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Chapter 1

Introduction

1.1 What is R?

In the late 1970s to early 1980s, John Chambers from the then Bell Labora-
tory, with the assistance of Rick Becker, Allan Wilks and Duncan Temple Lang,
developed a language called S. The development of the language was with col-
laboration of many distinguished researchers from AT&T and a wide groups of
academics. In 1980, the first version of S was released to the outside world. It is
a “language and computational environment designed specifically for carrying
out statistical computations”.

S version 2 was released in 1987 with the added facility for user-defined ex-
tensions. This means that end-users can develop their own extensions to the
language. Then in 1990 S version 3 was released with some basic feature of
object-orientation which was considered essential for providing good modelling
facilities.

Now, S is in its version 4 (released in 2000). It now has sophisticated object-
oriented features and a number of improvements in its development process.

There are many dialects of the S language. The two main and most well known
are R and Insightful’s Splus. Splus is a commercial implementation of S, whereas
R is an open-sourced language like the original S. R was originally developed by
two eminent statisticians, Dr. Ross Ihaka and Dr. Robert Gentleman, from the
Department of Statistics at the University of Auckland in the early 1990s (Ihaka
and Gentleman, 1996). Throughout the last decade, R has matured and grew
into a wide range of disciplines, not only restricted in academia but also in the
commercial world and research institutions. Since 1997, there has been a group
of people called The R Core Team, who has write access to the master R
source codes (which is currently stored at a server in a nice little room at the
University of Wisconsin), There are currently 17 members in the team, from all
over the world.

1



1.2. ONLINE RESOURCES 2

1.2 Online Resources

CRAN http://cran.r-project.org

R Homepage www.r-project.org

1.3 The R Foundation

http://cran.r-project.org
www.r-project.org


Chapter 2

Syntax and Data Structure

2.1 Syntax

To be able to do anything in R, one must first understand the basic syntax R
uses. Each line begins with either > or +. The former is a prompt sign, while
the later is a continuation sign. The prompt sign means that you need to tell
R to do something, while the continuation sign means your previous command
has not been finished. For example:

Beginning of code

> 3 + 5

End of code

after the prompt sign, you asked R to calculate 3 + 5.
Sometimes, as we will see later on, it is very useful to break a command into
two or more lines. A trivial example is shown below:

Beginning of code

> 3 +

+ 5

End of code

as you can see, if I pressed Enter after 3 +, the second line begins with a + sign,
showing that you have not finished the first line.
Basic arithematic operators in R are the same as in most other statistical pack-
ages. That is:

+ addition
- subtraction
* multiplication
/ division
^ power operation

For example:

Beginning of code

> 3 + 5

[1] 8

> 3 - 5

[1] -2

3
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> 3 * 5

[1] 15

> 3 / 5

[1] 0.6

> 3 ^ 5

[1] 243

End of code

Arithematic operations on matrices is slightly different, as you have to do it
element-wise. We will look at it later.

All the functions in R are extremely well documented. To read the documenta-
tion, you can use either ? or help(). For example, suppose you want to learn
how to use the plot() function, then either of the following lines will do:

Beginning of code

> ?plot

> help(plot)

End of code

It is strongly recommended that you make use of the documentations. You will
find that almost all of your questions can be answered there.

2.2 Vectors

The most basic type in R is the atomic vector. A vector contains indexed set of
values of the same type:

• logical

• numeric – can be broken down into integer, single and double types. It is
not important in R but is very important if you want to write code in C
or Fortran, and call them from within R.

• complex

• character

There are several ways to create a vector in R. If you want to create vectors that
have patterns, then you can use either seq() or : if it is a simple sequence; or
rep() if a more complicated sequence. If there are no patterns, then the c()
function can be used. For example:

Beginning of code

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

> seq(1, 10, by = 0.5)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

[12] 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

> seq(1, 10, length = 21)

[1] 1.00 1.45 1.90 2.35 2.80 3.25 3.70 4.15 4.60
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[10] 5.05 5.50 5.95 6.40 6.85 7.30 7.75 8.20 8.65

[19] 9.10 9.55 10.00

> rep(2:5, 2)

[1] 2 3 4 5 2 3 4 5

> rep(2:5, rep(2, 4))

[1] 2 2 3 3 4 4 5 5

> x = c(42, 7, 64, 9)

> length(x)

[1] 4

End of code



Chapter 3

Basic Statistics and
Exploratory Data Analyses

3.1 Input Data

3.2 Summary Statistics

3.3 Basic Analyses and Plots

3.4 Analysis of Variance (ANOVA)

3.5 Dynamic Exploratory Data Analyses

Wang (2003b)
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Chapter 4

Linear Regression

4.1 Simple Linear Regression

4.2 Multiple Linear Regression

4.3 Logistic Regression

4.4 Multivariate Linear Regression
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Chapter 5

R Graphics
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Chapter 6

Smoothing and Kernel
Density Estimation

6.1 Local Polynomial Regression Fitting

6.2 Splines

6.3 Other Smoothing Methods

6.4 Kernel Density Estimation
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Chapter 7

Multivariate Analyses and
Data Mining

7.1 Dimensional Reduction Techniques

7.1.1 Principle Componenet Analysis (PCA)

7.1.2 Biplots

7.1.3 Factor Analysis

7.2 Multivariate Analysis of Variance (MANOVA)

7.3 Cluster Analysis

7.4 Tree-Based Models

Tree-based models have been in existence since the early 1960s. At first they
were used extensively by the decision makers in medical fields, botanists for clas-
sification purposes and by computer scientists for machine learning. The main
advantage of tree-based models is that they are extremely easy to understand
and interpret for non-experts, provided the tree itself is not too large.

There are two types of trees:

Classification Trees for categorical response variable

Regression Trees for continuous response variable

7.4.1 Terminology

Throughout Section 7.4.1–7.4.3, the Fisher’s Iris data set (Fisher, 1936) will be
used to explain the concepts of a classification tree. There are three sub-species
of the Iris flower in the data: Iris setosa, Iris versicolor, and Iris virginica. They
are denoted by s, c, and v respectively.

10



7.4. TREE-BASED MODELS 11

We use the following terminologies for tree-based models.

• If we let T denote a tree, and |T | denotes the number of nodes. The
number of leaves, or the size of the tree, is denoted by |T̃ |. In Fig. 7.1,
|T | = 5, and |T̃ | = 3.

• A Node is denoted by τ , which may be an internal node or a terminal
node (leaf). In Fig. 7.1, the internal nodes are Petal.Length>=2.45 and
Petal.Width<1.75. The leaves in the figure are c, v, and s.

• The root is considered to be an internal node. The root in Fig. 7.1 is
Petal.Length>=2.45.

• The depth of a node τ is the length of the path from the root to τ .

• The number of layers/levels is the maximum depth of T + 1. So, in
Fig. 7.1, it is 4. The first layer consists of the root only.

• Subtree T ∗ is a tree with a node in T as its root.

7.4.2 Univariate-Threshold-Split Binary Tree

A tree is called a binary tree if each node is only allowed to have 2 branches, an
example of a binary tree is shown in Fig. 7.1.

A tree is a univariate-split tree, if only one variable is permitted to be split on
at any given node. It is a univariate-threshold-split tree, if all the continuous
variables in a univariate-split binary tree depend solely on whether the variable
is less or greater than a given value, it is of the form xk > tk where tk is the
threshold. Fig. 7.1 is an example of a univariate-threshold-split tree. One can
look at it in another form, as shown in Fig. 7.2. The first split is on Petal
Length at 2.45, while the second split is on Petal Width at 1.75.

A surrogate split rule is a “back-up” for a main splitting rule. For example, in
Fig. 7.1, the first split is on Petal Length. If it is missing from an observation,
an alternative measurement may be used, for example.

7.4.3 Under- and Over-Fitting

When fitting a tree, it is very important not to over-fit or under-fit it. If a
tree is under-fitted, then it will not be flexible enough and may overlook the
important structure in the data; on other other hand, if a tree is over-fitted, the
resulting model becomes too complex and captures too much noise, and will not
be representative for new samples.

The concepts of under-fitting versus over-fitting is best understood by a visual
example. The top figure in Fig. 7.3 shows the correct classification of the Iris
data, the bottom two figures show under-fitting and over-fitting.
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|
Petal.Length>=2.45

Petal.Width< 1.75

c v

s

Figure 7.1: An Example of a binary classification tree. s = Iris setosa; c = Iris
versicolor; v = Iris virginica.

7.4.4 Splitting Rules

One of the most important steps in the construction of a tree is when to split a
node. Observations within a node need to be as homogeneous as possible, and
observations between groups need to be as different as possible. In other words,
one needs to increase the distance (difference) between nodes. A quantitative
measure of this difference is called the node impurity.

Let i(τ) be the impurity function at τ , where τ is an internal node, and the
goodness of split, S, be the decrease in impurity. Then:

∆i(S, τ) = i(τ) − [i(τL) + i(τR)]

One will want to maximise the value ∆i(S, τ) over all possible splits S of node τ .

There are many measures of impurity, three of the most common are Misclassi-
fication Error, Gini Index, and Entropy/Deviance. As the response variable is
binary, let p be the proportion in class 2. Then

Misclassification Error 1 − max(p, 1 − p)

Gini Index 2p(1 − p)

Entropy/Deviance −p log p − (1 − p) log(1 − p)



7.4. TREE-BASED MODELS 13

0 2.45 5

0

1.75

5

s

v

c

Univariate−Threshold−Split
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id
th

Figure 7.2: An Example of Univariate-Threshold-Split

A graphical visualisation of the three measurements is shown in Fig. 7.4.

Hastie et al. (2001) suggest that one should use either the entropy or the Gini
Index. One of the reasons for this is clear in Fig. 7.4. Both entropy and Gini
Index are differentiable, hence are better for numerical optimisation.

7.4.5 Doing in R

There are many R packages that allow you to get tree-based models: knnTree,
randomForest, rpart, and tree. Of these, rpart is the most commonly used
and the easiest one to learn. Venables and Ripley (2002) has a detailed ex-
planation on the tree package. In this section I will be using rpart and the
algorithm I use will be CART (Breiman et al., 1984). CART uses the Gini Index
to split, and this is the default in rpart().

By default, the rpart() function will attempt to contruct a tree with a minimum
number of observation of 20 in a node, with a minimum number of observation
of 7 in a leaf. The maximum number of surrogate rules used is defaulted to
be 5. The complexity paramter (cp) is set to 0.01 Venables and Ripley (2002).
These parameters can be modified in rpart.control.

For example, we can fit a default rpart() tree to the German credit data using:

> ger.rp <- rpart(credit ~ ., data = german, method = "class")

This gives us the following text-format tree:

n= 1000
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Figure 7.3: An Example of Under-fitting v.s. Over-fitting

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 1000 300 1 (0.7000000 0.3000000)

2) status=A13,A14 457 60 1 (0.8687090 0.1312910) *

3) status=A11,A12 543 240 1 (0.5580110 0.4419890)

6) duration< 22.5 306 106 1 (0.6535948 0.3464052)

12) history=A32,A33,A34 278 85 1 (0.6942446 0.3057554)

24) amount< 7491.5 271 79 1 (0.7084871 0.2915129)

48) purpose=A40,A41,A410,A42,A43,A45,A48,A49 256 69 1 (0.7304688 0.2695312)

96) duration< 11.5 73 9 1 (0.8767123 0.1232877) *

97) duration>=11.5 183 60 1 (0.6721311 0.3278689)

194) amount>=1387.5 118 29 1 (0.7542373 0.2457627) *

195) amount< 1387.5 65 31 1 (0.5230769 0.4769231)

390) real=A121,A122 45 14 1 (0.6888889 0.3111111) *

391) real=A123,A124 20 3 2 (0.1500000 0.8500000) *

49) purpose=A44,A46 15 5 2 (0.3333333 0.6666667) *

25) amount>=7491.5 7 1 2 (0.1428571 0.8571429) *

13) history=A30,A31 28 7 2 (0.2500000 0.7500000) *
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0.0

0.1
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0.4
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Comparison of Splitting Rules

p1

Misclassication Error
Gini Index
Entropy

Figure 7.4: Measure of Node Impurity for Binary Response. Entropy has been
scaled to pass through (0.5, 0.5)

7) duration>=22.5 237 103 2 (0.4345992 0.5654008)

14) savings=A64,A65 41 12 1 (0.7073171 0.2926829) *

15) savings=A61,A62,A63 196 74 2 (0.3775510 0.6224490)

30) duration< 47.5 160 69 2 (0.4312500 0.5687500)

60) purpose=A41 23 6 1 (0.7391304 0.2608696) *

61) purpose=A40,A410,A42,A43,A45,A46,A49 137 52 2 (0.3795620 0.6204380) *

31) duration>=47.5 36 5 2 (0.1388889 0.8611111) *

Of course, it is easier to visualise a picture of the tree. This can be done using
the plot() and text() commands:

> plot(ger.rp)
> text(ger.rp, cex = .7)

and this gives us Fig 7.5

n= 1000

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 1000 300 1 (0.70000000 0.30000000)

2) status=A13,A14 457 60 1 (0.86870897 0.13129103) *

3) status=A11,A12 543 240 1 (0.55801105 0.44198895)

6) duration< 31.5 434 170 1 (0.60829493 0.39170507)

12) amount< 10975.5 426 162 1 (0.61971831 0.38028169)
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|
status=cd

duration< 31.5

amount< 1.098e+04

history=cde

purpose=bdeij

age>=25.5

employment=abcd

amount< 5818

employment=d

1

1

1 2

2

1

1 2

1 2

Figure 7.5: Default rpart() on the German Credit Data

24) history=A32,A33,A34 377 128 1 (0.66047745 0.33952255) *

25) history=A30,A31 49 34 1 (0.30612245 0.69387755)

50) purpose=A41,A42,A43,A48,A49 31 17 1 (0.45161290 0.54838710) *

51) purpose=A40,A410,A45,A46 18 5 2 (0.05555556 0.94444444) *

13) amount>=10975.5 8 0 2 (0.00000000 1.00000000) *

7) duration>=31.5 109 70 1 (0.35779817 0.64220183)

14) age>=25.5 89 52 1 (0.41573034 0.58426966)

28) employment=A71,A72,A73,A74 68 34 1 (0.50000000 0.50000000) *

29) employment=A75 21 15 2 (0.14285714 0.85714286)

58) amount< 5818 9 6 1 (0.33333333 0.66666667) *

59) amount>=5818 12 0 2 (0.00000000 1.00000000) *

15) age< 25.5 20 10 2 (0.10000000 0.90000000)

30) employment=A74 7 5 1 (0.28571429 0.71428571) *

31) employment=A72,A73,A75 13 0 2 (0.00000000 1.00000000) *

7.5 Discriminant Function Analyses

7.6 Neural Networks

In the early 1980s, computer scientists actively pursued research with a black
box non-linear technique called neural networks. It can be conceptualised to
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be mimicking a human brain, and is intended to be the ultimate model for ev-
erything. Fig. 7.6 shows a single-layer feed-forward neural network model.

Figure 7.6: A Single-Layer Feed-Forward Neural Network

In Fig. 7.6, there are three layers. All technical terms will be explained in Sec-
tion 7.6.1.

As this is a black box regression technique, it was at first shunned by statis-
ticians. They declared it as a non-reliable technique that would not survive
over time. However, to the statisticians’ dismay, neural networks have not only
survived throughout the last two decades, but also they flourished and are be-
coming more and more popular. Professor Trevor Hastie has stated that:

While neural networks probably get more attention than they de-
serve in the scientific community at large, they in turn get less at-
tention than they deserve from statisticians. (Hastie, 1996)

7.6.1 Terminology

The notation used in this section is based on Fig. 7.6.

Let x represent nodes in the input layer; z represent nodes in the hidden layer;
and y represent nodes in the output layer. Then the model can be represented
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mathematically as:

zm = σ
(
α0m + αααT

mx
)
, m = 1, . . . ,M,

fj(x) = gj

(
β0j + βββT

j Z
)
, j = 1, . . . , J (7.1)

The activation function, σ, is used to introduce non-linearities into the hidden
layer. A function from the sigmoid family, σ(z) = 1/ (1 + e−z), is often used
for this. The weights (regression coefficients), αααm and βββj , are to be estimated.
They define linear combinations of the input vector x and z. The biases are
α0m and β0j . The function gj is a final transformation function of the output,
which is either an identity, a linear function, or a non-linear function. We write
Z = (z1, . . . , zM )T , and each “node” in Fig. 7.6 is called a unit.

Fig. 7.6 only has one hidden layer—hence it is called single-layer. However, a
neural network model can have several hidden layers, in which case it will be
called a multi-layer model. In most cases, a single-layer model will be enough.
In SAS Enterprise Miner, the term multilayer perception is used for both single-
layer and multi-layer models. If one only specifies one hidden-layer in the mul-
tilayer perception model, then it is a single-layer neural network; if one specifies
more than one hidden-layer, then one gets a multi-layer model.

The neural networks function is very similar to Project Pursuit Regression
(PPR), which has the form:

Yj(x) =
M∑

j=1

gj

(
αααT

j x
)

+ ε

with the difference that in PPR the transformation function is usually smooth
and non-parametric (usually some variant of splines), whereas in neural networks
the function is known and much simpler.

7.6.2 Choosing a Model

It is very difficult to choose an appropriate neural network model to fit. There
are many things one has to consider, for example:

• the number of hidden layers,

• the number of hidden units in each layer,

• what activation function to use (from input layer to hidden layer; and
from hidden layer to output layer),

• what error function to use,

• what optimisation method to use.

Unfortunately, there are no good rules of thumb that one can use. The choice
is particularly difficult when it comes to the number of hidden layers and units.
Although in most cases a single-layer is enough, one still has to decide how many
hidden units to put into the hidden layer. Two common methods to decide the
number of hidden units are:
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• Hastie et al. (2001) suggest using somewhere between 5 to 100 hidden
units in a hidden layer, with the number increasing with the number of
inputs and training cases.

• SAS (2003) recommends that one should start with no hidden units1, add
one at a time and compare the error rates and predictive power.

7.6.3 Doing in R

1In which case the model becomes either a simple linear regression or a logistic regression,
depending on the response variable.



Chapter 8

Programming in R

The aim of this chapter is to provide a basic understanding of how one can pro-
gram in R. It is assumed that you have some basic statistics and mathematics
knowledge but may have never programmed before.

If you are have programmed in R or are an experienced R programmer, then this
chapter may not be suitable for you. I recommend that you start from (Cham-
bers, 1998) or (Venables and Ripley, 2000).

8.1 Importance of Programming

The word programming scares many people. Some of the people–statisticians–I
have talked to are either scared of it or cannot see the point of it. They think
that a good statistical package/software should incorporate everything, and al-
lows one to perform all known statistical techniques under the sun.

This is a wrong perception. For one thing, a statistcal package that does every-
thing will be very expensive to implement (both in terms of the monetary costs
and person-hour costs). A classical example of this is the SAS software. The
gold license include every component and will give one an extremely powerful
statistical package, but it costs a fortune to buy.

The idea of learning basic programming is to allow one to implement algorithms
that have not been defined in a package. One of the strengths of R is that not
only it is free and open-sourced, but also it allows people to implement their
own functions or packages to suit their needs.

Beginning of code

foo = read.table()

x = 1:3

End of code

20
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8.2 Good Programming Habits

Before we start looking at the syntax structure in R, I want to emphasise on
some good programming habits.

When you write a programme, no matter what language is used, the most
important thing that you must bear in mind is readability and understand-
abilitiy. If another person wants to see your codes, he/she has to be able to at
least read it. More importantly, when YOU comes back to read your codes in
a few months, or even weeks, you want to be able to understand what you have
done. The matters can be handled by having good habits when you write your
codes.

Indentation is extremely important. Indentation means that you do not start
all your lines at the same place. Nor should you write all your codes in one
line. When you have an open braket at the end of a line, the next line should
be indented—right-shift with a few spaces. For example1:

for (i in seq(along = nmstrata)) {

select <- asgn.e == (i - 1)

ni <- sum(select)

if (!ni)

next

xi <- qtx[select, , drop = FALSE]

cols <- colSums(xi^2) > 1e-05

if (any(cols)) {

xi <- xi[, cols, drop = FALSE]

attr(xi, "assign") <- asgn.t[cols]

fiti <- lm.fit(xi, qty[select, , drop = FALSE])

fiti$terms <- Terms

}

else {

y <- qty[select, , drop = FALSE]

fiti <- list(coefficients = numeric(0), residuals = y,

fitted.values = 0 * y, weights = wts, rank = 0,

df.residual = NROW(y))

}

if (projections)

fiti$projections <- proj(fiti)

class(fiti) <- c(if (maov) "maov", "aov", oldClass(er.fit))

result[[i]] <- fiti

}

is a good example of well-indented codes. It is certainly much more readable
than the following unindented codes:

for (i in seq(along = nmstrata)) {

select <- asgn.e == (i - 1)

ni <- sum(select)

if (!ni)

next

xi <- qtx[select, , drop = FALSE]

1Extracted from the aov() function in R. You do not need to understand them, it is just
used to show indentation.
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cols <- colSums(xi^2) > 1e-05

if (any(cols)) {

xi <- xi[, cols, drop = FALSE]

attr(xi, "assign") <- asgn.t[cols]

fiti <- lm.fit(xi, qty[select, , drop = FALSE])

fiti$terms <- Terms

}

else {

y <- qty[select, , drop = FALSE]

fiti <- list(coefficients = numeric(0), residuals = y,

fitted.values = 0 * y, weights = wts, rank = 0,

df.residual = NROW(y))

}

if (projections)

fiti$projections <- proj(fiti)

class(fiti) <- c(if (maov) "maov", "aov", oldClass(er.fit))

result[[i]] <- fiti

}

Programming languages do not care whether you indent, as the spaces in front
of a line are usually ignored. The purpose of indentation is for humans. The
number of spaces in an indented line varies, but is usually taken to be either 2 or
4 character-space and no more than 8. If you have more than 8 spaces then you
will quickly run out of page margins. Any good text editor allows you to do in-
dentation easily. To name a few: (X)Emacs (available for both Linux/Unix and
Windows), UltraEdit (Windows), vi (both Linux/Unix and Windows), Crimson
Editor (Windows). Some of them are free while others are shareware. A google
search will allow you to find more editors.

Documenting/Commenting you codes is also vitally important. Most, if not
all, of us will forget why we write a particular piece of codes or the logical flow
of the codes, in a few weeks time. Putting comments will allow you to remem-
ber. In R, a line start with # is treated as comments and any words after this
character are ignored.

Variable naming is also important. It is a very bad habbit to assign a variable
with the name of your favourite person/animal/pet/fruit...etc. It tells nothing!
For example, if you are fitting a simple linear regression model using:

fit <- lm(y ~ x)

will be much more meaningful than:

fish <- lm(y ~ x)

(unless of course your response variable or the data has got something to do
with fish...)

It is very important to have a good habits when you start learning how to
programme, as once you have developed a habit it is very hard to change at a
later time.
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8.3 Writting Simple Functions

In R, if you write a block of codes that does something and you put them
together, it is called a function. Here is an example of an R function:

# Using the Gamma property to compute n!
factorial <- function(n) {
gamma(n + 1)

}

The example computes the factorial of a given number, n, using the property
of the Gamma function: Γ(n + 1) = n!. It can be used like:

> factorial(3)
[1] 6
> factorial(4)
[1] 24

If you want to print out a statement directly, you can use the print() function
in R. The function can also be very useful for debugging purposes, as we will
see in Section 8.4. An example of using the function is shown below:

# Hello World!
hello <- function() {
print("Hello World!")

}

8.4 More complicated functions

Of course, it is highly unlikely that your function will only consists of one line of
code. Even if it is a simple function like factorial, you should consider putting
some debugging statement. You need to consider the possibility that a user
may provide an incorrect input to your function. In the factorial example, if
the user provide a non-numeric input, or a number that is negative, then the
function should provide some sensible error messages. The above example can
be re-written as:

8.5 Conditional Statement

8.6 Loops

8.7 Recursion

8.8 Object-Oridented Programming
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