use: e.g.

> library(reshape)

> recast(wide, formula = ... ~ ., id.var = c("station",

+ "dist", "species"))

> recast(long, formula = station + dist + species ~

+ ..., id.var = c("station", "dist", "species",

+ "date"))

in the formulas above, ... denotes “all other variables” and . denotes
“nothing”, so the formula ...~. means “separate out by all variables”
(long format) and station+dist+species~... means “separate out
by station, distance, and species, put the values for each date on one
line”

∗If you don’t know what a package is, go back and read about them in the R supplement
for Chapter 1.
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In general you will have to look carefully at the examples in the documen-
tation and play around with subsets of your data until you get it reshaped
exactly the way you want. Alternatively, you can manipulate your data in
Excel, either with pivot tables or by brute force (cutting and pasting). In
the long run, learning to reshape data will pay off, but for a single project
it may be quicker to use brute force.

2.3.2 Reading in data

Basic R commands

The basic R commands for reading in a data set, once you have it in a long-
format text file, are read.table for space-separated data and read.csv
for comma-separated data. If there are no complications in your data, you
should be simply be able to say (e.g.)

> data = read.table("mydata.dat", header = TRUE)

(if your file is actually called mydata.dat and includes a first row with the
column names) to read your data in (as a data frame — see p. 43) and assign
it to the variable data.

There are several potential complications to reading in files, which are
more fully covered in R supplement: (1) finding your data file on your com-
puter system (i.e., telling R where to look for it); (2) checking that every
line in the file has the same number of variables, or fields — R won’t read it
otherwise; and (3) making sure that R reads all your variables as the right
data types (discussed in the next section).

2.4 DATA TYPES

When you read data into a computer, the computer stores those data as
some particular data type. This is partly for efficiency — it’s more efficient
to store numbers as strings of bits rather than as human-readable character
strings — but its main purpose is to maintain a sort of metadata about
variables, so the computer knows what to do with them. Some operations
only make sense with particular types — what should you get when you try
to compute 2+"A"? "2A"? If you try to do something like this in Excel you
get an error code — #VALUE!; if you do it in R you get the message Error
...non-numeric argument to binary operator∗.

Computer packages vary in how they deal with data. Some lower-level
languages like C are strongly typed ; they insist that you specify exactly what
type every variable should be, and require you to convert variables between
types (say integer and real, or floating-point) explicitly. Languages or pack-
ages like R or Excel are looser, and try to guess what you have in mind
and convert variables between types (coerce) automatically as appropriate.

∗the + symbol is called a “binary operator” because it is used to combine two values
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For example, if you enter 3/25 into Excel, it automatically thinks you mean
March 25 of the current year.

R makes similar guesses as it reads in your data. By default, if every entry
in a column is a valid number (e.g. 234, -127.45, 1.238e3 [computerese for
1.238 ×103]), then R guesses the variable is numeric. Otherwise, it makes it
a factor — an indexed list of values used to represent categorical variables,
which I will describe in more detail shortly. Thus, any error in a numeric
variable (extra decimal point, included letter, etc.) will lead R to classify
that variable as a factor rather than a number. R also has a detailed set of
rules for dealing with missing values (internally represented as NA, for Not
Available). If you use missing-value codes (such as * or -9999) in your data
set you have to tell R about it or it will read them naively as strings or
numbers.

While R’s standard rules for guessing about input data are pretty simple
and only allow you two options (numeric or factor), there are a variety of
ways for specifying more detail either as R reads in your data or after it has
read them in: these are covered in more detail in the accompanying material.

2.4.1 Basic data types

R’s basic (or atomic) data types are integer, numeric (real numbers),
logical (TRUE or FALSE), and character (alphanumeric strings). (There
are a few more, such as complex numbers, that you probably won’t need.)
At the most basic level, R organizes data into vectors of one of these types,
which are just ordered sets of data. Here are a couple of simple (numeric
and character) vectors:

> 1:5

[1] 1 2 3 4 5

> c("yes", "no", "maybe")

[1] "yes" "no" "maybe"

More complicated data types include dates (Date) and factors (factor).
Factors are R’s way of dealing with categorical variables. A factor’s un-
derlying structure is a set of (integer) levels along with a set of the labels
associated with each level.

The advantage of using these more complex types, rather than dealing with
all categorical variables either as string (alphanumeric) or numeric codes,
is that R can often do the right things with your data automatically if it
knows what types they are (this is an example of crude-vs.-sophisticated
where a little more sophistication may be useful). Much of R’s built-in
statistical modeling software depends on these types to do the right analyses.
For example, the command lm(y~x) (meaning “fit a linear model of y as a
function of x”, analogous to SAS’s PROC GLM) will do an ANOVA if x is
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categorical (i.e., stored as a factor) or a linear regression if x is numeric. If
you want to analyze variation in population density among sites designated
with integer codes (e.g. 101, 227, 359), and haven’t specified that R should
interpret the codes as categorical rather than numeric values, R will try to
fit a linear regression rather than doing an ANOVA. Many of R’s plotting
functions will also do different things depending on what type of data you
give them. For example, R can automatically plot date axes with appropriate
labels. To repeat, data types are a form of metadata; the more information
about the meaning of your data that you can retain in your analysis, the
better.

2.4.2 Data frames and matrices

R can organize data at a higher level than simple vectors. A data frame is a
table of data that combines vectors (columns) of different types (e.g. charac-
ter, factor, and numeric data). Data frames are a hybrid of two simpler data
structures: lists, which can mix arbitrary types of data but have no other
structure, and matrices, which have rows and columns but must (typically)
be all of the same data type. Treating the data frame as a list, there are a
variety of different ways of extracting columns of data from the data frame
to work with:

> SeedPred[[2]]

> SeedPred[["species"]]

> SeedPred$species

all extract the second column (a factor containing species abbreviations)
from the data frame SeedPred. You can also treat the data frame as a
matrix and use square brackets [] to extract (e.g.) the second column

> SeedPred[, 2]

> SeedPred[, "species"]

or rows 1 through 10

> SeedPred[1:10, ]

(SeedPred[i,j] extracts the matrix element in row(s) i and column(s) j;
leaving the columns or rows specification blank, as in SeedPred[i,] or
SeedPred[,j], takes row i (all columns) or column j (all rows) respec-
tively). There are a few operations, such as transposing or calculating a
variance-covariance matrix, that you can only do with a matrix (not with
a data frame); R will usually convert (coerce) the data frame to a matrix
automatically when it makes sense to, but you may sometimes have to use
as.matrix to manually convert a data frame to a matrix.∗

∗Matrices and data frames can appear identical but behave differently. If x is a data
frame, either colnames(x) or names(x) will tell you the column names. If x has a column
called a, either x$a or x[["a"]] or x[,"a"] will retrieve it. If x is a matrix, you must
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2.4.3 Checking data

Now suppose you’ve decided on appropriate types for all your data and told
R about it. Are the data you’ve read in actually correct, or are there still
typographical or other errors?

summary

First check the results of summary. For a numeric variable summary will list
the minimum, first quartile, median, mean, third quartile, and maximum.
For a factor it will list the numbers of observations with each factor level. It
will list the number of NAs for both types.

For example:

> summary(SeedPred[, 1:4])

station dist species
1 : 74 10:5883 abz :1480
2 : 74 25:5920 cd :1480
3 : 74 cor :1480
4 : 74 dio :1480
5 : 74 pol :1480
6 : 74 psd :1480
(Other):11359 (Other):2923

date
Min. :1999-03-23
1st Qu.:1999-05-23
Median :1999-07-24
Mean :1999-07-25
3rd Qu.:1999-09-28
Max. :1999-11-28

(to keep the output short, I’m only looking at the first four columns of the
data frame: summary(SeedPred) would summarize the whole thing). When
there are more than six different factor levels, R only lists the number of
entries for the first six (use table to get them all).

Check the following points:

� Is there the right number of observations overall? Is there the right
number of observations in each level for factors?

� Do the numeric summaries look reasonable? Are all values in the right
range?

� Are there reasonable numbers of NAs in each column? If not (especially
if you have extra mostly-NA columns), you may want to go back a few

use colnames(x) to get the column names and x[,"a"] to retrieve a column (the other
commands will give errors). Use is.data.frame or class to tell matrices and data frames
apart.
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steps and look at using count.fields or fill=FALSE to identify rows
with extra fields . . .

str

The command str tells you about the structure of an R variable: it is
slightly less useful than summary for dealing with data, but it may come in
handy later on for figuring out more complicated R variables. Applied to a
data frame, it tells you the total number of observations (rows) and variables
(columns) and prints out the names and classes of each variable along with
the first few observations in each variable.

> str(SeedPred)

'data.frame': 11803 obs. of 9 variables:
$ station : Factor w/ 160 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ dist : Factor w/ 2 levels "10","25": 1 1 1 1 1 1 1 1 1 1 ...
$ species : Factor w/ 8 levels "abz","cd","cor",..: 7 7 7 7 7 7 7 7 7 7 ...
$ date :Class 'Date' num [1:11803] 10675 10678 10685 10692 10699 ...
$ seeds : int 5 5 5 5 0 0 0 0 0 0 ...
$ tcum : num 0 3 10 17 24 31 39 46 53 60 ...
$ tint : num NA 3 7 7 7 7 8 7 7 7 ...
$ taken : int NA 0 0 0 5 0 0 0 0 0 ...
$ available: int NA 5 5 5 5 0 0 0 0 0 ...

class

The command class prints out the class (numeric, factor, Date, logical,
etc.) of a variable. class(SeedPred) gives "data.frame"; sapply(SeedPred,class)
applies class to each column of the data individually.

> class(SeedPred)

[1] "data.frame"

> sapply(SeedPred, class)

station dist species date seeds tcum
"factor" "factor" "factor" "Date" "integer" "numeric"

tint taken available
"numeric" "integer" "integer"

head

The head command just prints out the beginning of a data frame; by default
it prints the first six rows, but head(data,10) (for example) will print out
the first 10 rows.

> head(SeedPred)
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station dist species date seeds tcum tint taken
1.1 1 10 psd 1999-03-25 5 0 NA NA
1.160 1 10 psd 1999-03-28 5 3 3 0
1.162 1 10 psd 1999-04-04 5 10 7 0
1.164 1 10 psd 1999-04-11 5 17 7 0
1.166 1 10 psd 1999-04-18 0 24 7 5
1.168 1 10 psd 1999-04-25 0 31 7 0

available
1.1 NA
1.160 5
1.162 5
1.164 5
1.166 5
1.168 0

The tail command prints out the end of a data frame.

table

table is R’s command for cross-tabulation; it can be useful when reading
in data for checking that you have appropriate numbers of observations in
different factor combinations.

> table(SeedPred$station, SeedPred$species)

abz cd cor dio mmu pol psd uva
1 0 0 0 0 0 0 74 0
2 0 0 0 0 0 0 0 74
3 0 0 0 0 0 74 0 0
4 0 0 0 74 0 0 0 0
5 0 0 74 0 0 0 0 0
6 74 0 0 0 0 0 0 0

(just the first six lines are shown): apparently, each station only has seeds of
a single species. The $ extracts variables from the data frame SeedPred, and
table says we want to count the number of instances of each combination of
station and species: we could also do this with a single factor or with more
than two.

Dealing with NAs

Missing values are a nuisance, but a fact of life. Throwing out or ignoring
missing values is tempting, but can be dangerous. Ignoring missing values
can bias your analyses, especially if the pattern of missing values is not
completely random. R is conservative by default, and assumes that, for
example, 2+NA equals NA — if you don’t know what the missing value is,
then the sum of it and any other number is also unknown. Almost any
calculation you make in R will be contaminated by NAs, which is logical
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but annoying. Perhaps most difficult is that you can’t just do what comes
naturally and say (e.g.) x = x[x!=NA] to remove values that are NA from a
variable, because even comparisons to NA result in NA!

� You can use the special function is.na to count the number of NA
values (sum(is.na(x))) or to throw out the NA values in a vector (x
= x[!is.na(x)]).

� To convert NA values to a particular value, use x[is.na(x)]=value;
e.g. to set NAs to zero x[is.na(x)]=0, or to set NAs to the mean value
x[is.na(x)]=mean(x). Don’t do this unless you have a reason.

� na.omit will drop NAs from a vector (na.omit(x)), but it is also smart
enough to do the right thing if x is a data frame instead, and throw
out all the cases (rows) where any variable is NA; however, this may
be too stringent if you are analyzing a subset of the variables. For
example, you might have a really unreliable soil moisture meter that
produces lots of NAs, but you don’t necessarily need to throw away all
of these data points while you’re analyzing the relationship between
light and growth. (complete.cases returns a logical vector that says
which rows have no NAs; if x is a data frame, na.omit(x) is equivalent
to x[complete.cases(x),]).

� Functions such as mean, var, sd, sum (and probably others) have an
optional na.rm argument: na.rm=TRUE drops NA values before doing
the calculation. Otherwise if x contains any NAs, mean(x) will result
in NA and sd(x) will give an error about missing observations.

� Calculations of covariance and correlation (cov and cor) have more
complicated options: use="all.obs", use="complete.obs", or use="pairwise.complete.obs".
all.obs uses all of the data (but the answer will contain NAs every time
either variable contains one); complete.obs uses only the observations
for which none of the variables are NA (but may thus leave out a lot
of data); and pairwise.complete.obs computes the pairwise covari-
ance/correlations using the observations where both of each particular
pair of variables are non-NA (but may lead in some cases to incorrect
estimates of the correlations).

As you discover errors in your data, you may have to go back to your
original data set to correct errors and then re-enter them into R (using the
commands you have saved, of course). Or you can change a few values in R,
e.g.

> SeedPred[24, "species"] = "mmu"

to change the species in the 24th observation from psd to mmu. Whatever
you do, document this process as you go along, and always maintain your
original data set in its original, archival, form, even including data you think
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Figure 2.1 Some of R’s graphics parameters. Color specification, col, also applies
in many other contexts: all colors are set to gray scales here. See ?par

for (many more) details on graphics parameters, and one or more of
?rgb, ?palette, or apropos("color") for more on colors.

are errors (this is easier to remember if your original data set is in the form
of field notebooks). Keep a log of what you modify so conflicting versions of
your data don’t confuse you.

2.5 EXPLORATORY DATA ANALYSIS AND GRAPHICS

The next step in checking your data is to graph them, which leads on nat-
urally to exploring patterns. Graphing is the best way to understand not
only data, but also the models that you fit to data; as you develop models
you should graph the results frequently to make sure you understand how
the model is working.

R gives you complete control of all aspects of graphics (Figure 2.1) and lets
you save graphics in a wide range of formats. The only major nuisance when
doing graphics in R is that R constructs graphics as though it were drawing
on a page or canvas, not by adding objects to a picture. You generally
specify the positions of all graphics on the command line, not with the mouse
(although the locator function can be useful). Once you tell R to draw a
point, line, or piece of text there is no way to erase or move it. The advantage
of this procedure, like logging your data manipulations, is that you have a
complete record of what you did and can easily recreate the picture with
new data.

R actually has two different coexisting graphics systems. The base graphics
system is cruder/simpler, while the lattice graphics system (in the lattice
package) is more sophisticated/complex. Both can create scatterplots, box-
and-whisker plots, histograms, and other standard graphical displays. Lat-
tice graphics do more automatic processing of your data and produce prettier
graphs, but the commands are harder to understand and customize. In the
realm of 3D graphics, there are several more options, at different stages of
development. Base graphics and lattice graphics both have some 3D capabil-
ities (persp in base, wireframe and cloud in lattice); the scatterplot3d
package builds on base to draw 3D point clouds; the rgl package is still
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under development, but allows you to rotate and zoom the 3D coordinate
system with the mouse; and ggobi is an interface to a system for visualizing
multidimensional point data.

2.5.1 Seed removal data: discrete numeric predictors, discrete nu-
meric responses

As described in Chapter 1, the seed removal data set from Duncan and
Duncan (2000) gives information on the rate at which seeds were removed
from experimental stations set up in a Ugandan grassland. Seeds of 8 species
were set out at stations along two transects different distances from the forest
and monitored every few days for more than 8 months. We have already seen
a subset of these data in a brief example, but we haven’t really examined
the details of the data set. There are a total of 11803 observations, each
containing information on the station number (station), distance in meters
from the forest edge (dist), the species code (species∗), the date sampled
(date), and the number of seeds present (seeds). The remaining columns
in the data set are derived from the first five: the cumulative elapsed time
(in days) since the seeds were put out (tcum); the time interval (in days)
since the previous observation (tint); the number of seeds removed since
the previous observation (taken); and the number of seeds present at the
previous observation (available).

2.5.1.1 Decrease in numbers over time

The first thing to look at is the mean number of seeds remaining over time
(Figure 2.2). I also plotted the mean on a logarithmic scale; if seeds were re-
moved at a constant per capita rate (a reasonable null hypothesis), the means
should decrease exponentially over time and the lines should be straight on
a log scale. (It’s much easier to see differences from linearity than to tell
whether a curve is decreasing faster or slower than exponentially.) They are
not: it looks like the seeds that remain after July are taken at a much slower
rate.

Figure 2.2 also reveals differences among species larger than the differences
between the two distances from the forest. However, it also seems that some
species may have a larger difference between distances from the forests; C.
durandii (cd, 4) disappears 10 times faster near than far from the forest.
Like all good graphics, the figure raises many questions (only some of which
can be answered from the data at hand): is the change in disappearance rate
indicated by the flattening out of the curves driven by the elapsed time since
the seeds were set out, the season, or the declining density of seeds? Or is
there variation within species, such that predators take all the tasty seeds
at a station and leave the non-tasty ones? Is the change in rate a gradual

∗abz=Albizia grandibracteata, cd=Celtis durandii, cor=Cordia abyssinica,
dio=Diospyros abyssinica, mmu=Mimusops bagshawei, pol=Polyscias fulva,
psd=Pseudospondias microcarpa, uva=Uvariopsis congensis.
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Figure 2.2 Seed removal data: mean seeds remaining by species over time. Func-
tions: (main plot) matplot, matlines; (annotation) axis, axis.Date,
legend, text, points.

decrease or an abrupt change? Does it differ among species? Are the overall
differences in removal rate among species, between distances from the forest,
and their interaction (i.e. the fact that cd appears to be more sensitive to
differences in distance) real or just random fluctuations? Are they related
to seed mass or some other known characteristic of the species?

2.5.1.2 Number taken out of number available

Plotting the mean number remaining over time shows several facets of the
data (elapsed time, species, distance from edge) and asks and answers im-
portant ecological questions, but it ignores another facet — the variability
or distribution of the number of seeds taken. To explore this facet, I’ll now
look at the patterns of the number of seeds taken as a function of the number
available.

The simplest thing is to plot the number taken between each pair of sam-
ples (on the y axis) as a function of the number available (on the x axis).
If x and y are numeric variables, plot(x,y) draws a scatterplot. Here we
use plot(SeedPred$available,SeedPred$taken). The lattice package
equivalent would be xyplot(taken~available,data=SeedPred). The scat-
terplot turns out not to be very informative in this case (try it and see!); all
the repeated points in the data overlap, so that all we see in the plot is that
any number of seeds up to the number available can be taken.
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Figure 2.3 (a) Jittered scatterplot of number of seeds taken as a function of number
of seeds available: all species and dates combined. (b) Bubble plot of
combined seed removal data (sizeplot: (0,0) category dropped for
clarity).

One quick-and-dirty way to get around this problem is to use the jitter
command, which adds a bit of random variation so that the data points don’t
all land in exactly the same place: Figure 2.3(a) shows the results, which
are ugly but do give some idea of the patterns.
sizeplot, from the plotrix package, deals with repeated data points

by making the the area of plotting symbols proportional to the number of
observations falling at a particular point (Figure 2.3(b); in this case I’ve
used the text command to add text to the circles with the actual num-
bers from cross-tabulating the data by number available and number taken
(table(SeedPred$available,SeedPred$taken)). More generally, bubble
plots superimpose a third variable on an x-y scatterplot by changing symbol
sizes: in R, you can either use the symbols command, or just set cex to a
vector in a plot command (e.g. plot(x,y,cex=z) plots y vs. x with symbol
sizes proportional to z). sizeplot is a special-case bubble plot; it counts the
number of points with identical x and y values and makes the area of the cir-
cle proportional to that number. If (as in this case) these x and y values come
from a cross-tabulation, two other ways to plot the data are a mosaic plot
(e.g. mosaicplot( available+taken,data=SeedPred)) or a balloon plot
(balloonplot in the gplots package: balloonplot(table(SeedPred$available,SeedPred$taken)).
You could also try dotchart on the results of table; dot charts are an in-
vention of W. Cleveland that perform approximately the same function as
bar charts. (Try these and see for yourself.)

R is object-oriented, which in this context means that it will try to “do the
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right thing” when you ask it to do something with a variable. For example,
if you simply say plot(t1) R knows that t1 is a two-way table, and it will
plot something reasonably sensible — in this case the mosaic plot mentioned
above.

Barplots are another way to visualize the distribution of number of seeds
taken. (Figure 2.4). The barplot command can plot either a vector (as
single bars) or a matrix (as stacked bars, or as grouped sets of bars). Here
we want to plot groups of stacked bars, one group for each number of avail-
able seeds. The only remaining trick here is that barplot plots each column
of the matrix as a group, whereas we want our barplot grouped by number
available, which are the rows of our table. We could go back and recalcu-
late table(taken,available), which would switch the order of rows and
columns. However, it’s easier to use the transpose command t to exchange
rows and columns of the table.

I also decided to put the plot on a logarithmic scale, since the data span
a wide range of numbers of counts. Since the data contain zeros, taking log-
arithms of the raw data may cause problems; since they are count data, it is
reasonable to add 1 as an offset. I decided to use logarithms base 10 (log10)
rather than natural logarithms (log) since I find them easier to interpret.
(Many of R’s plot commands, including barplot, have an argument log that
can be used to specify that the x, y, or both axes are logarithmic (log="x",
log="y", log="xy" — this has the additional advantage of plotting an axis
with the original, more interpretable values labeled but unevenly spaced. In
this particular case the figure is slightly prettier the way I’ve done it.)

The main conclusions from Figures 2.3 and 2.4 and the table, which have
really shown essentially the same thing in four different ways, are that (1) the
number of seeds taken increases as the number of seeds available increases
(this is not surprising); (2) the distribution of number of seeds taken is
bimodal (has two peaks) with one mode at zero (which is very common), and
the maxima are at zero and at the total number of seeds available — all or
nothing — which is slightly surprising; (3) the distribution of the number of
seeds taken looks roughly constant as the number of seeds available increases.
Observation #2 in particular starts to suggest some ecological questions: it
makes sense for there to be a mode at zero (when seed predators don’t find
the seeds at all) and one away from zero (when they do), but why would seed
predators take either few or many but not an intermediate number? Perhaps
this pattern, which appears at the level of the whole data set, emerges from
variability among low- and high-vulnerability sites or species, or perhaps it
has something to do with the behavior of the seed predators.

Yet another graphical approach would be to try to visualize these data
in three dimensions, as a 3D barplot or “lollipop plot” (adding stems to a
3D scatterplot to make it easier to locate the points in space: Figure 2.5).
3D graphics do represent a wide new range of opportunities for graphing
data, but they are often misused and sometimes actually convey less infor-
mation than a carefully designed 2D plot; it’s hard to design a really good
3D plot. To present 3D graphics in print you also have to pick a single
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Figure 2.4 Bar plot of observations of number of seeds taken, subdivided by num-
ber available.
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Figure 2.5 3D graphics: lollipop plot produced in rgl (plot3d(...,type="s") to
plot spheres, followed by plot3d(...,type="h") to plot stems).

viewpoint, although this is not an issue for exploratory graphics. Finally,
R’s 3D capabilities are less well developed than those of MATLAB or Math-
ematica (although the rgl package, which is used in Figure 2.5 and has
been partially integrated with the Rcmdr and vegan packages, is under rapid
development). A package called ggobi allow you to explore scatterplots of
high-dimensional/multivariate data sets

2.5.1.3 Fraction of seeds taken

It may make more sense to try to work with the fraction of seeds taken,
and to see how this varies with number available (is it constant? or does the
fraction of seeds taken increase with the density of seeds (predator attraction)
or decrease (predator saturation) or vary among species?

> frac.taken = SeedPred$taken/SeedPred$available

Plotting the fraction taken directly (e.g. as a function of number available:
plot(SeedPred$available,frac.taken)) turns out to be uninformative,
since all of the possible values (e.g. 0/3, 1/3, 2/3, 1) appear in the data set
and so there is lots of overlap: we could use sizeplot or jitter again,

Suppose we want to calculate the mean fraction taken for each number of
seeds available. The command
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Figure 2.6 Bar plot with error bars: mean fraction taken as a function of number
available

> mean.frac.by.avail = tapply(frac.taken, available,

+ mean, na.rm = TRUE)

computes the mean fraction taken (frac.taken) for each different number of
seeds available (available: R temporarily converts available into a factor
for this purpose). (The tapply command is discussed in more detail in the
end-of-chapter supplement.)

We can also use tapply to calculate the standard errors, σ/
√

n:

> n.by.avail = table(available)

> sd.by.avail = tapply(frac.taken, available, sd,

+ na.rm = TRUE)

> se.by.avail = sd.by.avail/sqrt(n.by.avail)

I’ll use a variant of barplot, barplot2 (from the gplots package) to
plot these values with standard errors (R does not supply error-bar plotting
as a built-in function, but you can use the barplot2 (gplots package) or
plotCI (gplots or plotrix package) functions to add error bars to a plot:
see end-of-chapter supplement.

While a slightly larger fraction of available seeds is removed when 5 seeds
are available, there is not much variation overall (Figure 2.6). We can use
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tapply to cross-tabulate by species as well: the following commands would
show a barplot of the fraction taken for each combination of number available
and species:

> mean.frac.by.avail.sp = tapply(frac.taken, list(available,

+ species), mean, na.rm = TRUE)

> mean.frac.by.avail.sp = na.omit(mean.frac.by.avail.sp)

> barplot(mean.frac.by.avail.sp, beside = TRUE)

It’s often better to use a box plot (or box-and-whisker plot) to compare
continuous data in different groups. Box plots show more information than
bar plots, and show it in a robust form (see p. 59 for an example). However,
in this case the box plot is dominated by zeros and so is not very informative.

One more general plotting strategy small multiples (Tufte, 2001), or break-
ing the plot into an array of similar plots comparing patterns at different
levels (by species, in this case). To make small multiples in base graphics, I
would use par=mfrow(c(r,c)) to divide the plot region up into a grid with
r rows and c columns and then draw a plot for each level separately. The
lattice package handles small multiples automatically, and elegantly. In
this case, I used the command

> nz = subset(SeedPred, taken > 0)

to separate out the cases where at least 1 seed was removed, and then

> barchart(table(nz$available, nz$species, nz$taken),

+ stack = FALSE)

to plot bar charts showing the distribution of the number of seeds taken for
each number available, subdivided by species. (barchart(...,stack=FALSE)
is the lattice equivalent of barplot(...,beside=TRUE).) In other con-
texts, the lattice package uses a vertical bar | to denote a small-multiple
plot. For example, bwplot(frac.taken~available|species), would draw
an array of box plots, one for each species, of the fraction of seeds taken as
a function of the number available (see p. 59 for an example).

Figure 2.7 shows that the all-or-nothing distribution shown in Figure 2.4
is not just an artifact of lumping all the species together, but holds up at the
individual species level. The patterns are slightly different, since in Figure 2.4
we chose to handle the large number of zero cases by log-transforming the
number of counts (to compress the range of number of counts), while here
we have just dropped the zero cases. Nevertheless, it is still more likely that
a small or large fraction of the available seeds will disappear, rather than an
intermediate fraction.

We could ask many more questions about these data.

� is the length of time available for removal important? although most
stations were checked every 7 days, the interval ranged from 3 to 10
(table(tint)). Would separating the data by tint, or standardizing
to a removal rate (tint/taken), show any new patterns?
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Figure 2.7 Small multiples: bar plots of number of seeds taken by number available
and species. (barchart( frac.taken|species))
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� is there more to explore about the effects of distance from the forest?
Would any of Figures 2.3–2.7 show different patterns if we separated
the data by distance?

� is there spatial variation along the transects (remember that the sta-
tions are spaced every 5 m along two transects)? Are neighboring
stations more likely to be visited by predators? Are there gradients in
removal rate from one end of the transect to the other?

However, you may be getting tired of seeds at the moment or your brain
may be getting full. The other examples for this chapter show more kinds
of graphs and more techniques for rearranging data.

2.5.2 Tadpole predation data

The next example data set describes the survival of tadpoles of an African
treefrog, Hyperolius spinigularis, in field predation trials conducted in large
tanks. Vonesh and Bolker (2005) present the full details of the experiment;
the goal was to understand the tradeoffs that H. spinigularis face between
avoiding predation in the egg stage (eggs are attached to tree leaves above
ponds, and are exposed to predation by other frog species and by parasitoid
flies) and in the larval stage (tadpoles drop into the water and are exposed to
predation by many aquatic organisms including larval dragonflies). In par-
ticular, juveniles may face a trade-off between hatching earlier (and hence
smaller) to avoid egg predators and surviving as tadpoles, since smaller tad-
poles are at higher risk from aquatic predators.∗ Here, we’re just going to
look at the data as an example of dealing with continuous predictor variables
(i.e., exploring how predation risk varies with tadpole size and density).

Since reading in these data is straightforward, we’ll take a shortcut and
use the data command to pull the data into R from the emdbook package.
There are three data sets corresponding to three different experiments:

� ReedfrogPred: results of a factorial experiment that quantified the
number of tadpoles surviving for 16 weeks (surv: survprop gives the
proportion surviving) with and without predators (pred), with three
different tadpole densities (density), at two different initial tadpole
sizes (size);

� ReedfrogSizepred: data from a more detailed experiment on the ef-
fects of size (TBL, for tadpole body length) on survival over 3 days
(Kill, number killed out of 10);

� ReedfrogFuncresp: data from a more detailed experiment on the ef-
fects of initial tadpole density (Initial) on the number killed over 14
days (Killed).

∗in fact, the study found that smaller, earlier-hatched tadpoles manage to compensate
for this risk by growing faster through the size range in which they are vulnerable to
aquatic predators.
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2.5.2.1 Factorial predation experiment (ReedfrogPred)

What are the overall effects of predation, size, density, and their interac-
tions on survival? Figure 2.8 uses boxplot(propsurv~size*density*pred)
to display the experimental results (bwplot is the lattice equivalent of
boxplot). Box plots show more information than barplots. In general, you
should prefer boxplots to barplots unless you are particularly interested in
comparing values to zero (barplots are anchored at zero, which emphasizes
this comparison).

Specifically, the line in the middle of each box represents the median; the
ends of the boxes (“hinges”) are the first and third quartiles (approximately:
see ?boxplot.stats for gory details); the “whiskers” extend to the most ex-
treme data point in either direction that is within a factor of 1.5 of the hinge;
any points beyond the whiskers (there happen to be none in Figure 2.8) are
considered outliers and are plotted individually. It’s clear from the picture
that predators significantly lower survival (not surprising). Density and tad-
pole size also have effects, and may interact (the effect of tadpole size in
the predation treatment appears larger at high densities).∗ The order of the
factors in the boxplot formula doesn’t really change the answers, but it does
change the order in which the bars are presented, which emphasizes different
comparisons. In general, you should organize barplots and other graphics to
focus attention on the most important or most interesting question: in this
case, the effect of predation is so big and obvious that it’s good to separate
predation from no-predation first so we can see the effects of size and density.
I chose size*density*pred to emphasize the effects of size by putting the
big- and small-tadpole bars within a density treatment next to each other;
density*size*pred would emphasize the effects of density instead.

Boxplots are also implemented in the lattice package:

> bwplot(propsurv ~ density | pred * size, data = ReedfrogPred,

+ horizontal = FALSE)

gives a boxplot. Substituting dotplot for bwplot gives a dot-plot instead,
which shows the precise value for each experimental unit (good for relatively
small data sets like this one, although in this particular example several
points fall on top of each other in the treatments where there was high
survival).

∗An analysis of variance on the arcsine-square root transformed proportion surviving
(Table 1 in Vonesh and Bolker (2005)) identifies significant effects of density, predator,
density × predator and size × predator interactions (i.e. density and size matter only
when predators are present), but not a significant density × size × predator interaction.
Either the apparent increase in size effect at high densities in the presence of a predator
is by chance alone, or the statistical test was not powerful enough to distinguish it from
chance.
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Figure 2.8 Results of factorial experiment on H. spinigularis predation: box-

plot(propsurv~size*density*pred,data=ReedfrogPred).

2.5.2.2 Effects of density and tadpole size

Once the factorial experiment had established the qualitative effects of den-
sity and tadpole size on predation, Vonesh ran more detailed experiments to
explore the ecological mechanisms at work: how, precisely, do density and
size affect predation rate, and what can we infer from these effects about
tadpole life history choices?

Figure 2.9 shows the relationship between (a) initial density and (b) tad-
pole size and the number of tadpoles killed by aquatic predators. The first
relationship shows the predator functional response — how the total number
of prey eaten increases, but saturates, as prey density increases. The second
relationship demonstrates a size refuge — small tadpoles are protected be-
cause they are hidden or ignored by predators, while large tadpoles are too
big to be eaten or big enough to escape predators.

Questions about the functional relationship between two continuous vari-
ables are very common in ecology; we’re asking how one ecological variable
affects another. Chapter 3 will present a wide variety of plausible mathe-
matical functions to describe such relationships. When we do exploratory
data analysis, on the other hand, we want ways of “connecting the dots” that
are plausible but that don’t make too many assumptions. Typically we’re
interested in smooth, continuous functions. For example, we think that a
small change in initial density should not lead to an abrupt change in the
number of tadpoles eaten.

The pioneers of exploratory data analysis invented several recipes to de-
scribe such smooth relationships.
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Figure 2.9 H. spinigularis tadpole predation by dragonfly larvae as a function of
(a) initial density of tadpoles (b) initial size of tadpoles.

� R incorporates two slightly different versions of robust locally weighted
regression (lowess and loess). This algorithm runs linear or quadratic
regressions on successive chunks of the data to produce a smooth curve.
lowess has an adjustable smoothness parameter (in this case the pro-
portion of points included in the “neighborhood” of each point when
smoothing) that lets you choose curves ranging from smooth lines
that ignore a lot of the variation in the data to wiggly lines that
pass through every point: in Figure 2.9a, I used the default value
(lines(lowess(Initial,Killed))).

� Figure 2.9a also shows a spline fit to the data which uses a series of
cubic curves to fit the data. Splines also have a smoothing param-
eter, the degrees of freedom or number of different piecewise curves
fitted to the data; in this case I set the degrees of freedom to 5
(the default here would be 2) to get a slightly more wiggly curve
(smooth.spline(Initial, Killed,df = 5)).

� Simpler possibilities include just drawing a straight line between the
mean values for each initial density (using tapply(Killed,Initial,mean)
to calculate the means and unique(Initial) to get the non-repeated
values of the initial density), or plotting the results of a linear or
quadratic regression of the data (not shown: see R supplement). I
plotted straight lines between the means in Figure 2.9b because local
robust regression and splines worked poorly.

To me, these data present fewer intriguing possibilities than the seed re-
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moval data — primarily because they represent the results of a carefully tar-
geted experiment, designed to answer a very specific question, rather than a
more general set of field observations. The trade-off is that there are fewer
loose ends; in the end we were actually able to use the detailed information
about the shapes of the curves to explain why small tadpoles experienced
higher survival, despite starting out at an apparent disadvantage.

2.5.3 Wrasse data

The next example comes from Schmitt et al.’s (1999) work on a small reef
fish, the three-spotted wrasse (Dascyllus trimaculatus), in French Polynesia.
Like many reef fish, Dascyllus’s local population dynamics are open. Pelagic
larval fish immigrate from outside the area, settling when they arrive on
sea anemones. Schmitt et al. were interested in understanding how the
combination of larval supply (settler density), density-independent mortality,
and density-dependent mortality determines local population densities.

The data are observations of the numbers of settlers found on previously
cleared anemones after settlement pulses and observations of the number
of sub-adults recruiting (surviving after 6 months) in an experiment where
densities were artificially manipulated.

The settlement data set, WrasseSettlement, includes 600 observations at
10 sites, across 6 different settlement pulses in two years. Each observa-
tion records the site at which settlement was observed (site), the month
(pulse) and the number (obs) and density per 0.1 m2 (density) of set-
tling larvae. The first recruitment data set, WrasseRecruitment, gives the
anemone area in 0.1 m2 (area), the initial number of settlers introduced
(init), and the number of recruits (sub-adults surviving after 6 months:
surv). The second recruitment data set, WrasseRecruitment_sum, gives in-
formation on the recruitment according to target densities (the densities the
experimenters were trying to achieve), rather than the actual experimental
densities, and are summarized by category. It includes the target settler den-
sity (settler.den), the mean recruit density in that category after 6 months
(surv.den), and the standard error of recruit density (SE).

2.5.3.1 Density-recruitment experiment

The relationship between settler density and recruit density (Figure 2.10) is
ecologically interesting, but does not teach us many new graphical or data
analysis tricks. I did plot the x axis on a log scale, which shows the low-
density data more clearly but makes it harder to see whether the curve
fits any of the standard ecological models (for example, purely density-
independent survival would produce a straight line on a regular (linear)
scale). Nevertheless, we can see that the number recruiting at high densities
levels off (evidence of density-dependent survival) and there is even a sug-
gestion of overcompensation — a decreasing density of recruits at extreme
densities.
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Figure 2.10 Recruit (sub-adult) D. trimaculatus density after 6 months, as a func-
tion of experimentally manipulated settler density. Black points show
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Figure 2.11 Overall distribution of settlement density of D.trimaculatus across
space and time (only values < 200/(0.1m2); 8 values excluded).

Settlement data

The reef fish data also provide us with information about the variability
in settlement density across space and time. Schmitt et al. lumped all of
these data together, to find out how the distribution of settlement density
affects the relative importance of density-independent and density-dependent
factors (Figure 2.11).

Figure 2.11 shows a histogram of the settlement densities. Histograms
(hist in basic graphics or histogram in lattice graphics) resemble barplots
but are designed for continuous rather than discrete distributions. They
break the data up into evenly spaced categories and plot the number or
proportion of data points that fall into each bin. You can use histograms for
discrete data, if you’re careful to set the breaks between integer values (e.g.
at seq(0,100,by=0.5)), but plot(table(x)) or barplot(table(x)) are
generally better. Although histograms are familiar to most ecologists, kernel
density estimators (Venables and Ripley, 2002, density:), which produce a
smooth estimate of the probability density rather than breaking the counts
into discrete categories, are generally better than histograms — especially
for large data sets. Estimating the density and adding it to Figure 2.11 was
as simple as lines(density(setdens)).
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The zero-settlement events are shown as a separate category by using
breaks=c(0,seq(1,200,by=4)). Rather than plot the number of counts in
each category, the probability density is shown, so that the area in each bar
is proportional to the number of counts. Perhaps the most striking feature
of the histogram is the large number of zeros: this aspect is downplayed by
the original histogram in Schmitt et al. (1999), which plots the zero counts
separately but failed to increase the height of the bar to compensate for
its narrower width. The zero counts seem to fall into a separate category;
ecologically, one might wonder why there are so many zeros, and whether
there are any covariates that would predict where and when there were no
settlers. Depending on your ecological interests, you also might want to
replot the histogram without the zeros to focus attention on the shape of
the rest of the distribution.

The histogram also shows that the distribution is very wide (one might
try plotting a histogram of log(1 + x) to compress the distribution). In fact,
I actually excluded the 8 largest values from the histogram. (R’s histogram
function does not have a convenient way to lump “all larger values” into the
last bar, as in Schmitt et al.’s original figure.) The first part of the distri-
bution falls off smoothly (once we ignore the zeros), but there are enough
extremely large values to make us ask both what is driving these extreme
events and what effects they may be having.

Schmitt et al. did not explore the distribution of settlement across time
and space. We could use

> bwplot(log10(1 + density) ~ pulse | site, data = WrasseSettlement,

+ horizontal = FALSE)

to plot box-and-whisker plots of settlement divided by pulse, with small
multiples for each site, for the wrasse settlement data. We can also use a
pairs plot (pairs) or scatterplot matrix (splom in the lattice package) to
explore the structure of multivariate data (many predictor variables, many
response variables, or both: Figure 2.12). The pairs plot shows a table of x-y
plots, one for each pair of variables in the data set. In this case, I’ve used it
to show the correlations between settlement to a few of the different sites in
Schmitt et al.’s data set (each site contains multiple reefs where settlement
is counted): because the WrasseSettlement data set is in long form, we first
have to reshape it so that we have a separate variable for each site:

> library(reshape)

> x2 = melt(WrasseSettlement, measure.var = "density")

> x3 = cast(x2, pulse + obs ~ ...)

The first few rows and columns of the reshaped data set look like this:

pulse obs Cdina_density Hin_density Hout_density ...
1 1 1 2.7 0.0 0 ...
2 1 2 2.7 0.0 0 ...
3 1 3 2.7 0.0 0 ...
4 1 4 2.7 3.6 0 ...
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Figure 2.12 Scatterplot matrix of settlement to three selected reefs
(logarithm(1 + x) scale), with points numbered according to pulse:
splom(log10(1+x3[,3:5]),groups=x3$pulse,pch=as.character(1:6))

and we can now use pairs(log10(1+x3[,3:5])) (or splom(log10(1+x3[,3:5]))
to use lattice graphics) to produce the scatterplot matrix (Figure 2.12).

2.5.4 Goby data

We can explore the effect of density on survival in more detail with another
data set on reef fish survivorship, this one on the marine gobies Elacatinus
prochilos and E. evelynae in St. Croix (Wilson, 2004). Like wrasses, larval
marine gobies also immigrate to a local site, although these species settle on
coral heads rather than on anemones. Wilson experimentally manipulated
density in a series of experiments across several years; she replaced fish
as they died in order to maintain the local density experienced by focal
individuals∗.

Previous experiments and observations suggested that patch reefs with
higher natural settlement rate have lower mortality rates, once one accounts

∗Unlike the rest of the data sets in the book, I did not include this one in the emdbook

package, since all the analyses have not yet been published. I will include them as soon
as they become available; please feel free to contact me (BMB) in the meanwhile if you
would like access to them.
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for the effects of density. Thus reefs with high natural settlement rates were
deemed to be of putatively high “quality”, and the natural settlement rate
was taken as an index of quality in subsequent experiments in which density
was manipulated.

Reading from a comma-separated file, specifying that the first four columns
are factors and the last four numeric:

> gobydat = read.csv("GobySurvival.csv", colClasses = c(rep("factor",

+ 4), rep("numeric", 4)))

> attach(gobydat)

For each individual monitored, the data give the experiment number (exper:
5 separate experiments were run between 2000 and 2002) and information
about the year and location of the experiment (year, site); information
about the location (coral head: head) of each individual and the corre-
sponding density (density) and quality (qual) of the coral head; and the
fate of the individual — the last day it was observed (d1) and the first day
it was not seen (d2, set to 70 if the fish was present on the last sampling day
of the experiment. (In survival analysis literature, individuals that are still
alive when the study ends are called right-censored). Since juvenile gobies
of these species rarely disperse, we will assume that a fish that disappears
has died.

Survival data are challenging to explore graphically, because each individ-
ual provides only a single discrete piece of information (its time of death or
disappearance, which we will approximate in this case by the average be-
tween the last time it was observed and the first time it was not observed):

> meansurv = (d1 + d2)/2

For visualization purposes, it will be useful to define low- and high-density
and low- and high-quality categories. We will use the ifelse(val,a,b)
command to assign value a if val is TRUE or b if val is FALSE), and the
factor command to make sure that level low is listed before high even
though it is alphabetically after it.

> dens.cat = ifelse(density > median(density), "high",

+ "low")

> dens.cat = factor(dens.cat, levels = c("low",

+ "high"))

> qual.cat = ifelse(qual > median(qual), "high",

+ "low")

> qual.cat = factor(qual.cat, levels = c("low",

+ "high"))

Figure 2.13 shows an xyplot of the mean survival value, jittered and
divided into low- and high-quality categories, with linear-regression lines
added to each subplot. There is some mild evidence that mean survival
declines with density at low-quality sites, but much of the pattern is driven



book May 21, 2007

68 CHAPTER 2

Density

M
ea

n 
su

rv
iv

al
 ti

m
e

0

10

20

30

40

2 4 6 8 10

●●●●●●●●●●

●

● ●

●

●● ●●●●●● ●●●●●●

●●

●

●

●

●●●●● ●●● ●● ●●●

●●

●●●

●●

● ●●

●

●

●●

●●●

●

●●

●

●

●●

●

●●●●● ●●

● ●

●●

●

●●●● ● ●●

●

●

●

●

●

●

●

●

●

● ●●●●●●

●

●●●●●

●

●●●
●

●

●
●

●

●●●●● ●●

● ●

●●

●

●●●●●●●●

●

●●

●

●

●

●

●●

●

●●

●

●● ●●
●●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

low

2 4 6 8 10

●

●

●

●

●●●

●●●●●

●●

●

●●●● ●●●

●

●

●●●● ●●

●

●

●●● ●●●● ●●●●

● ●

● ●●●●●

●

●●● ●●

●

●●

●

●

●

●●

●

●● ●●

●

●●

●

●●

●

●

●
●

●

●●●●●

●

●●

●●

●

● ●

●

●

●
●

●

●●

● ●●●●●●●●●

●

●

●●●●●● ●●

●

●●

●

●

●

●

● ●

●

●●

●

●
●

●

● ●●●●● ●●●●●

●

●●

●

●

●●

●●●

●●
●
●●● ● ●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

high

Figure 2.13 Mean survival time as a function of density, divided by quality (back-
ground settlement) category.

by the fish with meansurv of > 40 (which are all fish that survived to the end
of the experiment) and by the large cluster of short-lived fish at low quality
and high densities (> 10).

Let’s try calculating and plotting the mortality rate over time, and the
proportion surviving over time (the survival curve), instead.

Starting by taking all the data together, we would calculate these values by
first tabulating the number of individuals disappearing in each time interval:

> survtab = table(meansurv)

> survtab

meansurv
1.5 2.5 3.5 5 6 7 9 9.5 10 11 40.5 41
137 113 17 8 14 3 5 13 4 3 26 26

Next, reverse the table (rev) and take its cumulative sum with cumsum:

> csurvtab = cumsum(rev(survtab))

> csurvtab

41 40.5 11 10 9.5 9 7 6 5 3.5 2.5 1.5
26 52 55 59 72 77 80 94 102 119 232 369
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Figure 2.14 Goby survival data: proportional mortality and fraction surviving over
time, for different quality/density categories

This calculates the number of individuals that disappeared on or after a
given time. Reversing the vector again sorts it into order of increasing time:

> csurvtab = rev(csurvtab)

To calculate the proportional mortality at each time step, divide the number
disappearing by the total number still present (I have rounded to 2 digits):

> survtab/csurvtab

meansurv
1.5 2.5 3.5 5 6 7 9 9.5 10 11 40.5 41
0.37 0.49 0.14 0.08 0.15 0.04 0.06 0.18 0.07 0.05 0.50 1.00

Figure 2.14 plots the proportion dying and survival curves by quality/density
category. The plot of proportion dying is very noisy, but does suggest that
the disappearance rate starts relatively high (≈ 50% per observation period)
and then decreases (the end of the experiment gets very noisy, and was left
off the plot). The survival curve is clearer. Since it is plotted on a loga-
rithmic scale, the leveling-off of the curves is an additional indication that
the mortality rate decreases with time (constant mortality would lead to
exponential decline, which would appear as a straight line on a logarithmic
graph). As expected, the low quality, high density treatment has the lowest
proportion surviving, with the other three treatments fairly closely clustered
and not in the expected order (we would expect the high quality, low density
treatment to have the highest survivorship).
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2.6 CONCLUSION

This chapter has given an overview and examples of how to get data into
R and start plotting it in various ways to ask ecological questions. I have
overlooked a variety of special-case kinds of data (e.g. circular data such
as directional data or daily event times; highly multivariate data; spatial
data and maps; compositional data, where the sum of proportions in dif-
ferent categories adds to 1.0); Table 2.1 gives some ideas for handling these
data types, but you may also have to search elsewhere, for example using
RSiteSearch("circular").
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Predictors Response Plot choices
single categorical single categorical table, barplot , dotchart, barchart [L],

dotplot [L]
multiple categorical single categorical as above, plus mosaicplot, small multi-

ples (par(mfrow)/par(mfcol) or lattice
plots), sizeplot [plotrix] or 3D histogram
[scatterplot3d, rgl]

circular categorical rose.diag [CircStats]
circular continuous polar.plot [plotrix]
none compositional barplot(...,beside=FALSE),

barchart(...,stack=TRUE) [L], ternaryplot
[vcd], triax.plot [plotrix]

single categorical multiple continuous stars
none or single cate-
gorical

single continuous boxplot, bwplot [L], violin plots
(bwplot(...,panel=panel.violin) [L],
vioplot [vioplot], stripplot [L], barplot2
[gplot] for error bars

continuous+categorical single continuous scatterplot (plot , xyplot [L]) with categories
indicated by plotting symbols (pch), color (col),
size (cex) or (in lattice) groups argument

single continuous single continuous plot , xyplot [L]; lowess, smooth.spline for
curves; plotCI [gplots or plotrix] for error
bars

multiple continuous multiple continuous conditioning plots (coplot or lattice plots),
3D scatter- or lollipop plots (cloud [L],
scatterplot3d [scatterplot3d] or plot3d
[rgl]

continuous (time or
1D space)

continuous plot/xyplot with type="l" or type="b"

continuous (2D
space)

continuous image, contour, persp, kde2d [MASS],
wireframe [L], surface3d [rgl], maps package,
maptools package, sp package

Table 2.1 Summary of graphical procedures. In general square brackets denote
functions in non-standard packages; [L] denotes functions in the lattice
package.
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2.7 R SUPPLEMENT

All of the R code in this supplement is available from http://www.zoo.ufl.
edu/bolker/emdbook in an electronic format that will be easier to cut and
paste from, in case you want to try it out for yourself (you should).

2.7.1 Clean, reshape, and read in data

The seed removal data were originally stored in two separate Excel files,
one for the 10 m transect and one for the 25 m transect: After a couple of
preliminary errors I decided to include na.strings=" " (to turn blank cells
into NAs and comment="" (to deal with a # character in the column names
— although I could also have edited the Excel file to remove it):

> dat_10 = read.csv("duncan_10m.csv", na.strings = "?",

+ comment = "")

> dat_25 = read.csv("duncan_25m.csv", na.strings = "?",

+ comment = "")

str and summary originally showed that I had some extra columns and
rows: row 160 of dat_10, and columns 40–44 of dat_25, were junk. I could
have gotten rid of them this way:

> dat_10 = dat_10[1:159, ]

> dat_25 = dat_25[, 1:39]

(I could also have used negative indices to drop specific rows/columns: dat_10[-160),]
and dat_25[-(40:44),] would have the same effect).

Now we reshape the data, preserving the first two columns (station and
species) as identifier variables:

> library(reshape)

> dat_10_melt = melt(dat_10, id.var = 1:2)

Convert the third column to a date, using paste to append 1999 to each
date (sep="." separates the two pasted strings with a period):

> date_10 = paste(dat_10_melt[, 3], "1999", sep = ".")

Then use as.Date to convert the string to a date (%d means day, %b%
means three-letter month abbreviation, and %Y% means four-digit year; check
?strptime for more date format details).

> dat_10_melt[, 3] = as.Date(date_10, format = "X%d.%b.%Y")

Finally, rename the columns.

> names(dat_10_melt) = c("station", "species", "date",

+ "seeds")

Do the same for the 25-m transect data:
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> dat_25_melt = melt(dat_25, id.var = 1:2)

> date_25 = paste(dat_25_melt[, 3], "1999", sep = ".")

> dat_25_melt[, 3] = as.Date(date_25, format = "X%d.%b.%Y")

> names(dat_25_melt) = c("station", "species", "date",

+ "seeds")

We’ve finished cleaning up and reformatting the data. Now we would
like to calculate some derived quantities: specifically, tcum (elapsed time
from the first sample), tint (time since previous sample), taken (number
removed since previous sample), and available (number available at pre-
vious sample). We’ll split the data frame up into a separate chunk for each
station:

> split_10 = split(dat_10_melt, dat_10_melt$station)

Now go through, and for each chunk, calculate the cumulative time by
subtracting the first date from all the dates; the time interval by taking
the difference of successive dates (with diff) and prepending an NA; the
number of seeds lost by taking the negative of the difference of successive
numbers of seeds; and the number of seeds available at the previous time
by prepending NA and dropping the last element. Then put the new derived
variables together with the original data and re-assign it. The for loop
below executes each statement inside the curly brackets {}, setting i to each
value between 1 and the number of stations:

> for (i in 1:length(split_10)) {

+ x = split_10[[i]]

+ tcum = as.numeric(x$date - x$date[1])

+ tint = as.numeric(c(NA, diff(x$date)))

+ taken = c(NA, -diff(x$seeds))

+ available = c(NA, x$seeds[-nrow(x)])

+ split_10[[i]] = data.frame(x, tcum, tint,

+ taken, available)

+ }

Now we want to stick all of the little bits of the data frame back to-
gether. rbind (for row bind) does this, but we have to use do.call to
apply rbind to the list of items in split_10: normally we would call rbind
as rbind(x,y,z) where x, y, and z are matrices or data frames with the
same number of columns.

> dat_10 = do.call("rbind", split_10)

This trick is useful whenever you have individuals or stations that have
data recorded only for the first observation of the individual. In some cases
you can also do these manipulations by working with the data in wide format.

Do the same for the 25-m data (not shown):
Create new data frames with an extra column that gives the distance

from the forest (rep is the R command to repeat values); then stick them
together.
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> dat_10 = data.frame(dat_10, dist = rep(10, nrow(dat_10)))

> dat_25 = data.frame(dat_25, dist = rep(25, nrow(dat_25)))

> SeedPred = rbind(dat_10, dat_25)

Convert station and distance from numeric to factors:

> SeedPred$station = factor(SeedPred$station)

> SeedPred$dist = factor(SeedPred$dist)

Reorder columns:

> SeedPred = SeedPred[, c("station", "dist", "species",

+ "date", "seeds", "tcum", "tint", "taken",

+ "available")]

> SeedPred_wide = reshape(SeedPred[order(SeedPred$date),

+ ], direction = "wide", timevar = "date", idvar = c("station",

+ "dist", "species"), drop = c("tcum", "tint",

+ "taken", "available"))

2.7.2 Plots: seed data

2.7.2.1 Mean number remaining with time

Attach the seed removal (predation) data:

> attach(SeedPred, warn = FALSE)

Separate out the 10 m and 25 m transect data from the full seed removal
data set:

> SeedPred_10 = subset(SeedPred, dist == 10)

> SeedPred_25 = subset(SeedPred, dist == 25)

The tapply (for table apply, pronounced “t apply”) function is an exten-
sion of the table function; it splits a vector into groups according to the list
of factors provided, then applies a function (e.g. mean or sd) to each group.
To split the data on numbers of seeds present by date and species and take
the mean (na.rm=TRUE says to drop NA values):

> s10_means = tapply(SeedPred_10$seeds, list(SeedPred_10$date,

+ SeedPred_10$species), mean, na.rm = TRUE)

> s25_means = tapply(SeedPred_25$seeds, list(SeedPred_25$date,

+ SeedPred_25$species), mean, na.rm = TRUE)

matplot (“matrix plot”) plots the columns of a matrix together against a
single x variable. Use it to plot the 10 m data on a log scale (log="y") with
both lines and points (type="b"), in black (col=1), with plotting characters
1 through 8, with solid lines (lty=1). Use matlines (“matrix lines”) to add
the 25 m data in gray. (lines and points are the base graphics commands
to add lines and points to an existing graph.)
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> matplot(s10_means, log = "y", type = "b", col = 1,

+ pch = 1:8, lty = 1)

> matlines(s25_means, type = "b", col = "gray",

+ pch = 1:8, lty = 1)

2.7.2.2 Seed data: distribution of number taken vs. available

Jittered plot:

> plot(jitter(SeedPred$available), jitter(SeedPred$taken))

Bubble plot: this differs from Figure 2.3 because I don’t exclude cases
where there are no seeds available. (I use xlim and ylim to extend the axes
slightly.) scale and pow can be tweaked to change the size and scaling of
the symbols.

To plot the numbers in each category, I use text, row to get row numbers,
and col to get column numbers; I subtract 1 from the row and column
numbers to plot values starting at zero.

> library(plotrix)

> sizeplot(SeedPred$available, SeedPred$taken, scale = 0.5,

+ pow = 0.5, xlim = c(-2, 6), ylim = c(-2, 5))

> t1 = table(SeedPred$available, SeedPred$taken)

> text(row(t1) - 1, col(t1) - 1, t1)

Or you can use balloonplot from the gplots package:

> library(gplots)

> balloonplot(t1)

Finally, the default mosaic plot, either using the default plot command
on the existing tabulation

> plot(t1)

or using the mosaicplot command with a formula based on the columns of
SeedPred:

> mosaicplot(~available + taken, data = SeedPred)

Bar plot:

> barplot(t(log10(t1 + 1)), beside = TRUE, xlab = "Available",

+ ylab = "log10(1+# observations)")

or

> barplot(t(t1 + 1), log = "y", beside = TRUE, xlab = "Available",

+ ylab = "1+# observations")

Bar plot of mean fraction taken:
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> mean.frac.by.avail = tapply(frac.taken, available,

+ mean, na.rm = TRUE)

> n.by.avail = table(available)

> se.by.avail = tapply(frac.taken, available, sd,

+ na.rm = TRUE)/sqrt(n.by.avail)

> barplot2(mean.frac.by.avail, plot.ci = TRUE, ci.l = mean.frac.by.avail -

+ se.by.avail, ci.u = mean.frac.by.avail + se.by.avail,

+ xlab = "Number available", ylab = "Fraction taken")

Bar plot of mean fraction taken by species — in this case we use barplot,
saving the x locations of the bars in a variable b, and then add the confidence
intervals with plotCI.

> library(plotrix)

> frac.taken = SeedPred$taken/SeedPred$available

> mean.frac.by.avail.by.species = tapply(frac.taken,

+ list(available, species), mean, na.rm = TRUE)

> n.by.avail.by.species = table(available, species)

> se.by.avail.by.species = tapply(frac.taken, list(available,

+ species), sd, na.rm = TRUE)/sqrt(n.by.avail.by.species)

> b = barplot(mean.frac.by.avail.by.species, beside = TRUE)

> plotCI(b, mean.frac.by.avail.by.species, se.by.avail.by.species,

+ add = TRUE, pch = ".", gap = FALSE)

3D plots: using t1 from above, define the x, y, and z variables for the
plot:

> x = row(t1)[t1 > 0]

> y = col(t1)[t1 > 0] - 1

> z = log10(t1[t1 > 0])

The scatterplot3d library is a little bit simpler to use, but less interactive
— once the plot is drawn you can’t change the viewpoint. Plot -x and -y
to reverse the order of the axes and use type="h" (originally named for a
“high density” plot in R’s 2D graphics) to draw lollipops:

> library(scatterplot3d)

> scatterplot3d(-x, -y, z, type = "h", angle = 50,

+ pch = 16)

With the rgl library: first plot spheres (type="s") hanging in space

> library(rgl)

> plot3d(x, y, z, lit = TRUE, col.pt = "gray", type = "s",

+ size = 0.5, zlim = c(0, 4))

Then add stems and grids to the plot:

> plot3d(x, y, z, add = TRUE, type = "h", size = 4,

+ col = gray(0.2))

> grid3d(c("x+", "y-", "z"))

Use the mouse to move the viewpoint until you like the result.
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2.7.2.3 Histogram/small multiples

Using lattice graphics, as in the text:

> histogram(~frac.taken | species, xlab = "Fraction taken")

or with base graphics:

> op = par(mfrow = c(3, 3))

> for (i in 1:length(levels(species))) {

+ hist(frac.taken[species == levels(species)[i]],

+ xlab = "Fraction taken", main = "", col = "gray")

+ }

> par(op)

(op stands for “old parameters”; saving the old parameters in this way and
using par(op) at the end of the plot restores the original graphical param-
eters).

Clean up:

> detach(SeedPred)

2.7.3 Tadpole data

As mentioned in the text, reading in the data was fairly easy in this case:
read.table(...,header=TRUE) and read.csv worked without any tricks.
I take a shortcut, therefore, to attach the datasets that are included in the
emdbook library:

> data(ReedfrogPred)

> data(ReedfrogFuncresp)

> data(ReedfrogSizepred)

2.7.3.1 Boxplot of factorial experiment

The boxplot is fairly easy:

> graycols = rep(rep(gray(c(0.4, 0.7, 0.9)), each = 2),

+ 2)

> boxplot(propsurv ~ size * density * pred, data = ReedfrogPred,

+ col = graycols)

Play around with the order of the factors to see how useful the different
plots are.
graycols specifies the colors of the bars to mark the different density

treatments. gray(c(0.4,0.7,0.9)) produces a vector of colors; rep(gray(c(0.4,0.7,0.9)),each=2)
repeats each color twice (for the big and small treatments within each den-
sity treatment; and rep(rep(gray(c(0.4,0.7,0.9)),each=2),2) repeats
the whole sequence twice (for the no-predator and predator treatments).
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2.7.3.2 Functional response values

I’ll attach the functional response data to simplify the code a bit (so I can
write Initial instead of ReedfrogFuncresp$Initial$):

> attach(ReedfrogFuncresp, warn = FALSE)

A simple x-y plot, with an extended x axis and some axis labels:

> plot(Initial, Killed, xlim = c(0, 100), ylab = "Number killed",

+ xlab = "Initial density")

Adding the lowess fit (lines is the general command for adding lines to
a plot: points is handy too):

> lines(lowess(Initial, Killed))

Calculate mean values and corresponding initial densities, add to the plot
with a different line type:

> meanvals = tapply(Killed, Initial, mean)

> densvals = unique(Initial)

> lines(densvals, meanvals, lty = 3)

Fit a spline to the data using the smooth.spline command:

> lms = smooth.spline(Initial, Killed, df = 5)

To add the spline curve to the plot, I have to use predict to calculate the
predicted values for a range of initial densities, then add the results to the
plot:

> ps = predict(lms, x = 0:100)

> lines(ps, lty = 2)

Equivalently, I could use the lm function with ns (natural spline), which
is a bit more complicated to use in this case but has more general uses:

> library(splines)

> lm1 = lm(Killed ~ ns(Initial, df = 5), data = ReedfrogSizepred)

> p1 = predict(lm1, newdata = data.frame(Initial = 1:100))

> lines(p1, lty = 2)

Finally, I could do linear or quadratic regression (I need to use I(Initial^2)
to tell R I really want to fit the square of the initial density); adding the lines
to the plot would follow the procedure above.

> lm2 = lm(Killed ~ Initial, data = ReedfrogSizepred)

> lmq = lm(Killed ~ Initial + I(Initial^2), data = ReedfrogSizepred)

Clean up:

> detach(ReedfrogFuncresp)

The (tadpole size) vs. (number killed) plot follows similar lines, although
I did use sizeplot because there were overlapping points.
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2.7.4 Wrasse data

2.7.4.1 Survivors as a function of density

Load and attach data:

> data(WrasseRecruitment)

> data(WrasseRecruitment_sum)

> attach(WrasseRecruitment)

> attach(WrasseRecruitment_sum)

Plot surviving vs. initial density; use plotCI to add the summary data
by target density; and add a lowess-smoothed curve to the plot:

> plot(init.dens, surv.dens, log = "x")

> plotCI(settler.den, surv.den, SE, add = TRUE,

+ pch = 16, col = "darkgray", gap = 0)

> lines(lowess(init.dens, surv.dens))

Clean up:

> detach(WrasseRecruitment)

> detach(WrasseRecruitment_sum)

2.7.4.2 Distribution of settlement density

Plot the histogram (normally one would specify freq=FALSE to plot prob-
abilities rather than counts, but the uneven breaks argument makes this
happen automatically).

> attach(WrasseSettlement)

> hist(density[density < 200], breaks = c(0, seq(1,

+ 201, by = 4)), col = "gray", xlab = "", ylab = "Prob. density")

> lines(density(density[density < 200], from = 0))

Some alternatives to try:

> hist(log(1 + density))

> hist(density[density > 0], breaks = 50)

(you can use breaks to specify particular breakpoints, or to give the total
number of bins to use).

If you really want to lump all the large values together:

> h1 = hist(density, breaks = c(0, seq(1, 201, by = 4),

+ 500), plot = FALSE)

> b = barplot(h1$counts, space = 0)

> axis(side = 1, at = b, labels = h1$mids)

(use hist to calculate the number of counts in each bin, but don’t plot
anything; use barplot to plot the values (ignoring the uneven width of the
bins!), with space=0 to squeeze them together).

Box and whisker plots:
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> bwplot(log10(1 + density) ~ pulse | site, data = WrasseSettlement,

+ horizontal = FALSE)

Other variations to try:

> densityplot(~density, groups = site, data = WrasseSettlement,

+ xlim = c(0, 100))

> bwplot(density ~ site, horizontal = FALSE, data = WrasseSettlement)

> bwplot(density ~ site | pulse, horizontal = FALSE,

+ data = WrasseSettlement)

> bwplot(log10(1 + density) ~ site | pulse, data = WrasseSettlement,

+ panel = panel.violin, horizontal = FALSE)

> boxplot(density ~ site * pulse)

Scatterplot matrices: first reshape the data.

> library(reshape)

> x2 = melt(WrasseSettlement, measure.var = "density")

> x3 = cast(x2, pulse + obs ~ ...)

Scatterplot matrix of columns 3 to 5 (sites Cdina, Hin, and Hout) (pairs):

> pairs(log10(1 + x3[, 3:5]))

Scatterplot matrix of columns 3 to 5 (sites Cdina, Hin, and Hout) (splom):

> splom(log10(1 + x3[, 3:5]), groups = x3$pulse,

+ pch = as.character(1:6), col = 1)

> detach(WrasseSettlement)

2.7.5 Goby data

Plotting mean survival by density subdivided by quality category:

> attach(gobydat)

> xyplot(jitter(meansurv, factor = 2) ~ jitter(density,

+ 2) | qual.cat, xlab = "Density", ylab = "Mean survival time")

2.7.5.1 Lattice plots with superimposed lines and curves

In order to add “extras” like extra points, linear regression lines, or loess fits
to lattice graphics, you have to write a new panel function, combining a a
default lattice panel function (usually called panel.xxx, e.g. panel.xyplot,
panel.densityplot, etc.) with components from ?panel.functions. For
example, here is a panel function that plots an x-y plot and adds a linear
regression line is:

> panel1 = function(x, y) {

+ panel.xyplot(x, y)

+ panel.lmline(x, y)

+ }
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Then call the original lattice function with the new panel function:

> xyplot(jitter(meansurv, factor = 2) ~ jitter(density,

+ 2) | qual.cat, xlab = "Density", ylab = "Mean survival time",

+ panel = panel1)

> detach(gobydat)

2.7.5.2 Plotting survival curves

First set up categories for different combinations of quality and density by
using interaction, and count the number of observations in each combina-
tion.

> intcat = interaction(qual.cat, dens.cat)

> cattab = table(intcat)

Tabulate the number disappearing at each time in each category:

> survtab = table(meansurv, intcat)

Reverse order and calculate the cumulative sum by column (margin 2):

> survtab = survtab[nrow(survtab):1, ]

> csurvtab = apply(survtab, 2, cumsum)

Divide each column (survival curve per category) by the total number for
that category:

> cnsurvtab = sweep(csurvtab, 2, cattab, "/")

Calculate the fraction disappearing at each time:

> fracmort = survtab/csurvtab

Extract the time coordinate:

> days = as.numeric(rownames(csurvtab))

Plot survival curves by category:

> matplot(days, cnsurvtab, type = "s", xlab = "Time (days)",

+ ylab = "Proportion of cohort surviving", log = "y")
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Chapter Three

Deterministic functions for ecological modeling
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3.1 SUMMARY

This chapter first covers the mathematical tools and R functions that you
need in order to figure out the shape and properties of a mathematical func-
tion from its formula. It then presents a broad range of commonly used
functions and explains their general properties and ecological uses.

3.2 INTRODUCTION

You’ve now learned how to start exploring the patterns in your data. The
methods introduced in Chapter 2 provide only qualitative descriptions of
patterns: when you explore your data, you don’t want to commit yourself
too soon to any particular description of those patterns. In order to tie
the patterns to ecological theory, however, we often want to use particular
mathematical functions to describe the deterministic patterns in the data.
Sometimes phenomenological descriptions, intended to describe the pattern
as simply and accurately as possible, are sufficient. Whenever possible, how-
ever, it’s better to use mechanistic descriptions with meaningful parameters,
derived from a theoretical model that you or someone else has invented to de-
scribe the underlying processes driving the pattern. (Remember from Chap-
ter 1 that the same function can be either phenomenological or mechanistic
depending on context.) In any case, you need to know something about a
wide range of possible functions, and even more to learn (or remember) how
to discover the properties of a new mathematical function. This chapter first
presents a variety of analytical and computational methods for finding out
about functions, and then goes through a “bestiary” of useful functions for
ecological modeling. The chapter uses differential calculus heavily. If you’re
rusty, it would be a good idea to look at the Appendix for some reminders.

For example, look again at the data introduced in Chapter 2 on predation
rate of tadpoles as a function of tadpole size (Figure 3.1). We need to
know what kinds of functions might be suitable for describing these data.
The data which are humped in the middle and slightly skewed to the right,
which probably reflects the balance between small tadpoles’ ability to hide
from (or be ignored by) predators large tadpoles’ ability to escape them or
be too big to swallow. What functions could fit this pattern? What do their
parameters mean in terms of the shapes of the curves? In terms of ecology?
How do we“eyeball” the data to obtain approximate parameter values, which
we will need as a starting point for more precise estimation and as a check
on our results?

The Ricker function, y = axe−bx, is a standard choice for hump-shaped
ecological patterns that are skewed to the right, but Figure 3.1 shows that
it doesn’t fit well. Two other choices, the power-Ricker (Persson et al.,
1998) and a modified logistic equation (Vonesh and Bolker, 2005) and fit
pretty well: later in the chapter we will explore some strategies for modifying
standard functions to make them more flexible.
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Figure 3.1 Tadpole predation as a function of size, with some possible functions
fitted to the data.
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3.3 FINDING OUT ABOUT FUNCTIONS NUMERICALLY

3.3.1 Calculating and plotting curves

You can use R to experiment numerically with different functions. It’s better
to experiment numerically after you’ve got some idea of the mathematical
and ecological meanings of the parameters: otherwise you may end up using
the computer as an expensive guessing tool. It really helps to have some
idea what the parameters of a function mean, so you can eyeball your data
first and get a rough idea of the appropriate values (and know more about
what to tweak, so you can do it intelligently). Nevertheless, I’ll show you
first some of the ways that you can use R to compute and draw pictures of
functions so that you can sharpen your intuition as we go along.

As examples, I’ll use the (negative) exponential function, ae−bx (R uses
exp(x) for the exponential function ex) and the Ricker function, axe−bx.
Both are very common in ecological modeling.

As a first step, you can simply use R as a calculator to plug values into
functions: e.g. 2.3*exp(1.7*2.4). Since most functions in R operate on
vectors (or “are vectorized”, ugly as the expression is), you can calculate
values for a range of inputs or parameters with a single command.

Next simplest, you can use the curve function to have R compute and
plot values for a range of inputs: use add=TRUE to add curves to an existing
plot (Figure 3.2). (Remember the differences between mathematical and R
notation: the exponential is ae−bx or a exp(−bx) in math notation, but it’s
a*exp(-b*x) in R. Using math notation in a computer context will give you
an error; using computer notation in a math context is just ugly.)

If you want to keep the values of the function and do other things with
them, you may want to define your own vector of x values (with seq: call
it something like xvec) and then use R to compute the values (e.g., xvec =
seq(0,7,length=100)).

If the function you want to compute does not work on a whole vector at
once, then you can’t use either of the above recipes. The easiest shortcut in
this case, and a worthwhile thing to do for other reasons, is to write your
own small R function that computes the value of the function for a given
input value, then use sapply to run the function on all of the values in your
x vector. When you write such an R function, you would typically make the
input value (x) be the first argument, followed by all of the other parameters.
It often saves time if you assign default values to the other parameters: in
the following example, the default values of both a and b are 1.

> ricker = function(x, a = 1, b = 1) {

+ a * x * exp(-b * x)

+ }

> yvals = sapply(xvec, ricker)

(in this case, since ricker only uses vectorized operations, ricker(xvec)
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Figure 3.2 Negative exponential (y = ae−bx) and Ricker (y = axe−bx) functions:
curve
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would work just as well). ∗

3.3.2 Plotting surfaces

Things get a bit more complicated when you consider a function of two (or
more) variables: R’s range of 3D graphics is more limited, it is harder to
vectorize operations over two different parameters, and you may want to
compute the value of the function so many times that you start to have to
worry about computational efficiency (this is our first hint of the so-called
curse of dimensionality, which will come back to haunt us later).

Base R doesn’t have exact multidimensional analogues of curve and sapply,
but I’ve supplied some in the emdbook package: curve3d and apply2d. The
apply2d function takes an x vector and a y vector and computes the value
of a function for all of the combinations, while curve3d does the same thing
for surfaces that curve does for curves: it computes the function value for
a range of values and plots it.∗ The basic function for plotting surfaces in
R is persp. You can also use image or contour to plot 2D graphics, or
wireframe [lattice package], or persp3d [rgl package] as alternatives to
persp. With persp and wireframe, you may want to play with the viewing
point for the 3D perspective (modify theta and phi for persp and screen
for wireframe); the rgl package lets you use the mouse to move the view-
point.

For example, Vonesh and Bolker (2005) suggested a way to combine size-
and density-dependent tadpole mortality risk by using a variant logistic func-
tion of size as in Figure 3.1 to compute an attack rate α(s), then assuming
that per capita mortality risk declines with density N as α(s)/(1+α(s)HN),
where H is the handling time (Holling type II functional response). Suppos-
ing we already have a function attackrate that computes the attack rate
as a function of size, our mortality risk function would be:

> mortrisk = function(N, size, H = 0.84) {

+ a <- attackrate(size)

+ a/(1 + a * N * H)

+ }

The H=0.84 in the function definition sets the default value of the handling
time parameter: if I leave H out (e.g. mortrisk(N=10,size=20)) then R will
fill in the default values for any missing parameters. Specifying reasonable
defaults can save a lot of typing.

∗The definition of “input values” and “parameters” is flexible. You can also compute
the values of the function for a fixed value of x and a range of one of the parameters, e.g.
ricker(1,a=c(1.1,2.5,3.7)).

∗For simple functions you can use the built-in outer function, but outer requires
vectorized functions: apply2d works around this limitation.
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Figure 3.3 Perspective plot for the mortality risk func-
tion used in Vonesh and Bolker (2005):
curve3d(mortrisk(N=x,size=y),to=c(40,30),theta=50).
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3.4 FINDING OUT ABOUT FUNCTIONS ANALYTICALLY

Exploring functions numerically is quick and easy, but limited. In order to
really understand a function’s properties, you must explore it analytically —
i.e., you have to analyze its equation mathematically. To do that and then
translate your mathematical intuition into ecological intuition, you must
remember some algebra and calculus. In particular, this section will explain
how to take limits at the ends of the range of the function; understand
the behavior in the middle of the range; find critical points; understand
what the parameters mean and how they affect the shape of the curve; and
approximate the function near an arbitrary point (Taylor expansion). These
tools will probably tell you everything you need to know about a function.

3.4.1 Taking limits: what happens at either end?

Function values

You can take the limit of a function as x gets large (x → ∞) or small
(x → 0, or x → −∞ for a function that makes sense for negative x values).
The basic principle is to throw out “lower-order” terms. When x is large, x is
much bigger than any constant terms, and larger powers of x dwarf smaller
powers (and exponentials dwarf any power). If x is small then you apply
the same logic in reverse; constants are bigger than (positive) powers of x,
and negative powers (x−1 = 1/x, x−2 = 1/x2, etc.) are bigger than any
constants. (Negative exponentials go to 1 as x approaches zero, and 0 as
x approaches ∞.) Since exponentials contain powers of all orders, they are
stronger than powers: x−nex eventually gets big and xne−x eventually gets
small as x increases, no matter how big n is.

Our examples of the exponential and the Ricker function are almost too
simple: we already know that the negative exponential function approaches
1 (or a, if we are thinking about the form ae−bx) as x approaches 0 and 0
as x becomes large. The Ricker is slightly more interesting: for x = 0 we
can calculate the value of the function directly (to get a · 0 · e−b·0 = 0 · 1 =
0) or argue qualitatively that the e−bx part approaches 1 and the ax part
approaches zero (and hence the whole function approaches zero). For large x
we have a concrete example of the xne−x example given above (with n = 1)
and use our knowledge that exponentials always win to say that the e−bx

part should dominate the ax part to bring the function down to zero in the
limit. (When you are doing this kind of qualitative reasoning you can almost
always ignore the constants in the equation.)

As another example, consider the Michaelis-Menten function (f(x) =
ax/(b + x)). We see that as x gets large we can say that x � b, no matter
what b is (� means “is much greater than”), so b + x ≈ x, so

ax

b + x
≈ ax

x
= a : (3.1)
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the curve reaches a constant value of a. As x gets small, b � x so
ax

b + x
≈ ax

b
: (3.2)

the curve approaches a straight line through the origin, with slope a/b. As
x goes to zero you can see that the value of the function is exactly zero
(a× 0)/(b + 0) = 0/b = 0).

For more difficult functions that contain a fraction whose numerator and
denominator both approach zero or infinity in some limit (and thus make
it hard to find the limiting value), you can try L’Hôpital’s Rule, which says
that the limit of the function equals the limit of the ratio of the derivatives
of the numerator and the denominator:

lim
a(x)
b(x)

= lim
a′(x)
b′(x)

. (3.3)

Derivatives

As well as knowing the limits of the function, we also want to know how
the function increases or decreases toward them: the limiting slope. Does
the function shoot up or down (a derivative that “blows up” to positive or
negative infinity), change linearly (a derivative that reaches a positive or
negative constant limiting value), or flatten out (a derivative with limit 0)?
To figure this out, we need to take the derivative with respect to x and then
find its limit at the edges of the range.

The derivative of the exponential function f(x) = ae−bx is easy (if it isn’t,
review the Appendix): f ′(x) = −abe−bx∗. When x = 0 this becomes ab, and
when x gets large the e−bx part goes to zero, so the answer is zero. Thus
(as you may already have known), the slope of the (negative) exponential is
negative at the origin (x = 0) and the curve flattens out as x gets large.

The derivative of the Ricker is only a little harder (use the product rule):
daxe−bx

dx
= (a ·e−bx +ax ·−be−bx) = (a−abx) ·e−bx = a(1− bx)e−bx. (3.4)

At zero, this is easy to compute: a(1− b · 0)e−b·0 = a · 1 · 1 = a. As x goes to
infinity, the (1 − bx) term becomes negative (and large in magnitude) and
the e−bx term goes toward zero, and we again use the fact that exponentials
dominate linear and polynomial functions to see that the curve flattens out,
rather than becoming more and more negative and crashing toward negative
infinity. (In fact, we already know that the curve approaches zero, so we
could also have deduced that the curve must flatten out and the derivative
must approach zero.)

In the case of the Michaelis-Menten function it’s easy to figure out the
slope at zero (because the curve becomes approximately (a/b)x for small x),
but in some cases you might have to take the derivative first and then set x
to 0. The derivative of ax/(b + x) is (using the quotient rule)

(b + x) · a− ax · 1
(b + x)2

=
ab + ax− ax

(b + x)2
=

ab

(b + x)2
(3.5)

∗f’(x) is an alternative notation for df
dx

.
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which (as promised) is approximately a/b when x ≈ 0 (following the rule
that (b + x) ≈ b for x ≈ 0). Using the quotient rule often gives you a
complicated denominator, but when you are only looking for points where
the derivative is zero, you can calculate when the numerator is zero and
ignore the derivative.

3.4.2 What happens in the middle? Half-maxima

It’s also useful to know what happens in the middle of a function’s range.
For unbounded functions (functions that increase to ∞ or decrease to −∞

at the ends of their range), such as the exponential, we can’t usually do very
much, although it’s often worth trying out special cases such as x = 1 (or
x = 0 for functions that range over negative and positive values) just to see
if they have simple and interpretable answers.

In the exponential function ae−bx, b is a scale parameter. In general, if
you see a parameter appear in a function in the form of bx or x/c, its effect
is just to scale the curve along the x-axis — stretching it or shrinking it, but
keeping the qualitative shape the same. If the scale parameter is in the form
bx then b has inverse-x units (if x is a time measured in hours, then b is a
rate per hour with units hour−1). If it’s in the form x/c then c has the same
units as x, and we can call c a “characteristic scale”. Mathematicians often
choose the form bx because it looks cleaner, while ecologists may prefer x/c
because it’s easier to interpret the parameter when it has the same units as
x. Mathematically, the two forms are equivalent, with b = 1/c; this is an
example of changing the parameterization of a function (see p. 94).

For the negative exponential function, the characteristic scale (1/b in this
case) is also sometimes called the e-folding time (or e-folding distance, etc.).
The value of the function drops from a at x = 0 to a/e = ae−1 when x = 1/b,
and drops a further factor of e = 2.718 . . . ≈ 3 every time x increases by 1/b
(Figure 3.4). Exponential-based functions can also be described in terms
of the half-life (for decreasing functions) or doubling time (for increasing
functions), which is T1/2 = ln 2/b. When x = T1/2, y = a/2, and every time
x increases by T1/2 the function drops by another factor of 2.)

For the Ricker function, we already know that the function is zero at
the origin and approaches zero as x gets large. We also know that the
derivative is positive at zero and negative (but the curve is flattening out, so
the derivative is increasing toward zero), as x gets large. We can deduce∗ that
the derivative must be zero and the function must reach a peak somewhere
in the middle; we will calculate the location and height of this peak in the
next section.

For functions that reach an asymptote, like the Michaelis-Menten, it’s
useful to know when the function gets “halfway up”—the half-maximum is
a point on the x-axis, not the y-axis. We figure this out by figuring out the
asymptote (=a for this parameterization of the Michaelis-Menten function)

∗because the Ricker function has continuous derivatives
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Figure 3.4 Half-lives and e-folding times for a negative exponential function; half-
maximum and characteristic scales for a Michaelis-Menten function.

and solving f(x1/2) = asymptote/2. In this case
ax1/2

b + x1/2
=

a

2

ax1/2 =
a

2
· (b + x1/2)(

a− a

2

)
x1/2 =

ab

2

x1/2 =
2
a
· ab

2
= b.

The half-maximum b is the characteristic scale parameter for the Michaelis-
Menten (we can see this by dividing the numerator and denominator by b
to get f(x) = a · (x/b)/(1 + x/b)). As x increases by half-maximum units
(from x1/2 to 2x1/2 to 3x1/2), the function first reaches half its asymptote,
then 2/3 of its asymptote, then 3/4 of its asymptote . . . (see Figure 3.4).

A similar strategy works for many functions, although the half-maximum
may not be a simple expression.

3.4.3 Other special points: critical points (maxima/minima) and
inflection points

We might also be interested in the critical points—maxima and minima —
of a function. To find the critical points of f , remember from calculus that
they occur where f ′(x) = 0; calculate the derivative, solve it for x, and plug
that value for x into f(x) to determine the value (peak height/trough depth)
at that point∗. The exponential function is monotonic: it is always either

∗The derivative is also zero at saddle points, where the function temporarily flattens
on its way up or down.
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increasing or decreasing depending on the sign of b (its slope is always either
positive or negative for all values of x) — so it never has any critical points.

The Michaelis-Menten curve is also monotonic: we figured out above that
its derivative is ab/(b+x)2. Since the denominator is squared, the derivative
is always positive. (Strictly speaking, this is only true if a > 0. Ecologists are
usually sloppier than mathematicians, who are careful to point out all the
assumptions behind a formula (like a > 0, b > 0, x ≥ 0). I’m acting like an
ecologist rather than a mathematician, assuming parameters and x values are
positive unless otherwise stated.) While remaining positive, the derivative
decreases to zero as x →∞ (because a/(1 + bx)2 ≈ a/(bx)2 ∝ 1/x2); such a
function is called saturating.

We already noted that the Ricker function, axe−bx, has a peak in the
middle somewhere: where is it? Using the product rule:

d(axe−bx)
dx

=0

ae−bx + ax(−be−bx) = 0
(1− bx)ae−bx =0

The left-hand side can only be zero if 1−bx = 0, a = 0 (a case we’re ignoring
as ecologists), or e−bx = 0. The exponential part e−bx is never equal to 0, so
we simply solve (1 − bx) = 0 to get x = 1/b. Plugging this value of x back
into the equation tells us that the height of the peak is (a/b)e−1. (You may
have noticed that the peak location, 1/b, is the same as the characteristic
scale for the Ricker equation.)

3.4.4 Understanding and changing parameters

Once you know something about a function (its value at zero or other special
points, value at ∞, half-maximum, slope at certain points, and the relation-
ship of these values to the parameters), you can get a rough idea of the
meanings of the parameters. You will find, alas, that scientists rarely stick
to one parameterization. Reparameterization seems like an awful nuisance
— why can’t everyone just pick one set of parameters and stick to it? — but,
even setting aside historical accidents that make different fields adopt dif-
ferent parameterizations, different parameterizations are useful in different
contexts. Different parameterizations have different mechanistic interpreta-
tions. For example, we’ll see in a minute that the Michaelis-Menten function
can be interpreted (among other possibilities) in terms of enzyme reaction
rates and half-saturation constants or in terms of predator attack rates and
handling times. Some parameterizations make it easier to estimate param-
eters by eye. For example, half-lives are easier to see than e-folding times,
and peak heights are easier to see than slopes. Finally, some sets of param-
eters are strongly correlated, making them harder to estimate from data.
For example, if you write the equation of a line in the form y = ax + b, the
estimates of the slope a and the intercept b are negatively correlated, but
if you instead say y = a(x − x̄) + ȳ, estimating the mean value of y rather
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than the intercept, the estimates are uncorrelated. You just have to brush
up your algebra and learn to switch among parameterizations.

We know the following things about the Michaelis-Menten function f(x) =
ax/(b + x): the value at zero f(0) = 0; the asymptote f(∞) = a; the initial
slope f ′(0) = a/b; and the half-maximum (the characteristic scale) is b.

You can use these characteristics crudely estimate the parameters from
the data. Find the asymptote and the x value at which y reaches half of its
maximum value, and you have a and b. (You can approximate these values
by eye, or use a more objective procedure such as taking the mean of the last
10% of the data to find the asymptote.) Or you can estimate the asymptote
and the initial slope (∆y/∆x), perhaps by linear regression on the first 20%
of the data, and then use the algebra b = a/(a/b) = asymptote/(initial slope)
to find b.

Equally important, you can use this knowledge of the curve to translate
among algebraic, geometric, and mechanistic meanings. When we use the
Michaelis-Menten in community ecology as the Holling type II functional
response, its formula is P (N) = αN/(1 + αHN), where P is the predation
rate, N is the density of prey, α is the attack rate, and H is the handling time.
In this context, the initial slope is α and the asymptote is 1/H. Ecologically,
this makes sense because at low densities the predators will consume prey at
a rate proportional to the attack rate (P (N) ≈ αN) while at high densities
the predation rate is entirely limited by handling time (P (N) ≈ 1/H). It
makes sense that the predation rate is the inverse of the handling time: if
it takes half an hour to handle (capture, swallow, digest, etc.) a prey, and
essentially no time to locate a new one (since the prey density is very high),
then the predation rate is 1/(0.5 hour) = 2/hour. The half-maximum in this
parameterization is 1/(αH).

On the other hand, biochemists usually parameterize the function more
as we did above, with a maximum rate vmax and a half-maximum Km: as
a function of concentration C, f(C) = vmaxC/(Km + C).

As another example, recall the following facts about the Ricker function
f(x) = axe−bx: the value at zero f(0) = 0; the initial slope f ′(0) = a;
the horizontal location of the peak is at x = 1/b; and the peak height is
a/(be). The form we wrote above is algebraically simplest, but it might
be more convenient to parameterize the curve in terms of its peak location
(let’s say p = 1/b): y = axe−x/p. Fisheries biologists often use another
parameterization, R = Se−a3−bS , where a3 = ln a (Quinn and Deriso, 1999).

3.4.5 Transformations

Beyond changing the parameterization, you can also change the scales of the
x and y axes, or in other words transform the data. For example, in the
Ricker example just given (R = Se−a3−bS), if we plot − ln(R/S) against S,
we get the line − ln(R/S) = a3 + bS, which makes it easy to see that a3 is
the intercept and b is the slope.

Log transformations of x or y or both are common because they make ex-
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ponential relationships into straight lines. If y = ae−bx and we log-transform
y we get ln y = ln a− bx (a semi-log plot). If y = axb and we log-transform
both x and y we get ln y = ln a + b lnx (a log-log plot).

Another example: if we have a Michaelis-Menten curve and plot x/y
against y, the relationship is

x/y =
x

ax/(b + x)
=

b + x

a
=

1
a
· x +

b

a
,

which represents a straight line with slope 1/a and intercept b/a.
All of these transformations are called linearizing transformations. Re-

searchers often used them in the past to fit straight lines to data when when
computers were slower. Linearizing is not recommended when there is an-
other alternative such as nonlinear regression, but transformations are still
useful. Linearized data are easier to eyeball, so you can get rough estimates
of slopes and intercepts by eye, and it is easier to see deviations from linearity
than from (e.g.) an exponential curve. Log-transforming data on geometric
growth of a population lets you look at proportional changes in the popula-
tion size (a doubling of the population is always represented by the distance
on the y axis). Square-root-transforming data on variances lets you look at
standard deviations, which are measured in the same units as the original
data and may thus be easier to understand.

The logit or log-odds function, logit(x) = log(x/(1 − x))∗ (qlogis(x) in
R) is another common linearizing transformation. If x is a probability then
x/(1−x) is the ratio of the probability of occurrence (x) to the probability of
non-occurrence 1−x, which is called the odds (for example, a probability of
0.1 or 10% corresponds to odds of 0.1/0.9 = 1/9). The logit transformation
makes a logistic curve, y = ea+bx/(1 + ea+bx), into a straight line:

y = ea+bx/(1 + ea+bx)(
1 + ea+bx

)
y = ea+bx

y = ea+bx(1− y)
y

1− y
= ea+bx

log
(

y

1− y

)
= a + bx

(3.6)

3.4.6 Shifting and scaling

Another way to change or extend functions is to shift or scale them. For
example, let’s start with the simplest form of the Michaelis-Menten function,
and then see how we can manipulate it (Figure 3.5). The function y =
x/(1+x) starts at 0, increases to 1 as x gets large, and has a half-maximum
at x = 1.

∗Throughout this book I use log(x) to mean the natural logarithm of x (also called
ln(x) or loge(x); if you need a refresher on logarithms, see the Appendix.
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� We can stretch, or scale, the x axis by dividing x by a constant — this
means you have to go farther on the x axis to get the same increase
in y. If we substitute x/b for x everywhere in the function, we get
y = (x/b)/(1 + x/b). Multiplying the numerator and denominator by
b shows us that y = x/(b + x), so b is just the half-maximum, which
we identified before as the characteristic scale. In general a parameter
that we multiply or divide x by is called a scale parameter because it
changes the horizontal scale of the function.

� We can stretch or scale the y axis by multiplying the whole right-hand
side by a constant. If we use a, we have y = ax/(b + x), which as we
have seen above moves the asymptote from 1 to a.

� We can shift the whole curve to the right or the left by subtracting or
adding a constant location parameter from x throughout; subtracting
a (positive) constant from x shifts the curve to the right. Thus, y =
a(x−c)/(b+(x−c)) hits y = 0 at c rather than zero. (You may want in
this case to specify that y = 0 if y < c — otherwise the function may
behave badly [try curve(x/(x-1),from=0,to=3) to see what might
happen].)

� We can shift the whole curve up or down by adding or subtracting a
constant to the right-hand side: y = a(x− c)/(b + (x− c)) + d would
start from y = d, rather than zero, when x = c (the asymptote also
moves up to a + d).

These recipes can be used with any function. For example, Emlen (1996)
wanted to describe a relationship between the prothorax and the horn length
of horned beetles where the smallest beetles in his sample had a constant,
but non-zero, horn length. He added a constant to a generalized logistic
function to shift the curve up from its usual zero baseline.

3.4.7 Taylor series approximation

The Taylor series or Taylor approximation is the single most useful, and
used, application of calculus for an ecologist. Two particularly useful appli-
cations of Taylor approximation are understanding the shapes of goodness-
of-fit surfaces (Chapter 6) and the delta method for estimating errors in
estimation (Chapter 7).

The Taylor series allows us to approximate a complicated function near
a point we care about, using a simple function — a polynomial with a few
terms, say a line or a quadratic curve. All we have to do is figure out
the slope (first derivative) and curvature (second derivative) at that point.
Then we can construct a parabola that matches the complicated curve in
the neighborhood of the point we are interested in. (In reality the Taylor
series goes on forever — we can approximate the curve more precisely with a
cubic, then a 4th-order polynomial, and so forth — but in practice ecologists
never go beyond a quadratic expansion.)
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f((x)) ==
a((x −− c))

((b ++ ((x −− c)))) ++ d

d

d ++
a
2

d ++ a

c c ++ b

Figure 3.5 Scaled, shifted Michaelis-Menten function y = a(x−c)/((x−c)+b)+d.
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constant ::     f((0))
linear ::     f((0)) ++ f′′((0))x
quadratic ::     f((0)) ++ f′′((0))x ++ ((f″″((0)) 2))x2

cubic ::     f((0)) ++ f′′((0))x ++ ((f″″((0)) 2))x2 ++ ((f′′″″((0)) 6))x3

Figure 3.6 Taylor series expansion of a 4th-order polynomial.

Mathematically, the Taylor series says that, near a given point x0,

f(x) ≈ f(x0)+
df

dx

∣∣∣∣
x0

·(x−x0)+
d2f

dx2

∣∣∣∣
x0

· (x− x0)2

2
+. . .+

dnf

dxn

∣∣∣∣
x0

· (x− x0)n

n!
+. . .

(3.7)
(the notation df

dx

∣∣∣
x0

means “the derivative evaluated at the point x = x0”).

Taylor approximation just means dropping terms past the second or third.
Figure 3.6 shows a function and the constant, linear, quadratic, and cubic

approximations (Taylor expansion using 1, 2, or 3 terms). The linear ap-
proximation is bad but the quadratic fit is good very near the center point,
and the cubic accounts for some of the asymmetry in the function. In this
case one more term would match the function exactly, since it is actually a
4th-degree polynomial.
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the exponential function

The Taylor expansion of the exponential, erx, around x = 0 is 1 + rx +
(rx)2/2+(rx)3/(2 ·3) . . .. Remembering this fact rather than working it out
every time may save you time in the long run — for example, to understand
how the Ricker function works for small x we can substitute (1 − bx) for
e−bx (dropping all but the first two terms!) to get y ≈ ax − abx2: this
tells us immediately that the function starts out linear, but starts to curve
downward right away.

the logistic curve

Calculating Taylor approximations is often tedious (all those derivatives),
but we usually try to do it at some special point where a lot of the complexity
goes away (such as x = 0 for a logistic curve).

The general form of the logistic (p. 110) is ea+bx/(1+ea+bx, but doing the
algebra will be simpler if we set a = 0 and divide numerator and denominator
by ebx to get f(x) = 1/(1+e−bx). Taking the Taylor expansion around x = 0:

� f(0) = 1/2

� f ′(x) = be−bx

(1+e−bx)2
(writing the formula as (1 + e−bx)−1 and using the

power rule and the chain rule twice) so f ′(0) = (b ·1)/((1+1)2) = b/4∗

� Using the quotient rule and the chain rule:

f ′′(0) =
(1 + e−bx)2(−b2e−bx)− (be−bx)(2(1 + e−bx)(−be−bx))

(1 + e−bx)4

∣∣∣∣
x=0

=
(1 + 1)2(−b2)− (b)(2(1 + 1)(−b))

(1 + 1)4

=
(−4b2) + (4b2)

16
= 0

(3.8)

R will actually compute simple derivatives for you (using D: see p. 118),
but it won’t simplify them at all. If you just need to compute the numerical
value of the derivative for a particular b and x, it may be useful, but there
are often general answers you’ll miss by doing it this way (for example, in
the above case that f ′′(0) is zero for any value of b).

Stopping to interpret the answer we got from all that tedious algebra: we
find out that the slope of a logistic function around its midpoint is b/2, and
its curvature (second derivative) is zero: that means that the midpoint is
an inflection point (where there is no curvature, or where the curve switches
from being concave to convex), which you might have known already. It also

∗We calculate f ′(x) and evaluate it at x = 0. We don’t calculate the derivative of
f(0), because f(0) is a constant value (1/2 in this case) and its derivative is zero.
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means that near the inflection point, the logistic can be closely approximated
by a straight line. (For y near zero, exponential growth is a good approxi-
mation; for y near the asymptote, exponential approach to the asymptote is
a good approximation.)

3.5 BESTIARY OF FUNCTIONS

You should skim through this section on the first reading to get an idea of
what functions are available. If you start to feel bogged down you can skip
ahead and come back later as needed.

3.5.1 Functions based on polynomials

A polynomial is a function of the form y =
∑n

i=0 aix
i.

Examples

� linear: f(x) = a + bx, where a is the intercept (value when x = 0) and
b is the slope. (You know this, right?)

� quadratic: f(x) = a + bx + cx2. The simplest nonlinear model.

� cubics and higher-order polynomials: f(x) =
∑n

i aixi. The order or
degree of a polynomial is the highest power that appears in it (so e.g.
f(x) = x5 + 4x2 + 1 is 5th-order).

Advantages

Polynomials are easy to understand. They are easy to reduce to simpler
functions (nested functions) by setting some of the parameters to zero. High-
order polynomials can fit arbitrarily complex data.

Disadvantages

On the other hand, polynomials are often hard to justify mechanistically
(can you think of a reason an ecological relationship should be a cubic poly-
nomial?). They don’t level off as x goes to ±∞ — they always go to -∞ or
∞ as x gets large. Extrapolating polynomials often leads to nonsensically
large or negative values. High-order polynomials can be unstable: following
Forsythe et al. (1977) you can show that extrapolating a high-order poly-
nomial from a fit to US census data from 1900–2000 predicts a population
crash to zero around 2015!

It is sometimes convenient to parameterize polynomials differently. For
example, we could reparameterize the quadratic function y = a1+a2x+a3x

2

as y = a + c(x − b)2 (where a1 = a + cb2, a2 = 2cb, a3 = c). It’s now clear
that the curve has its minimum at x = b (because (x− b)2 is zero there and
positive everywhere else), that y = a at the minimum, and that c governs
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how fast the curve increases away from its minimum. Sometimes polynomials
can be particularly simple if some of their coefficients are zero: y = bx (a
line through the origin, or direct proportionality, for example, or y = cx2.
Where a polynomial actually represents proportionality or area, rather than
being an arbitrary fit to data, you can often simplify in this way.

The advantages and disadvantages listed above all concern the mathemat-
ical and phenomenological properties of polynomials. Sometimes linear and
quadratic polynomials do actually make sense in ecological settings. For ex-
ample, a population or resource that accumulates at a constant rate from
outside the system will grow linearly with time. The rates of ecological or
physiological processes (e.g. metabolic cost or resource availability) that
depend on an organism’s skin surface or mouth area will be a quadratic
function of its size (e.g. snout-to-vent length or height).

3.5.1.1 Piecewise polynomial functions

You can make polynomials (and other functions) more flexible by using them
as components of piecewise functions. In this case, different functions apply
over different ranges of the predictor variable. (See p. 117 for information
on using R’s ifelse function to build piecewise functions.)

Examples

� Threshold models: the simplest piecewise function is a simple threshold
model — y = a1 if x is less than some threshold T , and y = a2 if x
is greater. Hilborn and Mangel (1997) use a threshold function in
an example of the number of eggs a parasitoid lays in a host as a
function of how many she has left (her “egg complement”), although
the original researchers used a logistic function instead (Rosenheim
and Rosen, 1991).

� The hockey stick function (Bacon and Watts, 1971, 1974) is a com-
bination of a constant and a linear piece: typically either flat and
then increasing linearly, or linear and then suddenly hitting a plateau.
Hockey-stick functions have a fairly long history in ecology, at least
as far back as the definition of the Holling type I functional response,
which is supposed to represent foragers like filter feeders that can con-
tinually increase their uptake rate until they suddenly hit a maximum.
Hockey-stick models have recently become more popular in fisheries
modeling, for modeling stock-recruitment curves (Barrowman and My-
ers, 2000), and in ecology, for detecting edges in landscapes (Toms and
Lesperance, 2003) ∗. Under the name of self-excitable threshold au-
toregressive (SETAR) models, such functions have been used to model
density-dependence in population dynamic models of lemmings (Fram-
stad et al., 1997), feral sheep (Grenfell et al., 1998), and moose (Post

∗It is surely only a coincidence that so much significant work on hockey-stick functions
has been done by Canadians.
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et al., 2002); in another population dynamic context, Brännström and
Sumpter (2005) call them ramp functions.

� Threshold functions are flat (i.e., the slope is zero) on both sides of
the breakpoint, and hockey sticks are flat on one side. More general
piecewise linear functions have non-zero slope on both sides of the
breakpoint s1:

y = a1 + b1x

for x < s1 and

y = (a1 + b1s1) + b2(x− s1)

for x > s1. (The extra complications in the formula for x > s1 ensure
that the function is continuous.)

� Cubic splines are a general-purpose tool for fitting curves to data. They
are piecewise cubic functions that join together smoothly at transition
points called knots. They are typically used as purely phenomenologi-
cal curve-fitting tools, when you want to fit a smooth curve to data but
don’t particularly care about interpreting its ecological meaning Wood
(2001, 2006). Splines have many of the useful properties of polynomi-
als (adjustable complexity or smoothness; simple basic components)
without their instability.

Advantages

Piecewise functions make sense if you believe there could be a biological
switch point. For example, in optimal behavior problems theory often pre-
dicts sharp transitions among different behavioral strategies (Hilborn and
Mangel, 1997, ch. 4). Phenomenologically, they represent a simple way to
stop functions from dropping below zero or increasing indefinitely when these
behaviors would be unrealistic.

Disadvantages

Piecewise functions present some special technical challenges for parameter
fitting, which probably explains why they have only gained attention more
recently. When thresholds are imposed phenomenologically to prevent unre-
alistic behavior, it may be better to go back to the original biological system
and try to understand what properties of the system would actually stop
(e.g.) population densities from becoming negative: would they hit zero
suddenly, or would a gradual approach to zero (perhaps represented by an
exponential function) be more realistic?

3.5.1.2 Rational functions: polynomials in fractions

Rational functions are ratios of polynomials, (
∑

aix
i)/(

∑
bjx

j).
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a1

a2

s1

threshold:
f((x)) == a1 if x << s1

== a2 if x >> s1

hockey stick:
f((x)) == ax if x << s1

== as1 if x >> s1

a

s1

as1

general piecewise linear:
f((x)) == ax if x << s1

== as1 −− b((x −− s1)) if x >> s1

−b
a

s1 ●

●

●

●

●

●

splines:
f(x) is complicated

Figure 3.7 Piecewise polynomial functions: the first three (threshold, hockey stick,
general piecewise linear) are all piecewise linear. Splines are piecewise
cubic; the equations are complicated and usually handled by software
(see ?spline and ?smooth.spline).
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hyperbolic:
f((x)) ==

a

b ++ x
a
b

a
2b

b

Michaelis−Menten:
f((x)) ==

ax

b ++ x
a

a

b

a
2

b
Holling type III:

f((x)) ==
ax2

b2 ++ x2
a

b

a
2

Holling type IV (c<0):

f((x)) ==
ax2

b ++ cx ++ x2

a

−− 2b
c

Figure 3.8 Rational functions.
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Examples

� The simplest rational function is the hyperbolic function, a/x; this is
often used (e.g.) in models of plant competition, to fit seed production
as a function of plant density. A mechanistic explanation might be that
if resources per unit area are constant, the area available to a plant
for resource explanation might be proportional to 1/density, which
would translate (assuming uptake, allocation etc. all stay the same)
into a hyperbolically decreasing amount of resource available for seed
production. A better-behaved variant of the hyperbolic function is
a/(b+x), which doesn’t go to infinity when x = 0 (Pacala and Silander,
1987, 1990).

� The next most complicated, and probably the most famous, ratio-
nal function is the Michaelis-Menten function: f(x) = ax/(b + x).
Michaelis and Menten introduced it in the context of enzyme kinetics:
it is also known, by other names, in resource competition theory (as the
Monod function), predator-prey dynamics (Holling type II functional
response), and fisheries biology (Beverton-Holt model). It starts at 0
when x = 0 and approaches an asymptote at a as x gets large. The
only major caveat with this function is that it takes surprisingly long
to approach its asymptote: x/(1 + x), which is halfway to its asymp-
tote when x = 1, still reaches 90% of its asymptote when x = 9. The
Michaelis-Menten function can be parameterized in terms of any two
of the asymptote, half-maximum, initial slope, or their inverses.

The mechanism behind the Michaelis-Menten function in biochemistry
and ecology (Holling type II) is similar; as substrate (or prey) become
more common, enzymes (or predators) have to take a larger and larger
fraction of their time handling rather than searching for new items.
In fisheries, the Beverton-Holt stock-recruitment function comes from
assuming that over the course of the season the mortality rate of young-
of-the-year is a linear function of their density (Quinn and Deriso,
1999).

� We can go one more step, going from a linear to a quadratic function in
the denominator, and define a function sometimes known as the Holling
type III functional response: f(x) = ax2/(b2 + x2). This function is
sigmoid, or S-shaped. The asymptote is at a; its shape is quadratic near
the origin, starting from zero with slope zero and curvature a/b2; and
its half-maximum is at x = b. It can occur mechanistically in predator-
prey systems because of predator switching from rare to common prey,
predator aggregation, and spatial and other forms of heterogeneity
(Morris, 1997).

� Some ecologists have extended this family still further to the Holling
type IV functional response: f(x) = ax2/(b + c ∗ x + x2). Turchin
(2003)derives this function (which he calls a “mechanistic sigmoidal
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functional response”) by assuming that the predator rate in the Holling
type II functional response is itself an increasing, Michaelis-Menten
function of prey density – that is, predators prefer to pursue more
abundant prey. In this case, c > 0. If c < 0, then the Holling type IV
function is unimodal or “hump-shaped”, with a maximum at interme-
diate prey density. Ecologists have used this version of the Holling
type IV phenomenologically to describe situations where predator in-
terference or induced prey defenses lead to decreased predator success
at high predator density (Holt, 1983; Collings, 1997; Wilmshust et al.,
1999; Chen, 2004). Whether c is negative or positive, the Holling
type IV reaches an asymptote at a as x → ∞. If c < 0, then it has a
maximum that occurs at x = −2b/c.

� More complicated rational functions are potentially useful but rarely
used in ecology. The (unnamed) function y = (a + bx)/(1 + cx) has
been used to describe species-area curves (Flather, 1996; Tjørve, 2003).

Advantages

Like polynomials, rational functions are very flexible (you can always add
more terms in the numerator or denominator) and simple to compute; unlike
polynomials, they can reach finite asymptotes at the ends of their range.
In many cases, rational functions make mechanistic sense, arising naturally
from simple models of biological processes such as competition or predation.

Disadvantages

Rational functions can be complicated to analyze because the quotient rule
makes their derivatives complicated. Like the Michaelis-Menten function
they approach their asymptotes very slowly, which makes estimating the
asymptote difficult — although this problem really says more about the
difficulty of getting enough data rather than about the appropriateness of
rational functions as models for ecological systems. Section 3.5.3 shows how
to make rational functions even more flexible by raising some of their terms
to a power, at the cost of making them even harder to analyze.

3.5.2 Functions based on exponential functions

3.5.2.1 Simple exponentials

The simplest examples of functions based on exponentials are the expo-
nential growth (aebx) or decay (ae−bx) and saturating exponential growth
(monomolecular, a(1 − e−bx)). The monomolecular function (so named be-
cause it represents the buildup over time of the product of a single-molecule
chemical reaction) is also

� the catalytic curve in infectious disease epidemiology, where it repre-
sents the change over time in the fraction of a cohort that has been
exposed to disease (Anderson and May, 1991);
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� the simplest form of the von Bertalanffy growth curve in organismal
biology and fisheries, where it arises from the competing effects of
changes in catabolic and metabolic rates with changes in size (Essing-
ton et al., 2001);

� the Skellam model in population ecology, giving the number of offspring
in the next year as a function of the adult population size this year when
competition has a particularly simple form (Skellam, 1951; Brännström
and Sumpter, 2005).

These functions have two parameters, the multiplier a which expresses the
starting or final size depending on the function, and the exponential rate b
or “e-folding time” 1/b (the time it takes to reach e times the initial value, or
the initial value divided by e, depending whether b is positive or negative).
The e-folding time can be expressed as a half-life or doubling time (ln(2)/b)
as well. Such exponential functions arise naturally from any compounding
process where the population loses or gains a constant proportion per unit
time; one example is Beers’ Law for the decrease in light availability with
depth in a vegetation canopy (Teh, 2006).

The differences in shape between an exponential-based function and its
rational-function analogue (e.g. the monomolecular curve and the Michaelis-
Menten function) are usually subtle. Unless you have a lot of data you’re
unlikely to be able to distinguish from the data which fits better, and will
instead have to choose on the basis of which one makes more sense mecha-
nistically, or possibly which is more convenient to compute or analyze (Fig-
ure 3.9).

3.5.2.2 Combinations of exponentials with other functions

Ricker function

The Ricker function, ax exp(−bx), is a common model for density-dependent
population growth; if per capita fecundity decreases exponentially with den-
sity, then overall population growth will follow the Ricker function. It starts
off growing linearly with slope a and has its maximum at x = 1/r; it’s similar
in shape to the generalized Michaelis-Menten function (RN/(1+(aN)b)). It
is used very widely as a phenomenological model for ecological variables that
start at zero, increase to a peak, and decrease gradually back to zero.

Several authors (Hassell, 1975; Royama, 1992; Brännström and Sumpter,
2005) have derived Ricker equations in an ecological context for the depen-
dence of offspring number on density, assuming that adults compete with
each other to reduce fecundity; (Quinn and Deriso, 1999, p. 89) derive the
Ricker equation in a fisheries context, assuming that young-of-year compete
with each other and increase mortality (e.g. via cannibalism).
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f((x)) == ae−−bx
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monomolecular:
f((x)) == a((1 −− e−−bx))
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Ricker:
f((x)) == axe−−bx

a 1
b

a
b

e−−1

logistic:
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b
4

−−
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b
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Figure 3.9 Exponential-based functions. “M-M” in the monomolecular figure is the
Michaelis-Menten function with the same asymptote and initial slope.
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Logistic function

There are two widely used parameterizations of the logistic function. The
first,

y =
ea+bx

1 + ea+bx
(3.9)

(or equivalently y = 1/(1+e−(a+bx))) comes from a statistical or phenomeno-
logical framework. The function goes from 0 at −∞ to 1 at +∞. The loca-
tion parameter a shifts the curve left or right: the half-maximum (y = 0.5),
which is also the inflection point, occurs at x = −a/b when the term in the
exponent is 0. The scale parameter b controls the steepness of the curve ∗.

The second parameterization comes from population ecology:

n(t) =
K

1 +
(

K
n0
− 1
)

e−rt
(3.10)

where K is the carrying capacity, n0 the value at t = 0, and r the initial per
capita growth rate. (The statistical parameterization is less flexible, with
only two parameters: it has K = 1, n0 = ea/(1 + ea), and r = b.)

The logistic is popular because it’s a simple sigmoid function (although its
rational analogue the Holling type III functional response is also simple) and
because it’s the solution to one of the simplest population-dynamic models,
the logistic equation:

dn

dt
= rn

(
1− n

K

)
, (3.11)

which says that per capita growth rate ((dn/dt)/n) decreases linearly from
a maximum of r when n � 1 to zero when n = K. Getting from the logistic
equation (3.11) to the logistic function (3.10) involves solving the differential
equation by integrating by parts, which is annoying but straightforward (see
any calculus book, e.g. Adler (2004)).

In R you can write out the logistic function yourself using the exp function;
you can also use the plogis function. The hyperbolic tangent (tanh) function
is another form of the logistic; its range extends from -1 as x → −∞ to 1 as
x →∞ instead of from 0 to 1.

Gompertz function

The Gompertz function, y = e−ae−bx

, is an alternative to the logistic func-
tion; it is similar to the logistic in starting out accelerating at y = 0 and
exponentially approaching 1 as y gets large, but it is asymmetric — the in-
flection point or change in curvature occurs 1/e ≈ 1/3 of the way up to the
asymptote, rather than halfway up. In this parameterization the inflection
point occurs at x = 0; you may want to shift the curve c units to the right by

∗If we reparameterized the function as exp(b(x − c))/(1 + exp(b(x − c))), the half-
maximum would be at c. Since b is still the steepness parameter, we could then shift and
steepen the curve independently.
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using y = e−aeb(x−c)
. If we derive the curves from models of organismal or

population growth, the logistic assumes that growth decreases linearly with
size or density while the Gompertz assumes that growth decreases exponen-
tially.

3.5.3 Functions involving power laws

So far the polynomials involved in our rational functions have been simple
linear or quadratic functions. Ecological modelers sometimes introduce an
arbitrary (fractional) power as a parameter (xb) instead of having all powers
as fixed integer values (e.g. x, x2 x3); using power laws in this way is often a
phenomenological way to vary the shape of a curve, although these functions
can also be derived mechanistically.

Here are some categories of power-law functions.

� Simple power laws f(x) = axb (for non-integer b; otherwise the function
is just a polynomial: Figure 3.10a) often describe allometric growth
(e.g. reproductive biomass as a function of diameter at breast height
(Niklas, 1993), or mass as a function of tarsus length in birds); or quan-
tities related to metabolic rates (Etienne et al., 2006a); or properties of
landscapes with fractal geometry (Halley et al., 2004); or species-area
curves (Tjørve, 2003).

� The generalized form of the von Bertalanffy growth curve, f(x) =
a(1− exp(−k(a− d)t))1/(1−d), (Figure 3.10b) allows for energy assim-
ilation to change as a function of mass (assimilation = massd). The
parameter d is often taken to be 2/3, assuming that energy assimilation
is proportional to length2 and mass is proportional to length3 (Quinn
and Deriso, 1999).

� A generalized form of the Michaelis-Menten function, f(x) = ax/(b +
xc) (Figure 3.10c), describes ecological competition (Maynard-Smith
and Slatkin, 1973; Brännström and Sumpter, 2005). This model re-
duces to the standard Michaelis-Menten curve when c = 1; 0 < c < 1
corresponds to“contest”(undercompensating) competition, while c > 1
corresponds to “scramble” (overcompensating) competition (the func-
tion has an intermediate maximum for finite densities if c > 1). In
fisheries, this model is called the Shepherd function. Quinn and Deriso
(1999) show how the Shepherd function emerges as a generalization
of the Beverton-Holt function when the density-dependent mortality
coefficient is related to the initial size of the cohort.

� A related function, f(x) = ax/(b + x)c, is known in ecology as the
Hassell competition function (Hassell, 1975; Brännström and Sumpter,
2005); it is similar to the Shepherd/Maynard-Smith/Slatkin model in
allowing Michaelis-Menten (c = 1), undercompensating (c < 1) or
overcompensating (c > 1) dynamics.
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� Persson et al. (1998) used a generalized Ricker equation, y = A( x
x0

exp(1−
x
x0

))α, to describe the dependence of attack rate y on predator body
mass x (Figure 3.1 shows the same curve, but as a function of prey
body mass). In fisheries, Ludwig and Walters proposed this func-
tion as a stock-recruitment curve (Quinn and Deriso, 1999). Bellows
(1981) suggested a slightly different form of the generalized Ricker,
y = x exp(r(1 − (a/x)α)) (note the power is inside the exponent in-
stead of outside), to model density-dependent population growth.

� Emlen (1996) used a generalized form of the logistic, y = a + b/(1 +
c exp(−dxe)) extended both to allow a non-zero intercept (via the a
parameter, discussed above under “Scaling and shifting”) and also to
allow more flexibility in the shape of the curve via the power exponent
e.

� The non-rectangular hyperbola (Figure 3.10, lower right), based on first
principles of plant physiology, describes the photosynthetic rate P as
a function of light availability I:

P (I) =
1
2θ

(
αI + pmax −

√
(αI + pmax)2 − 4θαIpmax

)
,

where α is photosynthetic efficiency (and initial slope); pmax is the
maximum photosynthetic rate (asymptote); and θ is a sharpness pa-
rameter. In the limit as θ → 0, the function becomes a Michaelis-
Menten function: in the limit as θ → 1, it becomes piecewise linear (a
hockey stick: Thornley, 2002).

Advantages

Functions incorporating power laws are flexible, especially since the power
parameter is usually added to an existing model that already allows for
changes in location, scale, and curvature. In many mechanistically derived
power-law functions the value of the exponent comes from intrinsic geomet-
ric or allometric properties of the system and hence does not have to be
estimated from data.

Disadvantages

Many different mechanisms can lead to power-law behavior (Mitzenmacher,
2003). It can be tempting but is often misguided to reason backward from
an observed pattern to infer something about the meaning of a particular
estimated parameter. Unless you have fairly strong evidence that the mech-
anisms driving the pattern are the same as those incorporated in your model,
this practice can get you in trouble.

Despite the apparent simplicity of the formulas, estimating exponents from
data can also be numerically challenging — leading to poorly constrained
or unstable estimates. The exponent of the non-rectangular hyperbola, for
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power laws:
f((x)) == axb

0 << b << 1

b >> 1

b << 0

von Bertalanffy:
f((x)) == a((1 −− e−−k((a−−d))x))((1 ((1−−d))))

a

Ricker

Shepherd, Hassell:
f((x)) ==

ax

b ++ xc,,  f((x)) ==
ax

((b ++ x))c

H

S

non−rectangular
hyperbola:

M−M

Figure 3.10 Power-based functions. The lower left panel shows the Ricker function
for comparison with the Shepherd and Hassell functions. The lower
right shows the Michaelis-Menten function for comparison with the
non-rectangular hyperbola.
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example, is notoriously difficult to estimate from reasonable-size data sets
(Thornley, 2002). (We will see another example when we try to fit the
Shepherd model to data in Chapter 5.)

3.5.4 Other possibilities

Of course, there is no way I can enumerate all the functions used even within
traditional population ecology, let alone fisheries, forestry, ecosystem, and
physiological ecology. Haefner (1996, pp. 90-96) gives an alternative list
of function types, focusing on functions used in physiological and ecosystem
ecology, while (Turchin, 2003, Table 4.1, p. 81) presents a variety of predator
functional response models. Some other occasionally useful categories are:

� curves based on other simple mathematical functions: for example,
trigonometric functions like sines and cosines (useful for fitting diurnal
or seasonal patterns), and functions based on logarithms.

� generalized or “portmanteau” functions: complex, highly flexible func-
tions that reduce to various simpler functions for particular parameter
values. For example, the four-parameter Richards growth model

y =
k1(

1 +
(

k1
k2
− 1
)

e−k3k4x
)1/k4

(3.12)

includes the monomolecular, Gompertz, von Bertalanffy, and logis-
tic equation as special cases (Haefner, 1996; Damgaard et al., 2002).
Schnute (1981) defined a still more generalized growth model.

� functions not in closed form: sometimes it’s possible to define the
dynamics of a population, but not to find a formula that describes the
resulting density of the population. The

– The theta-logistic or generalized logistic model (Nelder, 1961; Richards,
1959; Thomas et al., 1980; Sibly et al., 2005) generalizes the logis-
tic equation by adding a power (θ) to the logistic growth equation
given above (3.11):

dn

dt
= rn

(
1−

( n

K

)θ
)

: (3.13)

When θ = 1 this equation reduces to the logistic equation, but
when θ 6= 1 there is no closed-form solution for n(t) (i.e., no
solution we can solve mathematically and write down). (You can
use the odesolve library in R to solve the differential equation
numerically and get a value for a particular set of parameters.)

– the Rogers random-predator equation (Rogers, 1972; Juliano, 1993)
describes the numbers of prey eaten by predators, or the numbers
of prey remaining after a certain amount of time in situations
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Function range left end right end intermediate behavior

Polynomials
Line {−∞,∞} y → ±∞, y → ±∞, monotonic

constant slope constant slope
Quadratic {−∞,∞} y → ±∞, y → ±∞, single max/min

accelerating accelerating
Cubic {−∞,∞} y → ±∞, y → ±∞, up to two max/min

accelerating accelerating
Piecewise polynomials
Threshold {−∞,∞} flat flat breakpoint
Hockey stick {−∞,∞} flat or linear flat or linear breakpoint
Piecewise linear {−∞,∞} linear linear breakpoint
Rational
Hyperbolic {0,∞} y →∞ y → 0 decreasing

or finite
Michaelis-Menten {0,∞} y = 0, linear asymptote saturating
Holling type III {0,∞} y = 0, accelerating asymptote sigmoid
Holling type IV (c > 0) {0,∞} y = 0, accelerating asymptote hump-shaped
Exponential-based
Neg. exponential {0,∞} y finite y → 0 decreasing
Monomolecular {0,∞} y = 0, linear y → 0 saturating
Ricker {0,∞} y = 0, linear y → 0 hump-shaped
logistic {0,∞} y small, accelerating asymptote sigmoid
Power-based
Power law {0,∞} y → 0 or →∞ y → 0 or →∞ monotonic
von Bertalanffy like logistic
Gompertz ditto
Shepherd like Ricker
Hassell ditto
Non-rectangular hyperbola like Michaelis-Menten

Table 3.1 Qualitative properties of some functions discussed.

where the prey population becomes depleted. Like the theta-
logistic, the Rogers equation has no closed-form solution, but it
can be written in terms of a mathematical function called the
Lambert W function (Corless et al., 1996). (See ?lambertW in the
emdbook package.)

3.6 CONCLUSION

The first part of this chapter has shown you (or reminded you of) some
basic tools for understanding the mathematical functions used in ecological
modeling — slopes, critical points, derivatives, limits, and so forth — and
how to use them to figure out the basic properties of functions you come
across in your work. The second part of the chapter gave a brief review of
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some common functions. You will certainly run across others, but the tools
from the first part should help you figure out how they work.



book May 21, 2007

DETERMINISTIC FUNCTIONS FOR ECOLOGICAL MODELING 117

3.7 R SUPPLEMENT

3.7.1 Plotting functions in various ways

Using curve:
Plot a Michaelis-Menten curve:

> curve(2 * x/(1 + x))

You do need to specify the parameters: if you haven’t defined a and b
previously curve(a*x/(b+x)) will give you an error. But if you’re going to
use a function a lot it can be helpful to define a function:

> micmen <- function(x, a = 2, b = 1) {

+ a * x/(b + x)

+ }

Now plot several curves (being more specific about the desired x and y
ranges; changing colors; and adding a horizontal line (abline(h=...)) to
show the asymptote).

> curve(micmen(x), from = 0, to = 8, ylim = c(0, 10))

> curve(micmen(x, b = 3), add = TRUE, col = 2)

> curve(micmen(x, a = 8), add = TRUE, col = 3)

> abline(h = 8)

Sometimes you may want to do things more manually. Use seq to define
x values:

> xvec <- seq(0, 10, by = 0.1)

Then use vectorization (yvec=micmen(xvec)) or sapply (yvec=sapply(xvec,micmen))
or a for loop (for i in (1:length(xvec)) { yvec[i]=micmen(xvec[i])})
to calculate the y values. Use plot(xvec,yvec,...), lines(xvec,yvec,...),
etc. (with options you learned Chapter 2) to produce the graphics.

3.7.2 Piecewise functions using ifelse

The ifelse function picks one of two numbers (or values from one of two
vectors) depending on a logical condition. For example, a simple threshold
function:

> curve(ifelse(x < 5, 1, 2), from = 0, to = 10)

or a piecewise linear function:

> curve(ifelse(x < 5, 1 + x, 6 - 3 * (x - 5)), from = 0, to = 10)

You can also nest ifelse functions to get more than one switching point:

> curve(ifelse(x < 5, 1 + x, ifelse(x < 8, 6 - 3 * (x - 5), -3 +

+ 2 * (x - 8))), from = 0, to = 10)
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3.7.3 Derivatives

You can use D or deriv to calculate derivatives (although R will not simplify
the results at all): D gives you a relatively simple answer, while deriv gives
you a function that will compute the function and its derivative for specified
values of x (you need to use attr(...,"grad") to retrieve the derivative —
see below). To use either of these functions, you need to use expression to
stop R from trying to interpret the formula.

> D(expression(log(x)), "x")

1/x

> D(expression(x^2), "x")

2 * x

> logist <- expression(exp(x)/(1 + exp(x)))

> dfun <- deriv(logist, "x", function.arg = TRUE)

> xvec <- seq(-4, 4, length = 40)

> y <- dfun(xvec)

> plot(xvec, y)

> lines(xvec, attr(y, "grad"))

Use eval to fill in parameter values:

> d1 <- D(expression(a * x/(b + x)), "x")

> d1

a/(b + x) - a * x/(b + x)^2

> eval(d1, list(a = 2, b = 1, x = 3))

[1] 0.125
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4.1 SUMMARY

This chapter continues to review the math you need to fit models to data,
moving forward from functions and curves to probability distributions. The
first part discusses ecological variability in general terms, then reviews basic
probability theory and some important applications, including Bayes’ Rule
and its application in statistics. The second part reviews how to analyze and
understand probability distributions. The third part provides a bestiary of
probability distributions, finishing with a short digression on some ways to
extend these basic distributions.

4.2 INTRODUCTION: WHY DOES VARIABILITY MATTER?

For many ecologists and statisticians, noise is just a nuisance — it gets in
the way of drawing conclusions from the data. The traditional statistical
approach to noise in data was to assume that all variation in the data was
normally distributed, or transform the data until it was, and then use clas-
sical methods based on the normal distribution to draw conclusions. Some
scientists turned to nonparametric statistics, which assume only that the
shape of the data distribution is the same in all categories and test whether
the mean or “location parameter” differs among categories. Unfortunately,
classical nonparametric approaches make it much harder to draw quantita-
tive conclusions from data (rather than simply rejecting or failing to reject
null hypotheses about differences between groups).

In the 1980s, as they acquired better computing tools, ecologists began to
use more sophisticated models of variability such as generalized linear models
(see Chapter 9). Chapter 3 illustrated a wide range of deterministic functions
that correspond to eterministic models of the underlying ecological processes.
This chapter will illustrate a wide range of models for the stochastic part of
the dynamics. In these models, variability isn’t just a nuisance, but actually
tells us something about ecological processes. For example, census counts
that follow a negative binomial distribution (p. 142) tell us there is some
form of environmental variation or aggregative response among individuals
that we haven’t taken into account (Shaw and Dobson, 1995).

Remember from Chapter 1 that what we treat as “signal” (deterministic)
and what we treat as“noise” (stochastic) depends on the question. The same
ecological variability, such as spatial variation in light, might be treated as
random variation by a forester interested in the net biomass increment of
a forest stand and as a deterministic driving factor by an ecophysiologist
interested in the photosynthetic response of individual plants.

Noise affects ecological data in two different ways — as measurement er-
ror and as process noise (this will become important in Chapter 11 when
we deal with dynamical models). Measurement error is the variability or
“noise” in our measurements, which makes it hard to estimate parameters
and make inferences about ecological systems. Measurement error leads to
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large confidence intervals and low statistical power. Even if we can elimi-
nate measurement error, process noise or process error (often so-called even
though it isn’t technically an “error”, but a real part of the system) still ex-
ists. Variability affects any ecological system. For example, we can observe
thousands of individuals to determine the average mortality rate with great
accuracy. The fate of a group of a few individuals, however, depends both
on the variability in mortality rates of individuals and on the demographic
stochasticity that determines whether a particular individual lives or dies
(“loses the coin toss”). Even though we know the average mortality rate
perfectly, our predictions are still uncertain. Environmental stochasticity —
spatial and temporal variability in (e.g.) mortality rate caused by variation in
the environment rather than by the inherent randomness of individual fates
— also affects the dynamics. Finally, even if we can minimize measurement
error by careful measurement and minimize process noise by studying a large
population in a constant environment (i.e. low levels of demographic and en-
vironmental stochasticity), ecological systems can still amplify variability in
surprising ways. For example, a tiny bit of demographic stochasticity at the
beginning of an epidemic can trigger huge variation in epidemic dynamics
(Rand and Wilson, 1991). Variability also feeds back to change the mean be-
havior of an ecological system. For example, in the wrasse system described
in Chapter 2 the number of recruits in any given cohort is the number of
settlers surviving density-dependent mortality, but the average number of
recruits is lower than expected from an average-sized cohort of settlers be-
cause large cohorts suffer disproportionately high mortality and contribute
relatively little to the average. This widespread phenomenon follows from
Jensen’s inequality (Ruel and Ayres, 1999; Inouye, 2005).

4.3 BASIC PROBABILITY THEORY

In order to understand stochastic terms in ecological models, you’ll have to
(re)learn some basic probability theory. To define a probability, we first have
to identify the sample space of all the possible outcomes that could occur.
Then the probability of an event A is the frequency with which that event
occurs. A few probability rules are all you need to know:

1. If two events are mutually exclusive (e.g., ”individual is male” and ”in-
dividual is female”) then the probability that either occurs (the prob-
ability of A or B, or Prob(A∪B)) is the sum of their individual prob-
abilities: e.g. Prob(male or female) = Prob(male) + Prob(female).

We use this rule, for example, in finding the probability that an out-
come is within a certain numeric range by adding up the probabilities
of all the different (mutually exclusive) values in the range: for a dis-
crete variable, for example, P (3 ≤ X ≤ 5) = P (X = 3) + P (X =
4) + P (X = 5).



book May 21, 2007

122 CHAPTER 4

2. If two events A and B are not mutually exclusive — the joint probability
that they occur together, Prob(A ∩ B), is greater than zero — then
we have to correct the rule for combining probabilities to account for
double-counting:

Prob(A ∪B) = Prob(A) + Prob(B)− Prob(A ∩B).

For example if we are tabulating color and sex of animals, Prob(blue or male) =
Prob(blue) + Prob(male)− Prob(blue male))

3. The probabilities of all possible outcomes of an observation or experi-
ment add to 1.0. (Prob(male) + Prob(female) = 1.0.)

We will need this rule to understand the form of probability distribu-
tions, which often contain a normalization constant to make sure that
the sum of the probabilities of all possible outcomes is 1.

4. The conditional probability of A given B, Prob(A|B), is the probability
that A happens if we know or assume B happens. The conditional
probability equals

Prob(A|B) = Prob(A ∩B)/Prob(B). (4.1)

For example:

Prob(individual is blue|individual is male) =
Prob(individual is a blue male)

Prob(individual is male)
.

(4.2)
By contrast, we may also refer to the probability of A when we make no
assumptions about B as the unconditional probability of A. Prob(A) =
Prob(A|B) + Prob(A|not B).

Conditional probability is central to understanding Bayes’ Rule (p. 125).

5. If the conditional probability of A given B, Prob(A|B), equals the un-
conditional probability of A, then A is independent of B. Knowing
about B provides no information about the probability of A. Indepen-
dence implies that

Prob(A ∩B) = Prob(A)Prob(B), (4.3)

which follows from multiplying both sides of (4.1) by Prob(B). The
probabilities of combinations of independent events are multiplicative.

Multiplying probabilities of independent events, or adding independent
log-probabilities (log(Prob(A ∩ B)) = log(Prob(A)) + log(Prob(B)) if
A and B are independent), is how we find the combined probability of
a series of observations.

We can immediately use these rules to think about the distribution of
seeds taken in the seed removal experiment (Chapter 2). The most obvious
pattern in the data is that there are many zeros, probably corresponding
to times when no predators visited the station. The sample space for seed
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disappearance — is the number of seeds taken, from 0 to N (the number
available). Suppose that when a predator did visit the station, with prob-
ability v, it had an equal probability of taking any of the possible number
of seeds (a uniform distribution from 0 to N). Since the probabilities must
add to 1, this probability (Prob(x taken|predator visits)) is 1/(N + 1) (0 to
N represents N + 1 different possible events). What is the unconditional
probability of x seeds being taken?

If x > 0, then there is only one possible type of event — the predator
visited and took x seeds — with overall probability v/(N + 1) (Figure 4.1,
left).

If x = 0, then there are two mutually exclusive possibilities. Either the
predator didn’t visit (probability 1−v), or it visited (probability v) and took
zero seeds (probability 1/(N + 1)), so the overall probability is

(1− v)︸ ︷︷ ︸
didn’t visit

+

 v︸︷︷︸
visited

× 1
N + 1︸ ︷︷ ︸

took zero seeds

 = 1− v +
v

N + 1
. (4.4)

Now make things a little more complicated and suppose that when a preda-
tor visits, it decides independently whether or not to take each seed. If the
seeds of a given species are all identical, so that each seed is taken with
the same probability p, then this process results in a binomial distribution.
Using the rules above, the probability of x seeds being taken when each has
probability p is px. It’s also true that N−x seeds are not taken, with proba-
bility (1−p)N−x. Thus the probability is proportional to px · (1−p)N−x. To
get the probabilities of all possible outcomes to add to 1, though, we have
to multiply by a normalization constant N !/(x!(N − x)!)∗, or

(
N
x

)
. (It’s too

bad we can’t just ignore these ugly normalization factors, which are always
the least intuitive parts of probability formulas, but we really need them
in order to get the right answers. Unless you are doing advanced calcula-
tions, however, you can usually just take the formulas for the normalization
constants for granted, without trying to puzzle out their meaning.)

Now adding the “predator may or may not visit” layer to this formula, we
have a probability

(1− v)︸ ︷︷ ︸
didn’t visit

+

 v︸︷︷︸
visited

·Binom(0, p,N)︸ ︷︷ ︸
took zero seeds

 = (1− v) + v(1− p)N (4.5)

if x = 0 (
(
N
0

)
= 1, so the normalization constant disappears from the second

term), or

v︸︷︷︸
visited

·Binom(x, p, N)︸ ︷︷ ︸
took > 0 seeds

= v

(
N

x

)
px(1− p)N−x (4.6)

if x > 0 (Figure 4.1, right).

∗N ! means N ·N − 1 · . . . · 2 · 1, and is referred to as “N factorial”.
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Figure 4.1 Zero-inflated distributions. Left, zero-inflated uniform: right, zero-
inflated binomial. Number of seeds N = 5, probability of predator
visit v = 0.7, binomial probability of individual seed predation p = 0.4.
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This distribution is called the zero-inflated binomial (Inouye, 1999; Tyre
et al., 2003). With only a few simple probability rules, we have derived a
potentially useful distribution that might describe the pattern of seed pre-
dation better than any of the standard distributions we’ll see later in this
chapter.

4.4 BAYES’ RULE

With the simple probability rules defined above we can also derive, and
understand, Bayes’ Rule. Most of the time we will use Bayes’ Rule to go
from the likelihood Prob(D|H), the probability of observing a particular set
of data D given that a hypothesis H is true (p. 14), to the information we
really want, Prob(H|D) — the probability of our hypothesis H in light of
our data D. Bayes’ Rule is just a recipe for turning around a conditional
probability:

P (H|D) =
P (D|H)P (H)

P (D)
. (4.7)

Bayes’ Rule is general — H and D can be any events, not just hypothesis and
data — but it’s easier to understand Bayes’ Rule when we have something
concrete to tie it to. Deriving Bayes’ Rule is almost as easy as remembering
it. Rule #4 on p. 122 applied to P (H|D) implies

P (D ∩H) = P (H|D)P (D), (4.8)

while applying it to P (D|H) tells us

P (H ∩D) = P (D|H)P (H). (4.9)

But P (H ∩D) = P (D ∩H) so

P (H|D)P (D) = P (D|H)P (H) (4.10)

and therefore

P (H|D) =
P (D|H)P (H)

P (D)
. (4.11)

Equation (4.11) says that the probability of the hypothesis given (in light
of) the data is equal to the probability of the data given the hypothesis
(the likelihood associated with H), times the probability of the hypothesis,
divided by the probability of the data. There are two problems here: we
don’t know the probability of the hypothesis, P (H) (isn’t that what we’re
trying to figure out in the first place?), and we don’t know the unconditional
probability of the data, P (D).

Let’s think about the second problem first—our ignorance of P (D). We
can calculate an unconditional probability for the data if we have a set of
exhaustive, mutually exclusive hypotheses: in other words, we assume that
one, and only one, of our hypotheses is true. Figure 4.2 shows a geometric
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interpretation of Bayes’ Rule. The gray ellipse represents D, the set of all
possibilities that could lead to the observed data.

If one of the hypotheses must be true, then the unconditional probability
of observing the data is the sum of the probabilities of observing the data
under any of the possible hypotheses, For N different hypotheses H1 to HN ,

P (D) =
N∑

j=1

P (D ∩Hj)

=
N∑

j=1

P (Hj)P (D|Hj). (4.12)

In words, the unconditional probability of the data is the sum of the like-
lihood of each hypothesis (P (D|Hj)) times its unconditional probability
(P (Hj)). In Figure 4.2, summing the area of overlap of each of the large
wedges (the hypotheses Hj) with the gray ellipse (Hj ∩D) provides the area
of the ellipse (D).

Substituting (4.12) into (4.11) gives the full form of Bayes’ Rule for a par-
ticular hypothesis Hi when it is one of a mutually exclusive set of hypotheses
{Hj}. The probability of the truth of Hi in light of the data is

P (Hi|D) =
P (D|Hi)P (Hi)∑
j P (Hj)P (D|Hj)

(4.13)

In Figure 4.2, having observed the data D means we know that reality
lies somewhere in the gray ellipse. The probability that hypothesis 5 is true
(i.e., that we are somewhere in the hashed area) is equal to the area of
the hashed/colored “pizza slice” divided by the area of the ellipse. Bayes’
Rule breaks this down further by supposing that we know how to calculate
the likelihood of the data for each hypothesis — the ratio of the pizza slice
divided by the area of the entire wedge (the area of the pizza slice [D ∩H5]
divided by the hashed wedge [H5]). Then we can recover the area of each
slice by multiplying by likelihood by the prior (the area of the wedge) and
calculate both P (D) and P (H5|D).

Dealing with the second problem, our ignorance of the unconditional or
prior probability of the hypothesis P (Hi), is more difficult. In the next
section we will simply assume that we have other information about this
probability, and we’ll revisit the problem shortly in the context of Bayesian
statistics. But first, just to practice with Bayes’ Rule, we’ll explore two sim-
pler examples that use Bayes’ Rule to manipulate conditional probabilities.

4.4.1 False positives in medical testing

Suppose the unconditional probability of a random person sampled from the
population being infected (I) with some deadly but rare disease is one in
a million: P (I) = 10−6. There is a test for this disease that never gives a
false negative result: if you have the disease, you will definitely test positive
(P (+|I) = 1). However, the test does occasionally give a false positive result.
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H1

D∩∩H1

H2

D∩∩H2

H3

D∩∩H3

H4

D∩∩H4

H5

D∩∩H5

Figure 4.2 Decomposition of the unconditional probability of the observed data
(D) into the sum of the probabilities of the intersection of the data
with each possible hypothesis (

PN
j=1 D ∩ Hj). The entire gray ellipse

in the middle represents D. Each wedge (e.g. the hashed area H5)
represents an alternative hypothesis. The ellipse is divided into “pizza
slices” (e.g. D ∩H5, hashed and colored area). The area of each slice
corresponds to D∩Hj , the joint probability of the data D (ellipse) and
the particular hypothesis Hj (wedge).
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One person in 100 who doesn’t have the disease (is uninfected, U) will test
positive anyway (P (+|U) = 10−2). This sounds like a pretty good test. Let’s
compute the probability that someone who tests positive is actually infected.

Replace H in Bayes’ rule with “is infected” (I) and D with “tests positive”
(+). Then

P (I|+) =
P (+|I)P (I)

P (+)
. (4.14)

We know P (+|I) = 1 and P (I) = 10−6, but we don’t know P (+), the
unconditional probability of testing positive. Since you are either infected
(I) or uninfected (U), so these events are mutually exclusive,

P (+) = P (+ ∩ I) + P (+ ∩ U). (4.15)

Then

P (+) = P (+|I)P (I) + P (+|U)P (U) (4.16)

because P (I ∩ +) = P (+|I)P (I) (eq. 4.1). We also know that P (U) =
1− P (I), so

P (+) = P (+|I)P (I) + P (+|U)(1− P (I))

= 1× 10−6 + 10−2 × (1− 10−6)

= 10−6 + 10−2 + 10−8

≈ 10−2.

(4.17)

Since 10−6 is ten thousand times smaller than 10−2, and 10−8 is even tinier,
we can neglect them for now.

Now that we’ve done the hard work of computing the denominator, we
can put it together with the numerator:

P (I|+) =
P (+|I)P (I)

P (+)

≈ 1× 10−6

10−2

= 10−4

(4.18)

Even though false positives are unlikely, the chance that you are infected
if you test positive is still only 1 in 10,000! For a sensitive test (one that
produces few false negatives) for a rare disease, the probability that a positive
test is detecting a true infection is approximately P (I)/P (false positive),
which can be surprisingly small.

This false-positive issue also comes up in forensics cases (DNA testing,
etc.). Assuming that a positive test is significant is called the base rate
fallacy. It’s important to think carefully about the sample population and
the true probability of being guilty (or at least having been present at the
crime scene) conditional on having your DNA match DNA found at the crime
scene.
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4.4.2 Bayes’ Rule and liana infestation

A student of mine used Bayes’ Rule as part of a simulation model of liana
(vine) dynamics in a tropical forest. He wanted to know the probability that
a newly emerging sapling would be in a given “liana class” (L1=liana-free,
L2–L3=light to moderate infestation, L4=heavily infested with lianas). This
probability depends on the number of trees nearby that are already infested
(N). We have measurements of infestation of saplings from the field, and for
each one we know the number of nearby infestations. Thus if we calculate
the fraction of individuals in liana class Li with N nearby infested trees, we
get an estimate of Prob(N |Li). We also know the overall fractions in each
liana class, Prob(Li). When we add a new tree to the model, we know the
neighborhood infestation N from the model. Thus we can figure out what
we want to know, Prob(Li|N), by using Bayes’ Rule to calculate

Prob(Li|N) =
Prob(N |Li)Prob(Li)∑4

j=1 Prob(N |Lj)Prob(Lj)
. (4.19)

For example, suppose we find that a new tree in the model has 3 infested
neighbors. Let’s say that the probabilities of each liana class (1 to 4) having 3
infested neighbors are Prob(N |Li) = {0.05, 0.1, 0.3, 0.6} and that the uncon-
ditional probabilities of being in each liana class are Li = {0.5, 0.25, 0.2, 0.05}.
Then the probability that the new tree is heavily infested (i.e. is in class L4)
is

0.6× 0.05
(0.05× 0.5) + (0.1× 0.25) + (0.3× 0.2) + (0.6× 0.05)

= 0.21. (4.20)

We would expect that a new tree with several infested neighbors has a much
higher probability of heavy infestation than the overall (unconditional) prob-
ability of 0.05. Bayes’ Rule allows us to quantify this guess.

4.4.3 Bayes’ Rule in Bayesian statistics

So what does Bayes’ Rule have to do with Bayesian statistics?
Bayesians translate likelihood into information about parameter values

using Bayes’ Rule as given above. The problem is that we have the likelihood
L(data|hypothesis), the probability of observing the data given the model
(parameters): what we want is Prob(hypothesis|data). After all, we already
know what the data are!

4.4.3.1 Priors

In the disease testing and the liana examples, we knew the overall, uncon-
ditional probability of disease or liana class in the population. When we’re
doing Bayesian statistics, however, we interpret P (Hi) instead as the prior
probability of a hypothesis, our belief about the probability of a particular
hypothesis before we see the data. Bayes’ Rule is the formula for updating
the prior in order to compute the posterior probability of each hypothesis,
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our belief about the probability of the hypothesis after we see the data.
Suppose I have two hypotheses A and B and have observed some data D
with likelihoods LA = 0.1 and LB = 0.2. In other words, the probability of
D occurring if hypothesis A is true (P (D|A)) is 10%, while the probability
of D occurring if hypothesis B is true (P (D|B)) is 20%. If I assign the two
hypotheses equal prior probabilities (0.5 each), then Bayes’ Rule says the
posterior probability of A is

P (A|D) =
0.1× 0.5

0.1× 0.5 + 0.2× 0.5
=

0.1
0.3

=
1
3

(4.21)

and the posterior probability of B is 2/3. However, if I had prior information
that said A was twice as probable (Prob(A) = 2/3, Prob(B) = 1/3) then
the probability of A given the data would be 0.5 (do the calculation). It is
in principle possible to get whatever answer you want, by rigging the prior:
if you assign B a prior probability of 0, then no data will ever convince
you that B is true (in which case you probably shouldn’t have done the
experiment in the first place). Frequentists claim that this possibility makes
Bayesian statistics open to cheating (Dennis, 1996): however, every Bayesian
analysis must clearly state the prior probabilities it uses. If you have good
reason to believe that the prior probabilities are not equal, from previous
studies of the same or similar systems, then arguably you should use that
information rather than starting as frequentists do from the ground up every
time. (The frequentist-Bayesian debate is one of the oldest and most virulent
controversies in statistics. I can’t possibly do it justice here.)

However, it is a good idea to try so-called flat or weak or uninforma-
tive priors — priors that assume you have little information about which
hypothesis is true — as a part of your analysis, even if you do have prior
information (Edwards, 1996). You may have noticed in the first example
above that when we set the prior probabilities equal, the posterior probabil-
ities were just equal to the likelihoods divided by the sum of the likelihoods.
Algebraically if all the P (Hi) are equal to the same constant C,

P (Hi|D) =
P (D|Hi)C∑
j P (D|Hj)C

=
Li∑
j Lj

(4.22)

where Li is the likelihood of hypothesis i.
You may think that setting all the priors equal would be an easy way to

eliminate the subjective nature of Bayesian statistics and make everybody
happy. Two examples, however, will demonstrate that it’s not that easy
to say what it means to be completely “objective” or ignorant of the right
hypothesis.

� partitioning hypotheses: suppose we find a nest missing eggs that might
have been taken by a raccoon, a squirrel, or a snake (only). The
three hypotheses “raccoon” (R), “squirrel” (Q), and“snake” (S) are our
mutually exclusive and exhaustive set of hypotheses for the identity of
the predator. If we have no other information (for example about
the local densities or activity levels of different predators), we might



book May 21, 2007

PROBABILITY AND STOCHASTIC DISTRIBUTIONS FOR ECOLOGICAL MODELING131

Predator

P
ro

ba
bi

lit
y

0.0

0.1

0.2

0.3

0.4

0.5

raccoon squirrel snake

mammalian

by species by group

Figure 4.3 The difficulty of defining an uninformative prior for discrete hypotheses.
Dark gray bars are priors that assume predation by each species is
equally likely; light gray bars divide predation by group first, then by
species within group.

choose equal prior probabilities for all three hypotheses. Since there are
three mutually exclusive predators, Prob(R) = Prob(Q) = Prob(S) =
1/3. Now a friend comes and asks us whether we really believe that
mammalian predators are twice as likely to eat the eggs as reptiles
(Prob(R) + Prob(Q) = 2Prob(S)) (Figure 4.3). What do we do? We
might solve this particular problem by setting the probability for snakes
(the only reptiles) to 0.5, the probability for mammals (Prob(R ∪Q))
to 0.5, and the probability for raccoons and squirrels equal (Prob(R) =
Prob(Q) = 0.25), but this simple example suggests that such pitfalls
are ubiquitous.

� changing scales: a similar problem arises with continuous variables.
Suppose we believe that the mass of a particular bird species is between
10 and 100 g, and that no particular value is any more likely than other:
the prior distribution is uniform, or flat. That is, the probability that
the mass is in some range of width ∆m is constant: Prob(mass =
m) = 1/90∆m (so that

∫ 100

10
Prob(m) dm = 1: see p. 134 for more on
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Figure 4.4 The difficulty of defining an uninformative prior on continuous scales.
If we assume that the probabilities are uniform on one scale (linear or
logarithmic), they must be non-uniform on the other.

probability densities).
But is it sensible to assume that the probability that a species’ mass is
between 10 and 20 is the same as the probability that it is between 20
and 30, or should it be the same as the probability that it is between
20 and 40 — that is, would it make more sense to think of the mass
distribution on a logarithmic scale? If we say that the probability
distribution is uniform on a logarithmic scale, then a species is less
likely to be between 20 and 30 than it is to be between 10 and 20.∗

Since changing the scale is not really changing anything about the
world, just the way we describe it, this change in the prior is another
indication that it’s harder than we think to say what it means to be
ignorant.

4.4.3.2 Integrating the denominator

The other challenge with Bayesian statistics, which is purely technical and
does not raise any deep conceptual issues, is the problem of adding up the
denominator

∑
j P (Hj)P (D|Hj) in Bayes’ rule. If the set of hypotheses

∗If the probability is uniform between a and b on the usual, linear scale (Prob(mass =
m) = 1/(b − a) dm), then on the log scale it is Prob(log mass = M) = 1/(b − a)eM dM
[if we change variables to log mass M , then dM = d(log m) = 1/m dm, so dm = m dM =
eM dM ]. Going the other way, a log-uniform assumption gives Prob(mass = m) =
1/(log(b/a)m)dm on the linear scale.
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(parameters) is continuous, then the denominator is
∫

P (h)P (D|h) dh where
h is a particular parameter value.

For example, the binomial distribution says that the likelihood of obtaining
2 heads in 3 (independent, equal-probability) coin flips is

(
3
2

)
p2(1 − p), a

function of p. The likelihood for p = 0.5 is therefore 0.375, but to get the
posterior probability we have to divide by the probability of getting 2 heads
in 3 flips for any value of p. Assuming a flat prior, the denominator is∫ 1

0

(
3
2

)
p2(1 − p) dp = 0.25, so the posterior probability density of p = 0.5 is

0.375/0.25 = 1.5∗.
For the binomial case and other simple probability distributions, it’s easy

to sum or integrate the denominator either analytically or numerically. If
we only care about the relative probability of different hypotheses, we don’t
need to integrate the denominator because it has the same constant value
for every hypothesis.

Often, however, we do want to know the absolute probability. Calculating
the unconditional probability of the data (the denominator for Bayes’ Rule)
can be extremely difficult for more complicated problems. Much of current
research in Bayesian statistics focuses on ways to calculate the denomina-
tor. We will revisit this problem in Chapters 6 and 7, first integrating the
denominator by brute-force numerical integration, then looking briefly at
a sophisticated technique for Bayesian analysis called Markov chain Monte
Carlo.

4.4.4 Conjugate priors

Using so-called conjugate priors makes it easy to do the math for Bayesian
analysis. Imagine that we’re flipping coins (or counting hatchling survival or
numbers of different morphs in a fixed sample) and that we use the binomial
distribution to model the data. For a binomial with a per-trial probability of
p and N trials, the probability of x successes is proportional to px(1−p)N−x

(leaving out the normalization constant). Suppose that instead of describing
the probability of a number of successes with a fixed per-trial probability
p and number of trials N we wanted to describe the probability of a given
per-trial probability p. We would get Prob(p) proportional to px(1− p)N−x

— exactly the same formula, but with a different proportionality constant
and a different interpretation. Instead of a discrete probability distribution
over a sample space of all possible numbers of successes (0 to N), now we
have a continuous probability distribution over all possible probabilities (all
values between 0 and 1). The second distribution, for Prob(p), is called the
beta distribution (see p. 151) and it is the conjugate prior for the binomial
distribution. We’ll come back to conjugate priors and how to use them in
Chapters 6 and 7.

Mathematically, conjugate priors have the same structure as the probabil-
ity distribution of the data. They lead to a posterior distribution with the

∗This value is a probability density, not a probability, so it’s OK for it to be greater
than 1: probability density will be explained on p. 134.
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same mathematical form as the prior, although with different parameter val-
ues. Intuitively, you get a conjugate prior by turning the likelihood around
to ask about the probability of a parameter instead of the probability of the
data.

4.5 ANALYZING PROBABILITY DISTRIBUTIONS

You need the same kinds of skills and intuitions about the characteristics of
probability distributions that we developed in Chapter 3 for mathematical
functions.

4.5.1 Definitions

Discrete

A probability distribution is the set of probabilities on a sample space or set
of outcomes. Since this book is about modeling quantitative data, we will
always be dealing with sample spaces that are numbers — the number or
amount observed in some measurement of an ecological system. The simplest
distributions to understand are discrete distributions whose outcomes are a
set of integers: most of the discrete distributions we’ll deal with describe
counting or sampling processes and have ranges that include some or all of
the non-negative integers.

A discrete distribution is most easily described by its distribution function,
which is just a formula for the probability that the outcome of an experi-
ment or observation (called a random variable) X is equal to a particular
value x (f(x) = Prob(X = x)). A distribution can also be described by its
cumulative distribution function F (x) (note the uppercase F ), which is the
probability that the random variable X is less than or equal to a particular
value x (F (x) = Prob(X ≤ x). Cumulative distribution functions are most
useful for frequentist calculations of tail probabilities, e.g. the probability of
getting n or more heads in a series of coin-tossing experiments with a given
trial probability.

Continuous

A probability distribution over a continuous range (such as all real num-
bers, or the non-negative real numbers) is called a continuous distribu-
tion. The cumulative distribution function of a continuous distribution
(F (x) = Prob(X ≤ x) is easy to define and understand — it’s just the
probability that the continuous random variable X is smaller than a partic-
ular value x in any given observation or experiment — but the probability
density function (the analogue of the distribution function for a discrete dis-
tribution) is more confusing, since the probability of any precise value is
zero. You may imagine that a measurement of (say) pH is exactly 7.9, but
in fact what you have observed is that the pH is between 7.82 and 7.98 — if
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Figure 4.5 Probability, probability density, and cumulative distributions. Top:
discrete (binomial: N = 5, p = 0.3) probability and cumulative proba-
bility distributions. Bottom: continuous (exponential: λ = 1.5) proba-
bility density and cumulative probability distributions.

your meter has a precision of ± 1%. Thus continuous probability distribu-
tions are expressed as probability densities rather than probabilities — the
probability that random variable X is between x and x+∆x, divided by ∆x
(Prob(7.82 < X < 7.98)/0.16, in this case). Dividing by ∆x allows the ob-
served probability density to have a well-defined limit as precision increases
and ∆x shrinks to zero. Unlike probabilities, Probability densities can be
larger than 1 (Figure 4.5). For example, if the pH probability distribution
is uniform on the interval [7,7.1] but zero everywhere else, its probability
density is 10. In practice, we will mostly be concerned with relative proba-
bilities or likelihoods, and so the maximum density values and whether they
are greater than or less than 1 won’t matter much.

4.5.2 Means (expectations)

The first thing you usually want to know about a distribution is its average
value, also called its mean or expectation.

In general the expectation operation, denoted by E[·] (or a bar over a
variable, such as x̄) gives the “expected value” of a set of data, or a prob-
ability distribution, which in the simplest case is the same as its (arith-
metic) mean value. For a set of N data values written down separately as
{x1, x2, x3, . . . xN}, the formula for the mean is familiar:

E[x] =
∑N

i=1 xi

N
. (4.23)
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Suppose we have the data tabulated instead, so that for each possible value
of x (for a discrete distribution) we have a count of the number of observa-
tions (possibly zero, possibly more than 1), which we call c(x). Summing
over all of the possible values of x, we have

E[x] =
∑N

i=1 xi

N
=
∑

c(x)x
N

=
∑(

c(x)
N

)
x =

∑
Prob(x)x (4.24)

where Prob(x) is the discrete probability distribution representing this par-
ticular data set. More generally, you can think of Prob(x) as represent-
ing some particular theoretical probability distribution which only approxi-
mately matches any actual data set.

We can compute the mean of a continuous distribution as well. First, let’s
think about grouping (or “binning”) the values in a discrete distribution into
categories of size ∆x. Then if p(x), the density of counts in bin x, is c(x)/∆x,
the formula for the mean becomes

∑
p(x) · x∆x. If we have a continuous

distribution with ∆x very small, this becomes
∫

p(x)x dx. (This is in fact the
definition of an integral.) For example, an exponential distribution p(x) =
λ exp(−λx) has an expectation or mean value of

∫
λ exp(−λx)x dx = 1/λ.

(You don’t need to know how to do this integral analytically, although the
R supplement will show a little bit about numerical integration in R.)

4.5.3 Variances (expectation of X2)

The mean is the expectation of the random variable X itself, but we can
also ask about the expectation of functions of X. The first example is the
expectation of X2. We just fill in the value x2 for x in all of the formulas
above: E[x2] =

∑
Prob(x)x2 for a discrete distribution, or

∫
p(x)x2 dx for

a continuous distribution. (We are not asking for
∑

Prob(x2)x2.) The
expectation of x2 is a component of the variance, which is the expected
value of (x − E[x])2 or (x − x̄)2, or the expected squared deviation around
the mean. (We can also show that

E[(x− x̄)2] = E[x2]− (x̄)2 (4.25)

by using the rules for expectations that (1) E[x + y] = E[x] + E[y] and (2)
if c is a constant, E[cx] = cE[x]. The right-hand formula formula is simpler
to compute than E[(x− x̄)2], but less numerically accurate.)

Variances are easy to work with because they are additive (we will show
later that Var(a + b) = Var(a) + Var(b) if a and b are uncorrelated), but
harder to compare with means since their units are the units of the mean
squared. Thus we often use instead the standard deviation of a distribution,
(
√

Var), which has the same units as X.
Two other summaries related to the variance are the variance-to-mean

ratio and the coefficient of variation (CV), which is the ratio of the standard
deviation to the mean. The variance-to-mean ratio has units equal to the
mean; it is primarily used to characterize discrete sampling distributions
and compare them to the Poisson distribution, which has a variance-to-
mean ratio of 1. The CV is more common, and is useful when you want
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to describe variation that is proportional to the mean. For example, if you
have a pH meter that is accurate to ±10%, so that a true pH value of x will
give measured values that are normally distributed with 2σ = 0.1x∗, then
σ = 0.05x and the CV is 0.05.

4.5.4 Higher moments

The expectation of (x− E[x])3 tells you the skewness of a distribution or a
data set, which indicates whether it is asymmetric around its mean. The ex-
pectation E[(x−E[x])4] measures the kurtosis, the “pointiness” or “flatness”,
of a distribution. These are called the third and fourth central moments of
the distribution. In general, the nth moment is E[xn], and the nth central
moment is E[(x− x̄)n]; the mean is the first moment, and the variance is the
second central moment. We won’t be too concerned with these summaries
(of data or distributions), but they do come up sometimes.

4.5.5 Median and mode

The median and mode are two final properties of probability distributions
that are not related to moments. The median of a distribution is the point
which divides the area of the probability density in half, or the point at
which the cumulative distribution function is equal to 0.5. It is often useful
for describing data, since it is robust — outliers change its value less than
they change the mean — but for many distributions it’s more complicated
to compute than the mean. The mode is the “most likely value”, the max-
imum of the probability distribution or density function. For symmetric
distributions the mean, mode, and median are all equal; for right-skewed
distributions, in general mode < median < mean.

4.5.6 The method of moments

Suppose you know the theoretical values of the moments (e.g. mean and
variance) of a distribution and have calculated the sample values of the
moments (by calculating x̄ =

∑
x/N and s2 =

∑
(x−x̄)2/N : don’t worry for

the moment about whether the denominator in the sample variance should
be N or N − 1). Then there is a simple way to estimate the parameters
of a distribution, called the method of moments: just match the sample
values up with the theoretical values. For the normal distribution, where
the parameters of the distribution are just the mean and the variance, this
is trivially simple: µ = x̄, σ2 = s2. For a distribution like the negative
binomial, however (p. 142), it involves a little bit of algebra. The negative
binomial has parameters µ (equal to the mean, so that’s easy) and k; the
theoretical variance is σ2 = µ(1 + µ/k). Therefore, setting µ = x̄, s2 ≈
µ(1+µ/k), and solving for k, we calculate the method-of-moments estimate

∗Remember that the 95% confidence limits of the normal distribution are approxi-
mately µ± 2σ.
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of k:

σ2 = µ(1 + µ/k)

s2 ≈ x̄(1 + x̄/k)

s2

x̄
− 1 ≈ x̄

k

k ≈ x̄

s2/x̄− 1

(4.26)

The method of moments is very simple but is biased in many cases; it’s a
good way to get a first estimate of the parameters of a distribution, but for
serious work you should follow it up with a maximum likelihood estimator
(Chapter 6).

4.6 BESTIARY OF DISTRIBUTIONS

The rest of the chapter presents brief introductions to a variety of useful
probability distributions, including the mechanisms behind them and some
of their basic properties. Like the bestiary in Chapter 3, you can skim this
bestiary on the first reading. The appendix of Gelman et al. (1996) contains
a useful table, more abbreviated than these descriptions but covering a wider
range of functions. The book by Evans et al. (2000) is also useful.

4.6.1 Discrete models

4.6.1.1 Binomial

The binomial is probably the easiest distribution to understand. If you have
samples with N subsamples or “trials” in each one, and each trial can have
one of two values (black/white, heads/tails, alive/dead, species A/species
B), and the probability of “success” (black, heads, alive, species A) is p, then
the number of successes in each sample (k) will have a binomial distribution
with parameters N and p. Don’t confuse the trials (subsamples), and the
probability of success in each trial, with the number of samples and the
probabilities of the number of successful trials in each sample. In the seed
predation example, a trial is an individual seed and the trial probability is the
probability that an individual seed is taken, while a sample is the observation
of a particular station at a particular time and the binomial probabilities are
the probabilities that a certain total number of seeds disappears from the
station. You can derive the part of the distribution that depends on x,
px(1 − p)N−x, by multiplying the probabilities of x independent successes
with probability p and N−x independent failures with probability 1−p. The
rest of the distribution function,

(
N
x

)
= N !/(x!(N − x)!), is a normalization

constant that we can justify either with a combinatorial argument about the
number of different ways of sampling x objects out of a set of N (Appendix),



book May 21, 2007

PROBABILITY AND STOCHASTIC DISTRIBUTIONS FOR ECOLOGICAL MODELING139

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

# of successes

P
ro

ba
bi

lit
y

p=0.1

p=0.5

p=0.9

Figure 4.6 Binomial distribution. Number of trials (N) equals 10 for all distribu-
tions.

or simply by saying that we need a factor in front of the formula to make
sure the probabilities add up to 1.

The variance of the binomial is Np(1 − p). Like most discrete sampling
distributions (e.g. the binomial, Poisson, negative binomial), this variance
depends on the number of samples per trial N . When the number of samples
per trial increases the variance also increases, but the coefficient of variation
(
√

Np(1− p)/(Np) =
√

(1− p)/(Np)) decreases. The dependence on p(1−
p) means the binomial variance is small when p is close to 0 or 1 (and
therefore the values are scrunched up near 0 or N), and largest when p = 0.5.
The coefficient of variation, on the other hand, is largest for small p.

When N is large and p isn’t too close to 0 or 1 (i.e. when Np is large),
then the binomial distribution is approximately normal (Figure 4.16).

A binomial distribution with only one trial (N = 1) is called a Bernoulli
trial.

You should only use the binomial in fitting data when there is an upper
limit to the number of possible successes. When N is large and p is small, so
that the probability of getting N successes is small, the binomial approaches
the Poisson distribution, which is covered in the next section (Figure 4.16).

Examples: number of surviving individuals/nests out of an initial sample;
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number of infested/infected animals, fruits, etc. in a sample; number of a
particular class (haplotype, subspecies, etc.) in a larger population.

Summary:
range discrete, 0 ≤ x ≤ N

distribution
(
N
x

)
px(1− p)N−x

R dbinom, pbinom, qbinom, rbinom
parameters p [real, 0–1], probability of success [prob]

N [positive integer], number of trials [size]
mean Np
variance Np(1− p)
CV

√
(1− p)/(Np)

Conjugate prior Beta

4.6.1.2 Poisson

The Poisson distribution gives the distribution of the number of individuals,
arrivals, events, counts, etc., in a given time/space/unit of counting effort
if each event is independent of all the others. The most common definition
of the Poisson has only one parameter, the average density or arrival rate,
λ, which equals the expected number of counts in a sampling unit. An
alternative parameterization gives a density per unit sampling effort and
then specifies the mean as the product of the density per sampling effort r
times the sampling effort t, λ = rt. This parameterization emphasizes that
even when the population density is constant, you can change the Poisson
distribution of counts by sampling more extensively — for longer times or
over larger quadrats.

The Poisson distribution has no upper limit, although values much larger
than the mean value are highly improbable. This characteristic provides
a rule for choosing between the binomial and Poisson. If you expect to
observe a “ceiling” on the number of counts, you should use the binomial;
if you expect the number of counts to be effectively unlimited, even if it is
theoretically bounded (e.g. there can’t really be an infinite number of plants
in your sampling quadrat), use the Poisson.

The variance of the Poisson is equal to its mean. However, the coeffi-
cient of variation (CV=standard deviation/mean) decreases as the mean
increases, so in that sense the Poisson distribution becomes more regular
as the expected number of counts increases. The Poisson distribution only
makes sense for count data. Since the CV is unitless, it should not depend on
the units we use to express the data; since the CV of the Poisson is 1/

√
mean,

that means that if we used a Poisson distribution to describe data on mea-
sured lengths, we could reduce the CV by a factor of 10 by changing from
meters to centimeters (which would be silly).

For λ < 1 the Poisson’s mode is at zero. When the expected number of
counts gets large (e.g. λ > 10) the Poisson becomes approximately normal
(Figure 4.16).

Examples: number of seeds/seedlings falling in a gap; number of offspring
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Figure 4.7 Poisson distribution.
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produced in a season (although this might be better fit by a binomial if the
number of breeding attempts is fixed); number of prey caught per unit time.

Summary:
range discrete, non-negative integers (0 < x)
distribution e−λλn

n!

or e−rt(rt)n

n!
R dpois, ppois, qpois, rpois
parameters λ (real, positive), expected number per sample [lambda]

or r (real, positive), expected number per unit effort, area, time, etc. (arrival rate)
mean λ (or rt)
variance λ (or rt)
CV 1/

√
λ (or 1/

√
rt)

Conjugate prior Gamma

4.6.1.3 Negative binomial

Most introductions of the negative binomial distribution derive it from a se-
ries of independent binary (black/white, male/female, yes/no, heads/tails)
trials that all have the same probability of success, like the binomial dis-
tribution. Rather than count the number of successes obtained in a fixed
number of trials, which would result in a binomial distribution, the negative
binomial counts the number of failures before a predetermined number of
successes occurs.

This mechanistic description is only occasionally useful in ecological mod-
eling. Ecologists use the negative binomial because it is a discrete distri-
bution, like the Poisson or binomial, but its variance can be larger than its
mean (i.e. it can be overdispersed). Thus, it’s a good phenomenological de-
scription of a patchy or clustered distribution, one with more variance than
the Poisson.

The “ecological” parameterization of the negative binomial replaces the
parameters p (probability of success per trial) and n (number of successes
before you stop counting failures) with µ = n(1 − p)/p, the mean number
of failures expected (or of counts in a sample), and k, which is typically
called an overdispersion parameter. The overdispersion parameter measures
the amount of clustering, or aggregation, or heterogeneity, in the data. The
variance of the negative binomial distribution is µ+µ2/k, and so as k becomes
large the variance approaches the mean and the distribution approaches the
Poisson distribution. For k > 10, the negative binomial is hard to tell from
a Poisson distribution, but k is often less than 1 in ecological applications∗.

Specifically, you can get a negative binomial distribution as the result of
a Poisson sampling process where the rate λ itself varies. If the distribution

∗Beware of the word“overdispersion”, which is sometimes used with an opposite mean-
ing in spatial statistics, where it can mean“more regular than expected from a random dis-
tribution of points”. If you took quadrat samples from such an“overdispersed”population,
the distribution of counts would have variance less than the mean and be“underdispersed”
in the probability distribution sense (Brown and Bolker, 2004) (!)
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Figure 4.8 Negative binomial distribution. Mean µ = 2 in all cases.

of λ is a gamma distribution (p. 148) with shape parameter k and mean µ,
then the result will be a negative binomial distribution with mean µ and
overdispersion parameter k (May, 1978; Hilborn and Mangel, 1997). In this
case, the negative binomial reflects unmeasured (“random”) variability in the
population.

Negative binomial distributions can also result from a homogeneous birth-
death process, births and deaths (and immigrations) occurring at random
in continuous time. Samples from a population that starts from 0 at time
t = 0, with immigration rate i, birth rate b, and death rate d will be negative
binomially distributed with parameters µ = i/(b−d)(e(b−d)t−1) and k = i/b
(Bailey, 1964, p. 99).

Several different ecological processes can often generate the same probabil-
ity distribution. We can usually reason forward from knowledge of probable
mechanisms operating in the field to plausible distributions for modeling
data, but this many-to-one relationship suggests that it is unsafe to rea-
son backwards from probability distributions to particular mechanisms that
generate them.

Examples: essentially the same as the Poisson distribution, but allowing
for heterogeneity. Numbers of individuals per patch; distributions of num-
bers of parasites within individual hosts; number of seedlings in a gap, or
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per unit area, or per seed trap.
Summary:

range discrete, non-negative integers (x ≥ 0)
distribution (n+x−1)!

(n−1!)x! pn(1− p)x

or Γ(k+x)
Γ(k)x! (k/(k + µ))k(µ/(k + µ))x

R dnbinom, pnbinom, qnbinom, rnbinom
parameters p (0 < p < 1) probability per trial [prob]

or µ (real, positive) expected number of counts [mu]
n (positive integer) number of successes awaited [size]
or k (real, positive), overdispersion parameter [size]

(= shape parameter of underlying heterogeneity)
mean µ = n(1− p)/p
variance µ + µ2/k = n(1− p)/p2

CV
√

(1+µ/k)
µ = 1/

√
n(1− p)

Conjugate prior No simple conjugate prior (Bradlow et al., 2002)
R’s default coin-flipping (n =size, p =prob) parameterization. In order

to use the “ecological” (µ =mu, k =size) parameterization, you must name
the mu parameter explicitly (e.g. dnbinom(5,size=0.6,mu=1)).

4.6.1.4 Geometric

The geometric distribution is the number of trials (with a constant probabil-
ity of failure) until you get a single failure: it’s a special case of the negative
binomial, with k or n = 1.

Examples: number of successful/survived breeding seasons for a seasonally
reproducing organism. Lifespans measured in discrete units.

Summary:
range discrete, non-negative integers (0 < x)
distribution p(1− p)x

R dgeom, pgeom, qgeom, rgeom
parameters p (0 < p < 1) probability of “success” (death) [prob]
mean 1/p− 1
variance (1− p)/p2

CV 1/
√

1/(1− p)

4.6.2 Continuous distributions

4.6.2.1 Uniform distribution

The uniform distribution with limits a and b, denoted U(a, b), has a constant
probability density of 1/(b−a) for a ≤ x ≤ b and zero probability elsewhere.
The standard uniform, U(0, 1), is very commonly used as a building block
for other distributions, but is surprisingly rarely used in ecology otherwise.

Summary:
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Figure 4.9 Geometric distribution.



book May 21, 2007

146 CHAPTER 4

Value

P
ro

ba
bi

lit
y 

de
ns

ity

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0

U(0,1)

U(0.5,2.5)

Figure 4.10 Uniform distribution.

range a ≤ x ≤ b
distribution 1/(b− a)
R dunif, punif, qunif, runif
parameters minimum (a) and maximum (b) limits (real) [min, max]
mean (a + b)/2
variance (b− a)2/12
CV (b− a)/((a + b)

√
3)

4.6.2.2 Normal distribution

Normally distributed variables are everywhere, and most classical statistical
methods use this distribution. The explanation for the normal distribution’s
ubiquity is the Central Limit Theorem, which says that if you add a large
number of independent samples from the same distribution the distribution
of the sum will be approximately normal. “Large”, for practical purposes,
can mean as few as 5. The central limit theorem does not mean that “all
samples with large numbers are normal”. One obvious counterexample is
two different populations with different means that are lumped together,
leading to a distribution with two peaks (p. 156). Also, adding isn’t the
only way to combine samples: if you multiply independent samples from
the same distribution, you get a log-normal distribution instead of a normal
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Figure 4.11 Normal distribution

distribution (p. 153).
Many distributions (binomial, Poisson, negative binomial, gamma) be-

come approximately normal in some limit (Figure 4.16). You can usually
think about this as some form of “adding lots of things together”.

The normal distribution specifies the mean and variance separately, with
two parameters, which means that one often assumes constant variance (as
the mean changes), in contrast to the Poisson and binomial distribution
where the variance is a fixed function of the mean.

Examples: practically everything.
Summary:

range all real values
distribution 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
R dnorm, pnorm, qnorm, rnorm
parameters µ (real), mean [mean]

σ (real, positive), standard deviation [sd]
mean µ
variance σ2

CV σ/µ
Conjugate prior Normal (µ); Gamma (1/σ2)
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4.6.2.3 Gamma

The Gamma distribution is the distribution of waiting times until a certain
number of events take place. For example, Gamma(shape = 3, scale = 2)
is the distribution of the length of time (in days) you’d expect to have to
wait for 3 deaths in a population, given that the average survival time is
2 days (mortality rate is 1/2 per day). The mean waiting time is 6 days=(3
deaths/(1/2 death per day)). (While the gamma function (gamma in R: see
Appendix) is usually written with a capital Greek gamma, Γ, the Gamma
distribution (dgamma in R) is written out as Gamma.) Gamma distributions
with integer shape parameters are also called Erlang distributions. The
Gamma distribution is still defined for non-integer (positive) shape param-
eters, but the simple description given above breaks down: how can you
define the waiting time until 3.2 events take place?

For shape parameters ≤ 1, the Gamma has its mode at zero; for shape
parameter = 1, the Gamma is equivalent to the exponential (see below). For
shape parameter greater than 1, the Gamma has a peak (mode) at a value
greater than zero; as the shape parameter increases, the Gamma distribution
becomes more symmetrical and approaches the normal distribution. This
behavior makes sense if you think of the Gamma as the distribution of the
sum of independent, identically distributed waiting times, in which case it is
governed by the Central Limit Theorem.

The scale parameter (sometimes defined in terms of a rate parameter in-
stead, 1/scale) just adjusts the mean of the Gamma by adjusting the waiting
time per event; however, multiplying the waiting time by a constant to ad-
just its mean also changes the variance, so both the variance and the mean
depend on the scale parameter.

The Gamma distribution is less familiar than the normal, and new users
of the Gamma often find it annoying that in the standard parameterization
you can’t adjust the mean independently of the variance. You could define
a new set of parameters m (mean) and v (variance), with scale = v/m and
shape = m2/v — but then you would find (unlike the normal distribution)
the shape changing as you changed the variance. Nevertheless, the Gamma
is extremely useful; it solves the problem that many researchers face when
they have a continuous variable with “too much variance”, whose coefficient
of variation is greater than about 0.5. Modeling such data with a normal
distribution leads to unrealistic negative values, which then have to be dealt
with in some ad hoc way like truncating them or otherwise trying to ignore
them. The Gamma is often a more realistic alternative.

The Gamma is the continuous counterpart of the negative binomial, which
is the discrete distribution of a number of trials (rather than length of time)
until a certain number of events occur. Both the negative binomial and
Gamma distributions are often generalized, however, in ways that don’t nec-
essarily make sense according to their simple mechanistic descriptions (e.g.
a Gamma distribution with a shape parameter of 2.3 corresponds to the
distribution of waiting times until 2.3 events occur . . . ).
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Figure 4.12 Gamma distribution

The Gamma and negative binomial are both commonly used phenomeno-
logically, as skewed or overdispersed versions of the Poisson or normal dis-
tributions, rather than for their mechanistic descriptions. The Gamma is
less widely used than the negative binomial because the negative binomial
replaces the Poisson, which is restricted to a particular variance, while the
Gamma replaces the normal, which can have any variance. Thus you might
use the negative binomial for any discrete distribution with variance > mean,
while you wouldn’t need a Gamma distribution unless the distribution you
were trying to match was skewed to the right.

Summary:
range positive real values
R dgamma, pgamma, qgamma, rgamma
distribution 1

saΓ(a)x
a−1e−x/s

parameters s (real, positive), scale: length per event [scale]
or r (real, positive), rate = 1/s; rate at which events occur [rate]
a (real, positive), shape: number of events [shape]

mean as or a/r
variance as2 or a/r2

CV 1/
√

a
Examples: almost any environmental variable with a large variance where
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Figure 4.13 Exponential distribution.

negative values don’t make sense: nitrogen concentrations, light intensity,
etc..

4.6.2.4 Exponential

The exponential distribution (Figure 4.13) describes the distribution of wait-
ing times for a single event to happen, given that there is a constant proba-
bility per unit time that it will happen. It is the continuous counterpart of
the geometric distribution and a special case (for shape parameter=1) of the
Gamma distribution. It can be useful both mechanistically, as a distribution
of inter-event times or lifetimes, or phenomenologically, for any continuous
distribution that has highest probability for zero or small values.

Examples: times between events (bird sightings, rainfall, etc.); lifespans/survival
times; random samples of anything that decreases exponentially (e.g. light
levels in a forest canopy).

Summary:
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range positive real values
R dexp, pexp, qexp, rexp
density λe−λx

parameters λ (real, positive), rate: death/disappearance rate [rate]
mean 1/λ
variance 1/λ2

CV 1

4.6.2.5 Beta

The beta distribution, a continuous distribution closely related to the bi-
nomial distribution, completes our basic family of continuous distributions
(Figure 4.16). The beta distribution is the only standard continuous distri-
bution (besides the uniform distribution) with a finite range, from 0 to 1.
The beta distribution is the inferred distribution of the probability of success
in a binomial trial with a− 1 observed successes and b− 1 observed failures.
When a = b the distribution is symmetric around x = 0.5, when a < b the
peak shifts toward zero, and when a > b it shifts toward 1. With a = b = 1,
the distribution is U(0, 1). As a + b (equivalent to the total number of tri-
als+2) gets larger, the distribution becomes more peaked. For a or b less
than 1, the mechanistic description stops making sense (how can you have
fewer than zero trials?), but the distribution is still well-defined, and when
a and b are both between 0 and 1 it becomes U-shaped — it has peaks at
p = 0 and p = 1.

The beta distribution is obviously good for modeling probabilities or pro-
portions. It can also be useful for modeling continuous distributions with
peaks at both ends, although in some cases a discrete mixture model (p. 156)
may be more appropriate. The beta distribution is also useful whenever you
have to define a continuous distribution on a finite range, as it is the only
such standard continuous distribution. It’s easy to rescale the distribution
so that it applies over some other finite range instead of from 0 to 1: for
example, Tiwari et al. (2005) used the beta distribution to describe the dis-
tribution of turtles on a beach, so the range would extend from 0 to the
length of the beach.

Summary:
range real, 0 to 1
R dbeta, pbeta, qbeta, rbeta
density Γ(a+b)

Γ(a)Γ(b)x
a−1(1− x)b−1

parameters a (real, positive), shape 1: number of successes +1 [shape1]
b (real, positive), shape 2: number of failures +1 [shape2]

mean a/(a + b)
mode (a− 1)/(a + b− 2)
variance ab/((a + b)2)(a + b + 1)
CV

√
(b/a)/(a + b + 1)
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Figure 4.14 Beta distribution
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4.6.2.6 Lognormal

The lognormal falls outside the neat classification scheme we’ve been build-
ing so far; it is not the continuous analogue or limit of some discrete sampling
distribution (Figure 4.16)∗. Its mechanistic justification is like the normal
distribution (the Central Limit Theorem), but for the product of many in-
dependent, identical variates rather than their sum. Just as taking loga-
rithms converts products into sums, taking the logarithm of a lognormally
distributed variable—which might result from the product of independent
variables—converts it it into a normally distributed variable resulting from
the sum of the logarithms of those independent variables. The best example
of this mechanism is the distribution of the sizes of individuals or populations
that grow exponentially, with a per capita growth rate that varies randomly
over time. At each time step (daily, yearly, etc.), the current size is multiplied
by the randomly chosen growth increment, so the final size (when measured)
is the product of the initial size and all of the random growth increments.

One potentially puzzling aspect of the lognormal distribution is that its
mean is not what you might naively expect if you exponentiate a normal dis-
tribution with mean µ (i.e. eµ). Because of Jensen’s inequality, and because
the exponential function is an accelerating function, the mean of the lognor-
mal, eµ+σ2/2, is greater than eµ by an amount that depends on the variance
of the original normal distribution. When the variance is small relative to the
mean, the mean is approximately equal to eµ, and the lognormal itself looks
approximately normal (e.g. solid lines in Figure 4.15, with σ(log) = 0.2).
As with the Gamma distribution, the distribution also changes shape as the
variance increases, becoming more skewed.

The log-normal is also used phenomenologically in some of the same situ-
ations where a Gamma distribution also fits: continuous, positive distribu-
tions with long tails or variance much greater than the mean (McGill et al.,
2006). Like the distinction between a Michaelis-Menten and a saturating
exponential, you may not be able to tell the difference between a lognor-
mal and a Gamma without large amounts of data. Use the one that is more
convenient, or that corresponds to a more plausible mechanism for your data.

Examples: sizes or masses of individuals, especially rapidly growing indi-
viduals; abundance vs. frequency curves for plant communities.

Summary:

∗The lognormal extends our table in another direction — log-transformation of a
known distribution. Other distributions have this property, most notably the extreme
value distribution, which is the log-exponential: if Y is exponentially distributed, then
log Y is extreme-value distributed. As its name suggests, the extreme value distribution
occurs mechanistically as the distribution of extreme values (e.g. maxima) of samples of
other distributions (Katz et al., 2005).
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Figure 4.15 Lognormal distribution
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Figure 4.16 Relationships among probability distributions

range positive real values
R dlnorm, plnorm, qlnorm, rlnorm
density 1√

2πσx
e−(log x−µ)2/(2σ2)

parameters µ (real): mean of the logarithm [meanlog]
σ (real): standard deviation of the logarithm [sdlog]

mean exp(µ + σ2/2)
variance exp(2µ + σ2)(exp(σ2)− 1)
CV

√
exp(σ2)− 1 (≈ σ when σ < 1/2)

4.7 EXTENDING SIMPLE DISTRIBUTIONS; COMPOUNDING

AND GENERALIZING

What do you do when none of these simple distributions fits your data?
You could always explore other distributions. For example, the Weibull
distribution (similar to the Gamma distribution in shape: ?dweibull in R)
generalizes the exponential to allow for survival probabilities that increase
or decrease with age (p. 287). The Cauchy distribution (?dcauchy in R),
described as fat-tailed because the probability of extreme events (in the tails
of the distribution) is very large — larger than for the exponential or normal
distributions — can be useful for modeling distributions with many outliers.
You can often find useful distributions for your data in modeling papers from
your subfield of ecology.

However, in addition to simply learning more distributions it can also
useful to learn some strategies for generalizing more familiar distributions.



book May 21, 2007

156 CHAPTER 4

4.7.1 Adding covariates

One obvious strategy is to look for systematic differences within your data
that explain the non-standard shape of the distribution. For example, a bi-
modal or multimodal distribution (one with two or more peaks, in contrast to
most of the distributions discussed above that have a single peak) may make
perfect sense once you realize that your data are a collection of objects from
different populations with different means. [CITE Holling?] For example,
the sizes or masses of sexually dimorphic animals or animals from several
different cryptic species would bi- or multimodal distributions, respectively.
A distribution that isn’t multimodal but is more fat-tailed than a normal dis-
tribution might indicate systematic variation in a continuous covariate such
as nutrient availability, or maternal size, of environmental temperature, of
different individuals.

4.7.2 Mixture models

But what if you can’t identify systematic differences? You can still extend
standard distributions by supposing that your data are really a mixture of
observations from different types of individuals, but that you can’t observe
the (discrete) types or (continuous) covariates of individuals. These distri-
butions are called mixture distributions or mixture models. Fitting them to
data can be challenging, but they are very flexible.

4.7.2.1 Discrete mixtures

Discrete mixture models suppose that your observations are drawn from a
discrete set of unobserved categories, each of which has its own distribu-
tion: typically all categories have the same type of distribution, such as
normal, but with different mean or variance parameters. Discrete mixture
distributions often fit multimodal data. Discrete mixtures are typically pa-
rameterized by the parameters of each component of the mixture, plus a set
of probabilities or percentages describing the amount of each component.
For example, 30% of the organisms (p = 0.3) could be in group 1, normally
distributed with mean 1 and standard deviation 2, while 70% (1− p = 0.7)
are in group 2, normally distributed with mean 5 and standard deviation 1
(Figure 4.17). If the peaks of the distributions are closer together, or their
standard deviations are larger so that the distributions overlap, you’ll see a
broad (and perhaps lumpy) peak rather than two distinct peaks.

One common type of discrete mixture model is zero-inflated models (In-
ouye, 1999; Martin et al., 2005). Zero-inflated models (Figure 4.1). combine
a standard discrete probability distribution (e.g. binomial, Poisson, or neg-
ative binomial), which typically include some probability of sampling zero
counts even when some individuals are present, with some additional process
that can also lead to a zero count (e.g. complete absence of the species or
trap failure).
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Figure 4.17 Discrete mixture distribution: 70% Normal(µ = 1, σ = 2), 30%
Normal(µ = 5, σ = 1).
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4.7.3 Continuous mixtures

Continuous mixture distributions, also known as compounded distributions,
allow the parameters themselves to vary randomly, drawn from their own
distribution. They are a sensible choice for overdispersed data, or for data
where you suspect that unobserved covariates may be important. Techni-
cally, compounded distributions are the distribution of a sampling distribu-
tion S(x, p) with parameter(s) p that vary according to another (typically
continuous) distribution P (p). The distribution of the compounded distri-
bution C is C(x) =

∫
S(x, p)P (p)dp. For example, compounding a Poisson

distribution by drawing the rate parameter λ from a Gamma distribution
with shape parameter k (and scale parameter λ/k, to make the mean equal
to λ) results in a negative binomial distribution (p. 142). Continuous mix-
ture distributions are growing ever more popular in ecology as ecologists try
to account for heterogeneity in their data.

The negative binomial, which could also be called the Gamma-Poisson dis-
tribution to highlight its compound origin, is the most common compounded
distribution. The lognormal-Poisson is very similar to the negative binomial,
except that (as you may have guessed) it uses the lognormal instead of the
Gamma as a compounding distribution. One technical reason to use the
less common lognormal-Poisson is that on the log scale the rate parameter
is normally distributed, which simplifies some numerical procedures (Elston
et al., 2001).

Clark et al. (1999) used the Student t distribution to model seed dispersal
curves. Seeds often disperse fairly uniformly near parental trees but also have
a high probability of long dispersal. These two characteristics are incompat-
ible with standard seed dispersal models like the exponential and normal
distributions. Clark et al. assumed that the seed dispersal curve represents
a compounding of a normal distribution for the dispersal of any one seed
with an Gamma distribution of the inverse variance of the distribution of
any particular seed (i.e., 1/σ2 ∼ Gamma)∗. This variation in variance ac-
counts for the different distances that different seeds may travel as a function
of factors like their size, shape, height on the tree, and the wind speed at the
time they are released. Clark et al. used compounding to model these fac-
tors as random, unobserved covariates since they are practically impossible
to measure for all the individual seeds on a tree or in a forest.

The inverse Gamma-normal model is equivalent to the Student t distribu-
tion, which you may recognize from t tests in classical statistics and which
statisticians sometimes use as a phenomenological model for fat-tailed distri-
butions. Clark et al. extended the usual one-dimensional t distribution (?dt
in R) to the two-dimensional distribution of seeds around a parent and called
it the 2Dt distribution. The 2Dt distribution has a scale parameter that de-
termines the mean dispersal distance and a shape parameter p. When p is
large the underlying Gamma distribution has a small coefficient of variation

∗This choice of a compounding distribution, which may seem arbitrary, turns out to
be mathematically convenient.
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and the 2Dt distribution is close to normal; when p = 1 the 2Dt becomes a
Cauchy distribution.

Just as one can compound the Poisson distribution with a Gamma (pro-
ducing a negative binomial) to allow for heterogeneity in rates, one can
compound the binomial distribution with a beta distribution to allow for
heterogeneity in per-trial probability, producing a beta-binomial distribution
(?dbetabinom in the emdbook package Crowder, 1978; Reeve and Murdoch,
1985; Hatfield et al., 1996). The most common parameterization of the beta-
binomial distribution uses the binomial parameter N (trials per sample),
plus two additional parameters a and b that describe the beta distribution
of the per-trial probability. When a = b = 1 the per-trial probability is
equally likely to be any value between 0 and 1 (the mean is 0.5), and the
beta-binomial gives a uniform (discrete) distribution between 0 and N . As
a + b increases, the variance of the underlying heterogeneity decreases and
the beta-binomial converges to the binomial distribution. Morris (1997) sug-
gests a different parameterization that uses an overdispersion parameter θ,
like the k parameter of the negative binomial distribution. In this case the
parameters are N , the per-trial probability p (= a/(a + b)), and θ (= a + b).
When θ is large (small overdispersion), the beta-binomial becomes binomial.
When θ is near zero (large overdispersion), the beta-binomial becomes U-
shaped.

Generalized distributions are an alternative class of mixture distribution
that arises when there is a sampling distribution S(x) for the number of indi-
viduals within a cluster and another sampling distribution C(x) for number
of clusters in a sampling unit. For example, the distribution of number of
eggs per square might be generalized from the distribution of clutches per
square and of eggs per clutch. A standard example is the “Poisson-Poisson”
or “Neyman Type A” distribution (Pielou, 1977), which assumes a Poisson
distribution of clusters with a Poisson distribution of individuals in each.

Figuring out the probability distribution or density formulas for com-
pounded distributions analytically is mathematically challenging (see Bai-
ley (1964) or Pielou (1977) for the gory details), but R can easily generate
random numbers from these distributions (see the R supplement for more
detail).

The key is that R’s functions for generating random distributions (rpois,
rbinom, etc.) can take vectors for their parameters. Rather than gener-
ate (say) 20 deviates from a binomial distribution with N trials and and a
fixed per-trial probability p, you can choose 20 deviates with N trials and
a vector of 20 different per-trial probabilities p1 to p20. Furthermore, you
can generate this vector of parameters from another randomizing function!
For example, to generate 20 beta-binomial deviates with N = 10 and the
per-trial probabilities drawn from a beta distribution with a = 2 and b = 1,
you could use rbinom(20,rbeta(20,2,1)).

Compounding and generalizing are powerful ways to extend the range
of stochastic ecological models. A good fit to a compounded distribution
also suggests that environmental variation is shaping the variation in the
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population. But be careful: Pielou (1977) demonstrates that for Poisson
distributions, every generalized distribution (corresponding to variation in
the underlying density) can also be generated by a compound distribution
(corresponding to individuals occurring in clusters), and concludes that (p.
123) “the fitting of theoretical frequency distributions to observational data
can never by itself suffice to ‘explain’ the pattern of a natural population”.
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Figure 4.18 R functions for an arbitrary distribution dist, showing density func-
tion (ddist), cumulative distribution function (pdist), quantile func-
tion (qdist), and random-deviate function (rdist).

4.8 R SUPPLEMENT

For all of the probability distributions discussed in this chapter (and many
more: try help.search("distribution")), R can generate random num-
bers drawn from the distribution (“deviates”); compute the cumulative dis-
tribution function and the probability distribution function; and compute
the quantile function, which gives the x value such that

∫ x

0
P (x) dx (area

under the curve from 0 to x) is a specified value. For example, you can
obtain the critical values of the standard normal distribution, ±1.96, with
qnorm(0.025) and qnorm(0.975) (Figure 4.18).

4.8.1 Discrete distribution

For example, to explore the (discrete) negative binomial distribution (first
setting the random-number seed for consistency):

> set.seed(1001)

> z <- rnbinom(1000, mu = 10, size = 0.9)

Check the first few values:

> head(z)

[1] 41 3 3 0 11 14

Since the negative binomial has no set upper limit, we will just plot the
results up to the maximum value sampled:

> maxz <- max(z)

The easiest way to plot the results is:
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> f <- factor(z, levels = 0:maxz)

> plot(f)

using the levels specification to make sure that all values up to the maxi-
mum are included in the plot even when none were sampled in this particular
experiment.

If we want the observed probabilities (freq/N) rather than the frequencies:

> obsprobs <- table(f)/1000

> plot(obsprobs)

Add theoretical values:

> tvals <- dnbinom(0:maxz, size = 0.9, mu = 10)

> points(0:maxz, tvals)

You could plot the deviations with plot(0:maxz,obsprobs-tvals); this
gives you some idea how the variability changes with the mean.

Find the probability that x > 30:

> pnbinom(30, size = 0.9, mu = 10, lower.tail = FALSE)

[1] 0.05725252

By default R’s distribution functions will give you the lower tail of the dis-
tribution — the probability that x is less than or equal to some particular
value. You could use 1-pnbinom(30,size=0.9,mu=10) to get the uppper
tail since Prob(x > 30) = 1 − Prob(x ≤ 30), but using lower.tail=FALSE
to get the upper tail is more numerically accurate.

What is the upper 95th percentile of the distribution?

> qnbinom(0.95, size = 0.9, mu = 10)

[1] 32

To get the lower and upper 95% confidence limits, you need

> qnbinom(c(0.025, 0.975), size = 0.9, mu = 10)

[1] 0 40

You can also use the random sample z to check that the mean and variance,
and 95th quantile of the sample, agree reasonably well with the theoretical
expectations:

> mu <- 10

> k <- 0.9

> c(mu, mean(z))

[1] 10.000 9.654
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> c(mu * (1 + mu/k), var(z))

[1] 121.1111 113.6539

> c(qnbinom(0.95, size = k, mu = mu), quantile(z, 0.95))

95%
32 31

4.8.2 Continuous distribution: lognormal

Going through the same exercise for the lognormal, a continuous distribution:

> z <- rlnorm(1000, meanlog = 2, sdlog = 1)

Plot the results:

> hist(z, breaks = 100, freq = FALSE)

> lines(density(z, from = 0), lwd = 2)

Add theoretical values:

> curve(dlnorm(x, meanlog = 2, sdlog = 1), add = TRUE, lwd = 2,

+ from = 0, col = "darkgray")

The probability of x > 20, 95% confidence limits:

> plnorm(30, meanlog = 2, sdlog = 1, lower.tail = FALSE)

[1] 0.08057753

> qlnorm(c(0.025, 0.975), meanlog = 2, sdlog = 1)

[1] 1.040848 52.455437

Comparing the theoretical values given on p. 155 with the observed values
for this random sample:

> meanlog <- 2

> sdlog <- 1

> c(exp(meanlog + sdlog^2/2), mean(z))

[1] 12.18249 12.12708

> c(exp(2 * meanlog + sdlog^2) * (exp(sdlog^2) - 1), var(z))

[1] 255.0156 184.7721

> c(qlnorm(0.95, meanlog = meanlog, sdlog = sdlog), quantile(z,

+ 0.95))
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Distribution Type Range Skew Examples
Binomial Discrete 0, N any Number surviving, number killed
Poisson Discrete 0,∞ right → none Seeds per quadrat, settlers (vari-

ance/mean ≈ 1)
Negative binomial Discrete 0,∞ right Seeds per quadrat, settlers (vari-

ance/mean > 1)
Geometric Discrete 0,∞ right Discrete lifetimes
Normal Continuous −∞,∞ none Mass
Gamma Continuous 0,∞ right Survival time, distance to nearest

edge
Exponential Continuous 0,∞ right Survival time, distance to nearest

edge
Lognormal Continuous 0,∞ right Size, mass (exponential growth)

Table 4.1 Summary of probability distributions

95%
38.27717 39.65172

There is a fairly large difference between the expected and observed vari-
ance. This is typical: variances of random samples have larger variances,
or absolute differences from their theoretical expected values, than means of
random samples.

Sometimes it’s easier to deal with log-normal data by taking the logarithm
of the data and comparing them to the normal distribution:

> hist(log(z), freq = FALSE, breaks = 100)

> curve(dnorm(x, mean = meanlog, sd = sdlog), add = TRUE, lwd = 2)

4.8.3 Mixing and compounding distributions

4.8.3.1 Discrete mixture distributions

The general recipe for generating discrete mixtures is to use a uniform dis-
tribution to sample which of the components of the mixture to sample, then
use ifelse to pick values from one distribution or the other. To pick 1000
values from a mixture of normal distributions with the parameters shown in
Figure 4.17 (p = 0.3, µ1 = 1, σ1 = 2, µ2 = 5, σ2 = 1):

> u1 <- runif(1000)

> z <- ifelse(u1 < 0.3, rnorm(1000, mean = 1, sd = 2), rnorm(1000,

+ mean = 5, sd = 1))

> hist(z, breaks = 100, freq = FALSE)

Superimpose a theoretical probability density on the histogram:

> curve(0.3 * dnorm(x, mean = 1, sd = 2) + 0.7 * dnorm(x, mean = 5,

+ sd = 1), add = TRUE, lwd = 2)
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The general formula for the probability distribution of a zero-inflated dis-
tribution, with an underlying distribution P (x) and a zero-inflation proba-
bility of pz, is:

Prob(0)= pz + (1− pz)P (0)
Prob(x > 0) = (1− pz)P (x)

So, for example, we could define a probability distribution for a zero-inflated
negative binomial as follows:

> dzinbinom = function(x, mu, size, zprob) {

+ ifelse(x == 0, zprob + (1 - zprob) * dnbinom(0, mu = mu,

+ size = size), (1 - zprob) * dnbinom(x, mu = mu, size = size))

+ }

(the name, dzinbinom, follows the R convention for a probability distribution
function: a d followed by the abbreviated name of the distribution, in this
case zinbinom for “zero-inflated negative binomial”).

The ifelse command checks every element of x to see whether it is zero
or not and fills in the appropriate value depending on the answer.

Here’s a random deviate generator:

> rzinbinom = function(n, mu, size, zprob) {

+ ifelse(runif(n) < zprob, 0, rnbinom(n, mu = mu, size = size))

+ }

The command runif(n) picks n random values between 0 and 1; the ifelse
command compares them with the value of zprob. If an individual value
is less than zprob (which happens with probability zprob=pz), then the
corresponding random number is zero; otherwise it is a value picked out of
the appropriate negative binomial distribution.

4.8.3.2 Compounded distributions

Start by confirming numerically that a negative binomial distribution is re-
ally a compounded Poisson-Gamma distribution. Pick 1000 values out of a
Gamma distribution, then use those values as the λ (rate) parameters in a
random draw from a Poisson distribution:

> k <- 3

> mu <- 10

> lambda <- rgamma(1000, shape = k, scale = mu/k)

> z <- rpois(1000, lambda)

> P1 <- table(factor(z, levels = 0:max(z)))/1000

> plot(P1)

> P2 <- dnbinom(0:max(z), mu = 10, size = 3)

> points(0:max(z), P2)

Establish that a Poisson-lognormal and a Poisson-Gamma (negative bino-
mial) are not very different: pick the Poisson-lognormal with approximately
the same mean and variance as the negative binomial just shown.
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> mlog <- mean(log(lambda))

> sdlog <- sd(log(lambda))

> lambda2 <- rlnorm(1000, meanlog = mlog, sdlog = sdlog)

> z2 <- rpois(1000, lambda2)

> P3 <- table(factor(z2, levels = 0:max(z)))/1000

> matplot(0:max(z), cbind(P1, P3), pch = 1:2)

> lines(0:max(z), P2)
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5.1 SUMMARY

This chapter introduces techniques and ideas related to simulating ecological
patterns. Its main goals are: (1) to show you how to generate patterns you
can use to sharpen your intuition and test your estimation tools; and (2)
to introduce statistical power and related concepts, and show you how to
estimate statistical power by simulation. This chapter and the supplements
will also give you more practice working with R.

5.2 INTRODUCTION

Chapters 3 and 4, gave a basic overview of functions to describe determin-
istic patterns and probability distributions to describe stochastic patterns.
This chapter will show you how to use stochastic simulation to understand
and test your data. Simulation is sometimes called forward modeling, to em-
phasize that you pick a model and parameters and work forward to predict
patterns in the data. Parameter estimation, or inverse modeling (the main
focus of this book), starts from the data and works backward to choose a
model and estimate parameters.

Ecologists often use simulation to explore the patterns that emerge from
ecological models. Often they use theoretical models without accompanying
data, in order to understand qualitative patterns and plan future studies.
But even if you have data, models, but you might want to start by simu-
lating your system. You can use simulations to explore the functions and
distributions you chose to quantify your data. If you can choose parameters
that make the simulated output from those functions functions and distribu-
tions approximate your data, you can confirm that the models are reasonable
— and simultaneously find a rough estimate of the parameters.

You can also use simulated“data”from your system to test your estimation
procedures. Chapters 6–8 will show you how to estimate parameters; in this
chapter I’ll work with more “canned” procedures like nonlinear regression.
Since you never know the true answer to an ecological question — you only
have imperfect measurements with which you’re trying to get as close to the
answer as possible — simulation is the only way to test whether you can
correctly estimate the parameters of an ecological system. It’s always good
to test such a best-case scenario, where you know that the functions and
distributions you’re using are correct, before you proceed to real data.

Power analysis is a specific kind of simulation testing where you explore
how large a sample size you would need to get a reasonably precise esti-
mate of your parameters. You can also also use power analysis to explore
how variations in experimental design would change your ability to answer
ecological questions.
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Figure 5.1 Two simple simulations: a linear function with normal errors (Y ∼
Normal(a + bx, σ2)), and a hyperbolic function with negative binomial
errors (Y ∼ NegBin(µ = ab/(b + x), k)).

5.3 STOCHASTIC SIMULATION

Static ecological processes, where the data represent a snapshot of some
ecological system, are easy to simulate∗. For static data, we can use a sin-
gle function to simulate the deterministic process and then add heterogene-
ity. Often, however, we will chain together several different mathematical
functions and probability distributions representing different stages in an
ecological process to produce surprisingly complex and rich descriptions of
ecological systems.

I’ll start with three simple examples that illustrate the general procedure,
and then move on to two slightly more in-depth examples.

5.3.1 Simple examples

5.3.1.1 Single groups

Figure 5.1 shows the results of two simple simulations, each with a single
group and single continuous covariate.

The first simulation (Figure 5.1a) is a linear model with normally dis-
tributed errors. It might represent productivity as a function of nitrogen
concentration, or predation risk as a function of predator density. The math-
ematical formula is Y ∼ Normal(a + bx, σ2), specifying that Y is a random
variable drawn from a normal distribution with mean a + bx and variance
σ2. The symbol ∼ means “is distributed according to”. This model can
also be written as yi = a + bxi + εi, εi ∼ N(0, σ2), specifying that the ith

value of Y , yi, is equal to a + bxi plus a normally distributed error term
with mean zero. I will always use the first form because it is more general:

∗Dynamic processes are more challenging. See Chapter 11.
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normally distributed error is one of the few kinds that can simply be added
onto the deterministic model in this way. The two lines on the plot show
both the theoretical relationship between y and x and the best-fit line (by
linear regression, lm(y~x) (p. 9.2.1). The lines differ slightly because of the
randomness incorporated in the simulation.

A few lines of R code will run this simulation. Set up the values of x, and
specify values for the parameters a and b:

> x = 1:20

> a = 2

> b = 1

Calculate the deterministic part of the model:

> y_det = a + b * x

Pick 20 random normal deviates with the mean equal to the deterministic
equation and σ = 2:

> y = rnorm(20, mean = y_det, sd = 2)

(you could also specify this as y = y_det+rnorm(20,sd=2), corresponding
to the additive model yi = a + bxi + εi, εi ∼ N(0, σ2) (the mean parameter
is zero by default). However, the additive form works only for the Normal,
and not for most of the other distributions we will be using).

The second simulation uses hyperbolic functions (y = ab/(b + x)) with
negative binomial error: in symbols, Y ∼ NegBin(µ = ab/(b + x), k). The
function is parameterized so that a is the intercept term (when x = 0, y =
ab/b = a). This simulation might represent the decreasing fecundity of two
different species with increasing population density: the hyperbolic function
is a natural expression of the decreasing quantity of a limiting resource per
individual.

In this case, we cannot express the model as the deterministic function
“plus error”. Instead, we have to incorporate the deterministic model as
a control on one of the parameters of the error distribution—in this case,
the mean µ. (Although the negative binomial is a discrete distribution, its
parameters µ and k are continuous.) Ecological models typically describe
the differences in the mean among groups or as covariates change, but we
could also allow the variance or the shape of the distribution to change.

The R code for this simulation is easy, too. Define parameters

> a = 20

> b = 1

> k = 5

How you simulate the x values depends on the experimental design you are
trying to simulate. In this case, we choose 50 x values randomly distributed
between 0 and 5 to simulate a study were the samples are chosen from
natural varying sites, in contrast to the previous simulation where x varied
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systematically (x=1:20), simulating an experimental or observational study
that samples from a gradient in the predictor variable x.

> x = runif(50, min = 0, max = 5)

Now we calculate the deterministic mean y_det, and then sample negative
binomial values with the appropriate mean and overdispersion:

> y_det = a * b/(b + x)

> y = rnbinom(50, mu = y_det, size = k)

5.3.1.2 Multiple groups

Ecological studies typically compare the properties of organisms in different
groups (e.g. control and treatment, parasitized and unparasitized, high and
low altitude).

Figure 5.2 shows a simulation that extends the hyperbolic simulation above
to compares the effects of a continuous covariate in two different groups
(species in this case). Both groups have the same overdispersion parameter
k, but the hyperbolic parameters a and b differ:

Y ∼ NegBin(µ = aibi/(bi + x), k) (5.1)

where i is 1 or 2 depending on the species of an individual.
Suppose we still have 50 individuals, but the first 25 are species 1 and

the second 25 are species 2. We use rep to set up a factor that describes
the group structure (the R command gl is also useful for more complicated
group assignments):

> g = factor(rep(1:2, each = 25))

Defining vectors of parameters, each with one element per species, or a
single parameter for k since the species are equivalent in this case:

> a = c(20, 10)

> b = c(1, 2)

> k = 5

R’s vectorization makes it easy to incorporate different parameters for
different species into the formula, by using the group vector g to specify
which element of the parameter vectors to use for any particular individual.

> y_det = a[g]/(b[g] + x)

> y = rnbinom(50, mu = y_det, size = k)

5.3.2 Intermediate examples

5.3.2.1 Reef fish settlement

The wrasse settlement data from Schmitt et al. (1999) (p. 62) include random
variation in settlement density (the density of larvae arriving on a given
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anemone) and random variation in density-dependent recruitment (number
of settlers surviving for 6 months on an anemone).

To simulate the variation in settlement density I took random draws from
a zero-inflated negative binomial (p. 165), although a non-inflated binomial,
or even a geometric distribution (i.e. a negative binomial with k = 1) might
be sufficient to describe the data.

Schmitt et al. modeled density-dependent recruitment with a Beverton-
Holt curve (equivalents to the Michaelis-Menten function). I have simulated
this curve with binomial error (for survival of recruits) superimposed. The
model is

R ∼ Binom(N = S, p = a/(1 + (a/b)S)). (5.2)

(With the recruitment probability per settler p given as the hyperbolic
function a/(1 + (a/b)S), the mean number of recruits is Beverton-Holt:
Np = aS/(1 + (a/b)S).) The settlement density S is drawn from the zero-
inflated negative binomial distribution shown in Figure 5.3a.

Set up the parameters, including the number of samples (N):

> N = 603

> a = 0.696

> b = 9.79

> mu = 25.32

> zprob = 0.123

> k = 0.932

Define a function for the recruitment probability:

> recrprob = function(S) {

+ a/(1 + (a/b) * S)

+ }

Now simulate the number of settlers and the number of recruits, using
rzinbinom from the emdbook package:

> settlers = rzinbinom(N, mu = mu, size = k, zprob = zprob)

> recr = rbinom(N, prob = recrprob(settlers), size = settlers)

5.3.2.2 Pigweed distribution and fecundity

Pacala and Silander (1990) did a series of experiments quantifying the strength
and spatial scale of competition between the annual weeds velvetweed (Abu-
tilon theophrasti) and pigweed (Amaranthus retroflexus). They were inter-
ested in neighborhood competition among nearby plants. Local dispersal
of seeds changes the distribution of the number of neighbors per plant. If
plants were randomly distributed we would expect a Poisson distribution of
neighbors within a given distance, but if seeds have a limited dispersal range
so that plants are spatially aggregated, we expect a distribution with higher
variance (and a higher mean number of neighbors for a given overall plant
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Figure 5.4 Pigweed simulations. (a) Spatial pattern (Poisson cluster process).
(b) Distribution of number of neighbors within 2 m. (c) End-of-year
biomass, based on a hyperbolic function of crowding index with a
gamma error distribution. (d) Seed set, proportional to biomass with
a negative binomial error distribution.
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density) such as the negative binomial. Neighbors increase local competition
for nutrients, which in turn decreases plants’ growth rate, their biomass at
the end of the growing season, and their fecundity (seed set). Thus differ-
ences in dispersal and spatial patterning within and among species can in
theory change competitive outcomes Bolker et al. (2003), although Pacala
and Silander found that spatial structure had little effect in their system.

To explore the patterns of competition driven by local dispersal and crowd-
ing, we can simulate this spatial competitive process.

Let’s start by simulating a spatial distribution of plants in an L× L plot
(L = 30m below). We’ll use a Poisson cluster process, where mothers are
located randomly in space at points {xp, yp} (called a Poisson process in
spatial ecology), and their children are distributed nearby (only the children,
and not the mothers, are included in the final pattern). The simulation
includes N = 50 parents, for which we pick 50 x and 50 y values, each
uniformly distributed between 0 and L. The distance of each child from its
parent is exponentially distributed with rate=1/d (mean dispersal distance
d), and the direction is random — that is, uniformly distributed between 0
and 2π radians∗. I use a little bit of trigonometry to calculate the offspring
locations (Figure 5.4a).

The formal mathematical definition of the model for offspring location is:
parent locations xp, yp ∼ U(0, L)
distance from parent r ∼ Exp(0, 1/d)
dispersal angle θ ∼ U(0, 2π)
offspring x xc ∼ xp + r cos θ
offspring y yc ∼ yp + r sin θ.

In R, set up the parameters:

> set.seed(1001)

> L = 30

> nparents = 50

> offspr_per_parent = 10

> noffspr = nparents * offspr_per_parent

> dispdist = 2

Pick locations for the parents:

> parent_x = runif(nparents, min = 0, max = L)

> parent_y = runif(nparents, min = 0, max = L)

Pick angles and distances for dispersal:

> angle = runif(noffspr, min = 0, max = 2 * pi)

> dist = rexp(noffspr, 1/dispdist)

Add the offspring displacements to the parent coordinates (using rep(...,each=offspr_per_parent)):

∗R, like most computer languages, works in radians rather than degrees; to convert
from degrees to radians, multiply by 2π/360. Since R doesn’t understand Greek letters,
use pi to denote π: radians=degrees*2*pi/360.
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> offspr_x = rep(parent_x, each = offspr_per_parent) + cos(angle) *

+ dist

> offspr_y = rep(parent_y, each = offspr_per_parent) + sin(angle) *

+ dist

If you wanted to allow different numbers of offspring for each parent — for
example, drawn from a Poisson distribution — you could use offspr_per_parent=rpois(nparents,lambda)
and then rep(...,times=offspr_per_parent). Instead of specifying that
each parent’s coordinates should be repeated the same number of times,
you would be telling R to repeat each parent’s coordinates according to its
number of offspring.

Next we calculate the neighborhood density, or the number of individu-
als within 2 m of each plant (not counting itself). Figure 5.4(b) shows this
distribution, along with a fitted negative binomial distribution. This cal-
culation reduces the spatial pattern to a simpler non-spatial distribution of
crowding.

> pos <- cbind(offspr_x, offspr_y)

> ndist <- as.matrix(dist(pos, upper = TRUE, diag = TRUE))

> nbrcrowd = apply(ndist < 2, 1, sum) - 1

Next we use a relationship that Pacala and Silander found between end-
of-year mass (M) and competition index (C). They fitted this relationship
based on a competition index estimated as a function of the neighborhood
density of conspecific (pigweed) and heterospecific (velvetleaf) competitors,
C = 1+cppnp +cvpnv. For this example, I simply made up a proportionality
constant to match the observed range of competition indices. Pacala and
Silander found that biomass M ∼ Gamma(shape = m/(1 + C), scale = α),
with m = 2.3 and α = 0.49.

> ci = nbrcrowd * 3

> M = 2.3

> alpha = 0.49

> mass_det = M/(1 + ci)

> mass = rgamma(length(mass_det), scale = mass_det, shape = alpha)

Finally, we simulate seed set as a function of biomass, again using a rela-
tionship estimated by Pacala and Silander. Seed set is proportional to mass,
with negative binomial errors: S ∼ NegBin(µ = bM, k), with b = 271.6,
k = 0.569.

> b = 271.6

> k = 0.569

> seed_det = b * mass

> seed = rnbinom(length(seed_det), mu = seed_det, size = k)

Figure 5.4c shows both mass and (1+seed set) on a logarithmic scale, along
with dashed lines showing the 95% confidence limits of the theoretical dis-
tribution.
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The idea behind realistic static models is that they can link together simple
deterministic and stochastic models of each process in a chain of ecological
processes—in this case from spatial distribution to neighborhood crowding
to biomass to seed set. (Pacala and Silander actually went a step further and
computed the density-dependent survival probability. We could simulate this
using a standard model like survival ∼ Binom(N = 1, p = logistic(a + bC)),
where the logistic function allows the survival probability to be an increasing
function of competition index without letting it ever go above 1.)

Thus, although it’s hard to write down a simple function or distribution
that describes the relationship between competition index and the number
surviving, as shown here we can break the relationship down into stages in
the ecological process and use a simple model for each stage.

5.4 POWER ANALYSIS

Power analysis in the narrow sense means figuring out the (frequentist) sta-
tistical power, the probability of failing to reject the null hypothesis when it
is false (Figure 5.5). Power analysis is important, but the narrow frequentist
definition suffers from some of the problems that we are trying to move be-
yond by learning new statistical methods, such as a focus on p values and on
the “truth” of a particular null hypothesis. Thinking about power analysis
even in this narrow sense is already a vast improvement on the naive and
erroneous “the null hypothesis is false if p < 0.05 and true if p > 0.05” ap-
proach. However, we should really be considering a much broader question:
How do the quality and quantity of my data and the true proper-
ties (parameters) of my ecological system affect the quality of the
answers to my questions about ecological systems?

For any real experiment or observation situation, we don’t know what is
really going on (the “true” model or parameters), so we don’t have the in-
formation required to answer these questions from the data alone. But we
can approach them by analysis or simulation. Historically, questions about
statistical power could only be answered by sophisticated analyses, and only
for standard statistical models and experimental designs such as one-way
ANOVA or linear regression. Increases in computing power have extended
power analyses to many new areas, and R’s capability to run many repeated
stochastic simulations is a great help. Paradoxically, the mathematical dif-
ficulty of deriving power formulas is a great equalizer: since even research
statisticians typically use simulations to estimate power, it’s now possible
(by learning simulation, which is easier than learning advanced mathemati-
cal statistics) to work on an equal footing with even cutting-edge researchers.

The first part of the rather vague (but common-sense) question above is
about “quantity and quality of data and the true properties of the ecological
system”. These properties include:

� Number of data points (number of observations/sampling intensity)
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Figure 5.5 The frequentist definition of power. In the left-hand plot, the type I
(false positive) rate α is the area under the tails of the null hypothesis
H0; the type II error rate, β, is the area under the sampling distri-
bution of the alternative hypothesis (H1) between the tails of the null
hypothesis; thus the power 1−β is the gray area shown that lies above
the upper critical value of the null hypothesis curve. (There is also a
tiny area where H1 overlaps the lower tail of H0.) The right-hand plot
shows power as a function of effect size (distance between the means)
and standard deviation; the point shows the situation (effect size=2,
σ = 0.75) illustrated in the left figure.
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� Distribution of data (experimental design)

– Number of observations per site, number of sites

– Temporal and spatial extent (distance between the farthest sam-
ples, controlling the largest scale you can measure) and grain (dis-
tance between the closest samples, controlling the smallest scale
you can measure)

– Even or clustered distribution in space and/or time. Blocking.
Balance (i.e., equal or similar numbers of observations in each
treatment)

– Distribution of continuous covariates — mimicking the natural
distribution, or stratified to sample evenly across the natural
range of values, or artificially extended to a wider range

� Amount of variation (measurement/sampling error, demographic stochas-
ticity, environmental variation). Experimental control or quantifica-
tion of variation.

� Effect size (small or large), or the distance of the true parameter from
the null-hypothesis value.

These properties will determine how much information you can extract from
your data. Large data sets are better than smaller ones; balanced data sets
with wide ranges are better than unbalanced data sets with narrow ranges;
data sets with large extent (maximum spatial and/or temporal range) and
small grain (minimum distance between samples) are best; and larger effects
are obviously easier to detect and characterize. There are obvious tradeoffs
between effort (measured in person-hours or dollars) and the number of sam-
ples, and in how you allocate that effort. Would you prefer more information
about fewer samples, or less information about more? More observations at
fewer sites or fewer at more sites? Should you spend your effort increasing
extent or decreasing grain?

Subtler tradeoffs also affect the value of an experiment. For example, con-
trolling extraneous variation allows a more powerful answer to a statistical
question — but how do we know what is“extraneous”? Variation actually af-
fects the function of ecological systems (Jensen’s inequality: Ruel and Ayres,
1999). Measuring a plant in a constant laboratory environment may turn out
to answer the wrong question: we ultimately want to know how the plant
performs in the natural environment, not in the lab, and variability is an
important part of most environments. In contrast, performing “unrealistic”
manipulations like pushing population densities beyond their natural limits
may help to identify density-dependent processes that are real and impor-
tant but undetectable at ambient densities (Osenberg et al., 2002). There is
no simple answer to these questions, but they’re important to think about.

The quality of the answers we get from our analyses is as multifaceted as
the quality of the data. Precision specifies how finely you can estimate a



book May 21, 2007

180 CHAPTER 5

parameter — the number of significant digits, or the narrowness of the con-
fidence interval — while accuracy specifies how likely your answer is to be
correct. Accurate but imprecise answers are better than precise but inaccu-
rate ones: at least in this case you know that your answer is imprecise, rather
than having misleadingly precise but inaccurate answers. But you need both
precision and accuracy to understand and predict ecological systems.

More specifically, I will show how to estimate the following aspects of
precision and accuracy for the wrasse system:

� Bias (accuracy): bias is the expected difference between the estimate
and the true value of the parameter. If you run a large number of
simulations with a true value of d and estimate a value of d̂ for each
one, then the bias is E[d̂ − d]. Most simple statistical estimators are
unbiased, and so most of us have come to expect (wrongly) that sta-
tistical estimates are generally unbiased. Most statistical estimators
are indeed asymptotically unbiased, which means that in the limit of
a large amount of data they will give the right answer on average, but
a surprisingly large number of common estimators are biased (Poulin,
1996; Doak et al., 2005).

� Variance (precision): variance, or E[(d̂ − E[d̂])2], measures the vari-
ability of the point estimates (d̂) around their mean value. Just as
an accurate but imprecise answer is worthless, unbiased answers are
worthless if they have high variance. With low bias we know that we
get the right answer on average, but high variability means that any
particular estimate could be way off. With real data, we never know
which estimates are right and which are wrong.

� Confidence interval width (precision): the width of the confidence in-
tervals, either in absolute terms or as a proportion of the estimated
value, provides useful information on the precision of your estimate.
If the confidence interval is estimated correctly (see coverage, below)
then the confidence interval should be related to the variance among
estimates.

� Mean squared error (MSE: accuracy and precision) combines bias and
variance as (bias2+variance). It represents the total variation around
the true value, rather than the average estimated value (E[d − d̂])2 +
E[(d̂−E[d̂])2] = E[(d̂−d)2]. MSE gives an overall sense of the quality
of the estimator.

� Coverage (accuracy): when we sample data and estimate parameters,
we try to estimate the uncertainty in those parameters. Coverage de-
scribes how accurate those confidence intervals are, and (once again)
can only be estimated via simulation. If the confidence intervals (for
a given confidence level 1 − α) are dlow and dhigh, then the cover-
age describes the proportion or percentage of simulations in which the
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confidence intervals actually include the true value (Prob(dlow < d <
dhigh)). Ideally, the observed coverage should equal the nominal cov-
erage of 1 − α; values that are too high are pessimistic, overstating
the level of uncertainty, while values that are too low are optimistic.
(It often takes several hundred simulations to get a reasonably precise
estimate of the coverage, especially when estimating the coverage for
95% confidence intervals.)

� Power (precision): finally, the narrow-sense power gives the proba-
bility of correctly rejecting the null hypothesis, or in other words the
fraction of the times that the null-hypothesis value d0 will be included
in the confidence limits: (Prob(dlow < d0 < dhigh)). In frequentist
language, it is 1 − β, where β is the probability of making a type II
error.

H0 true H0 false
accept H0 1-α β
reject H0 α 1-β

Typically you specify an alternative hypothesis H1, a desired type I
error rate α, and a desired power (1−β) and then calculate the required
sample size, or calculate (1− β) as a function of sample size, for some
particular H1. When the effect size is zero (the difference between the
null and the alternate hypotheses is zero — i.e. the null hypothesis is
true), the power is undefined, but it approaches α∗ as the effect size
gets small (H1 → H0).
R has built-in functions for several standard cases (power of tests of
difference between means of two normal populations [power.t.test],
tests of difference in proportions, [power.prop.test], and one-way,
balanced ANOVA [power.anova.test])†. For more discussion of these
cases, or for other fairly straightforward examples, you can look in any
relatively advanced biometry book (e.g. Sokal and Rohlf (1995)), or
even find a calculator on the web (search for “statistical power cal-
culator”). For more complicated and ecologically realistic examples,
however, you’ll probably have to find the answer through simulation,
as demonstrated below.

5.4.1 Simple examples

5.4.1.1 Linear regression

Let’s start by estimating the statistical power of detecting the linear trend
in Figure 5.1a, as a function of sample size. In order to find out whether we

∗Not zero! even when the null hypothesis is true, we reject it a proportion α of the
time: thus we can expect to correctly reject the null hypothesis, even for very small effects,
with probability at least α.

†The Hmisc package, available on CRAN, has a few more power calculators.
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can reject the null hypothesis in a single “experiment”, we simulate a data
set with a given slope, intercept, and number of data points; run a linear
regression; extract the p-value; and see whether it is less than our specified
α criterion (usually 0.05). For example:

> y_det = a + b * x

> y = rnorm(N, mean = y_det, sd = sd)

> m = lm(y ~ x)

> coef(summary(m))["x", "Pr(>|t|)"]

[1] 0.003615899

Extracting p-values from R analyses can be tricky. In this case, the coeffi-
cients of the summary of the linear fit are a matrix including the standard
error, t statistic, and p-value for each parameter; I used matrix indexing to
pull out the specific value I wanted. More generally, you will have to use the
names and str commands to pick through the results of a test to find the
p-value.

In order to estimate the probability of successfully rejecting the null hy-
pothesis when it is false (the power), we have to repeat this procedure many
times and calculate the proportion of the time that we reject the null hy-
pothesis.

Specify the number of simulations to run (400 is a reasonable number if we
want to calculate a percentage — even 100 would do to get a crude estimate):

> nsim = 400

Set up a vector to hold the p-value for each simulation:

> pval = numeric(nsim)

Now repeat what we did above 400 times, each time saving the p-value in
the storage vector:

> for (i in 1:nsim) {

+ y_det = a + b * x

+ y = rnorm(N, mean = y_det, sd = sd)

+ m = lm(y ~ x)

+ pval[i] = coef(summary(m))["x", "Pr(>|t|)"]

+ }

Calculate the power:

> sum(pval < 0.05)/nsim

[1] 0.87

However, we don’t just want to know the power for a single experimental
design. Rather, we want to know how the power changes as we change some
aspect of the design such as the sample size or the variance. Thus we have to
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repeat the entire procedure above multiple times, each time changing some
parameter of the simulation such as the slope, or the error variance, or the
distribution of the x values. Coding this in R usually involves nested for
loops. For example:

> bvec = seq(-2, 2, by = 0.1)

> power.b = numeric(length(bvec))

> for (j in 1:length(bvec)) {

+ b = bvec[j]

+ for (i in 1:nsim) {

+ y_det = a + b * x

+ y = rnorm(N, mean = y_det, sd = sd)

+ m = lm(y ~ x)

+ pval[i] = coef(summary(m))["x", "Pr(>|t|)"]

+ }

+ power.b[j] = sum(pval < 0.05)/nsim

+ }

The results are qualitatively similar to the Figure 4b, although noisier.
The power equals α=0.05 when the slope is zero, rising to 0.8 for slope
≈ ±1.

You could repeat these calculations for a different set of parameters (e.g.
changing the sample size, or the number of parameters). If you were feeling
ambitious, you could calculate the power for many combinations of (e.g.)
slope and sample size, using yet another for loop; saving the results in a
matrix; and using contour or persp to plot the results.

5.4.1.2 Hyperbolic/negative binomial data

What about the power to detect the difference between the two groups shown
in Figure 5.1b with hyperbolic dependence on x, negative binomial errors,
and different intercepts and hyperbolic slopes?

In order to estimate the power of the analysis, we have to know how to
test statistically for a difference between the two groups. Jumping the gun
a little bit (this topic will be covered in much greater detail in Chapter 6),
we can define negative log-likelihood functions both for a null model that
assumes the intercept is the same for both groups as well as for a more
complex model that allows for differences in the intercept.

The mle2 command in the bbmle package lets us fit the parameters of
these models, and the anova command gives us a p-value for the difference
between the models (p. 235):

> m0 = mle2(y ~ dnbinom(mu = a * b * x/(b + x), size = k), start = list(a = 15,

+ b = 1, k = 5))

> m1 = mle2(y ~ dnbinom(mu = a * b * x/(b + x), size = k), parameters = list(a ~

+ g, b ~ g), start = list(a = 15, b = 1, k = 5))

> anova(m0, m1)[2, "Pr(>Chisq)"]
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Figure 5.6 Statistical power to detect differences between two hyperbolic functions
with intercepts a = {10, 20}, slopes b = {2, 1}, and negative binomial
k = 5, as a function of sample size. Sample size is plotted on a loga-
rithmic scale.

Without showing the details, we now run a for loop that simulates the
system above 200 times each for a range of sample sizes, uses anova to
calculate the p-values, and calculates the proportion of p-values < 0.05 for
each sample size. Figure 5.6 shows the results. For small sample sizes (< 20),
the power is abysmal (≈ 0.2−−0.4). Power then rises approximately linearly,
rising to acceptable levels (0.8 and up) for sample sizes of 50–100 and greater.
The variation in Figure 5.6 is due to stochastic variation. We could run
more simulations per sample size to reduce the variation, but it’s probably
unnecessary since all power analysis is approximate anyway.

5.4.1.3 Bias and variance in estimates of the negative binomial k parameter

For another simple example, one that demonstrates that there’s more to
life than p-values, consider the problem of estimating the k parameter of a
negative binomial distribution. Are standard estimators biased? How large
a sample do you need for a reasonably accurate estimate of aggregation?

Statisticians have long been aware that maximum likelihood estimates of
the negative binomial k and similar aggregation indices, while better than



book May 21, 2007

STOCHASTIC SIMULATION AND POWER ANALYSIS 185

simpler method of moments estimates (p. 138), are biased for small sample
sizes (Pieters et al., 1977; Piegorsch, 1990; Poulin, 1996; Lloyd-Smith, 2007).
While you could delve into the statistical literature on this topic and even find
special-purpose estimators that reduce the bias (Saha and Paul, 2005), it’s
empowering to be able to explore the problem yourself through simulation.

We can generate negative binomial samples with rnbinom, and the fitdistr
command from the MASS package is a convenient way to estimate the param-
eters. fitdistr finds maximum likelihood estimates, which generally have
good properties — but are not infallible, as we will see shortly. For a single
sample:

> x = rnbinom(100, mu = 1, size = 0.5)

> f = fitdistr(x, "negative binomial")

> f

size mu
0.21908756 1.05996103
(0.05712932) (0.24875054)

(the standard deviations of the parameter estimates are given in parenthe-
ses). You can see that for this example the value of k (size) is underesti-
mated relative to the true value of 0.5 — but how do the estimates behave
in general?

In order to dig the particular values we want (estimated k and stan-
dard deviation of the estimate) out of the object that fitdistr returns,
we have to use str(f) to examine its internal structure. It turns out that
f$estimate["size"] and f$sd["size"] are the numbers we want.

Set up a vector of sample sizes (lseq is a function from the emdbook
package that generates a logarithmically spaced sequence) and set aside space
for the estimated k and its standard deviation:

> Nvec = round(lseq(20, 500, length = 100))

> estk = numeric(length(Nvec))

> estksd = numeric(length(Nvec))

Now pick samples and estimate the parameters:

> set.seed(1001)

> for (i in 1:length(Nvec)) {

+ N = Nvec[i]

+ x = rnbinom(N, mu = 1, size = 0.5)

+ f = fitdistr(x, "negative binomial")

+ estk[i] = f$estimate["size"]

+ estksd[i] = f$sd["size"]

+ }

Figure 5.7 shows the results: the estimate is indeed biased, and highly
variable, for small sample sizes. For sample sizes below about 100, the
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Figure 5.7 Estimates of negative binomial k with increasing sample size. In left-
hand figure, solid line is a loess fit. Horizontal dashed line is the true
value. The y axis in the right-hand figure is logarithmic.

estimate k is biased upward by about 20% on average. The coefficient of
variation (standard deviation divided by the mean) is similarly greater than
0.2 for sample sizes less than 100.

5.4.2 Detecting under- and overcompensation in fish data

Finally, we will explore a more extended and complex example — the diffi-
culty of estimating the exponent d in the Shepherd function, R = aS/(1 +
(a/b)Sd) ((Figure 5.5c). This parameter controls whether the Shepherd func-
tion is undercompensating (d < 1: recruitment increases indefinitely as the
number of settlers grows), saturating (d = 1: recruitment reaches an asymp-
tote), or overcompensating (d > 1: recruitment decreases at high settle-
ment). Schmitt et al. (1999) set d = 1 in part because d is very hard to
estimate reliably — we are about to see just how hard.

You can use the simulation approach described above to generate sim-
ulated “data sets” of different sizes whose characteristics matched Schmitt
et al.’s data: a zero-inflated negative binomial distribution of numbers of
settlers and a Shepherd-function relationship (with a specified value of d)
between the number of settlers and the number of recruits. For each simu-
lated data set, use R’s nls function to estimate the values of the parameters
by nonlinear least squares ∗. Then calculate the confidence limits on d (using
confint) and record the estimated value of the parameter and the lower and
upper confidence limits.

Figure 5.8 shows the point estimates (d̂) and 95% confidence limits (dlow,
dhigh) for the first 20 out of 400 simulations with 1000 simulated observa-
tions and a true value of d = 1.2. The figure also illustrates several of the

∗Non-linear least-squares fitting assumes constant, normally distributed error, ignoring
the fact that the data are really binomially distributed. Chapter 7 will present more
sophisticated maximum likelihood approaches to this problem.
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Figure 5.8 Simulations and power/coverage. Points and error bars show point
estimates (d̂) and 95% confidence limits (dlow, dhigh) for the first 20

out of 400 simulations with a true value of d = 1.2 and 1000 samples.
Horizontal lines show the mean value of d̂, E[d̂] =1.204; the true value
for this set of simulations, d = 1.2; and the null value, d0 = 1. The
left-hand density in the figure represents the distribution of d̂ for all 400
simulations. The right-hand density represents the distribution of the
lower confidence limit, dlow. The distance between d (solid horizontal

line) and E[d̂] (short-dashed horizontal line) shows the bias. The error
bar showing the standard deviation of d̂, σd̂, shows the square root of

the variance of d̂. The coverage is the proportion of lower confidence
limits that fall below the true value, area b + c in the lower-bound
density. The power is the proportion of lower confidence limits that
fall above the null value, area a + b in the lower-bound density. For
simplicity, I have omitted the distribution of the upper bounds dhigh.
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summary statistics discussed above: bias, variance, power, and coverage (see
the caption for details).

For this particular case (n = 1000, d = 1.2) I can compute the bias
(0.0039), variance (0.003, or σd̂ = 0.059), mean-squared-error (0.003), cover-
age (0.921), and power (0.986). With 1000 observations, things look pretty
good, but 1000 observations is a lot and d = 1.2 represents a lot of overcom-
pensation. The real value of power analyses comes when we compare the
quality of estimates across a range of sample sizes and effect sizes.

Figure 5.9 gives a gloomier picture, showing the bias, precision, coverage,
and power for a range of d values from 0.7 to 1.3 and a range of sample sizes
from 50 to 2000. It takes sample sizes of at least 500 to obtain reasonably
unbiased estimates with adequate precision, and even then the coverage may
be low if d < 1.0 and the power low if d is close to 1 (0.9 ≤ d ≤ 1.1). Because
of the upward bias in d at low sample sizes, the calculated power is actually
higher at very low sample sizes, but this is not particularly comforting. The
power of the analysis slightly better for overcompensation than undercom-
pensation. The relatively low power values are as expected from Fig. 5.9b,
which shows wide confidence intervals. Low power would also be predictable
from the high variance of the estimates, which I didn’t even bother to show
in Fig. 5.9a because they obscured the figure too much.

Another use for our simulations is to take a first look at the tradeoffs
involved in adding complexity to models. Figure 5.10 shows estimates of
b, the asymptote if d = 1, for different sample sizes and values of d. If
d = 1, then the Shepherd model reduces to the Beverton-Holt model. In
this case, you might think that it wouldn’t matter whether you used the
Shepherd or the Beverton-Holt model to estimate the b parameter, but there
are serious disadvantages to the Shepherd function. First, even when d = 1,
the Shepherd estimate of d is biased upwards for low sample sizes, leading to
a severe upward bias in the estimate of b. Second, not shown on the graph
because it would have obscured everything else, the variance of the Shepherd
estimate is far higher than the variance of the Beverton-Holt estimate (e.g.
for a sample size of 200, the Beverton-Holt estimate is 9.83 ± 0.78 (s.d.),
while the Shepherd estimate is 14.16 ± 13.94 (s.d.)).

On the other hand, if d is not equal to 1, the bias in the Beverton-Holt
estimate of b is large and more or less independent of sample size. For
reasonable sample sizes, if d = 0.9 the Beverton-Holt estimate is biased
upward by 6; if d = 1.1 it is biased downward by 3.79. Since the Beverton-
Holt model isn’t flexible enough to account for the changes in shape caused
by d, it has to modify b in order to compensate.

This general phenomenon is called the bias–variance tradeoff (see p. 233):
more complex models in general reduce bias at the price of increased vari-
ance. (The small-sample bias of the Shepherd is a separate, and slightly less
general, phenomenon.)

Because it is fundamentally difficult to estimate parameters or test hy-
potheses with noisy data, and most ecological data sets are noisy, power
analyses are often depressing. On the other hand, even if things are bad,
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Figure 5.9 Summaries of statistical accuracy, precision, and power for extimating
the Shepherd exponent d, for a range of d values from undercompen-
sation, d = 0.7 (line marked “7”) to overcompensation d = 1.3 (line
marked “3”). (a) Estimated d: the estimates are strongly biased up-
wards for sample sizes less than 500, especially for undercompensation
(d < 1). (b) Confidence interval width: the confidence intervals are
large (> 0.4) for sample sizes smaller than about 500, for any value of
d. (c) Coverage of the nominal 95% confidence intervals is adequate for
large sample size (> 250) and overcompensation (d > 1), but poor even
for large sample sizes when d < 1. (d) For statistical power (1 − β) of
at least 0.8, sample sizes of 500–1000 are required if d ≤ 0.7 or d ≥ 1.2;
sample sizes of 1000 if d = 0.8; and sample sizes of at least 2000 if
d = 0.9 or d = 1.1. When d = 1.0 (“0” line), the probability of rejecting
the null hypothesis is a little above the nominal value of α = 0.05.
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it’s better to know how bad they are than just to guess; knowing how much
you really know is important. In addition, there are design decisions you
can make (e.g. number of treatments vs number of replicates per treatment)
that optimize power given the constraints of time and money.

Remember that systematic biases, pseudo-replication, etc. — factors that
are rarely accounted for in your experimental design or in your power anal-
ysis – are often far more important than the fussy details of your statistical
design. While you should quantify the power of your experiment to make
sure it has a reasonable of success, thoughtful experimental design (e.g. mea-
suring and statistically accounting for covariates such as mass, rainfall, etc.;
pairing control and treatment samples; or expanding the range of covariates
tested) will make a much bigger difference than tweaking the details of your
experiment to squeeze out a little bit more statistical power.
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Likelihood and all that
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6.1 SUMMARY

This chapter presents the basic concepts and methods you need in order to
estimate parameters, establish confidence limits, and choose among compet-
ing hypotheses and models. It defines likelihood and discusses frequentist,
Bayesian, and information-theoretic inference based on likelihood.

6.2 INTRODUCTION

Previous chapters have introduced all the ingredients you need to define a
model — mathematical functions to describe the deterministic patterns and
probability distributions to describe the stochastic patterns — and shown
how to use these ingredients to simulate simple ecological systems. However,
you need to learn not only how to construct models but also how to estimate
parameters from data, and how to test models against each other. You may
be wondering by now how one actually does this.

In general, to estimate the parameters of a model we have to find the
parameters that make that model fit the data best. To compare among
models we have to figure out which one fits the data best, and decide if
one or more models fit sufficiently much better than the rest that we can
declare them the winners. Our goodness-of-fit metrics will be based on the
likelihood, the probability of seeing the data we actually collected given a
particular model — which in this case will mean both the general form of
the model and the specific parameter values.

6.3 PARAMETER ESTIMATION: SINGLE DISTRIBUTIONS

Parameter estimation is simplest when we have a a collection of independent
data that are drawn from a distribution (e.g. Poisson, binomial, normal),
with the same parameters for all observations. As an example with discrete
data, we will select one particular case out of Vonesh’s tadpole predation data
(p. 58) — small tadpoles at a density of 10 — and estimate the parameters
of a binomial distribution (each individual’s probability of being eaten by a
predator). As an example with continuous data, we will introduce a new data
set on myxomatosis virus concentration in experimentally infected rabbits
(?Myxo in the emdbook package: Fenner et al., 1956; Dwyer et al., 1990).
Although the titer actually changes systematically over time, we will gloss
over that problem for now and pretend that all the measurements are drawn
from the same distribution so that we can estimate the parameters of a
Gamma distribution that describes the variation in titer among different
rabbits.
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6.3.1 Maximum likelihood

We want the maximum likelihood estimates of the parameters — those pa-
rameter values that make the observed data most likely to have happened.
Since the observations are independent, the joint likelihood of the whole data
set is the product of the likelihoods of each individual observation. Since the
observations are identically distributed, we can write the likelihood as a
product of similar terms. For mathematical convenience, we almost always
maximize the logarithm of the likelihood (log-likelihood) instead of the like-
lihood itself. Since the logarithm is a monotonically increasing function, the
maximum log-likelihood estimate is the same as the maximum likelihood es-
timate. Actually, it is conventional to minimize the negative log-likelihood
rather than maximizing the log-likelihood. For continuous probability dis-
tributions, we compute the probability density of observing the data rather
than the probability itself. Since we are interested in relative (log)likelihoods,
not the absolute probability of observing the data, we can ignore the distinc-
tion between the density (P (x)) and the probability (which includes a term
for the measurement precision: P (x) dx).

6.3.1.1 Tadpole predation data: binomial likelihood

For a single observation from the binomial distribution (e.g. the number
of small tadpoles killed by predators in a single tank at a density of 10),
the likelihood that k out of N individuals are eaten as a function of the per
capita predation probability p is Prob(k|p, N) =

(
N
k

)
pk(1 − p)N−k. If we

have n observations, each with the same total number of tadpoles N , and
the number of tadpoles killed in the ith observation is ki, then the likelihood
is

L =
n∏

i=1

(
N

ki

)
pki(1− p)N−ki . (6.1)

The log-likelihood is

L =
n∑

i=1

(
log
(

N

ki

)
+ ki log p + (N − ki) log(1− p)

)
. (6.2)

In R, this would be sum(dbinom(k,size=N,prob=p,log=TRUE)).

Analytical approach

In this simple case, we can actually solve the problem analytically, by differ-
entiating with respect to p and setting the derivative to zero. Let p̂ be the
maximum likelihood estimate, the value of p that satisfies

dL

dp
=

d
∑n

i=1

(
log
(

N
ki

)
+ ki log p + (N − ki) log(1− p)

)
dp

= 0. (6.3)

Since the derivative of a sum equals the sum of the derivatives,
n∑

i=1

d log
(

N
ki

)
dp

+
n∑

i=1

dki log p

dp
+

n∑
i=1

d(N − ki) log(1− p)
dp

= 0 (6.4)
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The term log
(

N
ki

)
is a constant with respect to p, so its derivative is zero and

the first term disappears. Since ki and (N − ki) are constant factors they
come out of the derivatives and the equation becomes

n∑
i=1

ki
d log p

dp
+

n∑
i=1

(N − ki)
d log(1− p)

dp
= 0. (6.5)

The derivative of log p is 1/p, so the chain rule says the derivative of log(1−p)
is d(log(1 − p))/d(1 − p) · d(1 − p)/dp = −1/(1 − p). We will denote the
particular value of p we’re looking for as p̂. So

1
p̂

n∑
i=1

ki −
1

1− p̂

n∑
i=1

(N − ki) = 0

1
p̂

n∑
i=1

ki =
1

1− p̂

n∑
i=1

(N − ki)

(1− p̂)
n∑

i=1

ki = p̂

n∑
i=1

(N − ki)

n∑
i=1

ki = p̂

(
n∑

i=1

ki +
n∑

i=1

(N − ki)

)
= p̂

n∑
i=1

N

n∑
i=1

ki = p̂nN

p̂ =
∑n

i=1 ki

nN
(6.6)

So the maximum-likelihood estimate, p̂, is just the overall fraction of tadpoles
eaten, lumping all the observations together: a total of

∑
ki tadpoles were

eaten out of a total of nN tadpoles exposed in all of the observations.
We seem to have gone to a lot of effort to prove the obvious, that the best

estimate of the per capita predation probability is the observed frequency of
predation. Other simple distributions like the Poisson behave similarly. If we
differentiate the likelihood, or the log-likelihood, and solve for the maximum
likelihood estimate, we get a sensible answer. For the Poisson, the estimate
of the rate parameter λ̂ is equal to the mean number of counts observed
per sample. For the normal distribution, with two parameters µ and σ2,
we have to compute the partial derivatives of the likelihood with respect
to both parameters and solve the two equations simultaneously (∂L/∂µ =
∂L/∂σ2 = 0). The answer is again obvious in hindsight: µ̂ = x̄ (the estimate
of the mean is the observed mean) and σ̂2 =

∑
(xi − x̄)2/n (the estimate of

the variance is the variance of the sample∗.).
For some simple distributions like the negative binomial, and for all the

complex problems we will be dealing with hereafter, there is no easy analyt-
ical solution and we have to find the maximum likelihood estimates of the

∗Maximum likelihood estimation actually gives a biased estimate of the variance,
dividing the sum of squares

P
(xi − x̄)2 by n instead of n− 1.
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Figure 6.1 Likelihood curves for a simple distribution: binomial-distributed pre-
dation.

parameters numerically. The point of the algebra here is just to convince
you that maximum likelihood estimation makes sense in simple cases.

Numerics

This chapter presents the basic process of computing and maximizing like-
lihoods (or minimizing negative log-likelihoods in R; Chapter 7 will go into
much more detail on the technical details. First, you need to define a function
that calculates the negative log-likelihood for a particular set of parameters.
Here’s the R code for a binomial negative log-likelihood function:

> binomNLL1 = function(p, k, N) {

+ -sum(dbinom(k, prob = p, size = N, log = TRUE))

+ }

The dbinom function calculates the binomial likelihood for a specified data
set (vector of number of successes) k, probability p, and number of trials
N; the log=TRUE option gives the log-probability instead of the probability
(more accurately than taking the log of the product of the probabilities);
-sum adds the log-likelihoods and changes the sign to get an overall negative
log-likelihood for the data set.

Load the data and extract the subset we plan to work with:

> data(ReedfrogPred)

> x = subset(ReedfrogPred, pred == "pred" & density ==

+ 10 & size == "small")

> k = x$surv

We can use the optim function to numerically optimize (by default, min-
imizing rather than maximizing) this function. You need to give optim the
objective function — the function you want to minimize (binomNLL1 in this
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case) — and a vector of starting parameters. You can also give it other
information, such as a data set, to be passed on to the objective function.
The starting parameters don’t have to be very accurate (if we had accurate
estimates already we wouldn’t need optim), but they do have to be reason-
able. That’s why we spent so much time in Chapters 3 and 4 on eyeballing
curves and the method of moments.

> O1 = optim(fn = binomNLL1, par = c(p = 0.5), N = 10,

+ k = k, method = "BFGS")

fn is the argument that specifies the objective function and par specifies
the vector of starting parameters. Using c(p=0.5) names the parameter p
— probably not necessary here but very useful for keeping track when you
start fitting models with more parameters. The rest of the command specifies
other parameters and data and optimization details; Chapter 7 explains why
you should use method="BFGS" for a single-parameter fit.

Check the estimated parameter value and the maximum likelihood — we
need to change sign and exponentiate the minimum negative log-likelihood
that optim returns to get the maximum log-likelihood:

> O1$par

p
0.7499998

> exp(-O1$value)

[1] 0.0005150149

The mle2 function in the emdbook provides a “wrapper” for optim that
gives prettier output and makes standard tasks easier∗. Unlike optim, which
is designed for general-purpose optimization, mle2 assumes that the objective
function is a negative log-likelihood function. The names of the arguments
are easier to understand: minuslogl instead of fn for the negative log-
likelihood function, start instead of par for the starting parameters, and
data for additional parameters and data.

> library(bbmle)

> m1 = mle2(minuslogl = binomNLL1, start = list(p = 0.5),

+ data = list(N = 10, k = k))

> m1

Call:
mle2(minuslogl = binomNLL1, start = list(p = 0.5), data = list(N = 10,

k = k))

∗Why mle2? There is an mle function in the stats4 package that comes with R, but
I added some features — and then renamed it to avoid confusion with the original R
function.
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Coefficients:
p

0.7499998

Log-likelihood: -7.57

The mle2 package has a shortcut for simple likelihood functions. Instead of
writing an R function to compute the negative log-likehood, you can specify
a formula:

> mle2(k ~ dbinom(prob = p, size = 10), start = list(p = 0.5))

Call:
mle2(minuslogl = k ~ dbinom(prob = p, size = 10), start = list(p = 0.5))

Coefficients:
p

0.7499998

Log-likelihood: -7.57

R assumes that the variable on the left-hand side of the formula is the re-
sponse variable (k in this case) and that you want to sum the negative
log-likelihood of the expression on the right-hand side for all values of the
response variable.

One final option for finding maximum likelihood estimates for data drawn
from most simple distributions — although not for the binomial distribution
— is the fitdistr command in the MASS package, which will even guess
reasonable starting values for you. However, it only works in the very sim-
ple case where none of the parameters of the distribution depend on other
covariates.

The estimated value of the per capita predation probability, 0.749999803579446,
is very close to the analytic solution of 0.75. The estimated value of the max-
imum likelihood (Figure 6.1) is quite small (L =5.150× 10−4). That is, the
probability of this particular outcome is low∗. In general, however, we will
only be interested in the relative likelihoods (or log-likelihoods) of different
parameters and models rather than their absolute likelihoods.

Having fitted a model to the data (even a very simple one), it’s worth
plotting the predictions of the model. In this case the data set is so small
(4 points) that sampling variability dominates the plot (Figure 6.1b).

∗I randomly simulated 1000 samples of four values drawn from the binomial distri-
bution with p = 0.75, N = 10. The maximum likelihood was smaller than the observed
value given in the text 26% of the time. Thus, although it is small this likelihood is not
significantly lower than would be expected by chance.
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6.3.1.2 Myxomatosis data: Gamma likelihood

As part of the effort to use myxomatosis as a biocontrol agent against in-
troduced European rabbits in Australia, Fenner and co-workers studied the
virus concentrations (titer) in the skin of rabbits that had been infected with
different virus strains (Fenner et al., 1956). We’ll choose a Gamma distribu-
tion to model these continuously distributed, positive data†. For the sake of
illustration, we’ll use just the data for one viral strain (grade 1).

> data(MyxoTiter_sum)

> myxdat = subset(MyxoTiter_sum, grade == 1)

The likelihood equation for Gamma-distributed data is hard to maximize
analytically, so we’ll go straight to a numerical solution. The negative log-
likelihood function looks just very much like the one for binomial data∗.

> gammaNLL1 = function(shape, scale) {

+ -sum(dgamma(myxdat$titer, shape = shape, scale = scale,

+ log = TRUE))

+ }

It’s harder to find starting parameters for the Gamma distribution. We
can use the method of moments (Chapter 4) to determine reasonable start-
ing values for the scale (=variance/mean=coefficient of variation [CV]) and
shape(=variance/mean2=mean/CV) parameters†.

> gm = mean(myxdat$titer)

> cv = var(myxdat$titer)/mean(myxdat$titer)

Now fit the data:

> m3 = mle2(gammaNLL1, start = list(shape = gm/cv,

+ scale = cv))

> m3

Call:
mle2(minuslogl = gammaNLL1, start = list(shape = 45.8, scale = 0.151))

Coefficients:
shape scale

†We could also use a log-normal distribution or (since the minimum values are far
from zero and the distributions are reasonably symmetric) a normal distribution.

∗optim insists that you specify all of the parameters packed into a single numeric
vector in your negative log-likelihood function. mle prefers the parameters as a list. mle2

will accept either a list, or, if you use parnames to specify the parameter names, a numeric
vector (p. 209)

†Because the estimates of the shape and scale are very strongly correlated in this
case, I ended up having to tweak the starting conditions slightly away from the method
of moments estimates, to {45.8,0.151}.
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49.3421124 0.1403326

Log-likelihood: -37.67

I could also use the formula interface,

> m3 = mle2(myxdat$titer ~ dgamma(shape, scale = scale),

+ start = list(shape = gm/cv, scale = cv))

(Since the default parameterization of the Gamma distribution in R uses the
rate parameter instead of the scale parameter, I have to make sure to specify
the scale parameter explicitly.) or fitdistr from the MASS package:

> f1 = fitdistr(myxdat$titer, "gamma")

fitdistr gives slightly different values for the parameters and the likelihood,
but not different enough to worry about. A greater possibility for confusion
is that fitdistr reports the rate (=1/scale) instead of the scale parameter.

Figure 6.2 shows the negative log-likelihood (now a negative log-likelihood
surface as a function of two parameters, the shape and scale) and the fit of
the model to the data (virus titer for grade 1). Since the “true” distribution
of the data is hard to visualize (all of the distinct values of virus titer are
displayed as jittered values along the bottom axis), I’ve plotted the nonpara-
metric (kernel) estimate of the probability density in gray for comparison.
The Gamma fit is very similar, although it takes account of the lowest point
(a virus titer of 4.2) by spreading out slightly rather than allowing the bump
in the left-hand tail that the nonparametric density estimate shows. The
large shape parameter of the best-fit Gamma distribution (shape=49.34)
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indicates that the distribution is nearly symmetrical and approaching nor-
mality (Chapter 4). Ironically, in this case the plain old normal distribution
actually fits slightly better than the Gamma distribution, despite the fact
that we would have said the Gamma was a better model on biological grounds
(it doesn’t allow virus titer to be negative). However, according to criteria
we will discuss later in the chapter, the models are not significantly different
and you could choose either on the basis of convenience and appropriateness
for the rest of the story you were telling. If we fitted a more skewed distri-
bution, like the wrasse settlement distribution, the Gamma would certainly
win over the normal.

6.3.2 Bayesian analysis

Bayesian estimation also uses the likelihood, but it differs in two ways from
maximum likelihood analysis. First, we combine the likelihood with a prior
probability distribution in order to determine a posterior probability distri-
bution. Second, we often report the mean of the posterior distribution rather
than its mode (which would equal the MLE if we were using a completely
uninformative or “flat” prior). Unlike the mode, which reflects only local
information about the peak of the distribution, the mean incorporates the
entire pattern of the distribution, so it can be harder to compute.

6.3.2.1 Binomial distribution: conjugate priors

In the particular case when we have so-called conjugate priors for the distri-
bution of interest, Bayesian estimation is easy. As introduced in Chapter 4,
a conjugate prior is a choice of the prior distribution that matches the likeli-
hood model so that the posterior distribution has the same form as the prior
distribution. Conjugate priors also allow us to interpret the strength of the
prior in simple ways.

For example, the conjugate prior of the binomial likelihood that we used
for the tadpole predation data is the Beta distribution. If we pick a Beta
prior with shape parameters a and b, and if our data include a total of

∑
k

“successes” (predation events) and nN −
∑

k “failures” (surviving tadpoles)
out of a total of nN “trials” (exposed tadpoles), the posterior distribution is
a Beta distribution with shape parameters a+

∑
k and b+(nN−

∑
k). If we

interpret a−1 as the total number of previously observed successes and b−1
as the number of previously observed failures, then the new distribution just
combines the total number of successes and failures in the complete (prior
plus current) data set. When a = b = 1, the Beta distribution is flat, corre-
sponding to no prior information (a − 1 = b − 1 = 0). As a and b increase,
the prior distribution gains more information and becomes peaked. We can
also see that, as far as a Bayesian is concerned, it doesn’t matter how we
divide our experiments up. Many small experiments, aggregated with suc-
cessive uses of Bayes’ Rule, give the same information as one big experiment
(provided of course that there is no variation in per-trial probability among
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sets of observations, which we have assumed in our statistical model for both
the likelihood and the Bayesian analysis).

We can also examine the effect of different priors on our estimate of the
mean (Figure 6.3). If we have no prior information and choose a flat prior
with a = b = 1, then our final answer is that the per-capita predation
probability is distributed as a Beta distribution with shape parameters a =∑

k + 1 = 31, b = nN −
∑

k + 1 = 11. The mode of this Beta distribution
occurs at (a − 1)/(a + b − 2) =

∑
k/(nN) = 0.75 — exactly the same as

the maximum likelihood estimate of the per-capita predation probability. Its
mean is a/(a + b) = 0.738 — very slightly shifted toward 0.5 (the mean of
our prior distribution) from the MLE.

If we had much more prior data — say a set of experiments with a total
of (nN)prior = 200 tadpoles, of which

∑
kprior = 120 were eaten — then

the parameters of prior distribution would be a = 121, b = 81, the posterior
mode would be 0.625, and the posterior mean would be 0.624. Both the
posterior mode and mean are much closer to the prior values than to the
maximum likelihood estimate because the prior information is much stronger
than the information we can obtain from the data.

If our data were Poisson, we could use a conjugate prior Gamma distri-
bution with shape α and scale s and interpret the parameters as α=total
counts in previous observations and 1/s=number of previous observations.
Then if we observed C counts in our data, the posterior would be a Gamma
distribution with α′ = α + C, 1/s′ = 1/s + 1.

The conjugate prior for the mean of a normal distribution, if we know the
variance, is another normal distribution. The posterior mean is an average
of the prior mean and the observed mean, weighted by the precisions — the
reciprocals of the prior and observed variances. The conjugate prior for the
precision if we know the mean is the Gamma distribution.

6.3.2.2 Gamma distribution: multiparameter distributions and non-conjugate
priors

Unfortunately simple conjugate priors aren’t always available, and we often
have to resort to numerical integration to evaluate Bayes’ Rule. Just plotting
the numerator of Bayes’ Rule, (prior(p) × L(p)), is easy: for anything else,
we need to integrate (or use summation to approximate an integral).

In the absence of much prior information for the myxomatosis parameters
a (shape) and s (scale), I chose a weak, independent prior distribution:

Prior(a)∼Gamma(shape = 0.01, scale = 100)
Prior(s)∼Gamma(shape = 0.1, scale = 10)

Prior(a, s) =Prior(a) · Prior(s).

Bayesians often use the Gamma as a prior distribution for parameters that
must be positive. Using a small shape parameter gives the distribution a
large variance (corresponding to little prior information) and means that
the distribution will be peaked at small values but is likely to be flat over
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Figure 6.3 Bayesian priors and posteriors for the tadpole predation data.
Prior(1,1) is weak, corresponding to no prior samples and leading to a
posterior (31,11) that is almost identical to the scaled likelihood curve.
Prior(121,81) is strong, corresponding to a previous sample size of 200
trials and leading to a posterior (151,111) that is much closer to the
prior than to the scaled likelihood.
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the range of interest. Finally, the scale is usually set large enough to make
the mean of the parameter (= shape · scale) reasonable. Finally, I made
the probabilities of a and s independent, which keeps the form of the prior
simple.

As introduced in Chapter 4, the posterior probability is proportional to
the prior times the likelihood. To compute the actual posterior probability,
we need to divide the numerator Prior(p)×L(p) by its integral to make sure
the total area (or volume) under the probability distribution is 1:

Posterior(a, s) =
Prior(a, s)× L(a, s)∫∫
Prior(a, s)L(a, s) da ds

Figure 6.4 shows the (two-dimensional) posterior distribution for the myx-
omatosis data. As is typical for reasonably large data sets, the probability
density is very sharp. The contours shown on the plot illustrate a rapid de-
crease from a probability density of 0.01 at the mode down to a probability
density of 10−10, and most of the posterior density is even lower than this
minimum contour line.

If we want to know the distribution of each parameter individually, we
have to calculate its marginal distribution: that is, what is the probability
that a or s fall within a particular range, independent of the value of the
other variable? To calculate the marginal distribution, we have to integrate
(take the expectation) over all possible values of the other parameter:

Posterior(a) =
∫

Posterior(a, s)s ds

Posterior(s) =
∫

Posterior(a, s)a da

(6.7)

Figure 6.4 also shows the marginal distributions of a and s.
What if we want to summarize the results still further and give a single

value for each parameter (a point estimate) representing our conclusions
about the virus titer? Bayesians generally prefer to quote the mean of a
parameter (its expected value) rather than the mode (its most probable
value). Neither summary statistic is more correct than the other — they
give different information about the distribution — but they can lead to
radically different inferences about ecological systems (Ludwig, 1996). The
differences will be largest when the posterior distribution is asymmetric (the
only time the mean can differ from the mode) and when uncertainty is large.
In Figure 6.4, the mean and the mode are close together.

To compute mean values for the parameters, we need to compute some
more integrals, finding the weighted average of the parameters over the pos-
terior distribution:

ā=
∫

Posterior(a) · a da

s̄=
∫

Posterior(s) · s ds
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(we can also compute these means from the full rather than the marginal
distributions: e.g. ā =

∫∫
Posterior(a, s)a da ds)∗.

R can compute all of these integrals numerically. We can define functions

> prior.as = function(a, s) {

+ dgamma(a, shape = 0.01, scale = 100) * dgamma(s,

+ shape = 0.1, scale = 10)

+ }

> unscaled.posterior = function(a, s) {

+ prior.as(a, s) * exp(-gammaNLL1(shape = a,

+ scale = s))

+ }

and use integrate (for 1-dimensional integrals) or adapt (in the adapt
package; for multi-dimensional integrals) to do the integration. More crudely,
we can approximate the integral by a sum, calculating values of the integrand
for discrete values, (e.g. s = 0, 0.01, . . . 10) and then calculating

∑
P (s)∆s

— this is how I created Figure 6.4.
However, integrating probabilities is tricky for two reasons. (1) Prior

probabilities and likelihoods are often tiny for some parameter values, leading
to roundoff error; tricks like calculating log-probabilities for the prior and
likelihood, adding, and then exponentiating can help. (2) You must pick
the number and range of points at which to evaluate the integral carefully.
Too coarse a grid leads to approximation error, which may be severe if the
function has sharp peaks. Too small a range, or the wrong range, can miss
important parts of the surface. Large, fine grids are very slow. The numerical
integration functions built in to R help — you give them a range and they
try to evaluate the number of points at which to evaluate the integral — but
they can still miss peaks in the function if the initial range is set too large
so that their initial grid fails to pick up the peaks. Integrals over more than
two dimensions make these problem even worse, since you have to compute
a huge number of points to cover a reasonably fine grid. This problem is the
first appearance of the curse of dimensionality (Chapter 7).

In practice, brute-force numerical integration is no longer feasible with
models with more than about two parameters. The only practical alterna-
tives are Markov Chain Monte Carlo approaches, introduced later in this
chapter and in more detail in Chapter 7.

For the myxomatosis data, the posterior mode is (a = 47, s = 0.15), close
to the maximum likelihood estimate of (a = 49.34, s = 0.14) (the differences
are probably caused more by round-off error than by the effects of the prior).
The posterior mean is (a = 45.84, s = 0.16).

∗The means of the marginal distributions are the same as the mean of the full dis-
tribution. Confusingly, the modes of the marginal distributions are not the same as the
mode of the full distribution.
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Figure 6.4 Bivariate and marginal posterior distributions for the myxomatosis titer
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book May 21, 2007

208 CHAPTER 6

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

20 40 60 80 100

0

5

10

15

20

25

30

35

Initial density

N
um

be
r 

ki
lle

d

●
●

●

●

●●

●

●

●●
●
●

●●

●

●

●

●
●

●●
●
●●

●
●

●

0 2 4 6 8 10

0

2

4

6

8

Day since infection

V
iru

s 
tit

er
Figure 6.5 Maximum-likelihood fits to tadpole predation (Holling

type II/binomial) and myxomatosis (Ricker/Gamma) models.

6.4 ESTIMATION FOR MORE COMPLEX FUNCTIONS

So far we’ve estimated the parameters of a single distribution (e.g. X ∼
Binomial(p) or X ∼ Gamma(a, s)). We can easily extend these techniques
to more interesting ecological models like the ones simulated in Chapter 5,
where the mean or variance parameters of the model vary among groups or
depend on covariates.

6.4.1 Maximum likelihood

6.4.1.1 Tadpole predation

We can combine deterministic and stochastic functions to calculate likeli-
hoods, just as we did to simulate ecological processes in Chapter 5. For ex-
ample, suppose tadpole predators have a Holling type II functional response
(attack rate = aN/(1 + ahN)), meaning that the per capita predation rate
of tadpoles decreases hyperbolically with density (= a/(1 + ahN)). The
distribution of the actual number eaten is likely to be binomial with this
probability. If N is the number of tadpoles in a tank,

p =
a

1 + ahN

k ∼ Binom(p, N).
(6.8)

Since the distribution and density functions in R (such as dbinom) operate
on vectors just as do the random-deviate functions (such as rbinom) used
in Chapter 5, I can translate this model definition directly into R, using a
numeric vector p={a, s} for the parameters:

> binomNLL2 = function(p, N, k) {

+ a = p[1]
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+ h = p[2]

+ predprob = a/(1 + a * h * N)

+ -sum(dbinom(k, prob = predprob, size = N,

+ log = TRUE))

+ }

Now we can dig out the data from the functional response experiment of
Vonesh and Bolker (2005), which contains the variables Initial (N) and
Killed (k). Plotting the data (Figure 2.9) and eyeballing the initial slope
and asymptote gives us crude starting estimates of a (initial slope) at around
0.5 and h (1/asymptote) at around 1/80 = 0.0125.

> data(ReedfrogFuncresp)

> attach(ReedfrogFuncresp)

> O2 = optim(fn = binomNLL2, par = c(a = 0.5, h = 0.0125),

+ N = Initial, k = Killed)

This optimization gives us parameters (a = 0.526, h = 0.017) — so our
starting guesses were pretty good.

In order to use mle2 for this purpose, you would normally have to rewrite
the negative log-likelihood function with the parameters a and h as separate
arguments (i.e. function(a,h,p,N,k)). However, mle2 will let you pass
the parameters inside a vector as long as you use parnames to attach the
names of the parameters to the function.

> parnames(binomNLL2) = c("a", "h")

> m2 = mle2(binomNLL2, start = c(a = 0.5, h = 0.0125),

+ data = list(N = Initial, k = Killed))

> m2

Call:
mle2(minuslogl = binomNLL2, start = c(a = 0.5, h = 0.0125), data = list(N = Initial,

k = Killed), vecpar = TRUE)

Coefficients:
a h

0.52630319 0.01664362

Log-likelihood: -46.72

The answers are very slightly different from the optim results (mle2 uses a
different numerical optimizer by default).

As always, we should plot the fit to the data to make sure it is sensible.
Figure 6.5a shows the expected number killed (a Holling type II function) and
uses the qbinom function to plot the 95% confidence intervals of the binomial
distribution∗. One point falls outside of the confidence limits: for 16 points,

∗These confidence limits, sometimes called plug-in estimates, ignore the uncertainty
in the parameters.
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this isn’t surprising (we would expect one point out of 20 to fall outside the
limits on average), although this point is quite low (5/50, compared to an
expectation of 59.49 — the probability of getting this extreme an outlier is
only NaN × 10NA).

6.4.1.2 Myxomatosis virus

When we looked at the myxomatosis titer data before we treated it as though
it all came from a single distribution. In reality, titers typically change
considerably as a function of the time since infection. Following Dwyer et al.
(1990), we will fit a Ricker model to the mean titer level. Figure 6.5 shows
the data for the grade 1 virus: as a function that starts from zero, grows
to a peak, and then declines, the Ricker seems to make sense although for
the grade 1 virus we have only biological common sense, and the evidence
from the other virus grades to say that the titer would eventually decrease.
Grade 1 is so virulent that rabbits die before titer has a chance to drop off.
We’ll stick with the Gamma distribution for the distribution of titer T at
time t, but parameterize it with shape (s) and mean rather than shape and
scale parameters (i.e. scale=mean/shape):

m = ate−bt

T ∼ Gamma(s, scale = m/a)
(6.9)

Translating this into R is straightforward:

> gammaNLL2 = function(a, b, shape) {

+ meantiter = a * myxdat$day * exp(-b * myxdat$day)

+ -sum(dgamma(myxdat$titer, shape = shape, scale = meantiter/shape,

+ log = TRUE))

+ }

We need initial values, which we can guess knowing from Chapter 3 that
a is the initial slope of the Ricker function and 1/b is the x-location of the
peak. Figure 6.5 suggests that a ≈ 1, 1/b ≈ 5. I knew from the previous fit
that the shape parameter is large, so I started with shape=50. When I tried
to fit the model with the default optimization method I got a warning that
the optimization had not converged, so I used an alternative optimization
method, the Nelder-Mead simplex (p. 262).

> m4 = mle2(gammaNLL2, start = list(a = 1, b = 0.2,

+ shape = 50), method = "Nelder-Mead")

> m4

Call:
mle2(minuslogl = gammaNLL2, start = list(a = 1, b = 0.2, shape = 50),

method = "Nelder-Mead")

Coefficients:
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a b shape
3.5614933 0.1713346 90.6790545

Log-likelihood: -29.51

We could run the same analysis a bit more compactly, without explicitly
defining a negative log-likelihood function, by using the formula interface:

> mle2(titer ~ dgamma(shape, scale = a * day * exp(-b *

+ day)/shape), start = list(a = 1, b = 0.2,

+ shape = 50), data = myxdat, method = "Nelder-Mead")

Specifying data=myxdat lets us use day and titer in the formula instead of
myxdat$day and myxdat$titer.

6.4.2 Bayesian analysis

Extending the tools to use a Bayesian approach is straightforward, although
the details are more complicated than maximum likelihood estimation. We
can use the same likelihood models (e.g. (6.8) for the tadpole predation
data or (6.9) for myxomatosis). All we have to do to complete the model
definition for Bayesian analysis is specify prior probability distributions for
the parameters. However, defining the model is not the end of the story.
For the binomial model, which has only two parameters, we could proceed
more or less as in the Gamma distribution example above (Figure 6.4), cal-
culating the posterior density for many combinations of the parameters and
computing integrals to calculate marginal distributions and means. To eval-
uate integrals for the three-parameter myxomatosis model we would have
to integrate the posterior distribution over a three-dimensional grid, which
would quickly become impractical.

Markov Chain Monte Carlo (MCMC) is a numerical technique that makes
Bayesian analysis of more complicated models feasible. WinBUGS is a pro-
gram that allows you to run MCMC analyses without doing lots of program-
ming. Here is the WinBUGS code for the myxomatosis example:

model {
for (i in 1:n) {

mean[i] <- a*day[i]*exp(-b*day[i])
rate[i] <- mean[i]/shape
titer[i] ~ dgamma(shape,rate[i])

}
## priors
a ~ dgamma(2,0.5)
b ~ dgamma(2,0.5)
shape ~ dgamma(2,100)
}

WinBUGS’s modeling language is similar but not identical to R. For example,
WinBUGS makes you use <- instead of = for assignments.
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As you can see, the WinBUGS model also looks a lot like the likelihood
model (eq. 6.9). The third through fifth lines specify the model (WinBUGS
uses shape and rate parameters to define the Gamma distribution rather
than shape and scale parameters: differences in parameterization are some
of the most important differences between the WinBUGS and R.) Lines 8–10
give the prior distributions for the parameters, all Gamma in this case. The
WinBUGS model is more explicit than eq. 6.9 — in particular, you have to
put in an explicit for loop to calculate the expected values for each data
point — but the broad outlines are the same, even up to using a tilde (~) to
mean “is distributed as”.

You can either run WinBUGS either as a standalone program, or from
within R, using the R2WinBUGS package∗.

> library(R2WinBUGS)

You have to specify the names of the data exactly as they are listed in the
WinBUGS model (given above, but stored in a separate text file myxo1.bug):

> titer <- myxdat$titer

> day <- myxdat$day

> n <- length(titer)

You also have to specify starting points for multiple chains, which should
vary among reasonable values (p. 7.4.2), as a list of lists:

> inits <- list(list(a = 4, b = 0.2, shape = 90),

+ list(a = 1, b = 0.1, shape = 50), list(a = 10,

+ b = 1, shape = 150))

Now you can run WinBUGS:

> myxo1.bugs <- bugs(data = list("titer", "day",

+ "n"), inits, parameters.to.save = c("a", "b",

+ "shape"), model.file = "myxo1.bug", n.chains = length(inits),

+ n.iter = 3000)

As we will see shortly, you can recover lots of information for a Bayesian
analysis from a WinBUGS run — for now, you can use print(myxo1.bugs,digits=4)
to see that the estimates of the means, {a = 0.0769, b = 0.758, s = 0.224},
are reassuringly close to the maximum-likelihood estimates given above.

6.5 LIKELIHOOD SURFACES, PROFILES, AND CONFIDENCE

INTERVALS

So far, we’ve used R or WinBUGS to find point estimates (maximum likeli-
hood estimates or posterior means) automatically, without looking very care-

∗WinBUGS runs on Windows, and on Intel machines under Linux or MacOS (using
Wine or Crossover Office). R2WinBUGS has not been tested on MacOS to my knowledge.
Chapter 7 gives more details.
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Figure 6.6 Negative-log-likelihood curves and confidence intervals for binomial-
distributed predation of tadpoles.

fully at the curves and surfaces that describe how the likelihood varies with
the parameters. This approach gives little insight when things go wrong with
the fitting (as happens all too often). Furthermore, point estimates are use-
less without measures of uncertainty. We really want to know the uncertainty
associated with the parameter estimates, both individually (univariate con-
fidence intervals) and together (bi- or multivariate confidence regions). This
section will show how to draw and interpret goodness-of-fit curves (likelihood
curves and profiles, Bayesian posterior joint and marginal distributions) and
their connections to confidence intervals.

6.5.1 Frequentist analysis: likelihood curves and profiles

The most basic tool for understanding how likelihood depends on one or
more parameters is the likelihood curve or likelihood surface, which is just
the likelihood plotted as a function of parameter values (e.g. Figure 6.1). By
convention, we plot the negative log-likelihood rather than log-likelihood, so
the best estimate is a minimum rather than a maximum. (I sometimes call
negative log-likelihood curves badness-of-fit curves, since higher points indi-
cate a poorer fit to the data.) Figure 6.6a shows the negative log-likelihood
curve (like Figure 6.1 but upside-down and with a different y axis), indicat-
ing the minimum negative log-likelihood (=maximum likelihood) point, and
lines showing the upper and lower 95% confidence limits (we’ll soon see how
these are defined). Every point on a likelihood curve or surface represents a
different fit to the data: Figure 6.6b shows the observed distribution of the
binomial data along with three separate curves corresponding to the lower
estimate (p = 0.6), best fit (p = 0.75), and upper estimate (p = 0.87) of the
per capita predation probability.

For models with more than one parameter, we draw likelihood surfaces
instead of curves. Figure 6.7 shows the negative log-likelihood surface of
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the tadpole predation data as a function of attack rate a and handling time
h. The minimum is where we found it before, at (a = 0.526, h = 0.017).
The likelihood contours are roughly elliptical and are tilted near a 45 degree
angle, which means (as we will see) that the estimates of the parameters are
correlated. Remember that each point on the likelihood surface corresponds
to a fit to the data, which we can (and should) look at in terms of a curve
through the actual data values: Figure 6.9 shows the fit of several sets of
parameters (the ML estimates, and two other less well-fitting a-h pairs) on
the scale of the original data.

If we want to deal with models with more than two parameters, or if we
want to analyze a single parameter at a time, we have to find a way to iso-
late the effects of one or more parameters while still accounting for the rest.
A simple, but usually wrong, way of doing this is to calculate a likelihood
slice, fixing the values of all but one parameter (usually at their maximum
likelihood estimates) and then calculating the likelihood for a range of values
of the focal parameter. The horizontal line in the middle of Figure 6.7 shows
a likelihood slice for a, with h held constant at its MLE. Figure 6.8 shows
an elevational view, the negative log-likelihood for each value of a. Slices
can be useful for visualizing the geometry of a many-parameter likelihood
surface near its minimum, but they are statistically misleading because they
don’t allow the other parameters to vary and thus they don’t show the min-
imum negative log-likelihood achievable for a particular value of the focal
parameter.

Instead, we calculate likelihood profiles, which represent“ridgelines” in pa-
rameter space showing the minimum negative log-likelihoods for particular
values of a single parameter. To calculate a likelihood profile for a focal
parameter, we have to set the focal parameter in turn to a range of values,
and for each value optimize the likelihood with respect to all of the other
parameters. The likelihood profile for a in Figure 6.7 runs through the con-
tour lines (such as the confidence regions shown) at the points where the
contours run exactly vertical. Think about looking for the minimum along a
fixed-a transect (varying h — vertical lines in Figure 6.7); the minimum will
occur at a point where the transect is just touching (tangent to) a contour
line. Slices are always steeper than profiles, (e.g. Figure 6.8), because they
don’t allow the other parameters to adjust to changes in the focal parameter.
Figure 6.9 shows that the fit corresponding to a point on the profile (trian-
gle/dashed line) has a lower value of h (handling time, corresponding to a
higher asymptote) that compensates for its enforced lower value of a (attack
rate/initial slope), while the equivalent point from the slice (star/dotted line)
has the same handling time as the MLE fit, and hence fits the data worse
— corresponding to the higher negative log-likelihood in Figure 6.8.

6.5.1.1 The Likelihood Ratio Test

On a negative log-likelihood curve or surface, higher points represent worse
fits. The steeper and narrower the valley (i.e. the faster the fit degrades
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as we move away from the best fit), the more precisely we can estimate the
parameters. Since the negative log-likelihood for a set of independent ob-
servations is the sum of the individual negative log-likelihoods, adding more
data makes likelihood curves steeper. For example, doubling the number of
observations will double the negative log-likelihood curve across the board
— in particular, doubling the slope of the negative log-likelihood surface∗.

It makes sense to determine confidence limits by setting some upper limit
on the negative log-likelihood and declaring that any parameters that fit
the data at least that well are within the confidence limits. The steeper
the likelihood surface, the faster we reach the limit and the narrower are the
confidence limits. Since we only care about the relative fit of different models
and parameters, the limits should be relative to the maximum log-likelihood
(minimum negative log-likelihood).

For example, Edwards (1992) suggested that one could set reasonable con-
fidence regions by including all parameters within 2 log-likelihood units of
the maximum log-likelihood, corresponding to all fits that gave likelihoods
within a factor of ≈ 7.4 of the maximum. However, this approach lacks a fre-
quentist probability interpretation — there is no corresponding p-value. This
deficiency may be an advantage, since it makes dogmatic null-hypothesis
testing impossible.

If you insist on p-values, you can also use differences in log-likelihoods (cor-
responding to ratios of likelihoods) in a frequentist approach called the Likeli-
hood Ratio Test (LRT). Take some likelihood function L(p1, p2, . . . , pn), and
find the overall best (maximum likelihood) value, Labs = L(p̂1, p̂2, . . . p̂n)
(“abs” stands for “absolute”). Now fix some of the parameters (say p1 . . . pr)
to specific values (p∗1, . . . p

∗
r), and maximize with respect to the remaining

parameters to get Lrestr = L(p∗1, . . . , p
∗
r , p̂r+1, . . . , p̂n) (“restr” stands for “re-

stricted”, sometimes also called a reduced or nested model). The Likelihood
Ratio Test says that the distribution of twice the negative log of the like-
lihood ratio, −2 log(Lrestr/Labs), called the deviance, is approximately χ2

(“chi-squared”) distribution with r degrees of freedom∗†.

∗Doubling the sample size also typically doubles the minimum negative log-likelihood
as well, which may seem odd — why would adding more data worsen the fit of the model?
— until you remember that we’re not really interested in the probability of a particular set
of data, just the relative likelihood of different models and parameters. The probability of
flipping a fair coin (p = 0.5) twice and getting one head and one tail is 0.5. The probability
of flipping the same coin 1000 times and getting 500 heads and 500 tails is only 0.025;
that doesn’t mean that we should reject the hypothesis that the coin is fair . . .

∗You may associate the χ2 distribution with contingency table analysis, chisq.test
in R, but it is a distribution that appears much more broadly in statistics.

†Here’s a heuristic explanation: you can prove that the distribution of the maximum
likelihood estimate is asymptotically normally distributed (i.e. with sufficiently large
sample sizes). You can also show, by Taylor expanding, that the log-likelihood surface
is quadratic, with curvature determined by the variances of the parameters. If we are
restricting r parameters, then we are moving away from the maximum likelihood of the
more complex model in r directions, by a normally distributed amount θi in each direction;
since the log-likelihood surface is quadratic, the drop in the negative log-likelihood isPr

i=1 θ2
i . Since the θi values (likelihood estimates of each parameter) are each normally
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Figure 6.10 Likelihood profiles and LRT confidence intervals for tadpole predation
data.

The log of the likelihood ratio is the difference in the log-likelihoods, so

2 (− logLrestr − (− logLabs)) ∼ χ2
r. (6.10)

The definition of the LRT echoes the definition of the likelihood profile,
where we fix one parameter and maximize the likelihood/minimize the neg-
ative log-likelihood with respect to all the other parameters: r = 1 in the
definition above. Thus, for univariate confidence limits we cut off the like-
lihood profile at (min. neg. log. likelihood + χ2

1(1 − α)/2), where α is our
chosen confidence level (0.95, 0.99, etc.). (The cutoff is a one-tailed test,
since we are looking only at differences in likelihood that are larger than ex-
pected under the null hypothesis.) Figure 6.10 shows the likelihood profiles
for a and h, along with the 95% and 99% confidence intervals: you can see
how the confidence intervals on the parameters are drawn as vertical lines
through the intersection points of the (horizontal) likelihood cutoff levels
with the profile.

The 99% confidence intervals have a higher cutoff than the 95% confidence
intervals (χ2

1(0.99)/2 = 3.32 > χ2
1(0.95)/2 = 1.92), and hence the 99%

intervals are wider.
Here are the numbers:

α
χ2

1(α)
2 −L + χ2

1(α)
2 variable lower upper

0.95 1.92 48.6 a 0.40200 0.6820
h 0.00699 0.0264

0.99 3.32 50.0 a 0.37000 0.7390
h 0.00387 0.0296

distributed, the sum of squares of r of them is chi-squared distributed with r degrees of
freedom. (This explanation is necessarily crude; for the real derivation, see Kendall and
Stuart (1979).)
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R can compute profiles and profile confidence limits automatically. Given
an mle2 fit m, profile(m) will compute a likelihood profile and confint(m)
will compute profile confidence limits. plot(profile(m2)) will plot the
profile, square-root transformed so that a quadratic profile will appear V-
shaped (or linear if you specify absval=FALSE). This transformation makes it
easier to see whether the profile is quadratic, since it’s easier to see whether
a line is straight than it is to see whether it’s quadratic. Computing the
profile can be slow, so if you want to plot the profile and find confidence
limits, or find several different confidence limits, you can save the profile and
then use confint on the profile:

> p2 = profile(m2)

> confint(p2)

It’s also useful to know how to calculate profiles and profile confidence
limits yourself, both to understand them better and for the not-so-rare times
when the automatic procedures break down. To compute profiles by hand,
you need to write a new negative log-likelihood function that holds one of
the parameters fixed while minimizing the likelihood with respect to the
rest. For example, to compute the profile for a (minimizing with respect
to h for many values of a), you could use the following reduced negative
log-likelihood function:

> binomNLL2.a = function(p, N, k, a) {

+ h = p[1]

+ p = a/(1 + a * h * N)

+ -sum(dbinom(k, prob = p, size = N, log = TRUE))

+ }

Compute the profile likelihood for a range of a values:

> avec = seq(0.3, 0.8, length = 100)

> aprof = numeric(100)

> for (i in 1:100) {

+ aprof[i] = optim(binomNLL2.a, par = 0.02,

+ k = ReedfrogFuncresp$Killed, N = ReedfrogFuncresp$Initial,

+ a = avec[i], method = "BFGS")$value

+ }

The curve drawn by plot(avec,aprof) would look just like the one in Fig-
ure 6.10a.

To find the profile confidence limits for a, we have to take one branch of
the profile at a time. Starting with the lower branch, the values below the
minimum negative log-likelihood:

> prof.lower = aprof[1:which.min(aprof)]

> prof.avec = avec[1:which.min(aprof)]

Finally, use the approx function to calculate the a value for which− log L =
− log Lmin + χ2

1(0.95)/2:
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> approx(prof.lower, prof.avec, xout = -logLik(m2) +

+ qchisq(0.95, 1)/2)

$x
'log Lik.' 48.64212 (df=2)

$y
[1] 0.4024598

Now let’s go back and look at the bivariate confidence region in Figure 6.7.
The 95% bivariate confidence region (solid black line) occurs at negative log-
likelihood equal to − log L̂+ χ2

2(0.95)/2 = − log L̂+ 5.991/2. This is about
3 log-likelihood units up from the minimum. I’ve also drawn the univariate
region (log L̂ + χ2

1(0.95)/2 contour). That region is not really appropriate
for this figure, because it applies to a single parameter at a time, but it
illustrates that univariate intervals are smaller than the bivariate confidence
region, and that the confidence intervals, like the profiles, are tangent to the
univariate confidence region.

The LRT is only correct asymptotically, for large data sets. For small
data sets it is an approximation, although one that people use very freely.
The other limitation of the LRT that frequently arises, although it is often
ignored, is that it only works when the best estimate of the parameter is not
on the edge of its allowable range (Pinheiro and Bates, 2000). For example, if
you are fitting an exponential model y = exp rx that must be decreasing, so
that r ≤ 0, and your best estimate of r is equal to 0, then the LRT estimate
for the upper bound of the confidence limit is not technically correct (see
p. 285).

6.5.2 Bayesian approach: posterior distributions and marginal dis-
tributions

What about the Bayesians? Instead of drawing likelihood curves, Bayesians
draw the posterior distribution (proportional to prior× L, e.g. Figure 6.4).
Instead of calculating confidence limits using the (frequentist) LRT, they
define the credible interval, which is the region in the center of the distribu-
tion containing 95% (or some other standard proportion) of the probability
of the distribution, bounded by values on either side that have the same
probability (or probability density). Technically, the credible interval is the
interval [x1, x2] such that P (x1) = P (x2 and C(x2)− C(x1) = 1− α, where
P is the probability density and C is the cumulative density. The credible
interval is slightly different from the frequentist confidence interval, which is
defined as [x1, x2] such that C(x1) = α/2 and C(x2) = 1−α/2. For empiri-
cal samples, use quantile to compute confidence intervals and HPDinterval
(“highest posterior density interval”), in the coda package, to compute cred-
ible intervals. For theoretical distributions, use the appropriate “q” function
(e.g. qnorm) to compute confidence intervals and tcredint, in the emdbook
package, to compute credible intervals.
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Figure 6.11 Bayesian 95% credible interval (gray), and 5% tail areas (hashed), for
the tadpole predation data (weak prior: shape=(1,1)).
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Figure 6.11 shows the posterior distribution for the tadpole predation
(from Figure 6.4), along with the 95% credible interval and the lower and
upper 2.5% tails for comparison. The credible interval is symmetrical in
height; the cutoff value on either end of the distribution has the same pos-
terior probability. The extreme tails are symmetrical in area; the likelihood
of extreme values in either direction is the same. The credible interval’s
height symmetry leads to a uniform probability cutoff: we never include a
less probable value at the one boundary than the other. To a Bayesian, this
property makes more sense than insisting (as the frequentists do in defining
confidence intervals) that the probabilities of extremes in either direction are
the same.

For multi-parameter models, the likelihood surface is analogous to a bi-
variate or multivariate probability distribution (Figure 6.12). The marginal
probability density is the Bayesian analogue of the likelihood profile. Where
frequentists use likelihood profiles to make inferences about a single param-
eter while taking the effects of the other parameters into account, Bayesians
use the marginal posterior probability density, the overall probability for a
particular value of a focal parameter integrated over all the other parame-
ters. Figure 6.12 shows the 95% credible intervals for the tadpole predation
analysis, both bivariate and marginal (univariate). In this case, when the
prior is weak and the posterior distribution is reasonably symmetrical, there
is little difference between the bivariate 95% confidence region and the bi-
variate 95% credible interval (Figure 6.12), but Bayesian and frequentist
conclusions will not always be so similar.

6.6 CONFIDENCE INTERVALS FOR COMPLEX MODELS: QUADRATIC

APPROXIMATION

The methods I’ve discussed so far (calculating likelihood profiles or marginal
likelihoods numerically) work fine when you have only two, or maybe three,
parameters, but become impractical for models with many parameters. To
calculate a likelihood profile for n parameters, you have to optimize over
n − 1 parameters for every point in a univariate likelihood profile. If you
want to look at the bivariate confidence limits of any two parameters you
can’t just compute a likelihood surface. To compute a 2-D likelihood profile,
the analogue of the 1-D profiles we calculated previously, you would have to
take every combination of the two parameters you’re interested in (e.g. a
50×50 grid of parameter values) and maximize with respect to all the other
n − 2 parameters for every point on that surface, and then use the values
you’ve calculated to draw contours. Especially when the likelihood function
itself is hard to calculate, this procedure can be extremely tedious.

A powerful, general, but approximate shortcut is to examine the second
derivative(s) of the log-likelihood as a function of the parameter(s). The
second derivatives provide information about the curvature of the surface,



book May 21, 2007

224 CHAPTER 6

0.4 0.5 0.6 0.7 0.8

0.00

0.01

0.02

0.03

0.04

Attack rate

H
an

dl
in

g 
tim

e

● mean

mode

MLE

bivariate credible region
bivariate confidence region

80 0

0.4 0.5 0.6 0.7 0.8

0

6

Figure 6.12 Bayesian credible intervals (bivariate and marginal) for tadpole pre-
dation analysis.



book May 21, 2007

LIKELIHOOD AND ALL THAT 225

which tells us how rapidly the log-likelihood gets worse, which allows us to
estimate the confidence intervals. This procedure involves a second level of
approximation (like the LRT, becoming more accurate as the number of data
points increases), but it can be useful when you run into numerical difficulties
calculating the profile confidence limits, when you want to compute bivariate
confidence regions for complex models, or more generally explore correlations
in high-dimensional parameter spaces.

To motivate this procedure, let’s briefly go back to a one-dimensional
normal distribution and compute an analytical expression for the profile
confidence limits. The likelihood of a set of independent samples from a
normal distribution is L =

∏n
i=1

1√
2πσ

exp(−(xi − µ)2/(2σ2))∗. That means
the negative log-likelihood as a function of the parameters µ and σ is

− logL(µ, σ) = C + n log σ +
∑

i

(
(xi − µ)2

2σ2

)
, (6.11)

where we’ve lumped the parameter-independent parts of the likelihood into
the constant C. We could differentiate this expression with respect to µ
and solve for µ when the derivative is zero to show that µ̂ =

∑
xi/n. We

could then substitute µ = m̂u into (6.11) to find the minimum negative log-
likelihood. Once we have done this we want to calculate the width of the
profile confidence interval c — that is, what is the value of c such that

− log L(µ̂± c, σ) = − log L(µ̂, σ) + χ2
1(α)/2 ? (6.12)

Some slightly nasty algebra leads to:

c =
√

χ2
1(α) · σ√

n
(6.13)

This expression might look familiar: we’ve just rederived the expression
for the confidence limits of the mean! The term σ/

√
n is the standard error

of the mean; it turns out that the term
√

χ2
1(α) is the same as the α/2

quantile for the normal distribution†. The test uses the quantile of a normal
distribution, rather than a Student t distribution, because we have assumed
the variance is known.

How does this relate to the second derivative? For the normal distribution,
the second derivative of the negative log-likelihood with respect to µ is

D2 =
d2
(∑

(xi − µ)2/(2σ2)
)

dµ2
=

n

(σ2)
(6.14)

So we can rewrite the term σ/
√

n in (6.13) as
√

1/D2; the standard deviation
of the parameter, which determines the width of the confidence interval, is
proportional to the square root of the reciprocal of the curvature (i.e., the
second derivative).

∗The symbol
Q

denotes a product, like
P

but for multiplication.
†try sqrt(qchisq(0.95,1)) and qnorm(0.975) in R to test this idea [use 0.975 instead

of 0.95 in the second expression because this procedure involves a two-tailed test on the
normal distribution but a one-tailed test on the χ2 distribution, because the χ2 is the
distribution of a squared normal deviate]
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While we have derived these conclusions for the normal distribution, they’re
true for any model if the data set is large enough. In general, for a one-
parameter model with parameter p, the width of our confidence region is

N(α)
(

d2(logL)
dp2

)−1/2

, (6.15)

where N(α) is the appropriate quantile for the standard normal distribution.
This equation gives us a general recipe for finding the confidence region
without doing any extra computation, if we know the second derivative of the
negative log-likelihood at the maximum likelihood estimate. We can find that
second derivative either by calculating it analytically (sometimes feasible),
or by calculating it numerically by finite differences, extending the general
rule that the derivative df(p)/dp is approximately (f(p + ∆p)− f(p))/∆p:

d2f

dp2

∣∣∣∣
p=m

≈ f(m + 2∆p)− 2f(m + ∆p) + f(m)
(∆p)2

. (6.16)

The hessian=TRUE option in optim tells R to calculate the second derivative
in this way; this option is set automatically in mle2.

The same idea works for multi-parameter models, but we have to know a
little bit more about second derivatives to understand it. A multi-parameter
likelihood surface has more than one second partial derivative: in fact, we get
a matrix of second partial derivatives, called the Hessian. When calculated
for a likelihood surface, the negative of the expected value of the Hessian is
called the Fisher information; when evaluated at the maximum likelihood es-
timate, it is the observed information matrix. The second partial derivatives
with respect to the same variable twice (e.g. ∂2L/∂µ2) represent the curva-
ture of the likelihood surface along a particular axis; the cross-derivatives,
e.g. ∂2L/(∂µ∂σ), describe how the slope in one direction changes as you
move along another direction. For example, for the log-likelihood L of the
normal distribution with parameters µ and σ, the Hessian is:(

∂2L
∂µ2

∂2L
∂µ∂σ

∂2L
∂µ∂σ

∂2L
∂σ2 .

)
. (6.17)

In the simplest case of a one-parameter model, the Hessian reduces to
a single number (i.e. d2L/dp2), the curvature of the likelihood curve at
the MLE, and the estimated standard deviation of the parameter is just
(∂2L/∂µ2)−1/2 as above.

In simple two-parameter models such as the normal distribution the pa-
rameters are uncorrelated, and the matrix is diagonal:(

∂2L
∂µ2 0
0 ∂2L

∂σ2

)
. (6.18)

The off-diagonal zeros mean that the slope of the surface in one direc-
tion doesn’t change as you move in the other direction, and hence the
shape of the likelihood surface in the µ direction and the σ direction are
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Figure 6.13 Likelihood ratio and information-matrix confidence limits on the tad-
pole predation model parameters.

unrelated. In this case we can compute the standard deviations of each
parameter independently—they’re the inverse square roots of the second
partial derivative with respect to each parameter (i.e., (∂2L/∂µ2)−1/2 and
(∂2L/∂σ2)−1/2).

In general, when the off-diagonal elements are different from zero, we have
to invert the matrix numerically, which we can do with solve. For a two-
parameter model with parameters a and b we obtain the variance-covariance
matrix

V =
(

σ2
a σab

σab σ2
b

)
, (6.19)

where σ2
a and σ2

b are the variances of a and b and σab is the covariance
between them; the correlation between the parameters is σab/(σaσb).

Comparing the (approximate) 80% and 99.5% confidence ellipse to the
profile confidence regions for the tadpole predation data set, they don’t look
too bad. The profile region is slightly skewed—it includes more points where
d and r are both larger than the maximum likelihood estimate, and fewer
where both are smaller—while the approximate ellipse is symmetric around
the max. likelihood estimate.

This method extends to more than two parameters, even though it is
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difficult to draw the pictures. The information matrix of a p-parameter
model is a p× p matrix. Using solve to invert the information matrix gives
the variance-covariance matrix

V =


σ2

1 σ12 . . . σ1p

σ21 σ2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ2
p

 , (6.20)

where σ2
i is the estimated variance of variable i and where σij = σji is the

estimated covariance between variables i and j: the correlation between i
and j is σij/(σiσj). For an mle2 fit m, vcov(m) will give the approximate
variance-covariance matrix computed in this way and cov2cor(vcov(m))
will scale the variance-covariance matrix by the variances to give a correlation
matrix with entries of 1 on the diagonal and parameter correlations for the
off-diagonal elements.

The shape of the likelihood surface contains essentially all of the informa-
tion about the model fit and its uncertainty. For example, a large curvature
or steep slope in one direction corresponds to high precision for the estimate
of that parameter or combination of parameters. If the curvature is different
in different directions (leading to ellipses that are longer in one direction
than another) then the data provide unequal amounts of precision for the
different estimates. If the contours are oriented vertically or horizontally,
then the estimates of the parameters are independent, but if they are diago-
nal then the parameter estimates are correlated. If the contours are roughly
elliptical (at least near the MLE), then the surface can be described by a
quadratic function.

These characteristics also help determine which methods and approxi-
mations will work well (Figure 6.14). If the parameters are uncorrelated
(contours oriented horizontally/vertically), then you can estimate them sep-
arately and still get the correct confidence intervals: the likelihood slice is
the same as the profile (Figure 6.14a). If they are correlated, on the other
hand, you will need to calculate a profile (or solve the information matrix)
to allow for variation in the other parameters (Figure 6.14b,d). If the like-
lihood contours are elliptical — which happens when the likelihood surface
has a quadratic shape — the information matrix approximation will work
well (Figure 6.14a,b): otherwise, a full profile likelihood may be necessary
to calculate the confidence intervals accurately.

You can usually handle non-quadratic and correlated surfaces by com-
puting profiles rather than using the simpler quadratic approximations, but
in extreme cases these characteristics can cause problems for fitting (Chap-
ter 7). All other things being equal, smaller confidence regions (i.e., for
larger and less noisy data sets and for higher α levels), are more elliptical.
Reparameterizing functions can sometimes make the likelihood surface closer
to quadratic and decrease correlation between the parameters. For exam-
ple, one might fit the asymptote and half-maximum of a Michaelis-Menten
function rather than the asymptote and initial slope, or fit log-transformed
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parameters.

6.7 COMPARING MODELS

The last topic for this chapter, a controversial and important one, is model
comparison or model selection. Model comparison and selection are closely
related to the techniques for estimating confidence regions that we have just
covered.

Dodd and Silvertown did a series of studies on fir (Abies balsamea) in New
York state, exploring the relationships among growth, size, age, competition,
and number of cones produced in a given year (Silvertown and Dodd, 1999;
Dodd and Silvertown, 2000): see ?Fir in the emdbook package. Figure 6.15
shows the relationship between size (diameter at breast height, DBH) and
the total fecundity over the study period, contrasting populations that have
experienced wave-like die-offs (“wave”) with those that have not (“nonwave”).
A power-law (allometric) dependence of expected fecundity on size allows
for increasing fecundity with size while preventing the fecundity from being
negative for any parameter values. It also agrees with the general obser-
vation in morphology that different traits increase as a power function of
size. A negative binomial distribution in size around the expected fecundity
describes discrete count data with potentially high variance. The resulting
model is

µ = a ·DBHb

Y ∼ NegBinom(µ, k)
(6.21)

where the subscripts i denote different populations — wave (i = w) or non-
wave (i = n).

We might ask any of these biological/statistical questions:

� Does fir fecundity (total number of cones) change (increase) with size
(DBH)?

� Do the confidence intervals (credible intervals) of the slope parameters
bi include zero (no change)? Do they include 1 (isometry)?

� Are the allometric parameters bi significantly different from (greater
than) zero? One?

� Does a model incorporating the allometric parameters fit the data
significantly better than a model without a allometric parameter, or
equivalently where the allometric parameter is set to zero (µ = ai) or
one (µ = ai ·DBH?)

� What is the best model to explain, or predict, fir fecundity? does it
include DBH?
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Figure 6.15 Fir fecundity as a function of DBH for wave and non-wave popula-
tions. Lines show estimates of the model y = a · DBHb fitted to the
populations separately and combined.
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Figure 6.15 shows very clearly that fecundity does increase with size: while
we might want to know how much it increases (based on the estimation and
confidence-limits procedures discussed above), any statistical test of the null
hypothesis b = 0 would be pro forma. More interesting questions in this case
ask whether and how the size-fecundity curve differs in wave and non-wave
populations. We can extend the model to allow for differences between the
two populations:

µ = ai ·DBHbi

Yi ∼ NegBinom(µ, ki)
(6.22)

where the subscripts i denote different populations — wave (i = w) or non-
wave (i = n).

Now our questions become:

� Is fecundity the same for small trees in both populations? (Can we
reject the null hypothesis an = aw? Do the confidence intervals of
an − aw include zero? Does a model with an 6= aw fit significantly
better?)

� Does fecundity increase with DBH at the same rate in both population?
(Can we reject the null hypothesis bn = bw? Do the confidence intervals
of bn − bw include zero? Does a model with bn 6= bw fit significantly
better?)

� Is variability around the mean the same in both populations? (Can
we reject the null hypothesis kn = kw? Do the confidence intervals
of kn − kw include zero? Does a model with kn 6= kw fit significantly
better?)

We can boil any of these questions down to the same basic statistical
question: for any one of a, b, and k, does a simpler model (with a single
parameter for both populations rather than separate parameters for each
population) fit adequately? Does adding extra parameters improve the fit
sufficiently much to justify the additional complexity?

As we will see, there are many ways to translate these questions into
statistical hypotheses and tests. While there are stark differences in the
assumptions and philosophy behind different statistical approaches, and hot
debate over which ones are best, it’s worth remembering that in many cases
they will all give reasonably consistent answers to the underlying ecological
questions. The rest of this introductory section explores some general ideas
about model selection. The following sections describe the basics of different
approaches, and the final section summarizes the pros and cons of various
approaches.

If we ask “does fecundity change with size?” or “do two populations dif-
fer?”, we know as ecologists that the answer is“yes”— every ecological factor
has some impact, and all populations differ in some way. The real questions
are, given the data we have, whether we can tell what the differences are, and
how we decide which model best explains the data or predicts new results.
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Parsimony (sometimes called “Occam’s razor”) is a general argument for
choosing simpler models even though we know the world is complex. All
other things being equal, we should prefer a simpler model to a more com-
plex one — especially when the data don’t tell a clear story. Model selection
approaches typically go beyond parsimony to say that a more complex model
must be not just better than, but a specified amount better than, a simpler
model. If the more complex model doesn’t exceed a threshold of improve-
ment in fit (we will see below exactly where this threshold comes from), we
typically reject it in favor of the simpler model.

Model complexity also affects our predictive ability. Walters and Ludwig
(1981) simulated fish population dynamics using a complex age-structured
model and showed that in many cases, when data were realistically sparse
and noisy, they could best predict future (simulated) dynamics using a sim-
pler non-age-structured model. In other words, even though they knew for
sure that juveniles and adults had different mortality rates (because they
simulated the data from a model with mortality differences), a model that
ignored this distinction gave more accurate predictions. This apparent para-
dox is an example of the bias-variance tradeoff introduced in Chapter 5. As
we add more parameters to a model, we necessarily get an increasingly pre-
cise fit to the particular data we have observed (the bias decreases), but our
accuracy for predicting future observations decreases as well (the variance
increases). Data contain a fixed amount of information; as we estimate more
and more parameters we spread the data thinner and thinner. Eventually
the gain in precision from having more details in the model is outweighed
by the loss in accuracy from estimating the effect of each of those details
more poorly. In Ludwig and Walters’s case, spreading the data out across
age classes meant there was not enough data to estimate each age class’s
dynamics accurately.

The left-hand plot of Figure 6.16 shows a set of simulated data generated
from a generalized Ricker model, Y ∼ Normal((a + bx + cx2)e−dx). I fitted
these data with a constant model (y equal to the mean of data), a Ricker
model (y = ae−bx), and the generalized Ricker model. Despite being the true
model that generated the data, the generalized Ricker model is overly flexible
and adjusts the fit to go through an unusual point at (1.5,0.24). It fits the
first data set better than the Ricker (R2 = 0.55 for the generalized Ricker
vs. R2 = 0.29 for the Ricker). However, the generalized Ricker has overfitted
these data. It does poorly when we try to fit new data generated from the
same underlying model. In the new set of data shown in Figure 6.16, the
generalized Ricker fit misses the point near x = 1.5 so badly that it actually
fits the data worse than the constant model and has a negative R2! In 500
new simulations, the Ricker prediction did best 83% of the time, while the
generalized Ricker prediction only won 11% of the time: the rest of the time,
the constant model was best.
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Figure 6.16 Fits to simulated data generated with y = (0.4 + 0.1 · x + 2 · x2)e−x),
plus normal error with σ = 0.35. Models fitted: constant (y = x̄),
Ricker (y = ae−bx), and generalized Ricker (y = (a + bx + cx2)e−dx).
The highlighted point at x ≈ 1.5 drives much of the fit to the original
data, and much of the failure to fit new data sets. Left: original data,
right: a new data set.

6.7.1 Likelihood Ratio test: nested models

How can we tell when we are overfitting real data? We can use the Likelihood
Ratio Test, which we used before to find confidence intervals and regions,
to choose models in certain cases. A simpler model (with fewer parameters)
is nested in another, more complex, model (with more parameters) if the
complex model reduces to the simpler model by setting some parameters
to particular values (often zero). For example, a constant model, y = a,
is nested in the linear model, y = a + bx because setting b = 0 makes the
linear model constant. The linear model is nested in turn in the quadratic
model, y = a + bx + cx2. The linear model is also nested in the Beverton-
Holt model, y = ax/(1 + (a/b)x), for b → ∞. The Beverton-Holt is in
turn nested in the Shepherd model, y = ax/(1 + (a/b)xd), for d = 1. (The
nesting of the linear model in the Beverton-Holt model is clearer if we use
the parameterization of the Holling type II model, y = ax/(1 + ahx). The
handling time h is equivalent to 1/b in the Beverton-Holt. When h = 0
predators handle prey instantaneously and their per capita consumption rate
increases linearly forever as prey densities increase.)

Comparisons among different groups can also be framed as a comparison
of nested models. If the more complex model has the mean of group 1 equal
to a1 and the mean of group 2 equal to a2, then the nested model (both
groups equivalent) applies when a1 = a2. It is also common to parameterize
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this model as a2 = a1 + δ12, where δ12 = a2 − a1, so that the simpler
model applies when δ12 = 0. This parameterization works better for model
comparisons since testing the hypothesis that the more complex model is
better becomes a test of the value of one parameter (δ12 = 0?) rather than
a test of the relationship between two parameters (a1 = a2?)∗.

To prepare to ask these questions with the fir data, we read in the data,
drop NAs, pull out the variables we want, and attach the resulting data
frame so that we can refer to the variables directly:

> data(FirDBHFec)

> X = na.omit(FirDBHFec[, c("TOTCONES", "DBH", "WAVE_NON")])

> X$TOTCONES = round(X$TOTCONES)

Using mle2’s formula interface is the easiest way to estimate the nested
series of models in R. The reduced model (no variation among populations)
is

> nbfit.0 = mle2(TOTCONES ~ dnbinom(mu = a * DBH^b,

+ size = k), start = list(a = 1, b = 1, k = 1),

+ data = X)

To fit more complex models, use the parameters argument to specify which
parameters differ among groups. For example, the argument list(a~WAVE_NON,b~WAVE_NON)
would allow a and b to have different values for wave and non-wave popu-
lations, corresponding to the hypothesis that the populations differ in both
a and b but not in variability (aw 6= an, bw 6= bn, kw = kn). The statistical
model is Yi ∼ NegBinom(ai ·DBHbi , k), and the R code is

> start.ab = as.list(coef(nbfit.0))

> nbfit.ab = mle2(TOTCONES ~ dnbinom(mu = a * DBH^b,

+ size = k), start = start.ab, data = X, parameters = list(a ~

+ WAVE_NON, b ~ WAVE_NON))

Here I have used the best-fit parameters of the simpler model as starting
parameters for the complex model. Using the best available starting param-
eters avoids many optimization problems.
mle2’s formula interface automatically expands the starting parameter

list (which only includes a single value for each of a and b) to include the
appropriate number of parameters. mle2 uses default starting parameter
values corresponding to equality of all groups, which for this parameteriza-
tion means that all of the additional parameters for groups other than the
first are set to zero.

The formula interface is convenient, but as with likelihood profiles you
often encounter situations where you have to know how to build the models
by hand. Here’s a negative log-likelihood model for the second model:

∗We can also interpret these parameterizations geometrically. In (a1,a2) parameter
space, we’re testing to see whether the best fit falls on the line through the origin a1 = a2;
in (a1, δ12) parameter space, we’re testing whether the best fit lies on the line δ12 = 0.
To explore further how different parameterizations relate to testing different hypotheses,
look for the topic of contrasts (in Crawley (2002) or Venables and Ripley (2002)).
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> attach(X)

> nbNLL.ab = function(a.w, b.w, a.n, b.n, k) {

+ wcode = as.numeric(WAVE_NON)

+ a = c(a.n, a.w)[wcode]

+ b = c(b.n, b.w)[wcode]

+ predcones = a * DBH^b

+ -sum(dnbinom(TOTCONES, mu = predcones, size = k,

+ log = TRUE))

+ }

The first three lines of nbNLL.ab turn the factor WAVE_NON into a numeric
code (1 or 2) and use the resulting code as an index to decide which value
of a or b to use in predicting the value for each individual. To make k differ
by group as well, just change k in the argument list to k.n and k.w and add
the line

> k = c(k.n, k.w)[wcode]

To simplify the model by making a or b homogeneous, cut down the argument
list and eliminate the line of code that specifies the value of the parameter
by group.

The only difference between this negative log-likelihood function and the
one that mle2 constructs when you use the formula interface is that the mle2-
constructed function uses the parameterization {a1, a1+δ12} while our hand-
coded function uses {a1, a2} (see p. 234). The former is more convenient for
statistical tests, while the latter is more convenient if you want to know the
parameter values for each group. To tell mle2 to use the latter parameter-
ization, specify parameters=list(a~WAVE_NON-1,b~WAVE_NON-1). The -1
tells mle2 to fit the model without an intercept, which in this case means
that the parameters for each group are specified relative to 0 rather than rel-
ative to the parameter value for the first group. When mle2 fills in default
starting values for this parameterization, it sets the starting parameters for
all groups equal.

The anova function∗ performs likelihood ratio tests on a series of nested
mle2 fits, automatically calculating the difference in numbers of parame-
ters (denoted by Df for degrees of freedom) and deviance and calculating p
values.

> anova(nbfit.0, nbfit.a, nbfit.ab)

Likelihood Ratio Tests
Model 1: nbfit.0, TOTCONES~dnbinom(mu=a*DBH^b,size=k)
Model 2: nbfit.a, TOTCONES~dnbinom(mu=a*DBH^b,size=k): a~WAVE_NON
Model 3: nbfit.ab, TOTCONES~dnbinom(mu=a*DBH^b,size=k): a~WAVE_NON, b~WAVE_NON
Tot Df Deviance Chisq Df Pr(>Chisq)

∗Why anova? The corresponding series of tests for a simple linear model with cate-
gorical predictors is an analysis of variance (Chapter 9).
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Figure 6.17 Nested hierarchy of models for the fir data. D, deviance.

1 3 2272.0
2 4 2271.6 0.4276 1 0.5132
3 5 2271.3 0.2496 1 0.6173

The Likelihood Ratio Test can compare any two nested models, testing
whether the nesting parameters of the more complex model differ signif-
icantly from their null values. Put another way, the LRT tests whether
the extra goodness of fit to the data is worth the added complexity of the
additional parameters. To use the LRT to compare models, compare the dif-
ference in deviances (the more complex model should always have a smaller
deviance — if not, check for problems with the optimization) to the critical
value of the χ2 distribution, with degrees of freedom equal to the addi-
tional number of parameters in the more complex model. If the difference
in deviances is greater than χ2

n2−n1
(1−α), then the more complex model is

significantly better at the p = α level. If not, then the additional complexity
is not justified.

Choosing among statistical distributions can often be reduced to compar-
ing among nested models As a reminder, Figure 4.16 (p. 155) shows some
of the relationships among common distributions. The most common use of
the LRT in this context is to see whether we need to use an overdispersed
distribution such as the negative binomial or beta-binomial instead of their
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lower-variance counterparts (Poisson or binomial). The Poisson distribu-
tion is nested in the negative binomial distribution when k →∞. If we fit a
model with a and b varying but using a Poisson distribution instead of a neg-
ative binomial, we can then use the LRT to see if adding the overdispersion
parameter is justified:

> poisfit.ab = mle2(TOTCONES ~ dpois(a * DBH^b),

+ start = list(a = 1, b = 1), data = X, parameters = list(a ~

+ WAVE_NON, b ~ WAVE_NON))

> anova(poisfit.ab, nbfit.ab)

Likelihood Ratio Tests
Model 1: poisfit.ab, TOTCONES~dpois(a*DBH^b): a~WAVE_NON, b~WAVE_NON
Model 2: nbfit.ab, TOTCONES~dnbinom(mu=a*DBH^b,size=k): a~WAVE_NON, b~WAVE_NON
Tot Df Deviance Chisq Df Pr(>Chisq)

1 4 6302.7
2 5 2271.4 4031.4 1 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We conclude that negative binomial is clearly justified: the difference in
deviance is greater than 4000, compared to a critical value of 3.84! This
analysis ignores the non-applicability of the LRT on the boundary of the
allowable parameter space (k →∞ or 1/k = 0: see p. 285), but the evidence
is so overwhelming in this case that it probably doesn’t matter.

Models with multiple parameters and multiple groups naturally lead to a
web of nested models. Figure 6.17 shows all of the model comparisons for
the fir data — even for this relatively simple example there are 7 possible
models and 9 possible series of nested comparisons. In this case the answer
is easy, because none of the comparisons is significant according to the LRT
(i.e., none of the one-step comparisons differ by more than 3.84). In more
complex scenarios it can be quite hard to decide which set of comparisons
to do first. Two simple options are forward selection (try to add parameters
one at a time to the simplest model) and backward selection (try to subtract
parameters from the most complex model). Either of these approaches will
work, but for comparisons that are close to the edge of statistical signifi-
cance, or where the effects of the parameters are strongly correlated, you’ll
often find that you get different answers. Similar problems arise in multiple
regression (in fact, in any complex modeling exercise). With too large a set
of possibilities, this kind of model selection can devolve into data-dredging.
You should: (1) use common sense and ecological knowledge to isolate the
most important comparisons. (2) Draw plots of the best candidate fits to
try to understand why different models fit the data approximately equally
well. (3) Try to rule out differences in variance parameters (k in this case)
first. If you can simplify the model in this way it will be more comparable
with classical models. If not, something interesting may be happening.
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6.7.2 Information criteria

One way to avoid having to make pairwise model comparisons is to select
models based on information criteria, which compare all candidate models at
once and do not require nested alternatives. These relatively recent alterna-
tives to likelihood ratio tests are based on the expected distance (quantified
in a way that comes from information theory) between a particular model
and the “true” model (Burnham and Anderson, 1998, 2002). In practice, all
information-theoretic methods reduce to the finding the model that mini-
mizes some criterion that is the sum of a term based on the likelihood (usu-
ally twice the negative log-likelihood) and a penalty term which is different
for different information criteria.

The Akaike Information Criterion, or AIC, is the most widespread infor-
mation criterion, and is defined as

AIC = −2L + 2k (6.23)

where L is the log-likelihood and k is the number of parameters in the
model. As with all information criteria, small values represent better overall
fits; adding a parameter with a negligible improvement in fit penalizes the
AIC by 2 log-likelihood units. For small sample sizes (n) — such as when
n/k < 40 (Burnham and Anderson, 2004, p. 66)) — you should use a finite-
size correction and apply the AICc (“corrected AIC”) instead:

AICc = AIC +
2k(k + 1)
n− k − 1

. (6.24)

As n grows large, the correction term in (6.24) vanishes and the AICc

matches the AIC. The AICc was originally derived on the basis of linear
models with normally distributed errors, so it may apply to a smaller range
of models than the AIC — but this is really an open question. Shono (2000)
found using simulation studies that the AICc gave accurate answers for typ-
ical fisheries data sets, although Richards (2005) suggests that AICc might
not perform as well for other kinds of ecological data sets. (I would recom-
mend using AICc for small samples, but being careful with the results if they
disagree with the results based on large-sample AIC.)

The second most common information criterion, the Schwarz criterion or
Bayesian information criterion (SC/BIC)∗, uses a penalty term of (log n)k.
When n is greater than e2 ≈ 9 observations (so that log n > 2), the BIC is
more conservative than the AIC, insisting on a greater improvement in fit
before it will accept a more complex model.

Information criteria do not allow frequentist significance tests based on
the estimated probability of getting more extreme results in repeated exper-
iments (some statisticians would say this is an advantage). With ICs, you
cannot say that there is a statistically significant difference between models;
a model with a lower IC is better, but there is no p-value associated with how

∗While the BIC is derived from a Bayesian argument, it is not inherently a Bayesian
technique. It is also not how most Bayesians would compare models (Section 6.7.3).
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much better it is †. Instead, there are commonly used rules of thumb: models
with ICs less than 2 apart (∆IC < 2) are more or less equivalent; those with
ICs 4-7 apart are clearly distinguishable; and models with ICs more than
10 apart are definitely different. Richards (2005) concurs with these recom-
mendations, but cautions that simply dropping models with ∆AIC > 2 (as
some ecologists do) will probably discard useful models.

One big advantage of IC-based approaches is that they do not require
nested models. You can compare all models to each other, rather than
stepping through a sometimes confusing sequence of pairwise tests. In IC-
based approaches, you simply compute the likelihood and IC for all of the
candidate models and rank them in order of increasing IC. The model with
the lowest IC is the best fit to the data; those models with ICs within 10 units
of the minimum IC are worth considering. As with the LRT, the absolute
size of the ICs is unimportant — only the differences in ICs matter.

The AICtab, AICctab,and BICtab commands in the bbmle package will
compute IC tables from lists of mle fits. Use the options delta=TRUE to get
a list of the ∆IC values, weights=TRUE to get AIC weights (see below), and
nobs to specify the number of observations for BIC or AICc. Here are the
results for the fir models:

model params ∆AIC ∆AICc ∆BIC
nbfit.0 3 0.00 0.00 0.00
nbfit.a 4 1.57 1.64 5.06
nbfit.b 4 1.48 1.55 4.97
nbfit.k 4 0.62 0.69 4.11
nbfit.ab 5 3.32 3.48 10.30
nbfit.ak 5 2.24 2.39 9.21
nbfit.bk 5 2.24 2.39 9.21
nbfit.abk 6 3.99 4.25 14.46

All three approaches pick the simplest model as the best model (minimum
IC). AIC would keep all models under consideration (∆AIC < 4 for all
models), while AICc might rule out the most complex model (∆AICc =
4.25), and BIC would definitely rule out complex models where a and b both
change (∆BIC > 10).

ICs can also be useful to choose among stochastic models, which are often
not nested. For example, the Gamma, log-normal, and negative binomial
models can all describe skewed data, and they all converge to the normal
distribution in some limit (Figure 4.16), but there is no easy way to nest
them. We can fit the same deterministic model as before (fecundity = ai ·
DBHb

i ) with different probability distributions and then use AIC to compare
the results.

†Burnham and Anderson recommend avoiding the word “significant” in conjunction
with AIC-based model selection (Burnham and Anderson, 2002, p. 84); no matter how
carefully you phrase your conclusions, some readers will impose a frequentist hypothesis-
testing interpretation.
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For each distribution I have to modify the parameters slightly. The log-
normal’s parameters are the mean and standard deviation of the distribution
on the log scale, so I set µlog = log(a · DBHb) = log a + b log DBH. The
Gamma’s are shape and scale, with the mean equal to shape · scale, so
I set scale = (a · DBHb)/shape. I also added 0.001 to TOTCONES for the
log-normal and Gamma fits because zero values are impossible for the log-
normal distribution and for the Gamma distribution with shape > 1, leading
to infinite negative log-likelihoods. This problem warns us that a discrete
distribution like the negative binomial might make more sense, but a better
fit to a continuous distribution might override this concern.

> lnormfit.ab = mle2(TOTCONES + 0.001 ~ dlnorm(meanlog = b *

+ log(DBH) + log(a), sdlog = sdlog), start = list(a = 1,

+ b = 1, sdlog = 0.1), data = X, parameters = list(a ~

+ WAVE_NON, b ~ WAVE_NON), method = "Nelder-Mead")

> gammafit.ab = mle2(TOTCONES + 0.001 ~ dgamma(scale = a *

+ DBH^b/shape, shape = shape), start = list(a = 1,

+ b = 1, shape = 2), data = X, parameters = list(a ~

+ WAVE_NON, b ~ WAVE_NON))

AIC df ∆AIC
Neg. binom. 2281.4 5 0.0
Gamma 2288.7 5 7.4
Log-normal 2556.3 5 274.9
Poisson 6310.7 4 4029.4

I conclude that the negative binomial is best after all.

6.7.3 Bayesian analyses

Bayesians are on the whole less interested in formal methods of model selec-
tion. Dropping a parameter from a model is often equivalent to testing a null
hypothesis that the parameter is exactly zero, and Bayesians consider such
point null hypotheses silly. They would describe a parameter’s distribution
as being concentrated near zero rather than saying its value is exactly zero∗.

Nevertheless, Bayesians do have a way to compute the relative probability
of different models, one that implicitly recognizes the bias-variance tradeoff
and penalizes more complex models (Kass and Raftery, 1995). Bayesians
prefer to make inferences based on averages rather than on most-likely values:
for example, they generally use the posterior mean values of parameters
rather than the posterior mode. This preference extends to model selection.
The marginal likelihood of a model is the probability of observing the data
(likelihood), averaged over the prior distribution of the parameters:

L̂ =
∫

L(x) · Prior(x) dx, (6.25)

∗Although they might consider testing a hypothesis about whether a parameter is
small (i.e., whether its absolute value is below some threshold: Gelman and Tuerlinckx
(2000)).
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where x represents a parameter or set of parameters (if a set, then the in-
tegral would be a multiple integral). The marginal likelihood (the average
probability of observing a particular data set exactly) is often very small,
and we are really interested in the relative probability of different models.
If we have two models with marginal likelihoods L̂1 and L̂2, the Bayes fac-
tor is the ratio of the marginal likelihoods, B12 = L̂1/L̂2, or the odds in
favor of model 1†. If we want to compare several different (not necessarily
nested) models, we can look at the pairwise Bayes factors or compute a set of
posterior probabilities — assuming that all the models have the same prior
probability — by computing the relative values of the marginal likelihoods:

Prob(Mi) =
L̂i∑N

j=1 L̂j

. (6.26)

Marginal likelihoods and Bayes factors incorporate an implicit penalty for
overparameterization. When you add more parameters to a model, it can
fit better — the maximum likelihood and the maximum posterior probabil-
ity increase — but at the same time the posterior probability distribution
spreads out to cover more less-well-fitting possibilities. Since marginal like-
lihoods express the mean and not the maximum posterior probability, they
will actually decrease when the model becomes too complex.

In principle, using Bayes factors to select the better of two models is sim-
ple. If we compare twice the logarithm of the Bayes factors (thus putting
them on the deviance scale), the generally accepted rules of thumb for Bayes
factors are (Jeffreys, 1961, p. 432):

2 log B12 evidence in favor of model 1
0–2 weak
2–6 positive
6–10 strong
> 10 very strong

It is no coincidence that these rules of thumb are similar to those quoted for
the AIC. With fairly strong priors, the Bayes factor converges to the AIC
instead of the BIC (Kass and Raftery, 1995).

In practice, computing Bayes factors for a particular set of models can be
tricky (Congdon, 2003), involving either complicated multidimensional inte-
grals or some kind of stochastic sampling from the prior distribution. One
simple approximation is to calculate the harmonic mean of the likelihoods
returned from an MCMC run (the harmonic mean is 1/(

∑
(1/L)/n)). An-

other, the analogue of the quadratic approximations to the likelihood profile
described above, is the Laplace approximation which combines the posterior
mode (the maximum value of prior × likelihood) with information on the
curvature of the posterior probability density near the mode∗.

†the Bayes factor is based on assuming equal prior probabilities (p1 = p2 = 0.5) for
both models.

∗The expression is
L̂ ≈ (2π)d/2|V|1/2Postmax
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Most of these approximations improve as the sample size increases: Kass
and Raftery (1995) suggest that the Laplace approximation requires at least
5 times as many samples as parameters, and that the other approximations
should be reasonable with 20 times as many samples as parameters. How do
these approximations compare for the fir data set, with 242 data points and
up to 6 parameters?

harmonic mean Laplace BIC
null 0.0 0.0 0.0
a, b differ 5.2 8.2 10.3
a, b, k differ 24.9 9.5 14.5

The different approximations of the Bayes factor do differ considerably, but
the only qualitative difference among them according to the rules of thumb is
that the evidence supporting the null model (all parameters the same) over
the model with different a and b parameters is “positive” according to the
harmonic mean and “strong” according to the Laplace approximation and
BIC.

A more recent criterion, conveniently built into WinBUGS, is the DIC or
deviance information criterion, which was designed particularly for models
containing random effects where even specifying the number of parameters
is confusing (see Chapter 10). To compute DIC, start by calculating D̄, the
average of the deviance (-2 × log-likelihood) over the posterior distribution
(as contrasted with the marginal likelihood, which is the average over the
prior distribution), and D̂, which is the deviance calculated at the posterior
mean parameters. Then use these two values to estimate an effective number
of parameters pD = D̄ − D̂; the more spread out the posterior distribution,
the bigger the difference between the deviance of the mean parameters and
the mean deviance, and the larger the effective number of parameters. Fi-
nally, as with AIC and BIC, use this effective number of parameters as a
penalty term on the goodness of fit (defined in this case as the deviance at
the mean parameters D̂): DIC=D̂ + 2pD. As with all information criteria,
lower values of DIC indicate a better model. The rules of thumb are similar
too: differences in DIC from 5–10 indicate that one model is clearly bet-
ter, while models with difference in DIC > 10 probably don’t need to be
considered further (Spiegelhalter et al., 2002).

Two important cautions about the DIC are:

� if the model contains random effects (see chapter 9), the DIC focuses
on the random effects. In the fir case, because of a peculiarity of
WinBUGS, we had to parameterize the negative binomial model by
assuming that each tree’s fecundity is a Poisson variable with a differ-
ent, Gamma-distributed rate. Since DIC focuses on random effects, it

where d is the number of parameters, |V| is the determinant of the variance-covariance
matrix estimated from the Hessian at the posterior mode, and Postmax is the height of
the posterior mode.
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reports the effective number of parameters as > 200 (it takes a lot of in-
formation to describe the variation in rates), and the effective number
of parameters for the most complex model is actually slightly smaller
than for the simpler model, because there is slightly less variation in
the rates. This drop in effective model size gives the most complex
model the lowest DIC. However, the range of DICs is very small —
from 1709.2 to 1710.9 — so we should just say that the models can’t
be well distinguished.

� DIC is convenient, and so it is likely to become established as the
standard “canned” method of model comparison in Bayesian statistics.
It has already begun to appear in ecological journals (Jonsen et al.,
2003; Morales et al., 2004; McCarthy and Parris, 2004; Okuyama and
Bolker, 2005; Parris, 2006; Vesk, 2006), but statisticians continue to
debate its exact meaning and appropriateness (both Spiegelhalter et al.
(2002) and Celeux et al. (2006) are accompanied by lively discussions).

The bottom line on Bayesian model selection is that, despite the concep-
tual simplicity of the Bayes factor (giving the “average” quality of fit to the
data, and automatically incorporating a penalty for overfitting), it is rela-
tively difficult to calculate and so is likely to be superseded by the convenient
DIC. You should exercise the same care with DIC as you would with any
canned model selection procedure.

6.7.4 Model weighting and averaging

Bayesians themselves would say that you should not simply select one model.
Taking the best model and ignoring the rest is equivalent to assigning a prob-
ability of 1.0 to the best and 0.0 to the rest. Model averaging methods take
the average of the predictions of different models, weighted by the probability
of the models or by some other index.

Bayesian model averaging simply takes the probabilities based on the
marginal likelihoods or the BIC: the posterior probabilities of a set of mod-
els, if they all have equal prior probabilities, are the marginal likelihoods
(or BICs) divided by the sum of the marginal likelihoods (or BICs)∗. If
a set of models have BIC values, relative to the best one, of ∆Bi (where
∆Bi = BICi − min(BIC)), then the approximate posterior probabilities of
the models, assuming all the prior probabilities are equal, are

pi =
e−∆Bi/2∑n

j=1 e−∆Bj/2
. (6.27)

To make a weighted prediction, use the posterior probabilities to combine

∗Equal prior probabilities for all the models usually makes sense, although one does
face some of the questions about equal priors raised in Chapter 4: for example, should all
of the models incorporating differences between groups in the fir example be treated as
subsets of a single model?
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the predictions of the different models (say C1, C2, . . . Cn):

Ĉ =
n∑

i=1

piCi. (6.28)

Of course, you can do the same with marginal likelihoods.
Burnham and Anderson have also promoted model averaging, in their

case based on AIC weights: (Burnham and Anderson, 1998, 2002). The
AIC weights are analogous to the probabilities calculated from the relative
BIC values, but with AIC values substituted for BIC values in (6.27). AIC
weights have no probability interpretation, but they can be used in model
averaging ∗.

Even if you don’t do formal model averaging, AIC or BIC weights are a
useful way of getting a feel for the relative goodness-of-fit of different models.

6.7.5 Model criticism and goodness-of-fit tests

If the best model is a poor fit to the data, then none of the machinery
of model selection and averaging makes sense. You should always check
that your model gives a reasonable fit to the data. Goodness-of-fit test-
ing may remind you of the classical Pearson chi-square statistic, adding up
((expected− observed)2/expected) for all of your data to test whether there
is more variance than expected around the model predictions. However, the
chi-square test only works for simple count data where the answers fall in
discrete groups. If your data are continuous, or if you are using an overdis-
persed distribution such as the negative binomial, then your model contains
a parameter describing the variance and the chi-square test is no longer
useful†.

In practice, model criticism (a more generic term than goodness-of-fit
testing) is simply common sense. Are the predictions reasonable? Are there
consistent deviations from the estimates or unexplained outliers? Start with
a simple graph of the predictions of the model (Figure 6.15), to see whether
the deterministic component of the model works well.

A plot of predicted vs. actual data can sometimes be useful (Figure 6.18).
You have already had to figure out how to calculate the predicted values
in order to write a likelihood function. Take these values and plot them
against the corresponding data points, then use abline(a=0,b=1) to add

∗Akaike weights are widely and incorrectly presented as “the probability that model
i is the best model for the observed data, given the candidate set of models” (Mazerolle,
2004; Johnson and Omland, 2004). Burnham and Anderson are slightly more careful: they
say 2004 that the AIC weights “are interpreted as probabilities . . . ” (emphasis added),
but it is clearly a slippery slope. Taking AIC weights as actual probabilities is trying to
have one’s cake and eat it too; the only rigorous way to get such probabilities of models
is to use Bayesian inference, with its associated complexities (Link and Barker, 2006).

†Much of the protocol that Burnham and Anderson (2002) have developed for work-
ing with AIC concerns testing and correcting for overdispersion — ĉ in their notation.
These overdispersion corrections are only relevant when your model uses a simple count
distribution such as binomial or Poisson.
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Figure 6.18 Predicted vs. actual cones for the fir data, on a logarithmic scale.
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a predicted=actual line to the plot. However, while the predicted-vs-actual
plot can identify outliers, it really gives a consistency check rather than pro-
viding any new information. Ideally, the scatter around the predicted=actual
line will be small — in which case the deterministic component of the model
explains most of the variation in the data, so that the model is precise as well
as accurate (and therefore useful for prediction). Remember, though, that a
reasonable amount of unexplained variability does not necessarily mean that
the model fits badly or is not useful; it just means it can’t make very precise
predictions‡. Model criticism is more concerned with systematic deviations
that suggest that the form of the model itself is wrong.

Examining the goodness of fit of the stochastic part of a model is harder.
If the model contains only discrete groups (factors), you can divide the data
into those groups and overlay the observed distribution (described by a his-
togram or density plot) with the predicted distribution. If it contains con-
tinuous covariates you will have to break the data up into discrete subsets
in order to compare the predicted and observed distributions (Figure 6.19).

6.7.6 Model selection: comparisons and conclusions

Deciding what models to use and how to use them is fundamentally diffi-
cult. In one form or another, this debate goes all the way back to the early
Bayesian/frequentist divide. While statisticians have come a long way in ex-
ploring the possible approaches and (to some extent) in providing practical
recipes for applying them, we still do not have — and never will have — a
single best method.

� Hypothesis testing based on the likelihood ratio test is well-established,
widely used, and simple to implement. There are times when we really
do want a yes-or-no answer about whether some ecological factor is
affecting the system in a way that is distinguishable from randomness,
and the LRT is appropriate here. The LRT becomes unwieldy when
there are many possibly interacting factors — one has to choose a
path through the nested hierarchy of factors (Figure 6.17). Analogous
problems in multiple regression analysis led to stepwise model-building
approaches, which are widely used by researchers but widely dismissed
by statisticians because they encourage data-dredging, and because the
results can depend on the exact thresholds used to include or exclude
factors from the model (Whittingham et al., 2006).
If you do find yourself with seemingly inconsistent results from a LRT
analysis (e.g. if some parameters are only significant when other pa-
rameters are included in the model: Lindsey (1999b) calls these in-
compatible results), examine your data carefully to understand how

‡People who are familiar with classical statistical approaches would often like to com-
pute an R2 statistic (proportion variance explained) for a model. Unfortunately, “[d]espite
various analogs for categorical response models, no proposed measure is as widely useful
as R and R2” (Agresti, 2002, p. 226).
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Figure 6.19 Goodness-of-fit checking for the fir model. Panels break data up by
wave/non-wave (rows) and DBH (columns) and plot the density of
points for each category along with the predicted negative binomial
distribution (gray) for the mean DBH value in the category.
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the fit changes with different sets of parameters. If two parameters
explain essentially the same patterns in the data (e.g. if you are us-
ing strongly correlated predictors like soil moisture and precipitation),
then whichever enters the model first will be selected. On the other
hand, the effects of nitrogen availability might only be visible once the
effects of soil moisture are accounted for — in this case, nitrogen would
only be significant if soil moisture were in the model already. These
kinds of interactions are challenging, but handled properly they tell
you more about what’s going on in your data.

� Information theoretic (AIC-based) approaches are also well-established
and practical. They neatly avoid the problem of pairwise testing, the
need for nested models, and the philosophical issues associated with
null hypothesis testing — rather than asking about the probability of
a more extreme outcome, they simply try to identify the model with
the best predictive ability. They can be used for model averaging,
taking the predictions of all reasonable models into account, as well as
for model testing. However, AIC-based approaches can also be abused
(Guthery et al., 2005). Precisely because of their popularity and ease of
use, they have led some ecologists down the path of data-dredging and
thoughtless model selection (against the explicit warnings of Burnham
and Anderson, AIC’s main proponents in ecology).

AIC-based analyses make decisions based on rules of thumb about
∆AIC values or AIC weights, which are in turn based on extensive
simulation analysis. You can’t interpret your results in terms of out-
come probabilities or “statistical significance” (which may be a good
thing). In some theoretical situations (i.e. when sample sizes grow to
infinity but the set of candidate models remains fixed), AIC is known
to “overfit” data by choosing an inappropriately complex model. Re-
searchers hotly debate the practical relevance of these criteria (Spiegel-
halter et al., 2002; Burnham and Anderson, 2004; Link and Barker,
2006).

� Bayesian (marginal likelihood, BIC, DIC) approaches are philosophi-
cally satisfying since they allow us to state results in terms of posterior
probabilities of different models. The selection criteria (posterior prob-
abilities) depend on the number of the parameters and on the sample
size, which seems sensible. However, Bayesian approaches are also chal-
lenging to apply. Marginal likelihood is hard to calculate in a stable
way; BIC is an approximation to the marginal likelihood that applies
when sample sizes are large and the priors are vague (AIC is simi-
larly an approximation to a marginal likelihood with a fairly strongly
informative prior). For reasonable sample sizes, BIC will be more con-
servative than AIC; whether this conservatism is appropriate or not is
still a matter of deep contention. Some researchers feel that a method
that gives the wrong answer as more and more information is available
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is unacceptable; others say that we should be more concerned with the
performance of the method in the more realistic, data-limited case ∗.

Bayesian approaches are also sensitive to the priors used: one may not
be able to get away with the common practice of setting a vague prior
and forgetting about it. DIC is promising, but continues to be contro-
versial among statisticians. According to Spiegelhalter et al. (2002, p.
613), it is “a Bayesian analogue of AIC, with a similar justification but
wider applicability”. It is similar to AIC in its large-sample behavior.
DIC is likely to become increasingly popular among ecologists using
WinBUGS since it is implemented by default.

Should we use formal rules to do model selection (or model averaging) at
all? Many Bayesians would say that all possible model components really ex-
ist in the world, and we ought not throw components away just because they
fall below some arbitrary threshold criterion. Gelman et al. (1996) prefer to
formulate selection problems as estimating a continuous parameter rather
than selecting from discrete choices. Bayesians do recognize the fundamen-
tal tradeoff between bias and variance, but in general they use less formal
methods (such as checking whether the marginal posterior distribution has
a peak, indicating that the model component is not just adding noise to the
model) to decide what components to include.

A second, more intuitive argument usually comes from biologists, who are
unhappy when their favorite bit of biology is dropped from a model even
though they know that mechanism operates in nature. If you want to eval-
uate the effects of age structure (or spatial structure, or genetic structure)
on population dynamics, you have to include it in the model even if a for-
mal model selection procedure tells you to leave it out (Hilborn and Mangel,
1997, p. 261). What the model selection criterion is warning you, however,
is that you may be basing your conclusions on dangerously little information
. . .

A third argument often comes from conservationists who are concerned
that adding a biologically relevant but statistically insignificant term to the
model changes the predicted dynamics of a species, often for the worse.
This is a real problem, but it is also sometimes used dishonestly. Adding
complexity to a model often makes its dynamics less stable, and if you’re
looking to bolster an argument that a species is in trouble and needs to be
protected, you’ll favor results that show the species is in trouble. How often
do we see conservationists arguing for more realistic biological models that
suggest that a species is in no real danger and needs no protection? (On the
flip side, how often do we see developers arguing that we should sample more
thoroughly to make absolutely sure that there are no endangered species on
a tract of land before starting construction?)

∗Lindsey (1999b) suggests an adjustable penalty term that depends on the sample size
and may fall somewhere between the AIC and BIC criteria, but he gives little practical
advice on deciding what penalty term to use.
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There are rules of thumb and procedures for model selection, but they
don’t settle the fundamental questions of model selection. Is parsimony
really the most important thing? Is it OK to add more complexity to the
model if you’re interested in a particular biological mechanism, even if the
data don’t appear to support it? In the end you have to learn all the rules,
but also know when to bend them — and when you do bend them, give a clear
justification. The plethora of available model selection approaches opens a
new avenue for data dredging by selecting the model selection approach that
gives you the answers you want.

CONCLUSION

This chapter has covered an enormous amount of ground, starting from the
basic ideas of likelihood and maximum likelihood estimation, discussing var-
ious ways of estimating confidence intervals, and tackling the contentious
issue of hypothesis testing and model selection. The two big ideas to take
away are: (1) The geometry of the likelihood surface or posterior probability
distribution — where it peaks and how the distribution falls off around the
peak — contains essentially all the information you need to estimate param-
eters and confidence intervals. (2) Deciding which models best describe a
given set of data is necessary, but essentially impossible to do in a completely
consistent way.
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Optimization and all that
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7.1 SUMMARY

This chapter explores the technical methods required to find the quantities
(maximum likelihood estimates, posterior means, and profile confidence lim-
its). The first section covers methods of numerical optimization for finding
MLEs and Bayesian posterior modes, the second section introduces Markov
Chain Monte Carlo, a general algorithm for finding posterior means and cred-
ible intervals, and the third section discusses methods for finding confidence
intervals for quantities that are not parameters of a given model.

7.2 INTRODUCTION

Now we can think about the nitty-gritty details of fitting models to data.
Remember that we’re trying to find the parameters that give the maximum
likelihood for the comparison between the fitted model(s) and the data.
(From now on I will discuss the problem in terms of finding the minimum
negative log-likelihood, although all the methods apply to finding maxima
as well.) The first section focuses on methods for finding minima of curves
and surfaces. These methods apply whether we are looking for maximum
likelihood estimates, profile confidence limits, or Bayesian posterior modes
(which are an important starting point in Bayesian analyses (Gelman et al.,
1996)). Although there are many numerical minimization algorithms, I will
only discuss the basic properties of few common ones (most of which are built
into R), and their strengths and weaknesses. The second section introduces
Markov Chain Monte Carlo methods, which are the foundation of modern
Bayesian analysis. MCMC methods feel a little bit like magic, but they
follow simple rules that are not too hard to understand. The last section
tackles a more specific but very common problem, that of finding confidence
limits on a quantity that is not a parameter of the model being fitted. There
are many different ways to tackle this problem, varying in accuracy and
difficulty. It’s useful to have several in your toolbox, and learning about
them also helps you gain a deeper understanding of the shapes of likelihood
and posterior probability surfaces.

7.3 FITTING METHODS

7.3.1 Brute force/direct search

The simplest way to find a maximum (minimum) is to evaluate the function
for a wide range of parameter values and see which one gives the best answer.
In R, you would make up a vector of parameter values to try (perhaps a vector
for each of several parameters); use sapply (for a single parameter) or for
loops to calculate and save the negative log-likelihood (or posterior [log-
]likelihood) for each value; then use which(x==min(x)) (or which.min(x))
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Figure 7.1 Direct search grids for a hypothetical negative log-likelihood function.
Grids 1 and 4 will eventually find the correct minimum (open point).
Grids 2 and 3 will miss it, finding the false minimum (closed point)
instead. Grid 2 misses becauses its range is too small; grid 3 misses
because its resolution is too small.

to see which value of the parameters gave the minimum. (You may be able
to use outer to evaluate a matrix of all combinations of two parameters, but
you have to be careful to use a vectorized likelihood function.)

The big problem with direct search is speed, or lack of it: the resolution of
your answer is limited by the resolution (grid size) and range of your search,
and the time it takes is the product of the resolution and the range. Suppose
you try all values between plower and pupper with a resolution ∆p (e.g. from
0 to 10 by steps of 0.1). Figure 7.1 shows a made-up example—somewhat
pathological, but not much worse than some real likelihood surfaces I’ve
tried to fit. Obviously, the point you’re looking for must fall in the range
you’re sampling: sampling grid #2 in the figure misses the real minimum by
looking at too small a range.

You can also miss a sharp, narrow minimum, even if you sample the right
range, by using too large a ∆p — sampling grid #3 in Figure 7.1. There are
no simple rules for determining the range and ∆p to use. You must know
the ecological meaning of your parameters well enough that you can guess
at an appropriate order of magnitude to start with. For small numbers of
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parameters you can draw curves or contours of your results to double-check
that nothing looks funny, but for larger models it’s difficult to draw the
appropriate surfaces.

Furthermore, even if you use an appropriate sampling grid, you will only
know the answer to within ∆p. If you use a smaller ∆p, you multiply the
number of values you have to evaluate. A good general strategy for direct
search is to start with a fairly coarse grid (although not as coarse as sampling
grid #3 in Figure 7.1), find the sub-region that contains the minimum, and
then “zoom in” on that region by making both the range and ∆p smaller,
as in sampling grid #4. You can often achieve fairly good results this way,
but almost always less efficiently than with one of the more sophisticated
approaches covered in the rest of the chapter.

The advantages of direct search are (1) it’s simple and (2) it’s so dumb
that it’s hard to fool: provided you use a reasonable range and ∆p, it won’t
be led astray by features like multiple minima or discontinuities that will
confuse other, more sophisticated approaches. The real problem with direct
search is that it’s slow because it takes no advantage of the geometry of the
surface. If it takes more than a few seconds to evaluate the likelihood for a
particular set of parameters, or if you have many parameters (which leads
to many many combinations of parameters to evaluate), direct search won’t
be feasible.

For example, to do direct search on the parameters of the Gamma-distributed
myxomatosis data (ignoring the temporal variation), we would set the range
and grid size for shape and scale:

> data(MyxoTiter_sum)

> myxdat = subset(MyxoTiter_sum, grade == 1)

> gm = mean(myxdat$titer)

> cv = var(myxdat$titer)/mean(myxdat$titer)

> shape0 = gm/cv

> scale0 = cv

In Chapter 6, we used the method of moments to determine starting values
of shape (53.9) and scale (0.13). We’ll try shape parameters from 10 to 100
with ∆ shape=1, and scale parameters from 0.01 to 0.3 with ∆ scale=0.01.

> shapevec = 10:100

> scalevec = seq(0.01, 0.3, by = 0.01)

Using the gammaNLL1 negative log-likelihood function from p. 200:

> surf = matrix(nrow = length(shapevec), ncol = length(scalevec))

> for (i in 1:length(shapevec)) {

+ for (j in 1:length(scalevec)) {

+ surf[i, j] = gammaNLL1(shapevec[i], scalevec[j])

+ }

+ }



book May 21, 2007

OPTIMIZATION AND ALL THAT 257

Draw the contour plot:

> contour(shapevec, scalevec, log10(surf))

Or you can do this more automatically with the curve3d function from
the emdbook package:

> curve3d(log10(gammaNLL1(x, y)), from = c(10, 0.01),

+ to = c(100, 0.3), n = c(91, 30), sys3d = "image")

The gridsearch2d function (also in emdbook) will let you zoom in on a
negative log-likelihood surface:

> gridsearch2d(gammaNLL1, v1min = 10, v2min = 0.01,

+ v1max = 100, v2max = 0.3, logz = TRUE)

7.3.2 Derivative-based methods

The opposite extreme from direct search is to make strong assumptions about
the geometry of the likelihood surface: typically, that it is smooth (continu-
ous with continuous first and second derivatives) and has only one minimum.
Then at the minimum point the derivative is zero: the gradient, the vector of
the derivatives of the surface with respect to all the parameters, is a vector
of all zeros. Most numerical optimization methods other than direct search
use some variant of the criterion that the derivative must be close to zero
at the minimum in order to decide when to stop. So-called derivative-based
methods also use information about the first and second derivatives to move
quickly to the minimum.

The simplest derivative-based method is Newton’s method, also called the
Newton-Raphson method, Newton’s method is a general algorithm for dis-
covering the places where a function crosses zero, called its roots. In general,
if we have a function f(x) and a starting guess x0, we calculate the value
f(x0) and the value of the derivative at x0, f ′(x0). Then we extrapolate
linearly to try to find the root: x1 = x0 − f(x0)/f ′(x0) (Figure 7.2). We
iterate this process until we reach a point where the absolute value of the
function is “small enough” — typically 10−6 or smaller.

While calculating the derivatives of the objective function analytically is
the most efficient procedure, it is often convenient and sometimes necessary
to approximate the derivatives numerically using finite differences:

df(x)
dx

= lim
∆x→0

∆f(x)
∆x

≈ f(x + ∆x)− f(x)
∆x

, for small ∆x (7.1)

R’s optim function uses finite differences by default, but it sometimes runs
into trouble with both speed (calculating finite differences for an n-parameter
model requires an additional n function evaluations for each step) and stabil-
ity. Calculating finite differences requires you to pick a ∆x: optim uses ∆x =
0.001 by default, but you can change this with the control=list(ndeps=c(...)),
where the dots stand for a vector of ∆x values, one for each parameter. You
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Figure 7.2 Newton’s method: schematic
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for the parameter p (starting from guess #1 at 0.6); a dotted gray line
joins the current guess with the value of the derivative for that value
of the parameter; and solid lines “shoot” over to the horizontal axis to
find the next guess for p. Bottom: Likelihood curve.
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can also change the effective value of ∆x by changing the parameter scale,
control=list(parscale=c(...)); ∆xi is defined relative to the parameter
scale, as parscale[i]*ndeps[i]. If ∆x is too large, the finite difference
approximation will be poor; if it is too small, you may run into trouble with
round-off error.

> plot(0:1, 0:1, type = "n", ann = FALSE, axes = FALSE)

In minimization problems, we actually want to find the root of the deriva-
tive of the (negative) log-likelihood function, which means we need to find
the second derivative of the objective function. That is, instead of taking
f(x) and calculating f ′(x) by differentiation or finite differencing to figure
out the slope and project our next guess, Newton’s method for minima takes
f ′(x) and calculates f ′′(x) (the curvature) to approximate where f ′(x) = 0.

Using the binomial seed predation data from the last chapter and starting
with a guess of p = 0.6, Figure 7.3 and the following table show how Newton’s
method converges quickly to p = 0.75 (for clarity, the figure shows only the
first three steps of the process):

Guess (x) f ′(x) f ′′(x)
1 0.6000000 −25.000 145.833
2 0.7714286 4.861 241.818
3 0.7513262 0.284 214.856
4 0.7500047 0.001 213.339
5 0.7500000 0.000 213.333

Newton’s method is simple and converges quickly. The precision of the
answer rapidly increases with additional iterations. It also generalizes easily
to multiple parameters: just calculate the first and second partial derivatives
with respect to all the parameters and use linear extrapolation to look for
the root. However, if the initial guess is poor or if the likelihood surface has
a funny shape, Newton’s method can misbehave — overshooting the right
answer or oscillating around it. Various modifications of Newton’s method
mitigate some of these problems (Press et al., 1994), and other methods
called“quasi-Newton”methods use the general idea of calculating derivatives
to iteratively approximate the root of the derivatives. The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm built into R’s optim code is probably the
most widespread quasi-Newton method.

Use BFGS whenever you have a relatively well-behaved (i.e., smooth)
likelihood surface, reasonable starting conditions, and efficiency is important.
If you can calculate an analytical formula for the derivatives, write an R
function to compute it for a particular parameter vector, and supply it to
optim via the gr argument, you will avoid the finite difference calculations
and get an even faster and more stable solution.

As with all optimization methods, you must be able to estimate reasonable
starting parameter values. Sometimes a likelihood surface will become flat
for really bad fits — once the parameters are sufficiently far off the correct
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answer, changing them may make little difference in the goodness of fit.
Since the log-likelihood will be nearly constant, its derivative will be nearly
zero. Derivative-based methods that start from implausible values (or any
optimization procedure that uses a“flatness”criterion to decide when to stop,
including most of those built into optim) may find this worst-case scenario
instead of the minimum you sought.

More often, specifying ridiculous starting values will give infinite or NA
values, which R’s optimization routines will choke on. Although most of the
optimization routines can handle occasional NAs, the negative log-likelihood
must be finite for the starting values. You should always test your negative
log-likelihood functions at the proposed starting conditions to make sure
they give finite answers; also try tweaking the parameters in the direction
you think might be toward a better fit, and see if the negative log-likelihood
decreases. If you get non-finite values (Inf, NA, or NaN), check that your
parameters are really sensible. If you think they should be OK, check for
NAs in your data, or see if you have made any numerical mistakes like dividing
by zero, taking logarithms of zero or negative numbers, or exponentiating
large numbers (R thinks exp(x) is infinite for any x> 710). Exponentiating
negative numbers of large magnitude is not necessarily a problem, but if
they “underflow” and become zero (R thinks exp(x) is 0 for any x< −746)
you may get errors if you divide by them or calculate a likelihood of a data
value that has zero probability. If you have to, break down the sum in your
negative log-likelihood function and see which particular data points are
causing the problem (e.g. if L is a vector of negative log-likelihoods, try
which(!is.finite(L))).

If your surface is not smooth — if it has discontinuities or if round-off error
or noise makes it “bumpy”— then derivative-based methods will work badly,
particularly with finite differencing. When derivative-based methods hit a
bump in the likelihood surface, they often project the next guess to be very
far away, sometimes so far away that the negative log-likelihood calculation
makes no sense (e.g. negative parameter values). In this case, you will need
to try an optimization method that avoids derivatives.

7.3.3 Derivative-free methods

In between the brute force of direct search and the sometimes delicate
derivative-based methods are derivative-free methods, which use some in-
formation about the surface but do not rely on smoothness.

7.3.3.1 One-dimensional algorithms

One-dimensional minimization is easy because once you have bracketed a
minimum (i.e., you can find two parameter values, one of which is above and
one of which is below the parameter value that gives the minimum nega-
tive log-likelihood) you can always find the minimum by interpolation. R’s
optimize function is a one-dimensional search algorithm that uses Brent’s
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method, which is a combination of golden section search and parabolic inter-
polation (Press et al., 1994). Golden-section search attempts to “sandwich”
the minimum, based on the heights (negative log-likelihoods) of a few points;
parabolic interpolation fits a quadratic function (a parabola) to three points
at a time and extrapolates to the minimum of the parabola. If you have a
one-dimensional problem (i.e. a one-parameter model), optimize can usu-
ally solve it quickly and precisely. The only potential drawback is that
optimize, like optim, can’t easily calculate confidence intervals. If you need
confidence intervals, use mle2 instead∗.

7.3.3.2 Nelder-Mead simplex

The simplest and probably most widely used derivative-free minimization
algorithm that works in multiple dimensions (it’s optim’s default) is the
Nelder-Mead simplex, devised by Nelder and Mead in 1965 ∗.

Rather than starting with a single parameter combination (which you can
think of as a point in n-dimensional parameter space) Nelder-Mead picks
n + 1 parameter combinations that form the vertices of an initial simplex—
the simplest shape possible in n-dimensions†. In two dimensions, a simplex
is three points (each of which represents a pair of parameter values) forming
a triangle; in three dimensions, a simplex is 4 points (each of which is a
triplet of parameter values) forming a pyramid or tetrahedron; in higher
dimensions, it’s n + 1 points which we just call an n-dimensional simplex.
The Nelder-Mead algorithm then evaluates the likelihood at each vertex,
which is the “height” of the surface at that point, and move the worst point
in the simplex according to a simple set of rules:

� start by going in what seems to the best direction by reflecting the
high (worst) point in the simplex through the face opposite it;

� if the goodness-of-fit at the new point is better than the best (low-
est) other point in the simplex, double the length of the jump in that
direction;

� if this jump was bad—the height at the new point is worse than the
second-worst point in the simplex—then try a point that’s only half as
far out as the initial try;

� if this second try, closer to the original, is also bad, then contract
the simplex around the current best (lowest) point [not shown in Fig-
ure 7.4].

∗mle and mle2 use method="BFGS" by default. Nelder-Mead optimization (see below)
is unreliable in one dimension and R will warn you if you try to use it to optimize a single
parameter.

∗The Nelder-Mead simplex is completely unrelated to the simplex method in linear
programming, which is a method for solving high-dimensional linear optimization prob-
lems with constraints.

†However, you only need to specify a single starting point; R automatically creates a
simplex around your starting value.
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Figure 7.4 Graphical illustration (after Press et al. (1994)) of the Nelder-Mead
simplex rules applied to a tetrahedron (a 3-dimensional simplex, used
for a 3-parameter model).

The Nelder-Mead algorithm works well in a wide variety of situations, al-
though it’s not foolproof (nothing is) and it’s not particularly efficient.

We give the Nelder-Mead algorithm a set of starting parameter values and
it displaces these coordinates slightly to get its starting simplex. Thereafter,
it takes steps alternating between simple reflection and expanded reflection,
moving rapidly downhill across the contour lines and increasing both shape
and scale parameters. Eventually it finds that it has gone too far, alternating
reflections and contractions to “turn the corner”. Once it has turned, it
proceeds very rapidly down the contour line, alternating reflections again;
after a total of 50 cycles the surface is flat enough for the algorithm to
conclude that it has reached a minimum.

Nelder-Mead can be considerably slower than derivative-based methods,
but it is less sensitive to discontinuities or noise in the likelihood surface, since
it doesn’t try to use fine-scale derivative information to navigate across the
likelihood surface.

7.3.4 Stochastic global optimization: simulated annealing

Stochastic global optimizers are a final class of optimization techniques, even
more robust than the Nelder-Mead simplex and even slower. They are global
because unlike most other optimization methods they may be able to find
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the right answer even when the likelihood surface has more than one local
minimum (Figure 7.1). They are stochastic because they rely on adding ran-
dom noise to the surface as a way of avoiding being trapped at one particular
minimum.

The classic stochastic optimization algorithm is the Metropolis algorithm
(or simulated annealing (Kirkpatrick et al., 1983; Press et al., 1994). The
rules are:

� pick a starting point (set of parameters) and calculate the negative
log-likelihood for those parameters;

� until your answer is good enough or you run out of time:

– A. pick a new point (set of parameters) at random (somewhere
near your old point);

– calculate the value of the negative log-likelihood there

– if the new value is better than the old negative log-likelihood,
accept it and return to A

– if it’s worse than the old value, calculate the difference in nega-
tive log-likelihood ∆(−L) = −Lnew − (−Lold). Pick a random
number between 0 and 1 and accept the new value if the random
number is less than e−∆(−L)/k, where k is a constant. Otherwise,
go back to the old value. (The smaller k is and the worse (i.e.
bigger) ∆(−L) is, the less likely you are to accept the new value.)
Go back to A.
In mathematical terms, the acceptance rule is

Prob(accept) =

{
e−

∆(−L)
k if ∆(−L) > 0

1 if ∆(−L) < 0.
(7.2)

� Periodically (e.g., every 100 steps) lower the value of k (sometimes
called the temperature) to make it harder and harder to accept bad
moves.

One variant of simulated annealing is available in R as the SANN method
for optim or mle2.

Another variant of the Metropolis algorithm (Metropolis-Szymura-Barton,
MSB, metropSB in emdbook: Szymura and Barton, 1986)) varies the size of
the change in parameters (the scale of the candidate distribution or jump
size) rather than the temperature, and changes the jump size adaptively
rather than according to a fixed schedule. Every successful jump increases
the jump size, while every unsuccessful jump decreases the jump size. This
makes the algorithm good at exploring lots of local minima (every time it gets
into a valley, it starts trying to get out) but really bad at refining estimates
(it has a hard time actually getting all the way to the bottom of a valley).

To run MSB on the myxomatosis data:
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Figure 7.6 Track of Metropolis-Szymura-Barton evaluations. The MSB algorithm
starts at (20,0.05) (step 1), and moves quickly up to the central valley,
but then wanders aimlessly back and forth along the valley.
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Figure 7.7 History of MSB evaluations: parameters (shape and scale), relative
jump size and fraction of jumps accepted, and current and mini-
mum negative log-likelihood. The minimum negative log-likelihood is
achieved after 986 steps; thereafter the algorithm remembers its best
previous achievement (horizontal dotted line), but fails to improve on
it.

> MSBfit = metropSB(fn = gammaNLL2, start = c(20, 0.05),

+ nmax = 2500)

Figure 7.6 shows a snapshot of where the MSB algorithm goes on our now-
familiar likelihood surface for the myxomatosis data, with unsuccessful jumps
marked in gray and successful jumps marked in black. The MSB algorithm
quickly moves “downhill” from its starting point to the central valley, but
then drifts aimlessly back and forth along the central valley. It does find a
point close to the minimum. After 986 steps, it finds a minimum of 37.66983,
equal for all practical purposes to the Nelder-Mead simplex value of 37.66714
— but Nelder-Mead took only 70 function evaluations to get there. Since
MSB increases its jump scale when it is successful, and since it is willing to
take small uphill steps, it doesn’t stay near the minimum. While it always
remembers the best point it has found so far, it will wander indefinitely
looking for a better solution. In this case it didn’t find anything better by
the time I stopped it at 2,500 iterations.

Figure 7.7 shows some statistics on MSB algorithm performance as the
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number of iterations increases. The top two panels show the values of the
two parameters (shape and scale), and the best-fit parameters so far. Both
of the parameters adjust quickly in the first 500 iterations, but from there
they wander around without improving the fit. The third panel shows a
scaled version of the jump-width parameter, which increases initially and
then varies around 1.0, and the running average of the fraction of jumps
accepted, which rapidly converges to a value around 0.5. The fourth and
final panel shows the achieved value of the negative log-likelihood: almost
all of the gains occur early. The MSB algorithm is inefficient for this problem,
but it can be a lifesaver when your likelihood surface is complex and you have
the patience to use brute force.

There are many other stochastic global optimization algorithms. For ex-
ample, Press et al. (1994) suggest a hybrid of simulated annealing and the
Nelder-Mead simplex where the vertices of the simplex are perturbed ran-
domly but with decreasing amplitudes of noise over time. Other researchers
have suggested using a stochastic algorithm to find the the right peak and
finishing with a local algorithm (Nelder-Mead or derivative-based) to get a
more precise answer. Various adaptive stochastic algorithms (e.g. Ingber,
1996) attempt to “tune” either the temperature or the jump size and dis-
tribution for better results. Methods like genetic algorithms or differential
evolution use many points moving around the likelihood surface in parallel,
rather than a single point as in simulated annealing. If you need stochastic
global optimization, you will probably need a lot of computer time (many
function evaluations are required) and you will almost certainly need to tune
the parameters of whatever algorithm you choose rather than using the de-
fault values.

7.4 MARKOV CHAIN MONTE CARLO

Bayesians are normally interested in finding the means of the posterior distri-
bution rather than the maximum likelihood value (or analogously the mode
of the posterior distribution). Previous chapters suggested that you can use
WinBUGS to compute posterior distributions, but gave few details. Markov
Chain Monte Carlo (MCMC) is an extremely clever, general approach that
uses stochastic jumps in parameter space to find the distribution. MCMC
is similar to simulated annealing in the way it picks new parameter values
sequentially but randomly. The main difference is that MCMC’s goal is not
to find the best parameter combination (mode/MLE) but to sample from
the posterior distribution.

Like simulated annealing, MCMC has many variants that use different
rules for picking new parameter values (i.e., different kinds of candidate dis-
tributions) and for deciding whether accept the new choice or not. However,
all variants of MCMC must satisfy the fundamental rule that the ratio of
successful jump probabilities (pjump × paccept) is proportional to the ratio
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of the posterior probabilities:
Post(A)
Post(B)

=
P (jump B → A)P (accept B|A)
P (jump A → B)P (accept A|B)

(7.3)

If we follow this rule (and if several other technical criteria are satisfied∗),
in the long run the chain will spend a lot of time occupying areas with high
probability and will visit (but not spend much time in) in areas with low
probability, so that the long-term distribution of the sampled points will
match the posterior probability distribution.

7.4.1 Metropolis-Hastings

The Metropolis-Hastings MCMC updating rule is very similar to the sim-
ulated annealing rules discussed above, except that the temperature does
not decrease over time to make the algorithm increasingly picky about ac-
cepting uphill moves. Metropolis-Hastings can use any symmetric candidate
distribution (P (jump B → A) = P (jump A → B); for example, as with the
MSB rules above we can pick any values in a uniform distribution around
the current set of parameters. The critical part of Metropolis-Hastings is
the acceptance rule, which is the simulated annealing rule (eq. 7.2) with the
temperature parameter k set to 1 and the posterior probability substituted
for the likelihood†.

P (accept B|A) =

{
Post(A)

Post(B)
if Post(B) < Post(A)

1 if Post(B) > Post(A)
(7.4)

As in simulated annealing, if a new set of parameters has a higher posterior
probability than the previous parameters, always accept them. If they have
a lower posterior probability, accept them them with a probability equal to
the ratio of probabilities. If you work this out for P (accept A|B) in a similar
way, you’ll see that the rule fits the basic MCMC criterion (7.3). In fact, in
the MSB example above the acceptance probability was set equal to the ratio
of the likelihoods of the new and old parameter values (the scale parameter
in optimMSB was left at its default value of 1), so that the analysis did in
fact satisfy the Metropolis-Hasting rule (7.4). Since it used negative log-
likelihoods rather than incorporating an explicit prior to compute posterior
probabilities, it assumed a completely flat prior (which can be dangerous,
leading to unstable estimates or slow convergence, but seems to be OK in
this case).

The MCMCpack package provides another way to run a Metropolis-Hastings
chain in R. Given a function that computes the log posterior density (if the

∗The chain must be irreducible (it must be possible eventually to move from any point
in parameter space to any other) and aperiodic (it should be impossible for it to get stuck
in a loop).

†In the simulated annealing rule we exponentiated −k times the log-likelihood differ-
ence, which gave us the likelihood ratio raised to the power −k; if we set k = 1 then we
have Lold/Lnew, which corresponds to Post(A)/Post(B).
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prior is completely flat, this is just the (positive) log-likelihood function),
the MCMCmetrop1R function first uses optim to find the posterior mode and
then uses the approximate variance-covariance matrix at the mode to scale
a multivariate normal candidate distribution. For example:

> gammaNLL2B = function(p) {

+ sum(dgamma(myxdat$titer, shape = p[1], scale = p[2],

+ log = TRUE))

+ }

> m3 <- MCMCmetrop1R(gammaNLL2B, theta.init = c(shape = 20,

+ scale = 0.05), thin = 30, mcmc = 30000, optim.lower = rep(0.004,

+ 2), optim.method = "L-BFGS-B", tune = 3)

> colnames(m3) = c("shape", "scale")

When I initially ran this analysis with the default value of tune=1 and
used plot(m3) to view the results, I saw that the chain took long excursions
to extreme values. Inspecting the contour plot of the surface, and slices
(?calcslice from the emdbook package) didn’t suggest that there was an-
other minimum that the chain was visiting during these excursions. The
authors of the package suggested that MCMCmetrop1R was having trouble be-
cause of the banana-shape of the posterior density (Figure 7.6), and that
increasing the tune parameter, which increases the scale of the candidate
distribution, would help∗. Setting tune=3 seems to be enough to make the
chains behave better. (Increasing tune still more would make the Metropolis
sampling less efficient.)

The colnames command sets the parameter names, which are helpful when
looking at summary(m3) or plot(m3) since MCMCmetrop1R doesn’t set the
names itself.

7.4.2 Burn-in and convergence

Metropolis-Hastings updating, and any other MCMC rule that satisfies (7.3),
is guaranteed to reach the posterior distribution eventually, but usually we
have to discard the iterations from a burn-in period before the distribution
converges to the posterior distribution. For example, during the first 300
steps in the MSB optimization above (Figures 7.6 and 7.7) the algorithm

∗Their specific suggestions were:

1. set the tuning parameter much larger than normal so that the acceptance rate is
actually below the usual 20-25% rule of thumb. This will fatten and lengthen the
proposal distribution so that one can jump from one tail to the other.

2. forego the proposal distribution based on the large sample var-cov matrix. Set the
V parameter in MCMCmetrop1R to something that will work reasonably well over the
entire parameter space.

3. use an MCMC algorithm other than the random walk metropolis algorithm. You’ll
need to use something other than MCMCmetrop1R to do this but this option will be
the most computationally efficient.
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approaches the minimum from its starting points, and bounces around the
minimum thereafter. Treating this analysis as an MCMC, we would drop
the first 300 steps (or 500 to be safe) and focus on the rest of the data set.

Assessing convergence is simple for such a simple model but can be difficult
in general. Bayesian analysts have developed many convergence diagnostics,
but you probably only need to know about a few.

The Raftery-Lewis diagnostic (Raftery and Lewis, 1996, raftery.diag in
the coda package) takes a pilot run of a MCMC and estimates, based on
the variability in the parameters, how long the burn-in period should be and
how many samples you need to estimate the parameters to within a certain
accuracy. The parameters for the Raftery-Lewis diagnostic are the quantile
that you want to estimate (2.5% by default, i.e. the standard two-sided tails
of the posterior distribution), the accuracy with which you want to esti-
mate the quantile (±0.005 by default), and the desired probability that the
quantile is in the desired range (default 0.95). For the MSB/myxomatosis
example above, running the Raftery-Lewis diagnostic with the default accu-
racy of r = 0.005 said the pilot run of 2500 was not even long enough to
estimate how long the chain should be, so I relaxed the accuracy to r = 0.01:

Quantile (q) = 0.025
Accuracy (r) = +/- 0.01
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

p1 211 29839 937 31.8
p2 211 29839 937 31.8

The first column gives the estimated burn-in time for each parameter — take
the maximum of these values as your burn-in time. The next two columns
give the required total sample size and the sample size that would be required
if the chain were uncorrelated; the final column gives the dependence factor,
which essentially says how many steps the chain takes until it has“forgotten”
about its previous value. In this case, R-L says that we would need to run
the chain for about 30,000 samples to get a sufficiently good estimate of the
quantiles for the scale parameter, but that (because the dependency factor
is close to 30) we could take every 30th step in the chain and not lose any
important information.

Another way of assessing convergence is to run multiple chains that start
from widely separated (overdispersed) points and see whether they have run
long enough to overlap (which is a good indication that they have converged).
The starting points should be far enough apart to give a good sample of the
surface, but should be sufficiently reasonable to give finite posterior probabil-
ities. The Gelman-Rubin (G-R, gelman.diag in the coda package: Gelman
et al., 1996) diagnostic takes this approach. G-R provides a “potential scale
reduction factor”, estimating how much the between-chain variance could be
reduced if the chains were run for longer. The closer to 1 the G-R statistics
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are, the better. The rule of thumb is that they should be less than 1.2.
Running a second chain (m2) for the myxomatosis data starting from

(shape=70, scale=0.2) instead of (shape=20, scale=0.05) and running G-
R diagnostics on both chains gives:

> gelman.diag(mcmc.list(m1, m2))

Potential scale reduction factors:

Point est. 97.5% quantile
p1 2.26 4.67
p2 2.40 4.75

Multivariate psrf

1.86

Apparently we need to run the chains longer.

7.4.3 Gibbs sampling

The major alternative to Metropolis-Hastings sampling is Gibbs sampling
(or the Gibbs sampler), which works for models where we can figure out
the posterior probability distribution (and pick a random sample from it),
conditional on the values of all the other parameters in the model. For
example, to estimate the mean and variance of normally distributed data we
can cycle back and forth between picking a random value from the posterior
distribution for the mean, assuming a particular value of the variance, and
picking a random value from the posterior distribution for the variance,
assuming a particular value of the mean. The Gibbs sampler obeys the
MCMC criterion (7.3) because the candidate distribution is the posterior
distribution, so the jump probability (P (jump B → A)) is equal to the
posterior distribution of A. Therefore, the Gibbs sampler can always accept
the jump paccept = 1 and still satisfy

Post(A)
Post(B)

=
P (jump B → A)
P (jump A → B)

. (7.5)

Gibbs sampling works particularly well for hierarchical models (Chap-
ter 9). In general, it breaks the posterior probability up into a series of
conditional probabilities. If we have a complicated posterior distribution
Post(p1, p2, . . . , pn) = L(y|(p1, p2, . . . , pn)Prior(p1, p2, . . . , pn), we can break
it down for any parameter to

Post(p1, p2, . . . , pn) = L(y|p1, p2, . . . , pn)Prior(p1, p2, . . . , pn) (7.6)

This decomposition allows us to sample parameters one at a time; the ad-
vantage is that the posterior distribution of a single parameter, conditional
on the rest, may be simple enough so that we can sample directly from the
posterior.
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BUGS (Bayesian inference Using Gibbs Sampling) is an amazing piece
of software that takes a description of a statistical model and automatically
generates a Gibbs sampling algorithm∗. WinBUGS is the Windows version,
and R2WinBUGS is the R interface for WinBUGS.

Some BUGS models have already appeared in Chapter 6. BUGS’s syntax
closely resembles R’s, with the following important differences:

� BUGS is not vectorized. Definitions of vectors of probabilities must be
specified using a for loop.

� R uses the = symbol to assign values. BUGS uses <- (a stylized right-
arrow: e.g. a <- b+1 instead of a=b+1).

� BUGS uses a tilde (~) to mean “is distributed as”. For example, to say
that x comes from a standard normal distribution (with mean 0 and
variance 1: x ∼ N(0, 1), tell BUGS x~dnorm(0,1)).

� While many statistical distributions have the same names as in R(e.g.
normal=dnorm, gamma=dgamma), watch out! BUGS often uses a dif-
ferent parameterization. For example, where R uses dnorm(x,mean,sd),
BUGS uses x~dnorm(mean,prec) where prec is the precision — the
reciprocal of the variance. Also note that x is included in the dnorm
in R, whereas in BUGS it is on the left side of the ~ operator. Read
the BUGS documentation (included in WinBUGS) to make sure you
understand BUGS’s definitions.

The model definition for BUGS should include the priors as well as the
likelihoods. Here’s a very simple input file, which defines a model for the
posterior of the myxomatosis titer data:

model {
for (i in 1:n) {

titer[i] ~ dgamma(shape,rate)
}
shape ~ dunif(0,150)
rate ~ dunif(0,20)

}

After making sure that this file is present in your working directory (use
Wordpad or Notepad to edit it; if you use Word, be sure to save the file as
text), you can run this model in BUGS by way of R2WinBUGS as follows:

∗I will focus on a text file description, and on the R interface to WinBUGS implemented
in the R2WinBUGS package, but many different variants of automatic Gibbs samplers are
springing up. These vary in interface, degree of polish and supported platforms. (1) Win-
BUGS runs on Windows, under WINE on Linux, and maybe soon on Intel Macs; models
can be defined either graphically or as text files; R2WinBUGS is the R interface. (2)
OpenBUGS http://mathstat.helsinki.fi/openbugs/ is an new, open version of Win-
BUGS that runs on Windows and Linux (LinBUGS). OpenBUGS has an R interface,
BRugs, but so far it only runs on Windows. (3) JAGS is an alternative version that runs
on Linux (presumably it would work on MacOS too) and has an R interface.
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> library(R2WinBUGS)

> titer <- myxdat$titer

> n <- length(titer)

> inits <- list(list(shape = 100, rate = 3), list(shape = 20,

+ rate = 10))

> testmyxo.bugs <- bugs(data = list("titer", "n"),

+ inits, parameters.to.save = c("shape", "rate"),

+ model.file = "myxogamma.bug", n.chains = length(inits),

+ n.iter = 5000)

Printing out the value of testmyxo.bugs gives a summary including the
mean, standard deviation, quantiles, and the Gelman-Rubin statistic (Rhat)
for each variable. It also gives a DIC estimate for the model. By default this
summary only uses a precision of 0.1, but you can use the digits argument
to get more precision, e.g. print(testmyxo.bugs,digits=2).

> testmyxo.bugs

Inference for Bugs model at "myxogamma.bug", fit using winbugs,
2 chains, each with 5000 iterations (first 2500 discarded), n.thin = 5
n.sims = 1000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
shape 54.6 16.9 28.5 43.0 51.7 63.9 92.8 1.1 41
rate 7.9 2.5 4.1 6.2 7.5 9.3 13.5 1.1 42
deviance 77.7 2.3 75.4 76.0 76.9 78.7 83.8 1.1 18

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

pD = 2.3 and DIC = 80.0 (using the rule, pD = Dbar-Dhat)
DIC is an estimate of expected predictive error (lower deviance is better).

The standard diagnostic plot for a WinBUGS run (plot.bugs(testmyxo.bugs))
shows the mean and credible intervals for each variable in each chain, as well
as the Gelman-Rubin statistics for each variable.

You can get slightly different information by turning the result into a coda
object:

> testmyxo.coda <- as.mcmc(testmyxo.bugs)

summary(testmyxo.coda) gives similar information as printing testmyxo.bugs.
HPDinterval gives the credible (highest posterior density) interval for each
variable computed from MCMC output.

Plotting testmyxo.coda gives trace plots (similar to Figure 7.7) and den-
sity plots of the posterior density (Figure 7.8). Other diagnostic plots are
available: see especially ?densityplot.mcmc.
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Figure 7.8 WinBUGS output plot: default coda plot, showing trace plots (left)
and density plots (right).



book May 21, 2007

276 CHAPTER 7

This information should be enough to get you started using WinBUGS.
A growing number of papers — some in ecology, but largely focused in con-
servation and management (especially in fisheries) provide example models
for specific systems ∗ (Millar and Meyer, 2000; Jonsen et al., 2003; Morales
et al., 2004; McCarthy and Parris, 2004; Clarke et al., 2006).

In summary, the basic procedure for fitting a model via MCMC (using
MCMCpack, WinBUGS, or rolling your own) is: (1) design and code your
model; (2) enter the data; (3) pick priors for parameters; (4) initialize the
parameter values for several chains (overdispersed, or by a random draw
from priors); (5) run the chains for “a long time” (R2WinBUGS’s default is
2000 steps); (6) check convergence; (7) run for longer if necessary; (8) discard
burn-in and thin the chains; (8) compute means, 95% intervals, correlations
among parameters, and other values of interest.

7.5 FITTING CHALLENGES

Now that we’ve reviewed the basic techniques for maximum-likelihood and
Bayesian estimation, I’ll go over some of the special characteristics of prob-
lems that make fitting harder.

7.5.1 High dimensional/many-parameter models

Finding the MLE for a 1-parameter model means finding the minimum of the
likelihood curve; finding the MLE for a 2-parameter model means finding the
minimum of a 2D surface; finding the MLE for models with more parameters
means finding the minimum on a multidimensional “surface”. Models with
more than a few parameters suffer from the curse of dimensionality : the
number of parameter combinations, or derivatives, or directions you have to
consider increases as a power law of the sampling resolution. For example, if
you want find the MLE for a five-parameter model (a pretty simple model)
by direct search and you want to subdivide the range of each parameter
into 10 intervals (which is quite coarse), you’re already talking about 105

parameter combinations. Combine this with function evaluations that take
more than a fraction of a second and you’re into the better part of a day to
do a single optimization run. Direct search is usually just not practical for
models with more than two or three parameters.

If you need to visualize a high-dimensional likelihood surface (e.g. exam-
ining the region around a putative MLE to see if the algorithm has found
a reasonable answer), you’ll probably need to look at 2D slices (varying
two parameters at a time over reasonable ranges, calculating the objective
function for each combination of values while holding all the other parame-
ters constant) or profiles (varying two parameters at a time over reasonable
ranges and optimizing over all the other parameters for each combination of

∗In a few years this list of citations will probably be too long to include!
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values). You are more likely to have to fall back on the information matrix-
based approach described in the previous chapter for finding approximate
variances and covariances (or correlations) of the parameter estimates; this
approach is more approximate and gives you less information than fitting
profiles, but extends very simply to any number of parameters.

MCMC fitting adapts well to large models. You can easily get univari-
ate (using HPDinterval from coda for credible intervals or summary for
quantiles) and bivariate confidence intervals (using HPDregionplot from
emdbook).

7.5.2 Slow function evaluations

Since they require many function evaluations, high-dimensional problems
also increase the importance of speed in the likelihood calculations. Many of
the models you’ll deal with take only microseconds to calculate a likelihood,
so running tens of thousands of function evaluations can still be relatively
quick. However, fitting a high-dimensional model using simulated annealing
or other stochastic optimization approaches, or finding confidence limits for
such models, can sometimes require millions of evaluations and hours or
days to fit. In other cases, you might have to run a complicated population
dynamics model for each set of parameters and so each likelihood function
evaluation could take minutes or longer (Moorcroft et al., 2006).

Some possible solutions or partial solutions to this problem:

� Use more efficient optimization algorithms (e.g. derivative-based), if
you can.

� Derive an analytical expression for the derivatives and write a func-
tion to compute it. optim and mle2 can use this function instead of
computing finite differences.

� Rewrite the code that computes the objective function more efficiently
in R (vectorized operations are almost always faster than for loops,
and you may be able to find other ways to take shortcuts).

� If you can program in C or FORTRAN, or have a friend who can, write
your objective function in one of these faster, lower-level languages and
link it to R (see the R Extensions Manual for details).

� For really big problems, you may need to use tools outside of R. One
such is AD Model Builder, which uses automatic differentiation — a
very sophisticated algorithm for computing derivatives efficiently —
which can speed up computation a lot (R has a very simple form of
automatic differentiation built into its deriv function).

� Compromise by allowing a lower precision for your fits, increasing the
reltol parameter in optim. Do you really need to know the parame-
ters within a factor of 10−8, or would 10−3 do, especially if you know
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your confidence limits are likely to be much larger? (Be careful: in-
creasing the tolerance in this way may also allow algorithms to stop
prematurely at a flat spot on the way to the true minimum.)

� Find a faster computer, or wait longer for the answers.

7.5.3 Discontinuities and thresholds

Models with sudden changes in the log-likelihood (discontinuities) or deriva-
tives of the log-likelihood, or perfectly flat regions, can cause real trouble for
optimization algorithms. Discontinuities in the log-likelihood or its deriva-
tive can make derivative-based extrapolations wildly wrong. Almost-flat
regions can make most methods (including Nelder-Mead) falsely conclude
that they’ve reached a minimum.

Flat regions are often the result of threshold models, which in turn can
be motivated on simple phenomenological grounds or as the result (e.g.)
of some optimal-foraging theories (Chapter 3). Figure 7.9 shows simulated
“data” and a likelihood curve/slice for a very simple threshold model. The
likelihood profile for the threshold model has discontinuities at the x-value
of each data point. These breaks occur because the likelihood only changes
when the threshold parameter is changed from just below an observed value
of x to just above it; adjusting the threshold parameter anywhere in the
range between two observed x values has no effect on the likelihood.

The logistic profile, in addition to being smooth rather than choppy, is
lower (representing a better fit to the data) for extreme values because the
logistic function can become essentially linear for intermediate values, while
the threshold function is flat. For optimum values of the threshold param-
eter, the logistic and threshold models give essentially the same answer.
Since the logistic is slightly more flexible (having an additional parameter
governing steepness), it gives marginally better fits — but these would not
be significantly better according to the likelihood ratio test or any other
model selection criterion. Both profiles become flat for extreme values (the
fit doesn’t get any worse for ridiculous values of the threshold parameter),
which could cause trouble with an optimization method that is looking for
flat regions of the profile.

Some ways to deal with thresholds:

� If you know a priori where the threshold is, you can just fit different
models on either side of the threshold.

� If the flatness/discontinuity/bad behavior is just in one direction (i.e.,
relative to a single parameter), you can compute a log-likelihood profile
for that parameter. For example, in Figure 7.9 only the parameter for
the location of the threshold causes a problem, while the parameters
for the values before and after the threshold are well-behaved. This
procedure reduces to direct search for the difficult parameter while still
searching automatically for all the other parameters (Barrowman and
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Figure 7.9 Threshold and logistic models. Top: data, showing the data (generated
from a threshold model) and the best threshold and logistic fits to the
data. Bottom: likelihood profiles.
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Myers, 2000). This kind of single-variable profiling is also useful when
a parameter needs to be restricted to integer values or is otherwise
problematic to fit by an automatic, continuous optimization routine.

� You can adjust the model, replacing the sharp threshold by some
smoother behavior. For example, Figure 7.9 also shows the likelihood
profile of a logistic model fitted to the same data. Many fitting proce-
dures for threshold models replace the sharp threshold with a smooth
transition that preserves most of the behavior of the model but allevi-
ates fitting difficulties (Bacon and Watts, 1974; Barrowman and Myers,
2000).

7.5.4 Multiple minima/modes

Even if a function is smooth, it may have multiple minima (e.g. Figure 7.1):
alternative sets of parameters that each represent better fits to the data than
any nearby parameters. Sometimes these occur when the likelihood surface
is smooth, and sometimes they combine with jaggedness or discontinuity in
the likelihood surface.

Multiple minima are a challenging problem, and are particularly scary be-
cause they’re not always obvious — especially in high-dimensional problems.
Figure 7.10 shows a slice through parameter space connecting two minima
that occur in the negative log-likelihood surface of the modified logistic func-
tion that Vonesh and Bolker (2005) used to fit data on tadpole predation
as a function of size (the function calcslice in the emdbook package will
compute such a slice). Such a pattern strongly suggests, although it does
not guarantee, that the two points really are local minima. When we wrote
the paper, we were aware only of the left-hand minimum, which seemed to
fit the data reasonably well. In preparing this chapter, I re-analyzed the
data using BFGS instead of Nelder-Mead optimization and discovered the
right-hand fit, which is actually slightly better (−L = 11.77 compared to
12.15 for the original fit). Since they use different rules, the Nelder-Mead
and BFGS algorithms found their way to different minima despite starting
at the same point. This is alarming. While the log-likelihood difference
(0.38) is not large enough to reject the first set of parameters, and while the
fit corresponding to those parameters still seems more biologically plausible
(a gradual increase in predation risk followed by a slightly slower decrease,
rather than a very sharp increase and gradual decrease), we had no idea that
the second minimum existed. Etienne et al. (2006b) pointed out a similar
issue affecting a paper by Latimer et al. (2005) about diversification patterns
in the South African fynbos: some estimates of extremely high speciation
rates turned out to be spurious minima in the model’s likelihood surface
(although the basic conclusions of the original paper still held).

No algorithm can promise to deal with the pathological case of a very
narrow, isolated minimum as in Figure 7.1. To guard against multiple-
minimum problems, try to fit your model with several different reasonable
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modified logistic model of Vonesh and Bolker (2005). The x axis is
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of the two minima. Subplots show the fits of the curves to the frog
predation data for the parameters at each minimum; the right-hand
minimum is a slightly better fit (−L = 11.77 (right) vs. 12.15 (left)).
The horizontal solid and dashed lines show the minimum negative log-
likelihood and the 95% confidence cutoff (−L+χ2

1(0.95)/2). The 95%
confidence region includes small regions around both x = 0 and x = 1.
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starting points, and check to make sure that your answers are reasonable.
If your results suggest that you have multiple minima — that is, you get

different answers from different starting points — check the following:

� Did both fits really converge properly? The fits returned by mle2
from the bbmle package will warn you if the optimization did not con-
verge; for optim results you need to check the $convergence term
of results (it will be zero if there were no problems). Try restart-
ing the optimizations from both of the points where the optimizations
ended up, possibly resetting parscale to the absolute value of the
fitted parameters. (If O1 is your first optim fit, run the second fit
with control=list(parscale=abs(O1$par)). If O1 is an mle2 fit,
use control=list(parscale=abs(coef(O1))).) Try different opti-
mization methods (BFGS if you used Nelder-Mead, and vice versa).
Calculate slices or profiles around the optima to make sure they really
look like local minima.

� Use calcslice to compute a likelihood slice between the two putative
fits to make sure that the surface is really higher between them.

If your surface contains several minima, the simplest solution may be to
use a simple, fast method (like BFGS) but to start it from many different
places. This will work if the surface is essentially smooth, but with two (or
many) valleys of approximately the same depth ∗. You will need to decide
how to assign starting values (randomly or on a grid? along some transect?),
and how many starting values you can afford to try. You may need to
tune the optimization parameters so that each individual optimization runs
as fast and smoothly as possible. Researchers have also developed hybrid
approaches based on multiple starts (Tucci, 2002).

When multiple minima occur it is possible, although unusual, for the 95%
confidence limits to be discontinuous — that is, for there to be separate
regions around each minimum that are supported by the data. This does
happen in the case shown in Figure 7.10, although on the scale of that figure
the confidence intervals in the regions around x = 0 and x = 1 would be
almost too small to see. More commonly, either one minimum will be a
lot deeper than the other so that only the region around one minimum is
included in the confidence region, or the minima will be about the same
height but the two valleys will join at the height of the 95% cutoff so that
the 95% confidence interval is continuous.

If the surface is jagged instead of smooth, or if you have a sort of frac-
tal surface — valleys within valleys, of many different depths — stochastic
global optimization such as simulated annealing is probably your best bet.
Markov Chain Monte Carlo can in principle deal with multiple modes, but
convergence can be very slow — you need to start chains at different modes

∗The many-valley case, or rather its inverse the many-peaks case (if we are maximizing
rather than minimizing), is sometimes known as a “fakir’s bed” problem after the practice
of sitting on a board full of nails (Swartz, 2003).



book May 21, 2007

OPTIMIZATION AND ALL THAT 283

and allow enough time for each chain to wander to all of the different modes
(see Mossel and Vigoda, 2006; Ronquist et al., 2006, for a related example
in phylogenetics).

7.5.5 Constraints

The last technical detail covered here is the problem of having to constrain
parameter values within a particular range. Constraints occur for many
reasons, but the most common constraints in ecological models are that pa-
rameters make sense only when they are positive (e.g. predation or growth
rates) or between 0 and 1 (e.g. probabilities). The three important charac-
teristics of constraints are:

1. Equality vs. inequality constraints: does a parameter or set of pa-
rameters have to be exactly equal to some value, or just bounded?
Constraints on individual parameters are always inequality constraints
(e.g. 0 < p < 1). The most common equality constraint is that proba-
bilities must sum to 1 (

∑N
i=1 pi = 1).

2. Constraints on individual parameters vs. constraints on combinations.
Inequality constraints on individual parameters (a1 < p1 < b1, a2 <
p2 < b2) are called box constraints. Constraints on linear combinations
of parameters (a1p1 + a2p2 < c) are called linear constraints.

3. Whether the constraint equations can be solved analytically in terms
of one of the parameters. For example, you can restate the constraint
p1p2 = C as p1 = C/p2.

For example, in Chapter 8 of the Ecological Detective, Hilborn and Mangel
constrain the equilibrium of a fairly complex wildebeest population model
to have a particular value. This is the most difficult kind of constraint; it’s
an equality constraint, a nonlinear function of the parameters, and there’s
no way to solve the constraint equation analytically.

The simplest approach to a constrained problem is to ignore the con-
straint completely and hope that your optimizing routine will find a min-
imum that satisfies the constraint without running into trouble. You can
often get away with this if your minimum is far away from the boundary,
although you may get warning messages that look something like Warning
message: NaNs produced in: dnbinom(x, size, prob, log). If your
answers make sense you can often ignore the warnings, but you should defi-
nitely test the results by re-starting the optimizer from near its ending point
to verify that it still finds the same solution. You may also want to try some
of the other constrained approaches listed below to double-check.

The next simplest approach to optimization constraints is to find a canned
optimization algorithm that can incorporate constraints in its problem def-
inition. The optim function (and its mle2 wrapper) can accommodate box
constraints if you use the L-BFGS-B method. So can nlminb, which was in-
troduced to R more recently and uses a different algorithm. R also provides
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a constrOptim function that can handle linear constraints. Algorithms that
can fit models with general nonlinear equality and inequality constraints do
exist, but they have not been implemented in R: they are typically large
FORTRAN programs that cost hundreds or thousands of dollars to license
(see below for the poor man’s/ecologist’s approach to nonlinear constraints).

Constrained optimization is finicky, so it’s often useful to have additional
options when one method fails. In my experience, constrained algorithms are
less robust than their unconstrained counterparts. For example L-BFGS-B,
the constrained version of BFGS, is (1) more likely to crash than BFGS; (2)
worse at handling NAs or infinite values than BFGS; and (3) will sometimes
try parameter values that violate the constraints by a little bit when it’s
calculating finite differences. You can work around the last problem by
setting boundaries that are a little bit tighter than the theoretical limits, for
example a lower bound of 0.002 instead of 0.

The third approach to constraint problems is to add a penalty to the neg-
ative log-likelihood that increases as parameter values stray farther outside
of the allowed region. Instead of minimizing the negative log-likelihood −L,
try minimizing −L + P × (|C − C(p)|)n where P is a penalty multiplier, n
is a penalty exponent, C is the desired value of the constraint, and C(p)
is the value of the constraint at the current parameter values (Hilborn and
Mangel, 1997). For example, if you were using P = 1000 and n = 2 (a
quadratic penalty, the most common type) and the sum of probabilities for
a set of parameters was 1.2 instead of the desired value of 1.0, you would
add a penalty term of 1000(1 − 1.2)2 = 40 to the negative log-likelihood.
The penalty term will tend to push minimizers back into the allowed region.
However, you need to implement such penalties carefully. For example, if
your likelihood calculation is nonsensical outside the allowed region (e.g. if
some parameters lead to negative probabilities) you may need to use the
value of the negative log-likelihood at the closest boundary rather than try-
ing to compute −L for parameters outside the boundary. If your penalties
make the surface non-smooth at the boundary, derivative-based minimizers
are likely to fail. You will often need to tune the penalty multiplier and
exponent, especially for equality constraints.

The fourth, often most robust, approach is to transform your parameters
to avoid the constraints entirely. For example, if you have a rate or density
parameter λ that must be positive, rewrite your function and minimize with
respect to x = log λ instead. Every value of x between −∞ and ∞ translates
to a positive value of λ; negative values of x correspond to values of λ < 1. As
x approaches −∞, λ approaches zero; as x approaches ∞, λ also approaches
∞.

Similarly, if you have a parameter p that must be between 0 and 1 (such
as a parameter representing a probability), the logit transformation of p,
q = log p/(1− p), will be unconstrained (its value can be anywhere between
−∞ and ∞). You can use qlogis in R to calculate the logit. The inverse
transformation is the logistic transformation, exp(q)/(1 + exp(q)) (plogis).
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The log and logit transformations are by far the handiest, and most com-
mon, transformations. Many classical statistical methods use them to ensure
that parameters are well defined: for example, logistic regression fits proba-
bilities on a logit scale. Another less common but still useful transformation
is the additive log ratio transformation (Aitchison, 1986; Billheimer et al.,
1998; Okuyama and Bolker, 2005). When you’re modeling proportions, you
often have a set of parameters p1, . . . , pn representing the probabilities or
proportions of a variety of outcomes (e.g. predation by different predator
types). Each pi must be between 0 and 1, and

∑
pi = 1. The sum-to-one

constraint means that the constraints are not box constraints (which would
apply to each parameter separately), and even though it is linear, it is an
equality constraint rather than a inequality constraint — so constrOptim
can’t handle it. The additive log ratio transformation takes care of the
problem: the vector y = (log(p1/pn), log(p2/pn), . . . , log(pn−1/pn)) is a set
of n − 1 unconstrained values from which the original values of pi can be
computed. There is one fewer additive log-ratio-transformed parameter be-
cause if we know n − 1 of the values, then the nth is determined by the
summation constraint. The inverse transformation (the additive logistic) is
pi = exp(yi)/(1 +

∑
exp(yi)) for i < n, pn = 1−

∑n−1
i pi.

The major problem with transforming constraints this way is that some-
times the best estimates of the parameters, or the null values you want to
test against, actually lie on the boundary — in mixture or composition prob-
lems, for example, the best fit may set the contribution from some compo-
nents equal to zero. For example, we may estimate the maximum likelihood
contribution of some turtle rookeries to a mixed foraging-ground population
as exactly zero. In this case, if you logit-transform the probabilities you will
move the boundary from 0 or 1 to ±∞, and any optimizer that’s trying to
reach the boundary will have a hard time, resulting in large negative esti-
mates that differ depending on starting conditions, and warnings about con-
vergence. One option is simply to set the parameter to zero (i.e., construct
a reduced model that eliminates the zero-contribution rookery completely),
estimate the maximum likelihood, and compare it to the best fit that the
optimizer could achieve. If the log-likelihood is smaller with the contribution
set to zero (e.g. the negative log-likelihood for contribution=0 is 12.5, com-
pared to a best-achieved value of 12.7 when the log-transformed contribution
is −20), then you can conclude that zero is really the best fit. You can also
compute a profile (negative log-)likelihood on one particular contribution
with values ranging upward from zero and see that the minimum really is at
zero. However, it may be too tedious to go to all this trouble every time you
have a parameter or set of parameters that appear to have their best fit on
the boundary.

One final issue with parameters on the boundary is that the standard
model selection machinery discussed in Chapter 6 (Likelihood Ratio Test,
AIC, etc.) always assumes that there are parameter values in the range on
either side of the null value. This issue is well-known but still problematic in
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a wide range of statistical applications, for example in deciding whether to
set a variance parameter to zero. For the specific case of linear mixed-effect
models (i.e. models with linear responses and normally distributed random
variables), the problem is relatively well studied. Pinheiro and Bates (2000)
suggest the following approaches (listed in order of increasing sophistication):

� Simply ignore the problem, and treat the parameter as though it were
not on the boundary — i.e. use a likelihood ratio test with 1 degree of
freedom. Analyses of linear mixed-effect models (Self and Liang, 1987;
Stram and Lee, 1994) suggest that this procedure is conservative; it
will reject the null hypothesis less often (sometimes much less often)
than the nominal type I error rate α∗.

� Some analyses of mixed-effect models suggest that the distribution of
the log-likelihood-ratio under the null hypothesis when n parameters
are on the boundary is a mixture of χ2

n and a χ2
n−1 distributions rather

than a χ2
n distribution. If you are testing a single parameter, as is most

often the case, then n = 1 and χ2
n−1 is χ2

0 — defined as a spike at zero
with area 1. For most models, the distribution is a 50/50 mixture of χ2

n

and χ2
n−1, which Goldman and Whelan (2000) call the χ̄2

n distribution.
For n = 1, χ̄2

1(1−α) = χ2
1(1−2α). In this case the 95% critical value for

the likelihood ratio test would thus be qchisq(0.9,1)/2=1.35 instead
of the usual value of 1.92. The qchibarsq function in the emdbook
package will compute critical values for χ̄2

n.

� The distribution of deviances may not be an equal mixture of χ2
n and

χ2
n−1 (Pinheiro and Bates, 2000). If you want to be very careful, the

“gold standard” is to simulate the null hypothesis and determine the
distribution of the log-likelihood ratio under the null hypothesis: see
p. 7.6.6 for a worked example.

7.6 ESTIMATING CONFIDENCE LIMITS OF FUNCTIONS OF

PARAMETERS

Quite often, you estimate a set of parameters from data, but you actually
want to say something about a value that is not a parameter (for example,
about the predicted population size some time in the future). It’s easy to
get the point estimate — you just feed the parameter estimates into the
population model and see what comes out. But how do you estimate the
confidence limits on that prediction?

There are many possibilities, ranging in accuracy, sophistication, and diffi-
culty. The data for an extended example come from J. Wilson’s observations

∗Whether this is a good idea or not, it is the standard approach—as far as I can tell
it is always what is done in ecological analyses, although some evolutionary analyses are
more sophisticated.
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of “death” (actually disappearance, which may also represent emigration)
times of juvenile reef gobies in a variety of experimental treatments. The
gobies’ times of death are (assumed to be) distributed according to a Weibull
distribution,

f(t) =
a

b

(
t

b

)a−1

e−(t/b)a

. (7.7)

The Weibull distribution, common in survival analysis, has essentially the
same range of shape possibilities as the gamma distribution, from L-shaped
like the exponential to humped like the normal, and it allows for a per capita
mortality rate that either increases or decreases with time. The Weibull
(dweibull in R) has two parameters, shape (a above) and scale (b above):
when shape=1 it reduces to an exponential. It’s easy enough to calculate
the univariate or bivariate confidence limits of the shape and scale param-
eters, but what if we want to calculate the confidence interval of the mean
survival time, which is likely to be more meaningful to the average ecologist
or manager?

First, pull in the data, take a useful subset, and define the death time as
the midpoint between the last time the fish was observed (d1) and the first
time it was not observed (d2)∗

> library(emdbookx)

> data(GobySurvival)

> dat = subset(GobySurvival, exper == 1 & density ==

+ 9 & qual > median(qual))

> time = (dat$d1 + dat$d2)/2

Set up a simple likelihood function:

> weiblikfun = function(shape, scale) {

+ -sum(dweibull(time, shape = shape, scale = scale,

+ log = TRUE))

+ }

Fit the model starting from an exponential distribution (if scale=a = 1,
the distribution is an exponential with rate 1/b and mean b):

> w1 <- mle2(weiblikfun, start = list(shape = 1, scale = mean(time)))

∗Survival analyses usually assume that the time of death is known exactly. With
these data, as is common in ecological studies, we have a range of days during which the
fish disappeared. To handle this so-called interval censoring properly in the likelihood
function, we would have find the probability of dying after day d1 but before day d2,
which is (probability of dying before d2-probability of dying before d1). In R the negative
log-likelihood function would be:

> weiblikfun <- function(shape, scale) {

+ -sum(log(pweibull(dat$d2, shape, scale) - pweibull(dat$d1,

+ shape, scale)))

+ }

For this example, I’ve used the cruder, simpler approach of averaging d1 and d2.
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Figure 7.11 Geometry of confidence intervals on mean survival time. Gray con-
tours: univariate (80%, 90%, 95%, 99%) confidence intervals for shape
and scale. Black contours: mean survival time. Dotted line: likelihood
profile for mean survival time.

The parameter estimates (coef(w1)) are shape=0.921 and scale=14.378,
the estimate of the mean survival time (using meanfun and plugging in the
parameter estimates) is 14.945.

7.6.1 Profile likelihood

Now we’d like confidence intervals for the mean that take variability in both
shape and scale into account. The most rigorous way to estimate confidence
limits on a non-parameter is to calculate the profile likelihood for the value
and find the 95% confidence limits, using almost the same procedure as if
you were finding the univariate confidence limits of one of the parameters.

Figure 7.11 illustrates the basic geometry of this problem: the underlying
contours of the height of the surface (contours at 80%, 95%, and 99% uni-
variate confidence levels) are shown in gray. The black contours show the
lines on the plot that correspond to different constant values of the mean
survival time. The dotted line is the likelihood profile for the mean, which
passes through the minimum negative log-likelihood point on each mean con-
tour, the point where the mean contour is tangent to a likelihood contour
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line. We want to find the intersections of the likelihood ratio test contour
lines with the likelihood profile for the mean: looking at the 95% line, we
can see that the confidence intervals of the mean are approximately 9 to 27.

7.6.1.1 The value can be expressed in terms of other parameters

When the value for which you want to estimate confidence limits has a
formula that you can solve in terms of one of the parameters, calculating its
confidence limits is easy.

For the Weibull distribution the mean µ is given by

µ = scale · Γ(1 + 1/shape), (7.8)

Or, translating to R:

> meanfun = function(shape, scale) {

+ scale * gamma(1 + 1/shape)

+ }

How do we actually calculate the profile for the mean? We can solve
equation 7.8 for one of the parameters:

scale = Γ(1 + 1/shape)/µ. (7.9)

Therefore we can find the likelihood profile for the mean in almost the same
way we would for one of the parameters. Fix the value of µ: then, for each
value of the shape that R tries on its way to estimating the parameter, it
will calculate the value of the scale that must apply if the mean is to be
fixed at µ. The constraint means that, even though the model has two
parameters (shape and scale), we are really doing a one-dimensional search:
it just happens to be a search along a specified constant-mean contour.

In order to calculate the confidence interval on the mean, we have to
rewrite the likelihood function in terms of the mean:

> weiblikfun2 <- function(shape, mu) {

+ scale <- mu/gamma(1 + 1/shape)

+ -sum(dweibull(time, shape = shape, scale = scale,

+ log = TRUE))

+ }

Find the maximum again, and calculate the confidence intervals — this
time for the shape and the mean.

> w2 <- mle2(weiblikfun2, start = list(shape = 1, mu = mean(time)))

> confint(w2, quietly = TRUE)

2.5 % 97.5 %
shape 0.6248955 1.281101
mu 9.1826049 27.038785
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We could also draw the univariate likelihood profile, the minimum nega-
tive log-likelihood achievable for each value of the mean, and find the 95%
confidence limits in the same way as before by creating a likelihood profile
for µ. We would use 1 degree of freedom to establish the critical value for
the LRT because we are only varying one value, even though it represents a
combination of two parameters.

7.6.1.2 Constrained/penalized likelihood

What if we can’t solve for one of the parameters (e.g. scale) in terms of the
value we are interested in (e.g. mean), but still want to calculate a likelihood
profile and profile confidence limits for the mean? We can use a penalized
likelihood function to constrain the mean to a particular value, as described
above in the section on constraints.

While this approach is conceptually the same as the one we took in the
previous section — we are calculating the profile by sliding along each mean
contour to find the minimum negative log-likelihood on that contour, then
finding the values of the mean for which the minimum negative log-likelihood
equals the LRT cutoff — the problem is much fussier numerically. (The
complicated code is presented on p. 297). To use penalties effectively we
usually have to play around with the strength of the penalty. Too strong, and
our optimizations will get stuck somewhere far away from the real minimum.
Too weak, and our optimizations will wander off the line we are trying to
constrain them to. I tried a variety of penalty coefficients in this case (penalty
= C× (deviation of mean survival from target value)2) from 0.1 to 106. The
results were essentially identical for penalties ranging from 1 to 104, but
varied for weaker or stronger penalties. One might be able to tweak the
optimization settings some more to make the answers better, but there’s no
really simple recipe — you just have to keep returning to the pictures to see
if your answers make sense.

7.6.2 The delta method

The delta method provides an easy approximation for the confidence limits
on values that are not parameters of the model. To use it you must have a
formula for µ = f(a, b) that you can differentiate with respect to a and b.
Unlike the first likelihood profile method, you don’t have to be able to solve
the equation for one of the parameters.

The formula for the delta method comes from a Taylor expansion of the
formula for µ, combined with the definitions of the variance (V (a) = E[(a−
ā)2]) and covariance (C(a, b) = E[(a− ā)(b− b̄)]):

V (f(a, b)) ≈ V (a)
(

∂f

∂a

)2

+ V (b)
(

∂f

∂b

)2

+ 2C(a, b)
∂f

∂a

∂f

∂b
. (7.10)

See the Appendix, or Lyons (1991) for a derivation and details.
We can obtain approximate variances and covariances of the parameters
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by taking the inverse of the information matrix: vcov does this automatically
for mle2 fits.

We also need the derivatives of the function with respect to the parameters.
In this example these are the derivatives of µ = bΓ(1 + 1/a) with respect to
shape=a and scale=b. The derivative with respect to b is easy — ∂µ/∂b =
Γ(1 + 1/a)) — but ∂µ/∂a is harder. By the chain rule

∂(Γ(1 + 1/a))
∂a

=
∂(Γ(1 + 1/a))

∂(1 + 1/a)
· ∂(1 + 1/a)

∂a
=

∂(Γ(1 + 1/a))
∂(1 + 1/a)

·− 1
a2

, (7.11)

but in order to finish this calculation you need to know that dΓ(x)/dx =
Γ(x) · digamma(x), where digamma is a special function (defined as the
derivative of the log-gamma function). The good news is that R knows how
to compute this function, so a command like

> shape.deriv <- -shape^2 * gamma(1 + 1/shape) * digamma(1 +

+ 1/shape)

will give you the right numeric answer. The emdbook package has a built-in
deltavar function that uses the delta method to compute the variance of a
function:

> dvar <- deltavar(fun = scale * gamma(1 + 1/shape),

+ meanval = coef(w1), Sigma = vcov(w1))

Once you find the variance of the mean survival time, you can take the
square root to get the standard deviation σ and calculate the approximate
confidence limits µ± 1.96σ.

> sdapprox <- sqrt(dvar)

> mlmean <- meanfun(coef(w1)["shape"], coef(w1)["scale"])

> ci.delta <- mlmean + c(-1.96, 1.96) * sdapprox

If you can’t compute the derivatives manually, R’s numericDeriv function
will compute them numerically (p. 298).

7.6.3 Population prediction intervals (PPI)

Another simple procedure for calculating confidence limits is to draw ran-
dom samples from the estimated sampling distribution (approximated by
the information matrix) of the parameters. In the approximate limit where
the information matrix approach is valid, it turns out that the distribution
of the parameters will be multivariate normal with a variance-covariance
matrix given by the inverse of the information matrix. The MASS package
in R has a function, mvrnorm∗), for selecting multivariate normal random
deviates. With the mle2 fit w1 from above, then

∗mvrnorm should really be called rmvnorm for consistency with R’s other distribution
functions, but S-PLUS already has a built-in function called rmvnorm, so the MASS package
had to use a different name.
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> vmat = mvrnorm(1000, mu = coef(w1), Sigma = vcov(w1))

will select 1000 sets of parameters drawn from the appropriate distribution
(if there are n parameters, the answer is a 1000×n matrix). (If you have used
optim instead of mle2 — suppose opt1 is your result — then use opt1$par
for the mean and solve(opt1$hessian) for the variance.) You can then use
this matrix to calculate the estimated value of the mean for each of the sets
of parameters, treat this distribution as a distribution of means, and find its
lower and upper 95% quantiles (Figure 7.12). In the context of population
viability analysis, Lande et al. (2003) refer to confidence intervals computed
this way as “population prediction intervals”.

This procedure is easy to implement in R, as follows:

> dist = numeric(1000)

> for (i in 1:1000) {

+ dist[i] = meanfun(vmat[i, 1], vmat[i, 2])

+ }

> quantile(dist, c(0.025, 0.975))

2.5% 97.5%
7.457965 23.713303

Calculating population prediction intervals in this way has two disadvan-
tages:

� It blurs the line between frequentist and Bayesian approaches. Several
papers (including some of mine, e.g. Vonesh and Bolker (2005)) have
used this approach, but I have yet to see a solidly grounded justification
for propagating the sampling distributions of the parameters in this
way.

� Since it uses the asymptotic estimate of the parameter variance-covariance
matrix, it inherits whatever inaccuracies that approximation intro-
duces. It makes one fewer assumption than the delta method (it doesn’t
assume the variance is so small that the functions are close to linear),
but it may not be all that much more accurate.

Another useful approach (that will not be discussed much here) is boot-
strapping (Efron and Gong, 1983; Efron and Tibshirani, 1993). Bootstrap-
ping resamples the data with replacement many times, re-estimating the
parameters (and other quantities of interest like the mean survival time) for
each set of resampled data. The sample command will resample a vector:
see the R supplement for an example.

7.6.4 Bayesian analysis

Finally, you can use a real Bayesian method: construct either an exact
Bayesian model, or, more likely, a Markov Chain Monte Carlo analysis for
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the parameters. Then you can calculate the posterior distribution of any
function of the parameters (such as the mean survival time) from the poste-
rior samples of the parameters, and get the 95% credible interval.

The hardest part of this analysis turns out to be converting between R
and WinBUGS versions of the Weibull distribution: where R uses f(t) =
(a/b)(t/b)a−1 exp(−(t/b)a), WinBUGS uses f(t) = νλtν−1 exp(−λtν). Match-
ing up terms and doing some algebra shows that ν = a and λ = b−a or
b = λ−1/a.

The BUGS model is:

model {
for (i in 1:n) {
time[i] ~ dweib(shape,lambda)

}
scale <- pow(lambda,-1/shape)
mean <- scale*exp(loggam(1+1/shape))
## priors
shape ~ dunif(0,5)
lambda ~ dunif(0,1)

}

Other differences between R and WinBUGS are that BUGS uses pow(x,y)
instead of x^y and has only a log-gamma function loggam instead of R’s
gamma and lgamma functions. The model includes code to convert from
WinBUGS to R parameters (i.e., calculating scale as a function of lambda)
and to calculate the mean survival time, but you could also calculate these
values in R.

Set up three chains that start from different, overdispersed values of shape
and λ:

> lval <- coef(w1)["scale"]^(-coef(w1)["shape"])

> n <- length(time)

> inits <- list(list(shape = 0.8, lambda = lval), list(shape = 0.4,

+ lambda = lval * 2), list(shape = 1.2, lambda = lval/2))

Run the chains:

> reefgoby.bugs <- bugs(data = list("time", "n"), inits,

+ parameters.to.save = c("shape", "scale", "lambda",

+ "mean"), model.file = "reefgobysurv.bug",

+ n.chains = length(inits), n.iter = 5000)

Finally, use HPDinterval or summary to extract credible intervals or quan-
tiles from the MCMC output. Figure 7.12 compares the marginal posterior
density of the mean and the credible intervals computed from it with the
distribution of the mean derived from the sampling distribution of the pa-
rameters and the population prediction intervals (Section 7.6.3).
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7.6.5 Confidence interval comparison

Here’s a head-to-head comparison of all the methods we’ve applied so far:

method lower upper
exact profile 9.183 27.039
profile:penalty 9.180 27.025
delta method 7.446 22.445
PPI 7.458 23.713
Bayes credible 9.086 25.750

All methods give approximately the same answers. Despite answering a
different question, the Bayes credible interval is in the same range as the
other confidence intervals. The point to take away from this comparison is
that all methods for estimating confidence limits use approximations, some
cruder than others. Use the most accurate feasible approach, but don’t
expect estimates of confidence limits to be very precise. To paraphrase a
comment of Press et al. (1994), if the difference between confidence-interval
approximations ever matters to you, “then you are probably up to no good
away — e.g., trying to substantiate a questionable hypothesis with marginal
data”∗.

APPENDIX: TROUBLE-SHOOTING OPTIMIZATION

� make sure you understand the model you’re fitting

� check starting conditions

� check convergence conditions

� adjust parscale/restart from previous best fit

� switch from constraints to transformed parameters

� adjust finite-difference tolerances (ndeps)

� switch to more robust methods (Nelder-Mead, SANN), or even just
alternate methods

� stop with NAs: debug objective function, constrain parameters, put if
clauses in objective function

� results depend on starting conditions: check slice between answers/around
answers: multiple minima or just convergence problems?

� convergence problems: try restarting from previous stopping point,
resetting parscale

� examine profile likelihoods

∗their original statement referred to whether to divide by n or n− 1 when estimating
a variance
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7.6.6 Testing hypotheses on boundaries by simulating the null hy-
pothesis

Suppose you want to test the hypothesis that the data set

> x = c(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2,

+ 2, 2, 3, 4, 5)

comes from a negative binomial distribution against the null hypothesis that
it is Poisson distributed with λ = x̄ = 1.35.

A negative binomial fit (fit.nb=fitdistr(x,"negative binomial")) gives
a negative log-likelihood (-logLik(fit.nb)) of 31.38, while a Poisson fit
(fit.pois=fitdistr(x,"Poisson")) gives a negative log-likelihood of 32.12.
The Likelihood Ratio Test

> devdiff = 2 * (logLik(fit.nb) - logLik(fit.pois))

> pchisq(devdiff, df = 1, lower.tail = FALSE)

says that the p-value is 0.22, but the corrected (χ̄2
1) test (pchibarsq(devdiff,df=1,lower.tail=FALSE))

says that p is only 0.22 — still not significant but stronger evidence.
To evaluate the hypothesis more thoroughly by simulation, we will set up

a function that (1) simulates Poisson-distributed values with the appropriate
mean; (2) fits a negative binomial and Poisson distributions (returning NA
if the negative binomial fit should happen to crash) and (3) returns the
deviance (twice the log-likelihood ratio):

> simulated.dev = function() {

+ simx = rpois(length(x), lambda = mean(x))

+ simfitnb = try(fitdistr(simx, "negative binomial"))

+ if (inherits(simfitnb, "try-error"))

+ return(NA)

+ simfitpois = fitdistr(simx, "Poisson")

+ dev = c(2 * (logLik(simfitnb) - logLik(simfitpois)))

+ }

Now simulate 3000 such values, throw out the NAs, and count the number
of replicates remaining:

> set.seed(1001)

> devdist = replicate(3000, simulated.dev())

> devdist = na.omit(devdist)

> nreps = length(devdist)

Calculate the proportion of simulated values that exceed the observed
deviance: this is the best estimate of the “true” p value we can get.

> obs.dev = 2 * (logLik(fit.nb) - logLik(fit.pois))

> sum(devdist >= obs.dev)/nreps
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[1] 0.06247912

So, in this case where we have two reasons — small sample size and a bound-
ary condition — to doubt the assumptions of Likelihood Ratio Test, the
classical LRT turns out to be nearly four times too conservative, while the
boundary-corrected version (χ̄2) is only twice as conservative as it should
be.

7.6.7 Nonlinear constraints by penalization

Using penalties to implement an equality constraint or a nonlinear constraint
(neither of which can be done with built-in functions in R) is reasonably
straightforward: just add a penalty term to the negative log-likelihood. For
best results, the penalty should start small and increase with increasing vio-
lation of the constraint (to avoid a discontinuity in the negative log-likelihood
surface).

For example, to find the best shape and scale parameters for the fish sur-
vival data while constraining the mean to equal a particular value target.mu
(use the fixed= argument in mle2 to specify the target value):

> weiblikfun3 <- function(shape, scale, target.mu,

+ penalty = 1000) {

+ mu <- meanfun(shape, scale)

+ NLL = -sum(dweibull(time, shape = shape, scale = scale,

+ log = TRUE))

+ pen = penalty * (mu - target.mu)^2

+ NLL + pen

+ }

> w3 <- mle2(weiblikfun3, start = list(shape = 0.9,

+ scale = 13), fixed = list(target.mu = 13))

If you have a problem where the function blows up when the constraint is
violated, then you don’t want to calculate the likelihood for values outside
the constraints. For example, if we had to restrict shape to be greater than
zero we could use the following code snippet:

> if (shape > 0) {

+ NLL = -sum(dweibull(time, shape = shape, scale = scale,

+ log = TRUE))

+ pen = 0

+ } else {

+ NLL = -sum(dweibull(time, shape = 1e-04, scale = scale,

+ log = TRUE))

+ pen = penalty * shape^2

+ }

> NLL + pen
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In other words, if the shape parameter is beyond the constraints, then use
the likelihood value at the boundary of the feasible region and then add the
penalty.

To use this constrained likelihood function to calculate confidence limits
on the mean, first, calculate the critical value of the negative log-likelihood:

> critval <- -logLik(w1) + qchisq(0.95, 1)/2

Second, define a function that finds the best fit for a specified value of
the mean and returns the distance above the critical value (use the data=
argument in mle2 so that you can try out different values of the penalty):

> pcritfun <- function(target.mu, penalty = 1000) {

+ mfit <- mle2(weiblikfun3, start = list(shape = 0.85,

+ scale = 12.4), fixed = list(target.mu = target.mu),

+ data = list(penalty = penalty))

+ lval <- -logLik(mfit)

+ lval - critval

+ }

Third, define the range of mean values in which you think the lower con-
fidence limit lies and use uniroot to search within this range for the point
where the negative log-likelihood is exactly equal to the critical value:

> lowx <- c(5, 13)

> penlower <- uniroot(pcritfun, lowx)$root

Do the same for the upper confidence limit:

> upx <- c(14, 30)

> penupper <- uniroot(pcritfun, upx)$root

Try with a different value of the penalty:

> uniroot(pcritfun, lowx, penalty = 1e+06)$root

7.6.8 Numeric derivatives

Analytical derivatives are always faster and numerically stabler, but R can
compute numeric derivatives for you. For example, to compute the deriva-
tives of the mean survival time at the maximum likelihood estimate:

> shape <- coef(w1)["shape"]

> scale <- coef(w1)["scale"]

> numericDeriv(quote(scale * gamma(1 + 1/shape)), c("scale",

+ "shape"))

scale
14.94548
attr(,"gradient")

[,1] [,2]
[1,] 1.039502 -8.40662



book May 21, 2007

OPTIMIZATION AND ALL THAT 299

(the quote prevents R from evaluating the expression prematurely). Of
course, you can always do the same thing yourself by hand:

> dshape = 1e-04

> x2 = scale * gamma(1 + 1/(shape + dshape))

> x1 = scale * gamma(1 + 1/shape)

> (x2 - x1)/dshape

scale
-8.404834

which agrees to two decimal places with the numericDeriv calculation.

7.6.9 Bootstrapping

Bootstrapping is a powerful general tool for assessing uncertainty, which
(unfortunately) isn’t covered very thoroughly in this book. R has several
packages for bootstrap analyses (boot, designed to accompany Davison and
Hinkley (1997), and simpleboot). However, simple bootstrap analyses are
easy with the sample(...,replace=TRUE) command, which (as you would
guess) samples the data with replacement. For example: set up a vector to
hold the mean estimates, and a likelihood function that allows an arbitrary
data set to be passed in (via the data= argument):

> dist <- numeric(1000)

> weibbootfun <- function(shape, scale, x) {

+ -sum(dweibull(x, shape = shape, scale = scale,

+ log = TRUE))

+ }

Now run a for loop that resamples the original data with replacement
1000 times, finds the MLEs, computes the mean survival time and stores it
in dist:

> for (i in 1:1000) {

+ bootsamp <- sample(time, replace = TRUE)

+ wboot <- mle2(weibbootfun, start = list(shape = 1,

+ scale = mean(bootsamp)), data = list(x = bootsamp))

+ dist[i] <- meanfun(coef(wboot)["shape"], coef(wboot)["scale"])

+ }

Calculate the mean value (which should be close to the value calculated
from the original MLEs) and the 95% confidence limits:

> mean(dist)

[1] 14.57447

> quantile(dist, c(0.025, 0.975))

2.5% 97.5%
7.943891 22.137483
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7.6.10 Extracting information from BUGS and CODA output

R2WinBUGS returns its results as a bugs object, which can be plotted or
printed. The as.mcmc function in the emdbook package will turn this object
into a mcmc.list (for a multi-chain run) or mcmc (for a single-chain run)
object (read.bugs in the R2WinBUGS package also works, but requires an
extra step). The mcmc and mcmc.list objects are more flexible — they can
be plotted and summarized in a variety of ways (summary, HPDinterval,
densityplot, . . . see the help for the coda package). One additional useful
trick is collapsing a multi-chain run into a single chain (if the chains have
converged, then you can use the combined chain to make inferences): use
lump.mcmc.list in the emdbook package.

Using the reefgoby.bugs object derived from the WinBUGS run on p. 294
calculate the Bayesian credible interval:

> reefgoby.coda <- as.mcmc(reefgoby.bugs)

> reefgoby.coda <- lump.mcmc.list(reefgoby.coda)

> ci.bayes <- HPDinterval(reefgoby.coda)["mean", ]
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SUMMARY

This chapter combines all the methods we’ve considered so far to carry out
some more complete analyses of the example data sets, specifically the data
of Vonesh and Bolker (2005) on tadpole predation, Wilson (2004) on goby
survival, and Duncan and Duncan (2000) on seed predation.

8.1 TADPOLE PREDATION EXPERIMENTS

8.1.1 Introduction

The goal of Vonesh and Bolker’s (2005) tadpole predation study was to
quantify the effects of prey size and density on predation rate, and to use
the results along with data on growth rates to understand the tradeoffs
between growth and survival. The response variable in all of the data we will
consider here is the number of tadpoles killed by a given number or density of
predators in a specified amount of time; the covariates are changing (initial)
number of tadpoles (which gives rise to a functional response curve) and the
size of tadpoles (estimating the presence of a “size refuge”).

The binomial distribution is an obvious choice as a stochastic model for
predation data, because the data are a discrete sample with a fixed upper
limit. The challenge for the frog predation data is to decide on deterministic
models that adequately describe the changes in predation probability with
tadpole size and density.

8.1.2 Fitting the size-predation curve

Vonesh and Bolker (2005) used the function

γ(S) =
eε(φ−S)

1 + eβε(φ−S)
(8.1)

to represent the dependence of predation probability, γ(S), on prey size S.
The location parameter φ represents a baseline prey size at which 50% of

tadpoles are eaten; ε is the rate of change of mortality with size, controlling
the steepness of the curve; and β determines the asymmetry of the curve
— the extent to which prey escape predation at both small and large sizes.
If β = 1 then (8.1) describes a logistic predation function that decreases (if
β > 0) or increases (if β < 0) with size.

Some slightly tedious calculus establishes that the most vulnerable size is
Ŝ = φ + log(β − 1)/(εβ), which gives a predation probability

(β − 1)(−1/β)/(1 + 1/β − 1).

The peak predation probability depends only on β. If β < 1, then the func-
tion is monotonically decreasing, with no peak. (To find Ŝ, solve dγ/dS = 0
for S, using the quotient and chain rules to calculate the derivative, and



book May 21, 2007

LIKELIHOOD EXAMPLES 303

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

Prey size

P
re

da
tio

n 
ris

k

ββ == 1,,  εε == 1

ββ == 1.1,,  εε == 1

ββ == 1.1,,  εε == 5

ββ == 3,,  εε == 1

Figure 8.1 Modified logistic function from Vonesh and Bolker (2005) (eq. 8.1).
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remembering that you only need to worry about setting the numerator to
zero. Then plug Ŝ back into γ(S) to find the predation probability.)

A more traditional function to describe a humped dependence of predation
on size is the generalized Ricker function (Persson et al., 1998),

y = b

(
S

a
exp

(
1− S

a

))α

. (8.2)

This function is basically a reparameterization of the Ricker function (y =
axe−bx) with an added power parameter α that can broaden or narrow the
peak; if α = 1, the generalized Ricker reduces to the standard Ricker func-
tion.

A third possibility is another modification of the Ricker, which I will call
the truncated Ricker: this function shifts the Ricker’s origin away from zero
by a distance t, and sets the function to zero below t (so that it doesn’t
become negative):

y =

{
0 if S < t

b
(

S−t
a e1−(S−t

a )
)

if S ≥ t.
(8.3)

All of these functions are phenomenological rather than mechanistic: while
ecologists have ideas about the mechanisms leading to low predation at small
size (poor detectability and being of little value to the predator) and large
size (escape speed and predator gape limitation), they don’t know enough
about these mechanisms to guess at an appropriate functional form.

Bring in the data and attach it:

> data(ReedfrogSizepred)

> attach(ReedfrogSizepred)

Define the functions (modlogist for the modified logistic, powricker and
tricker for the generalized (power) and truncated Ricker):

> modlogist = function(x, eps, beta, phi) {

+ exp(eps * (phi - x))/(1 + exp(beta * eps * (phi -

+ x)))

+ }

> powricker = function(x, a, b, alpha) {

+ b * (x/a * exp(1 - x/a))^alpha

+ }

> tricker = function(x, a, b, t, min = 1e-04) {

+ ifelse(x < t, min, b * ((x - t)/a * exp(1 - (x -

+ t)/a)))

+ }

Set up negative log-likelihood functions for each model, including one for
the modified logistic that uses a beta-binomial distribution of numbers killed
(NLL.modlogist.bb, with overdispersion parameter θ) instead of a binomial
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in order to account for possible overdispersion∗.

> NLL.modlogist = function(eps, beta, phi) {

+ p.pred = modlogist(TBL, eps, beta, phi)

+ -sum(dbinom(Kill, size = 10, prob = p.pred, log = TRUE))

+ }

> NLL.modlogist.bb = function(eps, beta, phi, theta) {

+ p.pred = modlogist(TBL, eps, beta, phi)

+ -sum(dbetabinom(Kill, size = 10, prob = p.pred,

+ theta = theta, log = TRUE))

+ }

> NLL.powricker = function(a, b, alpha) {

+ p.pred = powricker(TBL, a, b, alpha)

+ -sum(dbinom(Kill, size = 10, prob = p.pred, log = TRUE))

+ }

> NLL.tricker = function(a, b, t) {

+ p.pred = tricker(TBL, a, b, t)

+ -sum(dbinom(Kill, size = 10, prob = p.pred, log = TRUE))

+ }

Eyeballing the data (Figure 8.2) gives approximate starting parameters for
the modified logistic of {φ = 15, β = 1.1, ε = 5} (compare Figure 8.1, and
use φ to shift the peak to approximately S = 15). I’ll start the beta-binomial
version at the best-fit parameters for the binomial model and add θ = 1000
(representing very little overdispersion — the beta-binomial becomes bino-
mial as θ →∞), setting the parscale control option to let R know that we
expect this parameter to be larger than the others. (In an initial exploration
with worse starting parameter guesses, I also played around with options
like method="Nelder-Mead" and setting the maxit control parameter larger
in order to get the optimization to work.)

> FSP.modlogist = mle2(NLL.modlogist, start = list(eps = 5,

+ beta = 1.1, phi = 15))

> FSP.modlogist.bb = mle2(NLL.modlogist.bb, start = as.list(c(coef(FSP.modlogist),

+ list(theta = 1000))), control = list(parscale = c(1,

+ 1, 1, 1000)))

The beta-binomial fit estimates θ = 6865, evidence that the beta-binomial
model is not really necessary; the decrease in negative log-likelihood is only
0.003.

∗A quick and dirty way to check for overdispersion is to compute the residual deviance,
which is -2 × the log-likelihood for the most complex model you fit. For sufficiently large
data sets the scaled residual deviance should be χ2 distributed with degrees of freedom
equal to the residual degrees of freedom. However, (Venables and Ripley, 2002, p. 208)
warn that this estimate can be misleading for moderate-size data sets (e.g. expected
Poisson means less than 5 or expected number of successes in a binomial trial (Np)
less than 10). For this data set, the quick and dirty approach suggests that there is
overdispersion, but the likelihood fit below shows more accurately that there isn’t.
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We hardly need to run the likelihood ratio test (anova(FSP.modlogist,FSP.modlogist.bb))
or the AIC calculation (AICtab(FSP.modlogist,FSP.modlogist.bb)). Even
dividing the p value for the Likelihood Ratio Test by 2 to account for the fact
that the null hypothesis is on the boundary (i.e., the beta-binomial model
reduces to the binomial model when θ → ∞) makes no difference to the
conclusions.

If we try to get confidence limits on θ, however, we run into trouble:

> confint(FSP.modlogist.bb, which = "theta")

Profiling has found a better solution, so original
fit had not converged:
New minimum= 12.13806
Parameter values:

eps beta.beta phi theta
0.3577257 8.9873023 9.7457033 3405.1429647

Error in onestep(step) : try restarting fit from values above

Refitting the parameters from this new starting point (using modlogist in-
stead of modlogist.bb, and extending the maximum number of iterations):

> FSP.modlogist2 = mle2(NLL.modlogist, start = list(eps = 0.357,

+ beta = 8.99, phi = 9.75), control = list(maxit = 1000))

The parameters of this fit are quite different

> rbind(coef(FSP.modlogist), coef(FSP.modlogist2))

eps beta phi
[1,] 0.4042309 2.470003 12.908932
[2,] 0.3045399 67.080841 9.109064

and the negative log-likelihood is slightly lower (11.77 vs. 12.15). You can
use plot(calcslice(FSP.modlogist,FSP.modlogist2)) to calculate and
plot the negative log-likelihoods along a “slice” through parameter space,
showing that the two different fits probably do represent distinct local min-
ima (Figure 7.10).

However, despite fitting the data a little better the fit seems unrealistic,
spiking up abruptly to a high predation rate and then dropping exponentially
(Figure 8.2).

Fitting the generalized and truncated Ricker models:

> FSP.powricker = mle2(NLL.powricker, start = list(a = 0.4,

+ b = 0.3, alpha = 1))

> FSP.tricker = mle2(NLL.tricker, start = list(a = 0.4,

+ b = 0.3, t = 8))

The confidence limits on α for the generalized Ricker (confint(FSP.powricker,parm="alpha"))
are {7.18, 31.69} — the standard Ricker (α = 1) is clearly not competitive.

Calculating AIC values with AICtab:
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AIC df weight
modified logistic (fit 2) 29.5 3 0.350
truncated Ricker 29.9 3 0.297
modified logistic (fit 1) 30.3 3 0.238
generalized Ricker 31.8 3 0.115

None of the models is nested (all have the same number of parameters), and
all the fits are (almost) within 2 log-likelihood units of each other. Burnham
and Anderson would recommend using the weighted predictions of all the
models in subsequent analyses, but in this case (where we are just trying to
gain qualitative insights into life-history tradeoffs) this extra complication
feels unnecessary. In this case, I would be willing to override the narrow
definition of “best fit” and discard the first two models because I don’t really
believe that predation risk is going to increase sharply as tadpoles grow
bigger than 9 mm, as suggested by the truncated Ricker or by the second
fit to the modified logistic. I might even choose the generalized Ricker, the
worst-fitting model, over the first fit of the modified logistic, because the
generalized Ricker is better established in the literature. The lesson here
is that the sparser the data, the more you have to use your judgment in
selecting a model — whether or not you are explicitly Bayesian.

8.1.3 Fitting the functional response curve

The other data set we will examine from Vonesh and Bolker (2005) is the
functional response experiment, which varied the density of tadpoles (with
total body length ≈ 12.8 mm). As many of 67% (10/15) of the tadpoles in an
experiment were eaten, suggesting that we should allow for the effect of de-
pletion over the course of the experiment. The standard model for saturating
functional responses is the Holling type II response, N = aPTN0/(1+ahN0),
where N is the number eaten, N0 is the starting number/density, a and h are
baseline attack rate and handling time, P is the predator number or density
and T is the total exposure time∗. The Rogers random-predator equation,
which allows for depletion, is

N = N0

(
1− ea(Nh−PT )

)
(8.4)

where P is the number of predators, and T is the total time of exposure.
(The predator-exposure factor PT would just be multiplied by the Holling
equation.)

The Rogers random-predator equation (8.4) contains N on both the left-
and right-hand sides of the equation; traditionally, one has had to use itera-
tive numerical methods to compute the function (Vonesh and Bolker, 2005).
However, the Lambert W function (Corless et al., 1996), which gives the so-
lution to the equation W (x)eW (x) = x, can be used to compute the Rogers

∗P and T are usually ignored in the Holling equation, giving the function units of
“number eaten per predator per unit time”, but we include them here for consistency with
the Rogers equation.
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equation efficiently: in terms of the Lambert W the Rogers equation is

N = N0 −
W
(
ahN0e

−a(PT−hN0)
)

ah
. (8.5)

Implement this equation (using the lambertW function in the emdbook pack-
age) in R, as well as the Holling type II function for comparison:

> rogers.pred = function(N0, a, h, P, T) {

+ N0 - lambertW(a * h * N0 * exp(-a * (P * T -

+ h * N0)))/(a * h)

+ }

> holling2.pred = function(N0, a, h, P, T) {

+ a * N0 * P * T/(1 + a * h * N0)

+ }

Attach the data:

> data(ReedfrogFuncresp)

> attach(ReedfrogFuncresp)

Write the likelihood functions:

> NLL.rogers = function(a, h, T, P) {

+ if (a < 0 || h < 0)

+ return(NA)

+ prop.exp = rogers.pred(Initial, a, h, P, T)/Initial

+ -sum(dbinom(Killed, prob = prop.exp, size = Initial,

+ log = TRUE))

+ }

> NLL.holling2 = function(a, h, P = 1, T = 1) {

+ -sum(dbinom(Killed, prob = a * T * P/(1 + a *

+ h * Initial), size = Initial, log = TRUE))

+ }

In the Rogers likelihood function I constrained the range of the function
by simply returning NA if a < 0 or h < 0, rather than using constrained
optimization; if you are not using L-BFGS-B, this shortcut sometimes works.

What about initial values? Eyeballing the data (Figure 8.3), the initial
slope of the functional response curve is about 0.5 (50% of tadpoles are
killed at low densities) and the asymptote looks like it might be at around
50. These values correspond to aPT = 0.5 or a = 0.5/(PT ) ≈ 0.012 and
PT/h = 50 or h ≈ 0.84. These values will be overestimates, but still usable,
as starting points for the Rogers estimation as well:

> FFR.rogers = mle2(NLL.rogers, start = list(a = 0.012,

+ h = 0.84), data = list(T = 14, P = 3))

> FFR.holling2 = mle2(NLL.holling2, start = list(a = 0.012,

+ h = 0.84), data = list(T = 14, P = 3))
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Running AICtab(FFR.rogers,FFR.holling2,weights=TRUE) shows that
the Holling type II is a marginally better fit (0.3 log-likelihood unit differ-
ence):

AIC df weight
Holling type II 97.4 2 0.536
Rogers 97.7 2 0.464

The best-fit Holling and Rogers curves are practically indistinguishable in
the plot (Figure 8.3) as well; however, we strongly prefer the Rogers curve
on biological grounds, because we know that predators are depleting tad-
pole prey significantly over the course of the experiment. The “Rogers (no
depletion)” curve in Figure 8.3 shows that depletion decreases the effect of
predation by about two tadpoles across the board — as much as a 40% effect
at low numbers. It will be important to take depletion into account when we
compare experiments with different exposure times and predator densities
below.

a h
Rogers 0.0171 0.814
Holling type II 0.0126 0.704

Taking depletion into account leads to a 36% increase in the estimated attack
rate and a 16% increase in the estimated handling time.

8.1.4 Combined effects of size and density

Vonesh and Bolker (2005) combined the effects of size and density by al-
gebraically combining the parameters of the separate size and density fits.
Here, we will instead combine all the data in a single likelihood function,
estimating the functional response parameter (h) and the size-dependent at-
tack rate parameters (α, β, and ε) at the same time∗. The only thing we
need to sort out is that the experiments were run in different volumes, as
well as with different numbers of predators and for different lengths of time.
The functional response experiments were run in 300 L tanks (1.2 × 0.8 ×
0.4 m high) filled to 220 L; the size experiments were run in 35 L plastic tubs
(0.32 m in diameter) filled to 25 L. Based on the way that predators foraged,
Vonesh and Bolker (2005) assumed that predation success depended on the
area of the foraging arena (1.2 · 0.8 = 0.96 m2 vs π((0.32)/2)2 = 0.080 m2)
rather than its volume. To make the predation probabilities match, we have
to divide the predator numbers by area† It is convenient to collect the aux-
iliary parameters for each experiment (number of predators, area, exposure
time, etc.) in a couple of lists:

∗It would be realistic to make the handling time vary as a function of size as well
(Persson et al., 1998), but unfortunately we don’t have enough data.

†But not the prey numbers — figuring this out reminded me of the old riddle “if a
hen and a half lays an egg and a half in a day a half, how many eggs can one hen lay in
a day?”
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> xpars.Funcresp = list(T = 14, P = 3, vol = 220, area = 1.2 *

+ 0.8, size = 12.8)

> xpars.Sizepred = list(T = 3, P = 2, vol = 25, area = pi *

+ 0.16^2, initprey = 10)

Put together a combined data set representing the initial numbers, size,
number killed, predator density, and exposure time for both experiments,
using rep to repeat values where necessary:

> n.Funcresp = nrow(ReedfrogFuncresp)

> n.Sizepred = nrow(ReedfrogSizepred)

> combInit = c(ReedfrogFuncresp$Initial, rep(xpars.Sizepred$initprey,

+ n.Sizepred))

> combSize = c(rep(xpars.Funcresp$size, n.Funcresp),

+ ReedfrogSizepred$TBL)

> combKilled = c(ReedfrogFuncresp$Killed, ReedfrogSizepred$Kill)

> combP = rep(c(xpars.Funcresp$P/xpars.Funcresp$area,

+ xpars.Sizepred$P/xpars.Sizepred$area), c(n.Funcresp,

+ n.Sizepred))

> combT = rep(c(xpars.Funcresp$T, xpars.Sizepred$T),

+ c(n.Funcresp, n.Sizepred))

Write a combined function for the expected proportion eaten, computing
the attack rate a from the parameters ε, β, and φ and combining it with the
handling time h:

> prop.eaten = function(N0, S, h, P, T, eps, beta,

+ phi, minprop = .Machine$double.eps) {

+ a = modlogist(S, eps = eps, beta = beta, phi = phi)

+ N.eaten = rogers.pred(N0, a = a, h = h, P = P,

+ T = T)

+ prop = N.eaten/N0

+ prop[prop <= 0] = minprop

+ prop[prop >= 1] = 1 - minprop

+ prop

+ }

The value .Machine$double.eps is a built-in constant corresponding to the
smallest difference between numeric values your computer can keep track
of without rounding (it is 2.22 × 10−16 on the machine I am using). Using
minprop to adjust values that are ≤ 0 or ≥ 1 takes care of the cases where the
rogers.pred function returns an expected proportion eaten slightly less than
zero, or exactly equal to 1 (which causes an infinite negative log-likelihood
if no tadpoles are eaten); these minor errors happen because of round-off
error.

A negative log-likelihood function incorporating the proportion eaten:

> NLL.rogerscomb = function(a, h, eps, beta, phi, T = combT,

+ P = combP) {
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+ if (h < 0)

+ return(NA)

+ prob = prop.eaten(combInit, combSize, h, P, T,

+ eps, beta, phi)

+ dprob = dbinom(combKilled, prob = prob, size = combInit,

+ log = TRUE)

+ -sum(dprob)

+ }

Set the starting values by combining h from the Rogers fit (which has to
be put inside its own list) with the attack rates from the size-dependence
fit (which will be a slight underestimate since they don’t incorporate the
effects of handling time):

> startvals = c(list(h = coef(FFR.rogers)["h"]), as.list(coef(FSP.modlogist)))

Finding the optimum, avoiding the alternate fit (fit #2 above) when pro-
filing, and avoiding overflow errors is quite finicky in this case. The easiest
way to avoid the alternate fit is to restrict β, but using the L-BFGS-B op-
timizer leads to lots of headaches with NAs being produced in the Lam-
bert W function. I used a two-stage method — first, optimizing with
method="Nelder-Mead" and using confint(FPcomb,method="quad") to get
approximate confidence limits:

> FPcomb = mle2(NLL.rogerscomb, start = startvals,

+ method = "Nelder-Mead")

> confint(FPcomb, method = "quad")

Then using slightly larger values for the upper and lower bounds to refit
the model and get more precise confidence limits (confint must use the
same optimization rules that were used in the original fit). Getting this to
work took some frustrating trial and error, including incorporating debug-
ging statements like

> cat(h, eps, beta, phi, "\n")

or

> if (any(!is.finite(prob))) cat("NAs:", h, eps, beta,

+ phi, "\n")

or

> if (any(!is.finite(dprob))) {

+ browser()

+ }

into the NLL.rogerscomb function to track down where the problems were
occurring in order to set bounds that would prevent NAs. (In the course
of this exploration I also went back and incorporated the minimum and
maximum bounds in prop.eaten, which I had initially left out.)



book May 21, 2007

314 CHAPTER 8

> FPcomb = mle2(NLL.rogerscomb, start = startvals,

+ method = "L-BFGS-B", lower = c(0.7, 0.5, 1, 14),

+ upper = c(1.8, 2.25, 2, 20), control = list(parscale = c(1,

+ 1, 1, 10)))

> FPcomb.ci = confint(FPcomb)

What is the combined estimate of the proportion eaten under the condi-
tions of the size-predation experiment (12.8 mm body length, 2 predators in
an area of 0.08 m2 for 3 days)? How well does it match the estimate based
only on the size-predation experiment? (That is, does combining the data
change the baseline estimate from the size-predation experiment?)

Figure 8.4 is mildly alarming at first sight, showing that the estimate of
the size refuge changes markedly when we incorporate the data from the
functional response experiment. That suggests a major difference between
the two experiments. A closer look, however, shows that the major difference
between the results falls in a region where we don’t have any data, between
12.8 and 21 mm body length. The slightly higher predation rate in the
functional response experiment (even corrected for predator exposure) pulls
the curve up.

How would we go about quantifying the uncertainty in the two curves and
convincing ourselves that they’re not (statistically) significantly different?

Calculating the estimates of the proportion eaten at size 12.8 mm from
the size-predation fit alone:

> c1 = coef(FSP.modlogist)

> FSP.expprop.mean = modlogist(12.8, c1["eps"], c1["beta"],

+ c1["phi"])

and from the combined fit:

> c2 = coef(FPcomb)

> FP.expprop.mean = prop.eaten(N0 = 10, S = 12.8, c2["h"],

+ P = 2/0.08, T = 3, eps = c2["eps"], beta = c2["beta"],

+ phi = c2["phi"])

The estimated predation proportions are round(FSP.exprop.mean,2) for
the size-predation experiment alone and round(FP.exprop.mean,2) for the
combined data — a difference that certainly might be biologically significant,
if it were statistically significant.

As discussed in Chapter 7, population projection intervals are a simple
way to calculate the confidence intervals of a quantity of interest that is not
a parameter in the model. Using mvrnorm to generate 5000 values from the
sampling distribution of the parameters and calculating the 95% population
projection intervals of the size-predation data:

> set.seed(1001)

> FSP.expprop.pars = mvrnorm(5000, mu = c1, Sigma = vcov(FSP.modlogist))

> FSP.expprop.val = numeric(5000)
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> for (i in 1:5000) {

+ FSP.expprop.val[i] = modlogist(12.8, FSP.expprop.pars[i,

+ 1], FSP.expprop.pars[i, 2], FSP.expprop.pars[i,

+ 3])

+ }

> FSP.expprop.ppi = quantile(FSP.expprop.val, c(0.025,

+ 0.975))

Doing the same thing for the combined fit:

> FP.expprop.pars = mvrnorm(5000, mu = c2, Sigma = vcov(FPcomb))

> FP.expprop.val = numeric(5000)

> for (i in 1:5000) {

+ FP.expprop.val[i] = prop.eaten(N0 = 10, S = 12.8,

+ P = 2/0.08, T = 3, h = FP.expprop.pars[i,

+ "h"], eps = FP.expprop.pars[i, "eps"],

+ beta = FP.expprop.pars[i, "beta"], phi = FP.expprop.pars[i,

+ "phi"])

+ }

> FP.expprop.ppi = quantile(FP.expprop.val, c(0.025,

+ 0.975))

mean low high
size-pred 0.494 0.397 0.852
combined 0.702 0.641 0.992

The results show that the uncertainty in the estimates is large enough that at
least the confidence limits of the size-predation estimates (0.4, 0.85) overlaps
with the estimate from the combined data (0.7), if not vice versa.

Vonesh and Bolker (2005) took results like these (although they did not try
fitting the combined data as we have done here) and used them together with
size-dependent growth rate estimates from a growth experiment to simulate
the survival of tadpoles hatching at different sizes. They found that because
smaller-starting tadpoles grew faster through the window of vulnerability
between 10 and 20 mm, their overall survival was comparable to tadpoles
that hatched at a larger size.

The analysis we have done here has opened up several more questions.

� Because it must compromise between two sets of data with slightly dif-
ferent survival rates, the fit of the combined curve to the size-predation
data is slightly worse than the fit of the size-predation curve itself (Fig-
ure 8.4). We initially rejected the need for a beta-binomial model to
account for overdispersion, but the larger deviations suggest that it
might be worth testing again.

� Following Vonesh and Bolker (2005), we assumed that predator ef-
ficiency scaled with area, not volume; this approach may have un-
derstated the predator threat in the functional response experiment,
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Figure 8.4 Observed number eaten as a function of size; predicted values from
size-predation experiment only and from all data combined.

leading to an inflation of the expected proportion eaten per unit of
exposure. The total predator exposure (P × T ) in the functional
response experiment was 14 × 3 = 42 predator-days, in contrast to
3×2 = 6 predator-days for the size-predation experiment. If we calcu-
late PT/area for each experiment and take the ratio, we get a relative
risk of 43.8/74.6 = 0.6; overall predator pressure per unit area was
lower in the functional response experiment. On the other hand, re-
peating the same calculation but scaling by volume gives a risk ratio
of 0.19/0.24 = 0.8 — less difference, leading to less inflation of the per-
predator risk in the functional response. We could adjust the model
by adding a scaling factor to account for the differences between the
experiments, and tentatively interpret it in terms of the geometry of
the foraging arena (Petersen et al., 1999). While we clearly don’t have
enough data to make a decision just from these two experiments, the
slight discrepancy between the results of the two experiments does
open up some interesting questions . . .
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8.2 GOBY SURVIVAL ANALYSIS

Next, we will take a look at the effects of density and “quality” (spatial
variation in habitat quality correlated with natural rates of immigration) on
the survival of the small marine fishes (gobies) Elacatinus evelynae and E.
prochilos in field experiments (Wilson, 2004).

The questions here are straightforward: how fast do fish die (or disappear)
at different levels of density and quality? Do quality, density, or their in-
teraction (i.e. an effect of quality on the density-dependent mortality rate)
have significant effects?

As a reminder, the data contain information on the survival of marine
gobies in experiments where ambient density was manipulated on coral heads
with different background settlement rates; settlement rates were suspected
to be correlated with some unknown aspect of environmental quality, which
revealed itself through lower mortality rates (Figure 8.6).

8.2.1 Preliminaries

Attach the data:

> library(emdbookx)

> data(GobySurvival)

> attach(GobySurvival)

In the data, time starts from day 1 (the day the fish were put on the reef)
and runs until day 12; any fish that were still present on day 12 were given
a “last day seen” (d2) value of 70 in the data set. For the following analy-
sis, time should start from zero and run to ∞ (the cumulative distribution
functions we will be using can handle infinite values), so we will subtract 1
from d1 and d2 and set the ending value of d2 to Inf:

> day1 = d1 - 1

> day2 = ifelse(d2 == 70, Inf, d2 - 1)

As discussed in Chapter 7, we will use the Weibull distribution to fit the
data, allowing for the observed decrease in mortality rate over time. We are
interested in whether mortality is density-dependent, and whether quality
affects either the density-independent or the density-dependent mortality
rate. We may need to allow for the possibility that different experiments
show different results (this data set combines the results from 5 experiments
run over the course of three years).

The most complete model of the survival time of an individual fish in
experiment x with density (number of neighboring fish) d and quality (back-
ground settlement rate) q would be:

T ∼ Weibull(ax(d, q), sx(d, q))
ax(d, q) = exp(αa,x + βa,x · q + (γa,x + δa,x · q)d)
sx(d, q) = exp(αs,x + βs,x · q + (γs,x + δs,x · q)d)

(8.6)
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In other words, we are fitting the shape and scale parameters on the log scale.
For both the shape and the scale parameter we are allowing for a baseline
value (α), a linear effect (on the log scale) of quality (β), a linear effect
of density (γ), and an interaction between density and quality (δ) — i.e.,
a linear effect of quality on the density-dependent mortality coefficient. As
indicated by the x in the subscripts, we are also allowing each parameter to be
different in each experiment, for a total of 40 (!) parameters. Given that we
have only length(day1) observations, unevenly divided among experiments
(with as few as 11 observations in an experiment), and that each observation
tells us fairly imprecisely when a fish disappeared, this model is certainly
more complex than we can hope to fit.

We might try anyway, fitting all possible submodels and using model-
selection rules to decide which pieces really belong in the model∗, but even
so there would be far too many submodels to consider. There are two pos-
sibilities for the intercept parameter α (the same for all experiments or dif-
ferent among experiments), and three for each of the other parameters β, γ,
and δ (zero for all experiments, meaning no effect of density or quality or
their interaction; non-zero but the same for all experiments; or different for
different experiments). There are 34 possible models for shape and 34 for
scale† or 342 = 1156 models in total, even for this moderate-sized problem!

We must make some a priori decisions about which parameters to drop
— decisions made harder by the difficulty of graphically representing the de-
pendence of survival on continuous covariates. Figure 8.5 shows the effects of
the shape and scale parameter on the Weibull distribution. Comparing these
difference to the survival curves in Figure 8.6 suggests that the scale, but
not the shape, of the Weibull distribution varies between density and quality
categories. Figure 8.6 also suggests an interaction between quality and den-
sity categories, because survival in the low quality/high density category is
considerably below that in any other category. Figure 8.6 does not separate
the results of different experiments; it might be worth drawing this figure to
check, but for now we will assume that the only possible difference among
experiments is in the baseline scale parameter, not in the effects of density
and quality. Wilson (2004) used a standard survival analysis to demon-
strate non-significant interactions between experiment and density/quality,
supporting this assumption.

These simplifications reduce our most complex model to
T ∼ Weibull(a, sx(d, q))

sx(d, q) = exp(αs,x + βs · q + (γs + δs · q)d),
(8.7)

with 9 parameters (5 for treatment effects on scale, 3 for the effects of den-
sity, quality and their interaction on scale, and 1 for the shape parameter).

∗The statistical equivalent of the advice of a crusading abbot who when asked how to
tell the innocents and the heretics apart said, “Kill them all, God will recognize his own”
. . .

†You might expect 2 × 3 × 3 × 3 = 54 for each parameter of the Weibull, but there
are a few combinations that don’t make sense — specifically, fitting the δ (density-quality
interaction parameter) if either the density or quality effect is set to zero.
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Our suite of models reduces to 10. If we denote the simplest model (a single
shape and scale parameter) by 0; the presence of treatment effects (αi 6= αj

for at least one pair of experiments) by x; a quality effect (βs 6= 0) by q; a
density effect (γs > 0) by d; and a quality-density interaction (δs > 0) by i,
then our remaining models with their numbers of parameters are:

0 (2) x (6) xq (7) xqd (8) xqdi (9)
q (3) xd (7) qdi (5)
d (3) qd (4)

(These are all combinations of x, q, d, and i, with the restriction that i
cannot be included without both q and d.) If we wanted to allow the shape
parameter to vary with quality and density, but not experiment, we would
have a most-complex model with 12 parameters and a total of 40 (4 × 10)
model possibilities.

Here is the most complex model:

> NLL.GS.xqdi = function(lscale0, lscale.q, lscale.d,

+ lscale.i, lscale.x2, lscale.x3, lscale.x4, lscale.x5,

+ lshape) {

+ lscalediff = c(0, lscale.x2, lscale.x3, lscale.x4,

+ lscale.x5)

+ scale = exp(lscale0 + lscalediff[exper] + lscale.q *

+ qual + (lscale.d + lscale.i * qual) * density)

+ shape = exp(lshape)

+ -sum(log(pweibull(day2, shape, scale) - pweibull(day1,

+ shape, scale)))

+ }

The only unusual thing here is that we’ve parameterized the difference among
experiments so that the baseline parameter (lscale0) represents the log of
the scale parameter (at density=0 and quality=0) in experiment 1, while the
experiment parameters (lscale.x2, etc.) represent the differences between
experiment 1 and the other experiments: this parameterization is consistent
with the way that other functions in R define parameters, and makes it
possible to test the hypothesis that all experiments are the same by setting
lscale.x2 and the other experiment parameters to zero. The differences
among parameters are indexed by exper and added to the baseline value
along with the effects of density and quality.

Since we don’t know exactly when (between day1 and day2) a given fish
disappeared, we calculate the probability that it disappeared somewhere
between day1 and day2 taking the difference between the probability that it
disappeared before day2 (pweibull(day2,...)) and the probability that it
disappeared before day1 (pweibull(day1,...)); we take the log only after
calculating the difference.

What about starting values for this model? The mean of the Weibull
distribution with shape a and scale s is sΓ(1+1/a), which for an exponential
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(a = 1) is equal to s. We’ll start log(s) from the log of the overall mean
survival time (calculated from d1 and d2 rather than day1 and day2 because
day2 contains infinite values that will mess up the mean calculation), and
log(a) from 0, which represents an exponential distribution. Since the rest of
the parameters represent differences from the baseline case, we’ll try starting
them all from zero.

> totmeansurv = mean((d1 + d2)/2)

> startvals.GS = list(lscale0 = log(totmeansurv), lscale.x2 = 0,

+ lscale.x3 = 0, lscale.x4 = 0, lscale.x5 = 0,

+ lscale.q = 0, lscale.d = 0, lscale.i = 0, lshape = 0)

> GS.xqdi = mle2(NLL.GS.xqdi, startvals.GS)

Looking at the estimates of the parameters and their approximate p-values:

> summary(GS.xqdi)

Maximum likelihood estimation

Call:
mle2(minuslogl = NLL.GS.xqdi, start = startvals.GS)

Coefficients:
Estimate Std. Error z value Pr(z)

lscale0 1.9506010 0.7450665 2.6180 0.008844 **
lscale.q -0.0137277 0.0993038 -0.1382 0.890051
lscale.d -0.2198680 0.0973726 -2.2580 0.023945 *
lscale.i 0.0126382 0.0130451 0.9688 0.332644
lscale.x2 -1.0707399 0.5000217 -2.1414 0.032243 *
lscale.x3 -0.7677602 0.3830876 -2.0041 0.045055 *
lscale.x4 -0.1315136 1.0460335 -0.1257 0.899949
lscale.x5 0.0048526 0.9516556 0.0051 0.995932
lshape -1.0016188 0.0944042 -10.6099 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 886.122

From this summary, it appears that there may be an effect of experiment
(experiments 2 and 3 both show significantly shorter survival times than
experiment 1), an effect of density, and a shape parameter that is significantly
less than 1 (log(a) < 0) — that is, per capita mortality declines significantly
with time.

In a stepwise analysis, we would continue by dropping the interaction
term from the model (it doesn’t really make sense to drop the parameters
for experiments 4 and 5, since they are part of the overall difference among
experiments). One shortcut for dropping terms from an mle fit, rather than
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writing another likelihood function that is missing one term, is to use the
fixed= argument to set a subset of the parameters to zero. For example, to
drop the interaction term from the model:

> GS.xqd = mle2(NLL.GS.xqdi, startvals.GS, fixed = list(lscale.i = 0))

We can use the Likelihood Ratio Test on particular series of nested hy-
potheses to test specific conclusions. For example, we might be most inter-
ested in testing whether quality and density have an effect. We attempt to
drop the interaction term first, then quality, then density. Because the dif-
ferences between experiments are potentially important, and an unavoidable
part of the experimental design, we leave them in the model. Therefore we
want to test the sequence of models xqdi → xqd → xd → x.

Fitting the remaining two models in the sequence:

> GS.xd = mle2(NLL.GS.xqdi, startvals.GS, fixed = list(lscale.i = 0,

+ lscale.q = 0))

> GS.x = mle2(NLL.GS.xqdi, startvals.GS, fixed = list(lscale.i = 0,

+ lscale.q = 0, lscale.d = 0))

Applying anova to run the Likelihood Ratio Test:

> anova(GS.xqdi, GS.xqd, GS.xd, GS.x)

Likelihood Ratio Tests
Model 1: GS.xqdi,
Model 2: GS.xqd,
Model 3: GS.xd,
Model 4: GS.x,
Tot Df Deviance Chisq Df Pr(>Chisq)

1 9 886.12
2 8 887.04 0.9139 1 0.33907
3 7 890.77 3.7384 1 0.05318 .
4 6 895.30 4.5210 1 0.03348 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This analysis confirms the results of summary on the most complex model
to some extent. It finds that the effect of the interaction (model 1 vs. 2)
is insignificant and the effect of density is significant at p = 0.03 (model 3
vs. 4). The effect of quality (when added to a model that already accounts
for density) is weakly significant. The parameter values (coef(GS.xqd))
show the positive effect of quality (0.076) to be about half the negative
effect of density (-0.149), on the log scale; adding one competitor to a reef
decreases the scale parameter (and hence survival) by a factor of e−0.149 =
0.86, while an additional background settler indicates some element of quality
that increases survival on average by a factor of e0.076 = 1.08.

Alternatively, we can simply fit the remaining 6 models (qdi, qd, xq, d, q,
0 — not shown) and use information criteria (AICtab, AIcctab, or BICtab)
to get the following results:
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model params ∆AIC AIC weights ∆AICc ∆BIC
qd 4 0.00 0.23 0.00 2.54
xqd 8 0.25 0.20 0.54 18.44
qdi 5 0.92 0.15 0.98 7.38
xqdi 9 1.34 0.12 1.73 23.44
d 3 1.37 0.12 1.32 0.00
xd 7 1.99 0.09 2.19 16.27
xq 7 4.02 0.03 4.22 18.30
x 6 4.51 0.02 4.63 14.88
q 3 4.85 0.02 4.80 3.48
0 2 5.50 0.02 5.42 0.22

This is perhaps too much information — because of the different weighting
used by the different information criteria, they give qualitatively different an-
swers. AIC and AICc prefer the model that incorporates the effects of quality
and density, with all the models considered plausible (∆AIC,∆AICc < 6 for
all candidate models) but with the simplest models weighted very little; in
contrast, BIC prefers the simplest models (0, d), ruling out the most complex
ones (∆BIC > 10 for xqd, xqdi, xd, xq, x).

What should one do in this situation, with too many possible answers?
There is fairly strong evidence that density has an effect, and based on the
coefficients the effect of quality is about half as strong (per fish present).
In terms of the range of values used in the experiment, density and quality
have approximately equivalent effects (density has a range of 9, from 2 to
11, while quality ranges from 1 to 18).

There aren’t too many loose ends in this particular analysis, but there are
a number of possible directions for further exploration:

� We have followed standard survival analysis in making the mortal-
ity rate an exponential function of covariates such as density. Fish-
eries biologists commonly model mortality as a linear (additive) func-
tion of density instead (i.e., Prob(survival to t) ∝ e−a+b·d rather than
Prob(survival to t) ∝ e−ea+b·d

). The exponential analysis is more con-
venient because it guarantees that the mortality rate will always be
positive regardless of the parameters, thus avoiding the need for con-
strained optimization. For small mortality rates the analysis will give
approximately the same answers, since by Taylor expansion the expo-
nential is approximately linear near zero. It would be interesting to
re-do the analysis with a linear model and see how similar the answers
were. More challengingly, one could explore the dependence of survival
on density and quality in more detail — perhaps graphically — and
see if a more flexible function could give a better answer.

� We ignored differences in shape parameter; it would be interesting to go
back and explore the possibilities of differences in shape (representing
the differences in change in mortality over time) some more, and with
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a wider variety of data; does the shape parameter vary with the mode
of mortality?

8.3 SEED REMOVAL

For the Duncan seed predation/seed removal data, some of the ecological
questions are: how does the probability of seed removal vary as a function
of distance from the forest edge (10 or 25 m)? With species, possibly as a
function of seed mass? By time?

Since most of the predictor variables are categorical in this case (species;
distance from forest), the deterministic models are relatively simple — sim-
ply different probabilities for different levels of the factors. On the other
hand, the distribution of the number of seeds taken is unusual, so most
of the initial modeling effort will go into finding an appropriate stochastic
model.

8.3.1 Preliminaries

Pull in the data:

> data(SeedPred)

Drop NAs and records where there are zero seeds available: attach the
results.

> SeedPred = na.omit(subset(SeedPred, available > 0))

> attach(SeedPred)

About 90% of the data consist of “zero taken” entries. We don’t want to
ignore these data, but sometimes we can see more if we look only at the
non-zero cases: we’ll use nz for that case.

> nz = subset(SeedPred, taken > 0)

8.3.2 Stochastic model: which distribution?

I used barchart from the lattice package to look at the data in a variety
of different ways — rearranging the order of the factors in the table to get
different arrangements of panels and bars, plotting data with zero-taken
data included and excluded, and adding dropping factors from the table
command to see coarser views of the data:

> barchart(table(nz$taken, nz$available, nz$dist, nz$species),

+ stack = FALSE)

> barchart(table(nz$taken, nz$species, nz$dist, nz$available),

+ stack = FALSE)

> barchart(table(nz$species, nz$available, nz$dist,

+ nz$taken), stack = FALSE)
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> barchart(table(nz$available, nz$dist, nz$taken),

+ stack = FALSE)

> barchart(table(nz$available, nz$species, nz$taken),

+ stack = FALSE)

I could also have included the argument subset=taken>0 to restrict the plots
to non-zero data.

Plot all data (not just cases where some seeds are taken):

> barchart(table(available, dist, taken), stack = FALSE)

Plot by date:

> tcumfac = cut(nz$tcum, breaks = c(0, 20, 40, 60,

+ 180))

> barchart(table(nz$available, tcumfac, nz$taken),

+ stack = FALSE)

> barchart(table(available, tcumfac, taken), stack = FALSE)

Two additional useful arguments are auto.key=TRUE, to draw a legend for
the bar colors, and scales=list(relation="free"), to allow different scales
in each panel.

As with the reed frog predation experiment, the data are discrete and the
results have an upper limit (i.e., the number of seeds available for removal
at the beginning of the interval). The zero-inflated binomial introduced in
Chapter 4 might make sense, if there were more zeros in the data set than
expected from the binomial sampling process (e.g. if the probability dis-
tribution had modes both at zero and away from zero). This distribution
would be appropriate if predators sometimes missed the site entirely. How-
ever, Figure 8.7 shows that the seed removal data set doesn’t look like a
zero-inflated binomial either, because the distribution is lowest in the mid-
dle and increases gradually for higher or lower values. Compare that with
Figure 4.1 (p. 124), which shows that the probability distribution function of
the zero-inflated binomial distribution usually drops toward zero, then has
a spike at zero (p(0) > p(1), p(1) < p(2)).

Next I tried the beta-binomial distribution, which allows for variability in
the underlying probabilities per trial and can be bimodal at 0 and N for
extreme values of the overdispersion parameter, and a zero-inflated beta-
binomial distribution.

One should really test the fits of distributions on a small piece of the data
set, or allowing for different parameters for each combination of factors:
variation among groups can mask the shape of the underlying distribution.
However, it can be tedious to try to fit parameters for an unknown distri-
bution for all combinations of factors simultaneously, and the exploratory
graphical analysis described above convinced me that the pattern shown in
Figure 8.7 holds up even when the data are disaggregated by species, dis-
tance, date, etc..
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Figure 8.7 Distribution of overall number of seeds taken as a function of the num-
ber available, when number available > 1 and number taken > 0.
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Using the dzinbinom function in the emdbook package as a model, I con-
structed probability density functions for the zero-inflated binomial (dzibinom)
and zero-inflated beta-binomial (dzibb):

> dzibinom = function(x, prob, size, zprob, log = FALSE) {

+ logv = log(1 - zprob) + dbinom(x, prob = prob,

+ size = size, log = TRUE)

+ logv = ifelse(x == 0, log(zprob + exp(logv)),

+ logv)

+ if (log)

+ logv

+ else exp(logv)

+ }

> dzibb = function(x, size, prob, theta, zprob, log = FALSE) {

+ logv = ifelse(x > size, NA, log(1 - zprob) +

+ dbetabinom(x, prob = prob, size = size, theta = theta,

+ log = TRUE))

+ logv = ifelse(x == 0, log(zprob + exp(logv)),

+ logv)

+ if (log)

+ logv

+ else exp(logv)

+ }

Next I took shortcut and used the formula interface to mle2 rather than
writing an explicit negative log-likelihood function. I fitted the zero-inflation
probability on a logit scale, using plogis to transform it on the fly, since it
must be between 0 and 1:

> SP.zibb = mle2(taken ~ dzibb(size = available, prob,

+ theta, plogis(logitzprob)), start = list(prob = 0.5,

+ theta = 1, logitzprob = 0))

> print(SP.zibb)

Call:
mle2(minuslogl = taken ~ dzibb(size = available, prob, theta,

plogis(logitzprob)), start = list(prob = 0.5, theta = 1,
logitzprob = 0))

Coefficients:
prob theta logitzprob

0.07166827 0.32707860 -2.32655049

Log-likelihood: -1811.13

There were warnings about NaNs in lbeta, but the final answers look
reasonable. I was surprised to see that the zero-inflation probability was so
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small: plogis(-2.33)= 0.089. I suspected that the zero-inflation parameter
and the overdispersion parameter (θ) might both be affecting the number of
zeros, so I checked the correlations among the parameters:

> cov2cor(vcov(SP.zibb))

prob theta logitzprob
prob 1.0000000 0.2885011 0.9867901
theta 0.2885011 1.0000000 0.3436282
logitzprob 0.9867901 0.3436282 1.0000000

Indeed, logitzprob and prob are 99% correlated — suggesting that we
could drop the zero-inflation parameter from the model.

> SP.bb = mle2(taken ~ dbetabinom(size = available,

+ prob, theta), start = list(prob = 0.5, theta = 1))

> logLik(SP.bb) - logLik(SP.zibb)

'log Lik.' 0.07956568 (df=2)

The log-likelihood difference is only about 0.08. Even allowing for the fact
that the null value of the zero-inflation parameter is on the boundary, so
that the appropriate χ̄2

1 p-value is half the usual χ2
1 p-value, this difference

is certainly not significant.
Just for completeness, I fitted the zero-inflated binomial too (although I

didn’t think it would fit well):

> SP.zib = mle2(taken ~ dzibinom(size = available,

+ prob = p, zprob = plogis(logitzprob)), start = list(p = 0.2,

+ logitzprob = 0))

Using AIC to compare all three distributions:

> AICtab(SP.zib, SP.zibb, SP.bb, sort = TRUE, weights = TRUE)

AIC df weight
SP.bb 3626.1 2 0.746
SP.zibb 3628.3 3 0.254
SP.zib 4045.6 2 <0.001

Figure 8.8 compares the predictions of the different distributions, with
stacked barplots showing the breakdown of different numbers of seeds taken
for each number of seeds available.

The R code to calculate this distribution for the data first computes the
table of number-taken-by-number-available, then uses sweep to divide each
column (margin 2) by its sum:

> comb = table(taken, available)

> pcomb = sweep(comb, 2, colSums(comb), "/")
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1 2 3 4 5

data Z−I beta−binomial

beta−binomial Z−I binomial

Figure 8.8 Observed and predicted distribution of number of seeds taken as a func-
tion of number available. (Zero-taken results are omitted, and columns
are rescaled to add to 1.)

The equivalent computation for the zero-inflated beta-binomial sets up an
empty matrix with 6 rows (for 0 to 5 seeds taken) and 5 columns (for 1 to
5 seeds available). For each number available N , it then sets the first N + 1
rows in column N of the matrix to the predicted probability of taking 0 to
N seeds.

> mtab = matrix(0, nrow = 6, ncol = 5)

> for (N in 1:5) {

+ cvals = coef(SP.zibb)

+ mtab[1:(N + 1), N] = dzibb(0:N, size = N, prob = cvals["prob"],

+ theta = cvals["theta"], zprob = plogis(cvals["logitzprob"]))

+ }

Similar calculations work for the other two distributions.
As we would expect from the statistical results so far, the zero-inflated

beta-binomial and beta-binomial predictions look nearly identical, and much
closer than the zero-inflated binomial results. However, there are still vis-
ible discrepancies for the cases of 4 and 5 seeds available — the predicted
distributions are more regular, and have more even distributions, than the
observed.
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We can calculate standard χ2 p-values for the probability of the observed
numbers taken for each number of seeds available:

> pval = numeric(5)

> for (N in 1:5) {

+ obs = comb[1:(N + 1), N]

+ prob = mtab[1:(N + 1), N]

+ pval[N] = chisq.test(obs, p = prob)$p.value

+ }

The p-values are:

1 2 3 4 5
0.526 0.290 0.810 0.012 <0.001

There are still statistically significant discrepancies between the expected
and observed distributions when 4 or 5 seeds are available. We could try to
find a way to make the stochastic model more complex and accurate, but we
have reached the limit of what we can do with simple models, and we may
also have reached the limit of what we can do with the data. The mechanism
for the pattern remains obscure. While I can imagine mechanisms that would
lead to all seeds or none being taken, it’s hard to see why it’s least likely
that 3 out of 5 available seeds would be taken. I suspect that there is some
disaggregation of the data by species, date, etc., that would divide stations
into those where few or many seeds were taken, with an extreme pattern
in each case that combines to create the observed bimodal pattern, but I
haven’t been able to find it.

8.3.3 Deterministic model: differences among species, etc.

Now we can check for differences among distances from the forest, species,
and possibly differences in space and time: how does the distribution of
number of seeds removed vary? Does p, the overall probability that a seed
will be removed, vary? Does θ (the overdispersion parameter, which in this
case is more related to the probability that any seeds will be removed) vary?
Do they both vary?

8.3.3.1 Differences among transects (distance from edge)

mle2’s formula interface allows us to specify that some parameters vary
among groups, by giving a parameters argument which is a list of the formu-
las for each group (p. 235). Here I wanted to parameterize the model so that
mle2 would estimate the probability and overdispersion parameter for each
species, rather than estimating the parameters for the first group and the
differences between subsequent groups and the first, so I used the formulas
prob~dist-1 and theta~dist-1 to fit the model without an intercept.
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> SP.bb.dist = mle2(taken ~ dbetabinom(prob, size = available,

+ theta), parameters = list(prob ~ dist - 1, theta ~

+ dist - 1), start = as.list(coef(SP.bb)))

A Likelihood Ratio Test on the two models suggests a significant difference
between transects:

> anova(SP.bb, SP.bb.dist)

Likelihood Ratio Tests
Model 1: SP.bb, taken~dbetabinom(size=available,prob,theta)
Model 2: SP.bb.dist, taken~dbetabinom(prob,size=available,theta): prob~dist-1, theta~dist-1
Tot Df Deviance Chisq Df Pr(>Chisq)

1 2 3622.1
2 4 3615.6 6.4823 2 0.03912 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Reparameterizing the model in terms of differences between the 10-m and
25-m transect rather than the p and θ values for each transect (i.e., dropping
the -1 in the parameter formulas) allows us to calculate confidence limits on
the differences between transects. At the same time, I decided to switch to
fitting p on a logit scale and θ on a log scale. With the formula interface, I
can do the inverse transformations on the fly with plogis and exp.

Set up starting values, using qlogis (the inverse of plogis) and log to
transform the estimated values of the p and θ parameters from above.

> startvals = list(lprob = qlogis(coef(SP.bb.dist)["prob.dist10"]),

+ ltheta = log(coef(SP.bb.dist)["theta.dist10"]))

> SP.bb.dist2 = mle2(taken ~ dbetabinom(plogis(lprob),

+ size = available, exp(ltheta)), parameters = list(lprob ~

+ dist, ltheta ~ dist), start = startvals)

The summary of the model now gives us approximate p-values on the
parameters, showing that the difference between transects is caused by a
change in p and not a change in θ.

> summary(SP.bb.dist2)

Maximum likelihood estimation

Call:
mle2(minuslogl = taken ~ dbetabinom(plogis(lprob), size = available,

exp(ltheta)), start = startvals, parameters = list(lprob ~
dist, ltheta ~ dist))

Coefficients:
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Estimate Std. Error z value Pr(z)
lprob.(Intercept) -2.7968262 0.0813997 -34.3592 < 2e-16 ***
lprob.dist25 0.2663037 0.1110270 2.3985 0.01646 *
ltheta.(Intercept) -1.1255457 0.1261399 -8.9230 < 2e-16 ***
ltheta.dist25 -0.0035835 0.1719498 -0.0208 0.98337
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 3615.627

(The highly significant p-values for lprob.10 and ltheta.10 are not signif-
icant: they merely show that logit(p10) 6= 0 (i.e. p10 6= 0.5) and log θ 6= 0
(θ 6= 1), neither of which is ecologically interesting.)

Now reduce the model, allowing only p to vary between transects:

> SP.bb.probdist = mle2(taken ~ dbetabinom(plogis(lprob),

+ size = available, exp(ltheta)), parameters = list(lprob ~

+ dist), start = startvals)

Both the LRT and the AIC approaches suggest that the best model is one
in which p varies between transects but θ does not (although the AIC table
suggests that the more complex model with differing θ should be kept in
consideration):

> anova(SP.bb, SP.bb.probdist, SP.bb.dist)

Likelihood Ratio Tests
Model 1: SP.bb, taken~dbetabinom(size=available,prob,theta)
Model 2: SP.bb.probdist, taken~dbetabinom(plogis(lprob),size=available,exp(ltheta)): lprob~dist
Model 3: SP.bb.dist, taken~dbetabinom(prob,size=available,theta): prob~dist-1, theta~dist-1
Tot Df Deviance Chisq Df Pr(>Chisq)

1 2 3622.1
2 3 3615.6 6.4819 1 0.01090 *
3 4 3615.6 0.0004 1 0.98341
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> AICtab(SP.bb, SP.bb.probdist, SP.bb.dist, sort = TRUE,

+ weights = TRUE)

AIC df weight
SP.bb.probdist 3621.6 3 0.6783
SP.bb.dist 3623.6 4 0.2496
SP.bb 3626.1 2 0.0721

How big is the difference between transects?

> c1 = coef(SP.bb.probdist)

> plogis(c(c1[1], c1[1] + c1[2]))
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lprob.(Intercept) lprob.(Intercept)
0.05751881 0.07372130

The difference is small — 6% vs 7% probability of removal per observation.
This difference is unlikely to be ecologically significant, and reminds us that
when we have a big data set (4406 observations) even small differences can
be statistically significant. On the other hand, Duncan and Duncan (2000)
failed to find a significant difference between the transects — so the likelihood
framework is more powerful, and has given us answers in terms (average
percent difference in probability of removal) that we can understand.

8.3.3.2 Differences among species

Now I proceeded to test differences among species. First I tried a model with
both θ and p varying. (Both parameters are again fitted on transformed
scales, logit and log respectively.)

> SP.bb.sp = mle2(taken ~ dbetabinom(plogis(lprob),

+ size = available, exp(ltheta)), parameters = list(lprob ~

+ species, ltheta ~ species), start = startvals)

The parameter estimates (shown by summary(SP.bb.sp)) suggest that,
as in the case of differences among transects, differences in p and not θ are
driving the differences among species:

Estimate Std. Error Pr(z)
lprob.(Intercept) -1.925509 0.1428 < 2.2e-16 ***
lprob.speciescd 0.329247 0.2186 0.1321056
lprob.speciescor -1.332956 0.2144 5.090e-10 ***
lprob.speciesdio -0.991505 0.2111 2.645e-06 ***
lprob.speciesmmu -0.432409 0.2130 0.0423696 *
lprob.speciespol 0.413143 0.2098 0.0489483 *
lprob.speciespsd -1.274415 0.2207 7.704e-09 ***
lprob.speciesuva -1.302890 0.2146 1.266e-09 ***
ltheta.(Intercept) -0.824310 0.2240 0.0002327 ***
ltheta.speciescd -0.560802 0.3473 0.1063536
ltheta.speciescor 0.016070 0.3292 0.9610611
ltheta.speciesdio -0.377969 0.3276 0.2485773
ltheta.speciesmmu -0.618604 0.3354 0.0651542 .
ltheta.speciespol 0.152877 0.3331 0.6462837
ltheta.speciespsd -0.173435 0.3405 0.6105292
ltheta.speciesuva -0.058962 0.3341 0.8599198
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

So I fitted a model with only probability p, and not overdispersion θ,
varying by species:
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> SP.bb.probsp = mle2(taken ~ dbetabinom(plogis(lprob),

+ size = available, exp(ltheta)), parameters = list(lprob ~

+ species), start = startvals)

Once again, both AIC and Likelihood Ratio tests suggest that only the p
parameters differ among species:

> anova(SP.bb.sp, SP.bb.probsp, SP.bb)

Likelihood Ratio Tests
Model 1: SP.bb.sp, taken~dbetabinom(plogis(lprob),size=available,exp(ltheta)): lprob~species, ltheta~species
Model 2: SP.bb.probsp, taken~dbetabinom(plogis(lprob),size=available,exp(ltheta)): lprob~species
Model 3: SP.bb, taken~dbetabinom(size=available,prob,theta)
Tot Df Deviance Chisq Df Pr(>Chisq)

1 16 3460.4
2 9 3469.8 9.3894 7 0.2259
3 2 3622.1 152.2873 7 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> AICtab(SP.bb.sp, SP.bb.probsp, SP.bb, sort = TRUE,

+ weights = TRUE)

AIC df weight
SP.bb.probsp 3487.8 9 0.9093
SP.bb.sp 3492.4 16 0.0907
SP.bb 3626.1 2 <0.001

Now I want to know whether seed mass and p are related. If they were, I
could fit a likelihood model where p was treated as a function of seed mass,
reducing the number of parameters to estimate and perhaps allowing me
to predict removal probabilities for other species on the basis of their seed
masses.

> SP.bb.probsp0 = mle2(taken ~ dbetabinom(plogis(lprob),

+ size = available, exp(ltheta)), parameters = list(lprob ~

+ species - 1), start = startvals, method = "L-BFGS-B",

+ lower = rep(-10, 9), upper = rep(10, 9))

Fitting this model was numerically problematic. In my first attempt, us-
ing default methods and parameters, mle2 found a ridiculous answer (all the
logit-probabilities were strongly negative, giving removal probabilities near
zero) and crashed while evaluating the Hessian. I used skip.hessian=TRUE
to temporarily stop mle2 from crashing and trace=TRUE to see where it was
going. Switching to method="Nelder-Mead" helped stabilize the calculation,
but it failed to converge until I increased the number of iterations to 3000
(control=list(maxit=3000)), and even then it got stuck on a solution that
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Figure 8.9 Removal probability parameter (p) as a function of seed mass: error
bars show quadratic confidence intervals.

was worse than the previous model. (In this case, since all I am doing is repa-
rameterizing the previous model, mle2 ought to be able to achieve an equally
good fit.) I then went back to BFGS and tried changing the size of the finite
difference interval both down (control=list(ndeps=rep(1e-4,9))) and up
(control=list(ndeps=rep(1e-2,9))), neither of which helped. I finally
got the model to fit as well as the previous parameterization by switching to
L-BFGS-B and setting the parameter boundaries to disallow ridiculous fits.

> predprob = plogis(coef(SP.bb.probsp0))[1:8]

> SP.bb.ci = plogis(confint(SP.bb.probsp0, method = "quad"))[1:8,

+ ]

Figure 8.9 shows the results: rather than the possible trend towards higher
seed removal for larger seeds that I might have expected, the figure shows
slightly elevated removal rates for the two smallest-seeded species (explained
by Duncan and Duncan as a possible artifact of small seeds being washed out
of the trays by rainfall), and a hugely elevated rate for species abz; in this
case, I would want to go back and see if there was something special about
this species’ characteristics or the way it was handled in the experiment.
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8.3.3.3 Is there a species-distance interaction?

The initial scan of the data suggested that some species might be more sen-
sitive to the distance from the edge; this possibility is certainly biologically
sensible (some species might be taken by specialized seed predators that
have more restricted movement), and it is the kind of information that could
easily be masked by looking at aggregated data.

Using the formula interface, we can simply say lprob~species*dist to al-
low for an interaction: if you need to code such a model by hand, interaction(f1,f2)
will create a factor that represents the interaction of factors f1 and f2.

> SP.bb.probspdist = mle2(taken ~ dbetabinom(plogis(lprob),

+ size = available, exp(ltheta)), parameters = list(lprob ~

+ species * dist), start = startvals, method = "L-BFGS-B",

+ lower = rep(-10, 9), upper = rep(5, 9))

I had to restrict the upper bounds still further, to 5, to make L-BFGS-B
happy, since values of 10 gave NaN results for some parameter combinations.

A likelihood ratio test (anova(SP.bb.probsp,SP.bb.probspdist)) gives
a p-value of 0.054; AIC says that the model without distance × species
interaction is best, but only by a little bit:

> AICtab(SP.bb, SP.bb.probsp, SP.bb.probspdist, SP.bb.sp,

+ SP.bb.probdist, SP.bb.dist, weights = TRUE, sort = TRUE)

AIC df weight
SP.bb.probsp 3487.8 9 0.5587
SP.bb.probspdist 3488.6 17 0.3855
SP.bb.sp 3492.4 16 0.0557
SP.bb.probdist 3621.6 3 <0.001
SP.bb.dist 3623.6 4 <0.001
SP.bb 3626.1 2 <0.001

8.3.3.4 Other issues: time

A minor issue that I have largely neglected so far is that the intervals between
observations varied between 3 and 14 days. To account for these differences
in exposure time, I could use a model like p = 1 − e−r(∆t), which assumes
that seeds are taken at a constant rate r. Do the predictions improve, or the
conclusions change, if I account for the time interval allowed for removal?

Before going to the trouble of building a model, let’s look at the data
again. Calculate the mean and standard error of the proportion taken, using
tapply to calculate means and standard deviations of proportions divided
up by the time interval (tint); then use table to calculate the number of
observations for each time interval and divide by

√
n to convert standard

deviations to standard errors.

> mean.prop.taken = tapply(taken/available, tint, mean,

+ na.rm = TRUE)
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Figure 8.10 Relationships between proportion removed and time in-
terval (∆t), and between ∆t and date. R command:
plotCI(3:10,mean.prop.taken,se.prop.taken).

> sd.prop.taken = tapply(taken/available, tint, sd,

+ na.rm = TRUE)

> n.tint = table(tint)

> se.prop.taken = sd.prop.taken/sqrt(n.tint)

Figure 8.10a is a surprise: the model p = 1 − e−r(∆t), suggests the pro-
portion taken should increase rather than decrease with ∆t. What’s going
on?

Figure 8.10b, which plots the time interval between observations against
date, gives the answer: the short-interval (3–4 day) observations were mostly
made before May, when the removal rate was high, while the longest intervals
between observations (10 days) are in September.

Which brings us to the issue of temporal variation: we already know from
Figure 2.2 in Chapter 2 that the removal rate decreases over time. Fig-
ure 8.11 shows the relationship between proportion removed and date, cal-
culated in the same way as the removal–∆t relationship. Removal appears
to decrease exponentially with time. Replotting the data with a logarithmic
y scale suggests that the removal rate might level off above zero, but it’s
hard to tell. Similarly, it’s hard to know what causes the anomalously low
proportions for some sampling dates throughout the study and the anoma-
lously high proportions at the very end of the study. Nevertheless, we can
add a parameter to the model allowing for exponential decrease in removal
rate over time:

> SP.bb.probspdate = mle2(taken ~ dbetabinom(plogis(lprob) *

+ exp(-tcum * date), size = available, exp(ltheta)),

+ parameters = list(lprob ~ species), start = c(startvals,

+ date = 0), method = "L-BFGS-B", lower = c(rep(-10,
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Figure 8.11 Proportion taken as a function of date. Line shows fitted exponential
dependence (p = 0.26× e−0.023t), based on a fitted model that lumps
all the species together.

+ 9), 0), upper = c(rep(5, 9), 2))

The model incorporating date is 237.7 log-likelihood units better — the
model should definitely include the effect of date.

We have gotten a lot of mileage from these data, but as always there are
more questions we could ask: do the removal rates of different species drop
off at different rates? Can we figure out what causes the anomalous samples
in Figure 8.11? Once we have split the data according to these criteria, does
the original distribution simplify to something simpler?
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SUMMARY

This chapter rapidly reviews much of classical statistics, discussing the un-
derlying likelihood models for procedures such as ANOVA, linear regression,
and generalized linear models. It also gives brief pointers to the built-in
procedures in R that implement these standard techniques. This summary
connects maximum likelihood approaches with more familiar classical tech-
niques. If you’re already familiar with classical techniques, it may help you
understood maximum likelihood better. It also provides a starting point
for using efficient, “canned” approaches when they are appropriate for your
data. It does not, and cannot, provide full coverage of all these topics. For
more details, see Dalgaard (2003), Crawley (2005), or Venables and Ripley
(2002).

9.1 INTRODUCTION

So far this book has covered maximum likelihood and Bayesian estimation in
some detail. In the course of the discussion I have sometimes mentioned that
maximum likelihood analyses give answers equivalent to those provided by
familiar, “old-fashioned” statistical procedures. For example, the statistical
model Y ∼ Normal(a+bx, σ2) — specifying that Y is a normally distributed
random variable whose mean depends linearly on x — underlies ordinary
least-squares linear regression. This chapter will briefly review special cases
where our general recipe for finding MLEs for statistical models reduces to
standard procedures that are built into R and other statistics packages.

In the best case, your data will match a classical technique like linear
regression exactly, and the answers provided by classical statistical models
will agree with the results from your likelihood model. Other models you
build may be formally equivalent to a classical model that is parameterized
in a different way. Most often, the customized model you build will not
be exactly equivalent to any existing classical model, but a similar classical
model may be close enough that you wouldn’t mind changing your model
slightly in order to gain the convenience of using a standard procedure.

For example, in Chapter 6 we used the model

Y ∼ NegBinom(µ = a ·DBHb, k) (9.1)

to represent cone production by fir trees as a function of diameter at breast
height. If we approximated the discrete distribution of cones by a continuous
log-normal distribution instead,

Y ∼ LogNormal(µ = a ·DBHb, σ2), (9.2)

we could log-transform both sides and fit the linear regression model

log Y ∼ Normal(log a + b · log(DBH), σ2). (9.3)

Figure 9.1a shows all three models for the DBH–fecundity relationship
— power-law with a negative binomial distribution (power/NB), power-law
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Figure 9.1 Comparing different functional forms for fir fecundity data: power-law
with a lognormal (LN) distribution, power-law with a negative binomial
(NB) distribution, and linear with a normal distribution. (The linear
model appears as a curved line because the data are plotted on a log-log
scale.)

with a lognormal distribution (power/LN), and linear with a normal distri-
bution — fitted to the fir data; all are plausible. Figure 9.1b shows various
models for the distribution of cone production, fitted to the individuals with
DBH between 6 and 8 cm: a nonparametric density estimate, the negative
binomial, log-normal, and normal. The negative binomial is closest to the
nonparametric density estimate of the distribution, while the lognormal is
more peaked and the normal distribution has a significant (and unrealistic)
negative tail.

Although the power-law/negative binomial is the most realistic and has
a plausible mechanistic interpretation (the data are discrete, positive, and
overdispersed; we can imagine individual trees producing cones at an approx-
imately constant rate with variation in fecundity among trees), the difference
between the fit of negative binomial and lognormal distributions is small
enough that the convenience of linear regression may be worthwhile. When
the results of different models are similar on both biological and statisti-
cal grounds, you choose among them by balancing convenience, mechanistic
arguments, and convention.

Why might you want to use standard, special-case procedures rather than
the general MLE approach?

� Computational speed and stability : the special-case procedures use
special-case optimization algorithms that are faster (sometimes much
faster) and less likely to encounter numerical problems. Many of these
procedures relieve you of the responsibility of choosing starting param-
eters.

� Stable definitions: the definitions of standard models have often been
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chosen to simplify parameter estimation. For example, to model a rel-
atively sudden change between two states you could choose between
a logistic equation or a threshold model. Both might be equally sen-
sible in terms of the biology, but the logistic equation is easier to fit
because it involves smoother changes as parameters change. Similarly,
generalized linear models such as logistic or Poisson regression fit pa-
rameters on scales (logit- or log-transformed, respectively) that allow
unconstrained optimization.

� Convention: if you use a standard method, you can just say (for ex-
ample) “we used linear regression” in your Methods section and no-one
will think twice. If you use a non-standard method, you need to ex-
plain the method carefully and overcome readers’ distrust of “fancy”
statistics — even if your model is actually simpler and more appro-
priate than any standard model. Similarly, it may minimize confusion
to use the same models, and the same parameterizations, as previous
studies of your system.

� Varying models and comparing hypotheses: the machinery built into R
and other packages makes it easy to compare a variety of models. For
example, when analyzing a factorial growth experiment that manipu-
lates nitrogen (N) and phosphorus (P), you can easily switch between
models incorporating the effects of nitrogen only (growth~N), phos-
phorus only (growth~P), additive effects of N and P (growth~N+P), or
interactions between nitrogen and phosphorus (growth~N*P). You can
carry out all of these comparisons by hand with your own models, and
mle2’s formula interface is helpful, but R’s built-in functions make the
process easy for classical models.

This chapter discusses how a variety of different kinds of models fit to-
gether, and how they all represent special cases of a general likelihood frame-
work. Figure 9.2 shows how many of these areas are connected. The chapter
also gives brief descriptions of how to use them in R: if you want more details
on any of these approaches, you’ll need to check an introductory (Dalgaard,
2003; Crawley, 2005; Verzani, 2005), intermediate (Crawley, 2002), or ad-
vanced (Chambers and Hastie, 1992; Venables and Ripley, 2002) reference.

9.2 GENERAL LINEAR MODELS

General linear models include linear regression, one- and multi-way analysis
of variance (ANOVA), and analysis of covariance (ANCOVA): R uses the
function lm for all of these procedures. SAS implements this with PROC
GLM∗. While regression, ANOVA, and ANCOVA are often handled dif-
ferently, and they are usually taught differently in introductory statistics

∗This terminology is unfortunate since the rest of the world uses “GLM” to mean
generalized linear models, which correspond to SAS’s PROC GENMOD.



book May 21, 2007

STANDARD STATISTICS REVISITED 345

Figure 9.2 All (or most) of statistics. The labels in parentheses (non-normal errors
and nonlinearity) imply restricted cases: (non-normal errors) means
exponential family (e.g. binomial or Poisson) distributions, while (non-
linearity) means nonlinearities with an invertible linearizing transfor-
mation. Models to the right of the gray dashed line involve multiple
levels or types of variability; see Chapter 10.
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classes, they are all variants of the same basic model. The assumptions of
the general linear model are that all observed values are independent and
normally distributed with a constant variance (homoscedastic), and that any
continuous predictor variables (covariates) are measured without error. (Re-
member that the assumption of normality applies to the variation around
the expected value — the residuals — not to the whole data set.)

The“linear”part of“general linear model”means that the models are linear
functions of the parameters, not necessarily of the independent variables. For
example, quadratic regression

Y ∼ Normal(a + bx + cx2, σ2) (9.4)

is still linear in the parameters (a, b, c), and thus is a form of multiple linear
regression. Another way to think about this is to say that x2 is just another
explanatory variables — if you called it w instead, it would be clear that this
model is an example of multivariate linear regression. On the other hand,
Y ∼ Normal(axb, σ2) is nonlinear: it is linear with respect to a (the second
derivative of axb with respect to a is zero), but nonlinear with respect to b
(d2(axb)/db2 = b · (b− 1) · axb−2 6= 0).

9.2.1 Simple linear regression

Simple, or ordinary, linear regression predicts y as a function of a single
continuous covariate x. The model is

Y ∼ Normal(a + bx, σ2); (9.5)

the equivalent R code is

> lm.reg = lm(Y ~ X)

The intercept term a is implicit in the R model; if you want to force the
intercept to be equal to zero, fitting the model Y ∼ Normal(bx, σ2), use
lm(Y~X-1).

Typing lm.reg by itself prints only the formula and the estimates of the co-
efficients; summary(lm.reg) also gives summary statistics (range and quar-
tiles) of the residuals, standard errors and p-values for the coefficients, and
R2 and F statistics for the full model; coef(lm.reg) gives the coefficients
alone, and coef(summary(lm.reg)) pulls out the table of estimates, stan-
dard errors, t statistics, and p values. confint(lm.reg) calculates confi-
dence intervals. The function plot(lm.reg) displays various graphical di-
agnostics that show how well the assumptions of the model fit and whether
particular points have a strong effect on the results: see ?plot.lm for de-
tails. anova(lm.reg) prints an ANOVA table for the model. If you need to
extract numeric values of, e.g., R2 values or F statistics for further analysis,
wade through the output of str(summary(lm.reg)) to find the pieces you
need (e.g. summary(lm.reg)$r.squared).

To do linear regression by brute force with mle2, you could write this
negative log-likelihood function
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> linregfun = function(a, b, sigma) {

+ Y.pred = a + b * x

+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))

+ }

or use the formula interface:

> mle2(Y ~ dnorm(mean = a + b * x, sd = sigma),

+ start = ...)

When using mle2 you must explicitly fit a standard deviation term σ which
is implicit in the lm approach.

9.2.2 Multiple linear regression

It’s easy to extend the simple linear regression model to multiple continu-
ous predictor variables (covariates). If the extra covariates are powers of
the original variable (x2, x3, . . .), the model is called polynomial regression
(quadratic with just the x2 term added):

Y ∼ Normal(a + b1x + b2x
2, σ2). (9.6)

Or you can use completely separate variables (x1, x2, . . .):

Y ∼ Normal(a + b1x1 + b2x2 + b3x3, σ
2) (9.7)

As with simple regression, the intercept a and the coefficients of the different
covariates (b1, b2) are implicit in the R formula:

> lm.poly = lm(y ~ x + I(x^2))

(surround x^2 and other powers of x with I(), “as is”) or

> lm.mreg = lm(y ~ x1 + x2 + x3)

You can add interactions among covariates, testing whether the slope with
respect to one covariate changes linearly as a function of another covariate —
e.g. Y ∼ Normal(a+b1x1+b2x2+b12x1x2, σ

2): in R, lm.intreg = lm(y~x1*x2).
Use the anova function with test="Chisq" to perform likelihood ra-

tio tests on a nested series of multivariate linear regression models (e.g.
anova(lm1,lm2,lm3,test="Chisq")). If you wonder why anova is a test
for regression models, remember that regression and analyses of variance are
just different subsets of the general linear model.

While multivariate regression is conceptually simple, models with many
terms (e.g. models with many covariates or with multi-way interactions) can
be difficult to interpret. Blind fitting of models with many covariates can
get you in trouble (Whittingham et al., 2006). If you absolutely must go on
this kind of fishing expedition, you can use stepAIC in the MASS package to
do stepwise modeling, or regsubsets in the leaps package to search for the
best model.



book May 21, 2007

348 CHAPTER 9

9.2.3 One-way analysis of variance (ANOVA)

If the predictor variables are discrete (factors) rather than continuous (co-
variate), the general linear model becomes an analysis of variance. The basic
model is

Yi ∼ Normal(αi, σ
2); (9.8)

in R it is

> lm.1way = lm(y ~ f)

where f is a factor. If your original data set has names for the factor levels
(e.g. {N,S,E,W} or {high,low}) then R will automatically transform the
treatment variable into a factor when it reads in the data. However, if the
factor levels look like numbers to R (e.g. you have plot designations 101, 227,
and 359), R will interpret them as continuous rather than discrete predictors,
and will fit a linear regression rather than doing an ANOVA — not what
you want. Use v = factor(v) to turn a numeric variable v into a factor,
and then fit the linear model.

Executing anova(lm.1way) produces a basic ANOVA table; summary(lm.1way)
gives a different view of the model, testing the significance of each parameter
against the null hypothesis that it equals 0; for a factor with only two levels,
these tests are statistically identical.

When fitting regression models, the parameters of the model are easy to
interpret — they’re just the intercept and the slopes with respect to the
covariates. When you have factors in the model, however — as in ANOVA
— the parameterization becomes trickier. By default, R parameterizes the
model in terms of the differences between the first group and subsequent
groups (treatment contrasts) rather than in terms of the mean of each group,
although you can tell it to fit the means of each group by putting a -1 in
the formula (e.g. lm.1way = lm(y~f-1): see pp. 234, 236, and 331).

9.2.4 Multi-way ANOVA

Multi-way ANOVA models Y as a function of two or more different cate-
gorical variables (factors). For example, the full model for two-way ANOVA
with interactions is

Yij ∼ Normal(αi + βj + γij , σ
2) (9.9)

where i is the level of the first treatment/group, and j is the level of the
second. The R code using lm is:

> lm.2way = lm(Y ~ f1 * f2)

(f1 and f2 are factors). As before, summary(lm.2way) gives more informa-
tion, testing whether the parameters differ significantly from zero; confint(lm.2way)
computes confidence intervals; anova(lm.2way) generates a standard ANOVA
table; plot(lm.2way) shows diagnostic plots.

A negative log-likelihood function for mle could look like this:
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> aov2fun = function(m11, m12, m21, m22, sigma) {

+ intval = interaction(f1, f2)

+ Y.pred = c(m11, m12, m21, m22)[intval]

+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))

+ }

(interaction(f1,f2) defines a factor representing the interaction of f1 and
f2 with levels in the order (1.1, 2.1, 1.2, 2.2)). Using the formula interface:

> mle2(Y ~ dnorm(mean = m, sd = sigma), parameters = list(m ~

+ f1 * f2))

For a multiway model, R’s parameters are again defined in terms of con-
trasts. If you construct a two-way ANOVA with factors f1 (with levels
A and B) and f2 (with levels I and II), the first (“intercept”) parame-
ter will be the mean of individuals in level A of the first factor and I of
the second (m11); the second parameter is the difference between A,II and
A,I (m12-m11); the third is the difference between B,I and A,I (m21-m11);
and the fourth, the interaction term, is the difference between the mean
of B,II and its expectation if the effects of the two factors were additive
(m22-(m11+(m12-m11)+(m21-m11)) = m22-m12-m21+m11).

In its anova tables, R One difference between R and other statistical pack-
ages to watch

9.2.5 Analysis of covariance (ANCOVA)

Analysis of covariance defines a statistical model that allows for different
intercepts and slopes with respect to a covariate x in different groups:

Yi ∼ Normal(αi + βix, σ2) (9.10)

In R:

> lm(Y ~ f * x)

where f is a factor and x is a covariate (the formula Y~f+x would spec-
ify parallel slopes, Y~f would specify zero slopes but different intercepts,
Y~x would specify a single slope). Figure 9.3 shows the fit of the model
lm(log(TOTCONES+1) ~ log(DBH)+WAVE_NON) to the fir data. As suggested
by the figure, there is a strong effect of DBH but no significant effect of pop-
ulation (wave vs. non-wave).

As with other general linear models, use summary, confint, plot, and
anova to analyze the model. The parameters are now the intercept of the
first factor level; the slope with respect to x for the first factor level; the
differences in the intercepts for each factor level other than the first; and the
differences in the slopes for each factor level other than the first.

A negative log-likelihood function for ANCOVA:

> ancovafun = function(i1, i2, slope1, slope2, sigma) {

+ int = c(i1, i2)[f]
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Figure 9.3 General linear model fit to fir fecundity data (analysis of covariance):
lm(log(TOTCONES+1)~log(DBH)+WAVE_NON,data=X). (Lines are practi-
cally indistinguishable between groups.)

+ slope = c(slope1, slope2)[f]

+ Y.pred = int + slope * x

+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))

+ }

9.2.6 More complex general linear models

You can add factors (grouping variables) and interactions between factors
in different ways to make multi-way ANOVA, covariates (continuous inde-
pendent variables) to make multiple linear regression, and combinations to
make different kinds of analysis of covariance. R will automatically interpret
formulas based on whether variables are factors or numeric variables.

9.3 NONLINEARITY: NONLINEAR LEAST SQUARES

Nonlinear least squares models relax the requirement of linearity, but keep
the requirements of independence and normal errors. Two common examples



book May 21, 2007

STANDARD STATISTICS REVISITED 351

are the power-law model with normal errors

Y ∼ Normal(axb, σ2) (9.11)

and the Ricker model with normal errors

Y ∼ Normal(axe−rx, σ2). (9.12)

Before computers were ubiquitous, the only practical way to solve these
problems was to linearize them by finding a transformation of the param-
eters (e.g. log-transforming x and y to do power-law regression). A lot of
ingenuity went into developing transformation methods to linearize common
functions. However, transforming variables changes the distribution of the
error as well as the shape of the dependence of y on x. Ideally we’d like
to find a transformation that simultaneously produces a linear relationship
and makes the errors normally distributed with constant variance, but these
goals are often incompatible. If the errors are normal with constant variance,
they won’t be any longer after you transform the data to linearize f(x).

The modern way to solve these problems without distorting the error
structure, or to solve other models that cannot be linearized by transform-
ing them, is to minimize the sums of squares (equivalent to minimizing the
negative log-likelihood) computationally, using quasi-Newton methods sim-
ilar to those built into optim. Restricting the variance model to allow only
normally distributed errors with constant variance allows the use of specific
numeric methods that are more powerful and stable then the generalized
algorithms in optim.

In R, use the nls command, specifying a nonlinear formula and the starting
values (as a list): e.g., for the power model

> n1 = nls(y ~ a * x^b, start = list(a = 1, b = 1))

summary(n1) shows values of parameters and standard errors; anova(n1,...)
does likelihood ratio tests for nested sequences of nonlinear fits; and confint(n1)
computes profile confidence limits which are more accurate than the con-
fidence limits suggested by summary(n1). (Unfortunately, plot(n1) does
nothing.) Figure 9.4 shows the fit of a nonlinear least-squares model (nls(TOTCONES~a*DBH^b))
to the fir fecundity data set, along with the log-log fit (equivalent to a power-
law fit with lognormal errors) calculated above. The power-lognormal model
is probably better from a biological point of view, since the normal distribu-
tion can have negative values, but both models are reasonable.

Fitting models with both nonlinear covariates and categorical variables
(the nonlinear analogue of ANCOVA — e.g., fitting different a and b pa-
rameters for wave and non-wave populations) is more difficult, but two func-
tions from the nlme package, nlsList and gnls (generalized nonlinear least
squares), can handle such models. nlsList does completely separate fits to
separate groups — for example,

> nlsList(TOTCONES ~ a * DBH^b | WAVE_NON, data = X,

+ start = list(a = 0.1, b = 2.7))
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would fit separate a and b parameters for wave and non-wave populations
— but all parameters will vary among groups. The gnls command can fit
models with only a subset of the parameters differing among groups: e.g.

> gnls(TOTCONES ~ a * DBH^b, data = X, start = c(0.1,

+ 2.7, 2.7), params = list(a ~ 1, b ~ WAVE_NON))

will fit different b parameters but the same a parameter for wave and non-
wave populations.

While nls is more automated than mle2 (for which you must specify
the full negative log-likelihood function), the numerical methods it uses are
similar to mle2’s in that (1) you must specify starting values and (2) if the
starting values are unrealistic, or if the problem is otherwise difficult, the
numerical optimization may get stuck. Errors such as

step factor [] reduced below 'minFactor' of ...

number of iterations exceeded maximum of ...

or

Missing value or an infinity produced when evaluating the model

indicate numerical problems. To solve these problems try to find better
starting conditions, reparameterize your model, or play with the control
options of nls (see ?nls.control).

As with ML models, you can often use simpler, more robust approaches
like linear models to get a first estimate for the parameters (e.g. estimate the
initial slope of a Michaelis-Menten function from the first 10% of the data
and the asymptote from the last 10%, or estimate the parameters by linear
regression based on a linearizing transform). R includes some “self-starting”
functions that do these steps automatically. The functions SSlogis and
SSmicmen, for example, provide self-starting logistic and Michaelis-Menten
functions (use apropos("SS") to see a more complete list; the names of
these models are cryptic, but you can check the help system to see what
each model is).

Further reading: Bates and Watts (1988).

9.4 NON-NORMAL ERRORS: GENERALIZED LINEAR MOD-

ELS

Generalized linear models (not to be confused with general linear models)
allow you to analyze models that have a particular kind of nonlinearity and
particular kinds of non-normally distributed (but still independent) errors.

Generalized linear models allow any nonlinear relationship that has a lin-
earizing transformation. That is, if y = f(x), there must be some function
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Figure 9.4 A nonlinear least-squares fit to the fir fecundity data
(nls(TOTCONES~a*DBH^b,start=list(a=0.1,b=2.7,data=X))); the
linear model fit to the log-log data (equivalent to a power-law fit with
lognormal errors) is also shown.
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F such that F (f(x)) is a linear function of x. The procedure for fitting gen-
eralized linear models uses the function F fit the data on the linearized scale
(F (y) = F (f(x))) while calculating the expected variance on the untrans-
formed scale in order to correct for the distortions that linearization would
otherwise induce. In generalized-linear-model jargon F is called the link
function. For example, when f is the logistic curve (y = f(x) = ex/(1+ex)),
the link function F is a the logit function (F (y) = log(y/(1 − y)) = x: see
p. 96 for the proof that the logit is really the inverse of the logistic). R knows
about a variety of link functions including the log (x = log(y), which lin-
earizes y = ex); square-root (x =

√
y, which linearizes y = x2); and inverse

(x = 1/y, which linearizes y = 1/x): see ?family for more possibilities.
The class of non-normal errors that generalized linear models can handle

is called the exponential family. It includes Poisson, binomial, gamma and
normal distributions, but not negative binomial or beta-binomial distribu-
tions. Each distribution has a standard link function: for example, the log
link is standard for a Poisson and a logit link is standard for a binomial
distribution. The standard link functions make sense for typical applica-
tions: for example, the logit transformation turns unconstrained values into
values between 0 and 1, which are appropriate as probabilities in a binomial
model. However, R allows you some flexibility to change these associations
for specific problems.

GLMs are fit by a process called iteratively reweighted least squares, which
overcomes the basic problem that transforming the data to make them linear
also changes the variance. The key is that given an estimate of the regression
parameters, and knowing the relationship between the variance and the mean
for a particular distribution, one can calculate the variance associated with
each point. With this variance estimate, one re-estimates the regression
parameters weighting each data point by the inverse of its variance; the new
estimate gives new estimates of the variance; and so on. This procedure
quickly and reliably fits the models, without the user needing to specify
starting points.

Generalized linear models combine a range of non-normal error distribu-
tions with the ability to work with some reasonable nonlinear functions.
They also use the same simple model specification framework as lm, allow-
ing us to explore combinations of factors, covariates, and interactions among
variables. GLMs include logistic and binomial regression and log-linear mod-
els. They use terminology that should now be familiar to you; they estimate
log-likelihoods and test the differences between models using the likelihood
ratio test.

The glm function implements generalized linear models in R. By far the
two most common GLMs are Poisson regression, for count data, and logistic
regression, for survival/failure data.

� Poisson regression: log link, Poisson error (Y ∼ Poisson(aebx));

> glm1 = glm(y ~ x, family = "poisson")
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Figure 9.5 Logistic (binomial) regression and log-binomial regression of frac-
tion of tadpoles killed as a function of tadpole density. Lo-
gistic regression: glm(cbind(Killed,Initial-Killed) ~ Initial,

data=ReedfrogFuncresp,family="binomial"). Log-binomial regres-
sion: glm(...,family=binomial(link="log")).
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The equivalent likelihood function is:

> poisregfun = function(a, b) {

+ Y.pred = exp(a + b * x)

+ -sum(dpois(y, lambda = Y.pred, log = TRUE))

+ }

� Logistic regression: logit link, binomial error (Y ∼ Binom(p = exp(a+
bx)/(1 + exp(a + bx)), N)):

> glm2 = glm(cbind(y, N - y) ~ x, family = "binomial")

or

> logistregfun = function(a, b) {

+ p.pred = exp(a + b * x)/(1 + exp(a + b * x))

+ -sum(dbinom(y, size = N, prob = p.pred, log = TRUE))

+ }

(you could also say p.pred=plogis(a+b*x) in the first line of logistregfun).

Another useful application of GLMs is fitting models of exponentially de-
creasing survival, Y ∼ Binom(p = exp(a + bx), N). Strong et al. (1999)
modeled the survival probability of ghost moth caterpillars as a decreasing
function of density (and as a function of the presence or absence of en-
tomopathogenic nematodes); Tiwari et al. (2006) modeled the probability
that nesting sea turtles would not dig up an existing nest as a decreasing
function of nest density. You can fit such a model this way:

> glm3 = glm(cbind(y, N - y) ~ x, family = binomial(link = "log"))

Use family=binomial(link="log") instead of family="binomial" to spec-
ify the log instead of the logit link function. The equivalent negative log-
likelihood function is:

> logregfun = function(a, b) {

+ p.pred = exp(a + b * x)

+ -sum(dbinom(y, size = N, prob = p.pred, log = TRUE))

+ }

You can fit Vonesh’s tadpole mortality data with either a logistic or a log-
binomial model (Figure 9.5), but the fact that expected survival decreases
exponentially at high densities in both models causes problems of interpre-
tation. If the probability of survival declines exponentially with density —
which is generally true for the log-binomial model and approximately true
at high densities for the logistic — then the expected number. surviving is
p(x) · x = e−(a+bx)x = cxe−bx. This is a Ricker function, which decreases
to zero at high density rather than reaching an asymptote. The standard
type II functional response model uses p(x) = A/(1 + Ahx), which has a
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weaker dependence on x (exponentials are always stronger than powers of
x), and so the limit of p(x)x as x becomes large is 1/h. Thus, the GLM
while convenient is not really appropriate in this case.

After you fit a GLM, you can use the same generic set of modeling func-
tions — summary, coef, confint, anova, and plot — to examine the pa-
rameters, test hypotheses, and plot residuals. anova(glm1,glm2,...) does
an analysis of deviance (likelihood ratio tests) on a nested sequence of mod-
els. As with lm, the default parameters represent (1) the intercept (the
baseline value of the first treatment), (2) differences in the intercept be-
tween the first and subsequent treatments, (3) the slope(s) with respect
to the covariate(s) for the first group, or (4) differences in the slope be-
tween the first and subsequent treatments. However, all of the parame-
ters are given on the scale of the link function (e.g. log scale for Pois-
son models, logit scale for binomial models); you interpret them, you need
to transform them with the inverse link function (exponential for Poisson,
logistic (=plogis) for binomial). For example, the coefficients of the lo-
gistic regression shown in Figure 9.5 are intercept=-0.095 slope=-0.0084.
To find the probability of mortality at a tadpole density of 60, calculate
exp(−0.095 +−0.0084 · 60)/(1 + exp(−0.095 +−0.0084 · 60) = 0.355.

Further reading: McCullagh and Nelder (1989); Dobson (1990); Hastie
and Pregibon (1992); Lindsey (1997). R-specific: Crawley (2002); Faraway
(2006).

9.4.1 Models for overdispersion

To go beyond the exponential family of distributions (normal, binomial,
Poisson, gamma) you may well need to roll your own ML estimator. R
has two built-in possibilities for the very common case of discrete data with
overdispersion, i.e. more variance than would be expected from the standard
(Poisson and binomial) models for discrete data.

9.4.1.1 Quasilikelihood

Quasilikelihood models “inflate” the expected variance of models to account
for overdispersion (McCullagh and Nelder, 1989). For example, the expected
variance of a binomial distribution with N samples and probability p is
Np(1− p). The quasibinomial model adds another parameter, φ, which in-
flates the variance to φNp(1−p). The overdispersion parameter φ (Burnham
and Anderson (2004) call it ĉ) is usually greater than 1 – we usually find more
variance than expected, rather than less. Quasi-Poisson models are defined
similarly, with variance equal to φλ. This approach is called quasi likelihood
because we don’t specify a real likelihood model with a probability distribu-
tion for the data. We just specify the relationship between the mean and the
variance. Nevertheless, the quasilikelihood approach works well in practice.
R uses the family function to specify quasilikelihood models.

Because the quasilikelihood is not a true likelihood, we cannot use like-
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lihood ratio tests or other likelihood-based methods for inference, but the
parameter estimates and t-statistics generated by summary should still work.
However, various researchers have suggested that using an F test based on
the ratio of deviances should still be appropriate: use anova(...,test="F")
(Crawley, 2002; Venables and Ripley, 2002). Burnham and Anderson (2004)
suggest using differences in “quasi-AIC” (qAIC) in this case, where the
∆qAIC is the ∆AIC value divided by the estimate of φ.

Since the log is the default link function for the quasipoisson family, you
can fit a quasi-Poisson log-log model for fecundity as follows:

> glm(TOTCONES ~ log(DBH), data = X, family = "quasipoisson")

9.4.1.2 Negative binomial models

Although the exponential family does not strictly include the negative bino-
mial distribution, negative binomial models can be fit by a small extension of
the GLM approach, iteratively fitting the k (overdispersion) parameter and
then fitting the rest of the model with a fixed k parameter. The glm.nb func-
tion in the MASS package fits linear negative binomial models. (Use $theta
to extract the estimate of the negative binomial k parameter from a negative
binomial model.)

Because we can use a log link, it turns out that we can exactly replicate
our preferred log-likelihood model (cones ∼ NegBinom(a · DBHb, k)) with
the following command:

> glm.nb(TOTCONES ~ log(DBH), data = X)

The only difference from our earlier model is that the estimated intercept
parameter is log(a) rather than a.
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R SUPPLEMENT

Here’s how to fit various linear models to the log-transformed fir data. Since
the data (TOTCONES) contain some zero values, taking logarithms would give
us negative infinite values. We either need to drop these values (subset=TOTCONES>0)
or add 1, in order to avoid infinities. However, since there are few zeros in the
data (sum(X$TOTCONES==0) is 10 out of a total of 242 data points) and the
mean number of cones is large, this adjustment shouldn’t affect the results
much.

> logDBH = log(X$DBH)

> logcones = log(X$TOTCONES + 1)

> lm.0 = lm(logcones ~ 1)

> lm.d = lm(logcones ~ logDBH)

> lm.w = lm(logcones ~ WAVE_NON)

> lm.dw = lm(logcones ~ logDBH + WAVE_NON)

> lm.dwi = lm(logcones ~ logDBH * WAVE_NON)

Since logDBH is a covariate and WAVE_NON is a factor, lm.d is a regression;
lm.w is a one-way ANOVA; and lm.dw and lm.dwi are ANCOVA models
with parallel and non-parallel slopes, respectively.

A few different ways to analyze the data:

> anova(lm.0, lm.d, lm.dw, lm.dwi)

Analysis of Variance Table

Model 1: logcones ~ 1
Model 2: logcones ~ logDBH
Model 3: logcones ~ logDBH + WAVE_NON
Model 4: logcones ~ logDBH * WAVE_NON
Res.Df RSS Df Sum of Sq F Pr(>F)

1 241 384.53
2 240 250.33 1 134.20 127.7512 <2e-16 ***
3 239 250.29 1 0.04 0.0393 0.8431
4 238 250.02 1 0.27 0.2535 0.6151
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> AIC(lm.0, lm.d, lm.w, lm.dw, lm.dwi)

df AIC
lm.0 2 802.8349
lm.d 3 700.9556
lm.w 3 786.5281
lm.dw 4 702.9157
lm.dwi 5 704.6580
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I left lm.w out of the anova statement because it and lm.d cannot be nested.
Try coef, summary, and confint on these models as well.

The full ANCOVA model fit via mle2:

> ancovafun = function(i1, i2, slope1, slope2, sigma) {

+ int = c(i1, i2)[WAVE_NON]

+ slope = c(slope1, slope2)[WAVE_NON]

+ Y.pred = int + slope * logDBH

+ -sum(dnorm(logcones, mean = Y.pred, sd = sigma,

+ log = TRUE))

+ }

> m1 = mle2(ancovafun, start = list(i1 = -2, i2 = -2,

+ slope1 = 2.5, slope2 = 2.5, sigma = 1))

> AIC(m1)

[1] 704.658

The maximum likelihood fit gives the same AIC as the lm fit. You can’t
always take this equality for granted, since different models that are formally
equivalent may include different constants in the likelihood, and different
functions may count the number of parameters differently.

As pointed out in the text, the models are parameterized differently:

> coef(lm.dwi)

(Intercept) logDBH WAVE_NONw
-2.3871702 2.7303449 0.5162954

logDBH:WAVE_NONw
-0.2630837

> coef(m1)

i1 i2 slope1 slope2 sigma
-2.387134 -1.870762 2.730329 2.467205 1.016441

You can check that the answers are equivalent: for example, the slope of the
wave population is slope2=2.467= logDBH+logDBH:WAVE_NONw.

In order to do the full model comparison with mle2, you have to con-
struct a series of nested models (analogous to lm.dw, lm.d, lm.w, lm.0).
This is a bit tedious — one reason for using built-in functions where pos-
sible. You may want to read about the model.matrix function, which can
simplify model construction. model.matrix uses a user-specified formula to
construct a design matrix that, when multiplied by a vector of parameters,
gives the expected value of each data point. By default the design matrix
uses parameters that represent baseline levels and differences among groups,
as in lm and glm. mle2’s formula interface uses model.matrix internally, so
that (for example) you can easily fit the full ANCOVA model by specifying

> mle2(log(TOTCONES + 1) ~ dnorm(logDBH * WAVE_NON),

+ data = X, start = ...)
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Congratulations:
You have now finished the first part of the book. You know everything

you need to know to fit reasonably complex, realistic ecological models to
your data.

Warning:
With the final two topics of the book (multiple levels of variability and

dynamic models), things get more complicated, and it gets harder to create
and solve your own statistical models from scratch. Powerful and specialized
statistical methods have been developed to handle these problems are begin-
ning to make their way into ecology. The second part of the book will give a
brief overview of these topics, but to get fully up to speed you will probably
have to go elsewhere. The good news is that the concepts and terminology
you have now learned should speed up the learning process considerably.

If your brain is feeling full after the first part of the book, you might
want to stop here. If you are eager for more, read on. (If you are already
swamped but desperately need to incorporate multiple levels of variability
in your analysis or fit parameters to dynamic models, read the first parts
of the appropriate chapter, concentrating on the sections on pp. (. . . ) and
(. . . ) that give shortcuts.)
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Chapter Ten

Modeling variance
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SUMMARY

This chapter begins to address the large topic of models that incorporate
more than one kind of variability, sometimes called mixed, multilevel, or
hierarchical models. It starts by considering systems in which the amount of
variability itself varies, or where there is correlation in the data; these kinds
of variability can be modeled adequately with extensions of the tools I have
introduced in previous chapters. True mixed models with more than one
kind of variability are much more challenging; this chapter briefly describes
a variety of existing tools for fitting them.

10.1 INTRODUCTION

Throughout this book we have divided ecological models into a determinis-
tic part (e.g. changes in the mean population density with rainfall) and a
stochastic part (e.g. variation in population density at a particular level of
rainfall). The most common stochastic model in classical statistics assumes
independent, normally distributed error with a constant variance. Normally
distributed variation makes it easy to separate the deterministic and stochas-
tic parts of the model, because the mean model (e.g. µ = a + bR) and the
variance model (e.g. σ2 = c) act independently on the mean and the vari-
ance. In other cases such as Poisson or binomial models, a single parameter
of the distribution governs both the mean and the variance.

So far, we have focused most of our attention on how the determinis-
tic model captures interesting biological information, adjusting the variance
parameters (e.g. the variance of a normal distribution, the overdispersion
parameter k of the negative binomial distribution) to capture the overall
degree of variability. We have usually assumed that the variance parame-
ter is constant across the data set and that there is only a single kind of
variability. In this chapter, we start to think about modeling the stochas-
tic component of ecological data in more sophisticated ways. We will need
some new distributions and some new techniques in order to model variance,
especially models with more than one level of variability (variously referred
to as mixed, multi-stratum, or hierarchical models). The technical challenge
of hierarchical models is that they require us to integrate over the range of
possible values in each stratum. These technical challenges are hard enough
that, more than in previous chapters, I will actually advocate the use of
canned procedures rather than

The first section is a warm-up, illustrating models where the variance may
change as a function of some covariate; we can solve these models fairly easily
using our existing tools. Section 2 gives a very brief overview of models for
correlation among observations, useful for incorporating spatial and tempo-
ral structure. Section 3 tackles hierarchical models, first defining them and
showing two approaches to estimating parameters (numerical integration and
MCMC).
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10.2 VARIABLE VARIANCE

Once we’ve thought of it, it’s simple enough to incorporate changes in vari-
ance into an ecological model. All we have to do is come up with a biologically
and statistically sensible model for how the variance parameter changes as
a function of the predictor variables. For example, Figure 10.1 shows an
example of a data set that shows the typical triangular or “factor-ceiling”
profile of many ecological data sets (Thomson et al., 1996). The triangular
distribution is often caused by an environmental variable that sets an upper
limit on the response variable, but does not determine where in the range
it falls; in this case, glacier lilies (Erythronium glandiflorum) are thought to
experience strong intergenerational competition; the density of adult flowers
sets an upper limit on the density of seedlings, but the number of seedlings
varies widely within these limits. I fitted the model

S ∼ NegBinom
(
µ = a, k = ced·f) ;

where S is the observed number of seedlings and f is the number of flowers.
The mean µ is constant, but the overdispersion parameter k increases (and
thus the variance decreases) as the number of flowers increases. The R
negative log-likelihood function for this model:

> likfun <- function(a, c, d) {

+ k <- c * exp(d * flowers)

+ -sum(dnbinom(seedlings, mu = a, size = k, log = TRUE))

+ }

(this function looks very much like our previous examples, except that the
variance parameter rather than the mean parameter changes with the pre-
dictor variable flowers). The figure shows the estimated mean (constant)
and the estimated upper 90%, 95%, and 97.5% quantiles, which look like
stair-steps because the negative binomial is a discrete distribution. I have
also computed and displayed a nonparametric density estimate for the mean
and quantiles as a function of the number of flowers; the general pattern
agrees well with the model we’ve chosen, with a roughly constant mean and
decreasing upper quantiles.∗

The same general strategy applies for the variance parameter of other
distributions: e.g., the variance of a normal distribution or log-normal dis-
tribution, or the shape parameter a of the gamma distribution. Just as with
changes in the mean, the variance might vary among different groups or
treatment levels (represented as factors in R); might depend on a continuous
covariate as in the example above; or might depend on the interactions of

∗testing the combinations of models that allow the mean, k, both, or neither to vary
with the numbers of flowers actually suggests that the best model is the constant model,
but the model fitted here (constant mean, varying k) is the second best, better than
allowing the mean to decrease while holding k constant. Thomson et al. (1996) suggested
a pattern where the ceiling actually increases initially at small numbers of flowers, but
this pattern is hard to establish definitively.
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Figure 10.1 Lily data from Thomson et al. (1996); numbers of seedlings as a func-
tion of number of flowers. Black lines show fit of negative binomial
model with constant mean and increasing k/decreasing variance; gray
lines are from a nonparametric density estimate
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factors and covariates (i.e., different dependence of variance on the covariate
in different groups). Both the mean and the variance could vary, or just the
variance. Use your imagination and your biological intuition to decide on a
set of candidate models, and then use likelihood ratio tests or AIC values to
test among them.

For fitting to treatment groups, it’s best to fit variance parameters on the
log scale (log(σ2), log k etc.) to make sure the variances are always positive.
For fitting to continuous covariates, use non-negative functions such as the
exponential (σ2 = aebx) or power (σ2 = axb), for the same reason.

In the particular case of normally distributed error, you can use the built-
in functions gls() (when the mean is a linear function of the predictors)
and gnls() (when it is a nonlinear function) from the nlme package to fit
varying variances. These models are called (confusingly enough) generalized
(non)linear least squares models. The weights argument allows a variety of
relationships (exponential, power, etc.) between covariates and the variance.
The syntax of g[n]ls can be tricky: you should read Pinheiro and Bates
(2000) if you want to do much with it.

10.3 CORRELATIONS: SPATIAL, TIME-SERIES, AND REPEATED

MEASURES MODELS

Up to now we have assumed that every observation in a data set is indepen-
dent. That has allowed us to say that the likelihood of the entire data set
is the product of the likelihoods of each observation, or that the (negative)
log-likelihood is the sum of the (negative) log-likelihoods of each observation
(the -sum(ddistrib(...,log=TRUE)) that has appeared in almost every
likelihood function we have written. With a bit more effort, however, we
can write down and numerically optimize likelihood functions that allow for
some kinds of correlation among observations.

It’s still true that the best thing is to avoid correlation entirely by designing
your observations or experiments appropriately. Correlation among data
points always reduces the total amount of information in the data (you are
effectively sampling the same data point, or at least overlapping data points,
repeatedly), and likelihood models with correlation are more complicated
to construct and fit than those without. However, if you are stuck with
correlated data — e.g. because your samples come from a spatial array or a
time series — all is not lost. Moreover, sometimes the correlation in the data
is actually the interesting part (e.g., the range of spatial correlation might
indicate the spatial scale over which populations interact).

The standard approach to correlated data is to specify a likelihood of corre-
lated data, usually with a multivariate normal distribution. The probability
distribution of a multivariate normal distribution is

L(x, µ,V) =
1√

(2π)n|V|
exp

(
1
2
(x− µ)T V−1(x− µ)

)
, (10.1)
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where x is a vector of data values, µ is a vector of means, and V is the
variance-covariance matrix (|V| is the determinant of V — see below — and
T stands for transposition). The formula looks scary, but like most matrix
equations you can understand it pretty well by making analogies to the
scalar (non-matrix) equivalent, in this case the univariate normal distribution
(1/
√

2πσ2 exp((x− µ)2/(2σ2))). The term exp((v − µ)T V−1(v − µ)) is the
most important part of the formula, equivalent to the exp(−(x−µ)2/(2σ2))
term in the univariate normal distribution. (v − µ) is the deviation of the
observations from their predicted means; multiplying by V−1 is equivalent
to dividing by the variance, and multiplying by (v − µ)T is equivalent to
squaring the deviations from the mean. The stuff in front of this term is
the normalization constant; the |V| matches the σ2 in the normalization
constant of the univariate normal.

If all the points are actually independent and have the same variance, then

V =


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2

 ;

working through the (10.1) one piece a time shows that the multivariate
normal actually reduces exactly to a product of univariate normals:

� for a diagonal matrix with σ2 on the diagonal, the inverse is a diag-
onal matrix with 1/σ2 on the diagonal, so the matrix multiplication
exp((x−µ)T V−1(x−µ)) works out to

∑
i(xi−µi)2/σ2 — the sum of

squared deviations.

� for a diagonal matrix, |V| is the product of the diagonal elements,
so for the simple case above |V| = (σ2)n, which is what you would
get for the normalization term if you multiplied n independent normal
likelihoods

If the points are independent but each point has a different variance,

V =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

n


and the multivariate normal reduces to a product of univariate normals, each
with their own variance (the numerator of the exponent is half the weighted
sum of squares

∑
(vi−µi)2/(σ2

i ), with the deviation for each point weighted
by its own variance; data points with larger variances have less influence on
the total).



book May 21, 2007

MODELING VARIANCE 369

In the most general case,

V =


σ2

1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σ2
n

 .

The off-diagonal elements σij represent the covariance between sites i and
j; we could also specify this information in terms of the correlation matrix
ρij = σij/

√
σ2

i σ2
j (the diagonal elements of the correlation matrix ρii are

all equal to 1). The variance-covariance matrix V is symmetric (σij = σji).
There is no way to reduce the expression to a sum of independent normals,
but the idea is still the same: the sum-of-squares terms weights combinations
of deviations by the appropriate variances and covariances. (example for
Appendix:)

To fit a model of correlation, you need to specify parameters for the
variance-covariance matrix V. In principle you could specify n(n − 1)/2
different parameters for each of the distinct entries in the matrix (since the
matrix is symmetric there are n(n − 1)/2 rather than n2 distinct entries),
but there are two reasons not to:

� this general parameterization takes lots of parameters. Unless we have
many data points for each site, we probably can’t afford to use up so
much data specifying n(n−1)/2 parameters for the variance-covariance
matrix;

� in addition to being symmetric, variance-covariance matrices have an
additional constraint of being positive definite, which means essentially
that the relationships among sites have to be consistent (technically,
it means that the eigenvalues of the matrix, or the diagonal elements
of the diagonalized matrix, must be positive). For example,

V =

 1 0.9 −0.9
0.9 1 0.9
−0.9 0.9 1


is not allowed, even though it is symmetric; it states that site 1 is
strongly positively correlated with site 2 (σ12 = ρ12 = 0.9), and site
2 is strongly correlated with site 3 (σ23 = 0.9), but site 1 is strongly
negatively correlated with site 3 (σ13 = −0.9), which is not possible.

For these two reasons, one usually selects from a set of correlation models
that (1) use a small number of parameters to construct a full variance-
covariance (correlation) matrix and (2) ensure positive definiteness. For
example,

V = σ2C = σ2


1 ρ ρ2 . . . ρn

ρ 1 ρ . . . ρn−1

...
...

...
. . .

...
ρn ρn−1 ρn−2 . . . 1

 ,
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with |ρ| < 1, specifies a correlation matrix C corresponding to sites arranged
in a line — or data taken in a temporal sequence — where correlation falls off
with the number of steps between sites (sampling times): nearest neighbors
(sites 1 and 2, 2 and 3, etc.) have correlation ρ, next-nearest neighbors have
correlation ρ2, and so forth (figure?). ∗ Other correlation models allow
correlation ρij to drop to zero at some threshold distance, or to be a more
general function of the spatial distance between sites i and j (see below).

At least three different areas of classical statistics use multivariate normal
distributions to describe correlation among observations. Repeated measures
ANOVA is a form of analysis of variance that allows the errors to be non-
independent in some way, particularly by building in individual-level vari-
ation (see Section 10.4.1) but also by allowing for correlation between suc-
cessive points in time. Time-series models (Chatfield, 1975; Diggle, 1990;
Venables and Ripley, 2002) and spatial models (Ripley, 1981; Cressie, 1991;
Kitanidis, 1997; Haining, 2003; Venables and Ripley, 2002) also allow correla-
tion between the error in different points, although often in a more restricted
way than repeated measures ANOVA.

Generalized least-squares (g[n]ls) allows for correlation among observa-
tions, using the correlation argument: you can use a variety of standard
models for temporal and spatial autocorrelation (see ?corClasses [with the
nlme package loaded] for more details. (Repeated measures also includes
a random effect at the level of individuals: you need mixed-effect models
(lme or nlme) for this, not just generalized least-squares, but these functions
do include the same correlation argument.) The ts library implements
time-series models, which incorporate correlations among points, although
the description and methods used are fairly different from the more general
models described here. The spatial package also allows you to fit trend
lines and surfaces with spatial autocorrelation between points as a function
of distance.

To generate variance-covariance functions to use in your own custom-made
likelihood functions, start with the matrix function (for general matrices)
or diag (for diagonal matrices) and extend them. For example, diag(4)
produces a 4 × 4 identity matrix (with 1 on the diagonal); diag(c(2,3,4))
produces a 3 × 3 diagonal matrix with variances of 2, 3, and 4 for the
first, second and third variable. The row and col functions are also useful.
abs(row(m)-col(m)) produces the following:

[,1] [,2] [,3] [,4] [,5]
[1,] 0 1 2 3 4
[2,] 1 0 1 2 3
[3,] 2 1 0 1 2
[4,] 3 2 1 0 1

∗This correlation matrix is sometimes referred to as AR(1), meaning “autoregressive
order 1”, meaning that each point is correlated directly with its first neighbor; the higher
powers of ρ with distance arise because of a chain of correlation (next-nearest-neighbors
are correlated through their mutual neighbor).
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[5,] 4 3 2 1 0

which is a useful starting point for constructing other kinds of correlation
matrices, for example with diminishing variance as a function of distance:

> rho = 0.5

> m = matrix(nrow = 5, ncol = 5)

> m = rho^abs(row(m) - col(m))

or with correlation only with neighbors:

> rho = 0.5

> m = diag(5)

> m[abs(row(m) - col(m)) == 1] = rho

This works if your data are one-dimensional (along a transect in space or
time); what if your data are irregularly spaced or two-dimensional? Start by
computing a matrix of the distances between points, using as.matrix(dist(cbind(x,y)));
dist() computes Euclidean distances by default (the regular geometric dis-
tance between points in a plane), but there are other options (see ?dist).
Once you have computed the distance matrix, you can easily compute (e.g.)
an exponential correlation matrix (C(r) = exp(−αr), m=exp(-alpha*dist)),
Gaussian correlation matrix (C(r) = exp(−αr2), m=exp(-alpha*dist^2));
for more information on correlation functions see Venables and Ripley (2002)
or one of the other references on spatial statistics.

If the overall variance is constant, you can just multiply the correlation
matrix by σ2 to get a covariance matrix, suitable for use with the dmvnorm
density function from the mvtnorm package: e.g. a negative log-likelihood

> -dmvnorm(z, mu, Sigma = m, log = TRUE)

where z is a vector of data, mu is a vector of predicted means, and m is
one the covariance matrices defined above. You can also use the mvrnorm()
command from the MASS package (which really should be called rmvnorm for
consistency) to generate random, correlated normal deviates. For example,
mvrnorm(n=1,mu=rep(3,5),Sigma=m) produces a 5-element vector with a
mean of 3 for each element and variance-covariance matrix as constructed
above. (Asking mvrnorm for more than 1 random deviate will produce a
matrix where each row is a separate pick from the multivariate distribu-
tion.) The multivariate-normal likelihood function dmvnorm is available in
the mvtnorm package on CRAN (which also provides a multivariate t distri-
bution).

A likelihood function that would estimate the parameters for normally
distributed data z sampled along a line transect where there may be a linear
trend with x (µ = a + bx) but each site could also be correlated with its
neighbor:

> invisible(require(emdbook, quietly = TRUE, warn = FALSE))

> mvlik = function(a, b, sigma, rho) {
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+ mu = a + b * x

+ n = length(x)

+ m = diag(n)

+ m[abs(row(m) - col(m)) == 1] = rho

+ -dmvnorm(z, mu, Sigma = m, log = TRUE)

+ }

(I don’t have to use sum because I am treating all of the data as a single
multivariate normal deviate).

Data that are correlated but not normally distributed (e.g. Poisson or
negative binomial) are typically dealt with by combining a multivariate nor-
mal normal model for the underlying mean values with a discrete sampling
model (Poisson, binomial, negative binomial, etc.). For example, to generate
correlated Poisson data we could assume that λ(x), the expected number of
counts at a point x, is the exponential of a multivariate normally distributed
variable with some spatial correlation structure (the logarithm is used to
avoid negative values of λ)

Y∼Poisson(Λ)
Λ∼ exp(MVN(µ,V))

where Y is a vector of counts at different locations; Λ (a random value)
is a vector of expected numbers of counts (intensities); µ is the log of the
average intensities; and V describes the variance and correlation of intensi-
ties. R code to simulate data from this model, with a linear trend, spatial
autocorrelation, and Poisson variability:

> x = 1:20

> a = -2

> b = 0.2

> rho = 0.5

> sigma = 1

> mu = a + b * x

> n = length(x)

> m = diag(n)

> m[abs(row(m) - col(m)) == 1] = rho

> lambda = exp(mvrnorm(1, mu = mu, Sigma = m))

> Y = rpois(n, lambda)

Unfortunately, even though we can easily simulate values from this dis-
tribution, because there are two different levels of variation it’s not so easy
to write down a likelihood for this model. The rest of the chapter discusses
how to formulate and estimate the parameters for such mixed or multi-level
models.
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10.4 MIXED AND MULTI-LEVEL MODELS: SPECIAL CASES

While correlation models assume some dependence between samples as a
function of distance, with overlapping neighborhoods in space or time (point
1 is correlated with point 2, point 2 is correlated with point 3 . . . ), more
traditional mixed models break the population into discrete groupings (fam-
ily, block, site, etc.). Within groups, all samples are equally correlated with
each other. If samples 1, 2, and 3 are from one site and samples 4, 5, 6 are
from another, the variance-covariance model might look like this:

V = σ2C = σ2


1 ρ ρ 0 0 0
ρ 1 ρ 0 0 0
ρ ρ 1 0 0 0
0 0 0 1 ρ ρ
0 0 0 ρ 1 ρ
0 0 0 ρ ρ 1


Equivalently, you could say that each group has its own random offset from
the overall mean value. The model stated above in terms of correlations is
exactly the same as saying that the value of the jth individual in the ith

group is

Yij = εi + εij

where εi ∼ N(0, σ2
b ) is the level of the random effect in the ith block (σ2

b

measures between-site variability) and εij ∼ N(0, σ2
w) is the the difference of

the jth individual in the ith block from the block mean (σ2
w measures within-

site, or between-individual, variability). In fact, the correlation parameters
(ρ,σ2) and the block parameters (σ2

b ,σ2
w) are equivalent: σ2

b = ρσ2 and
σ2

w = (1 − ρ)σ2. It is often more efficient to describe this kind of variation
in terms of among-block, among-site, among-individual . . . etc. . . . variances
rather than constructing a huge variance-covariance matrix.

10.4.1 Linear (normal) mixed models

These models are called mixed-effect models (or simply mixed models) be-
cause they contain random effects (block, site, individual, etc.) as well as
fixed effects (effects of covariates) (Pinheiro and Bates, 2000). The classical
ANOVA designs developed to deal with the various ways in which treat-
ments can be allocated to different experimental units (split-plot, nested
block, etc.) [Underwood, Quinn & Keogh, Ellison & Gotelli?] are mixed
models. You can use the aov function using an Error term in the model to
fit these models in R. The nlme package, and the rapidly developing but not-
yet-fully-documented lme4 package, fit a wider range of mixed-effect models.
The nlme package allows for unbalanced data sets as well as random effects
on parameters (e.g. ANCOVA with randomly varying slopes among groups),
and nonlinear mixed-effect models (e.g. an exponential, power-law, logistic,
or other non-linear curve with random variation in one or more of the pa-
rameters among groups).
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10.4.2 Generalized linear mixed models

GLMMs combine generalized linear models (link functions and exponential-
family variation) with random effects, typically normally distributed on the
“scale of the linear predictor” — meaning on the scale of the data as trans-
formed by the link function. GLMMs are cutting-edge, and the methods
for solving them are evolving rapidly: If you use the family argument (e.g.
family=binomial), lmer in the lme4 package can fit GLMMs — it may
also be worth cross-checking your results with PROC NLMIXED in SAS. R has
built-in capabilities for incorporating random effects into a few other kinds
of models:

� gamm in the mgcv package fits generalized additive mixed models (GAMMs),
which allow random variables and non-normal error in models incor-
porating splines (although it uses an approach called penalized quasi-
likelihood (PQL), which may be inaccurate in some cases)

� frailty in the survival package allows you to incorporate random
effects (gamma, t, or normally distributed) in survival analyses

� A few more combinations (non-normal repeated measurements, a wider
range of error distributions than the usual GLM models, arbitrary non-
linear regression with gamma errors, etc.) are described in Jim Lind-
sey’s books (Lindsey, 1995a,b, 1999a, 2001, 2004a,b) and are available
on the web

10.5 MIXED AND MULTI-LEVEL MODELS IN GENERAL

There is a wide range of possibilities for models with multiple sources of vari-
ance beyond traditional block-design ANOVAs and mixed models. While
these models can be challenging to fit, they can reveal new levels of ecolog-
ical process that are excluded from models with a single type of variance,
especially if you have large data sets.

In the models we’ve built in previous chapters, including multiple predic-
tor variables (both categorical [factor] and continuous [numeric]) or chain-
ing together a series of deterministic functions (fecundity as a function of
biomass as a function of light as a function of neighborhood crowding . . . ),
it’s fairly straightforward to compute how different ecological processes go
together and write down a likelihood function. Incorporating multiple levels
of variability is harder because calculating how different sources of variability
combine usually means that we have to compute an integral; for example,
the probability that an individual plant measured in a particular block has
a particular biomass m is a combination (integral) of all the possible combi-
nations of block effect (εi) and individual effect (εij) that add up to a large
biomass:

Prob(Y = m) = Prob(εi + εij = m) =
∫

Prob(εi = i)Prob(εij = m− i) di
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Multiple levels of variance come up in a variety of ecological contexts:

� Block effects: the oldest and probably most widely used mixed models:
individuals are divided into blocks which may be spatial, temporal,
genetic (family), . . . The block structure itself is typically normal (i.e.
if there is more than one type of block, the value of block ij (say family
i in treatment block j) will be the sum of normal deviates εi and εj),
but the response variable may be a non-normal (e.g. Poisson) deviate
based on a transformed version of the block value; in survival analysis,
block-effect models are called frailty analyses (ref).

� Individual-level effects: typically encountered as “repeated measures”
problems (which incorporate both between-individual variation and
temporal autocorrelation). Nonlinear mixed effect models allow for the
dissection of the variability among individuals (either genetic or plas-
tic) in various growth and physiological processes (Vigliola?). Overdis-
persed distributions model individual-level effects by taking a standard
distribution (normal, binomial, Poisson) and assume that there is some
form of underlying individual-level variation, resulting in a new distri-
bution with more variance and potentially a different shape from the
original (the normal becomes the t distribution (Clark et al., 1999);
the binomial becomes beta-binomial; and the Poisson becomes nega-
tive binomial).

� Static: measurement+process error : most of the time, measurement
and process error follow the same kinds of distributions, or at least
distributions that can’t be easily distinguished from the data. For ex-
ample, the combination of a Poisson process with binomial sampling
error (i.e., individuals occur according to a Poisson process, but you
only detect a fraction of them, with a constant independent probability
of seeing each individual) is itself a Poisson process: it’s logical that if
you count 100 individuals, with no other information it’s impossible to
know whether you counted all of them or whether there are really 200
individuals present of which you counted half. (More on this identifi-
ability problem later.) However, there are cases where the ecological
process and the sampling process are different enough that you might
be able to distinguish them in data — for example, if you know that
measurement error has constant variance, any changes in variability
with size must be the effect of some biological process.

� Static: multiple processes More generally, two different ecological pro-
cesses could both contribute to variability. For example:

– a spatial pattern could be a combination of resource distribution
(from climate, geology, etc.) and Poisson sampling error

– zero-inflated models: two different ecological processes could de-
termine whether there are any individuals at a site, and if so



book May 21, 2007

376 CHAPTER 10

how many are actually present and sampled. This combination
of processes usually leads to a typical distribution like Poisson
or negative binomial, but with more zero values than expected
(these distributions were mentioned in Chapters 4 and 5).

� Dynamics: measurement vs. process error : as described in Chapter 1,
measurement and process error act differently on ecological dynamics
(process error feeds back on the population in the next time step, while
measurement error doesn’t): these models are challenging to fit, and
are dealt with in Chapter 11.

10.5.1 Methods

10.5.1.1 Marginal models

For particular combinations of ecological processes, it’s possible to derive
the distribution of the combined process analytically. These distributions are
sometimes called marginal models, because they describe the combination of
the processes but don’t attempt to provide information about the individual
processes — analogous to the row and column sums (marginal totals) of a
table without knowing the distribution of values within the table. The big
advantage of marginal models is that, if you (or someone else) can derive the
marginal distribution, you can just calculate the (negative log-)likelihood
of this distribution and use it to estimate the parameters. We’ve already
discussed zero-inflated binomial and negative binomial distributions, beta-
binomial, negative binomial, and t distributions. Unless you’re good at math,
your best bet is to try to find an example where someone has derived the
combination you need.

10.5.1.2 Methods: numerical integration

If you can’t find an analytical derivation of the marginal distribution you
need, one option is to evaluate the integrals numerically.

One case where numerical integration can work is when the variability in
an ecological observation is just the sum of two kinds of variability. In this
case, the distribution of the combination of X and Y — the probability that
X + Y = z is a convolution:

P (X + Y = z) =
∫

P (X = x) · P (Y = z − x) dx.

The intuition behind this equation is that we are adding up all the possible
ways we could have gotten z; for any given value of X = x, then the value of
Y must be z − x in order for the sum to be z, so we can calculate the total
probability by integrating over all values of x. (The convolutions of distri-
butions with themselves — i.e., the distribution of sums of like variables —
can often be solved analytically. The sum of two normal variables N(µ1, σ

2
1)

and N(µ2, σ
2
2) is also normal (N(µ1 + µ2, σ

2
1 + σ2

2)); the sum of two Poisson
variables is also Poisson (Pois(λ1) + Pois(λ2) ∼ Pois(λ1 + λ2)); the sum of
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two exponential variables with the same mean is Gamma distributed with
shape parameter 2.)

A common problem in forest ecology is to estimate the distribution of
growth rates gi of individual trees in a stand from size measurements Si in
successive censuses: gi = Si,2 − Si,1. Foresters also commonly assume that
adult trees can’t shrink, or at least not by very much, but it’s typical to
observe a small proportion of individuals in a data set whose second size
measurement is smaller than the first. If we really think that measurement
error is negligible, then we’re forced to conclude that the trees did actually
shrink. It’s standard practice to go through the data set and throw out
negative growth values, along with any that are unrealistically big. Can we
do better?

Although may still be sensible to throw out really extreme values, which
may represent (e.g.) transcription errors (being careful to keep the original
data set intact and document the rules for discarding outliers), we may be
able to extract information from the data set both about the “true” distri-
bution of growth rates and about the distribution of errors. The key is that
the distributions of growth and error are assumed (reasonably) to be dif-
ferent; the error is distribution is symmetric and narrowly distributed (we
hope) around zero, while the growth distribution starts at zero and is right-
skewed. Thus, the negative tail on the distribution tells us about error —
negative values must contain at least some error.

Specifically, let’s assume a gamma distribution of growth (we could equally
well use a log-normal) and a normal distribution of error. The growth distri-
bution has parameters a (shape) and s (scale), while the error distribution
has just a variance σ2 — we assume that errors are equally likely to be
positive or negative, so the mean is zero. Then

Ytrue∼Gamma(s, a)
Yobs∼Normal(Ytrue, σ

2) (10.2)
For normally distributed errors, we can also express this as the sum of the
true value and an error term:

Yobs = Ytrue + ε, ε ∼ Normal(0, σ2).
According to the convolution formula, the likelihood of a particular observed
value is:

P (Yobs|a, s, σ2) = P (Ytrue+ε = Yobs|a, s, σ2) =
∫

P (Ytrue = Yobs−ε|a, s)·P (ε|σ2) dε

(10.3)
The log-likelihood for the whole data set is:

L =
∑

log
∫

P (Ytrue = Yobs − ε|a, s) · P (ε|σ2) dε

(unfortunately we can’t interchange the logarithm and the integral, which
would make everything much simpler).

To see how this works (and to see how easy it is to simulate data from
this model, in contrast to the difficulty of estimating the parameters), we
simulate a fake data set with some plausible parameters:
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> set.seed(1001)

> x.true = rgamma(1000, shape = 3, scale = 10)

> x.obs = rnorm(1000, mean = x.true, sd = 10)

Here’s a function that calculates the likelihood for a given value of the error
(ε) and the parameters and the observed value (the integrand in (10.3)):

> tmpf = function(eps, shape, scale, sd, x) {

+ exp(dnorm(eps, mean = 0, sd = sd, log = TRUE) + dgamma(x -

+ eps, shape = shape, scale = scale, log = TRUE))

+ }

Check that it gives a reasonable value (at least not an NA) for the first
data point:

> tmpf(1, shape = 3, scale = 10, sd = 1, x = x.obs[1])

[1] 0.0002398506

Integrate numerically, using integrate():

> i1 = integrate(f = tmpf, lower = -Inf, upper = Inf, shape = 3,

+ scale = 10, sd = 1, x = x.obs[1])

> i1$value

[1] 0.0009216708

To calculate the integral for more than one data point at a time, we have
to be careful and use sapply(): if we just try to stick in a vector for x in
tmpf, R will do the wrong thing.

> tmpf2 = function(x, shape, scale, sd) {

+ integrate(f = tmpf, lower = -Inf, upper = Inf, shape = shape,

+ scale = scale, sd = sd, x = x)$value

+ }

> getdist = function(shape, scale, sd, dat, debug = FALSE) {

+ v = -sum(log(sapply(dat, tmpf2, shape = shape, scale = scale,

+ sd = sd)))

+ if (debug)

+ cat(shape, scale, sd, v, "\n")

+ v

+ }

Try this function out for one set of reasonable parameters:

> getdist(shape = 3, scale = 10, sd = 1, dat = x.obs)

[1] 5684.876

Run mle2() using the getdist() function as our negative log-likelihood
function:
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Figure 10.2 True and estimated distributions of growth rates and measurement
error

> m1 = mle2(minuslogl = getdist, start = list(shape = 3, scale = 10,

+ sd = 1), data = list(dat = x.obs, debug = TRUE), method = "Nelder-Mead")

> m1.ci = confint(m2)

This does work, albeit slowly: it took about 3 minutes (for a total of 137
function evaluations) to find the MLE using Nelder-Mead, and 164 minutes
to calculate the profile confidence intervals

hessian.2.5% hessian.97.5% profile.2.5% profile.97.5% True
shape 2.859 3.103 2.578 3.494 3
scale 9.791 10.950 8.844 12.029 10
sd 8.753 9.369 8.060 10.587 10

The confidence limits are reasonable, and the Hessian-based confidence in-
tervals are close to the profile confidence intervals (so perhaps we needn’t
have bothered). Figure 10.2 plots the observed histogram along with the
estimated true (gamma) distribution of growth rates and the

Numerical integration works pretty well here, although it’s slow if we in-
sist on calculating profile confidence limits. Numerical integration is most
valuable in the cases where someone else has developed a fast, accurate
approximation technique, such as inside canned mixed-model and GLMM
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software such as nlme and lme4 (or PROC NLMIXED in SAS). (A commercial
package called AD Model Builder can do some very difficult mixed-model
problems.) It can be useful in a few other cases like the one shown here, and
it has the advantages that (1) it’s clear what you’re doing (numerical failures
are usually pretty obvious, although you should do all the usual checks for
convergence) and (2) it remains firmly in the maximum-likelihood paradigm,
so you won’t have to defend yourself for using Bayesian methods.

10.5.1.3 Methods: MCMC

In many cases, though (perhaps the majority), brute-force numerical inte-
gration as shown above is just too hard: once you have to integrate over more
than one (or two) random variables, things get ugly very quickly. MCMC
is an alternative way of doing these high-dimensional integrals, and it gets
you confidence limits “for free”. The disadvantages are that (1) it may be
slower than sufficiently clever numerical integration approximations; (2) you
have to deal with the Bayesian framework, including deciding on a set of
reasonable (informative or non-informative priors); and (3) in badly deter-
mined cases where your model is poorly defined or where the data don’t
really contain enough information, BUGS is slightly more likely to give you
an answer that doesn’t make sense instead of just crashing.

The BUGS input file for the gamma-normal model is extremely simple.

## BUGS code for gamma-normal model
model {
for (i in 1:N) {

x.true[i] ~ dgamma(sh,rate)
x.obs[i] ~ dnorm(x.true[i],tau)

}
sh ~ dgamma(0.01,0.01)
rate ~ dgamma(0.01,0.01)
tau ~ dgamma(0.01,0.01)

}

The first half of the model statement is a fairly direct translation of the
model (10.2): for each value in the data set, the observed value is assumed
to be drawn from a normal distribution centered on the true value, which is
in turn drawn from a gamma distribution.

The second half of the model statement specifies the priors, which are
vague. As mentioned in Chapter 7, BUGS uses slightly different parameteri-
zations from R for normal and gamma distributions. The normal is specified
by the mean and the precision τ , which is 1 over the variance; the gamma is
specified by the shape parameter (the same as in R) and the rate parameter,
which is 1 over the scale parameter. The mean of the gamma distribution
is shape/rate and the variance is shape/rate2; thus a standard weak gamma
prior uses equal shape and rate parameters (mean of 1), both small (large
variance). In this case I’ve chosen (0.01,0.01).
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(basics of R2WinBUGS should have been covered in ch. 6–7)

> library(R2WinBUGS)

> library(coda)

The best way to run an MCMC model is with a variety of starting points;
when all the chains have converged on the same part of parameter space,
you can be fairly confident that the chain is long enough (this criterion is
the basis for the Gelman-Rubin diagnostic statistic). We can get a rough
idea of sensible starting points by fitting a gamma distribution just to the
non-zero observations. We estimate a starting value for the precision (τ) by
taking the negative observations, replicating them with the opposite sign,
and calculating 1 over the variance:

> pos.obs <- x.obs[x.obs > 0]

> neg.obs <- x.obs[x.obs < 0]

> bineg.obs <- c(neg.obs, -neg.obs)

> f1 <- fitdistr(pos.obs, "gamma")

> tau0 <- 1/var(c(x.obs[x.obs < 0], -x.obs[x.obs < 0]))

You’re not required to specify starting values for all of the chains — if you
don’t, BUGS will pick a random value from the prior distribution to start
— but it can help the model run better, especially if your priors are very
weak. We will start the chains for the true growth rates from 1 or from the
observed growth rate for each individual, whichever is greater (this avoids
negative values for the true growth rate, which are impossible according to
our model):

> tstart <- pmax(x.obs, 1)

We specify a list of initial values for each chain: in this case I’ve decided
to start one chain at the values of the crude estimates calculated above, and
the other chains with perturbations of those estimates, with one or the other
of the parameters halved or increased to 150% (I didn’t bother to perturb
the starting values for the rate, but you could in a more thorough analysis):

> inits <- list(list(tau = tau0, sh = coef(f1)["shape"], rate = coef(f1)["rate"],

+ x.true = tstart), list(tau = 0.5 * tau0, sh = coef(f1)["shape"],

+ rate = coef(f1)["rate"], x.true = tstart), list(tau = 1.5 *

+ tau0, sh = coef(f1)["shape"], rate = coef(f1)["rate"], x.true = tstart),

+ list(tau = tau0, sh = 0.5 * coef(f1)["shape"], rate = coef(f1)["rate"],

+ x.true = tstart), list(tau = tau0, sh = 1.5 * coef(f1)["shape"],

+ rate = coef(f1)["rate"], x.true = tstart))

We need to specify the data for BUGS:

> N <- length(x.obs)

> data <- list("x.obs", "N")
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Finally, we specify which parameters we want to keep track of — the
parameters of our model, plus the true growth rates of a couple of arbitrarily
selected individuals:

> minval <- which.min(x.obs)

> medval <- which.min(abs(x.obs - median(x.obs)))

> parameters <- c("sh", "rate", "tau", "x.true[948]", "x.true[103]")

Running the model:

> gn1.bugs <- bugs(data, inits, parameters.to.save = parameters,

+ model.file = "gammanorm.bug", n.chains = length(inits))

The the results (which took 90.48 minutes on my laptop computer):

2.5% mean 97.5% True
shape 2.762 3.347 4.042 3.00
rate 0.090 0.110 0.134 0.10
τ 0.007 0.009 0.013 0.01

Figure 10.3 shows the results graphically — including the results for the
estimated value of the minimum and closest-to-median points, and the de-
viance (twice the negative log likelihood). The different chains (shown as
different line types) have fairly similar distributions, which is good — this
confirms that the chains started from different initial conditions have indeed
converged. The distributions of the parameters are approximately normal
— this is not necessary, but can be helpful for running some kinds of con-
vergence diagnostics (Gelman et al., 1996). While the distribution of the
estimated true value for the median point is symmetric and close to its ob-
served value (observed 28.2), the estimated true values for the minimum
point, which was actually observed as -15.7, was strongly influenced by the
model specification; it is slightly asymmetric, with a mean around 28.

10.6 CHALLENGES

Models that incorporate multiple sources of variability; expanding the scope
of our models provides both more powerful ways to separate signal from noise
and ways to separate the effects of different stochastic ecological processes.
However, these models are hard to implement:

� they represent a conceptual leap beyond our old idea of combining a
deterministic “ecological” model with a single, simple model for the
“noise” — now we have to think about how different sources of vari-
ability interact with each other;

� if we integrate numerically in R, we need multiple levels of functions
to compute the likelihood for a single point given a particular random
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effect, the overall likelihood for a single point, the (log-)likelihood for a
whole data set . . . if we use MCMC, we either need to code the machin-
ery of MCMC (using Metropolis-Hastings or figuring out conditional
posterior distributions) or learn the syntax and details of BUGS

� estimation can be slow

10.6.1 Identifiability

Another issue we have to face, as we incorporate more levels of variability,
is identifiability. Unidentifiable parameters are those that we simply can’t
estimate separately from our data: for example, if we tried to estimate a
linear model Y = a1 +a2 + bX from a single set of data (instead of the more
sensible Y = a + bX), with no way to separate a1 and a2, any answer where
a1 + a2 = a will be equally good. The same thing would happen if we had
two predictors, X1 and X2, that were perfectly correlated with each other
and tried to fit separate slopes to each one. Another example, mentioned
above, is that there is no way to identify catchability — the probability that
you will observe an individual — from a single observational sample; you
simply don’t have the information to estimate how many animals or plants
you failed to count. Most of these cases of “perfect” unidentifiability are
easily detectable by common sense once you stop and think, although they
are sometimes obscured by complex models.

More common than perfect unidentifiability—defining parameters that are
completely impossible to estimate—is weak unidentifiability, where param-
eters are very hard to estimate even with a large, clean data set and prac-
tically impossible to estimate with normal-size, noisy data. Identifiability is
not limited to models that incorporate multiple sources of variability, but
it is particularly common there. Weak identifiability is related to a lack of
statistical power; it means that your model is structured in such a way that
it will take an enormous amount of data, or very extreme kinds of data, in
order to have the power to tell different ecological processes apart.

The best thing that can happen when you have an unidentifiable or weakly
identifiable model is for your estimation procedure to crash: this outcome
will at least tell you something is wrong. The worst thing that can happen
is for your estimation procedure to give you an answer which depends in
some very sensitive way on the details of your numerical algorithm and your
prior (if you are going Bayesian). Weak identifiability in MLE analysis leads
either to numerical problems or to apparently well-defined, but misleadingly
precise, answers; weak identifiability in Bayesian MCMC analyses leads to
poor convergence (in the worst-case scenario, chains may move through pa-
rameter space so slowly that it’s hard to detect this nonconvergence). The
defenses against identifiability problems are (1) care in setting up models, (2)
examining model diagnostics — confidence intervals, convergence statistics,
comparing answers with priors, and (3) running models with known inputs
(i.e. simulations), with different amounts of data and different amounts of
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noise, to see when they are actually capable of getting the right answers.
Coming to grips with the difficulty of separating different types of variabil-

ity, like coming to grips with limitations on statistical power (Chapter 5),
can be depressing. Schnute (1994) says in a paper on state-space models (a
kind of multiple-variance model) that:

[t]he outcome of the analysis often depends critically on the val-
ues of [many variance] parameters, and it is generally impossible
to estimate all of them . . . Statistically, the likelihood surface
[may be] “flat”, i.e. insensitive to large parameter changes. In
cases like this, a large number of conflicting scenarios appear
equally consistent with the known data, and the analyst has no
objective means to choose among them.

This apparent limitation can be turned into an advantage ...
State space model design forces essential questions to be asked
about underlying processes, observed data, and sources of vari-
ability. When these questions are answered honestly, the model
may point to scenarios consistent with the data but in conflict
with the prevailing view. If so, the modeling effort can help to
delineate the limits of current knowledge and to establish rational
priorities for future data collection.

Put another way, acknowledging the many different types of uncertainty that
actually exist in our models may make us realize that we know less than we
thought we did about the possible dynamics of our study system, and drive
us to make more observations.

10.7 CONCLUSION

Since mixed-effect models are so challenging, why don’t we just model ev-
erything as fixed effects?

� We would like our statistical models to match our conceptual models
as closely as possible; if we are thinking about differences among in-
dividuals or sites or genotypes, we may want our model to give us an
estimate of the variability rather than simply giving us a list of the
values for each group;

� Estimating differences among groups as a random effect and integrat-
ing over the differences is more parsimonious, in a sense, than trying
to treat differences among groups as a fixed effect. (The distinction
between “fixed effects” and “random effects” is murky: see (Crawley,
2002, p. 670) for some rules of thumb, and (Gelman, 2005, p. 20) for
more than you ever wanted to know about the level of debate even
among statisticians about the meaning of these terms.) Fixed effects
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require an additional parameter for every group, whereas random ef-
fects technically only need a single parameter (variance). The differ-
ence in number of parameters gets more extreme the more individuals
we have; with n individuals and p random effects (e.g. slope and inter-
cept), the fixed-effect model will have pn parameters while the mixed
model has only 2p (means and variances for each effect). However,
this parsimony has a drawback: technically, if we fit a mixed model we
may not be able to make inferences about which groups are higher or
lower than the mean, or about the confidence limits on the parameters
(slope, intercept, growth rate . . . ) of a particular group.

Multi-level models are data-hungry; the good news is that they can work
with very noisy data, as long as there are enough of them. Because of im-
provements in instrumentation (remote sensing, radiotelemetry) and data
synthesis (publicly available databases, meta-analyses), ecologists are gain-
ing access to many large data sets that meet these standards. Knowing how
to use multi-level models, and knowing what dangers to avoid, will help you
ask a much larger range of interesting questions about your data.
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11.1 SUMMARY

This chapter covers dynamic models, which are an important subset of the
models with multiple kinds of variability discussed in Chapter 10. The chap-
ter shows how to simulate dynamic models; discusses process and observa-
tion error, and methods for fitting models that assume only one or the other;
introduces the SIMEX approach that can be used when the magnitude of ob-
servation error is known; and finally presents several techniques (the Kalman
filter and MCMC) for fitting state-space models with both process and ob-
servation error.

11.2 INTRODUCTION

This chapter covers concepts and techniques for fitting dynamic models —
models that describe how ecological processes drive populations to change
over time. Dynamic models are a special case of the models we introduced in
Chapter 10, with multiple sources of variability. The two forms of variance
in dynamic models are process uncertainty (or process noise or process error
or process variability), which feeds back on future states of the population,
and observation error (noise/error/variability), which affects only the current
observation.

In order to introduce dynamic models, the chapter starts by discussing
how to simulate them; knowing how to simulate dynamic models is also
important because fitting dynamic models to data is tricky and it’s essential
to fit models to simulated data to confirm that the methods work. (Most of
the examples in this chapter use simulated “data”.)

The simplest way of dealing with observation and process error is to ig-
nore one or the other (Section 11.5). This approach is by far the simplest
way to model dynamic data, and if the noise level in the data is low you
may be able to get away with it. When you have an independent estimate
of the amount of observation error, the more recently developed SIMEX
(simulation-extrapolation) algorithm provides a way to get unbiased param-
eter estimates (Section 11.6).

When you have no prior information on observation and measurement er-
ror, state space models (Section 11.7) can in principle estimate these two
terms separately, subject to the very strong constraint that the data actu-
ally enough information to separate them reliably. The Kalman filter (Sec-
tion 11.7.1) is an algorithm for estimating the parameters of state-space
models with normally distributed error; in the most general case, compu-
tationally intensive Bayesian (Millar and Meyer, 2000) and frequentist (de
Valpine and Hastings, 2002) methods can solve the problem of simultane-
ously estimating deterministic parameters, measurement error, and process
error simultaneously (Section 11.7.2). The use of such methods has recently
begun to explode in ecology (Solow, 1998; Ellner et al., 2002; de Valpine and
Hastings, 2002; de Valpine, 2003; Jonsen et al., 2003; Buckland et al., 2004;
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Clark and Bjørnstad, 2004; Thompson et al., 2005); this chapter attempts
to provide a basic and relatively painless introduction, although if you want
to go farther in this area you will have to dig into the literature (e.g. Calder
et al., 2003).

11.3 SIMULATING DYNAMIC MODELS

Dynamic models describe the changes in the size and characteristics of a
population over time. Some important characteristics of dynamic models
are:

� at each time step except the first, the size and characteristics of the
population are a function of the size and characteristics at the previous
time step (or one or more times farther in the past);

� it is often much harder to write down the mathematical formula that
describes the population size at time t than it is to describe how N(t)
depends on N(t− 1);

� the difference between measurement and process error becomes vitally
important in dynamic models, because they act differently; process
error feeds into future population dynamics, while measurement error
does not.

The basic procedure for simulating dynamic models is:

� set aside space (a vector or matrix) to record the state of the population
(numbers of organisms, possibly categorized by species/size/age)

� set starting conditions

� for each time step:

– apply R commands to simulate population dynamics over the
course of one time step

– record the current state of the population, or the current observed
state of the population (i.e. allow for measurement error)

� analyze/plot results

11.3.1 Examples

We can construct dynamic models corresponding to the two simple static
models (linear/normal and hyperbolic/Poisson) introduced in Chapter 5.

Figure 11.1a shows a dynamic model that is closely analogous to the static
model shown in Figure 11.1a. The closest analogue of the static linear model,
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Figure 11.1 Dynamic models with process and measurement error. a: Linear, con-
tinuous (Normal) model. b. Nonlinear, discrete (hyperbolic/Poisson)
model. In each case the envelopes (dotted and dashed lines) show
the 95% confidence limits for equivalent models with pure process or
pure measurement error; the realizations shown are generated with a
mixture of process and measurement error.

Y ∼ Normal(a + bx), is a dynamic model with measurement error only:

N(1) = a

N(t + 1) = N(t) + b

Nobs(t) ∼ Normal(N(t), σ2
obs)

(11.1)

Going through this model one statement a time, it specifies the initial or
starting condition (the value of N at time t = 1); the updating rule or
population dynamics that determine the population size one time step in
the future (which in this case is purely deterministic); and the measurement
process, which is that the observed value of the population size at time t,
Nobs(t), is normally distributed around the true value N(t) with variance
σ2
obs.
The R code for this model would be (assuming we were running the model

for nt time steps and had already set the values of a, b and sd.obs):

> N = numeric(nt)

> Nobs = numeric(nt)

> N[1] = a

> for (t in 1:(nt - 1)) {

+ N[t + 1] = b + N[t]

+ Nobs[t] = rnorm(1, mean = N[t], sd = sd.obs)

+ }

> Nobs[nt] = rnorm(1, mean = N[nt])

Since the for loop only runs from 1 to nt-1, we have to set the observed
value for t =nt at the end. (If we ran the loop from 1 to nt we would be
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predicting the state of the population at time nt+1, beyond the end of the
vector we have set aside for the results.)

By contrast, a model with pure process error is defined as:

N(1) = a

N(t + 1) ∼ Normal(N(t) + b, σ2
proc)

Nobs(t) = N(t)

(11.2)

The R code:

> N = numeric(nt)

> Nobs = numeric(nt)

> N[1] = a

> for (t in 1:(nt - 1)) {

+ N[t + 1] = rnorm(1, mean = b + N[t], sd = sd.proc)

+ Nobs[t] = N[t]

+ }

> Nobs[nt] = N[nt]

In this case, we assume that our observations are perfect (Nobs(t) = N(t)),
but that the change in the population is noisy rather than deterministic.

The expected behavior of this dynamic model is exactly the same whether
the variability in the model is caused by measurement error or process error,
and in fact is identical to the deterministic part of a standard linear model
N = a+b(t−1). Furthermore, there is no way to tell process from observation
error by looking at a single time series; the variation in the observed data
will look the same. (Figure 11.1 actually shows a single realization of a
model with equal amounts of process and measurement error; it falls outside
the theoretical bounds of a measurement-error-only model with slope a = 1,
but only because we know the true slope. We couldn’t tell the difference in
a real data set.) The difference only becomes apparent when we simulate
many realizations of the same process and look at how the variation among
realizations changes over time (Figure 11.1a). With measurement error only,
the variance among realizations is constant over time; with process error only,
there is initially no variance (we always start at the same density), but the
variance among realizations increases over time.

Figure 11.1b shows a discrete-population model with process and measure-
ment error. In this case, the model is a rational function with the same form
as the Beverton-Holt or Michaelis-Menten function. Suppose that per capita
plant fecundity declines with crowding (this year’s population density, N(t))
as a/(b + N); then let the the next year’s expected population size N(t + 1)
equal (population size) × (per capita fecundity) = N(t)(a/(b+N(t))). This
population model converges on a stable population size of a − b (convince
yourself that when N(t) = (a − b), N(t + 1) = N(t)), and the simulated
dynamics in Figure 11.1b indeed stay close to constant.

For the measurement error model, we assume that we only have a proba-
bility p of counting each individual that is present in the population, which
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leads to a binomial distribution of observations:
N(1) = N0

N(t + 1) = aN(t)/(b + N(t))
Nobs(t) ∼ Binomial(N(t), p)

(11.3)

The R code:

> N = numeric(nt)

> Nobs = numeric(nt)

> N[1] = N0

> for (t in 1:(nt - 1)) {

+ N[t + 1] = a * N[t]/(b + N[t])

+ Nobs[t] = rbinom(1, size = round(N[t + 1]), prop = p)

+ }

> Nobs[nt] = rbinom(1, size = round(N[nt]), prop = p)

The only fudge in constructing this model is that N(t + 1) in this model
is usually not an integer, in which case the binomial doesn’t make sense:
I rounded in this case, although normally I would argue that the sensible
thing would be to incorporate a more realistic process model with (discrete)
process error ∗. Like the linear measurement error model, the distribution
of error stays constant over time — with a few random bumps on the upper
confidence limit caused by sampling error (Figure 11.1b).

The process error model for the discrete population case is simpler:
N(1) = N0

N(t + 1) ∼ Poisson(aN(t)/(b + N(t)))
Nobs(t) = N(t).

(11.4)

The R code:

> N = numeric(nt)

> Nobs = numeric(nt)

> N[1] = N0

> for (t in 1:(nt - 1)) {

+ N[t + 1] = rpois(1, lambda = a * N[t]/(b + N[t]))

+ Nobs[t] = N[t]

+ }

> Nobs[nt] = N[nt]

In this case, the expected dynamics are still the same but the distribution
spreads out over time; in fact, many populations go extinct after just a
few time steps. Since this model incorporates strong density-dependence
and leads to a stable equilibrium, however, the distribution of process error
remains quite stable once the distribution of realizations has spread out from
its fixed starting point.

∗But see Henson et al. (2001) for the possible dynamic consequences of this kind of
rounding in real ecological systems, which they call “lattice effects”.
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11.3.1.1 Continuous-time models

Many dynamic models in ecology are defined in continuous rather than dis-
crete time. Typically these models are framed as ordinary differential equa-
tion (ODE) models; instead of a rule like N(t+1) = f(N(t)), their equations
are dN/dt = f(N(t)), giving the instantaneous rate of change (growth rate)
of the population. Probably the most well-known example is the logistic
equation, dN/dt = rN(1 −N/K). Researchers use continuous-time models
for a variety of reasons including realism (for populations with overlapping
generations that can reproduce in any season); mathematical convenience
(the dynamics of continuous-time models are often more stable than those
of their discrete analogues); and consistency with theoretical models. As
mentioned in Chapter 3, most dynamic models have no closed-form solu-
tion (we can’t write down a simple equation for N(t)), so we often end up
simulating them.

The simplest algorithm for simulating continuous-time models is Euler’s
method, which approximates the continuous passage of time by small time
steps. Specifically, if we know the instantaneous rate of growth dN/dt =
f(N(t)), we can approximate the change in the population over a short time
interval by saying that the population grows linearly at rate dN/dt, and thus
that ∆N ≈ dN/dt ·∆t:

N(t + ∆t) = N(t) + ∆N

≈ N(t) +
dN

dt
∆t

= N(t) + f(N(t))∆t.

(11.5)

All we have to do to find the population size at some arbitrary time is to
make ∆t “small enough” and work our way through from the starting point,
adding ∆N at each time step.

Euler’s method is fine for small problems, but it tends to be both slow
and unstable relative to more sophisticated approaches. If you are going
to do serious work with continuous-time problems you will need to solve
them for thousands of different parameter values (which may in turn require
experimenting with different values of ∆t) and it will be more efficient to
use the built-in tools in R’s odesolve library.

The really ugly problem with ODE models is that incorporating stochas-
ticity in any way that is more complex than simply imposing normally dis-
tributed measurement is difficult because of the tricky mathematical frame-
work that underlies stochastic differential equations (Roughgarden, 1997).
For this reason, studies of dynamic epidemiological models (for example) that
attempt to estimate parameters from data have tended either to use simple
least-squares criteria that correspond to normal measurement error (Gani
and Leach, 2001) or have reverted to using discrete-time models (Finken-
städt and Grenfell, 2000).

It is possible to build dynamical models that are stochastic, discrete-valued
(and hence more sensible for populations) and run in continuous time, pick-
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ing random numbers for the waiting times until the next event (birth, death,
immigration, infection, etc.). The basic algorithm for simulating these mod-
els is called the Gillespie algorithm, but it, and the advanced methods re-
quired to estimate parameters based on such models, are slightly beyond the
scope of this chapter (Gibson and Renshaw, 1998, 2001).

11.4 OBSERVATION AND PROCESS ERROR

In general, we would describe dynamic data by setting up

� a deterministic function for the expected population dynamics — the
relationship between the current density N(t) and the expected density
at time t + 1, N̄(t + 1)), N̄(t + 1) = f(N(t)) (e.g., the discrete logistic
equation, N̄(t + 1) = N(t) + rN(t)(1 − N(t)/K), with parameters r
and K);

� a model of process error (e.g. N(t) is really negative binomially dis-
tributed with overdispersion parameter k: N(t) ∼ NegBin(µ = N̄(t), k));

� and a model of measurement error (e.g. a binomial sample with capture
probability p from N(t) : Nobs(t) ∼ Binom(p, N(t))).

To understand some of the basic issues of dynamic data, let’s look at the
simplest deterministic model for population growth, a constant increase in
the population density per time step, f(N(t)) = N(t) + b, with normally
distributed process and measurement error. Formally:

N(t + 1)∼Norm(N(t) + b, σ2
proc) (11.6)

Nobs(t)∼Norm(N(t), σ2
obs) (11.7)

where σ2
proc and σ2

obs are the process and observation variances.
Suppose we recorded the data in Figure 11.2, and wanted to try to under-

stand what was going on in the population. Depending on the combination
of measurement and process error that we assumed, we could draw very
different conclusions about these data.

If we assumed there was only measurement error, with no process error,
then the simplest approach would be to solve the deterministic equation
(N̄(t + 1) = N̄(t) + b) as a function of time to get N̄(t) = N̄(0) + bt and
estimate b as the slope of an ordinary linear regression (lm(N~time)). We
would interpret the population dynamics as a linear trend with time.

What if we instead wanted to use the plot of N(t + 1) against N(t) (Fig-
ure 11.2b) to fit f(N) (f(N) = N + b) directly? We would have to recognize
that both Nobs(t) and Nobs(t+1) contain measurement error, which doesn’t
fit the assumptions of ordinary linear regression. Instead we would minimize
the diagonal deviations of points from a line y = a + bx, a procedure some-
times called model II regression ∗. Our model of the points {N(t), N(t+1)}

∗Model II regression is a big topic (Warton et al., 2006); in special cases like this one
(dynamic data with only measurement error) where we can assume that the variances in
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Figure 11.2 Time-series data: process or observation error?

would be that they were bivariate normal, with the mean of N(t + 1) equal
to N(t) + b; the ellipse in (Figure 11.2b) represents the confidence limits for
the points in this model.

On the other hand, if we assumed process error only (with no measurement
error), then we should fit an ordinary linear regression to the plot of N(t) vs.
N(t + 1), because we assume that we know the x variable (N(t)) perfectly
and the only uncertainty comes in the population growth from t to t + 1.
If we allow the full linear model N(t + 1) = aN(t) + b, then we are fitting
an autoregressive model : while the overall trend would be the same as the
ordinary linear model (provided a < 1), the variance structure is different∗.
Figure 11.2b also shows that this assumption gives different answers from the
model II regression, with a larger intercept (which corresponds to a larger
population growth rate—remember this is the graph of N(t) vs. N(t + 1),
not the graph of N(t) vs. t) and a flatter slope.

What if we don’t want to assume either pure process error or pure mea-
surement error? We can make any intermediate assumption we want, and get
answers ranging between the two slopes shown in the figure (which might
lead to a range of different biological conclusions!), but unfortunately the
data don’t easily show us which assumption to make. The noisier our data
are, the more the results of the linear-trend and autoregressive models will
diverge. In the extreme where we have almost no information, the linear-
trend model will say that N(t) = N(t + 1) (a 45°regression line), while the
autoregressive model will say that N(t + 1) is independent of N(t) (a flat
line); since we have no information, our conclusions are entirely driven by
the structure of our assumptions. This example is the first indication that

x and y are the same, we can use reduced major axis regression, which gives the slope as
σy/σx, or equivalently as

p
byx/bxy , where byx is the slope of the ordinary regression of

y on x and bxy is the slope of the ordinary regression of x on y.
∗we can fit the restricted model f(N) = b+N , assuming the slope of N(t+1) vs N(t)

is exactly 1, with lm(y~offset(x))
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Figure 11.3 Logistic fit: shooting/trajectory matching (measurement error only).
True parameters r = 1, K = 10, N(0) = 1, σ2

obs = σ2
proc = 1.

Estimated parameters r = 0.48, K = 12.14, N(0) = 2.53, σ2

obs = 1.41.
a: time dynamics, showing vertical residuals of observations from the
fitted line. b: next vs. current observation, showing diagonal residuals
from the fitted line.

in analyzing dynamic models we may sometimes be attempting to separate
processes (process and measurement variability) for which we have very lit-
tle distinguishing information: we will come back to this sobering theme at
various points during the chapter.

11.5 PROCESS AND OBSERVATION ERROR

Now we will see how these extreme assumptions (only process error or only
observation error) play out if we want to fit a model with more interesting
dynamics than simple linear increase or decrease with time. For problems
with small amounts of error (e.g. small discrete populations or dynamics
observed in the lab, for which measurement error might be negligible: Drury
and Dwyer (2005)) or if you want to keep things simple, use one of these
approaches (you will be in good company; many well-respected analyses of
dynamic data have used these crude but simple methods (Ives et al., 1999;
Gani and Leach, 2001; van Veen et al., 2005)).

11.5.1 Observation error only: shooting or trajectory matching

If we assume observation error only we can start with the initial conditions
of the system (e.g. the starting population sizes: we either assume we know
these or take the starting values as additional parameters of the model) and
“shoot” through the whole period, without correcting the model as we go
along: this procedure is also called trajectory matching. If the deterministic
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dynamics are particularly simple (e.g. linear, exponential, or logistic) we
may be able to derive a formula for N(t) as a function of the starting con-
ditions and calculate the predicted values in a single step (N=a+b*time or
N=a*exp(b*time)), but much more often we will only be able to compute
the expected values using a for loop to go from the value at each time step
to the value at the next time step. (If you have a continuous-time model,
you can use the odesolve package to solve it numerically for each set of
parameter values.) One way or the other, we compute the predicted values
at all observation times, ignoring the variability in the actual data, and then
compare the overall fit of the predicted curve to the data.

Since we assume there is no uncertainty in the predicted values for each
time step given that we know the starting conditions and the parameters,
the only error is between the predicted values and the observed values. We
can then do what we’ve been doing all along, assume each observation is
independent, and add up the log-likelihoods of measurement error for every
data point based on our model of measurement error.

Trajectory matching is very widely used, because it is simple and doesn’t
require any consideration of process variability: if one assumes normally dis-
tributed measurement error with constant variance, it simplifies still further
to least-squares fitting of the deterministic trajectory (e.g. Gani and Leach,
2001; van Veen et al., 2005). Trajectory matching also works with missing
data or unobserved variables (Wood, 2001), although Ellner et al. (2002)
warn that trajectory matching can be seriously misleading in cases where
process variability qualitatively changes the dynamics of the population (e.g.
Ellner et al., 1998).

11.5.2 Process error only: one-step-ahead fitting

Alternatively, we can assume there is no measurement error. Now the only
uncertainty is in the relationship between Nt and Nt+1; if we plot the ex-
pected value of each Nt+1 as a function of the (perfectly known) Nt, we
have errors only in the Y variable (Figure 11.3). Instead of starting with the
initial conditions and“shooting” (forecasting) through the whole observation
time period, which would work if we had no process error, we take the obser-
vation from each time step and predict just the next time step. This way we
don’t have to worry about how process errors compound from step to step.
(This procedure is more difficult with missing time points, because we then
have to somehow figure out the expected relationship, including the process
error, between (e.g.) N(t) and N(t + 2) (Clark and Bjørnstad, 2004).) This
procedure is called one-step-ahead prediction (Figure 11.4); for population
dynamics that are modeled in continuous rather than discrete time, a slightly
more sophisticated analogue is called gradient matching (Ellner et al., 2002).

Shooting and one-step-ahead prediction are approximations, but they are
simple and usually worth trying before you do anything more sophisticated.
If the answers are not (biologically) significantly different, the fancier tech-
niques may not be worth the effort. Furthermore, if you find in the end that
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Figure 11.4 Logistic fit: one-step-ahead (process error only). True parameters
r = 1, K = 10, N(0) = 1, σ2

obs = σ2
proc = 1. Estimated parameters

r = 1.22, K = 9.88, σ2

obs = 2.66. a: Time dynamics and predictions.
b: Current vs. next observations, showing vertical residuals from the
fitted line.

the distinction between process and measurement variability is unidentifi-
able, stating the results of process-only and measurement-only analyses and
saying that the true value is likely to be somewhere between those answers
may be the best you can do.

11.6 SIMEX

In our one-step-ahead example, ignoring measurement error led to a high
estimate of r (1.22 vs. true value 1) and a high estimate of K (9.88 vs.
true value 10). It’s hard to know from a single example, but in general
ignoring measurement error will give upward biased answers for r (because
measurement error suggests that the population is changing faster than it
really is); in this example K is biased downward as well. It’s hard to figure
out in general exactly what direction of biases one would expect — they
depend in some detail on the nonlinearities in the model — but estimates of
nonlinear model parameters that ignore measurement error are very likely to
be biased one way or the other. If you don’t have an independent estimate
of measurement error, it’s hard to know how bad the bias is.

However, if you do have an estimate of the magnitude of the measure-
ment error, you can use the SIMEX (simulation-extrapolation) algorithm
to correct for the bias caused by neglecting measurement error. Originally
suggested in 1994 by Cook and Stefanski, SIMEX works by inflating the
measurement error — adding additional noise to the data set — and re-
estimating the parameters (Cook and Stefanski, 1994; Stefanski and Cook,
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1995; Carroll et al., 1995, 1999). After estimating how increasing levels of
measurement error change the parameter estimates, you can then extrapolate
the parameter values to estimate the parameter values you would get with
zero measurement error. (Yes, this seems like black magic, but it works.)

More specifically, the procedure for SIMEX is as follows:

� based on your estimate of measurement error, pick a range of in-
creased error values: tripling the existing measurement variance in
4–8 steps is a reasonable rule of thumb. (For example, if the esti-
mate of measurement error is σ2

obs, pick measurement variances of
{1.5σ2

obs, 2σ2
obs, 2.5σ2

obs, 3σ2
obs}.

� for each error magnitude in your range, generate a data set with such
increased error. The procedure is more stable if you pick a single
set of normally distributed random values and then multiply them by
increasing factors for each simulation. (If yi are your values and εi is
a set of normal deviates with variance σ2

obs, the first simulated data
set with the inflation factors above would be yi +

√
0.5εi; the variance

of this data set is σ2
obs + 0.5σ2

obs = 1.5σ2
obs. The second data set with

yi + εi would have variance 2σ2
obs.)

� For each simulated data set, estimate and save the values of the pa-
rameters, using one-step-ahead prediction.

� Estimate a relationship between the total variance and the values of the
parameters (a separate regression for each parameter, typically a linear
or quadratic regression: lm1 = lm(param~measerr+I(measerr^2))).

� Find the SIMEX bias-corrected estimates of the parameters by ex-
trapolating the regressions to zero variance (for a linear or quadratic
regression, the first coefficient is the intercept: coef(lm1)[1]).

11.7 STATE SPACE MODELS

The final, most sophisticated and most general but most challenging category
of statistical estimation procedures for dynamic data are so-called state-space
models. State-space models in principle can allow you to estimate parame-
ters of the deterministic process, measurement error, and process error from
a single observed time series — but they are always subject to the con-
straints of identifiability. Trying to fit state-space models to time series that
are too short, vary too little, or otherwise don’t contain enough information
to identify the parameters will lead to numerical problems and wide confi-
dence intervals if you’re lucky (and skilled), and misleading answers if you’re
unlucky; the quotation by Schnute about the problems of identifiability on
p. 385 refers specifically to state-space models. With that warning in mind,
here we go . . .
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In general, we know that measurement error will be the same for each
observation (or at least only depend on the true value, and not depend on
when it is measured), while the process error will tend to increase over time.
The longer we wait between observations, the more random variation will
build up and increase our uncertainty about the state of the system.

The key insight of state-space models is that every observation we make
does several things:

� it provides information about the current state of the system, shrinking
the cloud of uncertainty around the true but unknown state of the
system;

� it provides indirect information about the likelihood of the next state
of the system: a higher-than-expected population count in 2000 pushes
up the expectation for the 2001 count;

� it also provides indirect information about the previous state of the
system: a higher-than-expected population count in 2000 also makes
us think that the true population size in 1999 might have been higher
than we previously thought.

If this discussion sounds Bayesian to you (updating our expectations of the
probability of the state of the system based on prior observations), you’re
right; lots of state-space modeling has a Bayesian flavor, although it can
also be done in a frequentist framework(de Valpine and Hastings, 2002). (At
this cutting-edge level, there’s a lot more interplay between Bayesian and
frequentist approaches that at more basic levels.)

Estimation algorithms for state-space models are essentially systems for
doing the complicated bookkeeping required to keep track of the current
estimates of the true state of the system at a particular time. For each
new choice of parameters, the algorithm works through the data set one
observation at a time, updating estimates of the true value and variance at
that time based on the parameters and the current estimate of the previous
time step (and in some systems, of the next time step as well). Once this
procedure is done for the whole data set, you can use the estimates and
variances to calculate the likelihood for the new set of parameters and decide
how to pick the next one (using a standard algorithm such as Nelder-Mead
or MCMC).

11.7.1 Kalman filter

The Kalman filter is an algorithm for calculating the expected means and
covariances of the observed values for a whole time series in the presence of
observation and process error. In its original form it works only for models
that are linear (exponential increase or decrease or expected constant popu-
lation size over time) with multivariate normal error; the extended Kalman
filter uses an approximation that works for nonlinear population dynamics.
The Kalman filter’s great strengths are its (relative) simplicity and speed,
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and its flexibility; Schnute (1994) gives a very general description of some
of the possibilities (multiple state variables, such as different species or age
classes; multiple time-varying covariates, such as hunting pressure or weather
variables, which may themselves be measured with error; correlations among
the observation errors for different variables and among the process errors
for different variables; time-lagged effects of populations on each other).

As described briefly above, the Kalman filter works by stepping through
the data set one observation at a time, updating what we know about the
mean and variance (Var) of the true state variables at time t. It is an
inductive procedure, giving the rules for figuring out the mean and variance
at time t if we already know the mean and variance at time t − 1. Clearly,
then, if we can figure out starting values for the mean and variance at time
1, we can work through the whole data set this way.

I’ll illustrate this with a very simple example (keeping in mind that we can
add many realistic complications), with a single population growing linearly
at rate a per year, with an autoregressive term b that means that Nt−1 and
Nt have a correlation coefficient of b (over and above the general linear trend
with time). I assume there is both process (σ2

proc) and observation (σ2
obs)

error, both normally distributed.
So our model is:

Nt∼Normal(a + bNt−1, σ
2
proc) (11.8)

Nobs,t∼Normal(Nt, σ
2
obs) (11.9)

If b < 1, then the population is stable, because random deviations in N
shrink by a factor b every year; if b > 1, then the population is unstable and
random deviations grow over time.

Suppose, based on all the observations up through time t − 1 we believe
that the mean of the true population size at time t− 1, Nt−1, is µ0, and its
variance is σ2

0 . We can calculate based only on the population parameters
a and b what we expect the mean and variance should be at the next time
step, The change in the mean is a direct reflection of the population model;
the variance term is a combination of multiplying the previous variance by
b2 since we have multiplied the population size by b, and adding the new
variability introduced by process error between t− 1 and t. So

mean(Nt|Nobs,t−1) = µ1 = a + bµ0 (11.10)

Var(Nt|Nobs,t−1) = σ2
1 = b2σ2

0 + σ2
proc. (11.11)

The more stable the population is, the lower the value of b, the lower the
variance; as b gets very small, no variance carries over from one time step to
the next and the standing variance of the population is just σ2

proc.
The mean of the observation at time t is just the same as the mean of the

true value (we assume error, but no biases, in the observation process); the
variance is equal to the current variance of the true population size plus the
observation variance:

mean(Nobs,t|Nobs,t−1) = µ2 =µ1 (11.12)

Var(Nt|Nobs,t−1) = σ2
2 =σ2

1 + σ2
obs (11.13)



book May 21, 2007

DYNAMIC MODELS 403

The last step of the Kalman filter, taking the information about the cur-
rent observation into account, is the hardest. The current observation, of
course, changes the mean of the true population state; how much it changes
it depends on how far the current observation is from where it was expected
to be based on the previous information (Nobs,t−µ2), as well as the ratio of
the variances of the true value and of the observation. If there is no obser-
vation error, then the variance of the observation is the same as the variance
of the true state of the population, and (as shown by the formula below) we
would just set the mean of the population equal to the current observation;
if there is lots of observation error, then the current observation doesn’t tell
us very much and we wouldn’t let an unexpected observation change our
value of the mean by a lot.

mean(Nt|Nobs,t) = µ3 = µ1 +
σ2

1

σ2
2

(Nobs,t − µ2) (11.14)

Another way of looking at this equation, in line with the Bayesian approach,
is that the current population size is an average between what we think it
should be based on previous time steps (µ1) and what we observed in the
current time step (Nobs,t).

Finally, we need to update the variance based on the current observation.
Here we actually reduce the current variance of the true value, again based on
the ratio of the variance of the true value to the variance of the observation:
if there is no observation error, the variance of the true value goes to zero as
it should:

Var(Nt|Nobs,t) = σ2
3 = σ2

1

(
1− σ2

1

σ2
2

)
(11.15)

Unlike the mean, the variance doesn’t depend on the observed data.
Now that we’ve figured out the mean and variance of N and Nobs based on

all the observations up to time t, we can start again and do this procedure
for the values at time t + 1 . . . once we have worked through the whole data
set, we have values for the mean and the variance of each time step, and
we can calculate the standard normal log-likelihood for the observed values
(of course we don’t know the true values to compare with those means and
variances).

The formulas are considerably more complicated in the completely general
case, but the concepts are exactly the same. The one extension we will make
here is to make the population growth function f(N) nonlinear rather than
linear (called the extended Kalman filter), which actually turns out not to be
too difficult. All we have to do is replace (11.10) and (11.11) with appropriate
generalizations. For example, let’s replace the linear equation in (11.8) with
the discrete logistic equation:

Nt ∼ Normal(Nt−1 + rNt−1

(
1− Nt−1

K

)
, σ2

proc). (11.16)

Then we just substitute this equation for (11.10):

mean(Nt|Nobs,t−1) = µ1 = µ0 + rµ0

(
1− µ0

K

)
(11.17)
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For the variance, we replace b in (11.11) with the approximate growth
rate, which is the derivative of the population growth rate with respect to
the population size:

∂f

∂N
=

∂(N + rN(1−N/K))
∂N

= 1 + r − 2N/K, (11.18)

evaluated at the current mean value of the population size (N = µ1);

Var(Nt|Nobs,t−1) = σ2
1 = (1 + r − 2N/K)2σ2

0 + σ2
proc. (11.19)

If the population is currently growing ( ∂f
∂N > 1), the variance is inflated; if

it is shrinking, the variance is deflated.
So how do we implement this in R?
Here’s a function for working through a data set and calculating the

Kalman filter predictions. Nobs is the data set; r and K are the popula-
tion dynamic parameters (soon we will estimate these by maximum likeli-
hood); procvar and obsvar are the process and observation variances; and
M.n.start and Var.n.start are the starting values of the mean and vari-
ance. This code just sets aside numeric vectors for the results on the mean
and variance of the observed population size at each time step: we don’t have
to save the mean and variance of the true population size since we don’t have
anything to compare it against. It then sets the starting values and works
through the data set one time step at a time, applying the equations above:

> nlkfpred = function(r, K, procvar, obsvar, M.n.start, Var.n.start,

+ Nobs) {

+ nt = length(Nobs)

+ M.nobs = numeric(nt)

+ Var.nobs = numeric(nt)

+ M.n = M.n.start

+ Var.n = Var.n.start

+ M.nobs[1] = M.n.start

+ Var.nobs[1] = Var.n.start + obsvar

+ for (t in 2:nt) {

+ M.ni = M.n + r * M.n * (1 - M.n/K)

+ b = 1 + r - 2 * r * M.n/K

+ Var.ni = b^2 * Var.n + procvar

+ M.nobs[t] = M.ni

+ Var.nobs[t] = Var.ni + obsvar

+ M.n = M.ni + Var.ni/Var.nobs[t] * (Nobs[t] - M.nobs[t])

+ Var.n = Var.ni * (1 - Var.ni/Var.nobs[t])

+ }

+ list(mean = M.nobs, var = Var.nobs)

+ }

Our likelihood function takes a set of parameters (all fitted on the log scale
so we don’t run into trouble with negative values of the parameters), runs
the Kalman filter to predict the values of the means and variances, and then
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plugs these values into a normal likelihood comparison with a set of observed
values (taking the square root of the estimated variance since dnorm uses the
standard deviation, not the variance, as a parameter):

> nlkflik = function(logr, logK, logprocvar, logobsvar, logM.n.start,

+ logVar.n.start, obs.data) {

+ pred = nlkfpred(r = exp(logr), K = exp(logK), procvar = exp(logprocvar),

+ obsvar = exp(logobsvar), M.n.start = exp(logM.n.start),

+ Var.n.start = exp(logVar.n.start), Nobs = y.procobs2)

+ -sum(dnorm(obs.data, mean = pred$mean, sd = sqrt(pred$var),

+ log = TRUE))

+ }

A utility function, using a little bit of black magic to select parameters
starting with log, exponentiate them, and change their names:

> trcoef = function(x) {

+ w = grep("^log", names(x))

+ for (i in w) {

+ x[[i]] = exp(x[[i]])

+ names(x)[i] = gsub("log", "", names(x)[i])

+ }

+ x

+ }

Starting values for the fit (I’m going to cheat here since I know the true
values, but it would be easy enough to do a one-step-ahead or trajectory-
matching fit to the data, or even eye-ball, to get ideas of good starting values
for r, K, and the variances):

> startvec = list(logr = log(0.25), logK = log(10), logprocvar = log(0.5),

+ logobsvar = log(0.5), logM.n.start = log(3), logVar.n.start = -2)

Maximum-likelihood estimation of the parameters:

> m4 = mle2(minuslogl = nlkflik, start = startvec, data = list(obs.data = y.procobs2),

+ method = "Nelder-Mead", control = list(maxit = 2000))

The fitted parameters are reasonable and the confidence intervals bracket
the true values:

true fitted 2.5% 97.5%
r 0.25 0.30 0.18 0.48
K 10.00 10.43 10.01 10.87
σ2
proc 0.50 0.32 0.13 0.74

σ2
obs 0.50 0.54 0.31 0.92

It’s not surprising that the confidence intervals are narrow for K, slightly
wider for r (the population spends more time around its carrying capacity
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Figure 11.6 Results of Kalman filter: (a) observed, predicted, and results of un-
conditional simulations; (b) MLE, true value, and approximate 95%
bivariate confidence interval.

than in the growth phase), or that the confidence intervals for the variances
are larger than the confidence intervals for the deterministic parameters.

The Kalman filter has been in wide use for a long time in fisheries mod-
eling (where the need to squeeze information out of rare data is so strong
that researchers are always looking for the next powerful technique), both
for population data and more recently as a way to estimate the locations
of animals from extremely noisy telemetry data, allowing the position at a
previous time to help constrain the expected location at the current time
(Jonsen et al., 2003). It has more recently begun to make its way into main-
stream terrestrial ecology, as a way of estimating parameters (e.g.) for the
growth of species of conservation concern in the presence of both observa-
tion and measurement error (Lindley, 2003). While it might seem that the
assumption of linear population dynamics in the standard Kalman filter is
constraining, the autoregressive equation Nt = a+ bNt−1 does allow a range
of population dynamics, from fluctuation around a stable equilibrium if a > 0
and b < 1, to exponential dynamics if a = 0 (declining if b < 1, increasing
if b > 1), to a pure random walk if a = 0 and b = 1. Much of conservation
biology is built on linear models, which will often apply when species are
rare and thus intraspecific competition is low (Caswell, 2000). And if you
do need nonlinearity, you can always use the extended Kalman filter.

As mentioned above, there are ways to incorporate many other biological
complexities in the Kalman filter (multiple species, time lags, bias and catch-
ability in observations, time-varying control parameters, covariates measured
with error); see Schnute (1994) for details (don’t be scared by the notation;
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if you follow through it carefully, you can match up the special case here
with all the details in that paper).

11.7.2 Markov Chain Monte Carlo approaches (WinBUGS et al.)

The Kalman filter has some limitations. In particular, it assumes normal
distributions (although you can always work with your data on a log scale
and assume log-normality instead, if you prefer). More subtly, the Kalman
filter is a prospective algorithm (Schnute, 1994); it uses only the information
up to time t to predict the mean and variance of the population size, even
though we discussed above that the observation at time t + 1 also gives us
information about the population size at time t — a retrospective algorithm.

There are a variety of ways to do retrospective bookkeeping: Schnute
discusses a frequentist approach called the errors-in-variables method, and
de Valpine (de Valpine and Hastings, 2002; de Valpine, 2003) has also de-
veloped such a frequentist method. Here, however, I’m going to present
Bayesian methods (e.g. Millar and Meyer, 2000), which are rapidly growing
in popularity because it’s simple to develop and estimate the parameters of
relatively complex population dynamic models in BUGS. The basic idea car-
ries over from the Kalman filter; if you assume you know all the observations
and the true values at every other time step, you can use these to estimate
the population size now. In the Markov Chain Monte Carlo approach, you
alternate between picking new random values for each true population size,
one at a time (at each time step pretending we know the population sizes at
all the other time steps), and picking new random values for the parameters
that are consistent with the current assumed population size. Figure 11.7
shows the dependency graph for the first four steps of a logistic process.
Each observed value depends on the true value at that time step and the ob-
servation error; each true value depends on the parameters, and determines
the observed value and the value at the next time step. In this kind of graph,
though, you can also follow arrows backwards to see that the true value at
time 2, as well as depending in a fairly obvious way on the value at time 1,
will also be influenced by the observed value at time 2 and by the true value
at time 3 — and hence indirectly by the observation at time 3, just as we
suggested above.

In order to run a model in BUGS you need to decide on a model (here we’ll
again use the discrete logistic equation with normally distributed observation
and process error for comparison, although we could be much more flexible)
and to set priors for the parameters. The model is exactly the same as stated
above in (11.10) and (11.11); translated into BUGS syntax, it looks like this:

model {
t[1] <- n0
o[1] ~ dnorm(t[1],tau.obs)
for (i in 2:N) {

v[i] <- t[i-1]+r*t[i-1]*(1-t[i-1]/K)
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Figure 11.7 Dependency structure (DAG) for the logistic model

t[i] ~ dnorm(v[i],tau.proc)
o[i] ~ dnorm(t[i],tau.obs)

}
## priors
r ~ dunif(0.1,maxr)
K ~ dgamma(0.005,0.005)
tau.obs ~ dgamma(0.005,0.005)
tau.proc ~ dgamma(0.005,0.005)
n0 ~ dgamma(1,n0scale)

}

And a bit of R code:

> library(R2WinBUGS)

> maxr <- 2

> n0rate <- 1/y.procobs2[1]

We define starting the conditions (first two lines), and then step through
the data set, telling BUGS the distribution of the true values (t[i]) and of
the observed values (o[i]). I decided on fairly standard priors

� r is uniformly distributed between 0.1 and a maximum value (which
I made a parameter so I could vary it within R without changing my
BUGS input file);

� the carrying capacity K and the precisions (inverse variances) τobs and
τproc equal to gamma distributions with rate and shape parameters of
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0.005, giving them a mean of 1 and a large variance (0.005/0.0052 =
200); note that BUGS uses a shape+rate parameterization rather than
the shape+scale parameterization we are used to;

� n0, the initial density, has a prior distribution that is gamma with
shape parameter 1 and a rate parameter equal to the reciprocal of the
first observed value, which gives it an exponential distribution with its
mean equal to the first observed value (this is still fairly uncertain, but
less uncertain than the carrying capacity or precisions

Set up the model, using the same data series y.procobs2 as before: start
5 different chains, changing the values of r or the precisions (τobs, τproc):
we should probably vary the starting values of the precisions a bit more
systematically, although BUGS has a tendency to crash if the starting values
are too extreme.

> o <- y.procobs2

> N <- length(y.procobs2)

> statespace.data <- list("N", "o", "maxr", "n0rate")

> inits <- list(list(n0 = y.procobs2[1], r = 0.2, K = 10, tau.obs = 1,

+ tau.proc = 1), list(n0 = y.procobs2[1], r = 0.4, K = 10,

+ tau.obs = 1, tau.proc = 1), list(n0 = y.procobs2[1], r = 0.1,

+ K = 10, tau.obs = 1, tau.proc = 1), list(n0 = y.procobs2[1],

+ r = 0.1, K = 10, tau.obs = 3, tau.proc = 1), list(n0 = y.procobs2[1],

+ r = 0.1, K = 10, tau.obs = 1, tau.proc = 3))

Defining the parameters we want to keep track of (if we wanted, we could
also track the estimated true values at each time step):

> parameters <- c("r", "K", "tau.obs", "tau.proc", "n0")

Running WinBUGS from within R, and converting the output to a CODA
object (at the moment, the format returned by R2WinBUGS and the CODA
format have slightly different formats and capabilities:

> statespace.sim <- bugs(data = statespace.data, inits, param = parameters,

+ model = "statespace.bug", n.chains = length(inits), n.iter = 15000)

> s1 = as.mcmc.bugs(statespace.sim)

R2WinBUGS’s defaults for running an MCMC analysis are to take the
total number of iterations (the default is 2,000); set aside half of them as
“burn-in”; divide the other half equally among all the chains specified by
the user (the default is 3); and “thin” the results until there are a total of
1,000 iterations saved across all chains. In this case I ended up doing 15,000
iterations with 5 chains, so each chain was run for 3000 steps; the first 1500
were discarded; and then 13% of the remaining iterates were kept for a total
of 1000.

> gelman.diag(s1)
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Potential scale reduction factors:

Point est. 97.5% quantile
r 1.003 1.01
K 1.001 1.01
tau.obs 1.023 1.05
tau.proc 1.014 1.03
n0 0.999 1.00
deviance 1.015 1.04

Multivariate psrf

1.02+0i

The Gelman-Rubin diagnostic suggests that the chains did in fact run long
enough to mix with each other (the rule of thumb is that a G-R statistic
< 1.2 for all variables is sufficient; the maximum upper confidence limit of
the chains was 1.12).

The summary of a CODA object provides (among other things) the quan-
tiles of the chains; these results are practically identical to those from the
Kalman filter. I have inverted the precisions (τproc = 1/σ2

proc, τobs = 1/σ2
obs

to make it easier to compare directly with the KF results; the median is not
identical to the mode (close to the maximum likelihood estimate if the priors
are weak), but it’s close.

Figure 11.8 shows the results of the R2WinBUGS run for σ2
obs and σ2

proc;
the values from the Kalman filter (Figure 11.6) are shown in gray. The 95%
credible interval matches the approximate 95% confidence interval reason-
ably well, especially considering that the 95% interval is an approximation
based on the local curvature. The mode of the posterior density, as expected,
is very close to the MLE — with a weak prior probability distribution, the
likelihood surface and the posterior probability distribution are close to the
same shape. The mean is slightly larger than the mode — there is some
skew towards large values of the process variance — while the median, not
shown, falls between the mean and the mode. All four summary values (pos-
terior mean, mode, and median, and the MLE) and the true value all fall
within the 50% credible interval; as is the case much of the time, all of these
estimates give us approximately the same answer.

Finally, Figure 11.9 shows density plots for the R2WinBUGS analysis. The
densities are all reasonably symmetric and bracket the known true values (the
density of tau.obs extends to very high values; this is the result of a single
freakish excursion in chain 2 to a very high value of observation precision).
Each chain’s density is drawn with a different line types; they all fall on top
of each other, reassuring us that the chains have converged and are all telling
the same story.
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Figure 11.8 Results of R2WinBUGS for logistic equation with process and obser-
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tion 11.7.1). Solid line is 95% credible interval based on BUGS chain;
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mode of the posterior density.



book May 21, 2007

412 CHAPTER 11

D
en

si
ty

0
1

2
3

4
5

6

0.2 0.4 0.6

r

0.
0

1.
0

9.5 10.0 10.5 11.0 11.5 12.0

K

0.
0

0.
4

0.
8

0 10 20 30

tau.obs

0.
0

0.
2

0.
4

0 5 10 15

tau.proc

0.
0

0.
4

0.
8

0 1 2 3 4

n0
0.

00
0

0.
01

5

−100 0 100 200 300

deviance

Figure 11.9 Density plots of R2WinBUGS results for the logistic equation. Differ-
ent line types show results from different chains.



book May 21, 2007

DYNAMIC MODELS 413

11.8 CONCLUSIONS

This chapter has gotten us into some fairly advanced territory. We’ve seen
a variety of methods, ranging from crude (assume either process error or
observation error, but not both) to sophisticated (state-space models) for
estimating the parameters of dynamic models. Some things we haven’t talked
about much:

� setting up dynamic models in the first place: in the book we’ve talked
about only a few simple dynamic models — the logistic and the theta-
logistic. It’s fairly straightforward to incorporate the effects of covari-
ates on the growth rate: you can use control variables in the Kalman
filter, or use MCMC methods: for example, to incorporate a linear
effect of rainfall on the growth rate, you could just change the appro-
priate line of the BUGS model file to

v[i] <- t[i-1]+(r0+r1*rain[i-1])*t[i-1]*(1-t[i-1]/K)

and change the parameters and data values accordingly in the R code.

The vast majority of papers in theoretical ecology focus on determinis-
tic models of dynamic populations: if you need to go beyond the simple
population models discussed here, see Hastings (1997) for a basic in-
troduction, Nisbet and Gurney (Nisbet and Gurney, 1982; Gurney and
Nisbet, 1998) or Renshaw (1991) for more detail, or books such as
Turchin (2003) or Murdoch et al. (2003) for case studies of particular
questions.

� Particle filtering : a promising alternative to the MCMC approach
presented here is particle filtering or sequential importance sampling
(Doucet et al., 2001; Buckland et al., 2004; Thomas et al., 2005; Harri-
son et al., 2006). This approach starts with a large number of random
samples (“particles”: e.g. 250,000 in (Thomas et al., 2005)) from the
prior distribution, including the prior distribution of the initial values
of the state variables. Each sample is projected forward (simulated)
one step, and a likelihood based on the first observation is calculated
for each sample. The same number of particles are then resampled,
but with weights proportional to their likelihoods. After simulating one
more step, the likelihoods based on the next observation are calculated
and the particles are resampled again (thus taking the observations at
both t and t + 1 into account). This process is iterated for the whole
time series of observations, with various algorithms used to prevent all
of the resamples coming from a very small number of particles.

� Unobserved variables: frequently you can only observe one facet of a
complicated ecological interaction — for example, just hare popula-
tions in a complex Canadian ecosystem that consists of lynx, hare,
vegetation, and birds of prey. While trying to reconstruct an entire
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ecosystem from observations of a single species is hopeless, there is
nothing in principle that prevents you from including more unobserved
variables (remember, the “true” population sizes are unobserved too),
but be careful about incorporating more complexity in your model
than the data can support: try it out with some simulation data. A
particular case where such reconstruction works is in simple epidemic
models, where each infection removes one individual from the suscepti-
ble population and each birth adds one; a formal process of susceptible
reconstruction can provide a time-series of susceptibles to go along with
the time-series of infected individuals, which then allow estimation of
a transmission parameter (Finkenstädt and Grenfell, 2000).

� Continuous-time models: The most estimation effort has gone into
discrete-time models, which is a shame since most theoretical models
of ecological systems are defined in continuous time. Things are not
too hard if you assume only measurement error (Gani and Leach, 2001;
van Veen et al., 2005) or know the amount of measurement error and
use SIMEX to correct bias (Ellner et al., 2002; Melbourne and Chesson,
2006), but the Kalman filter and MCMC approaches have been used
almost exclusively in discrete time (although see Fujiwara et al. (2005)
for a recent counterexample). Gibson has developed such methods
(Gibson and Renshaw, 1998, 2001; Gibson, 1997; Streftaris and Gibson,
2004), but they have yet to be widely used.

Estimating parameters of dynamic ecological models is still clearly an ex-
ercise on the cutting edge of science. Most of the papers that have appeared
to date are technical and methods-oriented rather than applications to par-
ticular ecological questions. As time goes on the tools will improve and
more examples will appear, giving potential users a better idea how much
data (at least within an order of magnitude) is needed to apply these meth-
ods successfully. In the meantime, always check your answers against the
results of simulations and against one-step-ahead (process error only) and
trajectory-matching (observation error only) fits.
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Chapter Twelve

Afterword

So you read the whole thing . . . it was surely challenging and frustrating at
times, but I hope the way was lightened by moments of clarity. Welcome
to the cutting edge — you now have all the basic tools you need to pose,
and answer, ecological questions in a quantitative way. There is more to
learn, of course, but at this point you should be capable of picking your
way through the primary literature to find new tools. New statistical ideas
and new applications of statistics are appearing monthly in journals like
Ecology and Ecological Applications, where they are generally phrased in
“ecologist-friendly” terms, but you may also find yourself making your way
to the pages of journals such as Biometrika and Journal of the American
Statistical Association in search of new ideas. More importantly, however,
you are now empowered to make stuff up — within the limits of common
sense and the statistical tools you have learned, you can design and build
your own models. Check them with simulations and run them by statistically
savvy colleagues to make sure they’re OK, but the odds are that you will be
pleasantly surprised (I know I was the first time I brought a new statistical
model to a statistician) when they say “gee, nobody’s done that before, but
it seems to make sense”.

. . .many places you would like to see are just off the map and
many things you want to know are just out of sight or a little
beyond your reach. But someday you’ll reach them all, for what
you learn today, for no reason at all, will help you discover all
the wonderful secrets of tomorrow (Norton Juster, The Phantom
Tollbooth)
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Appendix A

Algebra and calculus basics

A.1 EXPONENTIALS AND LOGARITHMS

Exponentials are written as ex or exp(x), where e = 2.718 . . .. By definition
exp(−∞) = 0, exp(0) = 1, exp(1) = e, and exp(∞) = ∞. In R, ex is
exp(x); if you want the value of e use exp(1). Logarithms are the solutions
to exponential or power equations like y = ex or y = 10x. Natural logs, ln
or loge, are logarithms base e; common logs, log10, are typically logarithms
base 10. When you see just“log” it’s usually in a context where the difference
doesn’t matter (although in R log10 is log10 and loge is log).

1. log(1) = 0. If x > 1 then log(x) > 0, and vice versa. log(0) = −∞
(more or less); logarithms are undefined for x < 0.

2. Logarithms convert products to sums: log(ab) = log(a) + log(b).

3. Logarithms convert powers to multiplication: log(an) = n log(a).

4. You can’t do anything with log(a + b).

5. Converting bases: logx(a) = logy(a)/ logy(x). In particular, log10(a) =
loge(a)/ loge(10) ≈ loge(a)/2.3 and loge(a) = log10(a)/ log10(e) ≈
log10(a)/0.434. This means that converting between log bases just
means multiplying or dividing by a constant. Here’s the proof:

y = log10(x)
10y =x

loge(10y) = loge(x)
y loge(10)= loge(x)

y = loge(x)/ loge(10)

(compare the first and last lines).

6. The derivative of the logarithm, d(log x)/dx, equals 1/x. This is always
positive for x > 0 (which are the only values for which the logarithm
is defined anyway).

7. The fact that d(log x)/dx > 0 means the function is monotonic (al-
ways either increasing or decreasing), which means that if x > y then
log(x) > log(y) and if x < y then log(x) < log(y). This in turn means
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that if you find the maximum likelihood parameter, you’ve also found
the maximum log-likelihood parameter (and the minimum negative
log-likelihood parameter).

A.2 DIFFERENTIAL CALCULUS

1. Notation: differentation of a function f(x) with respect to x can be
written, depending on the context, as df

dx ; f ′; ḟ ; or fx.

2. Definition of the derivative:
df

dx
= lim

∆x→0

f(x + ∆x)− f(x)
(x + ∆x)− x

= lim
∆x→0

f(x + ∆x)− f(x)
∆x

. (A.1)

In words, the derivative is the slope of the line tangent to a curve at
a point, or the instantaneous slope of a curve. The second derivative,
d2f/dx2, is the rate of change of the slope, or the curvature.

3. The derivative of a constant (which is a flat line if you think about it
as a curve) is zero (slope=0).

4. The derivative of a linear equation, y = ax, is the slope of the line, a.
(The derivative of y = ax + b is also a.)

5. Derivatives of polynomials: d(xn)
dx = nxn−1.

6. Derivatives of sums: d(f+g)
dx = df

dx+ dg
dx (and d(

∑
i yi)/dx =

∑
i(dyi/dx)).

7. Derivatives of constant multiples: d(cf)
dx = c df

dx , if c is a constant (i.e.
if dc

dx = 0).

8. Derivative of the exponential: d(exp(ax))
dx = a exp(ax), if a is a constant.

(If not, use the chain rule.)

9. Derivative of logarithms: d(log(x))
dx = 1

x .

10. Chain rule: d(f(g(x)))
dx = df

dg ·
dg
dx (thinking about this as “multiplying

fractions” is a good mnemonic but don’t take it too literally!) Example:

d(exp(x2))
dx

=
d(exp(x2))

d(x2)
· dx2

dx
= exp(x2) · 2x. (A.2)

Another example: people sometimes express the proportional change
in x, (dx/dt)/x, as d(log(x))/dt. Can you see why?

11. Critical points (maxima, minima, and saddle points) of a curve f have
df/dx = 0. The sign of the second derivative determines the type of
a critical point (positive = minimum, negative = maximum, zero =
saddle).
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A.3 PARTIAL DIFFERENTIATION

1. Partial differentiation acts just like regular differentiation except that
you hold all but one variable constant, and you use a curly d (∂) instead
of a regular d. So, for example, ∂(xy)/∂(x) = y. Geometrically, this
is taking the slope of a surface in one particular direction. (Second
partial derivatives are curvatures in a particular direction.)

2. You can do partial differentiation multiple times with respect to dif-
ferent variables: order doesn’t matter, so ∂2f

∂x∂y = ∂2f
∂y∂x .

A.4 INTEGRAL CALCULUS

For the material in this book, I’m not asking you to remember very much
about integration, but it would be useful to remember that

1. the (definite) integral of f(x) from a to b,
∫ b

a
f(x) dx, represents the

area under the curve between a and b; the integral is a limit of the sum∑b
xi=a f(xi)∆x as ∆x → 0.

2. You can take a constant out of an integral (or put one in):
∫

af(x) dx =
a
∫

f(x) dx.

3. Integrals are additive:
∫

(f(x) + g(x)) dx =
∫

f(x) dx +
∫

g(x) dx.

A.5 FACTORIALS AND THE GAMMA FUNCTION

A factorial, written with an exclamation point !, means k! = k×k−1× . . . 1.
For example, 2! = 2, 3! = 6, and 6! = 720. In R a factorial is factorial —
you can’t use the shorthand ! notation, especially since != means “not equal
to” in R. Factorials come up in probability calculations all the time, e.g. as
the number of permutations with k elements. The gamma function, usually
written as Γ (gamma in R) is a generalization of factorials. For integers,
Γ(x) = (x − 1)!. Factorials are only defined for integers, but for positive,
non-integer x (e.g. 2.7), Γ(x) is still defined and it is still true that Γ(x+1) =
x · Γ(x).

Factorials and gamma functions get very large, and you often have to
compute ratios of factorials or gamma functions (e.g. the binomial coef-
ficient, N !/(k!(N − k)!). Numerically, it is more efficient and accurate to
compute the logarithms of the factorials first, add and subtract them, and
then exponentiate the result: exp(log N !− log k!− log(N − k)!). R provides
the log-factorial (lfactorial) and log-gamma (lgamma) functions for this
purpose. (Actually, R also provides choose and lchoose for the binomial
coefficient and the log-binomial coefficient, but the log-gamma is more gen-
erally useful.)
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About the only reason that the gamma function (as opposed to factorials)
ever comes up in ecology is that it is the normalizing constant (see ch. 4)
for the gamma distribution, which is usually denoted as Gamma (not Γ):
Gamma(x, a, s) = 1

saΓ(a)x
a−1e−x/s.

A.6 PROBABILITY

1. Probability distributions always add or integrate to 1 over all possible
values.

2. Probabilities of independent events are multiplied: p(A and B) = p(A)p(B).

3. The binomial coefficient,(
N

k

)
=

N !
k!(N − k)!

, (A.3)

is the number of different ways of choosing k objects out of a set of N ,
without regard to order. ! denotes a factorial: n! = n×n−1×...×2×1.
(Proof: think about picking k objects out of N , without replacement
but keeping track of order. The number of different ways to pick the
first object is N . The number of different ways to pick the second
object is N − 1, the third N − 2, and so forth, so the total number of
choices is N×N−1×...N−k+1 = N !/(N−k)!. The number of possible
orders for this set (permutations) is k! by the same argument (k choices
for the first element, k−1 for the next . . . ). Since we don’t care about
the order, we divide the number of ordered ways (N !/(N − k)!) by the
number of possible orders (k!) to get the binomial coefficient.)

A.7 THE DELTA METHOD: FORMULA AND DERIVATION

The formula for the delta method of approximating variances is:

Var(f(x, y)) ≈
(

∂f

∂x

)2

Var(x) +
(

∂f

∂y

)2

Var(y) + 2
(

∂f

∂x

∂f

∂y

)
Cov(x, y)

(A.4)
Lyons (1991) gives a very readable alternative description of the delta

method; Oehlert (1992) gives a short technical description of the formal
assumptions necessary for the delta method to apply.

This formula is exact in a bunch of simple cases:

� Multiplying by a constant: Var(ax) = a2Var(x)

� Sum or difference of independent variables: Var(x ± y) = Var(x) +
Var(y)
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� Product or ratio of independent variables: Var(x · y) = y2Var(x) +
x2Var(y) = x2y2

(
Var(x)

x2 + Var(y)
y2

)
: this also implies that (CV(x ·

y))2 = (CV(x))2 + (CV(y))2

� The formula is exact for linear functions of normal or multivariate
normal variables.

You can also extend the formula to more than two variables if you like.
Derivation: use the (multivariable) Taylor expansion of f(x, y) including

linear terms only :

f(x, y) ≈ f(x̄, ȳ) +
∂f

∂x
(x− x̄) +

∂f

∂y
(y − ȳ)

where the derivatives are evaluated at (x̄, ȳ).
Substitute this in to the formula for the variance of f(x, y):

Var(f(x, y))=
∫

P (x, y)(f(x, y)− f(x̄, ȳ))2 dx dy (A.5)

=
∫

P (x, y)
(

f(x̄, ȳ) +
∂f

∂x
(x− x̄) +

∂f

∂y
(y − ȳ)− f(x̄, ȳ)

)2

dx dy (A.6)

=
∫

P (x, y)
(

∂f

∂x
(x− x̄) +

∂f

∂y
(y − ȳ)

)2

dx dy (A.7)

=
∫

P (x, y)

((
∂f

∂x

)2

(x− x̄)2 +
(

∂f

∂y

)2

(y − ȳ)2 + 2
∂f

∂x

∂f

∂y
(x− x̄)(y − ȳ)

)
dx dy

(A.8)

=
∫

P (x, y)
(

∂f

∂x

)2

(x− x̄)2 dx dy

+
∫

P (x, y)
(

∂f

∂y

)2

(y − ȳ)2 dx dy

+
∫

P (x, y) 2
∂f

∂x

∂f

∂y
(x− x̄)(y − ȳ) dx dy (A.9)

=
(

∂f

∂x

)2 ∫
P (x, y)(x− x̄)2 dx dy

+
(

∂f

∂y

)2 ∫
P (x, y)(y − ȳ)2 dx dy

+ 2
∂f

∂x

∂f

∂y

∫
P (x, y)(x− x̄)(y − ȳ) dx dy (A.10)

=
(

∂f

∂x

)2

Var(x) +
(

∂f

∂y

)2

Var(y) + 2
∂f

∂x

∂f

∂y
Cov(x, y) (A.11)

A.8 LINEAR ALGEBRA BASICS
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