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Preface

The explosion in the development of methods for analyzing categorical data
that began in the 1960s has continued apace in recent years. This book
provides an overview of these methods, as well as older, now standard,
methods. It gives special emphasis to generalized linear modeling techniques,
which extend linear model methods for continuous variables, and their
extensions for multivariate responses.

Today, because of this development and the ubiquity of categorical data in
applications, most statistics and biostatistics departments offer courses on
categorical data analysis. This book can be used as a text for such courses.
The material in Chapters 1�7 forms the heart of most courses. Chapters 1�3
cover distributions for categorical responses and traditional methods for
two-way contingency tables. Chapters 4�7 introduce logistic regression and
related logit models for binary and multicategory response variables. Chap-
ters 8 and 9 cover loglinear models for contingency tables. Over time, this
model class seems to have lost importance, and this edition reduces some-
what its discussion of them and expands its focus on logistic regression.

In the past decade, the major area of new research has been the develop-
ment of methods for repeated measurement and other forms of clustered
categorical data. Chapters 10�13 present these methods, including marginal
models and generalized linear mixed models with random effects. Chapters
14 and 15 present theoretical foundations as well as alternatives to the
maximum likelihood paradigm that this text adopts. Chapter 16 is devoted to
a historical overview of the development of the methods. It examines contri-
butions of noted statisticians, such as Pearson and Fisher, whose pioneering
efforts�and sometimes vocal debates�broke the ground for this evolution.

Every chapter of the first edition has been extensively rewritten, and some
substantial additions and changes have occurred. The major differences are:

� A new Chapter 1 that introduces distributions and methods of inference
for categorical data.

� A unified presentation of models as special cases of generalized linear
models, starting in Chapter 4 and then throughout the text.

xiii
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� Greater emphasis on logistic regression for binary response variables
and extensions for multicategory responses, with Chapters 4�7 introduc-
ing models and Chapters 10�13 extending them for clustered data.

� Three new chapters on methods for clustered, correlated categorical
data, increasingly important in applications.

� A new chapter on the historical development of the methods.
� More discussion of ‘‘exact’’ small-sample procedures and of conditional

logistic regression.

In this text, I interpret categorical data analysis to refer to methods for
categorical response variables. For most methods, explanatory variables can
be qualitative or quantitative, as in ordinary regression. Thus, the focus is
intended to be more general than contingency table analysis, although for
simplicity of data presentation, most examples use contingency tables. These
examples are often simplistic, but should help readers focus on understand-
ing the methods themselves and make it easier for them to replicate results
with their favorite software.

Special features of the text include:

� More than 100 analyses of ‘‘real’’ data sets.
� More than 600 exercises at the end of the chapters, some directed

towards theory and methods and some towards applications and data
analysis.

� An appendix that shows, by chapter, the use of SAS for performing
analyses presented in this book.

� Notes at the end of each chapter that provide references for recent
research and many topics not covered in the text.

Appendix A summarizes statistical software needed to use the methods
described in this text. It shows how to use SAS for analyses included in the

Ž .text and refers to a web site www.stat.ufl.edur� aarcdarcda.html that
Ž . Žcontains 1 information on the use of other software such as R, S-plus,

. Ž .SPSS, and Stata , 2 data sets for examples in the form of complete SAS
Ž .programs for conducting the analyses, 3 short answers for many of the

Ž .odd-numbered exercises, 4 corrections of errors in early printings of the
Ž .book, and 5 extra exercises. I recommend that readers refer to this ap-

pendix or specialized manuals while reading the text, as an aid to implement-
ing the methods.

I intend this book to be accessible to the diverse mix of students who take
graduate-level courses in categorical data analysis. But I have also written it
with practicing statisticians and biostatisticians in mind. I hope it enables
them to catch up with recent advances and learn about methods that
sometimes receive inadequate attention in the traditional statistics curricu-
lum.
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The development of new methods has influenced�and been influenced
by�the increasing availability of data sets with categorical responses in the
social, behavioral, and biomedical sciences, as well as in public health, human
genetics, ecology, education, marketing, and industrial quality control. And
so, although this book is directed mainly to statisticians and biostatisticians, I
also aim for it to be helpful to methodologists in these fields.

Readers should possess a background that includes regression and analysis
of variance models, as well as maximum likelihood methods of statistical
theory. Those not having much theory background should be able to follow
most methodological discussions. Sections and subsections marked with an
asterisk are less important for an overview. Readers with mainly applied
interests can skip most of Chapter 4 on the theory of generalized linear
models and proceed to other chapters. However, the book has distinctly
higher technical level and is more thorough and complete than my lower-level

Ž .text, An Introduction to Categorical Data Analysis Wiley, 1996 .
I thank those who commented on parts of the manuscript or provided help

of some type. Special thanks to Bernhard Klingenberg, who read several
chapters carefully and made many helpful suggestions, Yongyi Min, who
constructed many of the figures and helped with some software, and Brian
Caffo, who helped with some examples. Many thanks to Rosyln Stone and
Brian Marx for each reviewing half the manuscript and Brian Caffo, I-Ming
Liu, and Yongyi Min for giving insightful comments on several chapters.
Thanks to Constantine Gatsonis and his students for using a draft in a course
at Brown University and providing suggestions. Others who provided com-
ments on chapters or help of some type include Patricia Altham, Wicher
Bergsma, Jane Brockmann, Brent Coull, Al DeMaris, Regina Dittrich,
Jianping Dong, Herwig Friedl, Ralitza Gueorguieva, James Hobert, Walter
Katzenbeisser, Harry Khamis, Svend Kreiner, Joseph Lang, Jason Liao,
Mojtaba Ganjali, Jane Pendergast, Michael Radelet, Kenneth Small, Maura
Stokes, Tom Ten Have, and Rongling Wu. I thank my co-authors on various
projects, especially Brent Coull, Joseph Lang, James Booth, James Hobert,
Brian Caffo, and Ranjini Natarajan, for permission to use material from
those articles. Thanks to the many who reviewed material or suggested
examples for the first edition, mentioned in the Preface of that edition.
Thanks also to Wiley Executive Editor Steve Quigley for his steadfast
encouragement and facilitation of this project. Finally, thanks to my wife
Jacki Levine for continuing support of all kinds, despite the many days this
work has taken from our time together.

ALAN AGRESTI

Gaines®ille, Florida
No®ember 2001



C H A P T E R 1

Introduction: Distributions and
Inference for Categorical Data

From helping to assess the value of new medical treatments to evaluating the
factors that affect our opinions and behaviors, analysts today are finding
myriad uses for categorical data methods. In this book we introduce these
methods and the theory behind them.

Statistical methods for categorical responses were late in gaining the level
of sophistication achieved early in the twentieth century by methods for
continuous responses. Despite influential work around 1900 by the British
statistician Karl Pearson, relatively little development of models for categori-
cal responses occurred until the 1960s. In this book we describe the early
fundamental work that still has importance today but place primary emphasis
on more recent modeling approaches. Before outlining the topics covered, we
describe the major types of categorical data.

1.1 CATEGORICAL RESPONSE DATA

A categorical ®ariable has a measurement scale consisting of a set of cate-
gories. For instance, political philosophy is often measured as liberal, moder-
ate, or conservative. Diagnoses regarding breast cancer based on a mammo-
gram use the categories normal, benign, probably benign, suspicious, and
malignant.

The development of methods for categorical variables was stimulated by
research studies in the social and biomedical sciences. Categorical scales are
pervasive in the social sciences for measuring attitudes and opinions. Cate-
gorical scales in biomedical sciences measure outcomes such as whether a
medical treatment is successful.

Although categorical data are common in the social and biomedical
sciences, they are by no means restricted to those areas. They frequently

1



INTRODUCTION: DISTRIBUTIONS AND INFERENCE FOR CATEGORICAL DATA2

Žoccur in the behavioral sciences e.g., type of mental illness, with the cate-
.gories schizophrenia, depression, neurosis , epidemiology and public health

Že.g., contraceptive method at last intercourse, with the categories none,
. Ž .condom, pill, IUD, other , genetics type of allele inherited by an offspring ,

Žzoology e.g., alligators’ primary food preference, with the categories fish,
. Žinvertebrate, reptile , education e.g., student responses to an exam question,

. Žwith the categories correct and incorrect , and marketing e.g., consumer
preference among leading brands of a product, with the categories brand A,

.brand B, and brand C . They even occur in highly quantitative fields such as
engineering sciences and industrial quality control. Examples are the classifi-
cation of items according to whether they conform to certain standards, and
subjective evaluation of some characteristic: how soft to the touch a certain
fabric is, how good a particular food product tastes, or how easy to perform a
worker finds a certain task to be.

Categorical variables are of many types. In this section we provide ways of
classifying them and other variables.

1.1.1 Response–Explanatory Variable Distinction

Ž .Most statistical analyses distinguish between response or dependent ®ariables
Ž .and explanatory or independent ®ariables. For instance, regression models

describe how the mean of a response variable, such as the selling price of a
house, changes according to the values of explanatory variables, such as
square footage and location. In this book we focus on methods for categorical
response variables. As in ordinary regression, explanatory variables can be of
any type.

1.1.2 Nominal–Ordinal Scale Distinction

Categorical variables have two primary types of scales. Variables having
categories without a natural ordering are called nominal. Examples are

Žreligious affiliation with the categories Catholic, Protestant, Jewish, Muslim,
. Žother , mode of transportation to work automobile, bicycle, bus, subway,
. Ž .walk , favorite type of music classical, country, folk, jazz, rock , and choice of

Ž .residence apartment, condominium, house, other . For nominal variables,
the order of listing the categories is irrelevant. The statistical analysis does
not depend on that ordering.

Many categorical variables do have ordered categories. Such variables are
Žcalled ordinal. Examples are size of automobile subcompact, compact,

. Ž .midsize, large , social class upper, middle, lower , political philosophy
Ž . Žliberal, moderate, conservative , and patient condition good, fair, serious,

.critical . Ordinal variables have ordered categories, but distances between
categories are unknown. Although a person categorized as moderate is more
liberal than a person categorized as conservative, no numerical value de-
scribes how much more liberal that person is. Methods for ordinal variables
utilize the category ordering.
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An inter®al ®ariable is one that does have numerical distances between any
two values. For example, blood pressure level, functional life length of
television set, length of prison term, and annual income are interval vari-

Žables. An internal variable is sometimes called a ratio ®ariable if ratios of
.values are also valid.

The way that a variable is measured determines its classification. For
example, ‘‘education’’ is only nominal when measured as public school or
private school; it is ordinal when measured by highest degree attained, using
the categories none, high school, bachelor’s, master’s, and doctorate; it is
interval when measured by number of years of education, using the integers
0, 1, 2, . . . .

A variable’s measurement scale determines which statistical methods are
appropriate. In the measurement hierarchy, interval variables are highest,
ordinal variables are next, and nominal variables are lowest. Statistical
methods for variables of one type can also be used with variables at higher
levels but not at lower levels. For instance, statistical methods for nominal
variables can be used with ordinal variables by ignoring the ordering of
categories. Methods for ordinal variables cannot, however, be used with
nominal variables, since their categories have no meaningful ordering. It is
usually best to apply methods appropriate for the actual scale.

Since this book deals with categorical responses, we discuss the analysis of
nominal and ordinal variables. The methods also apply to interval variables

Ž .having a small number of distinct values e.g., number of times married or
Žfor which the values are grouped into ordered categories e.g., education

.measured as � 10 years, 10�12 years, � 12 years .

1.1.3 Continuous–Discrete Variable Distinction

Variables are classified as continuous or discrete, according to the number of
values they can take. Actual measurement of all variables occurs in a discrete
manner, due to precision limitations in measuring instruments. The continu-
ous�discrete classification, in practice, distinguishes between variables that
take lots of values and variables that take few values. For instance, statisti-
cians often treat discrete interval variables having a large number of values
Ž .such as test scores as continuous, using them in methods for continuous
responses.

Ž .This book deals with certain types of discretely measured responses: 1
Ž . Ž .nominal variables, 2 ordinal variables, 3 discrete interval variables having

Ž .relatively few values, and 4 continuous variables grouped into a small
number of categories.

1.1.4 Quantitative–Qualitative Variable Distinction

Nominal variables are qualitati®e�distinct categories differ in quality, not in
quantity. Interval variables are quantitati®e�distinct levels have differing
amounts of the characteristic of interest. The position of ordinal variables in
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the quantitative�qualitative classification is fuzzy. Analysts often treat
them as qualitative, using methods for nominal variables. But in many
respects, ordinal variables more closely resemble interval variables than they
resemble nominal variables. They possess important quantitative features:
Each category has a greater or smaller magnitude of the characteristic than
another category; and although not possible to measure, an underlying
continuous variable is usually present. The political philosophy classification
Ž .liberal, moderate, conservative crudely measures an inherently continuous
characteristic.

Analysts often utilize the quantitative nature of ordinal variables by
assigning numerical scores to categories or assuming an underlying continu-
ous distribution. This requires good judgment and guidance from researchers
who use the scale, but it provides benefits in the variety of methods available
for data analysis.

1.1.5 Organization of This Book

The models for categorical response variables discussed in this book resem-
ble regression models for continuous response variables; however, they
assume binomial, multinomial, or Poisson response distributions instead of
normality. Two types of models receive special attention, logistic regression
and loglinear models. Ordinary logistic regression models, also called logit

Ž .models, apply with binary i.e., two-category responses and assume a bino-
mial distribution. Generalizations of logistic regression apply with multicate-
gory responses and assume a multinomial distribution. Loglinear models
apply with count data and assume a Poisson distribution. Certain equiva-
lences exist between logistic regression and loglinear models.

The book has four main units. In the first, Chapters 1 through 3, we
summarize descriptive and inferential methods for univariate and bivariate
categorical data. These chapters cover discrete distributions, methods of
inference, and analyses for measures of association. They summarize the
non-model-based methods developed prior to about 1960.

In the second and primary unit, Chapters 4 through 9, we introduce
models for categorical responses. In Chapter 4 we describe a class of
generalized linear models having models of this text as special cases. We focus
on models for binary and count response variables. Chapters 5 and 6 cover
the most important model for binary responses, logistic regression. In Chap-
ter 7 we present generalizations of that model for nominal and ordinal
multicategory response variables. In Chapter 8 we introduce the modeling of
multivariate categorical response data and show how to represent association
and interaction patterns by loglinear models for counts in the table that
cross-classifies those responses. In Chapter 9 we discuss model building with
loglinear and related logistic models and present some related models.

In the third unit, Chapters 10 through 13, we discuss models for handling
repeated measurement and other forms of clustering. In Chapter 10 we
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present models for a categorical response with matched pairs; these apply,
for instance, with a categorical response measured for the same subjects at
two times. Chapter 11 covers models for more general types of repeated
categorical data, such as longitudinal data from several times with explana-
tory variables. In Chapter 12 we present a broad class of models, generalized
linear mixed models, that use random effects to account for dependence with
such data. In Chapter 13 further extensions and applications of the models
from Chapters 10 through 12 are described.

The fourth and final unit is more theoretical. In Chapter 14 we develop
asymptotic theory for categorical data models. This theory is the basis for
large-sample behavior of model parameter estimators and goodness-of-fit
statistics. Maximum likelihood estimation receives primary attention here
and throughout the book, but Chapter 15 covers alternative methods of
estimation, such as the Bayesian paradigm. Chapter 16 stands alone from the
others, being a historical overview of the development of categorical data
methods.

Most categorical data methods require extensive computations, and statis-
tical software is necessary for their effective use. In Appendix A we discuss
software that can perform the analyses in this book and show the use of SAS
for text examples. See the Web site www. stat.ufl.edur� aarcdarcda.html to
download sample programs and data sets and find information about other
software.

Chapter 1 provides background material. In Section 1.2 we review the key
distributions for categorical data: the binomial, multinomial, and Poisson. In
Section 1.3 we review the primary mechanisms for statistical inference, using
maximum likelihood. In Sections 1.4 and 1.5 we illustrate these by presenting
significance tests and confidence intervals for binomial and multinomial
parameters.

1.2 DISTRIBUTIONS FOR CATEGORICAL DATA

Inferential data analyses require assumptions about the random mechanism
that generated the data. For regression models with continuous responses,
the normal distribution plays the central role. In this section we review the
three key distributions for categorical responses: binomial, multinomial, and
Poisson.

1.2.1 Binomial Distribution

Many applications refer to a fixed number n of binary observations. Let
y , y , . . . , y denote responses for n independent and identical trials such1 2 n

Ž . Ž .that P Y s 1 s � and P Y s 0 s 1 y � . We use the generic labelsi i
‘‘success’’ and ‘‘failure’’ for outcomes 1 and 0. Identical trials means that the
probability of success � is the same for each trial. Independent trials means
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� 4that the Y are independent random variables. These are often calledi
Bernoulli trials. The total number of successes, Y sÝn Y , has the binomialis1 i

Ž .distribution with index n and parameter � , denoted by bin n,� .
The probability mass function for the possible outcomes y for Y is

n nyyyp y s � 1 y � , y s 0, 1, 2, . . . , n , 1.1Ž . Ž . Ž .ž /y

n 2w Ž . x Ž . Ž .where the binomial coefficient s n!r y! n y y ! . Since E Y s E Yi iž /y
Ž .s 1 � � q 0 � 1 y � s � ,

E Y s � and var Y s � 1 y � .Ž . Ž . Ž .i i

The binomial distribution for Y sÝ Y has mean and variancei i

� s E Y s n� and � 2 s var Y s n� 1 y � .Ž . Ž . Ž .

3 3Ž . Ž . 'The skewness is described by E Y y � r� s 1 y 2� r n� 1 y � .Ž .
The distribution converges to normality as n increases, for fixed � .

There is no guarantee that successive binary observations are independent
or identical. Thus, occasionally, we will utilize other distributions. One such
case is sampling binary outcomes without replacement from a finite popula-
tion, such as observations on gender for 10 students sampled from a class of
size 20. The hypergeometric distribution, studied in Section 3.5.1, is then
relevant. In Section 1.2.4 we mention another case that violates these
binomial assumptions.

1.2.2 Multinomial Distribution

Some trials have more than two possible outcomes. Suppose that each of n
independent, identical trials can have outcome in any of c categories. Let
y s 1 if trial i has outcome in category j and y s 0 otherwise. Theni j i j

Ž .y s y , y , . . . , y represents a multinomial trial, with Ý y s 1; fori i1 i2 ic j i j
Ž .instance, 0, 0, 1, 0 denotes outcome in category 3 of four possible categories.

Note that y is redundant, being linearly dependent on the others. Letic
n sÝ y denote the number of trials having outcome in category j. Thej i i j

Ž .counts n , n , . . . , n have the multinomial distribution.1 2 c
Ž .Let � s P Y s 1 denote the probability of outcome in category j forj i j

each trial. The multinomial probability mass function is

n!
n n n1 2 cp n , n , . . . , n s � � ��� � . 1.2Ž . Ž .1 2 cy1 1 2 cž /n ! n ! ��� n !1 2 c
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Ž . ŽSince Ý n s n, this is cy1 -dimensional, with n s n y n q ���j j c 1
.qn . The binomial distribution is the special case with c s 2.cy1

For the multinomial distribution,

E n s n� , var n s n� 1 y � , cov n , n syn� � .Ž . Ž . Ž .Ž .j j j j j j k j k

1.3Ž .

We derive the covariance in Section 14.1.4. The marginal distribution of each
n is binomial.j

1.2.3 Poisson Distribution

Sometimes, count data do not result from a fixed number of trials. For
instance, if y s number of deaths due to automobile accidents on motorways

Žin Italy during this coming week, there is no fixed upper limit n for y as you
.are aware if you have driven in Italy . Since y must be a nonnegative integer,

its distribution should place its mass on that range. The simplest such
distribution is the Poisson. Its probabilities depend on a single parameter,

Ž .the mean �. The Poisson probability mass function Poisson 1837, p. 206 is

ey�� y

p y s , y s 0, 1, 2, . . . . 1.4Ž . Ž .
y!

Ž . Ž .It satisfies E Y s var Y s �. It is unimodal with mode equal to the
3 3Ž . 'integer part of �. Its skewness is described by E Y y � r� s 1r � . The

distribution approaches normality as � increases.
The Poisson distribution is used for counts of events that occur randomly

over time or space, when outcomes in disjoint periods or regions are inde-
pendent. It also applies as an approximation for the binomial when n is large
and � is small, with � s n� . So if each of the 50 million people driving in
Italy next week is an independent trial with probability 0.000002 of dying in a

Ž .fatal accident that week, the number of deaths Y is a bin 50000000, 0.000002
Ž .variate, or approximately Poisson with � s n� s 50,000,000 0.000002 s 100.

A key feature of the Poisson distribution is that its variance equals its
mean. Sample counts vary more when their mean is higher. When the mean
number of weekly fatal accidents equals 100, greater variability occurs in the
weekly counts than when the mean equals 10.

1.2.4 Overdispersion

In practice, count observations often exhibit variability exceeding that pre-
dicted by the binomial or Poisson. This phenomenon is called o®erdispersion.
We assumed above that each person has the same probability of dying in a
fatal accident in the next week. More realistically, these probabilities vary,
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due to factors such as amount of time spent driving, whether the person
wears a seat belt, and geographical location. Such variation causes fatality
counts to display more variation than predicted by the Poisson model.

Ž � .Suppose that Y is a random variable with variance var Y � for given �,
but � itself varies because of unmeasured factors such as those just de-

Ž .scribed. Let � s E � . Then unconditionally,

� � �E Y s E E Y � , var Y s E var Y � q var E Y � .Ž . Ž .Ž . Ž . Ž .

Ž . Ž . Ž .When Y is conditionally Poisson given � , for instance, then E Y s E � s
Ž . Ž . Ž . Ž .� and var Y s E � q var � s � q var � � � .

Assuming a Poisson distribution for a count variable is often too simplistic,
because of factors that cause overdispersion. The negati®e binomial is a
related distribution for count data that permits the variance to exceed the
mean. We introduce it in Section 4.3.4.

Ž .Analyses assuming binomial or multinomial distributions are also some-
times invalid because of overdispersion. This might happen because the true
distribution is a mixture of different binomial distributions, with the parame-
ter varying because of unmeasured variables. To illustrate, suppose that an
experiment exposes pregnant mice to a toxin and then after a week observes
the number of fetuses in each mouse’s litter that show signs of malformation.
Let n denote the number of fetuses in the litter for mouse i. The mice alsoi
vary according to other factors that may not be measured, such as their
weight, overall health, and genetic makeup. Extra variation then occurs
because of the variability from litter to litter in the probability � of malfor-
mation. The distribution of the number of fetuses per litter showing malfor-
mations might cluster near 0 and near n , showing more dispersion thani
expected for binomial sampling with a single value of � . Overdispersion
could also occur when � varies among fetuses in a litter according to some

Ž .distribution Problem 1.12 . In Chapters 4, 12, and 13 we introduce methods
for data that are overdispersed relative to binomial and Poisson assumptions.

1.2.5 Connection between Poisson and Multinomial Distributions

In Italy this next week, let y s number of people who die in automobile1
accidents, y s number who die in airplane accidents, and y s number who2 3

Ž .die in railway accidents. A Poisson model for Y , Y , Y treats these as1 2 3
Ž .independent Poisson random variables, with parameters � , � , � . The1 2 3

� 4joint probability mass function for Y is the product of the three massi
Ž .functions of form 1.4 . The total n sÝY also has a Poisson distribution,i

with parameter Ý� .i
With Poisson sampling the total count n is random rather than fixed. If we

� 4assume a Poisson model but condition on n, Y no longer have Poissoni
� 4distributions, since each Y cannot exceed n. Given n, Y are also no longeri i

independent, since the value of one affects the possible range for the others.
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Ž .For c independent Poisson variates, with E Y s � , let’s derive theiri i
conditional distribution given that ÝY s n. The conditional probability of ai

� 4set of counts n satisfying this condition isi

P Y s n , Y s n , . . . , Y s n Y s nŽ . Ý1 1 2 2 c c j

P Y s n , Y s n , . . . , Y s nŽ .1 1 2 2 c c
s

P ÝY s nŽ .j

n iŁ exp y� � rn ! n!Ž .i i i i n is s � , 1.5Ž .Łn iŁ n !exp yÝ� Ý� rn! iŽ . Ž . i ij j

� Ž .4 Ž � 4.where � s � r Ý� . This is the multinomial n, � distribution, charac-i i j i
� 4terized by the sample size n and the probabilities � .i

Many categorical data analyses assume a multinomial distribution. Such
analyses usually have the same parameter estimates as those of analyses
assuming a Poisson distribution, because of the similarity in the likelihood
functions.

1.3 STATISTICAL INFERENCE FOR CATEGORICAL DATA

The choice of distribution for the response variable is but one step of data
analysis. In practice, that distribution has unknown parameter values. In this
section we review methods of using sample data to make inferences about the
parameters. Sections 1.4 and 1.5 cover binomial and multinomial parameters.

1.3.1 Likelihood Functions and Maximum Likelihood Estimation

In this book we use maximum likelihood for parameter estimation. Under
weak regularity conditions, such as the parameter space having fixed dimen-
sion with true value falling in its interior, maximum likelihood estimators
have desirable properties: They have large-sample normal distributions; they
are asymptotically consistent, converging to the parameter as n increases;
and they are asymptotically efficient, producing large-sample standard errors
no greater than those from other estimation methods.

Given the data, for a chosen probability distribution the likelihood function
is the probability of those data, treated as a function of the unknown

Ž .parameter. The maximum likelihood ML estimate is the parameter value
that maximizes this function. This is the parameter value under which the
data observed have the highest probability of occurrence. The parameter
value that maximizes the likelihood function also maximizes the log of that
function. It is simpler to maximize the log likelihood since it is a sum rather
than a product of terms.
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We denote a parameter for a generic problem by � and its ML estimate
ˆ Ž .by �. The likelihood function is ll � and the log-likelihood function is

ˆŽ . w Ž .x Ž .L � s log ll � . For many models, L � has concave shape and � is the
point at which the derivative equals 0. The ML estimate is then the solution

Ž .of the likelihood equation, 	 L � r	� s 0. Often, � is multidimensional,
ˆdenoted by �, and � is the solution of a set of likelihood equations.

ˆ ˆŽ .Let SE denote the standard error of � , and let cov � denote the
ˆ Žasymptotic covariance matrix of �. Under regularity conditions Rao 1973,

ˆ. Ž . Ž .p. 364 , cov � is the inverse of the information matrix. The j, k element of
the information matrix is

	 2L �Ž .
yE . 1.6Ž .ž /	� 	�j k

The standard errors are the square roots of the diagonal elements for the
inverse information matrix. The greater the curvature of the log likelihood,
the smaller the standard errors. This is reasonable, since large curvature

ˆimplies that the log likelihood drops quickly as � moves away from �; hence,
ˆthe data would have been much more likely to occur if � took a value near �

ˆrather than a value far from �.

1.3.2 Likelihood Function and ML Estimate for Binomial Parameter

The part of a likelihood function involving the parameters is called the
kernel. Since the maximization of the likelihood is with respect to the
parameters, the rest is irrelevant.

Ž .To illustrate, consider the binomial distribution 1.1 . The binomial coeffi-
ncient has no influence on where the maximum occurs with respect to � .ž /y

Thus, we ignore it and treat the kernel as the likelihood function. The
binomial log likelihood is then

nyyyL � s log � 1 y � s y log � q n y y log 1 y � . 1.7Ž . Ž . Ž . Ž . Ž . Ž .

Differentiating with respect to � yields

	 L � r	� s yr� y n y y r 1 y � s y y n� r� 1 y � . 1.8Ž . Ž . Ž . Ž . Ž . Ž .

Equating this to 0 gives the likelihood equation, which has solution � s yrn,ˆ
the sample proportion of successes for the n trials.

2 Ž . 2Calculating 	 L � r	� , taking the expectation, and combining terms,
we get

22 2 2yE 	 L � r	� s E yr� q n y y r 1 y � s nr � 1 y � .Ž . Ž . Ž . Ž .
1.9Ž .
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Ž .Thus, the asymptotic variance of � is � 1 y � rn. This is no surprise. Sinceˆ
Ž . Ž . Ž .E Y s n� and var Y s n� 1 y � , the distribution of � s Yrn has meanˆ

and standard error

� 1 y �Ž .
E � s � , � � s .Ž . Ž .ˆ ˆ (

n

1.3.3 Wald–Likelihood Ratio–Score Test Triad

Three standard ways exist to use the likelihood function to perform
large-sample inference. We introduce these for a significance test of a null
hypothesis H : � s � and then discuss their relation to interval estimation.0 0
They all exploit the large-sample normality of ML estimators.

ˆWith nonnull standard error SE of � , the test statistic

ˆz s � y � rSEŽ .0

has an approximate standard normal distribution when � s � . One refers z0
to the standard normal table to obtain one- or two-sided P-values. Equiva-
lently, for the two-sided alternative, z 2 has a chi-squared null distribution

Ž .with 1 degree of freedom df ; the P-value is then the right-tailed chi-squared
probability above the observed value. This type of statistic, using the nonnull

Ž .standard error, is called a Wald statistic Wald 1943 .
The multivariate extension for the Wald test of H : � s � has test0 0

statistic
� y1ˆ ˆ ˆW s � y � cov � � y � .Ž .Ž . Ž .0 0

Ž .The prime on a vector or matrix denotes the transpose. The nonnull
ˆŽ .covariance is based on the curvature 1.6 of the log likelihood at �. The

ˆasymptotic multivariate normal distribution for � implies an asymptotic
ˆŽ .chi-squared distribution for W. The df equal the rank of cov � , which is the

number of nonredundant parameters in �.
A second general-purpose method uses the likelihood function through

Ž .the ratio of two maximizations: 1 the maximum over the possible parameter
Ž .values under H , and 2 the maximum over the larger set of parameter0

values permitting H or an alternative H to be true. Let ll denote the0 a 0
maximized value of the likelihood function under H , and let ll denote the0 1

Ž .maximized value generally i.e., under H j H . For instance, for parameter0 a
Ž .vector � s � , � 
 and H : � s 0, ll is the likelihood function calculated0 1 0 0 1

at the � value for which the data would have been most likely; ll is the0
likelihood function calculated at the � value for which the data would1
have been most likely, when � s 0. Then ll is always at least as large as0 1
ll , since ll results from maximizing over a restricted set of the parameter0 0
values.
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The ratio � s ll rll of the maximized likelihoods cannot exceed 1. Wilks0 1
Ž .1935, 1938 showed that y2 log� has a limiting null chi-squared distribu-
tion, as n ™ �. The df equal the difference in the dimensions of the
parameter spaces under H j H and under H . The likelihood-ratio test0 a 0
statistic equals

y2 log� sy2 log ll rll sy2 L y L ,Ž .Ž . 0 10 1

where L and L denote the maximized log-likelihood functions.0 1
The third method uses the score statistic, due to R. A. Fisher and C. R.

Rao. The score test is based on the slope and expected curvature of the
Ž .log-likelihood function L � at the null value � . It utilizes the size of the0

score function

u � s 	 L � r	� ,Ž . Ž .

ˆŽ .evaluated at � . The value u � tends to be larger in absolute value when �0 0
w 2 Ž . 2 x Ž .is farther from � . Denote yE 	 L � r	� i.e., the information evalu-0

Ž . Ž .ated at � by  � . The score statistic is the ratio of u � to its null SE,0 0 0
w Ž .x1r2which is  � . This has an approximate standard normal null distribu-0

tion. The chi-squared form of the score statistic is

2 2u � 	 L � r	�Ž . Ž .0 0
s ,2 2 � yE 	 L � r	�Ž . Ž .0 0

where the partial derivative notation reflects derivatives with respect to �
that are evaluated at � . In the multiparameter case, the score statistic is a0
quadratic form based on the vector of partial derivatives of the log likelihood
with respect to � and the inverse information matrix, both evaluated at the

Ž .H estimates i.e., assuming that � s � .0 0
Ž .Figure 1.1 is a generic plot of a log-likelihood L � for the univariate

case. It illustrates the three tests of H : � s 0. The Wald test uses the0
ˆ ˆ 2Ž . Ž .behavior of L � at the ML estimate � , having chi-squared form �rSE .

ˆ ˆŽ .The SE of � depends on the curvature of L � at �. The score test is based
Ž .on the slope and curvature of L � at � s 0. The likelihood-ratio test

ˆŽ .combines information about L � at both � and � s 0. It compares the0
ˆlog-likelihood values L at � and L at � s 0 using the chi-squared1 0 0

Ž .statistic y2 L y L . In Figure 1.1, this statistic is twice the vertical dis-0 1
ˆŽ .tance between values of L � at � and at 0. In a sense, this statistic uses the

most information of the three types of test statistic and is the most versatile.
As n ™ �, the Wald, likelihood-ratio, and score tests have certain asymp-

Ž .totic equivalences Cox and Hinkley 1974, Sec. 9.3 . For small to moderate
sample sizes, the likelihood-ratio test is usually more reliable than the Wald
test.
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FIGURE 1.1 Log-likelihood function and information used in three tests of H : � s 0.0

1.3.4 Constructing Confidence Intervals

In practice, it is more informative to construct confidence intervals for
parameters than to test hypotheses about their values. For any of the three
test methods, a confidence interval results from inverting the test. For
instance, a 95% confidence interval for � is the set of � for which the test0
of H : � s � has a P-value exceeding 0.05.0 0

Let z denote the z-score from the standard normal distribution havinga
Ž .right-tailed probability a; this is the 100 1 y a percentile of that distribution.

2 Ž . Ž .Let � a denote the 100 1 y a percentile of the chi-squared distributiondf
Ž .with degrees of freedom df. 100 1 y � % confidence intervals based on

asymptotic normality use z , for instance z s 1.96 for 95% confidence.�r2 0.025
ˆ� �The Wald confidence interval is the set of � for which � y � rSE � z .0 0 �r2

ˆ Ž .This gives the interval � � z SE . The likelihood-ratio-based confidence�r2
ˆ 2w Ž . Ž .x Ž . winterval is the set of � for which y2 L � y L � � � � . Recall0 0 1

2Ž . 2 xthat � � s z .1 �r2
ˆWhen � has a normal distribution, the log-likelihood function has a

Ž .parabolic shape i.e., a second-degree polynomial . For small samples with
ˆcategorical data, � may be far from normality and the log-likelihood function

can be far from a symmetric, parabolic-shaped curve. This can also happen
with moderate to large samples when a model contains many parameters. In

ˆsuch cases, inference based on asymptotic normality of � may have inade-
quate performance. A marked divergence in results of Wald and likelihood-

ˆratio inference indicates that the distribution of � may not be close to
normality. The example in Section 1.4.3 illustrates this with quite different
confidence intervals for different methods. In many such cases, inference can
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instead utilize an exact small-sample distribution or ‘‘higher-order’’ asymp-
Žtotic methods that improve on simple normality e.g., Pierce and Peters

.1992 .
The Wald confidence interval is most common in practice because it is

simple to construct using ML estimates and standard errors reported by
statistical software. The likelihood-ratio-based interval is becoming more
widely available in software and is preferable for categorical data with small
to moderate n. For the best known statistical model, regression for a normal
response, the three types of inference necessarily provide identical results.

1.4 STATISTICAL INFERENCE FOR BINOMIAL PARAMETERS

In this section we illustrate inference methods for categorical data by
presenting tests and confidence intervals for the binomial parameter � ,
based on y successes in n independent trials. In Section 1.3.2 we obtained
the likelihood function and ML estimator � s yrn of � .ˆ

1.4.1 Tests about a Binomial Parameter

Consider H : � s � . Since H has a single parameter, we use the normal0 0 0
rather than chi-squared forms of Wald and score test statistics. They permit
tests against one-sided as well as two-sided alternatives. The Wald statistic is

� y � � y �ˆ ˆ0 0
z s s . 1.10Ž .W SE '� 1 y � rnŽ .ˆ ˆ

Ž . Ž .Evaluating the binomial score 1.8 and information 1.9 at � yields0

y n y y n
u � s y ,  � s .Ž . Ž .0 0� 1 y � � 1 y �Ž .0 0 0 0

The normal form of the score statistic simplifies to

u � y y n� � y �Ž . ˆ0 0 0
z s s s . 1.11Ž .S 1r2 n� 1 y � � 1 y � rn' 'Ž . Ž . �Ž . 0 0 0 00

Whereas the Wald statistic z uses the standard error evaluated at � , theˆW
score statistic z uses it evaluated at � . The score statistic is preferable, asS 0
it uses the actual null SE rather than an estimate. Its null sampling distribu-
tion is closer to standard normal than that of the Wald statistic.

Ž .The binomial log-likelihood function 1.7 equals L s y log� q0 0
Ž . Ž . Ž . Ž .n y y log 1 y � under H and L s y log � q n y y log 1 y � moreˆ ˆ0 0 1
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generally. The likelihood-ratio test statistic simplifies to

� 1 y �ˆ ˆ
y2 L y L s 2 y log q n y y log .Ž . Ž .0 1 ž /� 1 y �0 0

Expressed as

y n y y
y2 L y L s 2 y log q n y y log ,Ž . Ž .0 1 ž /n� n y n�0 0

Ž .it compares observed success and failure counts to fitted i.e., null counts by

observed
2 observed log . 1.12Ž .Ý fitted

We’ll see that this formula also holds for tests about Poisson and multinomial
parameters. Since no unknown parameters occur under H and one occurs0

Ž .under H , 1.12 has an asymptotic chi-squared distribution with df s 1.a

1.4.2 Confidence Intervals for a Binomial Parameter

ŽA significance test merely indicates whether a particular � value such as
.� s 0.5 is plausible. We learn more by using a confidence interval to

determine the range of plausible values.
Inverting the Wald test statistic gives the interval of � values for which0

� �z � z , orW �r2

� 1 y �Ž .ˆ ˆ
� � z . 1.13Ž .ˆ (�r2 n

Historically, this was one of the first confidence intervals used for any
Ž .parameter Laplace 1812, p. 283 . Unfortunately, it performs poorly unless n
Ž .is very large e.g., Brown et al. 2001 . The actual coverage probability usually

falls below the nominal confidence coefficient, much below when � is near 0
1 2or 1. A simple adjustment that adds z observations of each type to the�r22

Ž .sample before using this formula performs much better Problem 1.24 .
� �The score confidence interval contains � values for which z � z .0 S �r2

Its endpoints are the � solutions to the equations0

� y � r � 1 y � rn s �z .' Ž .Ž .ˆ 0 0 0 �r2
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Ž .These are quadratic in � . First discussed by E. B. Wilson 1927 , this0
interval is

n 1 z 2
�r2

� qˆ 2 2ž / ž /2n q z n q z�r2 �r2

21 n 1 1 z�r2
� z � 1 y � q .Ž .ˆ ˆ�r2 2 2 2) ž / ž /ž / ž /2 2n q z n q z n q z�r2 �r2 �r2

1The midpoint � of the interval is a weighted average of � and , where the˜ ˆ 2
Ž 2 .weight nr n q z given � increases as n increases. Combining terms, thisˆ�r2

Ž 2 . Ž 2 .midpoint equals � s y q z r2 r n q z . This is the sample proportion˜ �r2 �r2
for an adjusted sample that adds z 2 observations, half of each type. The�r2
square of the coefficient of z in this formula is a weighted average of the�r2
variance of a sample proportion when � s � and the variance of a sampleˆ

1 2proportion when � s , using the adjusted sample size n q z in place�r22

of n. This interval has much better performance than the Wald interval.
The likelihood-ratio-based confidence interval is more complex computa-

tionally, but simple in principle. It is the set of � for which the likelihood-0
ratio test has a P-value exceeding � . Equivalently, it is the set of � for0

2Ž .which double the log likelihood drops by less than � � from its value at the1
ML estimate � s yrn.ˆ

1.4.3 Proportion of Vegetarians Example

To collect data in an introductory statistics course, recently I gave the
students a questionnaire. One question asked each student whether he or
she was a vegetarian. Of n s 25 students, y s 0 answered ‘‘yes.’’ They were
not a random sample of a particular population, but we use these data to
illustrate 95% confidence intervals for a binomial parameter � .

Since y s 0, � s 0r25 s 0. Using the Wald approach, the 95% confi-ˆ
dence interval for � is

'0 � 1.96 0.0 � 1.0 r25 , or 0, 0 .Ž . Ž .

When the observation falls at the boundary of the sample space, often Wald
methods do not provide sensible answers.

Ž .By contrast, the 95% score interval equals 0.0, 0.133 . This is a more
believable inference. For H : � s 0.5, for instance, the score test statistic is0

Ž . 'z s 0 y 0.5 r 0.5 � 0.5 r25 sy5.0, so 0.5 does not fall in the interval.Ž .S

Ž . 'By contrast, for H : � s 0.10, z s 0 y 0.10 r 0.10 � 0.90 r25 sy1.67,Ž .0 S
so 0.10 falls in the interval.
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Ž .When y s 0 and n s 25, the kernel of the likelihood function is ll � s
0Ž .25 Ž .25 Ž . Ž . Ž .� 1 y � s 1 y � . The log likelihood 1.7 is L � s 25 log 1 y � .

Ž . Ž .Note that L � s L 0 s 0. The 95% likelihood-ratio confidence interval isˆ
the set of � for which the likelihood-ratio statistic0

y2 L y L sy2 L � y L �Ž . Ž . Ž .ˆ0 1 0

sy50 log 1 y � F � 2 0.05 s 3.84.Ž . Ž .0 1

Ž .The upper bound is 1 y exp y3.84r50 s 0.074, and the confidence interval
Ž . wequals 0.0, 0.074 . In this book, we use the natural logarithm throughout, so

Ž . x xits inverse is the exponential function exp x s e . Figure 1.2 shows the
likelihood and log-likelihood functions and the corresponding confidence
region for � .

The three large-sample methods yield quite different results. When � is
near 0, the sampling distribution of � is highly skewed to the right for smallˆ
n. It is worth considering alternative methods not requiring asymptotic
approximations.

FIGURE 1.2 Binomial likelihood and log likelihood when y s 0 in n s 25 trials, and confi-
dence interval for � .
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1.4.4 Exact Small-Sample Inference*1

With modern computational power, it is not necessary to rely on large-sam-
ple approximations for the distribution of statistics such as � . Tests andˆ
confidence intervals can use the binomial distribution directly rather than its
normal approximation. Such inferences occur naturally for small samples, but
apply for any n.

We illustrate by testing H : � s 0.5 against H : � � 0.5 for the survey0 a
results on vegetarianism, y s 0 with n s 25. We noted that the score statistic
equals z sy5.0. The exact P-value for this statistic, based on the null

Ž .bin 25, 0.5 distribution, is

� � 25 25P z G 5.0 s P Y s 0 or Y s 25 s 0.5 q 0.5 s 0.00000006.Ž . Ž .

Ž .100 1 y � % confidence intervals consist of all � for which P-values0
Žexceed � in exact binomial tests. The best known interval Clopper and

.Pearson 1934 uses the tail method for forming confidence intervals. It
requires each one-sided P-value to exceed �r2. The lower and upper
endpoints are the solutions in � to the equations0

yn
n nnyk nykk k� 1 y � s �r2 and � 1 y � s �r2,Ž . Ž .Ý Ý0 0 0 0ž / ž /k kksy ks0

except that the lower bound is 0 when y s 0 and the upper bound is 1 when
y s n. When y s 1, 2, . . . , n y 1, from connections between binomial sums
and the incomplete beta function and related cumulative distribution func-

Ž .tions cdf’s of beta and F distributions, the confidence interval equals

y1 y1n y y q 1 n y y
1q ��� 1 q ,

yF 1 y �r2 y q 1 F �r2Ž . Ž . Ž .2 y , 2Ž nyyq1. 2Ž yq1. , 2Ž nyy .

Ž .where F c denotes the 1 y c quantile from the F distribution witha, b
degrees of freedom a and b. When y s 0 with n s 25, the Clopper�Pearson

Ž .95% confidence interval for � is 0.0, 0.137 .
In principle this approach seems ideal. However, there is a serious

complication. Because of discreteness, the actual coverage probability for any
Ž� is at least as large as the nominal confidence level Casella and Berger

.2001, p. 434; Neyman 1935 and it can be much greater. Similarly, for a test
of H : � s � at a fixed desired size � such as 0.05, it is not usually possible0 0
to achieve that size. There is a finite number of possible samples, and hence
a finite number of possible P-values, of which 0.05 may not be one. In testing
H with fixed � , one can pick a particular � that can occur as a P-value.0 0

1Sections marked with an asterisk are less important for an overview.
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FIGURE 1.3 Plot of coverage probabilities for nominal 95% confidence intervals for binomial
parameter � when n s 25.

For interval estimation, however, this is not an option. This is because
constructing the interval corresponds to inverting an entire range of � 0
values in H : � s � , and each distinct � value can have its own set of0 0 0
possible P-values; that is, there is not a single null parameter value � as in0
one test.

For any fixed parameter value, the actual coverage probability can be
much larger than the nominal confidence level. When n s 25, Figure 1.3
plots the coverage probabilities as a function of � for the Clopper�Pearson
method, the score method, and the Wald method. At a fixed � value with a
given method, the coverage probability is the sum of the binomial probabili-
ties of all those samples for which the resulting interval contains that � .
There are 26 possible samples and 26 corresponding confidence intervals, so
the coverage probability is a sum of somewhere between 0 and 26 binomial
probabilities. As � moves from 0 to 1, this coverage probability jumps up or
down whenever � moves into or out of one of these intervals. Figure 1.3
shows that coverage probabilities are too low for the Wald method, whereas
the Clopper�Pearson method errs in the opposite direction. The score
method behaves well, except for some � values close to 0 or 1. Its coverage
probabilities tend to be near the nominal level, not being consistently
conservative or liberal. This is a good method unless � is very close to 0 or 1
Ž .Problem 1.23 .

In discrete problems using small-sample distributions, shorter confidence
intervals usually result from inverting a single two-sided test rather than two
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one-sided tests. The interval is then the set of parameter values for which the
P-value of a two-sided test exceeds � . For the binomial parameter, see

Ž . Ž . Ž .Blaker 2000 , Blyth and Still 1983 , and Sterne 1954 for methods. For
observed outcome y , with Blaker’s approach the P-value is the minimum ofo

Ž . Ž .the two one-tailed binomial probabilities P Y G y and P Y F y plus ano o
attainable probability in the other tail that is as close as possible to, but not
greater than, that one-tailed probability. The interval is computationally

Ž .more complex, although available in software Blaker gave S-Plus functions .
The result is still conservative, but less so than the Clopper�Pearson interval.
For the vegetarianism example, the 95% confidence interval using the Blaker

Ž .exact method is 0.0, 0.128 compared to the Clopper�Pearson interval of
Ž .0.0, 0.137 .

1.4.5 Inference Based on the Mid-P-Value*

To adjust for discreteness in small-sample distributions, one can base infer-
Ž .ence on the mid-P-®alue Lancaster 1961 . For a test statistic T with observed

value t and one-sided H such that large T contradicts H ,o a 0

1mid-P-value s P T s t q P T � t ,Ž . Ž .o o2

with probabilities calculated from the null distribution. Thus, the mid-P-value
is less than the ordinary P-value by half the probability of the observed
result. Compared to the ordinary P-value, the mid-P-value behaves more like
the P-value for a test statistic having a continuous distribution. The sum of
its two one-sided P-values equals 1.0. Although discrete, under H its null0
distribution is more like the uniform distribution that occurs in the continu-
ous case. For instance, it has a null expected value of 0.5, whereas this
expected value exceeds 0.5 for the ordinary P-value for a discrete test
statistic.

Unlike an exact test with ordinary P-value, a test using the mid-P-value
does not guarantee that the probability of type I error is no greater than a

Ž .nominal value Problem 1.19 . However, it usually performs well, typically
being a bit conservative. It is less conservative than the ordinary exact test.
Similarly, one can form less conservative confidence intervals by inverting

Žtests using the exact distribution with the mid-P-value e.g., the 95% confi-
dence interval is the set of parameter values for which the mid-P-value

.exceeds 0.05 .
For testing H : � s 0.5 against H : � � 0.5 in the example about the0 a

proportion of vegetarians, with y s 0 for n s 25, the result observed is the
most extreme possible. Thus the mid-P-value is half the ordinary P-value, or
0.00000003. Using the Clopper�Pearson inversion of the exact binomial test

Ž .but with the mid-P-value yields a 95% confidence interval of 0.000, 0.113
Ž .for � , compared to 0.000, 0.137 for the ordinary Clopper�Pearson interval.

The mid-P-value seems a sensible compromise between having overly
conservative inference and using irrelevant randomization to eliminate prob-
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lems from discreteness. We recommend it both for tests and confidence
intervals with highly discrete distributions.

1.5 STATISTICAL INFERENCE FOR MULTINOMIAL PARAMETERS

� 4We now present inference for multinomial parameters � . Of n observa-j
tions, n occur in category j, j s 1, . . . , c.j

1.5.1 Estimation of Multinomial Parameters

� 4 � 4First, we obtain ML estimates of � . As a function of � , the multinomialj j
Ž .probability mass function 1.2 is proportional to the kernel

� n j where all � G 0 and � s 1. 1.14Ž .Ł Ýj j j
j j

� 4 Ž .The ML estimates are the � that maximize 1.14 .j
The multinomial log-likelihood function is

L � s n log � .Ž . Ý j j
j

Ž .To eliminate redundancies, we treat L as a function of � , . . . , � , since1 cy1
Ž .� s 1 y � q ��� q� . Thus, 	� r	� sy1, j s 1, . . . , c y 1.c 1 cy1 c j

Since

	 log � 1 	� 1c c
s sy ,

	� � 	� �j c j c

Ž .differentiating L � with respect to � gives the likelihood equationj

	 L � n nŽ . j c
s y s 0 .

	� � �j j c

The ML solution satisfies � r� s n rn . Nowˆ ˆj c j c

� nˆ Ýc jž / � nˆj c
� s 1 s s ,ˆÝ j n nc cj

so � s n rn and then � s n rn. From general results presented later inˆ ˆc c j j
Ž .the book Section 8.6 , this solution does maximize the likelihood. Thus, the

� 4ML estimates of � are the sample proportions.j
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1.5.2 Pearson Statistic for Testing a Specified Multinomial

In 1900 the eminent British statistician Karl Pearson introduced a hypothesis
test that was one of the first inferential methods. It had a revolutionary
impact on categorical data analysis, which had focused on describing associa-
tions. Pearson’s test evaluates whether multinomial parameters equal certain
specified values. His original motivation in developing this test was to analyze
whether possible outcomes on a particular Monte Carlo roulette wheel were

Ž .equally likely Stigler 1986 .
Consider H : � s � , j s 1, . . . , c, where Ý � s 1. When H is true,0 j j0 j j0 0

� 4the expected values of n , called expected frequencies, are � s n� , j sj j j0
1, . . . , c. Pearson proposed the test statistic

2n y �Ž .j j2X s . 1.15Ž .Ý
� jj

� 4 2 2Greater differences n y � produce greater X values, for fixed n. Let Xj j o
2 Ž 2denote the observed value of X . The P-value is the null value of P X G

2 .X . This equals the sum of the null multinomial probabilities of all counto
Ž . 2 2arrays having a sum of n with X G X .o

For large samples, X 2 has approximately a chi-squared distribution with
Ž 2 2 . 2df s c y 1. The P-value is approximated by P � G X , where �cy1 o cy1

Ž .denotes a chi-squared random variable with df s c y 1. Statistic 1.15 is
called the Pearson chi-squared statistic.

1.5.3 Example: Testing Mendel’s Theories

Among its many applications, Pearson’s test was used in genetics to test
Mendel’s theories of natural inheritance. Mendel crossed pea plants of pure
yellow strain with plants of pure green strain. He predicted that second-gen-
eration hybrid seeds would be 75% yellow and 25% green, yellow being the
dominant strain. One experiment produced n s 8023 seeds, of which n s1
6022 were yellow and n s 2001 were green. The expected frequencies for2

Ž .H : � s 0.75, � s 0.25 are � s 8023 0.75 s 6017.25 and � s 2005.75.0 10 20 1 2
2 Ž .The Pearson statistic X s 0.015 df s 1 has a P-value of P s 0.90. This

does not contradict Mendel’s hypothesis.
Mendel performed several experiments of this type. In 1936, R. A. Fisher

summarized Mendel’s results. He used the reproductive property of chi-
squared: If X 2, . . . , X 2 are independent chi-squared statistics with degrees1 k
of freedom � , . . . , � , then Ý X 2 has a chi-squared distribution with df s1 k i i
Ý � . Fisher obtained a summary chi-squared statistic equal to 42, withi i
df s 84. A chi-squared distribution with df s 84 has mean 84 and standard

Ž .1r2deviation 2 � 84 s 13.0, and the right-tailed probability above 42 is
P s 0.99996. In other words, the chi-squared statistic was so small that the fit
seemed too good.
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Fisher commented: ‘‘The general level of agreement between Mendel’s
expectations and his reported results shows that it is closer than would be
expected in the best of several thousand repetitions . . . . I have no doubt
that Mendel was deceived by a gardening assistant, who knew only too well
what his principal expected from each trial made.’’ In a letter written at the

Ž .time see Box 1978, p. 297 , he stated: ‘‘Now, when data have been faked,
I know very well how generally people underestimate the frequency of wide
chance deviations, so that the tendency is always to make them agree too well
with expectations.’’ In summary, goodness-of-fit tests can reveal not only
when a fit is inadequate, but also when it is better than random fluctuations

w Žwould have us expect. R. A. Fisher’s daughter, Joan Fisher Box 1978,
. Ž .pp. 295�300 , and Freedman et al. 1978, pp. 420�428, 478 discussed

Fisher’s analysis of Mendel’s data and the accompanying controversy. Despite
possible difficulties with Mendel’s data, subsequent work led to general

xacceptance of his theories.

1.5.4 Chi-Squared Theoretical Justification*

We now outline why Pearson’s statistic has a limiting chi-squared distribu-
Ž .tion. For a multinomial sample n , . . . , n of size n, the marginal distribu-1 c

Ž .tion of n is the bin n,� distribution. For large n, by the normal approxima-j j
Ž .tion to the binomial, n and � s n rn have approximate normal distribu-ˆj j j

tions. More generally, by the central limit theorem, the sample proportions
Ž .�� s n rn, . . . , n rn have an approximate multivariate normal distribu-ˆ 1 cy1 'Ž .tion Section 14.1.4 . Let � denote the null covariance matrix of n �, andˆ0

� 'Ž . Ž .let � s � , . . . , � . Under H , since n � y � converges to aˆ0 10 cy1,0 0 0
Ž .N 0, � distribution, the quadratic form0

� y1n � y � � � y � 1.16Ž .Ž . Ž .ˆ ˆ0 0 0

has distribution converging to chi-squared with df s c y 1.
'In Section 14.1.4 we show that the covariance matrix of n � has elementsˆ

y� � if j � kj k
� s .jk ½ � 1 y � if j s kŽ .j j

y1 Ž . Ž .The matrix � has j, k th element 1r� when j � k and 1r� q 1r�0 c0 j0 c0
Ž y1when j s k. You can verify this by showing that � � equals the identity0 0

. Žmatrix. With this substitution, direct calculation with appropriate combining
. Ž . 2of terms shows that 1.16 simplifies to X . In Section 14.3 we provide a

formal proof in a more general setting.
Ž .This argument is similar to Pearson’s in 1900. R. A. Fisher 1922 gave a

Ž .simpler justification, the gist of which follows: Suppose that n , . . . , n are1 c
Ž .independent Poisson random variables with means � , . . . , � . For large1 c
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� 4 � Ž . 4� , the standardized values z s n y � r � have approximate stan-'j j j j j

dard normal distributions. Thus, Ý z 2 s X 2 has an approximate chi-squaredj j
distribution with c degrees of freedom. Adding the single linear constraint

Ž .Ý n y � s 0, thus converting the Poisson distributions to a multinomial,j j j
we lose a degree of freedom.

When c s 2, Pearson’s X 2 simplifies to the square of the normal score
Ž .statistic 1.11 . For Mendel’s data, � s 6022r8023, � s 0.75, n s 8023,ˆ1 10

2 Ž .2and z s 0.123, for which X s 0.123 s 0.015. In fact, for general c theS
Pearson test is the score test about multinomial parameters.

1.5.5 Likelihood-Ratio Chi-Squared

An alternative test for multinomial parameters uses the likelihood-ratio test.
Ž .The kernel of the multinomial likelihood is 1.14 . Under H the likelihood is0

maximized when � s � . In the general case, it is maximized when � sˆ ˆj j0 j
n rn. The ratio of the likelihoods equalsj

n jŁ �Ž .j j0
� s .n jŁ n rnŽ .j j

Thus, the likelihood-ratio statistic, denoted by G2, is

G2 sy2 log� s 2 n log n rn� . 1.17Ž .Ž .Ý j j j0

Ž .This statistic, which has form 1.12 , is called the likelihood-ratio chi-squared
statistic. The larger the value of G2, the greater the evidence against H .0

� 4In the general case, the parameter space consists of � subject toj
� 4Ý � s 1, so the dimensionality is c y 1. Under H , the � are specifiedj j 0 j

completely, so the dimension is 0. The difference in these dimensions equals
Ž . 2c y 1 . For large n, G has a chi-squared null distribution with df s c y 1.

When H holds, the Pearson X 2 and the likelihood ratio G2 both have0
asymptotic chi-squared distributions with df s c y 1. In fact, they are asymp-
totically equivalent in that case; specifically, X 2 y G2 converges in probabil-

Ž .ity to zero Section 14.3.4 . When H is false, they tend to grow proportion-0
ally to n; they need not take similar values, however, even for very large n.

For fixed c, as n increases the distribution of X 2 usually converges to
chi-squared more quickly than that of G2. The chi-squared approximation
is usually poor for G2 when nrc � 5. When c is large, it can be decent for
X 2 for nrc as small as 1 if the table does not contain both very small and
moderately large expected frequencies. We provide further guidelines in
Section 9.8.4. Alternatively, one can use the multinomial probabilities

Ž .to generate exact distributions of these test statistics Good et al. 1970 .
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1.5.6 Testing with Estimated Expected Frequencies
2 Ž .Pearson’s X 1.15 compares a sample distribution to a hypothetical one

� 4 � Ž .4� . In some applications, � s � � are functions of a smaller set ofj0 j0 j0
ˆunknown parameters �. ML estimates � of � determine ML estimates

ˆ ˆ� Ž .4 � 4 � Ž .4� � of � and hence ML estimates � s n� � of expected frequen-ˆj0 j0 j j0
2 � 4 � 4 2cies in X . Replacing � by estimates � affects the distribution of X .ˆj j
Ž . Ž . Ž .When dim � s p, the true df s c y 1 y p Section 14.3.3 . Pearson failed

Ž .to realize this Section 16.2 .
We now show a goodness-to-fit test with estimated expected frequencies.

A sample of 156 dairy calves born in Okeechobee County, Florida, were
classified according to whether they caught pneumonia within 60 days of
birth. Calves that got a pneumonia infection were also classified according to
whether they got a secondary infection within 2 weeks after the first infection
cleared up. Table 1.1 shows the data. Calves that did not get a primary
infection could not get a secondary infection, so no observations can fall in
the category for ‘‘no’’ primary infection and ‘‘yes’’ secondary infection. That
combination is called a structural zero.

A goal of this study was to test whether the probability of primary
infection was the same as the conditional probability of secondary infection,
given that the calf got the primary infection. In other words, if � denotesab
the probability that a calf is classified in row a and column b of this table,
the null hypothesis is

H : � q � s � r � q �Ž .0 11 12 11 11 12

Ž .2or � s � q � . Let � s � q � denote the probability of primary11 11 12 11 12
infection. The null hypothesis states that the probabilities satisfy the struc-
ture that Table 1.2 shows; that is, probabilities in a trinomial for the

Ž .categories yes�yes, yes�no, no�no for primary�secondary infection equal
Ž 2 Ž . .� , � 1 y � , 1 y � .

Ž .Let n denote the number of observations in category a, b . The MLab
estimate of � is the value maximizing the kernel of the multinomial likeli-
hood

n n n11 12 222 2� � y � 1 y � .Ž . Ž . Ž .

TABLE 1.1 Primary and Secondary Pneumonia Infections in Calves
aSecondary Infection

Primary Infection Yes No

Ž . Ž .Yes 30 38.1 63 39.0
Ž . Ž .No 0 � 63 78.9

Source: Data courtesy of Thang Tran and G. A. Donovan, College of Veterinary Medicine,
University of Florida.
aValues in parentheses are estimated expected frequencies.
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TABLE 1.2 Probability Structure for Hypothesis

Secondary Infection

Primary
Infection Yes No Total

2 Ž .Yes � � 1 y � �
No � 1 y � 1 y �

The log likelihood is

L � s n log � 2 q n log � y � 2 q n log 1 y � .Ž . Ž . Ž .11 12 22

Differentiation with respect to � gives the likelihood equation

2n n n n11 12 12 22
q y y s 0.

� � 1 y � 1 y �

The solution is

� s 2n q n r 2n q 2n q n .Ž . Ž .ˆ 11 12 11 12 22

For Table 1.1, � s 0.494. Since n s 156, the estimated expected frequen-ˆ
2 Ž 2 . Ž .cies are � s n� s 38.1, � s n � y � s 39.0, and � s n 1 y � sˆ ˆ ˆ ˆ ˆ ˆ ˆ11 12 22

78.9. Table 1.1 shows them. Pearson’s statistic is X 2 s 19.7. Since the c s 3
Ž .possible responses have p s 1 parameter � determining the expected

Ž . Žfrequencies, df s 3 y 1 y 1 s 1. There is strong evidence against H P s0
.0.00001 . Inspection of Table 1.1 reveals that many more calves got a primary

infection but not a secondary infection than H predicts. The researchers0
concluded that the primary infection had an immunizing effect that reduced
the likelihood of a secondary infection.

NOTES

Section 1.1: Categorical Response Data

Ž . Ž .1.1. Stevens 1951 defined nominal, ordinal, interval scales of measurement. Other scales
result from mixtures of these types. For instance, partially ordered scales occur when
subjects respond to questions having categories ordered except for don’t know or undecided
categories.

Section 1.3: Statistical Inference for Categorical Data

ˆ1.2. The score method does not use �. Thus, when � is a model parameter, one can usually
compute the score statistic for testing H : � s � without fitting the model. This is0 0
advantageous when fitting several models in an exploratory analysis and model fitting is
computationally intensive. An advantage of the score and likelihood-ratio methods is that
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ˆ� �they apply even when � s �. In that case, one cannot compute the Wald statistic.
Another disadvantage of the Wald method is that its results depend on the parameteriza-

ˆtion; inference based on � and its SE is not equivalent to inference based on a nonlinear
ˆfunction of it, such as log � and its SE.

Section 1.4: Statistical Inference for Binomial Parameters

Ž . Ž . Ž .1.3. Among others, Agresti and Coull 1998 , Blyth and Still 1983 , Brown et al. 2001 , Ghosh
Ž . Ž .1979 , and Newcombe 1998a showed the superiority of the score interval to the Wald

Ž .interval for � . Of the ‘‘exact’’ methods, Blaker’s 2000 has particularly good properties. It is
contained in the Clopper�Pearson interval and has a nestedness property whereby an
interval of higher nominal confidence level necessarily contains one of lower level.

1.4. Using continuity corrections with large-sample methods provides approximations to exact
small-sample methods. Thus, they tend to behave conservatively. We do not present them,
since if one prefers an exact method, with modern computational power it can be used
directly rather than approximated.

1.5. In theory, one can eliminate problems with discreteness in tests by performing a supplemen-
Ž .tary randomization on the boundary of a critical region see Problem 1.19 . In rejecting the

null at the boundary with a certain probability, one can obtain a fixed overall type I error
probability � even when it is not an achievable P-value. For such randomization, the
one-sided P y value is

randomized P-value s U � P T s t q P T � t ,Ž . Ž .o o

Ž . Ž .where U denotes a uniform 0, 1 random variable Stevens 1950 . In practice, this is not
used, as it is absurd to let this random number influence a decision. The mid P-value

Ž .replaces the arbitrary uniform multiple U � P T s t by its expected value.o

Section 1.5: Statistical Inference for Multinomial Parameters

Ž .1r21.6. The chi-squared distribution has mean df, variance 2 df, and skewness 8rdf . It is
Ž .approximately normal when df is large. Greenwood and Nikulin 1996 , Kendall and Stuart

Ž . Ž . Ž .1979 , and Lancaster 1969 presented other properties. Cochran 1952 presented a
Ž .historical survey of chi-squared tests of fit. See also Cressie and Read 1989 , Koch and

Ž . Ž . Ž .Bhapkar 1982 , Koehler 1998 , and Moore 1986b .

PROBLEMS

Applications

1.1 Identify each variable as nominal, ordinal, or interval.
Ža. UK political party preference Labour, Conservative, Social Demo-

.crat
Ž .b. Anxiety rating none, mild, moderate, severe, very severe
Ž .c. Patient survival in number of months
Ž .d. Clinic location London, Boston, Madison, Rochester, Montreal
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Že. Response of tumor to chemotherapy complete elimination, partial
.reduction, stable, growth progression

Ž .f. Favorite beverage water, juice, milk, soft drink, beer, wine
Žg. Appraisal of company’s inventory level too low, about right, too

.high

1.2 Each of 100 multiple-choice questions on an exam has four possible
answers, one of which is correct. For each question, a student guesses
by selecting an answer randomly.
a. Specify the distribution of the student�s number of correct answers.
b. Find the mean and standard deviation of that distribution. Would it

be surprising if the student made at least 50 correct responses?
Why?

Ž .c. Specify the distribution of n , n , n , n , where n is the number1 2 3 4 j
of times the student picked choice j.

Ž . Ž . Ž . Ž .d. Find E n , var n , cov n , n , and corr n , n .j j j k j k

1.3 An experiment studies the number of insects that survive a certain
dose of an insecticide, using several batches of insects of size n each.
The insects are sensitive to factors that vary among batches during the
experiment but were not measured, such as temperature level. Explain
why the distribution of the number of insects per batch surviving the

Ž .experiment might show overdispersion relative to a bin n, � distribu-
tion.

1.4 In his autobiography A Sort of Life, British author Graham Greene
described a period of severe mental depression during which he played
Russian Roulette. This ‘‘game’’ consists of putting a bullet in one of
the six chambers of a pistol, spinning the chambers to select one at
random, and then firing the pistol once at one’s head.
a. Greene played this game six times and was lucky that none of them

resulted in a bullet firing. Find the probability of this outcome.
b. Suppose that he had kept playing this game until the bullet fired.

Let Y denote the number of the game on which it fires. Show the
probability mass function for Y, and justify.

1.5 Consider the statement, ‘‘Please tell me whether or not you think it
should be possible for a pregnant woman to obtain a legal abortion if
she is married and does not want any more children.’’ For the 1996
General Social Survey, conducted by the National Opinion Research

Ž .Center NORC , 842 replied ‘‘yes’’ and 982 replied ‘‘no.’’ Let � denote
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the population proportion who would reply ‘‘yes.’’ Find the P-value for
testing H : � s 0.5 using the score test, and construct a 95% confi-0
dence interval for � . Interpret the results.

1.6 Refer to the vegetarianism example in Section 1.4.3. For testing
H : � s 0.5 against H : � � 0.5, show that:0 a

w Ž .xa. The likelihood-ratio statistic equals 2 25log 25r12.5 s 34.7.
b. The chi-squared form of the score statistic equals 25.0.
c. The Wald z or chi-squared statistic is infinite.

1.7 In a crossover trial comparing a new drug to a standard, � denotes the
probability that the new one is judged better. It is desired to estimate
� and test H : � s 0.5 against H : � � 0.5. In 20 independent0 a
observations, the new drug is better each time.
a. Find and sketch the likelihood function. Give the ML estimate of

� .
b. Conduct a Wald test and construct a 95% Wald confidence interval

for � . Are these sensible?
c. Conduct a score test, reporting the P-value. Construct a 95% score

confidence interval. Interpret.
d. Conduct a likelihood-ratio test and construct a likelihood-based

95% confidence interval. Interpret.
e. Construct an exact binomial test and 95% confidence interval.

Interpret.
f. Suppose that researchers wanted a sufficiently large sample to

estimate the probability of preferring the new drug to within 0.05,
with confidence 0.95. If the true probability is 0.90, about how large
a sample is needed?

1.8 In an experiment on chlorophyll inheritance in maize, for 1103 seedlings
of self-fertilized heterozygous green plants, 854 seedlings were green
and 249 were yellow. Theory predicts the ratio of green to yellow is 3:1.
Test the hypothesis that 3:1 is the true ratio. Report the P-value, and
interpret.

1.9 Table 1.3 contains Ladislaus von Bortkiewicz’s data on deaths of
Žsoldiers in the Prussian army from kicks by army mules Fisher 1934;

.Quine and Seneta 1987 . The data refer to 10 army corps, each
observed for 20 years. In 109 corps-years of exposure, there were no
deaths, in 65 corps-years there was one death, and so on. Estimate the
mean and test whether probabilities of occurrences in these five

Ž .categories follow a Poisson distribution truncated for 4 and above.
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TABLE 1.3 Data for Problem 1.9

Number of Number of
Deaths Corps-Years

0 109
1 65
2 22
3 3
4 1

G 5 0

1.10 A sample of 100 women suffer from dysmenorrhea. A new analgesic is
claimed to provide greater relief than a standard one. After using each
analgesic in a crossover experiment, 40 reported greater relief with the
standard analgesic and 60 reported greater relief with the new one.
Analyze these data.

Theory and Methods

1.11 Why is it easier to get a precise estimate of the binomial parameter �
1when it is near 0 or 1 than when it is near ?2

Ž . Ž . � 41.12 Suppose that P Y s 1 s 1 y P Y s 0 s � , i s 1, . . . , n, where Yi i i
are independent. Let Y sÝ Y .i i

Ž .a. What are var Y and the distribution of Y ?
� 4b. When Y instead have pairwise correlation � � 0, show thati

Ž . Ž . wvar Y � n� 1 y � , overdispersion relative to the binomial. Al-
Ž .tham 1978 discussed generalizations of the binomial that allow

xcorrelated trials.
Ž � .c. Suppose that heterogeneity exists: P Y s 1 � s � for all i, but �i

Ž . w xis a random variable with density function g � on 0, 1 having mean
Ž . Ž . Ž� and positive variance. Show that var Y � n� 1 y � . When �

has a beta distribution, Y has the beta-binomial distribution of
.Section 13.3.

Ž � . � 4d. Suppose that P Y s 1 � s � , i s 1, . . . , n, where � are inde-i i i i
Ž . Ž .pendent from g � . Explain why Y has a bin n, � distribution

� 4 Žunconditionally but not conditionally on � . Hint: In each case, isi
.Y a sum of independent, identical Bernoulli trials?

1.13 For a sequence of independent Bernoulli trials, Y is the number of
successes before the k th failure. Explain why its probability mass
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function is the negati®e binomial,

y q k y 1 !Ž . kyp y s � 1 y � , y s 0, 1, 2, . . . .Ž . Ž .
y! k y 1 !Ž .

w Ž . Ž . Ž . Ž .2 Ž .For it, E Y s k�r 1 y � and var Y s k�r 1 y � , so var Y �
Ž . xE Y ; the Poisson is the limit as k ™ � and � ™ 0 with k� s � fixed.

1.14 For the multinomial distribution, show that

corr n , n sy� � r � 1 y � � 1 y � .Ž . Ž .Ž .'j k j k j j k k

Ž .Show that corr n , n sy1 when c s 2.1 2

Ž .1.15 Show that the moment generating function mgf for the binomial
Ž . Ž t.ndistribution is m t s 1 y � q � e , and use it to obtain the first

two moments. Show that the mgf for the Poisson distribution is
Ž . Ž w Ž . x4m t s exp � exp t y 1 , and use it to obtain the first two moments.

1.16 A likelihood-ratio statistic equals t . At the ML estimates, show thato
Ž .the data are exp t r2 times more likely under H than under H .o a 0

1.17 Assume that y , y , . . . , y are independent from a Poisson distribu-1 2 n
tion.
a. Obtain the likelihood function. Show that the ML estimator � s y.ˆ

( )b. Construct a large-sample test statistic for H : � s � using i the0 0
( ) ( )Wald method, ii the score method, and iii the likelihood-ratio

method.
( )c. Construct a large-sample confidence interval for � using i the

( ) ( )Wald method, ii the score method, and iii the likelihood-ratio
method.

1.18 Inference for Poisson parameters can often be based on connections
with binomial and multinomial distributions. Show how to test
H : � s � for two populations based on independent Poisson counts0 1 2
Ž .y , y , using a corresponding test about a binomial parameter � .1 2
w Ž . xHint: Condition on n s y q y and identify � s � r � q � .1 2 1 1 2
How can one construct a confidence interval for � r� based on one1 2
for � ?

Ž .1.19 A researcher routinely tests using a nominal P type I error s 0.05,
rejecting H if the P-value F 0.05. An exact test using test statistic T0
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Ž . Ž . Ž .has null distribution P T s 0 s 0.30, P T s 1 s 0.62, and P T s 2
s 0.08, where a higher T provides more evidence against the null.

Ž .a. With the usual P-value, show that the actual P type I error s 0.
Ž .b. With the mid-P-value, show that the actual P type I error s 0.08.

Ž . Ž . Ž . Ž .c. Find P type I error in parts a and b when P T s 0 s 0.30,
Ž . Ž .P T s 1 s 0.66, P T s 2 s 0.04. Note that the test with mid-

P-value can be conservative or liberal. The exact test with ordinary
P-value cannot be liberal.

Ž .d. In part a , a randomized-decision test generates a uniform random
5w xvariable U from 0, 1 and rejects H when T s 2 and U F . Show0 8

Ž .the actual P type I error s 0.05. Is this a sensible test?

1.20 For a binomial parameter � , show how the inversion process for
Ž . Ž .constructing a confidence interval works with a the Wald test, and b

the score test.

1.21 For a flip of a coin, let � denote the probability of a head. An
experiment tests H : � s 0.5 against H : � � 0.5, using n s 5 inde-0 a
pendent flips.
a. Show that the true null probability of rejecting H at the 0.050

1significance level is 0.0 for the exact binomial test and using the16

large-sample score test.
b. Suppose that truly � s 0.5. Explain why the probability that the

95% Clopper�Pearson confidence interval contains � equals 1.0.
ŽHint: Is there any possible y for which both one-sided tests of

.H : � s 0.5 have P-value F 0.025?0

1.22 Consider the Wald confidence interval for a binomial parameter � .
Since it is degenerate when � s 0 or 1, argue that for 0 � � � 1 theˆ

w n Ž .n xprobability the interval covers � cannot exceed 1 y � y 1 y � ;
hence, the infimum of the coverage probability over 0 � � � 1 equals
0, regardless of n.

1.23 Consider the 95% binomial score confidence interval for � . When
y s 1, show that the lower limit is approximately 0.18rn; in fact,
0 � � � 0.18rn then falls in an interval only when y s 0. Argue that
for large n and � just barely below 0.18rn or just barely above
1 y 0.18rn, the actual coverage probability is about ey0.18 s 0.84.
Hence, even as n ™ �, this method is not guaranteed to have coverage

Ž .probability G 0.95 Agresti and Coull 1998; Blyth and Still 1983 .

1.24 From Section 1.4.2 the midpoint � of the score confidence interval for˜
� is the sample proportion for an adjusted data set that adds z 2 r2�r2
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observations of each type to the sample. This motivates an adjusted
Wald interval,

2'� � z � 1 y � rn* , where n* s n q z .Ž .˜ ˜ ˜�r2 �r2

Ž .Show that the variance � 1 y � rn* at the weighted average is at˜ ˜
least as large as the weighted average of the variances that appears

Žunder the square root sign in the score interval Hint: Use Jensen’s
. winequality . Thus, this interval contains the score interval. Agresti and

Ž . Ž .Coull 1998 and Brown et al. 2001 showed that it performs much
better than the Wald interval. It does not have the score interval’s

Ž . xdisadvantage Problem 1.23 of poor coverage near 0 and 1.

1.25 A binomial sample of size n has y s 0 successes.
a. Show that the confidence interval for � based on the likelihood

w Ž 2 .xfunction is 0.0, 1 y exp yz r2n . For � s 0.05, use the expan-�r2
sion of an exponential function to show that this is approximately
w x0, 2rn .

b. For the score method, show that the confidence interval is
w 2 Ž 2 .x w Ž .x0, z r n q z , or approximately 0, 4r n q 4 when � s 0.05.�r2 �r2

c. For the Clopper�Pearson approach, show that the upper bound is
Ž .1r n Ž .1 y �r2 , or approximately ylog 0.025 rn s 3.69rn when �

s 0.05.
d. For the adaptation of the Clopper�Pearson approach using the

mid-P-value, show that the upper bound is 1 y � 1r n, or approxi-
Ž .mately ylog 0.05 rn s 3rn when � s 0.05.

Ž . yŽ .1.26 For the geometric distribution p y s � 1 y � , y s 0, 1, 2, . . . ,
show that the tail method for constructing a confidence interval
w Ž . Ž . x wŽ .1r yi.e., equating P Y G y and P Y F y to �r2 yields �r2 ,
Ž .1rŽ yq1. x1 y �r2 . Show that all � between 0 and 1 y �r2 ne®er fall
above a confidence interval, and hence the actual coverage probability
exceeds 1 y �r2 over this region.

Ž . Ž .1.27 A statistic T has discrete distribution with cdf F t . Show that F T is
w xstochastically larger than uniform over 0, 1 ; that is, its cdf is every-

Žwhere no greater than that of the uniform Casella and Berger 2001,
.pp. 77, 434 . Explain why an implication is that a P-value based on T

has null distribution that is stochastically larger than uniform.

Ž . Ž .1.28 Suppose that P T s t s � , j s 1, . . . . Show that E mid-P-value sj j
w Ž . Ž .2 x0.5. Hint: Show that Ý � � r2 q � q ��� s Ý � r2.j j j jq1 j j
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Ž . Ž . Ž .1.29 For a statistic T with cdf F t and p t s P T s t , the mid-distribu-
Ž . Ž . Ž . Ž .tion function is F t s F t y 0.5 p t Parzen 1997 . Given T s t ,mid o

Ž . Žshow that the mid-P-value equals 1 y F t . It also satisfieso
w Ž .x w Ž .x Ž .� w 2Ž .x4 .E F T s 0.5 and var F T s 1r12 1 y E p T .mid mid

w 2 Ž .1.30 Genotypes AA, Aa, and aa occur with probabilities � , 2� 1 y � ,
Ž .2 x Ž .1 y � . A multinomial sample of size n has frequencies n , n , n1 2 3
of these three genotypes.

ˆ Ž . Ža. Form the log likelihood. Show that � s 2n q n r 2n q 2n q1 2 1 2
.2n .3

2 Ž . 2 wŽ . 2 x wŽ .b. Show that y	 L � r	� s 2 n q n r� q n q 2 n r1 2 2 3
Ž .2 x Ž .1 y � and that its expectation is 2nr� 1 y � . Use this to

ˆobtain an asymptotic standard error of � .
c. Explain how to test whether the probabilities truly have this

pattern.

1.31 Refer to Section 1.5.6. Using the likelihood function to obtain the
information, find the approximate standard error of � .ˆ

1.32 Refer to Section 1.5.6. Let a denote the number of calves that got a
primary, secondary, and tertiary infection, b the number that received
a primary and secondary but not a tertiary infection, c the number that
received a primary but not a secondary infection, and d the number
that did not receive a primary infection. Let � be the probability of a
primary infection. Consider the hypothesis that the probability of
infection at time t, given infection at times 1, . . . , t y 1, is also � , for

Ž . Ž .t s 2, 3. Show that � s 3a q 2b q c r 3a q 3b q 2c q d .ˆ

Ž .1.33 Refer to quadratic form 1.16 .
a. Verify that the matrix quoted in the text for �y1 is the inverse of0

� .0

Ž . Ž .b. Show that 1.16 simplifies to Pearson’s statistic 1.15 .
Ž . 2 2c. For the z statistic 1.11 , show that z s X for c s 2.S S

1.34 For testing H : � s � , j s 1, . . . , c, using sample multinomial pro-0 j j0
� 4 Ž .portions � , the likelihood-ratio statistic 1.17 isˆ j

G2 sy2n � log � r� .ˆ ˆŽ .Ý j j0 j
j

2 ŽShow that G G 0, with equality if and only if � s � for all j. Hint:ˆ j j0
Ž .Apply Jensen’s inequality to E y2n log X , where X equals � r�̂j0 j

.with probability � .ˆ j
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1y� r2Ž . Ž . � �1.35 The chi-squared mgf with df s � is m t s 1 y 2 t , for t � .2

Use it to prove the reproductive property of the chi-squared distribu-
tion.

Ž � 4.1.36 For the multinomial n, � distribution with c � 2, confidence limitsj
for � are the solutions ofj

2 2
� y � s z � 1 y � rn , j s 1, . . . , c.Ž .ˆ Ž .Ž .j j �r2 c j j

a. Using the Bonferroni inequality, argue that these c intervals simul-
� 4 Ž .taneously contain all � for large samples with probability atj

least 1 y � .
w Žb. Show that the standard deviation of � y � is � q � y � yˆ ˆj k j k j

.2 x� rn. For large n, explain why the probability is at least 1 y �k
that the Wald confidence intervals

1r22
� y � � z � q � y � y � rnˆ ˆ ˆ ˆ ˆ ˆŽ . Ž .½ 5j k �r2 a j k j k

Ž . � 4simultaneously contain the a s c c y 1 r2 differences � y �j k
Ž .see Fitzpatrick and Scott 1987; Goodman 1965 .
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Describing Contingency Tables

In this chapter we introduce tables that display relationships between
categorical variables. We also define parameters that summarize their associ-
ation. Parameters in Section 2.2 are used to compare groups on the propor-
tions of responses in the outcome categories. The odds ratio has special
importance, appearing as a parameter in models discussed later. In Section
2.3 we extend the scope by controlling for a third variable. The association
can change dramatically under a control. The chapter’s primary focus is
binary variables, which have only two categories, but in Section 2.4 we
present parameters for nominal and ordinal multicategory variables. First, in
Section 2.1, we introduce basic terminology and notation.

2.1 PROBABILITY STRUCTURE FOR CONTINGENCY TABLES

The joint distribution between two categorical variables determines their
relationship. This distribution also determines the marginal and conditional
distributions.

2.1.1 Contingency Tables and Their Distributions

Let X and Y denote two categorical response variables, X with I categories
and Y with J categories. Classifications of subjects on both variables have IJ

Ž .possible combinations. The responses X, Y of a subject chosen randomly
from some population have a probability distribution. A rectangular table
having I rows for categories of X and J columns for categories of Y displays
this distribution. The cells of the table represent the IJ possible outcomes.
When the cells contain frequency counts of outcomes for a sample, the table

Ž .is called a contingency table, a term introduced by Karl Pearson 1904 .
Another name is cross-classification table. A contingency table with I rows

Ž .and J columns is called an I � J or I-by-J table.

36
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TABLE 2.1 Cross-Classification of Aspirin Use and
Myocardial Infarction

Myocardial Infarction

Fatal Nonfatal No
Attack Attack Attack

Placebo 18 171 10,845
Aspirin 5 99 10,933

Source: Preliminary report: Findings from the aspirin com-
ponent of the ongoing Physicians’ Health Study. New Engl.

Ž .J. Med. 318: 262�264 1988 .

Table 2.1, a 2 � 3 contingency table, is from a report on the relationship
between aspirin use and heart attacks by the Physicians’ Health Study
Research Group at Harvard Medical School. The Physicians’ Health Study
was a 5-year randomized study of whether regular aspirin intake reduces
mortality from cardiovascular disease. Every other day, physicians participat-
ing in the study took either one aspirin tablet or a placebo. The study was
blind�those in the study did not know whether they were taking aspirin or a
placebo. Of the 11,034 physicians taking a placebo, 18 suffered fatal heart
attacks over the course of the study, whereas of the 11,037 taking aspirin, 5
had fatal heart attacks.

Ž .Let � denote the probability that X, Y occurs in the cell in row i andi j
� 4column j. The probability distribution � is the joint distribution of X andi j

Y. The marginal distributions are the row and column totals that result from
� 4summing the joint probabilities. We denote these by � for the rowiq

� 4variable and � for the column variable, where the subscript ‘‘q’’ denotesqj
the sum over that index; that is,

� s � and � s � .Ý Ýiq i j qj i j
j i

These satisfy Ý � sÝ � sÝ Ý � s 1.0. The marginal distributionsi iq j qj i j i j
provide single-variable information.

Ž .In most contingency tables such as Table 2.1 , one variable, say Y, is a
Ž .response variable and the other X is an explanatory variable. When X is

fixed rather than random, the notion of a joint distribution for X and Y is no
longer meaningful. However, for a fixed category of X, Y has a probability
distribution. It is germane to study how this distribution changes as the
category of X changes. Given that a subject is classified in row i of X, � j � i
denotes the probability of classification in column j of Y, j s 1, . . . , J. Note

� 4that Ý � s 1. The probabilities � , . . . , � form the conditional distribu-j j � i 1 � i J � i
tion of Y at category i of X. A principal aim of many studies is to compare
conditional distributions of Y at various levels of explanatory variables.
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TABLE 2.2 Estimated Conditional Distributions for
Breast Cancer Diagnoses

Diagnosis of TestBreast
Cancer Positive Negative Total

Yes 0.82 0.18 1.0
No 0.01 0.99 1.0

Source: Data from W. Lawrence et al., J. Natl. Cancer Inst.
Ž .90: 1792�1800 1998 .

2.1.2 Sensitivity and Specificity

The results in Table 2.2 are from a recent article about various methods of
attempting to diagnose breast cancer. Based on a literature survey, the
authors reported these results for the impact of using mammography to-

Žgether with clinical breast examination. Let X s true disease status i.e.,
.whether a woman truly has breast cancer and let Y s diagnosis

Ž .positive, negative , where a positive outcome predicts that a woman has
breast cancer. The probabilities estimated in Table 2.2 are conditional
probabilities of Y given X.

With diagnostic tests for a disease, the two correct diagnoses are a positive
test outcome when the subject has the disease and a negative test outcome
when a subject does not have it. Given that the subject has the disease, the
conditional probability that the diagnostic test is positive is called the
sensiti®ity; given that the subject does not have the disease, the conditional

Ž .probability that the test is negative is called the specificity Yerushalmy 1947 .
Ideally, these are both high.

For a 2 � 2 table with the format of Table 2.2, sensitivity is � and1 �1
specificity is � . In Table 2.2, the estimated sensitivity of combined mam-2 �2
mography and clinical examination is 0.82. Of women with breast cancer,
82% are diagnosed correctly. The estimated specificity is 0.99. Of women not
having breast cancer, 99% were diagnosed correctly.

2.1.3 Independence of Categorical Variables

When both variables are response variables, descriptions of the association
can use their joint distribution, the conditional distribution of Y given X, or
the conditional distribution of X given Y. The conditional distribution of Y
given X relates to the joint distribution by

� s � r� for all i and j.j � i i j iq

Two categorical response variables are defined to be independent if all
joint probabilities equal the product of their marginal probabilities,

� s � � for i s 1, . . . , I and j s 1, . . . , J . 2.1Ž .i j iq qj
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TABLE 2.3 Notation for Joint, Conditional, and
Marginal Probabilities

Column

Row 1 2 Total

1 � � �11 12 1q
Ž . Ž . Ž .� � 1.01 �1 2 �1

2 � � �21 22 2q
Ž . Ž . Ž .� � 1.01 �2 2 �2

Total � � 1.0q1 q2

When X and Y are independent,

� s � r� s � � r� s � for i s 1, . . . , I.Ž .j � i i j iq iq qj iq qj

Each conditional distribution of Y is identical to the marginal distribution of
�Y. Thus, two variables are independent when � s ��� s � , for j sj �1 j � I

41, . . . , J ; that is, the probability of any given column response is the same in
each row. When Y is a response and X is an explanatory variable, this is a

Ž .more natural way to define independence than 2.1 . Independence is then
often referred to as homogeneity of the conditional distributions.

Table 2.3 displays notation for joint, conditional, and marginal distribu-
tions for the 2 � 2 case. Sample distributions use similar notation, with p or

� 4� in place of � . For instance, p denotes the sample joint distribution. Theˆ i j
� 4cell frequencies are denoted n , and n sÝ Ý n is the total sample size.i j i j i j

Thus,

p s n rn.i j i j

The sample proportion of times that subjects in row i made response j is

p s p rp s n rn ,j � i i j iq i j iq

where n s np sÝ n .iq iq j i j

2.1.4 Poisson, Binomial, and Multinomial Sampling

The probability distributions introduced in Section 1.2 extend to cell counts
in contingency tables. For instance, a Poisson sampling model treats cell

� 4 � 4counts Y as independent Poisson random variables with parameters � .i j i j
� 4The joint probability mass function for potential outcomes n is then thei j

Ž .product of the Poisson probabilities P Y s n for the IJ cells, ori j i j

exp y� �ni jrn ! .Ž .ŁŁ i j i j i j
i j
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When the total sample size n is fixed but the row and column totals are
not, a multinomial sampling model applies. The IJ cells are the possible
outcomes. The probability mass function of the cell counts has the multino-
mial form

ni jn!r n ! ��� n ! � .Ž . ŁŁ11 I J i j
i j

Often, observations on a response Y occur separately at each setting of an
explanatory variable X. This case normally treats row totals as fixed, and for
simplicity, we use the notation n s n . Suppose that the n observations oni iq i
Y at setting i of X are independent, each with probability distribution
� 4 � 4� , . . . , � . The counts n , j s 1, . . . , J satisfying Ý n s n then have1 � i J � i i j j i j i
the multinomial form

n !i n i j� . 2.2Ž .Ł j � iŁ n ! jj i j

When samples at different settings of X are independent, the joint probabil-
ity function for the entire data set is the product of the multinomial functions
Ž .2.2 from the various settings. This sampling scheme is independent multino-
mial sampling, also called product multinomial sampling.

Independent multinomial sampling also results under the following condi-
� 4tions: Suppose that n result from either independent Poisson samplingi j

� 4with means � or multinomial sampling over the IJ cells with probabilitiesi j
� 4� s � rn . When X is an explanatory variable, it is sensible to performi j i j

� 4statistical inference conditional on the totals n sÝ n even when theiri j i j
� 4values are not fixed by the sampling design. Conditional on n , the celli

� 4 Ž .counts n , j s 1, . . . , J have the multinomial distribution 2.2 with re-i j
� 4sponse probabilities � s � r� , j s 1, . . . , J , and cell counts from dif-j � i i j iq

ferent rows are independent. With this conditioning, we treat the row totals
as fixed and analyze the data as if they formed separate independent
samples.

Sometimes both row and column margins are naturally fixed. The appro-
priate sampling distribution is then the hypergeometric. In Section 3.5.1 we
discuss this case, which is less common.

2.1.5 Seat Belt Example

Researchers in the Massachusetts Highway Department plan to study the
Ž .relationship between seat-belt use yes, no and outcome of an automobile

Ž .crash fatality, nonfatality for drivers involved in accidents on the Mas-
sachusetts Turnpike. They will summarize results in the format shown in
Table 2.4. They plan to catalog all accidents on the turnpike for the next
year, classifying each according to these variables. The total sample size is
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TABLE 2.4 Seat-Belt Use and Results of
Automobile Crashes

Result of Crash

Seat-Belt Use Fatality Nonfatality

Yes
No

then a random variable. They might treat the numbers of observations at the
four combinations of seat-belt use and outcome of crash as independent

� 4Poisson random variables with unknown means � ,� , � , � .11 12 21 22
Suppose, instead, that the researchers randomly sample 200 police records

of crashes on the turnpike in the past year and classify each according to
seat-belt use and outcome of crash. For this study, the total sample size n
is fixed. They might then treat the four cell counts as a multinomial ran-
dom variable with n s 200 trials and unknown joint probabilities
� 4� , � , � ,� .11 12 21 22

Suppose, instead, that police records for accidents involving fatalities were
filed separately from the others. The researchers might instead randomly
sample 100 records of accidents with a fatality and randomly sample 100
records of accidents with no fatality. This approach fixes the column totals in
Table 2.4 at 100. They might then regard each column of Table 2.4 as an
independent binomial sample. Yet another approach, the traditional experi-
mental design, takes 200 subjects and randomly assigns 100 of them to wear
seat belts; the 200 then all are forced to have an accident. The recorded
results would then be independent binomial samples in each row, with fixed

Žrow totals of 100 each. Obviously, traditional designs common in some
experimental science may not be ethical for humans. This is especially true in

.medical studies.

2.1.6 Types of Studies

Table 2.5 comes from one of the first studies of the link between lung cancer
and smoking, by Richard Doll and A. Bradford Hill. In 20 hospitals in
London, England, patients admitted with lung cancer in the preceding year
were queried about their smoking behavior. For each of the 709 patients
admitted, researchers studied the smoking behavior of a noncancer patient at
the same hospital of the same gender and within the same 5-year grouping on
age. The 709 cases in the first column of Table 2.5 are those having lung
cancer and the 709 controls in the second column are those not having it. A
smoker was defined as a person who had smoked at least one cigarette a day
for at least a year.

Normally, whether lung cancer occurs is a response variable and smoking
behavior is an explanatory variable. In this study, however, the marginal
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TABLE 2.5 Cross-Classification of Smoking by
Lung Cancer

Lung Cancer

Smoker Cases Controls

Yes 688 650
No 21 59

Total 709 709

Source: Based on data reported in Table IV, R. Doll and A. B.
Hill, British Med. J., Sept. 30, 1950, pp. 739�748.

distribution of lung cancer is fixed by the sampling design, and the outcome
measured is whether the subject ever was a smoker. The study, which uses a
retrospecti®e design to ‘‘look into the past,’’ is called a case�control study. Such
studies are common in health-related applications. Often, the two samples
are matched, as in this study. Sometimes the samples of cases and controls
are independent rather than matched. For instance, another early case�con-
trol study on lung cancer and smoking sampled subjects by sending letters to
the estates of physicians who had died of some type of cancer in 1950 or
1951, and observations were cross-classified on type of cancer and the

Ž .subject’s smoking behavior see, e.g., Cornfield 1956 .
One might want to compare smokers with nonsmokers in terms of the

proportion who suffered lung cancer. These proportions refer to the condi-
tional distribution of lung cancer, given smoking behavior. Instead, case�con-
trol studies provide proportions in the reverse direction, for the conditional
distribution of smoking behavior, given lung cancer status. For those in Table
2.5 with lung cancer, the proportion who were smokers was 688r709 s 0.970,
while it was 650r709 s 0.917 for the controls.

When we know the proportion of the population having lung cancer, we
can use Bayes’ theorem to compute sample conditional distributions in the

Ž .direction of main interest Problem 2.21 . Otherwise, using a retrospective
sample, we cannot estimate the probability of lung cancer at each category of
smoking behavior. For Table 2.5 we do not know the population prevalence
of lung cancer, and the patients suffering it were probably sampled at a rate
far in excess of their occurrence in the general population.

By contrast, imagine a study that samples subjects from the population of
teenagers and then 60 years later measures the rates of lung cancer for the
smokers and nonsmokers. Such a sampling design is prospecti®e. There are
two types of prospective studies. Clinical trials randomly allocate subjects to
the groups who will be smokers and nonsmokers. In cohort studies, subjects
make their own choice about whether to smoke, and the study observes in
future time who develops lung cancer. Yet another approach, a cross-sec-
tional design, samples subjects and classifies them simultaneously on both
variables.
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� 4Prospecti®e studies usually condition on the totals n sÝ n for cate-i j i j
gories of X and regard each row of J counts as an independent multinomial

� 4sample on Y. Retrospecti®e studies usually treat the totals n for Y as fixedqj
and regard each column of I counts as a multinomial sample on X. In
cross-sectional studies, the total sample size is fixed but not the row or column
totals, and the IJ cell counts are a multinomial sample.

Case�control, cohort, and cross-sectional studies are called obser®ational
studies. They simply observe who chooses each group and who has the
outcome of interest. By contrast, a clinical trial is an experimental study, the
investigator having the advantage of experimental control over which subjects
receive each treatment. Such studies can use the power of randomization to
make the groups balance roughly on other variables that may be associated
with the response. Observational studies are common but have more poten-
tial for biases of various types.

2.2 COMPARING TWO PROPORTIONS

Many studies are designed to compare groups on a binary response variable.
Ž .Then Y has only two categories, such as success, failure for outcome of a

medical treatment. With two groups, a 2 � 2 contingency table displays the
results. The rows are the groups and the columns are the categories of Y.
This section presents parameters for comparing the groups.

2.2.1 Difference of Proportions

For subjects in row i, � is the probability that the response has outcome in1 � i
Ž .category 1 ‘‘success’’ . With only two possible outcomes, � s 1 y � , and2 � i 1 � i

we use the simpler notation � for � . The difference of proportions ofi 1 � i
successes, � y � , is a basic comparison of the two rows. Comparison1 2
on failures is equivalent to comparison on successes, since

1 y � y 1 y � s � y � .Ž . Ž .1 2 2 1

The difference of proportions falls between y1.0 and q1.0. It equals zero
when the rows have identical conditional distributions. The response Y is
statistically independent of the row classification when � y � s 0.1 2

When both variables are responses, conditional distributions apply in
either direction. One can also compare the two columns, such as by the
difference between the proportions in row 1. This usually is not equal to the
difference � y � comparing the rows.1 2

2.2.2 Relative Risk

A value � y � of fixed size may have greater importance when both �1 2 i
are close to 0 or 1 than when they are not. For a study comparing two



DESCRIBING CONTINGENCY TABLES44

treatments on the proportion of subjects who die, the difference between
0.010 and 0.001 may be more noteworthy than the difference between 0.410
and 0.401, even though both are 0.009. In such cases, the ratio of proportions
is also informative.

The relati®e risk is defined to be the ratio

� r� . 2.3Ž .1 2

It can be any nonnegative real number. A relative risk of 1.0 corresponds to
independence. For the proportions just given, the relative risks are
0.010r0.001 s 10.0 and 0.410r0.401 s 1.02. Comparing the rows on the

Ž . Ž .second response category gives a different relative risk, 1 y � r 1 y � .1 2

2.2.3 Odds Ratio

For a probability � of success, the odds are defined to be

� s �r 1 y � .Ž .

The odds are nonnegative, with � � 1.0 when a success is more likely than a
failure. When � s 0.75, for instance, then � s 0.75r0.25 s 3.0; a success is
three times as likely as a failure, and we expect about three successes for

1every one failure. When � s , a failure is three times as likely as a success.3

Inversely,

� s �r � q 1 .Ž .

1For instance, when � s , then � s 0.25.3

Refer again to a 2 � 2 table. Within row i, the odds of success instead of
Ž .failure are � s � r 1 y � . The ratio of the odds � and � in the twoi i i 1 2

rows,

� � r 1 y �Ž .1 1 1
� s s 2.4Ž .

� � r 1 y �Ž .2 2 2

is called the odds ratio.
� 4For joint distributions with cell probabilities � , the equivalent definitioni j

for the odds in row i is � s � r� , i s 1, 2. Then the odds ratio isi i1 i2

� r� � �11 12 11 22
� s s . 2.5Ž .

� r� � �21 22 12 21

An alternative name for � is the cross-product ratio, since it equals the ratio
of the products � � and � � of probabilities from diagonally opposite11 22 12 21

Ž .cells Yule 1900, 1912 .
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2.2.4 Properties of the Odds Ratio

The odds ratio can equal any nonnegative number. The condition � s �1 2
Ž .and hence when all cell probabilities are positive � s 1 corresponds to

independence of X and Y. When 1 � � � �, subjects in row 1 are more
likely to have a success than are subjects in row 2; that is, � � � . For1 2
instance, when � s 4, the odds of success in row 1 are four times the odds in
row 2. This does not mean that the probability � s 4� ; that is the1 2
interpretation of a relati®e risk of 4.0. When 0 � � � 1, � � � . When one1 2
cell has zero probability, � equals 0 or �.

Values of � farther from 1.0 in a given direction represent stronger
association. Two values represent the same association, but in opposite
directions, when one is the inverse of the other. For instance, when � s 0.25,
the odds of success in row 1 are 0.25 times the odds in row 2, or equivalently,
the odds of success in row 2 are 1r0.25 s 4.0 times the odds in row 1. When
the order of the rows is reversed or the order of the columns is reversed, the
new value for � is the inverse of the original value.

For inference, we shall see it is convenient to use log � . Independence
corresponds to log � s 0. The log odds ratio is symmetric about this value�
reversal of rows or of columns results in a change in its sign. Two values for
log � that are the same except for sign, such as log 4 s 1.39 and log 0.25 s
y1.39, represent the same strength of association.

The odds ratio does not change value when the orientation of the table
reverses so that the rows become the columns and the columns become the

Ž .rows. This is clear from the symmetric form of 2.5 . It is unnecessary to
identify one classification as the response variable in order to use � . In fact,

Ž . Ž � .although 2.4 defined it in terms of odds using � s P Y s 1 X s i , onei
could just as well define it using reverse conditional probabilities. With a
joint distribution, conditional distributions exist in each direction, and

� �� � P Y s 1 X s 1 rP Y s 2 X s 1Ž . Ž .11 22
� s s

� �� � P Y s 1 X s 2 rP Y s 2 X s 2Ž . Ž .12 21

� �P X s 1 Y s 1 rP X s 2 Y s 1Ž . Ž .
s . 2.6Ž .

� �P X s 1 Y s 2 rP X s 2 Y s 2Ž . Ž .

In fact, the odds ratio is equally valid for prospective, retrospective, or
cross-sectional sampling designs. The sample odds ratio estimates the same
parameter in each case.

� 4For cell counts n , the sample odds ratio isi j

�̂ s n n rn n .11 22 12 21

This does not change when both cell counts within any row are multiplied by
a nonzero constant or when both cell counts within any column are multi-
plied by a nonzero constant. An implication is that the sample odds ratio
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Ž .estimates the same characteristic � even when the sample is disproportion-
ately large or small from marginal categories of a variable. For a retrospec-
tive study of the association between vaccination and catching a certain strain
of flu, the sample odds ratio estimates the same characteristic with a random

Ž . Ž .sample of 1 100 people who got the flu and 100 people who did not, or 2
40 people who got the flu and 160 people who did not. The sample versions

Ž .of the difference of proportions and relative risk 2.3 are invariant to
multiplication of counts within rows by a constant, but they change with
multiplication within columns or with row�column interchange.

2.2.5 Aspirin and Heart Attacks Revisited

We illustrate the three association measures with Table 2.1 on aspirin use
and heart attacks. The table differentiates between fatal and nonfatal heart
attacks, but we combine these outcomes for now. Of the 11,034 physicians
taking placebo, 189 suffered heart attacks, a proportion of 189r11,034 s
0.0171. Of the 11,037 taking aspirin, 104 had heart attacks, a proportion of
0.0094. The sample difference of proportions is 0.0171 y 0.0094 s 0.0077.
The relative risk is 0.0171r0.0094 s 1.82. The proportion suffering heart
attacks of those taking placebo was 1.82 times the proportion suffering heart

Ž .attacks of those taking aspirin. The sample odds ratio is 189 � 10,933 r
Ž .10,845 � 104 s 1.83. The odds of heart attack for those taking placebo was
1.83 times the odds for those taking aspirin.

2.2.6 Case–Control Studies and the Odds Ratio

With retrospective sampling designs, such as case�control studies, it is
Ž � .possible to estimate conditional probabilities of form P X s i Y s j . It is

Ž � .usually not possible to estimate the probability P Y s j X s i of an out-
come of interest or the difference of proportions or relative risk for that

Ž .outcome. It is possible to estimate the odds ratio, however, since by 2.6 it is
determined by conditional probabilities in either direction.

To illustrate, we revisit Table 2.5 on X s smoking behavior and Y s lung
cancer. The data were two binomial samples on X at fixed levels of Y. Thus,
we can estimate the probability a subject was a smoker, given the outcome on
whether the subject had lung cancer; this was 688r709 for the cases and
650r709 for the controls. We cannot estimate the probability of lung cancer,
given whether one smoked, which is more relevant. Thus, we cannot estimate
differences or ratios of probabilities of lung cancer. The difference of
proportions and relative risk are limited to comparisons of the probabilities
of being a smoker. However, we can compute the odds ratio using the sample

Ž .analog of 2.6 ,

688r709 r 21r709 688 � 59Ž . Ž .
s s 3.0.

650r709 r 59r709 650 � 21Ž . Ž .
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Ž .Moreover, by 2.6 , interpretations can use the direction of interest, even
though the study was retrospective: The estimated odds of lung cancer for
smokers were 3.0 times the estimated odds for nonsmokers.

2.2.7 Relationship between Odds Ratio and Relative Risk

Ž . Ž .From definitions 2.3 and 2.4 ,

1 y � 2
odds ratio s relative risk .ž /1 y � 1

Their magnitudes are similar whenever the probability � of the outcome ofi
interest is close to zero for both groups. We saw this similarity in Section
2.2.5 for the aspirin study, where the heart attack proportion was less than
0.02 for each group. The relative risk was 1.82 and the odds ratio was 1.83.

Because of this similarity, when each � is small, the odds ratio provides ai
rough indication of the relative risk when it is not directly estimable, such as

Ž .in case�control studies Cornfield 1951 . For instance, for Table 2.5, if the
probability of lung cancer is small regardless of smoking behavior, 3.0 is also
a rough estimate of the relative risk; that is, smokers had about 3.0 times the
relative frequency of lung cancer as nonsmokers.

2.3 PARTIAL ASSOCIATION IN STRATIFIED 2 � 2 TABLES

An important part of most studies, especially observational studies, is the
choice of control variables. In studying the effect of X on Y, one should
control any covariate that can influence that relationship. This involves using
some mechanism to hold the covariate constant. Otherwise, an observed
effect of X on Y may actually reflect effects of that covariate on both X and
Y. The relationship between X and Y then shows confounding. Experimental
studies can remove effects of confounding covariates by randomly assigning
subjects to different levels of X, but this is not possible with observational
studies.

Suppose that a study considers effects of passive smoking, the effects on a
nonsmoker of living with a smoker. To analyze whether passive smoking is
associated with lung cancer, a cross-sectional study might compare lung
cancer rates between nonsmokers whose spouses smoke and nonsmokers
whose spouses do not smoke. The study should attempt to control for age,
socioeconomic status, or other factors that might relate both to spouse
smoking and to developing lung cancer. Otherwise, results will have limited
usefulness. Spouses of nonsmokers may tend to be younger than spouses of
smokers, and younger people are less likely to have lung cancer. Then a
lower proportion of lung cancer cases among spouses of nonsmokers may
merely reflect their lower average age.
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In this section we discuss the analysis of the association between categori-
cal variables X and Y while controlling for a possibly confounding variable
Z. For simplicity, the examples refer to a single control variable. In later
chapters we treat more general cases and discuss the use of models to
perform statistical control.

2.3.1 Partial Tables

We control for Z by studying the XY relationship at fixed levels of Z.
Two-way cross-sectional slices of the three-way contingency table cross clas-
sify X and Y at separate categories of Z. These cross sections are called
partial tables. They display the XY relationship while removing the effect of
Z by holding its value constant.

The two-way contingency table obtained by combining the partial tables is
called the XY marginal table. Each cell count in the marginal table is a sum of
counts from the same location in the partial tables. The marginal table,
rather than controlling Z, ignores it. The marginal table contains no informa-
tion about Z. It is simply a two-way table relating X and Y but may reflect
the effects of Z on X and Y.

The associations in partial tables are called conditional associations, be-
cause they refer to the effect of X on Y conditional on fixing Z at some
level. Conditional associations in partial tables can be quite different from
associations in marginal tables. In fact, it can be misleading to analyze only
marginal tables of a multiway contingency table. The following example
illustrates.

2.3.2 Death Penalty Example

Table 2.6 is a 2 � 2 � 2 contingency table�two rows, two columns, and two
layers�from an article that studied effects of racial characteristics on whether
persons convicted of homicide received the death penalty. The 674 subjects
classified in Table 2.6 were the defendants in indictments involving cases

TABLE 2.6 Death Penalty Verdict by Defendant’s Race and Victims’ Race

Death PenaltyVictims’ Defendant’s Percent
Race Race Yes No Yes

White White 53 414 11.3
Black 11 37 22.9

Black White 0 16 0.0
Black 4 139 2.8

Total White 53 430 11.0
Black 15 176 7.9

Ž .Source: M. L. Radelet and G. L. Pierce, Florida Law Re®. 43: 1�34 1991 . Reprinted with
permission from the Florida Law Re®iew.
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FIGURE 2.1 Percent receiving death penalty.

with multiple murders in Florida between 1976 and 1987. The variables in
Ž .Table 2.6 are Y s death penalty verdict, having the categories yes, no ,

X s race of defendant, and Z s race of victims, each having the categories
Ž .white, black . We study the effect of defendant’s race on the death penalty
verdict, treating victims’ race as a control variable. Table 2.6 has a 2 � 2
partial table relating defendant’s race and the death penalty verdict at each
category of victims’ race.

For each combination of defendant’s race and victims’ race, Table 2.6 lists
and Figure 2.1 displays the percentage of defendants who received the death
penalty. These describe the conditional associations. When the victims were
white, the death penalty was imposed 22.9% y11.3% s 11.6% more often
for black defendants than for white defendants. When the victims were black,
the death penalty was imposed 2.8% more often for black defendants than
for white defendants. Controlling for victims’ race by keeping it fixed, the
death penalty was imposed more often on black defendants than on white
defendants.

The bottom portion of Table 2.6 displays the marginal table. It results
from summing the cell counts in Table 2.6 over the two categories of victims’

Ž .race, thus combining the two partial tables e.g., 11 q 4 s 15 . Overall,
11.0% of white defendants and 7.9% of black defendants received the death
penalty. Ignoring victims’ race, the death penalty was imposed less often on
black defendants than on white defendants. The association reverses direc-
tion compared to the partial tables.

Why does the association change so much when we ignore versus control
victims’ race? This relates to the nature of the association between victims’
race and each of the other variables. First, the association between victims’
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FIGURE 2.2 Proportion receiving death penalty by defendant’s race, controlling and ignoring
victims’ race.

race and defendant’s race is extremely strong. The marginal table relating
Ž . Ž .these variables has odds ratio 467 � 143 r 48 � 16 s 87.0. Second, Table

2.6 shows that, regardless of defendant’s race, the death penalty was much
more likely when the victims were white than when the victims were black. So
whites are tending to kill whites, and killing whites is more likely to result in
the death penalty. This suggests that the marginal association should show a
greater tendency than the conditional associations for white defendants to
receive the death penalty. In fact, Table 2.6 has this pattern.

Figure 2.2 illustrates why the marginal association differs so from the
conditional associations. For each defendant’s race, the figure plots the
proportion receiving the death penalty at each category of victims’ race. Each
proportion is labeled by a letter symbol giving the category of victims’ race.
Surrounding each observation is a circle having area proportional to the
number of observations at that combination of defendant’s race and victims’
race. For instance, the W in the largest circle represents a proportion of
0.113 receiving the death penalty for cases with white defendants and white
victims. That circle is largest because the number of cases at that combina-

Ž .tion 53 q 414 s 467 is largest. The next-largest circle relates to cases in
which blacks kill blacks.

We control for victims’ race by comparing circles having the same victims’
race letter at their centers. The line connecting the two W circles has a
positive slope, as does the line connecting the two B circles. Controlling for
victims’ race, this reflects the death penalty being more likely for black
defendants than for white defendants. When we add results across victims’
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race to get a summary result for the marginal effect of defendant’s race on
the death penalty verdict, the larger circles, having the greater number of
cases, have greater influence. Thus, the summary proportions for each
defendant’s race, marked on the figure by periods, fall closer to the center of
the larger circles than to the center of the smaller circles. A line connecting
the summary marginal proportions has negative slope, indicating that overall
the death penalty was more likely for white defendants than for black
defendants.

The result that a marginal association can have a different direction from
Žeach conditional association is called Simpson’s paradox Simpson 1951, Yule

.1903 . It applies to quantitative as well as categorical variables. Statisticians
commonly use it to caution against imputing causal effects from an associa-
tion of X with Y. For instance, when doctors started to observe strong odds
ratios between smoking and lung cancer, statisticians such as R. A. Fisher

Ž .warned that some variable e.g., a genetic factor could exist such that the
association would disappear under the relevant control. However, other

Ž .statisticians such as J. Cornfield showed that with a very strong XY
association, a very strong association must exist between the confounding
variable Z and both X and Y in order for the effect to disappear or change

Ž .under the control Breslow and Day 1980, Sec. 3.4 .

2.3.3 Conditional and Marginal Odds Ratios

Odds ratios can describe marginal and conditional associations. We illustrate
for 2 � 2 � K tables, where K denotes the number of categories of a control

� 4variable, Z. Let � denote cell expected frequencies for some samplingi jk
model, such as binomial, multinomial, or Poisson sampling.

Within a fixed category k of Z, the odds ratio

� �11 k 22 k
� s 2.7Ž .X Y Žk . � �12 k 21 k

describes conditional XY association in partial table k. The odds ratios for
the K partial tables are called XY conditional odds ratios. These can be quite
different from marginal odds ratios. The XY marginal table has expected

� 4frequencies � sÝ � . The XY marginal odds ratio isi jq k i jk

� �11q 22q
� s .X Y � �12q 21q

Sample values of � and � use similar formulas with cell countsX Y Žk . X Y
substituted for expected frequencies. We illustrate for the association be-
tween defendant’s race and the death penalty in Table 2.6. In the first partial
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table, victims’ race is white and

53 � 37
�̂ s s 0.43.X Y Ž1. 414 � 11

The sample odds for white defendants receiving the death penalty were 43%
of the sample odds for black defendants. In the second partial table, victims’

ˆ Ž .Ž .race is black and the estimated odds ratio equals � s 0 � 139 16 � 4X Y Ž2.
s 0.0, since the death penalty was never given to white defendants with black
victims.

Estimation of the marginal odds ratio uses the 2 � 2 marginal table within
Ž . Ž .Table 2.6, collapsing over victims’ race, or 53 � 176 r 430 � 15 s 1.45.

The sample odds of the death penalty were 45% higher for white defendants
than for black defendants. Yet within each victims’ race category, those odds
were smaller for white defendants. This reversal in the association after con-
trolling for victims’ race illustrates Simpson’s paradox.

2.3.4 Marginal versus Conditional Independence

More generally, X may have I categories and Y may have J categories. An
I � J � K table describes the relationship between X and Y, controlling for
Z. If X and Y are independent in partial table k, then X and Y are called
conditionally independent at le®el k of Z. When Y is a response, this means
that

� �P Y s j X s i , Z s k s P Y s j Z s k , for all i , j. 2.8Ž .Ž . Ž .

More generally, X and Y are said to be conditionally independent gi®en Z
when they are conditionally independent at every level of Z, that is, when
Ž .2.8 holds for all k. Then, given Z, Y does not depend on X.

Suppose that a single multinomial applies to the entire three-way table,
� Ž .4with joint probabilities � s P X s i, Y s j, Z s k . Theni jk

�� s P X s i , Z s k P Y s j X s i , Z s k ,Ž . Ž .i jk

which under conditional independence of X and Y, given Z, equals

�s � P Y s j Z s k s � P Y s j, Z s k rP Z s k .Ž . Ž .Ž .iqk iqk

Thus, conditional independence is then equivalent to

� s � � r� for all i , j, and k . 2.9Ž .i jk iqk qj k qqk
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TABLE 2.7 Expected Frequencies Showing That Conditional Independence
Does Not Imply Marginal Independence

Response

Clinic Treatment Success Failure

1 A 18 12
B 12 8

2 A 2 8
B 8 32

Total A 20 20
B 20 40

ŽConditional independence does not imply marginal independence Yule
. Ž .1903 . For instance, summing 2.9 over k on both sides yields

� s � � r� .Ž .Ýi jq iqk qj k qqk
k

All three terms in the summation involve k, and this does not simplify to
� s � � , marginal independence.i jq iqq qjq

For 2 � 2 � K tables, X and Y are conditionally independent when the
odds ratio between X and Y equals 1 at each category of Z. The expected

� 4frequencies � in Table 2.7 illustrate this relation for Y s responsei jk
Ž . Ž . Ž .success, failure , X s drug treatment A, B , and Z s clinic 1, 2 . From
Ž .2.7 , the conditional XY odds ratios are

18 � 8 2 � 32
� s s 1.0, � s s 1.0.X Y Ž1. X Y Ž2.12 � 12 8 � 8

Given the clinic, response and treatment are conditionally independent. The
marginal table combines the tables for the two clinics. Its odds ratio is

Ž . Ž .� s 20 � 40 r 20 � 20 s 2.0, so the variables are not marginally inde-X Y
pendent.

Ignoring the clinic, why are the odds of a success for treatment A twice
those for treatment B? The conditional XZ and YZ odds ratios give a clue.
The odds ratio between Z and either X or Y, at each fixed category of the
other variable, equals 6.0. For instance, the XZ odds ratio at the first

Ž . Ž . Žcategory of Y equals 18 � 8 r 12 � 2 s 6.0. The conditional odds given
.response of receiving treatment A at clinic 1 are six times those at clinic 2,

Ž .and the conditional odds given treatment of success at clinic 1 are six times
those at clinic 2. Clinic 1 tends to use treatment A more often, and clinic 1
also tends to have more successes. For instance, if patients at clinic 1 tended
to be younger and in better health than those at clinic 2, perhaps they had a
better success rate regardless of the treatment received.
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It is misleading to study only the marginal table, concluding that successes
are more likely with treatment A. Subjects within a particular clinic are likely
to be more homogeneous than the overall sample, and response is indepen-
dent of treatment in each clinic.

2.3.5 Homogeneous Association

A 2 � 2 � K table has homogeneous XY association when

� s � s ��� s � .X Y Ž1. X Y Ž2. X Y ŽK .

Then the effect of X on Y is the same at each category of Z. Conditional
independence of X and Y is the special case in which each � s 1.0.X Y Žk .

Under homogeneous XY association, homogeneity also holds for the other
associations. For instance, the conditional odds ratio between two categories
of X and two categories of Z is identical at each category of Y. For the odds
ratio, homogeneous association is a symmetric property. It applies to any pair
of variables viewed across the categories of the third. When it occurs, there is
said to be no interaction between two variables in their effects on the other
variable.

When interaction exists, the conditional odds ratio for any pair of vari-
Ž .ables changes across categories of the third. For X s smoking yes, no ,

Ž . Ž .Y s lung cancer yes, no , and Z s age � 45, 45�65, � 65 , suppose that
� s 1.2, � s 3.9, and � s 8.8. Then smoking has a weak effectX Y Ž1. X Y Ž2. X Y Ž3.
on lung cancer for young people, but the effect strengthens considerably with
age. Age is called an effect modifier; the effect of smoking is modified
depending on its value.

ˆ ˆŽ .For the death penalty data Table 2.6 , � s 0.43 and � s 0.0.X Y Ž1. X Y Ž2.
The values are not close, but the second estimate is unstable because of the

1 ˆ ˆzero cell count. Adding to each cell count, � s 0.94. Because � isX Y Ž2. X Y Ž2.2

unstable and because further variation occurs from sampling variability, these
partial tables do not necessarily contradict homogeneous association in a
population. In Section 6.3 we show how to analyze whether sample data are
consistent with homogeneous association or conditional independence.

2.4 EXTENSIONS FOR I � J TABLES

For 2 � 2 tables, a single number such as the odds ratio can summarize the
association. For I � J tables, it is rarely possible to summarize association by
a single number without some loss of information. However, a set of odds
ratios or another summary index can describe certain features of the associa-
tion.
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2.4.1 Odds Ratios in I � J Tables

I Ž .Odds ratios can use each of the s I I y 1 r2 pairs of rows in combina-ž /2
J Ž .tion with each of the s J J y 1 r2 pairs of columns. For rows a and bž /2

Ž . Ž .and columns c and d, the odds ratio � � r � � uses four cells in aac b d bc ad
I Jrectangular pattern. There are odds ratios of this type. This set ofž / ž /2 2

odds ratios contains much redundant information.
Ž .Ž .Consider the subset of I y 1 J y 1 local odds ratios

� �i j iq1 , jq1
� s , i s 1, . . . , I y 1, j s 1, . . . , J y 1. 2.10Ž .i j � �i , jq1 iq1 , j

Figure 2.3 shows that local odds ratios use cells in adjacent rows and adjacent
Ž .Ž .columns. These I y 1 J y 1 odds ratios determine all odds ratios formed

from pairs of rows and pairs of columns. To illustrate, in Table 2.1, the
sample local odds ratio is 2.08 for the first two columns and 1.74 for the

FIGURE 2.3 Odds ratios for I � J tables.
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second and third columns. In each case, the more serious outcome was more
prevalent for the placebo group. The product of these two odds ratios is 3.63,
which is the odds ratio for the first and third columns.

Ž .Construction 2.10 for a minimal set of odds ratios is not unique. Another
basic set is

� �i j I J
	 s , i s 1, . . . , I y 1, j s 1, . . . , J y 1. 2.11Ž .i j � �I j i J

This uses the rectangular pattern of cells determined by the cell in row i and
column j and the cell in the last row and last column. Figure 2.3 illustrates.

� 4 � 4 � 4Given the marginal distributions � and � , when � � 0 , conver-iq qj i j
Ž . Ž .sion of the probabilities into the set of odds ratios 2.10 or 2.11 does not

discard information. The cell probabilities determine the odds ratios, and
given the marginals, the odds ratios determine the cell probabilities. In this

Ž .Ž .sense, I y 1 J y 1 parameters can describe any association in an I � J
Ž .Ž .table. Independence is equivalent to all I y 1 J y 1 odds ratios equaling

1.0.
For three-way I � J � K tables, sets of odds ratios in the partial tables

describe the conditional association. Homogeneous XY association means
that any conditional odds ratio formed using two categories of X and two
categories of Y is the same at each category of Z.

2.4.2 Summary Measures of Association

An alternative way to describe association uses a single summary index. We
discuss this first for nominal variables and then ordinal variables. The most
interpretable indices for nominal variables have the same structure as R-
squared for interval variables. It and the more general intraclass correlation

Ž .coefficient and correlation ratio Kendall and Stuart 1979 describe the
proportional reduction in variance from the marginal distribution of the
response Y to the conditional distributions of Y given an explanatory
variable X.

Ž . � 4Let V Y denote a measure of variation for the marginal distribution �qj
Ž � .of Y, and let V Y i denote this measure computed for the conditional

� 4distribution � , . . . , � of Y at the ith setting of X. A proportional1 � i J � i
reduction in variation measure has the form

�V Y y E V Y XŽ . Ž .
, 2.12Ž .

V YŽ .

w Ž � .xwhere E V Y X is the expectation of the conditional variation taken with
� 4respect to the distribution of X. For the marginal distribution � of X,iq

w Ž � .x Ž � .E V Y X sÝ � V Y i .i iq
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Ž .For a nominal response, Theil 1970 proposed an index using the varia-
Ž .tion measure V Y sÝ� log� , called the entropy. For contingency tables,qj qj

the proportional reduction in entropy equals

Ý Ý � log � r� �Ž .i j i j i j iq qj
U sy , 2.13Ž .

Ý � log �j qj qj

called the uncertainty coefficient. This measure is well defined when more
than one � � 0. It takes value between 0 and 1: U s 0 is equivalent toqj
independence of X and Y; U s 1 is equivalent to a lack of conditional
variation, in the sense that for each i, � s 1 for some j.j � i

Ž . ŽVarious measures of form 2.12 describe association in I � J tables e.g.,
.Problems 2.38 and 2.39 . A difficulty with them is developing intuition for

how large a value constitutes a strong association. What does it mean, for
instance, to say that there is a 30% reduction in entropy? Summary measures
seem easier to interpret and more useful when both classifications are
ordinal, as discussed next.

2.4.3 Ordinal Trends: Concordant and Discordant Pairs

In Table 2.8 the variables are income and job satisfaction, measured for the
Ž .black males in a national U.S. sample. Both classifications are ordinal, job

Ž . Ž .satisfaction with the categories very dissatisfied VD , little dissatisfied LD ,
Ž . Ž .moderately satisfied MS , and very satisfied VS .

When X and Y are ordinal, a monotone trend association is common. As
the level of X increases, responses on Y tend to increase toward higher
levels, or responses on Y tend to decrease toward lower levels. For instance,
perhaps job satisfaction tends to increase as income does. A single parameter
can describe this trend. Measures analogous to the correlation describe the
degree to which the relationship is monotone. Some measures are based on
classifying each pair of subjects as concordant or discordant. A pair is
concordant if the subject ranked higher on X also ranks higher on Y. The

TABLE 2.8 Cross-Classification of Job Satisfaction by Income

Job Satisfaction

Income Very Little Moderately Very
Ž .dollars Dissatisfied Dissatisfied Satisfied Satisfied

� 15,000 1 3 10 6
15,000�25,000 2 3 10 7
25,000�40,000 1 6 14 12
� 40,000 0 1 9 11

Source: 1996 General Social Survey, National Opinion Research Center.
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pair is discordant if the subject ranking higher on X ranks lower on Y.
The pair is tied if the subjects have the same classification on X andror Y.

We illustrate for Table 2.8. Consider a pair of subjects, one in the cell
Ž . Ž .� 15, VD and the other in the cell 15�25, LD . This pair is concordant,
since the second subject ranks higher than the first both on income and on

Ž .job satisfaction. The subject in cell � 15, VD forms concordant pairs when
Ž .matched with each of the three subjects classified 15�25, LD , so these two

Ž .cells provide 1 � 3 s 3 concordant pairs. The subject in the cell � 15, VD
is also part of a concordant pair when matched with each of the other
Ž .10 q 7 q 6 q 14 q 12 q 1 q 9 q 11 subjects ranked higher on both vari-

Ž .ables. Similarly, the three subjects in the � 15, LD cell are part of
Ž .concordant pairs when matched with the 10 q 7 q 14 q 12 q 9 q 11 sub-

jects ranked higher on both variables.
The total number of concordant pairs, denoted by C, equals

C s 1 3 q 10 q 7 q 6 q 14 q 12 q 1 q 9 q 11Ž .

q 3 10 q 7 q 14 q 12 q 9 q 11 q 10 7 q 12 q 11Ž . Ž .

q 2 6 q 14 q 12 q 1 q 9 q 11 q 3 14 q 12 q 9 q 11Ž . Ž .

q10 12 q 11 q 1 1 q 9 q 11 q 6 9 q 11 q 14 11 s 1331.Ž . Ž . Ž . Ž .

The total number of discordant pairs of observations is

Ds 3 2q 1q 0 q 10 2q 3q 1q 6q 0q 1 q ���q12 0q 1q 9 s 849.Ž . Ž . Ž .

In this example, C � D, suggesting a tendency for low income to occur with
low job satisfaction and high income with high job satisfaction.

Consider two independent observations from a joint probability distribu-
� 4tion � . For that pair, the probabilities of concordance and discordance arei j


 s 2 � � , 
 s 2 � � .ÝÝ Ý Ý ÝÝ Ý Ýc i j hk d i j hkž / ž /
i j h�i k�j i j h�i k�j

Here i and j are fixed in the inner summations, and the factor of 2 occurs
Ž .because the first observation could be in cell i, j and the second in cell

Ž .h, k , or vice versa. Several association measures for ordinal variables utilize
the difference 
 y 
 .c d

2.4.4 Ordinal Measure of Association: Gamma

Ž .Given that a pair is untied on both variables, 
 r 
 q 
 is the probabil-c c d
Ž .ity of concordance and 
 r 
 q 
 is the probability of discordance. Thed c d
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difference between these probabilities is


 y 
c d
� s , 2.14Ž .


 q 
c d

Ž . Žcalled gamma Goodman and Kruskal 1954 . The sample version is � s C yˆ
. Ž .D r C q D .
Like the correlation, gamma treats the variables symmetrically�it is

unnecessary to identify one classification as a response variable. Also like the
correlation, gamma has range y1 F � F 1. A reversal in the category order-
ings of one variable causes a change in the sign of � . Whereas the absolute
value of the correlation is 1 when the relationship between X and Y is

� �perfectly linear, only monotonicity is required for � s 1, with � s 1 if

 s 0 and � sy1 if 
 s 0. Independence implies that � s 0, but thed c
converse is not true. For instance, a U-shaped joint distribution can have

 s 
 and hence � s 0.c d

2.4.5 Gamma for Job Satisfaction Example

For Table 2.8, C s 1331 and D s 849. Hence,

� s 1331 y 849 r 1331 q 849 s 0.221.Ž . Ž .ˆ

Only a weak tendency exists for job satisfaction to increase as income
increases. Of the untied pairs, the proportion of concordant pairs is 0.221
higher than the proportion of discordant pairs.

NOTES

Section 2.2: Comparing Two Proportions

Ž .2.1. Breslow 1996 presented an interesting overview of the development of methods for
case�control studies.

Ž .2.2. For 2 � 2 tables, Edwards 1963 showed that functions of the odds ratio are the only
statistics that are invariant both to row�column interchange and to multiplication within

Ž .rows or within columns by a constant. For I � J tables, Altham 1970 gave related
Ž .results. Yule 1912, p. 587 had argued that multiplicative invariance is a desirable

property for measures of association, especially when proportions sampled in various
Ž .marginal categories are arbitrary. Goodman 2000 showed five ways of viewing associa-

tion in a 2 � 2 table and proposed a general measure that includes all five.

Section 2.3: Partial Association in Stratified 2 � 2 Tables

Ž .2.3. Paik 1985 proposed circle diagrams of type Figure 2.2 to summarize three-way tables.
Ž .Friendly 2000 discussed graphical presentation of categorical data. For more on

Ž . Ž . Ž .Simpson’s paradox and when it can happen, see Blyth 1972 , Davis 1989 , Dong 1998 ,
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Ž . Ž . Ž .Samuels 1993 , and Simpson 1951 . Good and Mittal 1989 extended it to an amalga-
mation paradox, whereby a marginal measure is greater than the maximum or less than
the minimum of the partial table measures.

Section 2.4: Extensions for I � J Tables

Ž .2.4. For continuous variables, samples can be fully ranked i.e., no ties occur , so C q D
n nŽ . Ž .s and � s C y D r . This is Kendall’s tau. Agresti 1984, Chaps. 9 and 10ˆž / ž /2 2

Ž .and Kruskal 1958 surveyed ordinal measures of association. These also apply when one
variable is ordinal and the other is binary. When Y is ordinal and X is nominal with
I � 2, no measure presented in Section 2.4 is very helpful. Ordinal modeling approaches
Ž .Section 7.2 use a parameter for each category of X ; comparing parameters compares
the ordinal response for pairs of categories of X.

PROBLEMS

Applications

Ž .2.1 An article in the New York Times Feb. 17, 1999 about the PSA blood
test for detecting prostate cancer stated: ‘‘The test fails to detect

Žprostate cancer in 1 in 4 men who have the disease false-negative
.results , and as many as two-thirds of the men tested receive false-posi-

Ž . Ž .tive results.’’ Let C C denote the event of having not having prostate
Ž . Ž .cancer, and let q y denote a positive negative test result. Which is
1 1 2 2Ž � . Ž � . Ž � . Ž � .true: P y C s or P C y s ? P C q s or P q C s ?4 4 3 3

Determine the sensitivity and specificity.

2.2 A diagnostic test has sensitivity s specificity s 0.80. Find the odds
ratio between true disease status and the diagnostic test result.

2.3 Table 2.9 is based on records of accidents in 1988 compiled by the
Department of Highway Safety and Motor Vehicles in Florida. Identify
the response variable, and find and interpret the difference of propor-
tions, relative risk, and odds ratio. Why are the relative risk and odds
ratio approximately equal?

TABLE 2.9 Data for Problem 2.3

InjurySafety Equipment
in Use Fatal Nonfatal

None 1601 162,527
Seat belt 510 412,368

Source: Florida Department of Highway Safety and Motor Vehi-
cles.
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2.4 Consider the following two studies reported in the New York Times.
Ž .a. A British study reported Dec. 3, 1998 that of smokers who get

lung cancer, ‘‘women were 1.7 times more vulnerable than men to
get small-cell lung cancer.’’ Is 1.7 the odds ratio or the relative risk?

b. A National Cancer Institute study about tamoxifen and breast
Ž .cancer reported Apr. 7, 1998 that the women taking the drug were

45% less likely to experience invasive breast cancer then were
Ž .women taking placebo. Find the relative risk for i those taking the

Ž .drug compared to those taking placebo, and ii those taking placebo
compared to those taking the drug.

Ž .2.5 A study E. G. Krug et al., Internat. J. Epidemiol., 27: 214�221, 1998
reported that the number of gun-related deaths per 100,000 people in
1994 was 14.24 in the United States, 4.31 in Canada, 2.65 in Australia,
1.24 in Germany, and 0.41 in England and Wales. Use the relative risk
to compare the United States with the other countries. Interpret.

2.6 A newspaper article preceding the 1994 World Cup semifinal match
between Italy and Bulgaria stated that ‘‘Italy is favored 10�11 to beat
Bulgaria, which is rated at 10�3 to reach the final.’’ Suppose that this

11means that the odds that Italy wins are and the odds that Bulgaria10
3wins are . Find the probability that each team wins, and comment.10

2.7 In the United States, the estimated annual probability that a woman
over the age of 35 dies of lung cancer equals 0.001304 for current

Žsmokers and 0.000121 for nonsmokers M. Pagano and K. Gauvreau,
Principles of Biostatistics, Duxbury Press, Pacific Grove, CA. 1993,

.p. 134 .
a. Find and interpret the difference of proportions and the relative

risk. Which measure is more informative for these data? Why?
b. Find and interpret the odds ratio. Explain why the relative risk and

odds ratio take similar values.

2.8 For adults who sailed on the Titanic on its fateful voyage, the odds
Ž . Ž .ratio between gender female, male and survival yes, no was 11.4.

Ž .For data, see R. J. M. Dawson, J. Statist. Ed. 3, 1995.
a. What is wrong with the interpretation, ‘‘The probability of survival

for females was 11.4 times that for males’’? Give the correct inter-
pretation. When would the quoted interpretation be approximately
correct?

b. The odds of survival for females equaled 2.9. For each gender, find
the proportion who survived.



DESCRIBING CONTINGENCY TABLES62

Ž2.9 In an article about crime in the United States, Newsweek Jan. 10,
.1994 quoted FBI statistics for 1992 stating that of blacks slain, 94%

were slain by blacks, and of whites slain, 83% were slain by whites. Let
Y s race of victim and X s race of murderer. Which conditional

� �distribution do these statistics refer to, Y X, or X Y ? What additional
information would you need to estimate the probability that the victim
was white given that a murderer was white? Find and interpret the
odds ratio.

2.10 A research study estimated that under a certain condition, the proba-
bility that a subject would be referred for heart catheterization was
0.906 for whites and 0.847 for blacks.
a. A press release about the study stated that the odds of referral for

cardiac catheterization for blacks are 60% of the odds for whites.
Ž .Explain how they obtained 60% more accurately, 57% .

b. An Associated Press story later described the study and said ‘‘Doc-
tors were only 60% as likely to order cardiac catheterization for
blacks as for whites.’’ Explain what is wrong with this interpretation.

ŽGive the correct percentage for this interpretation. In stating
results to the general public, it is better to use the relative risk than
the odds ratio. It is simpler to understand and less likely to be
misinterpreted. For details, see New Engl. J. Med. 341: 279�283,

.1999.

Ž2.11 A 20-year cohort study of British male physicians R. Doll and R. Peto,
.British Med. J. 2: 1525�1536, 1976 noted that the proportion per year

who died from lung cancer was 0.00140 for cigarette smokers and
0.00010 for nonsmokers. The proportion who died from coronary heart
disease was 0.00669 for smokers and 0.00413 for nonsmokers.
a. Describe the association of smoking with each of lung cancer and

heart disease, using the difference of proportions, relative risk, and
odds ratio. Interpret.

b. Which response is more strongly related to cigarette smoking,
in terms of the reduction in number of deaths that would occur with
elimination of cigarettes? Explain.

2.12 Table 2.10 refers to applicants to graduate school at the University of
California at Berkeley, for fall 1973. It presents admissions decisions
by gender of applicant for the six largest graduate departments. De-
note the three variables by A s whether admitted, G s gender, and
D s department. Find the sample AG conditional odds ratios and the
marginal odds ratio. Interpret, and explain why they give such different
indications of the AG association.
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TABLE 2.10 Data for Problem 2.12

Whether Admitted

Male Female

Department Yes No Yes No

A 512 313 89 19
B 353 207 17 8
C 120 205 202 391
D 138 279 131 244
E 53 138 94 299
F 22 351 24 317

Total 1198 1493 557 1278

Ž .Source: Data from Freedman et al. 1978, p.14 . See also P. Bickel
Ž .et al., Science 187: 398�403 1975 .

2.13 State three ‘‘real-world’’ variables X, Y, and Z for which you expect a
marginal association between X and Y but conditional independence
controlling for Z.

2.14 Based on 1987 murder rates in the United States, an Associated Press
story reported that the probability that a newborn child has of eventu-
ally being a murder victim is 0.0263 for nonwhite males, 0.0049 for
white males, 0.0072 for nonwhite females, and 0.0023 for white fe-
males.
a. Find the conditional odds ratios between race and whether a

murder victim, given the gender. Interpret. Do these variables
exhibit homogeneous association?

b. Half the newborns are of each gender, for each race. Find the
marginal odds ratio between race and whether a murder victim.

2.15 At each age level, the death rate is higher in South Carolina than in
Maine, but overall, the death rate is higher in Maine. Explain how this

Ž .could be possible. For data, see H. Wainer, Chance 12: 44, 1999.

2.16 A study of the death penalty for cases in Kentucky between 1976 and
Ž .1991 T. Keil and G. Vito, Amer. J. Criminal Justice 20: 17�36, 1995

indicated that the defendant received the death penalty in 8% of the
391 cases in which a white killed a white, in 2% of the 108 cases in
which a black killed a black, in 12% of the 57 cases in which a black
killed a white, and in 0% of the 18 cases in which a white killed a
black. Form the three-way contingency table, obtain the conditional
odds ratios between the defendant’s race and the death penalty verdict,
interpret those associations, study whether Simpson’s paradox occurs,
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and explain why the marginal association is so different from the
conditional associations.

2.17 An estimated odds ratio for adult females between the presence of
Ž . Žsquamous cell carcinoma yes, no and smoking behavior smoker,

.nonsmoker equals 11.7 when the smoker category has subjects whose
smoking level s is 0 � s � 20 cigarettes per day; it is 26.1 for smokers

Žwith s G 20 cigarettes per day R. C. Brownson et al., Epidemiology 3:
.61�64, 1992 . Show that the estimated odds ratio between carcinoma

Ž . Ž .yes, no and the smoking levels s G 20, 0 � s � 20 equals 2.2.

2.18 Table 2.11 refers to a retrospective study of lung cancer and tobacco
smoking among patients in several English hospitals. The table com-
pares male lung cancer patients with control patients having other
diseases, according to the average number of cigarettes smoked daily
over a 10-year period preceding the onset of the disease.
a. Find the sample odds of lung cancer at each smoking level and the

five odds ratios that pair each level of smoking with no smoking. As
smoking increases, is there a trend? Interpret.

b. If the log odds of lung cancer is linearly related to smoking level,
Ž .the log odds in row i satisfies log odds s 	 q � i. Show that thisi

implies that the local odds ratios are identical.
c. Using these data, can you estimate the probability of lung cancer at

Ž .each level of smoking? Are the estimated odds ratios in part a
meaningful? Explain.

d. Show that the disease groups are stochastically ordered with respect
Žto their distributions on smoking of cigarettes see Problem 2.34 and

.Section 7.3.4 . Interpret.

TABLE 2.11 Data for Problem 2.18

Disease Group

Daily Average Lung Cancer Control
Number of Cigarettes Patients Patients

None 7 61
� 5 55 129
5�14 489 570
15�24 475 431
25�49 293 154
50 q 38 12

Source: Reprinted with permission from R. Doll and A. B. Hill,
Ž .British Med. J. 2: 1271�1286 1952 .
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TABLE 2.12 Data for Problem 2.19

Wife’s Rating of Sexual Fun

Never or Fairly Very Almost
Husband’s Rating Occasionally Often Often Always

Never or occasionally 7 7 2 3
Fairly often 2 8 3 7
Very often 1 5 4 9
Almost always 2 8 9 14

Ž .Source: Reprinted with permission from Hout et al. 1987 .

2.19 Table 2.12 summarizes responses of 91 married couples in Arizona to a
question about how often sex is fun. Find and interpret a measure of
association between wife’s response and husband’s response.

2.20 Table 2.13 is from an early study on the death penalty in Florida.
Analyze these data and show that Simpson’s paradox occurs.

TABLE 2.13 Data for Problem 2.20

Death PenaltyVictim’s Defendant’s
Race Race Yes No

White White 19 132
Black 11 52

Black White 0 9
Black 6 97

Source: Reprinted with permission from M. L. Radelet,
Ž .Amer. Sociol. Re®. 46: 918�927 1981

Theory and Methods

2.21 For a diagnostic test of a certain disease, � denotes the probability1
that the diagnosis is positive given that a subject has the disease, and
� denotes the probability that the diagnosis is positive given that a2
subject does not have it. Let  denote the probability that a subject
does have the disease.
a. Given that the diagnosis is positive, show that the probability that a

subject does have the disease is

� r �  q � 1 y  .Ž .1 1 2
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b. Suppose that a diagnostic test for HIVq status has both sensitivity
and specificity equal to 0.95, and  s 0.005. Find the probability
that a subject is truly HIVq , given that the diagnostic test is
positive. To better understand this answer, find the joint probabili-
ties relating diagnosis to actual disease status, and discuss their
relative sizes.

2.22 Binomial parameters for two groups are graphed, with � on the1
horizontal axis and � on the vertical axis. Plot the locus of points for2

Ž . Ž .a 2 � 2 table having a relative risk s 0.5, b odds ratio s 0.5, and
Ž .c difference of proportions sy0.5.

2.23 Let D denote having a certain disease and E denote having exposure
Ž .to a certain risk factor. The attributable risk AR is the proportion of

Ž .disease cases attributable to that exposure see Benichou 1998 .
Ž . Ž .a. Let P E s 1 y P E . Explain why

�AR s P D y P D E rP D .Ž . Ž .Ž .

b. Show that AR relates to the relative risk RR by

AR s P E RR y 1 r 1 q P E RR y 1 .Ž . Ž . Ž . Ž .

� 42.24 For a 2 � 2 table of counts n , show that the odds ratio is invarianti j
Ž . Ž .to a interchanging rows with columns, and b multiplication of cell

counts within rows or within columns by c � 0. Show that the differ-
ence of proportions and the relative risk do not have these properties.

2.25 For given � and � , show that the relative risk cannot be farther than1 2
the odds ratio from their independence value of 1.0.

2.26 Explain why for three events E , E , and E and their complements, it1 2 3
Ž � . Ž � . Ž � .is possible that P E E � P E E even if both P E E E �1 2 1 2 1 2 3

Ž � . Ž � . Ž � . ŽP E E E and P E E E � P E E E . Hint: Use Simpson’s1 2 3 1 2 3 1 2 3
.paradox for a three-way table.

Ž � .2.27 Let � s P X s i, Y s j Z s k . Explain why XY conditional inde-i j � k
pendence is

� s � � for all i and j and k .i j � k iq� k qj � k

2.28 For a 2 � 2 � 2 table, show that homogeneous association is a sym-
metric property, by showing that equal XY conditional odds ratios is
equivalent to equal YZ conditional odds ratios.
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2.29 Smith and Jones are baseball players. Smith has a higher batting
average than Jones in each of K years. Is is possible that for the
combined data from the K years, Jones has the higher batting aver-
age? Explain, using an example to illustrate.

2.30 When X and Y are conditionally dependent at each level of Z yet
marginally independent, Z is called a suppressor ®ariable. Specify joint

Ž .probabilities for a 2 � 2 � 2 table to show that this can happen a
Ž .when there is homogeneous association, and b when the association

has opposite direction in the partial tables.

I J� 4 Ž . Ž .2.31 Show that the 	 in 2.11 determine a all odds ratiosi j ž / ž /2 2
Ž . � 4 Ž .formed from pairs of rows and pairs of columns, b all � in 2.10 ,i j

and vice versa.

2.32 Refer to Problem 2.31. When all rows and columns have positive
� 4probability, show that independence is equivalent to all 	 s 1 .i j

2.33 For I � J contingency tables, explain why the variables are indepen-
Ž .Ž .dent when the I y 1 J y 1 differences � y � s 0, i s 1, . . . ,j � i j � I

I y 1, j s 1, . . . , J y 1.

2.34 A 2 � J table has ordinal response. Let F s � q ��� q� . Whenj � i 1 � i j � i
F F F for j s 1, . . . , J, the conditional distribution in row 2 isj �2 j �1
stochastically higher than the one in row 1. Consider the cumulati®e
odds ratios

F r 1 y FŽ .j �1 j �1
� s , j s 1, . . . , J y 1.j F r 1 y FŽ .j �2 j �2

a. Show that log � G 0 for all j is equivalent to row 2 being stochasti-j
cally higher than row 1. Explain why row 2 is then more likely than
row 1 to have observations at the high end of the ordinal scale.

b. If all local log odds ratios are nonnegative, log � G 0 for 1 F j Fj
Ž .J y 1 Lehmann 1966 . Show by counterexample that the converse

is not true.

� 4 � 42.35 Suppose that Y are independent Poisson variates with means � .i j i j
Ž . � 4Show that P Y s n for all i, j, conditional on Y s n , satisfyi j i j iq i

w Ž . xindependent multinomial sampling i.e., the product of 2.2 for all i
within the rows.
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Ž .2.36 For 2 � 2 tables, Yule 1900, 1912 introduced

� � y � �11 22 12 21
Q s ,

� � q � �11 22 12 21

which he labeled Q in honor of the Belgian statistician Quetelet. It is
now called Yule’s Q.
a. Show that for 2 � 2 tables, Goodman and Kruskal’s � s Q.
b. Show that Q falls between y1 and 1.
c. State conditions under which Q sy1 or Q s 1.

Ž . Ž .d. Show that Q relates to the odds ratio by Q s � y 1 r � q 1 ,
w xa monotone transformation of � from the 0, � scale onto the

w xy1,q 1 scale.

� 42.37 When X and Y are ordinal with counts n :i j
na. Explain why the pairs of observations partition into C q D qž /2

Ž .T q T y T , where T sÝn n y 1 r2 pairs are tied on X,X Y X Y X iq iq
T pairs are tied on Y, and T pairs are tied on X and Y.Y X Y

Ž . Ž .b. For each ordered pair of observations X , Y and X ,Y , leta a b b
Ž . Ž .X s sign X y X and Y s sign Y y Y . Show that the sam-ab a b ab a b

Ž . Ž .ple correlation for the n n y 1 distinct X , Y pairs isab ab

C y D
� s .b 1r2

n ny T y TX Y½ 5ž / ž /2 2

Ž .This ordinal measure, called Kendall’s tau-b Kendall 1945 , is less
sensitive than gamma to the choice of response categories.

nŽ .c. Let d s C y D r y T . Explain why d is the difference be-Xž /2
tween the proportions of concordant and discordant pairs out of

Ž . Žthose pairs untied on X Somers 1962 . For 2 � 2 tables, d equals
the difference of proportions, and tau-b equals the correlation

.between X and Y.

Ž . Ž .2.38 Goodman and Kruskal 1954 proposed an association measure tau
for nominal variables based on variation measure

V Y s � 1 y � s 1 y � 2 .Ž . Ž .Ý Ýqj qj qj

Ž .a. Show V Y is the probability that two independent observations on
Ž .Y fall in different categories called the Gini concentration index .



PROBLEMS 69

Ž . Ž .Show that V Y s 0 when � s 1 for some j and V Y takesqj
Ž .maximum value of J y 1 rJ when � s 1rJ for all j.qj

w Ž � .xb. For the proportional reduction in variation, show that E V Y X
2 w Ž .s 1 yÝ Ý � r� . The resulting measure 2.12 is called thei j i j iq

concentration coefficient. Like U, � s 0 is equivalent to indepen-
Ž .dence. Haberman 1982 presented generalized concentration and

xuncertainty coefficients.

Ž2.39 The measure of association lambda for nominal variables Goodman
. Ž . � 4 Ž � .and Kruskal 1954 has V Y s 1 y max � and V Y i s 1 yqj

� 4max � . Interpret lambda as a proportional reduction in predictionj j � i
error for predictions which select the response category that is most
likely. Show that independence implies � s 0 but that the converse is
not true.



C H A P T E R 3

Inference for Contingency Tables

In this chapter we introduce inferential methods for contingency tables.
Many of these methods also play a vital role in analyses of later chapters for
which categorical data need not have contingency table form. The methods
assume Poisson, multinomial, or independent binomial sampling.

In Section 3.1 we present confidence intervals for measures of association
for 2 � 2 tables such as the odds ratio. Section 3.2 covers chi-squared tests of
the hypothesis of independence between two categorical variables. Like any
significance test, these have limited usefulness. In Section 3.3 we show how
to follow-up the test using residuals or the partitioning property of chi-squared
to extract components that describe the evidence about the association. In
Section 3.4 we present more powerful inference applicable with ordered
categories. The methods of Sections 3.1 through 3.4 assume large samples. In
Sections 3.5 and 3.6 we introduce small-sample methods.

3.1 CONFIDENCE INTERVALS FOR ASSOCIATION PARAMETERS

The accuracy of estimators of association parameters is characterized by
standard errors of their sampling distributions. In this section we present
large-sample standard errors and confidence intervals.

3.1.1 Interval Estimation of Odds Ratios

ˆThe sample odds ratio � s n n rn n for a 2 � 2 table equals 0 or � if11 22 12 21
any n s 0, and it is undefined if both entries in a row or column are zero.i j
Since these outcomes have positive probabilities, the expected value and

ˆ ˆ Žvariance of � and log � do not exist. In fact, this is also true for ML
.estimators of model parameters presented in later chapters. In terms of bias

Ž . Ž .and mean-squared error, Gart and Zweiful 1967 and Haldane 1956

70
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showed that the amended estimators

n q 0.5 n q 0.5Ž . Ž .11 22
�̃ s

n q 0.5 n q 0.5Ž . Ž .12 21

˜ Ž .and log � behave well Problem 14.4 .
ˆ ˜The estimators � and � have the same asymptotic normal distribution

around � . Unless n is quite large, however, their distributions are highly
ˆ Žskewed. When � s 1, for instance, � cannot be much smaller than � since

ˆ .� G 0 , but it could be much larger with nonnegligible probability. The log
transform, having an additive rather than multiplicative structure, converges

ˆmore rapidly to normality. An estimated standard error for log � is

1r21 1 1 1ˆ� log � s q q q . 3.1Ž .ˆ Ž . ž /n n n n11 12 21 22

We derive this formula in Section 3.1.7.
ˆBy the large-sample normality of log � ,

ˆ ˆlog � � z � log � 3.2Ž .ˆ Ž .�r2

Ž .is a Wald confidence interval for log � . Exponentiating taking antilogs of its
Ž .endpoints provides a confidence interval for � . Woolf 1955 proposed this

Žinterval. It works quite well, usually being a bit conservative i.e., actual
.coverage probability higher than the nominal level .

ˆ ˆWhen � s 0 or �, Woolf’s interval does not exist. When � s 0, one should
ˆtake 0 as the lower limit and when � s �, one should take � as the upper

limit. The other bound can use the Woolf formula following some adjust-
Ž . � 4 � 4ment, such as Gart’s 1966 , which replaces n by n q 0.5 in thei j i j

estimator and standard error. A less ad hoc approach forms the interval by
Ž .inverting score tests Cornfield 1956 or likelihood-ratio tests for � , as we

discuss in Section 3.1.8.

3.1.2 Aspirin and Myocardial Infarction Example

We illustrate inference for the odds ratio with Table 3.1 based on a Swedish
study of the association between aspirin use and myocardial infarction similar
to that described in Section 2.2.5. The study randomly assigned 1360 patients

Žwho had already suffered a stroke to an aspirin treatment one low-dose
.tablet a day or to a placebo treatment. Table 3.1 reports the number of

deaths due to myocardial infarction during a follow-up period of about 3
years.

ˆ ˜The sample odds ratio � s 1.56 is close to � s 1.55, since no cell count is
ˆ ˆŽ . Ž .especially small. The standard error 3.1 of log� s 0.445 is � log� s 0.307.ˆ
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TABLE 3.1 Swedish Study on Aspirin Use and
Myocardial Infarction

Myocardial Infarction

Yes No Total

Placebo 28 656 684
Aspirin 18 658 676

Source: Based on results described in Lancet 338: 1345�1349
Ž .1991 .

A 95% confidence interval for log� in the population this sample represents
Ž . Ž .is 0.445 � 1.96 0.307 , or y0.157, 1.047 . The corresponding interval for � is

w Ž . Ž .x Ž .exp y0.157 , exp 1.047 , or 0.85, 2.85 . The estimate of the true odds ratio
is rather imprecise.

Since the confidence interval for � contains 1.0, it is plausible that the true
odds of death due to myocardial infarction are equal for aspirin and placebo.
If there truly is a beneficial effect of aspirin but the odds ratio is not large, it
may require a large sample size to show that benefit because of the relatively

Ž .small number of myocardial infarction cases Problem 3.21 .

3.1.3 Interval Estimation of Difference of Proportions

The difference of proportions and the relative risk compare conditional
distributions of a response variable for two groups. For these measures, we
treat the samples as independent binomials. For group i, y has a binomiali
distribution with sample size n and a probability � of a ‘‘success’’ response.i i

The sample proportion � s y rn has expectation � and varianceˆ i i i i
Ž .� 1 y � rn . Since � and � are independent, their difference hasˆ ˆi i i 1 2

E � y � s � y �ˆ ˆŽ .1 2 1 2

and standard error

1r2
� 1 y � � 1 y �Ž . Ž .1 1 2 2

� � y � s q . 3.3Ž .ˆ ˆŽ .1 2 n n1 2

Ž . Ž .The estimate � � y � uses formula 3.3 with � replaced by � . Thenˆ ˆ ˆ ˆ1 2 i i

� y � � z � � y � 3.4Ž .ˆ ˆ ˆ ˆ ˆŽ . Ž .1 2 �r2 1 2

Ž .is a Wald confidence interval for � y � . Like the Wald interval 1.13 for a1 2
single proportion, it usually has true coverage probability less than the
nominal confidence coefficient, especially when � and � are near 0 or 1.1 2
More complex but better methods are cited in Section 3.1.8, Note 3.2, and
Problem 3.23.
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3.1.4 Interval Estimation of Relative Risk

The sample relative risk is r s � r� . Like the odds ratio, it converges toˆ ˆ1 2
normality faster on the log scale. The asymptotic standard error of log r is

1r21 y � 1 y �1 2
� log r s q . 3.5Ž . Ž .ž /� n � n1 1 2 2

Ž .The Wald interval exponentiates endpoints of log r � z � log r . It worksˆ�r2
well but can be somewhat conservative. We discuss an alternative method in
Section 3.1.8.

For Table 3.1, the sample proportion of myocardial infarction deaths was
0.0409 for subjects taking placebo and 0.0266 for subjects taking aspirin. The
sample relative risk is 0.0409r0.0266 s 1.54. The 95% confidence interval for

Ž . Ž . Ž .the log relative risk of log 1.54 � 1.96 0.297 translates to 0.86, 2.75 for the
relative risk. We infer that the death rate for those taking placebo was
between 0.86 and 2.75 times that for those taking aspirin. The Wald 95%

Ž . Ž .confidence interval for � y � is 0.014 � 1.96 0.0098 or y0.005, 0.033 .1 2
According to either measure, substantial public health benefits could result
from taking aspirin, but no effect or a slight negative effect are also plausible.
Results for the larger study described in Section 2.2.5 do show a benefit.

3.1.5 Deriving Standard Errors with the Delta Method*

A simple and useful method exists of deriving standard errors for large-sam-
ple inferences. Let T denote a statistic that is asymptotically normallyn
distributed about a parameter � , the subscript n expressing its dependence

Ž .on sample size. Suppose that an estimator is a function g T of T . Then,n n
Ž .under mild conditions, g T itself has a large-sample normal distribution.n

Ž .The standard error depends on how fast g t changes for t near � .
Specifically, for large n, suppose that T is normally distributed aboutn' ' Ž .� with standard error �r n . That is, as n ™ �, the cdf of n T y �n

converges to the cdf of a normal random variable with mean 0 and variance
� 2. This limiting behavior is an example of con®ergence in distribution,
denoted by

d 2'n T y � ™N 0, � .Ž . Ž .n

Let g be a function that is at least twice differentiable at � . Using the Taylor
Ž .series expansion for g t in a neighborhood of t s � , in Section 14.1.2 we

show

�' 'n g T y g � f n T y � g �Ž . Ž . Ž . Ž .n n
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FIGURE 3.1 Depiction of delta method.

�Ž .for large n, where g � s � gr� t evaluated at t s � . Recall if a variate
Ž 2 . Ž 2 2 .Y � N 0, � , then cY � N 0, c � . Thus,

d 2� 2'n g T y g � ™N 0, g � � . 3.6Ž . Ž . Ž . Ž .Ž .n

Ž . Ž .In other words, g T is approximately normal around g � with variancen
w �Ž .x2 2g � � rn.

Ž .Figure 3.1 portrays this result. Locally around � , g t is approximately
�Ž . Ž .linear, with slope g � . Then g T is approximately normal, since linearn

transformations of normal random variables are themselves normal. The
Ž . Ž . � �Ž . �dispersion of g T values about g � is about g � times the dispersionn

1of T values about � . If the slope of g at � is , then g maps a region of Tn n2
Ž .values into a region of g T values only about half as wide.n

Ž . �Ž . 2 2Ž .Result 3.6 is called the delta method. Since g � and � s � �
usually depend on the unknown parameter � , the asymptotic variance is
unknown. Confidence intervals and tests substitute T for � and use then

�' w Ž . Ž .x � Ž . � Ž .result that n g T y g � r g T � T is asymptotically standard nor-n n n
mal. For instance,

� 'g T � 1.96 g T � T r nŽ . Ž . Ž .n n n

Ž .is a large-sample Wald 95% confidence interval for g � .

3.1.6 Delta Method Applied to Sample Logit*

We illustrate the delta method for a function of the ML estimator T s � sˆn
Ž .yrn of the binomial parameter � , for y successes in n trials. Since E Y s n�

Ž . Ž . Ž . Ž . Ž .and var Y s n� 1 y � , E � s � and var � s � 1 y � rn. Also, �ˆ ˆ ˆ
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has a large-sample normal distribution by the central limit theorem. So do
many functions of � .ˆ

The log odds function of � ,ˆ

g � s log �r 1 y � ,Ž . Ž .ˆ ˆ ˆ

Ž .is called the sample logit. Evaluated at � , its derivative equals 1r� 1 y � .
By the delta method, the asymptotic variance of the sample logit is
Ž . Ž . w Ž .x� 1 y � rn the variance of � multiplied by the square of 1r� 1 y � .ˆ

That is

� � 1ˆ d'n log y log ™N 0, .ž / ž /1 y � 1 y � � 1 y �Ž .ˆ

The asymptotic normality of � propagates to asymptotic normality ofˆ
w Ž .xlog �r 1 y � .ˆ ˆ
The asymptotic variance is the variance of the normal distribution that

approximates the true distribution, for large n. It is not an approximation for
the variance of the true distribution. For 0 � � � 1, the asymptotic variance
w Ž .xy1n� 1 y � of the sample logit is finite. By contrast, the true variance
does not exist: Since � s 0 or 1 with positive probability, the logit can equalˆ
y� or � with positive probability. The probability of an infinite logit
converges to zero rapidly as n increases. For large n, the distribution of the

w Ž .xsample logit looks essentially normal with mean log �r 1 y � and standard
w Ž .xy1r2deviation n� 1 y � . Thus, for the logit, the asymptotic variance

actually has greater use than the true variance. Incidentally, related to this,
the bootstrap is not helpful for approximating standard errors for many
discrete measures, because it mimics the true rather than the more relevant
asymptotic standard error.

3.1.7 Delta Method for Log Odds Ratio*

Standard errors for the log odds ratio and the log relative risk result from a
� 4multiparameter version of the delta method. Suppose that n , i s 1, . . . , ci

Ž � 4.have a multinomial n, � distribution. The sample proportion � s n rnˆi i i
has mean and variance

E � s � and var � s � 1 y � rn. 3.7Ž . Ž .Ž . Ž .ˆ ˆi i i i i

In Section 14.1.4 we show that for i � j, � and � have covarianceˆ ˆi j

cov � , � sy� � rn. 3.8Ž .ˆ ˆŽ .i j i j

Ž .The sample proportions � , � , . . . , � have a large-sample multivariateˆ ˆ ˆ1 2 cy1
normal distribution. For functions of them, the delta method implies the



INFERENCE FOR CONTINGENCY TABLES76

following result, proved in Section 14.1.4:

Ž . � 4 Ž .Let g � denote a differentiable function of � , with sample value g � for aˆi
multinomial sample. Let

� g �Ž .
� s , i s 1, . . . , c.i �� i

' w Ž . Ž .xThen as n ™ �, the distribution of n g � y g � r� converges to standardˆ
normal, where

22 2� s � � y � � . 3.9Ž .Ž .Ý Ýi i i i

� 4The asymptotic variance depends on � and the partial derivatives of thei
� 4 � 4 � 4 Ž .measure with respect to � . In practice, replacing � and � in 3.9 byi i i

2 2 'their sample values yields an ML estimate � of � . Then �r n is anˆ ˆ
Ž .estimated standard error for g � . A large-sample Wald confidence intervalˆ

Ž .for g � is

'g � � z �r n .Ž .ˆ ˆ�r2

Ž .With the substitution of � for � in 3.9 , the limiting distribution is stillˆ
standard normal, but convergence is slower. The equivalence in the large-
sample distribution is justified as follows: The sample proportions converge

� 4in probability to � , by the weak law of large numbers. Since � is aˆi
continuous function of the sample proportions, it converges in probability to
� , and �r� converges in probability to 1. Nowˆ

g � y g � g � y g � �Ž . Ž . Ž . Ž .ˆ ˆ' 'n s n .
� � �ˆ ˆ

The first term on the right-hand side converges in distribution to standard
Ž .normal, by 3.9 , and the second term converges in probability to 1. Thus,

their product also has a limiting standard normal distribution.
Ž .We now apply the delta method to the log odds ratio, taking g � s log �

s log � q log � y log � y log � . Since11 22 12 21

� s � log � r�� s 1r�Ž .11 11 11

� sy1r� , � sy1r� , � s 1r� ,12 12 21 21 22 22

2 2 Ž .Ý Ý � � s 0 and � sÝ Ý � � sÝ Ý 1r� . The asymptotic stan-i j i j i j i j i j i j i j i j
ˆ � 4dard error of log � for a multinomial sample n isi j

1r2

ˆ '� log � s �r n s 1rn� .Ž . Ý Ý i jž /
i j

Ž .Since n� s n , the estimated standard error is 3.1 .ˆ i j i j
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ˆŽ .The delta method also applies directly with � to obtain � � and a Waldˆ
ˆ ˆ ˆŽ .confidence interval � � z � � . This is not recommended; � convergesˆ�r2

ˆmore slowly than log � to normality, this interval could contain negative
values, and it does not give results equivalent to those obtained with the

ˆWald interval using 1r� and its standard error.

3.1.8 Score and Profile Likelihood Confidence Intervals*

Standard errors obtained with the delta method appear in Wald confidence
intervals. However, intervals based on inverting Wald tests sometimes work
poorly for small to moderate n. Alternative intervals result from inverting
likelihood-ratio or score tests. Although computationally more complex,
these methods often perform better.

We illustrate first with the score method for the difference of proportions.
Ž .The score test Mee 1984; Miettinen and Nurminen 1985 of H : � y � s 	0 1 2

has the test statistic

� y � y 	ˆ ˆŽ .1 2
z 	 sŽ .

� 	 1 y � 	 rn q � 	 1 y � 	 rn' Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ1 1 1 2 2 2

Ž .where � 	 denotes the ML estimate of � subject to the constraintˆ i i
Ž . Ž .� y � s 	. That is, � 	 and � 	 are the values of � and �ˆ ˆ1 2 1 2 1 2

satisfying � y � s 	 that maximize the product of the two binomial1 2
probability mass functions. These values do not have closed-form expressions
and are determined using numerical methods. The score confidence interval

� Ž . �is the set of 	 such that z 	 � z . Computations for such intervals�r2
Ž .require iteration Nurminen 1986 .

For the relative risk also, slightly better performance results with an
Žinterval using the score method Bedrick 1987; Gart and Nam 1988;

.Koopman 1984, Miettinen and Nurminen 1985; Nurminen 1986 . Cornfield
Ž . Ž .1956 and Miettinen and Nurminen 1985 showed the score interval for the
odds ratio. We prefer not to use a continuity or finite-sampling correction
with these intervals, as then performance is too conservative. The fact that
the score intervals are computationally more complex than Wald intervals
should not be an impediment to their use in this modern era of computing, as
the principle behind them is simple. However, currently they are not avail-
able in standard software.

For a confidence interval based on the likelihood-ratio test, we illustrate
with the odds ratio. The multinomial likelihood for a 2 � 2 table is a function

� 4 � 4of � ,� ,� . Equivalently, it can be expressed in terms of � ,� ,�11 12 21 1q q1
Ž .recall Section 2.4.1 . Thus, in inverting a likelihood-ratio test of H : � s �0 0
to check whether � belongs in the confidence interval, there are two0

Ž . Ž .nuisance parameters. Their null ML estimates � � and � � thatˆ ˆ1q 0 q1 0
maximize the likelihood under the null vary as � does.0
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Ž Ž . Ž ..The profile log-likelihood function is L � , � � , � � , viewed as aˆ ˆ0 1q 0 q1 0
function of � . For each � this function gives the maximum of the ordinary0 0

ˆlog likelihood subject to the constraint � s � . Evaluated at � s � , this is0 0
ˆŽ .the maximized log likelihood L � , � , � , which occurs at the sampleˆ ˆ1q q1

proportions � s n rn and � s n rn. The profile likelihood confi-ˆ ˆ1q 1q q1 q1
dence interval for � is the set of � for which0

2ˆy2 L � , � � , � � y L � , � , � � 
 � .Ž . Ž . Ž .Ž .ˆ ˆ ˆ ˆž /0 1q 0 q1 0 1q q1 1

This contains all � not rejected in likelihood-ratio tests of nominal size � .0
ŽThe profile likelihood approach is available with some software e.g., for

.SAS, see Table A.2 in Appendix A . A related approach, discussed in Section
6.7.1, uses a conditional likelihood function that eliminates the nuisance
parameters by conditioning on their sufficient statistics. This is beneficial
when there are many nuisance parameters. An advantage of score and
likelihood-based intervals is that unlike the Wald, they are not adversely
affected when the sample relative risk or odds ratio is 0 or �.

In this section we have discussed interval estimation. Significance tests
normally refer to a null hypothesis value of 0.0 for the log odds ratio, log
relative risk, and difference of proportions. These are special cases of
independence applied to 2 � 2 tables. In the next section we present tests of
independence for two-way contingency tables.

3.2 TESTING INDEPENDENCE IN TWO-WAY CONTINGENCY TABLES

� 4For multinomial sampling with probabilities � in an I � J contingencyi j
table, the null hypothesis of statistical independence is H : � s � � for0 i j iq qj
all i and j. For independent multinomial samples in the I rows, indepen-
dence corresponds to homogeneity of each outcome probability among the
rows. Our discussion refers to a single multinomial sample, but the same tests
apply with independent multinomial samples.

3.2.1 Pearson and Likelihood-Ratio Chi-Squared Tests
2 Ž .In Section 1.5.2 we introduced the Pearson X statistic 1.15 for tests about

multinomial probabilities. A test of H : independence uses X 2 with n in0 i j
Ž .place of n and with � s n� � in place of � . Here � s E n underi i j iq qj i i j i j

� 4 � 4H . Usually, � and � are unknown. Their ML estimates are the0 iq qj
sample marginal proportions � s n rn and � s n rn, so estimatedˆ ˆiq iq qj qj

� 4 2expected frequencies are � s n� � s n n rn . Then X equalsˆ ˆ ˆi j iq qj iq qj

2
n y �̂Ž .i j i j2X s . 3.10Ž .Ý Ý

�̂i ji j
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Ž . � 4 � 4Pearson 1900, 1904, 1922 claimed that replacing � by estimates �̂i j i j
would not affect the distribution of X 2. Since the contingency table has IJ
categories, he argued that X 2 is asymptotically chi-squared with df s IJ y 1.

� 4 � 4 � 4On the contrary, since � require estimating � and � , by Sectionˆ i j iq qj
1.5.6

df s IJ y 1 y I y 1 y J y 1 s I y 1 J y 1 .Ž . Ž . Ž . Ž . Ž .

� 4 � 4The dimensions of � and � reflect the constraints Ý � sÝ � s 1.iq qj i iq j qj
Ž . Ž .R. A. Fisher 1922 corrected Pearson’s error see Section 16.2 . His article

Žintroduced the notion of degrees of freedom. Pearson had dealt with an
indexed family of chi-squared distributions but had not dealt explicitly with

.‘‘degrees of freedom.’’
The score test produces the X 2 statistic. The likelihood-ratio test pro-

duces a different one. For multinomial sampling, the kernel of the likelihood
is

� ni j , where all � G 0 and � s 1.ŁŁ ÝÝi j i j i j
i j i j

Under H : independence, � s � � s n n rn2. In the general case,ˆ ˆ ˆ0 i j iq qj iq qj
� s n rn. The ratio of the likelihoods equalsˆ i j i j

n i jŁ Ł n nŽ .i j iq qj
� s .n ni jn Ł Ł ni j i j

The likelihood-ratio chi-squared statistic is y2 log �. Denoted by G2, it
equals

G2 sy2 log � s 2 n log n r� 3.11Ž .ˆŽ .Ý Ý i j i j i j
i j

� 4 2 2where � s n n rn . The larger the values of G and X , the moreˆ i j iq qj
evidence exists against independence.

� 4In the general case, the parameter space consists of � subject to thei j
� 4linear restriction Ý Ý � s 1, so the dimension is IJ y 1. Under H , �i j i j 0 i j

� 4 � 4 Ž . Ž .are determined by � and � , so the dimension is I y 1 q J y 1 .iq qj
Ž .Ž .The difference in these dimensions equals I y 1 J y 1 . For large samples,

2 Ž .Ž . 2G has a chi-squared null distribution with df s I y 1 J y 1 . So G and
X 2 have the same limiting null chi-squared distribution. In fact, they are then

2 2 Žasymptotically equivalent; X y G converges in probability to zero Section
.14.3.4 . The limiting results for multinomial sampling also hold with other

Ž .sampling schemes Roy and Mitra 1956, Watson 1959 .
� 4These results apply as n grows, and hence � s n� grow, for a fixedi j i j

� 4number of cells. As they grow, the multinomial distribution for n is betteri j
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approximated by a multivariate normal, and X 2 and G2 have more nearly
chi-squared distributions. The convergence to chi-squared is quicker for X 2

than G2. The approximation is usually poor for G2 when nrIJ � 5. When I
or J is large, it can be decent for X 2 when some expected frequencies are as
small as 1 but most exceed 5. In Section 9.8.4 we provide further guidelines.

Ž .Small-sample methods Section 3.5 are available whenever it is doubtful
whether n is sufficiently large.

3.2.2 Education and Religious Fundamentalism Example

Table 3.2 cross-classifies the degree of fundamentalism of subjects’ religious
beliefs by their highest degree of education. The table also contains the
estimated expected frequencies for H : independence. For instance,0

Ž .� s n n rn s 424 � 886 r2726 s 137.8. The chi-squared statistics areˆ11 1q q1
2 2 Ž .Ž .X s 69.2 and G s 69.8, with df s 3 y 1 3 y 1 s 4. The P-values

are � 0.0001. These statistics provide extremely strong evidence of an
association.

3.3 FOLLOWING-UP CHI-SQUARED TESTS

Like any significance test, chi-squared tests of independence have limited
usefulness. A small P-value indicates strong evidence of association but
provides little information about the nature or strength of the association.
Statisticians have long warned about dangers of relying solely on results of

Žchi-squared tests rather than studying the nature of the association e.g.,
.Berkson 1938; Cochran 1954 . In this section we discuss ways to follow up the

tests to learn more about the association.

TABLE 3.2 Education and Religious Beliefs

Religious Beliefs

Highest Degree Fundamentalist Moderate Liberal Total

Less than high school 178 138 108 424
1Ž . Ž . Ž .137.8 161.5 124.7

2Ž . Ž . Ž .4.5 y2.6 y1.9
High school or junior college 570 648 442 1660

Ž . Ž . Ž .539.5 632.1 488.4
Ž . Ž . Ž .2.6 1.3 y4.0

Bachelor or graduate 138 252 252 642
Ž . Ž . Ž .208.7 244.5 188.9
Ž . Ž . Ž .y6.8 0.7 6.3

Total 886 1038 802 2726

Source: 1996 General Social Survey, National Opinion Research Center.
1Estimated expected frequencies for testing independence; 2 standardized Pearson residuals.
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3.3.1 Pearson and Standardized Residuals

A cell-by-cell comparison of observed and estimated expected frequencies
helps show the nature of the dependence. Under H , larger differences0
Ž .n y � tend to occur in cells with larger � . For Poisson sampling, forˆi j i j i j

Ž .instance, the standard deviation of n and hence n y � is � ; the'i j i j i j i j

Ž .standard deviation of n y � is less than that of n y � but is propor-ˆi j i j i j i j
tional to � . Thus, this raw difference is insufficient. The Pearson residual,' i j

defined for a cell by

n y �̂i j i j
e s , 3.12Ž .i j 1r2�̂i j

attempts to adjust for this. Pearson residuals relate to the Pearson statistic by
Ý Ý e2 s X 2.i j i j

� 4Under H , e are asymptotically normal with mean 0. However, in0 i j
Section 14.3.2 we show that their asymptotic variances are less than 1.0,

wŽ .Ž .x Ž .averaging I y 1 J y 1 r number of cells . Comparing Pearson residuals
to standard normal percentage points provides conservative indications of
cells having lack of fit.

A standardized Pearson residual that is asymptotically standard normal
Žresults from dividing it by its standard error Haberman 1973a; see also

.Section 14.3.2 . For H : independence, this is0

n y �̂i j i j
. 3.13Ž .1r2

� 1 y p 1 y pŽ .ˆ Ž .i j iq qj

A standardized Pearson residual that exceeds about 2 or 3 in absolute value
indicates lack of fit of H in that cell. Larger values are more relevant when0
df is larger and it becomes more likely that at least one is large simply by
chance.

3.3.2 Education and Religious Fundamentalism Revisited

Table 3.2 also shows standardized Pearson residuals for testing indepen-
dence. For instance, n s 178 and � s 137.8. The relevant marginalˆ11 11
proportions equal p s 424r2726 s 0.156 and p s 886r2726 s 0.325.1q q1

Ž .The standardized Pearson residual 3.13 for this cell equals

1r2178 y 137.8 r 137.8 1 y 0.156 1 y 0.325 s 4.5.Ž . Ž . Ž . Ž .

This cell shows a much greater discrepancy between n and � thanˆ11 11
expected if the variables were truly independent.

Table 3.2 shows large positive residuals for subjects with less than a high
school education and fundamentalist views and for subjects with a bachelor’s
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or graduate degree and liberal views. This means that significantly more
subjects were at these combinations than H : independence predicts. Simi-0
larly, there were fewer subjects with high levels of education and fundamen-
talist views and with low levels of education and liberal views than indepen-
dence predicts.

Odds ratios describe this trend. The 2 � 2 table constructed from the first
and last rows and the first and last columns of Table 3.2 has a sample odds

Ž . Ž .ratio of 178 � 252 r 108 � 138 s 3.0. For those with a bachelor’s or gradu-
ate degree, the estimated odds of selecting liberal instead of fundamentalist
were 3.0 times the estimated odds for those with less than a high school
education.

3.3.3 Partitioning Chi-Squared

Let Z denote a standard normal random variable. Then Z 2 has a chi-squared
distribution with df s 1. A chi-squared random variable with df s  has
representation Z 2 q ��� qZ 2, where Z , . . . , Z are independent standard1  1 

normal variables. Thus, a chi-squared statistic having df s  has partition-
ings into independent chi-squared components�for example, into  compo-
nents each having df s 1. Conversely, if X 2 and X 2 are independent1 2
chi-squared random variables having degrees of freedom  and  , then1 2
X 2 s X 2 q X 2 has a chi-squared distribution with df s  q  . Another1 2 1 2
supplement to a chi-squared test partitions its test statistic so that the
components represent certain aspects of the effects. A partitioning may show
that an association reflects primarily differences between certain categories
or groupings of categories.

We begin with a partitioning for the test of independence in 2 � J tables.
2 Ž .We partition G , which has df s J y 1 , into J y 1 components. The jth

component is G2 for a 2 � 2 table where the first column combines columns
1 through j of the full table and the second column is column j q 1. That is,
G2 for testing independence in a 2 � J table equals a statistic that compares
the first two columns, plus a statistic that combines the first two columns and
compares them to the third column, and so on, up to a statistic that combines

Žthe first J y 1 columns and compares them to the last column. In Section
.9.2.4 we justify this partitioning. Each component statistic has df s 1.

2 Ž .It might seem more natural to compute G for the J y 1 separate 2 � 2
tables that pair each column with a particular one, say the last. However,
these component statistics are not independent and do not sum to G2 for the

Žfull table. This is beyond our scope at this stage but relates to the contrasts
of log probabilities that form the log odds ratios for the two tables not being

.orthogonal.
For an I � J table, independent chi-squared components result from

comparing columns 1 and 2 and then combining them and comparing them to
column 3, and so on. Each of the J y 1 statistics has df s I y 1. More

Ž .Ž .refined partitions contain I y 1 J y 1 statistics, each having df s 1. One



FOLLOWING-UP CHI-SQUARED TESTS 83

Ž . Ž .Ž .such partition Lancaster 1949 applies to the I y 1 J y 1 separate 2 � 2
tables

n nÝ Ý Ýab a j
a�i b�j a�i

3.14Ž .
n nÝ i b i j

b�j

for i s 2, . . . , I and j s 2, . . . , J. For others, see Gilula and Haberman
Ž . Ž .1998 and Goodman 1969a, 1971b .

3.3.4 Origin of Schizophrenia Example

Table 3.3 classifies a sample of psychiatrists by their school of psychiatric
thought and by their opinion on the origin of schizophrenia. Here G2 s 23.04
with df s 4. To understand this association better, we partition G2 into four

Ž .independent components. The partitioning 3.14 applies to the subtables
shown in Table 3.4.

The first subtable compares the eclectic and medical schools of psychiatric
thought on whether the origin of schizophrenia is biogenic or environmental
given that the classification was in one of these two categories. For this
subtable, G2 s 0.29, with df s 1. The second subtable compares these two
schools on the proportion of times the origin was ascribed to be a combina-
tion, rather than biogenic or environmental. This subtable has G2 s 1.36,

TABLE 3.3 Most Influential School of Psychiatric Thought and Ascribed
Origin of Schizophrenia

Origin of SchizophreniaSchool of
Psychiatric Thought Biogenic Environmental Combination

Eclectic 90 12 78
Medical 13 1 6
Psychoanalytic 19 13 50

Source: Reprinted with permission, based on data from B. J. Gallagher III, B. J. Jones, and L. P.
Ž .Barakat, J. Clin. Psychol. 43: 438�443 1987 .

TABLE 3.4 Subtables Used in Partitioning Chi-Squared for Table 3.3a

Bio q Bio q
Bio Env Env Com Bio Env Env Com

Ecl 90 12 Ecl 102 78 Ecl q Med 103 13 Ecl q Med 116 84
Med 13 1 Med 14 6 Psy 19 13 Psy 32 50
aBio, biogenic; Com, combination; Ecl, eclectic; Env, environmental; Psy, psychoanalytic
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with df s 1. The sum of these two components equals G2 for testing
independence with the first two rows of Table 3.3. There is little evidence of
a difference between the eclectic and medical schools of thought on the
ascribed origin of schizophrenia.

Next we combine the eclectic and medical schools and compare them to
the psychoanalytic school. The third subtable in Table 3.4 compares them for

Ž . 2the biogenic, environmental classification, giving G s 12.95 with df s 1.
ŽThe fourth subtable compares them for the biogenic or environmental,

. 2combination split, giving G s 8.43 with df s 1.
The psychoanalytic school seems more likely than the other schools to

ascribe the origins of schizophrenia as being a combination. Of those who
chose either the biogenetic or environmental origin, members of the psycho-
analytic school were somewhat more likely than the other schools to choose
the environmental origin. The sum of these four G2 components equals the
value of 23.04 for testing independence in the full table.

3.3.5 Rules for Partitioning

Ž . Ž .Goodman 1968, 1969a, 1971b and Lancaster 1949, 1969 gave rules for
determining independent components of chi-squared. For forming subtables,
among the necessary conditions are the following:

1. The df for the subtables must sum to df for the full table.
2. Each cell count in the full table must be a cell count in one and only

one subtable.
3. Each marginal total of the full table must be a marginal total for one

and only one subtable.

For a certain partitioning, when the subtable df values sum properly but the
G2 values do not, the components are not independent.

For the G2 statistic, exact partitionings occur. The Pearson X 2 need not
equal the sum of the X 2 values for the subtables. It is valid to use the X 2

statistics for the separate subtables; they simply need not provide an exact
algebraic partitioning of X 2 for the full table. When the null hypotheses all
hold, X 2 does have an asymptotic equivalence with G2, however. In addition,
when the table has small counts, in large-sample chi-squared tests it is safer
to use X 2 to study the subtables.

3.3.6 Limitations of Chi-Squared Tests

Chi-squared tests of independence merely indicate the degree of evidence of
association. They are rarely adequate for answering all questions about a
data set. Rather than relying solely on results of these tests, investigate the
nature of the association: Study residuals, decompose chi-squared into com-
ponents, and estimate parameters such as odds ratios that describe the
strength of association.
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The chi-squared tests also have limitations in the types of data to which
�they apply. For instance, they require large samples. Also, the � sˆ i j

4 2 2n n rn used in X and G depend on the marginal totals but not on theiq qj
order of listing the rows and columns. Thus, X 2 and G2 do not change value
with arbitrary reorderings of rows or of columns. This implies that they treat
both classifications as nominal. When at least one variable is ordinal, test
statistics that utilize the ordinality are usually more appropriate. We present
such tests in Section 3.4.

3.3.7 Why Consider Independence?

Any idealized structure such as independence is unlikely to hold in any given
practical situation. With large samples such as in Table 3.2 it is not surprising
to obtain a small P-value. Given this and the limitations just mentioned, why
even bother to consider independence as a possible representation for a joint
distribution? One reason refers to the benefits of model parsimony. If the
independence model approximates the true probabilities well, then unless n

� 24is very large, the model-based estimates � s n n rn of cell probabili-ˆ i j iq qj
� 4ties tend to be better than the sample proportions p s n rn . The inde-i j i j

pendence ML estimates smooth the sample counts, somewhat damping the
random sampling fluctuations.

Ž .The mean-squared error MSE formula
2MSE s variance q biasŽ .

explains why the independence estimators can have smaller MSE. Although
they may be biased, they have smaller variance because they are based on

Ž� 4 � 4 � 4.estimating fewer parameters � and � instead of � . Hence, MSEiq qj i j
can be smaller unless n is so large that the bias term dominates the variance.

w Ž .Ž .xWe illustrate using Table 3.5, which has � s � � 1 q � i y 2 j y 2i j iq qj
1for � s � s . Here y1 � � � 1, with � s 0 equivalent to indepen-iq qj 3

dence. Independence approximates the relationship well when � is close to
zero. The total MSE values of the two estimators are

2� 4MSE p s E p y � s var pŽ . Ž .Ž . Ý Ý Ý Ýi j i j i j i j
i j i j

s � 1 y � rn s 1 y � 2 nŽ .Ý Ý Ý Ýi j i j i jž /
i j i j

2
MSE � s E � y � .� 4ˆ ˆŽ .Ž . Ý Ýi j i j i j

i j

TABLE 3.5 Cell Probabilities for Comparison of Estimators

Ž . Ž .1 q � r9 1r9 1 y � r9
1r9 1r9 1r9

Ž . Ž .1 y � r9 1r9 1 q � r9
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( )TABLE 3.6 Comparison of Total MSE �10,000 for Sample Proportion
and Independence Estimators

� s 0 � s 0.1 � s 0.2 � s 0.6 � s 1.0

n p � p � p � p � p �ˆ ˆ ˆ ˆ ˆ
10 889 489 888 493 887 505 871 634 840 893
50 178 91 178 95 177 110 174 261 168 565

100 89 45 89 50 89 65 87 220 84 529
500 18 9 18 14 18 28 17 186 17 500
� 0 0 0 5 0 20 0 178 0 494

For Table 3.5,

1 8 4� 2

� 4MSE p s yŽ .i j ½ 5n 9 81

and rather tedious calculations yield

1 4 4 4� 2 2 2 2
MSE � s q q 1 y q y .� 4ˆŽ .i j 2 3½ 5 ½ 5n 9 9n 81 n n n

Table 3.6 lists the total MSE values for various � and n. When � s 0,
Ž� 4. Ž� 4.MSE p s 8r9n, whereas MSE � f 4r9n for large n. The indepen-ˆi j i j

dence estimator is then much better than the sample proportions. When the
Ž .table is close to independence � f 0 and n is not large, MSE is only about

half as large for the independence estimator. When � � 0, the inconsistency
� 4 Ž� 4. 2 w Ž� 4. xof � is reflected by MSE � ™ 4� r81 whereas MSE p ™ 0 asˆ ˆi j i j i j

n ™ �. When the table is close to independence, however, the independence
Žestimator has a lower total MSE even for moderately large n e.g., for

.n s 500 when � s 0.1 .

3.4 TWO-WAY TABLES WITH ORDERED CLASSIFICATIONS

The X 2 and G2 chi-squared tests ignore some information when used to test
independence between ordinal classifications. When rows andror columns
are ordered, more powerful tests usually exist.

3.4.1 Linear Trend Alternative to Independence

When the row variable X and the column variable Y are ordinal, a positive
or negative trend in the association is common. One approach to inference,
described later in this section, uses an ordinal measure of monotone trend.



TWO-WAY TABLES WITH ORDERED CLASSIFICATIONS 87

A more popular analysis assigns scores to categories and summarizes the
linear trend.

A test statistic that is sensitive to positive or negative linear trends utilizes
correlation information. Let u F u F ��� F u denote scores for the rows,1 2 I
and let ® F ® F ��� F® denote column scores. The scores have the same1 2 J
ordering as the categories. They assign distances between categories and
actually treat the measurement scale as interval, with greater distances
between categories that are farther apart.

The sum Ý Ý u ® n weights cross-products of scores by their frequency.i j i j i j
It relates to the covariation of X and Y. For the scores chosen, the
correlation r between X and Y equals the standardization of this sum to

Žthe y1 to q1 scale in fact, r equals this sum when both sets of scores are
linearly transformed for the n subjects to have a mean of 0 and standard

.deviation of 1 . The larger the correlation is in absolute value, the farther the
data fall from independence in this linear dimension.

A statistic for testing independence against the two-sided alternative of
nonzero true correlation is

M 2 s n y 1 r 2 . 3.15Ž . Ž .

� �This statistic increases as r or n do. For large samples, it is approximately
Ž .chi-squared with df s 1 Mantel 1963 . Large values contradict indepen-

dence, so as with X 2 and G2, the P-value is the right-tailed probability above
the value observed. A small P-value does not imply that the association is
linear, merely that searching for a linear component to the association helped
to build power against H . The test treats the variables symmetrically.0

3.4.2 Job Satisfaction Example Revisited

Table 2.8 showed job satisfaction and income for 96 subjects. The ordinary
chi-squared statistics for testing independence are X 2 s 6.0 and G2 s 6.8

Ž .with df s 9 P-values s 0.74 and 0.66 . These statistics show little evidence
of association, but they ignore the ordering of rows and columns. With scores
Ž . � 41, 2, 3, 4 for job satisfaction and scores 7.5, 20, 32.5, 60 for income that
approximate midpoints of categories in thousands of dollars, the correlation

2 Ž .Ž .2is r s 0.200. The linear trend test statistic M s 96 y 1 0.200 s 3.81.
Ž .This shows some evidence of association P s 0.051 . The evidence is stronger

'Ž .for the one-sided positive trend alternative, using M s n y 1 r s 1.95
Ž .P s 0.026 .

The nontrivial evidence of positive association may be surprising, since X 2

and G2 have such unimpressive values. When a positive or negative trend
exists, analyses designed to detect that trend can provide much smaller
P-values than analyses that ignore it.
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3.4.3 Monotone Trend Alternatives to Independence

Ordinal variables do not have a specified metric. Detecting a linear trend
alternative to independence requires assigning scores to X and Y, treating
them as interval variables. Alternatively, a strict ordinal analysis with the
weaker alternative of monotonicity uses an ordinal measure of association,

Ž .such as gamma Section 2.4.4 .
For large random samples, sample gamma has approximately a normal

Ž .sampling distribution. The standard error SE follows from the delta method
Ž .Problem 3.27 . Gamma is the basis of an ordinal test of independence using
test statistic z s �rSE. A confidence interval describes the strength ofˆ
positive or negative monotone association.

For Table 2.8 on income and job satisfaction, in Section 2.4.5 we showed
that � s 0.221. The sample has a weak tendency for job satisfaction to beˆ

Ž .higher at higher income levels. Software e.g., PROC FREQ in SAS reports
a standard error of 0.117 for gamma. There is some evidence that � � 0,

Ž .since z s 0.221r0.117 s 1.89 P s 0.03 for the one-sided alternative . An
Ž . Žapproximate 95% confidence interval for � is 0.221 � 1.96 0.117 , or y0.01,

.0.45 . The true association between income and job satisfaction is at best
moderately positive.

3.4.4 Extra Power with Ordinal Tests

For testing independence, X 2 and G2 refer to the most general alternative,
whereby cell probabilities exhibit any type of statistical dependence. Their

Ž .Ž .df value of I y 1 J y 1 reflects an alternative hypothesis that has
Ž .Ž .I y 1 J y 1 more parameters than the null hypothesis�the nonredundant

w Ž .xodds ratios that describe the association such as 2.10 . These statistics are
designed to detect any pattern for these parameters. In achieving this
generality, they sacrifice sensitivity for detecting particular patterns.

By contrast, the analyses for ordinal row and column variables attempt to
describe association using a single parameter. For instance, M 2 uses the
correlation. When a chi-squared test statistic refers to a single parameter
w 2 Ž .2 xsuch as M or �rSE do , it has df s 1. When the association truly has aˆ
positive or negative trend, an ordinal test has a power advantage over the
tests using X 2 or G2. Since df equals the mean of the chi-squared distribu-
tion, a relatively large M 2 value with df s 1 falls farther out in its right-hand

2 2 Ž .Ž .tail than a comparable value of X or G with df s I y 1 J y 1 ; falling
farther out in the tail produces a smaller P-value. The potential discrepancy
in power increases as I and J increase. In Section 6.4 we present the theory
behind such a power comparison.

3.4.5 Choice of Scores

Often, it is unclear how to assign scores to statistics that require them, such
2 Ž .as M . Cochran 1954 noted that ‘‘any set of scores gives a ®alid test,
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provided that they are constructed without consulting the results of the
experiment. If the set of scores is poor, in that it badly distorts a numerical
scale that really does underlie the ordered classification, the test will not be
sensitive. The scores should therefore embody the best insight available
about the way in which the classification was constructed and used.’’ Ideally,
the scale is chosen by a consensus of experts, and subsequent interpretations
use that same scale.

How sensitive are analyses to the choice or scores? There is no simple
Žanswer, but different scoring systems can give quite different results e.g.,

.Graubard and Korn 1987 . For most data sets, different choices of monotone
scores give similar results. Scores that are linear transforms of each other,

Ž . Ž .such as 1, 2, 3, 4 and 0, 2, 4, 6 , have the same absolute correlation and
hence the same M 2. Results may depend on the scores, however, when the
data are highly unbalanced, with some categories having many more observa-
tions than others.

Table 3.7 illustrates the potential dependence. It refers to a prospective
study of maternal drinking and congenital malformations. After the first
three months of pregnancy, the women in the sample completed a question-
naire about alcohol consumption. Following childbirth, observations were
recorded on the presence or absence of congenital sex organ malformations.
When a variable is nominal but has only two categories, statistics that treat it
as ordinal are still valid. For instance, we can artificially regard malformation
as ordinal, treating ‘‘present’’ as ‘‘high’’ and ‘‘absent’’ as ‘‘low.’’ With only two
rows, any set of distinct row scores is a linear transformation of any other set
and gives the same M 2 value. Alcohol consumption, measured as the average
number of drinks per day, is an ordinal explanatory variable. This groups a

�naturally continuous variable, and we first use the scores ® s 0, ® s 0.5,1 2
4® s 1.5, ® s 4.0, ® s 7.0 , the last score being somewhat arbitrary. For this3 4 5

choice, M 2 s 6.57, for which the P-value is 0.010. By contrast, for the
Ž . 2equally spaced row scores 1, 2, 3, 4, 5 , M s 1.83, giving a much weaker

Ž .conclusion P s 0.18 .
An alternative approach uses the data to form the scores automatically, by

using ranks as the category scores. All subjects in a category receive the
average of the ranks that would apply for a complete ranking of the sample
from 1 to n. These are called midranks. The 17,114 subjects at level 0 for

TABLE 3.7 Example for which Results Depend on Choice of Scores

Alcohol Consumption
Ž .average number of drinks per day

Malformation 0 � 1 1�2 3�5 G 6

Absent 17,066 14,464 788 126 37
Present 48 38 5 1 1

Ž .Source: Reprinted with permission from the Biometric Society Graubard and Korn 1987 .
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alcohol consumption share ranks 1 through 17,114. Each receives the average
Ž .of these ranks, which is the midrank 1 q 17,114 r2 s 8557.5. Similarly,

the midranks for the last four categories are 24,365.5, 32,013, 32,473,
and 32,555.5. These scores yield M 2 s 0.35 and a weaker conclusion yet
Ž .P s 0.55 .

Why does this happen? Adjacent categories having relatively few observa-
tions necessarily have similar midranks. The midranks are similar for the
final three categories, since those categories have few observations compared
with the first two categories. This scoring scheme treats alcohol consumption

Ž .level 1�2 drinks category 3 as much closer to consumption level G 6 drinks
Ž . Ž .category 5 than to consumption level 0 drinks category 1 . This seems
inappropriate. It is usually better to select scores that reflect distances
between categories. When uncertain about this choice, a sensitivity analysis
should be performed, selecting two or three sensible choices and checking
whether results are similar. Equally spaced scores often provide a reasonable
compromise when the category labels do not suggest obvious choices, such as

Ž .the categories liberal, moderate, conservative for political philosophy.
When X and Y are both ordinal and M 2 uses midrank scores, the

correlation on which M 2 is based is called Spearman’s rho.

3.4.6 Trend Tests for I � 2 and 2 � J Tables

When I or J equal 2, the tests based on linear or monotonic trend simplify to
well-established procedures. With binary X, 2 � J tables occur in compar-
isons of two groups, such as when the rows represent two treatments. Using

� 4scores u s 0, u s 1 for levels of X, the covariation measure Ý Ý u ® n1 2 i j i j i j
in M 2 simplifies to Ý ® n . This term sums the scores on Y for all subjectsj j 2 j
in row 2. Divided by the number of subjects in row 2, it gives the mean score
for that row. In fact, M 2 is then directed toward detecting differences
between the two row means of the scores on Y.

With midrank scores for Y, the test using M 2 for 2 � J tables is sensitive
to differences in mean ranks for the two rows. This test is called the Wilcoxon
or Mann�Whitney test. Most nonparametric statistics textbooks present this
test for fully ranked response data, whereas the 2 � J table is an extended
case in which sets of subjects in the same category of Y are tied and use
midranks. The large-sample version of that nonparametric test uses a stan-
dard normal z statistic. The square of the statistic is equivalent to M 2, using
arbitrary row scores and midranks for the columns. It is also asymptotically
equivalent to test statistics based on the numbers of concordant and discor-
dant pairs, such as the one using gamma.

When Y has two levels, the table has size I � 2. The linear trend statistic
then refers to a linear trend in the probability of either response category,
such as the probability of malformation as a function of alcohol consumption.
The test in that case, often called the Cochran�Armitage trend test, is
presented in Section 5.3.5.
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3.4.7 Nominal–Ordinal Tables

The tests using the correlation or gamma are appropriate when both classifi-
cations are ordinal. When one is nominal with more than two categories,
other statistics are needed. One is based on summarizing the variation among
means on the ordinal variable in the various categories of the nominal
variable. We defer discussion of this case to Section 7.5.3, Note 3.6, and
Problem 3.28.

3.5 SMALL-SAMPLE TESTS OF INDEPENDENCE

The inferential methods of the preceding four sections are large-sample
methods. When n is small, alternative methods use exact small-sample
distributions rather than large-sample approximations. In this section we
describe small-sample tests of independence, starting with one that R. A.
Fisher proposed for 2 � 2 tables.

3.5.1 Fisher’s Exact Test for 2 � 2 Tables

In Section 3.5.7 we show that a distribution not depending on unknown
parameters results from conditioning on the marginal totals of the contin-
gency table. These are usually not naturally fixed. For Poisson sampling
nothing is fixed, for multinomial sampling only n is fixed, and for indepen-
dent binomial sampling in the two rows only the row marginal totals are
fixed. In any of these cases, under H : independence, conditioning on both0
sets of marginal totals yields the hypergeometric distribution

nn 2q1qž / ž /n y tt q1
p t s P n s t s . 3.16Ž . Ž . Ž .11 n

nž /q1

� 4This formula expresses the distribution of n in terms of only n . Giveni j 11
the marginal totals, n determines the other three cell counts. The range of11

Ž .possible values for n is m F n F m , where m s max 0, n q n y n11 y 11 q y 1q q1
Ž .and m s min n , n .q 1q q1

For 2 � 2 tables, independence is equivalent to the odds ratio � s 1. To
test H : � s 1, the P-value is the sum of certain hypergeometric probabili-0
ties. To illustrate, consider H : � � 1. For the given marginal totals, tablesa
having larger n have larger sample odds ratios and hence stronger evidence11

Ž .in favor of H . Thus, the P-value equals P n G t , where t denotes thea 11 o o
observed value of n . This test for 2 � 2 tables is called Fisher ’s exact test11
Ž .Fisher 1934, 1935a,c; Irwin 1935; Yates 1934 .
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3.5.2 Fisher’s Tea Drinker

Ž .R. A. Fisher 1935a described the following experiment from his days at
Rothamsted Experiment Station, an agriculture research lab north of Lon-
don. Muriel Bristol, a colleague of Fisher’s, claimed that when drinking tea

Žshe could distinguish whether milk or tea was added to the cup first she
.preferred milk first . To test her claim, Fisher asked her to taste eight cups of

tea, four of which had milk added first and four of which had tea added first.
She knew there were four cups of each type and had to predict which four
had the milk added first. The order of presenting the cups to her was
randomized.

Table 3.8 shows a possible result. Distinguishing the order of pouring
better than with pure guessing corresponds to � � 1, reflecting a positive
association between order of pouring and the prediction. We conduct Fisher’s
exact test of H : � s 1 against H : � � 1.0 a

The experimental design fixed both marginal distributions, since Dr.
Bristol had to predict which four cups had milk added first. Thus, the
hypergeometric applies naturally for the null distribution of n . The P-value11
for Fisher’s exact test is the null probability of Table 3.8 and of tables having
even more evidence in favor of her claim. The observed table, t s 3 correcto
choices of the cups having milk added first, has null probability

4 4ž / ž /3 1
s 0.229.

8ž /4

The only table that is more extreme in the direction of H has n s 4a 11
Ž .correct. It has a probability of 0.014. The P-value is P n G 3 s 0.243. This11

result does not establish an association between the actual order of pouring
and her predictions. It is difficult to do so with such a small sample.

Ž .According to Fisher’s daughter Box 1978, p. 134 , in reality Bristol did
convince Fisher of her ability.

TABLE 3.8 Fisher’s Tea Tasting Experiment

Guess Poured First

Poured First Milk Tea Total

Milk 3 1 4
Tea 1 3 4

Total 4 4

Ž .Source: Based on experiment described by Fisher 1935a .
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3.5.3 Two-Sided P-Values for Fisher’s Exact Test

For the one-sided alternative, the same P-value results using tables ordered
according to larger n , larger odds ratio, or larger difference of proportions11
Ž .Davis 1986a . For the two-sided alternative, different criteria can have
different P-values.

Ž . Ž .For a two-sided P-value, a popular approach sums P n s t in 3.16 for11
Ž . Ž . w Ž . Ž .xcounts t such that p t F p t ; that is, the P-value is P s P p n F p to 11 0

Ž .for the observed value t . Another possibility sums p t for tables that areo
farther from H ; that is,0

P s P n y E n G t y E n ,Ž . Ž .11 11 0 11

Ž . Ž 2where the hypergeometric E n s n n rn. This is identical to P X G11 1q q1
2 . 2X for observed Pearson statistic X . A third approach takes P so o

w Ž . Ž .x2 min P n G t , P n F t , but this can exceed 1. A fourth approach11 o 11 o
w Ž . Ž .xtakes P s min P n G t , P n F t plus an attainable probability in the11 o 11 o

other tail that is as close as possible to, but not greater than, that one-tailed
probability.

ŽEach approach has advantages and disadvantages Blaker 2000; Davis
1986a; Dupont 1986; Lloyd 1988b; Mantel 1987b; Yates and discussants

.1984 . They can provide different results because of the discreteness and
potential skewness. The approach of ordering tables by a distance measure
from H , such as X 2, extends naturally to I � J tables.0

In practice, two-sided tests are much more common than one-sided. Partly
this is so that researchers can avoid charges of bias in giving evidence that
supports their predicted direction for an effect. To conduct a test of size 0.05
when one truly believes that the effect has a particular direction, it is safest
to conduct the one-sided test at the 0.025 level to guard against criticism. For
instance, in the 1998 document Biostatistical Principles for Clinical Trials, the

Ž .International Conference on Harmonization ICH E9 stated: ‘‘The approach
of setting type I errors for one-sided tests at half the conventional type I
error used in two-sided tests is preferable in regulatory settings. This pro-
motes consistency with two-sided confidence intervals that are generally
appropriate for estimating the possible size of the difference between two
treatments.’’

3.5.4 Discreteness and Conservatism Issues

Ž .The hypergeometric distribution 3.16 is highly discrete for small samples, as
n and hence the P-value can assume relatively few values. It is usually not11

Ž .possible to achieve a fixed significance level size such as 0.05.
In the tea-tasting experiment, for instance, n can equal only 4, 3, 2, 1, 0.11

The one-sided P-values are restricted to 0.014, 0.243, 0.757, 0.986, and 1.0. If
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one rejects H when the P-value does not exceed 0.05, then 0.05 is not the0
probability of type I error. Only the P-value of 0.014 does not exceed 0.05;
thus, when H is true, the probability of falsely rejecting it is 0.014, not 0.05.0
In this sense, the traditional approach to hypothesis testing is conservative:
The true probability of type I error is less than the nominal level.

It is possible to achieve any fixed significance level by data-unrelated
randomization on the boundary of the critical region, in deciding whether to
reject H . For the tea-tasting experiment, suppose that we reject H when0 0
n s 4, we reject H with probability 0.157 when n s 3, and we do not11 0 11
reject H otherwise; that is, when n s 3, we generate a uniform random0 11

w xvariable U over 0, 1 and reject H if U � 0.157. For expectation taken with0
respect to the null hypergeometric distribution of n , the significance level11
equals

�P reject H s E P reject H nŽ . Ž .0 0 11

s 1.0 0.014 q 0.157 0.229 q 0.0 � P n F 2 s 0.05.Ž . Ž . Ž .11

Ž .With the randomization extension, Tocher 1950 showed that Fisher’s test is
Ž .uniformly most powerful unbiased UMPU .

In practice, randomization having nothing to do with the data is unaccept-
able. We recommend simply reporting the P-value. To reduce conservative-

Ž .ness, report the mid-P-value Section 1.4.5 . The test is no longer guaranteed
Ž .to have true P type I error no greater than the nominal value, but in

practice it is rarely much greater. For the one-sided test with the tea-tasting
data,

mid-P-value s 1r2 P n s 3 q P n � 3 s 0.129.Ž . Ž . Ž .11 11

3.5.5 Small-Sample Unconditional Test of Independence*

A common sampling assumption for analyses comparing two groups on a
binary response is that the rows are independent binomial samples. Then,

� 4only n are naturally fixed. For Poisson and multinomial sampling schemes,iq
neither marginal distribution is fixed. For such cases it may seem artificial to
condition on both sets of marginal counts. An alternative small-sample test,
designed for independent binomial samples, conditions on only the row
totals.

Under binomial sampling with parameter � in row i, consider testing H :i 0
2 � 4� s � using some test statistic T , such as the Pearson X . For fixed n ,1 2 iq

T can take a discrete set of values, one of which is the observed value t .o
Ž .Given � s � s � , the P-value is P T G t , calculated using the product1 2 � o

of the two binomial probability mass functions. This is the sum of the product
binomial probabilities for those pairs of binomial samples that have T G t .o
Since � is unknown, the actual P-value is defined as

P s sup P T G t .Ž .� o
0F�F1
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This is an unconditional small-sample test of independence. Like Fisher’s
Žexact test, the true size is no greater than the nominal value e.g., if we reject

Ž . .when P F 0.05, the actual P type I error is no greater than 0.05 .
We illustrate using test statistic X 2 for the 2 � 2 table having entries

Ž . Ž .3, 0r0, 3 , by row, with fixed row totals 3, 3 as binomial sample sizes.
The sample X 2 s 6.0. This X 2 value for the observed table and for table
Ž .0, 3r3, 0 is the maximum possible. For a given value � for � s � , the1 2

w 3Ž .0 xw 0Ž .3 x 3Ž .3probability of the first table is � 1 y � � 1 y � s � 1 y �
Ž3 successes and 0 failures in the first row and 0 successes and 3 failures in

.the second , the product of two binomial probabilities. Similarly, the proba-
Ž .3 3 Ž 2 .bility of the second table is 1 y � � . Thus, the P-value is P X G 6 s�

3Ž .32� 1 y � , the sum of the product binomial probabilities for those two
1tables. The supremum of this over 0 F � F 1 occurs at � s , giving overall2

Ž .3Ž .3P-value equal to 2 0.5 0.5 s 0.031. By contrast, the two-sided Fisher’s
3 3 6exact test has P-value equal to 2 r s 0.100.ž / ž / ž /0 3 3

Ž .Barnard 1945, 1947 first proposed an unconditional test comparing bino-
Ž .mial parameters, although he later 1949 refuted it in favor of Fisher’s exact

Žtest. Several authors have since proposed related tests e.g., Haber 1986;
.Suissa and Shuster 1985 .

3.5.6 Conditional versus Unconditional Tests*

Since Barnard introduced the unconditional test, statisticians have debated
the proper way to conduct small-sample analyses of 2 � 2 tables. Fisher
criticized the unconditional approach, arguing that possible samples with
quite different numbers of successes than observed were not relevant. In

Ž .Fisher’s 1945 view, ‘‘ . . . the existence of these less informative possibilities
should not affect our judgment of significance based on the series actually
observed . . . . The fact that such an unhelpful outcome as these might
occur . . . is surely no reason for enhancing our judgment of significance in
cases where it has not occurred; . . . it is only the sampling distribution of
samples of the same type that can supply a rational test of significance.’’

Ž .Sprott 2000, Sec. 6.4.4 recently provided a similar argument.
Ž .An adaptation of the unconditional approach by Berger and Boos 1994

addresses this criticism somewhat. They took the supremum for the P-value
over a confidence interval of values for the nuisance parameter � rather than
over all possible values. Their unconditional P-value is

P s sup P T G t q � ,Ž .� o
�gC�

Ž .where C is a 100 1 y � % confidence interval for � . Here, � is taken to be�

Ž .very small e.g., 0.001 , and the test maintains the guaranteed upper bound
on size.
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Other arguments in favor of conditioning on both sets of marginal totals
are that the conditional approach provides a simple way to eliminate nui-

Žsance parameters in a variety of problems e.g., generalizing to other contin-
.gency table problems , and the margins contain little information about the

Ž . Ž .association Haber 1989; Yates 1984 . Zhu and Reid 1994 noted that some
information loss occurs in conditioning on the margins except when � s 1.
Arguments against conditioning partly concern the increased discreteness
that occurs. The few possible values for n make it difficult to obtain a small11
P-value. In repeated use with a nominal significance level, the actual type I
error probability may be much smaller than the nominal value and the power

Žmay suffer. Finally, for inference about nonnull values e.g, confidence
.intervals , we will see that the conditional approach applies only with the

odds ratio and not other measures.
The conservatism problem is partly unavoidable. Statistics having discrete

distributions are necessarily conservative in terms of achieving nominal
significance levels. Because an unconditional test fixes only one margin,
however, it has many more tables in the reference set for its sampling
distribution. That distribution is less discrete, and a richer array of possible
P-values occurs than with Fisher’s exact test. An unconditional test tends to
be less conservative and more powerful than Fisher’s exact test. A disadvan-
tage is that computations are very intensive for more complex problems, such
as larger tables.

If a table truly has two independent binomial samples, the unconditional
Ž .approach seems sensible. See Kempthorne 1979 for a cogent argument. The

conditional approach is useful for other cases. In a randomized clinical trial a
convenience sample of n subjects is randomly allocated to two treatments.
The samples are not binomials, as they are not random samples from two
populations of interest. One could focus on the sample alone and consider
the probability of a result at least as extreme as observed if there truly is no
treatment effect. For instance, out of all possible ways of choosing n of the1q
n subjects for treatment 1, for what proportion would n be at least as large11
as observed? Under the null hypothesis of no treatment effect, the same

Ž .overall response distribution n , n of successes and failures occursq1 q2
regardless of the allocation of subjects to treatments. Thus, the column mar-
gin is also naturally fixed. This argument leads to hypergeometric null proba-

Ž .bilities and Fisher’s exact test Greenland 1981 . This argument does not
extend, however, to nonnull effect values and hence to confidence intervals.

When both sets of marginal totals are naturally fixed, such as in Table 3.8,
the high degree of discreteness is unavoidable and Fisher’s exact test is the
best procedure. Regardless of which margins are naturally fixed, using the
mid-P-value helps reduce conservative effects of discreteness.

3.5.7 Derivation of Exact Conditional Distribution*

We now show how the conditional test for independence yields the hypergeo-
metric distribution. We do this for I � J tables, since we next discuss
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extensions of Fisher’s exact test for them. We assume independent multino-
mial sampling within rows, as often applies in comparing I treatment groups.

� 4Then row totals n are fixed, and we estimate the I conditional distribu-iq
� 4tions � , j s 1, . . . , J . Under H : independence, � s � s ��� sj � i 0 j �1 j �2

� s � , for j s 1, . . . , J. The product of the I multinomial probabilityj � I qj
functions then simplifies to

n ! Ł n ! Ł � nqjŽ . Ž .iq i iq j qjn i j� s . 3.17Ž .Ł Ł j � iž /Ł n ! Ł Ł n !i jj i j i j i j

� 4 � 4This distribution for n depends on � . These are nuisance parameters,i j qj
since they do not describe the association. Fisher introduced the standard
way of eliminating nuisance parameters, by conditioning on their sufficient
statistics. From the definition of sufficiency, the resulting conditional distri-
bution does not depend on those parameters.

� 4 Ž .The contribution of � to the product multinomial distribution 3.17qj
� 4depends on the data only through n , which are their sufficient statistics.qj

� 4 Ž � 4.The n have the multinomial n, � distribution, namelyqj qj

n!
nqj� . 3.18Ž .Ł qjŁ n ! jj qj

� 4 � 4The joint probability function of n and n is identical to the probabilityi j qj
� 4 � 4 � 4function of n , since n determines n . Thus, the probability functioni j i j qj

� 4 � 4 Ž . � 4of n , conditional on n , equals the probability function 3.17 of ni j qj i j
Ž . � 4divided by the probability function 3.18 evaluated at n , orqj

Ł n ! Ł n !Ž . Ž .i iq j qj
. 3.19Ž .

n!Ł Ł n !i j i j

� 4This is the multiple hypergeometric distribution. It applies to the set of ni j
� 4 � 4having the same n and n as the observed table. For 2 � 2 tables, it isiq qj

Ž .the hypergeometric distribution 3.16 .
When a table has a single multinomial sample, the unknown parameters
� 4 Ž .are � . For testing independence � s � � all i and j , distributioni j i j iq qj

Ž .3.19 results from conditioning on the row and column totals. These are
� 4 � 4sufficient statistics for � and � , which determine the null distribution.iq qj

For either sampling model, both sets of margins are fixed after the condition-
Ž .ing. The end result 3.19 does not depend on unknown parameters and thus

permits exact probability calculations.

3.5.8 Exact Tests of Independence for I � J Tables*

Exact tests for I � J tables utilize the multiple hypergeometric distribution.
Ž .Freeman and Halton 1951 defined the P-value as the probability of the set
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TABLE 3.9 Example for Exact Conditional Test

Smoking Level
Ž .cigarettesrday

0 1�24 � 25

Control 25 25 12
Myocardial infarction 0 1 3

Source: Reprinted with permission, based on Table 5 in
Ž .S. Shapiro et al., Lancet 743�746 1979 .

of tables with the given margins that are no more likely to occur than the
table observed. Other exact tests order the tables using a statistic describing

Ž . 2distance from H . Yates 1934 used X . The P-value is then the null value0
Ž 2 2 . 2of P X G X for observed value X . When classifications have orderedo o

categories, an ordinal statistic is more relevant. For the alternative hypothesis
Ž .of a positive association, we could use P T G t , where T is the correlationo

or gamma and where t denotes its observed value.o
We illustrate an exact test for ordered categories with Table 3.9, which

cross-classifies level of smoking and myocardial infarction for a sample of
young women in a case�control study. The second row contains small counts,
and large-sample tests may be inappropriate. Given the marginal counts, the
only table having greater evidence of positive association between smoking

Ž . Ž .and myocardial infarction has counts 25,26,11 for row 1 and 0,0,4 in row 2.
Conditional on both sets of margins, the null probability of the observed

w Ž .xtable and this more extreme table based on formula 3.19 equals 0.018.
Although the sample contains only four myocardial infarction patients, evi-
dence exists of a positive association. The evidence is stronger than using

2 Ž 2 2 .X , which ignores the ordering of categories. The exact P X G X so
Ž 2 .P X G 6.96 s 0.052.

Special algorithms and software for computing exact tests for I � J tables
Ž .are widely available e.g., Mehta and Patel 1983; see also Appendix A . We

recommend these tests when asymptotic approximations may be invalid.
Computing time increases exponentially as n, I, or J increase. However, one
can use Monte Carlo to sample randomly from the set of tables with the
given margins. The estimated P-value is then the sample proportion of tables
having test statistic value at least as large as the value observed.

As I andror J increase, the number of possible values for any test statistic
T tends to increase. Thus, the conservativeness issue for conditional tests
becomes less problematic.

3.6 SMALL-SAMPLE CONFIDENCE INTERVALS FOR 2 � 2 TABLES*

Small-sample methods also apply to estimation. Exact distributions depend-
ing only on the parameter of interest result from the same arguments. These
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distributions are the basis of confidence intervals for measures such as the
odds ratio.

3.6.1 Small-Sample Inference for the Odds Ratio

� 4For multinomial sampling, the distribution of n depends on n and celli j
� 4probabilities � . For 2 � 2 tables, the odds ratio isi j

� � � 1 y � y � q �Ž .11 22 11 1q q1 11
� s s .

� � � y � � y �Ž . Ž .12 21 1q 11 q1 11

� 4Hence, � is a function of � and � ,� . The same argument applies to11 1q q1
� 4any � , so the multinomial distribution of n can use parametersi j i j

� 4 � 4 � 4� , � , � . Conditional on n , n , the distribution of n depends1q q1 1q q1 i j
only on � . Since n determines all other cell counts, given the marginal11

� 4totals, the conditional distribution of n is specified by some functioni j
Ž . Ž . Ž .P n s t s f t; n , n , n, � . This distribution Fisher 1935c is the non-11 1q q1

central hypergeometric,

n y nn 1q1q t�ž / ž /n y tt q1
f t ; n , n , n , � s 3.20Ž . Ž .1q q1 mq n y nn 1q1q u�Ý ž / ž /n y uu q1usmy

for m F t F m .y q

A confidence interval for � results from inverting the test of H : � s � ,0 0
having observed n s t . For H : � � � , the P-value is11 o a 0

P s f t ; n , n , n , � .Ž .Ý 1q q1 0
tGt o

For testing against H : � � � ,0 0

P s f t ; n , n , n , � .Ž .Ý 1q q1 0
tFt o

Ž .When � s 1, these are one-sided Fisher’s exact tests. Cornfield 19560
constructed a confidence interval using the tail method. The lower endpoint
is � for which P s �r2 in testing against H : � � � . The upper endpoint is0 a 0
� for which P s �r2 for H : � � � . The interval is the set of � for which0 a 0 0
both one-sided P-values G �r2.

As in Fisher’s exact test, the conditional approach to interval estimation is
necessarily conservative because of discreteness. The actual confidence coef-
ficient, defined as the infimum of the coverage probabilities for all possible
� , has the nominal confidence level as a lower bound. Less conservative
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behavior and shorter intervals result from inverting a single two-sided test
Žrather than inverting two one-sided tests Agresti and Min 2001; Baptista and

.Pike 1977 . An alternative approach with independent binomial samples
inverts nonnull unconditional small-sample tests. Because of the reduced
discreteness, such intervals are also usually shorter.

The conditional ML estimate of � is the value of � that maximizes
Ž .probability 3.20 . Differentiating the log likelihood with respect to � shows

Ž .that this estimate satisfies the equation n s E n in � , where the expecta-11 11
ˆŽ .tion refers to distribution 3.20 . This equation has a unique solution � and is

Ž .solved using iterative methods Cornfield 1956 . This estimator differs from
ˆthe unconditional ML estimator � s n n rn n , which uses the ML esti-11 22 12 21

� 4 � 4mates of � for the multinomial distribution of n . Using statisticali j i j
software, we can calculate conditional ML estimates and small-sample confi-

Ž .dence intervals for odds ratios e.g., for SAS, see Table A.2 .

3.6.2 Tea Tasting Example

We illustrate with Table 3.8 from Fisher’s tea-tasting experiment. The condi-
tional ML estimate of � is 6.4. Software provides the Cornfield tail-method

Ž .interval 0.2, 626.2 with confidence coefficient guaranteed G 0.95. Not
surprisingly, it is very wide because of the small sample. Inverting a family of

Žtwo-sided ‘‘exact’’ conditional score tests gives a more precise interval, 0.3,
.306.2 . The unconditional approach is not appropriate here because of the

wsampling design. If the table were two binomial samples, that approach gives
Ž . xinterval 0.4, 234.4 by inverting ‘‘exact’’ unconditional score tests.

3.6.3 Impact of Discreteness on Exact Confidence Intervals

Small-sample inference is ‘‘exact’’ in the sense that the conditional distribu-
tion is free of nuisance parameters. Confidence intervals and tests use exact
probability calculations rather than approximate ones. However, their operat-
ing characteristics are conservative because of discreteness.

Large-sample methods do not have the guarantee of bounds on error
probabilities. They can be conservative or liberal, and thus their results can
appear quite different from exact methods. For example, for the tea-tasting

Ž .data Table 3.8 , the P-value for the Pearson chi-squared test equals 0.157,
compared to 0.486 for the two-sided exact test. The 95% large-sample

Ž . Ž .confidence interval 3.2 for the odds ratio is 0.4, 220.9 , compared to
Ž .Cornfield’s exact interval of 0.2, 626.2 . Normally, one would prefer an exact

method over an approximate one. When the conditional distribution is highly
discrete, however, the choice is not so obvious. Exact methods then can be
quite conservative, especially with small samples.

For highly discrete data, it seems sensible to use adjustments of exact
methods based on the mid-P-value. Confidence intervals with the conditional
approach then invert hypergeometric tests of � s � using the mid-P-value.0
Although not guaranteed to have error probabilities no greater than the
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nominal level, this method usually comes closer than the exact method to the
desired level. Compared to large-sample methods, it has the advantage of
working well as the degree of discreteness diminishes, since it then is
essentially the same as the corresponding exact method using an ordinary
P-value.

Inference based on the mid-P-value compromises between the conserva-
tiveness of exact methods and the uncertain adequacy of large-sample meth-
ods. For interval estimation of the odds ratio, this method tends to be a bit
conservative, but for small samples can yield much shorter intervals than the
Cornfield exact interval. For the tea-tasting data, for instance, the 95%
confidence interval based on inverting two one-sided hypergeometric tests

Ž .using the mid-P-value is 0.31, 309 , compared to the Cornfield interval of
Ž .0.21, 626 .

3.6.4 Small-Sample Inference for Difference of Proportions

The conditional approach to eliminating nuisance parameters works when
Ž .those parameters have sufficient statistics. However, we’ll see Section 6.7.9

that reduced sufficient statistics occur only for certain models. For binary
data, such models must have odds ratios as parameters. For 2 � 2 tables, the
conditional approach cannot yield confidence intervals for differences or
ratios of proportions. The unconditional approach is more complex but does
not require sufficient statistics. We used it in Section 3.5.5 for testing
� y � s 0 with independent binomial samples.1 2

A small-sample confidence interval inverts the corresponding uncondi-
tional test of H : � y � s � , for any fixed y1 � � � 1. The probability0 1 2 0 0

Ž . Ž .function for the table is the product of bin n , � and bin n , � mass1 1 2 2
functions. One can express this in terms of � s � y � and a nuisance1 2

Ž .parameter �. For instance, if � s � q � , one substitutes � s � q � r21 2 1
Ž .and � s � y � r2. For � s � and a fixed value of �, one then uses this2 0

binomial product to calculate the probability that the test statistic is at least
as large as observed. The P-value is the supremum of such probabilities
calculated over all possible values for �. This provides a family of tests for the
various values of � . The confidence interval for � y � is the set of � for0 1 2 0
which this P-value exceeds � .

This approach can be quite conservative. For details regarding various test
Ž . Ž .statistics, see Agresti and Min 2001 , Coe and Tamhane 1993 , Santner and

Ž . Ž .Snell 1980 , and Santner and Yamagami 1993 . It is better to invert a single
Ž .two-sided test, as in Coe and Tamhane 1993 , than to invert two separate

one-sided tests.

3.7 EXTENSIONS FOR MULTIWAY TABLES AND
NONTABULATED RESPONSES

The methods of this chapter extend to multiway contingency tables. For
instance, tests of independence for two-way tables extend to tests of condi-
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tional independence in three-way tables. In future chapters we present such
methods with models that provide a basis for defining relevant parameters
and their statistical inferences. The methods then apply in a greater variety
of situations, such as when some explanatory variables are continuous rather
than categorical.

3.7.1 Categorical Data Need Not Be Contingency Tables

Examples so far have presented categorical data in the format of contingency
tables. However, this book has broader focus than contingency table analysis.
Models for categorical response variables can have continuous as well as
categorical explanatory variables. Even when all or most variables are cate-
gorical, source data files are not usually contingency tables but have the form
of a line of data for each subject. The first three lines in a data file containing

Žresponses of a survey of subjects measuring gender, race, education 1 s less
.than high school, 2 s high school or some college, 3 s college graduate , and

Ž .opinion about homosexuality 1 s tolerant, 2 s homophobic might be:

subject gender race education opinion
1 f w 2 1
2 m b 3 1
3 m w 1 2

Software can read data files of this type and then conduct analyses that may
involve forming contingency tables.

In the next chapter we introduce the modeling framework used in the rest
of the book. All the methods that we’ve studied in this chapter result from
inferences for parameters in simple versions of these models.

NOTES

Section 3.1: Confidence Inter©als for Association Parameters

Ž .3.1. Adaptations of Woolf’s interval 3.2 for log� to handle zero cell counts include Agresti
Ž . Ž . Ž .1999 and Gart 1966, 1971 . Goodman 1964a presented simultaneous confidence

Ž .intervals for all odds ratios in an I � J table. Brown and Benedetti 1977 and
Ž .Goodman and Kruskal 1963, 1972 provided standard errors for many association

Ž . Ž .measures. Goodman and Kruskal 1963, 1972 extended 3.9 for independent multino-
mial sampling.

Ž . Ž .3.2. Agresti and Caffo 2000 showed that as in the single-sample case Problem 1.24 , the
Ž .Wald interval 3.4 for � y � behaves much better after adding two pseudo-observa-1 2

Ž .tions of each type one of each type in each sample .
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Section 3.2: Testing Independence in Two-Way Contingency Tables

� 4 Ž3.3. For hypergeometric sampling, � in tests of independence are exact rather thanˆ i j
.estimated expected values. Specifically,

n n n n n n1q q1 1q q1 2q q2
E n s and var n s .Ž . Ž .11 11 2n n n y 1Ž .

Ž . Ž 2 . Ž .Ž . Ž .Haldane 1940 derived E X s I y 1 J y 1 nr n y 1 and a complex formula for
Ž 2 . Ž . Ž .var X ; Dawson 1954 provided a simplified expression. Lewis et al. 1984 derived

Ž .the third central moment. Watson 1959 showed that the conditional distribution of
X 2 also has the limiting chi-squared distribution.

Ž .3.4. Diaconis and Efron 1985 presented inference based on a uniform distribution over all
possible tables of the same I, J, and n; their ®olume test considers the proportion of
such tables having X 2 F X 2.o

3.5. Specialized methods are necessary for complex sampling designs. Sequential methods
Ž .are useful in biomedical applications Jennison and Turnbull 2000, Chap. 12 . Social

science applications often incorporate clustering andror stratification. LaVange et al.
Ž . Ž .2001 and Rao and Thomas 1988 surveyed analyses of categorical data for complex

Ž .sampling methods. Gleser and Moore 1985 showed that positive dependence causes
null distributions of Pearson statistics to stochastically increase. See also Bedrick
Ž . Ž . Ž . Ž .1983 , Clogg and Eliason 1987 , Fay 1985 , Holt et al. 1980 , Koehler and Wilson
Ž . Ž . Ž . Ž .1986 , Rao and Scott 1987 , Scott and Wild 2001 , Shuster and Downing 1976 ,

Ž .Tavare and Altham 1983 , and methods of Chapter 12.´
Ž .Other modifications are necessary when some data are missing. Watson 1956 was

Ž .perhaps the first to study this. Lipsitz and Fitzmaurice 1996 derived score tests of
independence and conditional independence for contingency tables, assuming ignor-
able nonresponse, and showed that the test statistics have the usual asymptotic

Ž .chi-squared null distributions. See Schafer 1997, Chap. 7 for a survey of methods.

Section 3.4: Two-Way Tables with Ordered Classifications

Ž . Ž . 23.6. Bhapkar 1968 and Yates 1948 proposed statistics similar to M and also proposed
Ž .statistics for singly-ordered tables. Graubard and Korn 1987 listed 14 tests for 2 � J

Ž . Ž .tables that utilize a correlation-type statistic. See also Nair 1987 and Williams 1952 .
Ž .Cohen and Sackrowitz 1991, 1992 evaluated decision-theoretic aspects, such as

admissibility, of tests based on gamma and local log odds ratios. Rayner and Best
Ž .2001 considered nonparametrics methods in a contingency table format.

Section 3.5: Small-Sample Tests of Independence

Ž .3.7. Yates 1934 mentioned that Fisher suggested the hypergeometric to him for an exact
test. He proposed a continuity-corrected version of X 2,

2
� �n y � y 0.5ˆŽ .i j i j2X s ,c ýý �̂i j

Ž . Ž . Ž .to approximate the exact test. Haber 1980, 1982 , Plackett 1964 , and Yates 1984
discussed its appropriateness. Since software now makes Fisher’s exact test feasible
even with large samples, this correction is no longer needed.



INFERENCE FOR CONTINGENCY TABLES104

3.8. The UMPU property of Fisher’s exact test follows from conditioning on a sufficient
Žstatistic that is complete and has distribution in the exponential family Lehmann 1986,

. Ž . Ž . Ž .Secs. 4.5�4.7 . Fleiss 1981 , Gail and Gart 1973 , and Suissa and Shuster 1985
studied sample size for obtaining fixed power in Fisher’s test. The controversy over

Ž . Ž . Ž .conditioning includes Barnard 1945, 1947, 1949, 1979 , Berkson 1978 , Fisher 1956 ,
Ž . Ž . Ž . Ž . Ž .Howard 1998 , Kempthorne 1979 , Lloyd 1988a , Pearson 1947 , Rice 1988 ,

Ž . Ž . Ž .Routledge 1992 , Suissa and Shuster 1984, 1985 , and Yates 1984 . Yates and
discussants also addressed the choice of two-sided P-value. Discussion of unconditional

Ž . Ž .methods includes Chan 1998 , Martın Andres and Silva Mato 1994 , and Rohmel and´ ´ �
Ž . Ž . Ž .Mansmann 1999 . Altham 1969 and Howard 1998 discussed Bayesian analyses for
Ž . Ž .2 � 2 tables see Section 15.2.3 . Agresti 1992, 2001 surveyed small-sample methods.

Ž .3.9. For discussion of inference using the mid-P-value, see Berry and Armitage 1995 , Hirji
Ž . Ž . Ž . Ž .1991 , Hwang and Wells 2002 , Hwang and Yang 2001 , Mehta and Walsh 1992 ,

Ž .and Routledge 1994 . Similar benefits can accrue from alternative proposed P-values.
One approach, useful when several tables have the same value for a test statistic, uses
the table probability to create a more finely partitioned sample space; for tables having
the observed test statistic value, only those contribute to the P-value that are no more

Ž .likely than the observed table Cohen and Sackrowitz 1992; Kim and Agresti 1995 .
This depends on more than the sufficient statistic, and in some cases a Rao�Blackwel-

Ž .lized version is the mid-P-value Hwang and Wells 2002 . Ordinary P-values obtained
with higher-order asymptotic methods without continuity corrections for discreteness

Žyield performance similar to that of the mid-P-value Pierce and Peters 1999; Strawder-
.man and Wells 1998 .

Ž .3.10. For exact treatment of I � J tables, see Mehta and Patel 1983 . For ordered cate-
Ž .gories, see also Agresti et al. 1990 . For Monte Carlo estimation of exact P-values, see

Ž . Ž . Ž .Agresti et al. 1979 , Booth and Butler 1999 , Diaconis and Sturmfels 1998 , Forster
Ž . Ž . Ž . Ž .et al. 1996 , Mehta et al. 1988 , and Patefield 1982 . Gail and Mantel 1977 and
Ž .Good 1976 gave approximate formulas for the number of tables having certain fixed

Ž .margins. Freidlin and Gastwirth 1999 extended the unconditional approach to a test
for trend in I � 2 tables and a test of conditional independence with several 2 � 2
tables.

Section 3.6: Small-Sample Confidence Inter©als for 2 � 2 Tables

Ž . Ž .3.11. Suppose that � , � has minimal sufficient statistic T , U , where � is a nuisance
Ž .parameter. Cox and Hinkley 1974, p. 35 defined U to be ancillary for � if its

distribution depends only on �, and the distribution of T given U depends only on � .
Ž .For 2 � 2 tables with odds ratio � and � s � ,� , let T s n and U s1q q1 11

Ž .n , n . Then U is not ancillary, because its distribution depends on � as well as �.1q q1
Ž .Using a definition due to Godambe, Bhapkar 1989 referred to the marginals U as

partial ancillary for � . This means that the distribution of the data, given U, depends
only on � , and that for fixed � , the family of distributions of U for various � is

Ž .complete. Liang 1984 gave an alternative definition referring to conditional and
unconditional inference being equally efficient.

PROBLEMS

Applications

3.1 Refer to Table 2.9. Construct and interpret a 95% confidence interval
Ž . Ž . Ž .for the population a odds ratio, b difference of proportions, and c

relative risk between seat-belt use and type of injury.
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3.2 Refer to Table 2.5 on lung cancer and smoking. Construct a confidence
interval for a relevant measure of association. Interpret.

3.3 In professional basketball games during 1980�1982, when Larry Bird
of the Boston Celtics shot a pair of free throws, 5 times he missed
both, 251 times he made both, 34 times he made only the first, and 48

Ž .times he made only the second Wardrop 1995 . Is it plausible that the
successive free throws are independent?

3.4 Refer to Table 3.10.
a. Using X 2 and G2, test the hypothesis of independence between

party identification and race. Report the P-values and interpret.
b. Use residuals to describe the evidence of association.
c. Partition chi-squared into components regarding the choice be-

tween Democrat and Independent and between these two com-
bined and Republican. Interpret.

d. Summarize association by constructing a 95% confidence interval
for the odds ratio between race and whether a Democrat or
Republican. Interpret.

TABLE 3.10 Data for Problem 3.4

Party Identification

Race Democrat Independent Republican

Black 103 15 11
White 341 105 405

Source: 1991 General Social Survey, National Opinion Re-
search Center.

3.5 Refer to Table 3.10. In the same survey, gender was cross-classified
with party identification. Table 3.11 shows some results. Explain how
to interpret all the results on this printout.

3.6 In a study of the relationship between stage of breast cancer at
Ž .diagnosis local or advanced and a woman’s living arrangement, of 144

women living alone, 41.0% had an advanced case; of 209 living with
spouse, 52.2% were advanced; of 89 living with others, 59.6% were
advanced. The authors reported the P-value for the relationship as

Ž0.02 D. J. Moritz and W. A. Satariano, J. Clin. Epidemiol. 46:
.443�454, 1993 . Reconstruct the analysis performed to obtain this

P-value.
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TABLE 3.11 Results for Problem 3.5

Frequency
Expected dem indep repub

female 279 73 225
261.42 70.653 244.93

male 165 47 191
182.58 49.347 171.07

Statistic DF Value Prob

Chi-Square 2 7.0095 0.0301
Likelihood Ratio Chi-Square 2 7.0026 0.0302

Observ Resraw Reschi StReschi Observ Resraw Reschi StReschi
1 17.584 1.088 2.293 4 y17.584 y1.301 y2.293
2 2.347 0.279 0.465 5 y2.347 y0.334 y0.464
3 y19.931 y1.274 y2.618 6 19.931 1.524 2.618

3.7 Refer to Table 2.1. Partition G2 for testing whether the incidence of
heart attacks is independent of aspirin intake into two components.
Interpret.

3.8 Project Blue Book: Analysis of Reports of Unidentified Aerial Objects was
Žpublished by the U.S. Air Force Air Technical Intelligence Center at
.Wright-Patterson Air Force Base in May 1955 to analyze reports of

Ž .unidentified flying objects UFOs . In its Table II, the report classified
1765 sightings later regarded as known objects and 434 sightings later

Ž .regarded as unknown, according to the object color nine categories .
The report states: ‘‘The chi-square test is applicable only to distribu-
tions which have the same number of elements,’’ so the investigators

Ž .multiplied all counts in the known category by 434r1765 , so each row
has 434 observations, before computing X 2. They reported X 2 s 26.15
with df s 8. Explain why this is incorrect. What should X 2 equal?
Ž 2Hint: For their adjusted table, first show that the contribution to X
is the same for each cell in a column, and then show the effect on

.those contributions of multiplying each count in one row by a constant.

3.9 Table 3.12 classifies a sample of psychiatric patients by their diagnosis
and by whether their treatment prescribed drugs.
a. Obtain standardized Pearson residuals for independence, and inter-

pret.
b. Partition chi-squared into three components to describe differences

Ž .and similarities among the diagnoses, by comparing i the first two
Ž . Ž .rows, ii the third and fourth rows, and iii the last row to the first

and second rows combined and the third and fourth rows combined.
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TABLE 3.12 Data for Problem 3.9

Diagnosis Drugs No Drugs

Schizophrenia 105 8
Affective disorder 12 2
Neurosis 18 19
Personality disorder 47 52
Special symptoms 0 13

Source: Reprinted with permission from E. Helmes and G. C.
Ž .Fekken, J. Clin. Psychol. 42: 569�576 1986 .

3.10 Refer to Table 7.8. For the combined data for the two genders,
2 Ž .yielding a single 4 � 4 table, X s 11.5 P s 0.24 , whereas using row

Ž . Ž . 2scores 3, 10, 20, 35 and column scores 1, 3, 4, 5 , M s 7.04
Ž .P s 0.008 . Explain why the results are so different.

Ž3.11 A study on educational aspirations of high school students S. Crys-
.dale, Internat. J. Compar. Sociol. 16: 19�36, 1975 measured aspira-

Žtions with the scale some high school, high school graduate, some
.college, college graduate . The student counts in these categories were

Ž . Ž .11, 52, 23, 22 when family income was low, 9, 44, 13, 10 when family
Ž .income was middle, and 9, 41, 12, 27 when family income was high.

a. Test independence of educational aspirations and family income
using X 2 or G2. Explain the deficiency of this test for these data.

b. Find the standardized Pearson residuals. Do they suggest any
association pattern?

c. Conduct an alternative test that may be more powerful. Interpret.

3.12 Refer to Table 8.15. Obtain a 95% confidence interval for gamma.
Interpret the association between schooling and attitude toward abor-
tion.

3.13 Table 3.13 shows the results of a retrospective study comparing radia-
tion therapy with surgery in treating cancer of the larynx. The response

TABLE 3.13 Data for Problem 3.13

Cancer Cancer Not
Controlled Controlled

Surgery 21 2
Radiation therapy 15 3

Source: Reprinted with permission from W. M. Mendenhall,
R. R. Million, D. E. Sharkey, and N. J. Cassisi, Internat. J.

Ž .Radiat. Oncol. Biol. Phys. 10: 357�363 1984 , Pergamon
Press plc.
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TABLE 3.14 SAS Output for Problem 3.13

Fisher’s Exact Test

Cell (1,1) Frequency (F) 21
Left-sided Pr <= F 0.8947
Right- sided Pr >= F 0.3808
Table Probability (P) 0.2755
Two-sided Pr<= P 0.6384

Odds Ratio 2.1000

Asymptotic Conf Limits: 95% Lower Conf Limit 0.3116
95% Upper Conf Limit 14.1523

Exact Conf Limits: 95% Lower Conf Limit 0.2089
95% Upper Conf Limit 27.5522

indicates whether the cancer was controlled for at least two years
following treatment. Table 3.14 shows SAS output.

Ž .a. Report and interpret the P-value for Fisher’s exact test with i H :a
Ž .� � 1, and ii H : � � 1. Explain how the P-values are calculated.a

b. Interpret the confidence intervals for � . Explain the difference
between them and how they were calculated.

c. Find and interpret the one-sided mid-P-value. Give advantages and
disadvantages of this type of P-value.

3.14 A study considered the effect of prednisolone on severe hypercal-
Žcaemia in women with metastatic breast cancer B. Kristensen et al., J.

.Intern. Med. 232: 237�245, 1992 . Of 30 patients, 15 were randomly
selected to receive prednisolone. The other 15 formed a control group.
Normalization in their level of serum-ionized calcium was achieved by
7 of the treated patients and none of the control group. Analyze
whether results were significantly better for treatment than for control.
Interpret.

3.15 For Problem 3.14, obtain a 95% confidence interval for the odds ratio
Ž . Ž . Ž .using a the Woolf i.e., Wald interval, b Cornfield’s ‘‘exact’’ ap-
Ž .proach, c the profile likelihood. In each case, note the effect of the

zero cell count. Summarize advantages and disadvantages of each
approach.

Ž .3.16 Refer to the tea-tasting data Table 3.8 . Construct the null distribu-
tions of the ordinary P-value and the mid-P-value for Fisher’s exact
test with H : � � 1. Find and compare their expected values.a
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Ž3.17 Consider a 3 � 3 table having entries, by row, of 4, 2, 0 r 2, 2, 2 r
. 20, 2, 4 . Conduct an exact test of independence, using X . Assuming

ordered rows and columns and using equally spaced scores, conduct an
ordinal exact test. Explain why results differ so much.

3.18 An advertisement by Schering Corp. in 1999 for the allergy drug
Claritin mentioned that in a pediatric randomized clinical trial, symp-
toms of nervousness were shown by 4 of 188 patients on loratadine
Ž .Claritin , 2 of 262 patients taking placebo, and 2 of 170 patients on
choropheniramine. In each part below, explain which method you
used, and why.
a. Is there inferential evidence that nervousness depends on drug?
b. For the Claritin and placebo groups, construct and interpret a 95%

Ž . Ž .confidence interval for the i odds ratio and ii difference of
proportions suffering nervousness.

3.19 Refer to Problem 2.19 on sexual fun. Analyze these data. Present a
short report summarizing results and interpretations.

Theory and Methods

ˆ3.20 Is � the midpoint of large- and small-sample confidence intervals for
� ? Why or why not?

3.21 For comparing two binomial samples, show that the standard error
Ž .3.1 of a log odds ratio increases as the absolute difference of
proportions of successes and failures for a given sample increases.

3.22 Using the delta method, show that the Wald confidence interval for
the logit of a binomial parameter � is

'log �r 1 y � � z r n� 1 y � .Ž . Ž .ˆ ˆ ˆ ˆ�r2

wExplain how to use this interval to obtain one for � itself. Newcombe
Ž .2001 noted that the sample logit is also the midpoint of the score
interval for � , on the logit scale. He showed that this logit interval

xcontains the score interval.

3.23 For two parameters, a confidence interval for � y � based on1 2
ˆ Ž .single-sample estimate � and interval ll , u for � , i s 1, 2, isi i ii

2 22 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ� y � y' � y ll q u y � , � y � q' u y � q � y ll .Ž . Ž .Ž . Ž .1 2 1 2 2 1 2 1 1 21 2ž /
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Ž .Newcombe 1998b proposed an interval for � y � using the score1 2
Ž .interval ll , u for � that performs much better than the Wald intervali ii

Ž . Ž .3.4 . It is � y � y z s , � y � q z s , withˆ ˆ ˆ ˆ1 2 �r2 L 1 2 �r2 U

ll 1 y ll u 1 y u u 1 y u ll 1 y llŽ . Ž .Ž . Ž .2 2 1 11 1 2 2s s q , s s q .) )L Un n n n1 2 1 2

Show that it has the general form above of an interval for � y � .1 2

ˆ3.24 For multinomial sampling, use the asymptotic variance of log � to
Ž .show that for Yule’s Q Problem 3.26 the asymptotic variance of

2 y1 2 2ˆ' Ž . Ž .Ž . Ž .n Q y Q is � s Ý Ý � 1 y Q r4 Yule 1900, 1912 .i j i j

3.25 Refer to Problem 2.23. For multinomial sampling, show how to obtain
Ž .a confidence interval for AR by first finding one for log 1 y AR

Ž .Fleiss 1981, p. 76 .

Ž .3.26 For multinomial probabilities � s � , � , . . . with a contingency1 2
Ž .table of arbitrary dimensions, suppose that a measure g � s r� .

2' w Ž . Ž .xShow that the asymptotic variance of n g � y g � is � sˆ
w 2 Ž .2 x 4 Ž . Ž . ŽÝ � � y Ý � � r� , where � s � �r�� y  ��r�� Good-i i i i i i i i i

.man and Kruskal, 1972 .

Ž .3.27 For ordinal variables, consider gamma 2.14 . Let

� Žc. s � q � , � Žd. s � q � ,Ý Ý Ý Ý Ý Ý Ý Ýi j ab ab i j ab ab
a�i b�j a�i b�j a�i b�j a�i b�j

where i and j are fixed in the summations. Show that � sÝ Ý � � Žc.
c i j i j i j

and � sÝ Ý � � Žd.. Use the delta method to show that the large-d i j i j i j
Ž . Žsample normality 3.9 applies for � , with Goodman and Kruskalˆ

.1963

2Žc. Žd.� s 4 � � y � � r � q � , � � s 0 ,Ž . Ý Ýi j d i j c i j c d i j i j
i j

16 22 Žc. Žd.� s � � � y � � .ÝÝ i j d i j c i j4
� q �Ž . i jc d
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Ž3.28 An I � J table has ordered columns and unordered rows. Ridits Bross
.1958 are data-based column scores. The jth sample ridit is the

average cumulative proportion within category j,

jy1 1
r s p q p .ˆ Ýj qk qjž /2ks1

ˆThe sample mean ridit in row i is R sÝ r p . Show that Ý p r sˆ ˆi j j j � i j qj j
ˆ w Ž0.50 and Ý p R s 0.50. For ridit analyses, see Agresti 1984, Secs.i iq i

. Ž . Ž .9.3 and 10.2 , Bross 1958 , Fleiss 1981, Sec. 9.4 , and Landis et al.
Ž . x1978 .

2 Ž .2 23.29 Show that X s nÝÝ p y p p rp p . Thus, X can be largei j iq qj iq qj
when n is large, regardless of whether the association is practically
important. Explain why this test, like other tests, simply indicates the
degree of evidence against H and does not describe strength of0

Žassociation. ‘‘Like fire, the chi-square test is an excellent servant and
a bad master,’’ Sir Austin Bradford Hill, Proc. Roy. Soc. Med. 58:

.295�300, 1965.

3.30 For testing H : � s � using independent binomial variates y and0 1 2 1
y with n and n trials, the score statistic is2 1 2

� y �ˆ ˆ1 2
z s ,

� 1 y � 1rn q 1rn' Ž . Ž .ˆ ˆ 1 2

Ž . Ž .where � s y q y r n q n is the pooled estimate of � s �ˆ 1 2 1 2 1 2
under H . Show that z 2 s X 2.0

2 Ž .3.31 For a 2 � 2 table, consider H : � s � , � s � s � 1 y � , �0 11 12 21 22
Ž .2s 1 y � .

a. Show that the marginal distributions are identical and that indepen-
dence holds.

ˆ Ž .b. For a multinomial sample, under H show that � s p q p r2.0 1q q1

c. Explain how to test H . Show that df s 2 for the test statistic.0

d. Refer to Problem 3.3. Are Larry Bird’s pairs of free throws plausibly
independent and identically distributed?

3.32 For a 2 � 2 table, show that:
a. The four Pearson residuals may take different values.
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b. All four standardized Pearson residuals have the same absolute
Ž .value. This is sensible, since df s 1.

c. The square of each standardized Pearson residual equals X 2.
w 2 Ž .2 Ž .Note: X s n n n y n n r n n n n for 2 � 2 ta-11 22 12 21 1q 2q q1 q2

Ž . 2bles. See Mirkin 2001 for alternative X formulas for I � J
xtables.

2 Ž .3.33 For testing independence, show that X F n min I y 1, J y 1 . Hence
2 2 w Ž .x Ž .V s X r nmin I y 1, J y 1 falls between 0 and 1 Cramer 1946 .´

For 2 � 2 tables, X 2rn is often called phi-squared; it equals Goodman
Ž . 2and Kruskal’s tau Problem 2.38 . Other measures based on X in-

w 2 Ž 2 .x1r2 Ž .clude the contingency coefficient X r X q n Pearson 1904 .

� 43.34 For counts n , the power di®ergence statistic for testing goodness of fiti
Ž .Cressie and Read 1984; Read and Cressie 1988 is

2 �n n r� y 1 for y� � � � �.Ž .ˆý i i i� � q 1Ž .

a. For � s 1, show that this equals X 2.
2 wb. As � ™ 0, show that it converges to G . Hint: log t s lim h™ 0

Ž h . xt y 1 rh.
Ž .c. As � ™y1, show that it converges to 2Ý� log � rn , the mini-ˆ ˆi i i

Žmum discrimination information statistic Gokhale and Kullback
.1978 .

Ž .2d. For � sy2, show that it equals Ý n y � rn , the Neymanˆi i i
Ž .modified chi-squared statistic Neyman 1949 .

1 2Ž .e. For � s y , show that it equals 4Ý n y � , the'' ˆi i2
Ž .Freeman�Tukey statistic Freeman and Tukey 1950 .

wUnder regularity conditions, their asymptotic distributions are identi-
Ž .cal see Drost et al. 1989 . The chi-squared null approximation works

2 xbest for � near .3

3.35 Use a partitioning argument to explain why G2 for testing indepen-
Ž .dence cannot increase after combining two rows or two columns of a

Ž 2 2contingency table. Hint: Argue that G for full table s G for col-
lapsed table q G2 for table of the two rows that are combined in the

.collapsed table.
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Ž .3.36 Motivate partitioning 3.14 by showing that the multiple hypergeomet-
Ž . � 4ric distribution 3.19 for n factors as the product of hypergeometrici j

Ž .distributions for the separate component tables Lancaster, 1949 .

� 4 � 4 Ž .3.37 Explain why n are sufficient for � in 3.17 .qj qj

3.38 Assume independence, and let p s n rn and � s p p .ˆi j i j i j iq qj

a. Show that p and � are unbiased for � s � � .ˆi j i j i j iq qj

Ž . Ž .b. Show that var p s � � 1 y � � rn.i j iq qj iq qj

Ž .2 Ž 2 . Ž 2 . Ž 2 . Ž .c. Using E p p s E p E p and E p s var p qiq qj iq qj iq iq
w Ž .x2E p , show thatiq

var � s � � � 1 y � q � 1 y � nŽ .ˆ Ž .� 4Ž .i j iq qj iq qj qj iq

q � 1 y � � 1 y � rn2 .Ž . Ž .iq iq qj qj

' 'Ž . Ž .d. As n ™ �, show that lim var n � F lim var n p , with equalityˆ i j i j
only if � s 1 or 0. Hence, if the model holds or if it nearly holds,i j
the model estimator is better than the sample proportion.

Ž .3.39 Show that the sample value of the uncertainty coefficient 2.13 satis-
ˆ 2 Ž . w Ž .fies U syG r2n Ý p log p . Haberman 1982 gave its standardqj qj
xerror.

3.40 When a test statistic has a continuous distribution, the P-value has a
Ž .null uniform distribution, P P-value F � s � for 0 � � � 1. For

Ž .Fisher’s exact test, explain why under the null, P P-value F � F �
Ž Ž . w Žfor 0 � � � 1. Hint: P P-value F � s E P P-value F

� .x .� n , n , n .1q q1

3.41 Refer to Note 3.3 about moments of the hypergeometric distribution
Ž .3.16 . Letting � s n rn, show that n has the same mean as aq1 11
binomial random variable for n trials with success probability �, and1q
that it has its variance multiplied by a finite population correction

Ž . Ž . Žfactor n y n r n y 1 . The hypergeometric is similar to the bino-1q
.mial when n is small compared to n.1q

3.42 A contingency table for two independent binomial variables has counts
Ž .3, 0 r 0, 3 by row. For H : � s � and H : � � � , show that the0 1 2 a 1 2

1 1P-value equals for the exact unconditional test and for Fisher’s64 20
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w Ž .exact test. For discussion of this example, see Little 1989 , G.
Ž . ŽBarnard’s remarks at the end of Yates 1984 , and Sprott 2000, Sec.

. x6.4.4 .

3.43 Refer to Problem 3.42 and exact tests using X 2 with H : � � � .a 1 2
Explain why the unconditional P-value, evaluated at � s 0.5, is related
to Fisher conditional P-values for various tables by

6
2 2 �P X G 6 s P X G 6 n s k P n s k .Ž . Ž .Ž .Ý q1 q1

ks0

1Thus, the unconditional P-value of is a weighted average of the32

Fisher P-value for the observed column margins and P-values of 0
corresponding to the impossibility of getting results as extreme as

61 6Ž .observed if other margins had occurred i.e., s 0.10 1r2 .Ž .32 ž /3
The Fisher quote in Section 3.5.6 gave his view about this.

3.44 Consider exact tests of independence, given the marginals, for the
I � I table having n s 1 for i s 1, . . . , I, and n s 0 otherwise.i i i j

Ž . 2 2Show that a tests that order tables by their probabilities, X , or G
Ž .have P-value s 1.0, and b the one-sided test that orders tables by an

Ž .ordinal statistic such as r or C y D has P-value s 1rI! .

3.45 A Monte Carlo scheme randomly samples M separate I � J tables
Ž 2 2 .having the observed margins to approximate P s P X G X for ano o

ˆexact test. Let P be the sample proportion of the M tables with
2 2 ˆŽ � � .X G X . Show that P P y P F B s 1 y � requires that M fo o

2 Ž . 2z P 1 y P rB .�r2 o o

Ž .3.46 Show that the conditional ML estimate of � satisfies n s E n for11 11
Ž .distribution 3.18 .



C H A P T E R 4

Introduction to Generalized
Linear Models

In Chapters 2 and 3 we focused on methods for two-way contingency tables.
Most studies, however, have several explanatory variables, and they may be
continuous as well as categorical. The goal is usually to describe their effects
on response variables. Modeling the effects helps us do this efficiently. A
good-fitting model evaluates effects, includes relevant interactions, and pro-
vides smoothed estimates of response probabilities.

The rest of the book focuses on model building for categorical response
variables. In this chapter we introduce a family of generalized linear models
that contains the most important models for categorical responses as well as
standard models for continuous responses. Section 4.1 covers three compo-
nents common to all generalized linear models. Section 4.2 illustrates with
models for binary responses. The most important case is logistic regression, a
linear model for the logit transformation of a binomial parameter. In Chap-
ters 5 through 7 we study these models in detail.

In Section 4.3 we present generalized linear models for counts. A Poisson
regression model called a loglinear model is a linear model for the log of a
Poisson mean. In Chapters 8 and 9 we study them for modeling counts in
contingency tables.

Sections 4.4 through 4.8 are more technical. Readers wanting mainly an
overview of methods can skip them or read them lightly. For generalized
linear models, Section 4.4 covers likelihood equations and the asymptotic
covariance matrix of ML model parameter estimates, and Section 4.5 summa-
rizes inferential methods. Methods of solving the likelihood equations are
presented in Section 4.6. In the final two sections we introduce generaliza-
tions, quasi-likelihood and generalized additi®e models, that further extend the
scope of models.

115
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4.1 GENERALIZED LINEAR MODEL

Ž .Generalized linear models GLMs extend ordinary regression models to
encompass nonnormal response distributions and modeling functions of the
mean. Three components specify a generalized linear model: A random
component identifies the response variable Y and its probability distribution;
a systematic component specifies explanatory variables used in a linear

Ž .predictor function; and a link function specifies the function of E Y that the
Ž .model equates to the systematic component. Nelder and Wedderburn 1972

introduced the class of GLMs, although many models in the class were well
established by then.

4.1.1 Components of Generalized Linear Models

The random component of a GLM consists of a response variable Y with
Ž .independent observations y , . . . , y from a distribution in the natural1 N

exponential family. This family has probability density function or mass
function of form

f y ; � s a � b y exp y Q � . 4.1Ž . Ž . Ž . Ž . Ž .i i i i i i

Several important distributions are special cases, including the Poisson and
binomial. The value of the parameter � may vary for i s 1, . . . , N, depend-i

Ž .ing on values of explanatory variables. The term Q � is called the natural
parameter. In Section 4.4 we present a more general formula that also has a

Ž .dispersion parameter, but 4.1 is sufficient for basic discrete data models.
Ž .The systematic component of a GLM relates a vector � , . . . , � to the1 N

explanatory variables through a linear model. Let x denote the value ofi j
Ž .predictor j j s 1, 2, . . . , p for subject i. Then

� s � x , i s 1, . . . , N.Ýi j i j
j

This linear combination of explanatory variables is called the linear predictor.
ŽUsually, one x s 1 for all i, for the coefficient of an intercept ofteni j

.denoted by � in the model.
The third component of a GLM is a link function that connects the

Ž .random and systematic components. Let � s E Y , i s 1, . . . , N. The modeli i
Ž .links � to � by � s g � , where the link function g is a monotonic,i i i i

Ž .differentiable function. Thus, g links E Y to explanatory variables throughi
the formula

g � s � x , i s 1, . . . , N. 4.2Ž . Ž .Ýi j i j
j
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Ž .The link function g � s �, called the identity link, has � s � . Iti i
specifies a linear model for the mean itself. This is the link function for
ordinary regression with normally distributed Y. The link function that
transforms the mean to the natural parameter is called the canonical link.

Ž . Ž . Ž .For it, g � s Q � , and Q � sÝ � x . The following subsections showi i i j j i j
examples.

In summary, a GLM is a linear model for a transformed mean of a
response variable that has distribution in the natural exponential family. We
now illustrate the three components by introducing the key GLMs for
discrete response variables.

4.1.2 Binomial Logit Models for Binary Data

Many response variables are binary. Represent the success and failure
outcomes by 1 and 0. The Bernoulli distribution for this Bernoulli trial

Ž . Ž .specifies probabilities P Y s 1 s � and P Y s 0 s 1 y � , for which
Ž . Ž .E Y s � . This is the special case of the binomial 1.1 with n s 1. The

probability mass function is

y1yyyf y ; � s � 1 y � s 1 y � �r 1 y �Ž . Ž . Ž . Ž .
�

s 1 y � exp y log 4.3Ž . Ž .ž /1 y �

Ž .for y s 0 and 1. This is in the natural exponential family 4.1 , identifying �
Ž . Ž . Ž . w Ž .xwith � , a � s 1 y � , b y s 1, and Q � s log �r 1 y � . The natural

w Ž .xparameter log �r 1 y � is the log odds of response 1, the logit of � . This
is the canonical link. GLMs using the logit link are often called logit models.

4.1.3 Poisson Loglinear Models for Count Data

Some response variables have counts as their possible outcomes. For a
sample of silicon wafers used in manufacturing computer chips, each obser-
vation might be the number of imperfections on a wafer. Counts also occur as
entries in contingency tables.

The simplest distribution for count data is the Poisson. Like counts,
Poisson variates can take any nonnegative integer value. Let Y denote a

Ž . Ž .count and let � s E Y . The Poisson probability mass function 1.4 for Y is

ey�� y 1
f y ; � s s exp y� exp y log � , y s 0, 1, 2, . . . .Ž . Ž . Ž .ž /y! y!

Ž . Ž . Ž . Ž .This has natural exponential form 4.1 with � s �, a � s exp y� , b y s
Ž .1ry!, and Q � s log �. The natural parameter is log �, so the canonical
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TABLE 4.1 Types of Generalized Linear Models for Statistical Analysis

Random Systematic
Component Link Component Model Chapters

Normal Identity Continuous Regression
Normal Identity Categorical Analysis of variance
Normal Identity Mixed Analysis of covariance
Binomial Logit Mixed Logistic regression 5 and 6
Poisson Log Mixed Loglinear 8 and 9
Multinomial Generalized Mixed Multinomial response 7

logit

link function is the log link, � s log �. The model using this link is

log � s � x , i s 1, . . . , N. 4.4Ž .Ýi j i j
j

This model is called a Poisson loglinear model.

4.1.4 Generalized Linear Models for Continuous Responses

The class of GLMs also includes models for continuous responses. The
normal distribution is in a natural exponential family that includes dispersion
parameters. Its natural parameter is the mean. Therefore, an ordinary

Ž .regression model for E Y is a GLM using the identity link. Table 4.1 lists
this and other standard models for a normal random component. The table
also lists GLMs for discrete responses that are presented in the next six
chapters.

A traditional way to analyze data transforms Y so that it has approxi-
mately a normal distribution with constant variance; then, ordinary least-
squares regression is applicable. With GLMs, by contrast, the choice of link
function is separate from the choice of random component. If a link is useful
in the sense that a linear model for the predictors is plausible for that link, it
is not necessary that it also stabilizes variance or produces normality. This is
because the fitting process maximizes the likelihood for the choice of distri-
bution for Y, and that choice is not restricted to normality.

4.1.5 Deviance

Ž . Ž .For a particular GLM for observations y s y , . . . , y , let L �; y denote1 N
Ž .the log-likelihood function expressed in terms of the means � s � , . . . , � .1 N

Ž .Let L �; y denote the maximum of the log likelihood for the model.ˆ
Considered for all possible models, the maximum achievable log likelihood is
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Ž .L y; y . This occurs for the most general model, having a separate parameter
for each observation and the perfect fit � s y. Such a model is called theˆ
saturated model. This model is not useful, since it does not provide data
reduction. However, it serves as a baseline for comparison with other model
fits.

The de®iance of a Poisson or binomial GLM is defined to be

y2 L � ; y y L y; y .Ž . Ž .ˆ

This is the likelihood-ratio statistic for testing the null hypothesis that the
Ž .model holds against the general alternative i.e., the saturated model . For

some Poisson and binomial GLMs, the number of observations N stays fixed
as the individual counts increase in size. Then the deviance has a chi-squared
asymptotic null distribution. The df s N y p, where p is the number of
model parameters; that is, df equals the difference between the numbers of
parameters in the saturated and unsaturated models. The deviance then
provides a test of model fit.

An example is binomial counts at N fixed settings of predictors when the
Ž .number of trials at each setting increases. Let Y be bin n , � , i s 1, . . . ,i i i

N. Consider the simple model of homogeneity, � s � all i. It has p s 1i
� 4parameter. The saturated model makes no assumption about � , lettingi

them be any N values between 0 and 1.0. It has N parameters. The deviance
for the homogeneity model has df s N y 1. In fact, it equals the G2

Ž .likelihood-ratio statistic 3.11 for testing independence in the N � 2 table
that these samples form. Under independence, it has approximately a chi-

� 4squared distribution as the n increase, for fixed N.i
We use the deviance throughout the book for model checking and for

inferential comparisons of models. Components of the deviance are residual
measures of lack of fit. Methods for analyzing the deviance generalize
analysis of variance methods for normal linear models.

4.1.6 Advantages of the GLM Formulation

GLMs provide a unified theory of modeling that encompasses the most
important models for continuous and discrete variables. Models studied in
this text are GLMs with binomial or Poisson random component, or multi-
variate extensions of GLMs. The ML parameter estimates are computed with
an algorithm, presented in Section 4.6, that iteratively uses a weighted
version of least squares. The reason for restricting GLMs to the exponential
family of distributions for Y is that the same algorithm applies to this entire
family, for any choice of link function.

Most statistical software has the facility to fit GLMs. Appendix A gives
details.
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4.2 GENERALIZED LINEAR MODELS FOR BINARY DATA

Let Y denote a binary response variable. For instance, Y might indicate vote
Ž . Žin a British election Labour, Conservative , choice of automobile domestic,

. Ž .import , or diagnosis of breast cancer present, absent . Each observation has
one of two outcomes, denoted by 0 and 1, binomial for a single trial. The

Ž . Ž . Ž . Ž .mean E Y s P Y s 1 . We denote P Y s 1 by � x , reflecting its depen-
Ž .dence on values x s x , . . . , x of predictors. The variance of Y is1 p

var Y s � x 1 y � x ,Ž . Ž . Ž .

the binomial variance for one trial. In introducing GLMs for binary data, for
simplicity we use a single explanatory variable.

4.2.1 Linear Probability Model

For a binary response, the regression model

� x s � q � x 4.5Ž . Ž .

is called a linear probability model. With independent observations it is a
GLM with binomial random component and identity link function.

The linear probability model has a major structural defect. Probabilities
fall between 0 and 1, but linear functions take values over the entire real line.

Ž . Ž . Ž .Model 4.5 has � x � 0 and � x � 1 for sufficiently large or small x
values. For its extension with multiple predictors, difficulties often occur

Ž .fitting this model because during the fitting process, � x falls outside theˆ
w x0, 1 range for some subjects’ x values. The model can be valid over a
restricted range of x values. When it is plausible, an advantage is its simple

Ž .interpretation: � is the change in � x for a one-unit increase in x.
We defer to Section 4.6 the technical details of fitting this and other

GLMs. One should assume a binomial distribution for Y and use maximum
Ž .likelihood ML rather than ordinary least squares. Least squares is ML for a

normal distribution with constant variance. For binary responses, the con-
Žstant variance condition that makes least squares estimators optimal i.e.,

.minimum variance in the class of linear unbiased estimators is not satisfied.
Ž . Ž .w Ž .xSince var Y s � x 1 y � x , the variance depends on x through its

Ž . Ž .influence on � x . As � x moves toward 0 or 1, the distribution of Y is
more nearly concentrated at a single point, and the variance moves toward 0.
Because of the nonconstant variance, the binomial ML estimator is more
efficient than least squares. Also Y, being binary, is very far from normally
distributed. Thus, the usual sampling distributions for the least squares
estimators do not apply. The estimates and standard errors for ML and least

Ž .squares are usually similar, however, when � x for the sample x values fallsˆ
Ž .in the range within which the variance is relatively stable about 0.3 to 0.7 .
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TABLE 4.2 Relationship between Snoring and Heart Disease

Heart Disease Linear LogitProportion
a aSnoring Yes No Yes Fit Fit

Never 24 1355 0.017 0.017 0.021
Occasionally 35 603 0.055 0.057 0.044
Nearly every night 21 192 0.099 0.096 0.093
Every night 30 224 0.118 0.116 0.132
aModel fits refer to proportion of yes responses.

Ž .Source: P. G. Norton and E. V. Dunn, British Med. J. 291: 630�632 1985 , BMJ Publishing
Group.

4.2.2 Snoring and Heart Disease Example

We illustrate the linear probability model with Table 4.2, from an epidemio-
logical survey of 2484 subjects to investigate snoring as a risk factor for heart
disease. Those surveyed were classified according to their spouses’ report of
how much they snored. The model states that the probability of heart disease
is linearly related to the level of snoring x. We treat the rows of the table as
independent binomial samples. No obvious choice of scores exists for cate-

Ž .gories of x. We used 0, 2, 4, 5 , treating the last two levels as closer than the
Ž .other adjacent pairs Problem 4.4 uses equally spaced scores . ML estimates

and standard errors are the same if we use a data file of 2484 binary
observations or if we enter the four binomial totals of yes and no responses
listed in Table 4.2.

Ž . Ž .Software see, e.g., Table A.3 for SAS reports the ML fit, � x s 0.0172ˆ
ˆq 0.0198 x, with a standard error SE s 0.0028 for � s 0.0198. For nonsnor-

Ž .ers x s 0 , the estimated proportion of subjects having heart disease is
Ž .0.0172. We refer to the estimated values of E Y for a GLM as fitted ®alues.

Table 4.2 shows the sample proportions and the fitted values for this model.
Figure 4.1 graphs the sample and fitted values. The table and graph suggest

Žthat the model fits well. In Section 5.2.3 we discuss formal goodness-of-fit
.analyses for binary-response GLMs. The model interpretation is simple. The

estimated probability of heart disease is about 0.02 for nonsnorers; it in-
Ž .creases 2 0.0198 s 0.04 for occasional snorers, another 0.04 for those who

snore nearly every night, and another 0.02 for those who always snore.

4.2.3 Logistic Regression Model

Ž .Usually, binary data result from a nonlinear relationship between � x and
Ž .x. A fixed change in x often has less impact when � x is near 0 or 1 than

Ž .when � x is near 0.5. In the purchase of an automobile, consider the choice
Ž .between buying new or used. Let � x denote the probability of selecting

new when annual family income s x. An increase of $50,000 in annual
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FIGURE 4.1 Predicted probabilities for linear probability and logistic regression models.

w Ž . xincome would have less effect when x s $1,000,000 for which � x is near 1
than when x s $50,000.

Ž .In practice, nonlinear relationships between � x and x are often mono-
Ž . Ž .tonic, with � x increasing continuously or � x decreasing continuously as

x increases. The S-shaped curves in Figure 4.2 are typical. The most impor-
tant curve with this shape has the model formula

exp � q � xŽ .
� x s . 4.6Ž . Ž .

1 q exp � q � xŽ .

Ž .This is the logistic regression model. As x ™ �, � x x0 when � � 0 and
Ž .� x ≠1 when � � 0.
Let’s find the link function for which logistic regression is a GLM. For

Ž .4.6 the odds are

� xŽ .
s exp � q � x .Ž .

1 y � xŽ .

The log odds has the linear relationship

� xŽ .
log s � q � x . 4.7Ž .

1 y � xŽ .
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FIGURE 4.2 Logistic regression functions.

Thus, the appropriate link is the log odds transformation, the logit. Logistic
regression models are GLMs with binomial random component and logit link
function. Logistic regression models are also called logit models.

The logit is the natural parameter of the binomial distribution, so the logit
Ž . Ž .link is its canonical link. Whereas � x must fall in the 0, 1 range, the logit

can be any real number. The real numbers are also the range for linear
Ž .predictors such as � q � x that form the systematic component of a GLM.

So this model does not have the structural problem that is true of the linear
probability model.

For the snoring data in Table 4.2, software reports the logistic regression
ML fit

logit � x sy3.87 q 0.40 x .Ž .ˆ

ˆThe positive � s 0.40 reflects the increased incidence of heart disease at
higher snoring levels. In Chapters 5 and 6 we study logistic regression in
detail and interpret such equations. Estimated probabilities result from

Ž .substituting x values into the estimate of probability formula 4.6 . Table 4.2
also reports these fitted values. Figure 4.1 displays the fit. The fit is close to
linear over this narrow range of estimated probabilities, and results are
similar to those for the linear probability model.
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4.2.4 Binomial GLM for 2 � 2 Contingency Tables

Among the simplest GLMs for a binary response is the one having a single
explanatory variable X that is also binary. Label its values by 0 and 1. For a
given link function, the GLM

link � x s � q � xŽ .

has the effect of X described by

� s link � 1 y link � 0 .Ž . Ž .

Ž . Ž .For the identity link, � s � 1 y � 0 is the difference between propor-
w Ž .x w Ž .x w Ž . Ž .xtions. For the log link, � s log � 1 y log � 0 s log � 1 r� 0 is the

log relative risk. For the logit link,

� 1 � 0Ž . Ž .
� s logit � 1 y logit � 0 s log y logŽ . Ž .

1 y � 1 1 y � 0Ž . Ž .

� 1 r 1 y � 1Ž . Ž .Ž .
s log

� 0 r 1 y � 0Ž . Ž .Ž .

is the log odds ratio. Measures of association for 2 � 2 tables are effect
parameters in GLMs for binary data.

4.2.5 Probit and Inverse CDF Link Functions*

A monotone regression curve such as the first one in Figure 4.2 has the shape
Ž .of a cumulative distribution function cdf for a continuous random variable.

Ž . Ž .This suggests a model for a binary response having form � x s F x for
some cdf F.

Using an entire class of location-scale cdf ’s, such as normal cdf ’s with their
Ž . Ž .variety of means and variances, permits the curve � x s F x to have

flexibility in the rate of increase and in the location where most of that
Ž .increase occurs. Let 	 
 denote the standard cdf of the class, such as the

Ž .N 0, 1 cdf. Using 	 but writing the model as

� x s 	 � q � x 4.8Ž . Ž . Ž .

provides the same flexibility. Shapes of different cdf ’s in the class occur as �
and � vary. Replacing x by � x permits the curve to increase at a different

Ž .rate than the standard cdf or even to decrease if � � 0 ; varying � moves
the curve to the left or right.

When 	 is strictly increasing over the entire real line, its inverse function
y1Ž . Ž .	 
 exists and 4.8 is, equivalently,

y1	 � x s � q � x . 4.9Ž . Ž .
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For this class of cdf shapes, the link function for the GLM is 	y1. The link
Ž . Ž .function maps the 0, 1 range of probabilities onto y�, � , the range of

linear predictors. The curve has the shape of a normal cdf when 	 is the
Ž .standard normal cdf. Model 4.9 is then called the probit model. This curve

has similar appearance to the logistic regression curve. Probit models are
discussed in Section 6.6.

Ž .When � � 0, the logistic regression curve 4.6 is a cdf for the logistic
Ž .distribution. When � � 0, the curve for 1 y � x , the probability Y s 0, has

that appearance. The cdf of the logistic distribution with mean � and
dispersion parameter � � 0 is

exp x y � r�Ž .
F x s , y� � x � �.Ž .

1 q exp x y � r�Ž .

The corresponding probability density function is symmetric and bell-shaped,
' Žwith standard deviation ��r 3 here, � is the mathematical constant

.3.14 . . . . It looks much like the normal density with the same mean and
Žstandard deviation but with slightly thicker tails. Its kurtosis equals that of a

.t distribution with df s 9.
The standardized form of the logistic cdf has � s 0 and � s 1, so
Ž . x Ž x. Ž .	 x s e r 1 q e . For that function, the logistic regression curve 4.6 has

Ž . Ž . Ž .form � x s 	 � q � x . By 4.9 the logit transformation is simply the
Ž . Ž .inverse function for the standard logistic cdf; that is, when 	 x s � x s

x Ž x. y1w Ž .x w Ž . Ž Ž ..xe r 1 q e , then x s 	 � x s log � x r 1 y � x .

4.3 GENERALIZED LINEAR MODELS FOR COUNTS

The best known GLMs for count data assume a Poisson distribution for Y.
We introduced this distribution in Section 1.2.3. In Chapters 8 and 9 we
present Poisson GLMs for counts in contingency tables with categorical
response variables. In this section we introduce Poisson GLMs using an
alternative application: modeling count or rate data for a single discrete
response variable.

4.3.1 Poisson Loglinear Models

The Poisson distribution has a positive mean �. Although a GLM can model
a positive mean using the identity link, it is more common to model the log of
the mean. Like the linear predictor � q � x, the log mean can take any real
value. The log mean is the natural parameter for the Poisson distribution,
and the log link is the canonical link for a Poisson GLM. A Poisson loglinear
GLM assumes a Poisson distribution for Y and uses the log link.

The Poisson loglinear model with explanatory variable X is

log � s � q � x . 4.10Ž .
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For this model, the mean satisfies the exponential relationship

x
� �� s exp � q � x s e e . 4.11Ž . Ž . Ž .

A 1-unit increase in x has a multiplicative impact of e � on �: The mean at
x q 1 equals the mean at x multiplied by e �.

4.3.2 Horseshoe Crab Mating Example

We illustrate Poisson GLMs for Table 4.3 from a study of nesting horseshoe
crabs. Each female horseshoe crab had a male crab resident in her nest. The
study investigated factors affecting whether the female crab had any other
males, called satellites, residing nearby. Explanatory variables are the female
crab’s color, spine condition, weight, and carapace width. The response
outcome for each female crab is her number of satellites. For now, we use
width alone as a predictor. Table 4.3 lists width in centimeters. The sample
mean width equals 26.3 and the standard deviation equals 2.1.

Figure 4.3 plots the response counts of satellites against width, with
numbered symbols indicating the number of observations at each point. The
substantial variability makes it difficult to discern a clear trend. To get a

Žclearer picture, we grouped the female crabs into width categories F 23.25,
23.25�24.25, 24.25�25.25, 25.25�26.25, 26.25�27.25, 27.25�28.25, 28.25�29.25,

.� 29.25 and calculated the sample mean number of satellites for female
crabs in each category. Figure 4.4 plots these sample means against the
sample mean width for crabs in each category.

More sophisticated ways of portraying the trend smooth the data without
grouping the width values or assuming a particular functional relationship.
Figure 4.4 also shows a smoothed curve based on an extension of the GLM
introduced in Section 4.8. The sample means and the smoothed curve both

Žshow a strong increasing trend. The means tend to fall above the curve,
since the response counts in a category tend to be skewed to the right; the

.smoothed curve is less susceptible to outlying observations. The trend seems
approximately linear, and we discuss next models for the ungrouped data for
which the mean or the log of the mean is linear in width.

For a female crab, let � be the expected number of satellites and
Ž .x s width. From GLM software e.g., for SAS, see Table A.4 , the ML fit of

Ž .the Poisson loglinear model 4.10 is

ˆlog � s � q � x sy3.305 q 0.164 x .ˆ ˆ

ˆThe effect � s 0.164 of width is positive, with SE s 0.020. The model fitted
value at any width level is an estimated mean number of satellites �. Forˆ
instance, the fitted value at the mean width of x s 26.3 is

ˆ� s exp � q � x s exp y3.305 q 0.164 26.3 s 2.74.Ž .ˆ ˆŽ .
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TABLE 4.3 Number of Crab Satellites by Female’s Characteristicsa

C S W Wt Sa C S W Wt Sa C S W Wt Sa C S W Wt Sa

2 3 28.3 3.05 8 3 3 22.5 1.55 0 1 1 26.0 2.30 9 3 3 24.8 2.10 0
3 3 26.0 2.60 4 2 3 23.8 2.10 0 3 2 24.7 1.90 0 2 1 23.7 1.95 0
3 3 25.6 2.15 0 3 3 24.3 2.15 0 2 3 25.8 2.65 0 2 3 28.2 3.05 11
4 2 21.0 1.85 0 2 1 26.0 2.30 14 1 1 27.1 2.95 8 2 3 25.2 2.00 1
2 3 29.0 3.00 1 4 3 24.7 2.20 0 2 3 27.4 2.70 5 2 2 23.2 1.95 4
1 2 25.0 2.30 3 2 1 22.5 1.60 1 3 3 26.7 2.60 2 4 3 25.8 2.00 3
4 3 26.2 1.30 0 2 3 28.7 3.15 3 2 1 26.8 2.70 5 4 3 27.5 2.60 0
2 3 24.9 2.10 0 1 1 29.3 3.20 4 1 3 25.8 2.60 0 2 2 25.7 2.00 0
2 1 25.7 2.00 8 2 1 26.7 2.70 5 4 3 23.7 1.85 0 2 3 26.8 2.65 0
2 3 27.5 3.15 6 4 3 23.4 1.90 0 2 3 27.9 2.80 6 3 3 27.5 3.10 3
1 1 26.1 2.80 5 1 1 27.7 2.50 6 2 1 30.0 3.30 5 3 1 28.5 3.25 9
3 3 28.9 2.80 4 2 3 28.2 2.60 6 2 3 25.0 2.10 4 2 3 28.5 3.00 3
2 1 30.3 3.60 3 4 3 24.7 2.10 5 2 3 27.7 2.90 5 1 1 27.4 2.70 6
2 3 22.9 1.60 4 2 1 25.7 2.00 5 2 3 28.3 3.00 15 2 3 27.2 2.70 3
3 3 26.2 2.30 3 2 1 27.8 2.75 0 4 3 25.5 2.25 0 3 3 27.1 2.55 0
3 3 24.5 2.05 5 3 1 27.0 2.45 3 2 3 26.0 2.15 5 2 3 28.0 2.80 1
2 3 30.0 3.05 8 2 3 29.0 3.20 10 2 3 26.2 2.40 0 2 1 26.5 1.30 0
2 3 26.2 2.40 3 3 3 25.6 2.80 7 3 3 23.0 1.65 1 3 3 23.0 1.80 0
2 3 25.4 2.25 6 3 3 24.2 1.90 0 2 2 22.9 1.60 0 3 2 26.0 2.20 3
2 3 25.4 2.25 4 3 3 25.7 1.20 0 2 3 25.1 2.10 5 3 2 24.5 2.25 0
4 3 27.5 2.90 0 3 3 23.1 1.65 0 3 1 25.9 2.55 4 2 3 25.8 2.30 0
4 3 27.0 2.25 3 2 3 28.5 3.05 0 4 1 25.5 2.75 0 4 3 23.5 1.90 0
2 2 24.0 1.70 0 2 1 29.7 3.85 5 2 1 26.8 2.55 0 4 3 26.7 2.45 0
2 1 28.7 3.20 0 3 3 23.1 1.55 0 2 1 29.0 2.80 1 3 3 25.5 2.25 0
3 3 26.5 1.97 1 3 3 24.5 2.20 1 3 3 28.5 3.00 1 2 3 28.2 2.87 1
2 3 24.5 1.60 1 2 3 27.5 2.55 1 2 2 24.7 2.55 4 2 1 25.2 2.00 1
3 3 27.3 2.90 1 2 3 26.3 2.40 1 2 3 29.0 3.10 1 2 3 25.3 1.90 2
2 3 26.5 2.30 4 2 3 27.8 3.25 3 2 3 27.0 2.50 6 3 3 25.7 2.10 0
2 3 25.0 2.10 2 2 3 31.9 3.33 2 4 3 23.7 1.80 0 4 3 29.3 3.23 12
3 3 22.0 1.40 0 2 3 25.0 2.40 5 3 3 27.0 2.50 6 3 3 23.8 1.80 6
1 1 30.2 3.28 2 3 3 26.2 2.22 0 2 3 24.2 1.65 2 2 3 27.4 2.90 3
2 2 25.4 2.30 0 3 3 28.4 3.20 3 4 3 22.5 1.47 4 2 3 26.2 2.02 2
2 1 24.9 2.30 6 1 2 24.5 1.95 6 2 3 25.1 1.80 0 2 1 28.0 2.90 4
4 3 25.8 2.25 10 2 3 27.9 3.05 7 2 3 24.9 2.20 0 2 1 28.4 3.10 5
3 3 27.2 2.40 5 2 2 25.0 2.25 6 2 3 27.5 2.63 6 2 1 33.5 5.20 7
2 3 30.5 3.32 3 3 3 29.0 2.92 3 2 1 24.3 2.00 0 2 3 25.8 2.40 0
4 3 25.0 2.10 8 2 1 31.7 3.73 4 2 3 29.5 3.02 4 3 3 24.0 1.90 10
2 3 30.0 3.00 9 2 3 27.6 2.85 4 2 3 26.2 2.30 0 2 1 23.1 2.00 0
2 1 22.9 1.60 0 4 3 24.5 1.90 0 2 3 24.7 1.95 4 2 3 28.3 3.20 0
2 3 23.9 1.85 2 3 3 23.8 1.80 0 3 2 29.8 3.50 4 2 3 26.5 2.35 4
2 3 26.0 2.28 3 2 3 28.2 3.05 8 4 3 25.7 2.15 0 2 3 26.5 2.75 7
2 3 25.8 2.20 0 3 3 24.1 1.80 0 3 3 26.2 2.17 2 3 3 26.1 2.75 3
3 3 29.0 3.28 4 1 1 28.0 2.62 0 4 3 27.0 2.63 0 2 2 24.5 2.00 0
1 1 26.5 2.35 0

a Ž . ŽC, color 1, light medium; 2, medium; 3, dark medium; 4, dark ; S, spine condition 1, both
. Ž . Ž .good; 2, one worn or broken; 3, both worn or broken ; W, carapace width cm ; Wt, weight kg ;

Sa, number of satellites.
Source: Data courtesy of Jane Brockmann, Zoology Department, University of Florida; study

Ž .described in Ethology 102:1�21 1996 .
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FIGURE 4.3 Number of satellites by width of female crab.

ˆŽ . Ž .For this model, exp � s exp 0.164 s 1.18 is the multiplicative effect on �̂
for a 1-cm increase in x. For instance, the fitted value at x s 27.3 s 26.3 q 1

w Ž .xis exp y3.305 q 0.164 27.3 s 3.23, which equals 1.18 � 2.74. A 1-cm in-
crease in width yields an 18% increase in the estimated mean.

Ž .Figure 4.4 shows that E Y may grow approximately linearly with width.
This suggests the Poisson GLM with identity link. It has ML fit

ˆ� s � q � x sy11.53 q 0.55 x .ˆ ˆ

This model has an additive rather than a multiplicative effect of X on �.
ˆA 1-cm increase in x has an estimated increase of � s 0.55 in �. The fittedˆ

values are positive at all sampled x, and the model describes simply the
effect: On the average, about a 2-cm increase in width is associated with an
extra satellite.

Figure 4.5 plots � against width for the models with log link and identityˆ
link. Although they diverge somewhat for relatively small and large widths,
they provide similar predictions over the width range in which most observa-
tions occur. We now study whether either model fits adequately.
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FIGURE 4.4 Smoothings of horseshoe crab counts.

TABLE 4.4 Sample Mean and Variance of Number of Satellites

Number of Number of Sample Sample
Ž .Width cm Cases Satellites Mean Variance

� 23.25 14 14 1.00 2.77
23.25�24.25 14 20 1.43 8.88
24.25�25.25 28 67 2.39 6.54
25.25�26.25 39 105 2.69 11.38
26.25�27.25 22 63 2.86 6.88
27.25�28.25 24 93 3.87 8.81
28.25�29.25 18 71 3.94 16.88
� 29.25 14 72 5.14 8.29
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FIGURE 4.5 Estimated mean number of satellites for log and identity links.

4.3.3 Overdispersion for Poisson GLMs

In Section 1.2.4 we noted that count data often show greater variability than
the Poisson allows. For the grouped horseshoe crab data, Table 4.4 shows
the sample mean and variance for the counts of number of satellites for the
female crabs in each width category. The variances are much larger than the
means, whereas Poisson distributions have identical mean and variance.
The greater variability than predicted by the GLM random component
reflects o®erdispersion.

A common cause of overdispersion is subject heterogeneity. For instance,
suppose that width, weight, color, and spine condition are the four predictors
that affect a female crab’s number of satellites. Suppose that Y has a Poisson
distribution at each fixed combination of those predictors. Our model uses
width alone as a predictor. Crabs having a certain width are then a mixture of
crabs of various weights, colors, and spine conditions. Thus, the population of
crabs having that width is a mixture of several Poisson populations, each
having its own mean for the response. This heterogeneity results in an overall
response distribution at that width having greater variation than the Poisson
predicts. If the variance equals the mean when all relevant variables are
controlled, it exceeds the mean when only one is controlled.

Overdispersion is not an issue in ordinary regression with normally dis-
Ž .tributed Y, because that distribution has a separate parameter the variance
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to describe variability. For binomial and Poisson distributions, however,
the variance is a function of the mean. Overdispersion is common in the
modeling of counts. When the model for the mean is correct but the true
distribution is not Poisson, the ML estimates of model parameters are still
consistent but standard errors are incorrect. We next introduce an extension
of the Poisson GLM that has an extra parameter and accounts better for
overdispersion. In Section 4.7 we present another approach for this, quasi-
likelihood inference.

4.3.4 Negative Binomial GLMs

The negati®e binomial distribution has probability mass function
yk

� y q k k kŽ .
f y ; k , � s 1 y , y s 0, 1, 2, . . . ,Ž . ž / ž /� k � y q 1 � q k � q kŽ . Ž .

4.12Ž .

where k and � are parameters. This distribution has

E Y s � , var Y s � q �2rk .Ž . Ž .
y1 y1 Ž .The index k is called a dispersion parameter. As k ™ 0, var Y ™ � and

Žthe negative binomial distribution converges to the Poisson Cameron and
. y1Trivedi 1998, p. 75 . Usually, k is unknown. Estimating it helps summarize

the extent of overdispersion.
Ž .For k fixed, one can express 4.12 in natural exponential family form

Ž .4.1 . Then, a model with negative binomial random component is a GLM.
For simplicity, such models let k be the same constant for all observations
but treat it as unknown. As in GLMs for binary data, a variety of link
functions are possible. Most common is the log link, as in Poisson loglinear
models, but sometimes the identity link is adequate.

In Section 13.4 we discuss negative binomial GLMs. We illustrate it here
for the crab data analyzed above with Poisson GLMs. With the identity link

Žand width as predictor, the Poisson GLM has � sy11.53 q 0.55 x SE sˆ
ˆ. Ž0.06 for � . For the negative binomial GLM, � sy11.15 q 0.53 x SE sˆ

ˆy1.0.11 . Moreover, k s 0.98, so at a predicted �, the estimated variance isˆ
roughly � q �2, compared to � for the Poisson GLM. Although fitted valuesˆ ˆ ˆ

ˆare similar, the greater SE for � and the greater estimated variance in the
negative binomial model reflect the overdispersion uncaptured with the
Poisson GLM.

4.3.5 Poisson Regression for Rates

When events of a certain type occur over time, space, or some other index of
size, it is usually more relevant to model the rate at which they occur than the
number of them. For instance, a study of homicides in a given year for a
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sample of cities might model the homicide rate, defined for a city as its
number of homicides that year divided by its population size. The model
might describe how the rate depends on the city’s unemployment rate, its
residents’ median income, and the percentage of residents having completed
high school. In Section 9.7 we discuss Poisson regression for modeling rates.

4.3.6 Poisson GLM of Independence in I � J Contingency Tables

One use of Poisson loglinear models is in modeling counts in contingency
� 4tables. We illustrate for two-way tables with independent counts Y havingi j

� 4 � 4Poisson distributions with means � . Suppose that � satisfyi j i j

� s �� � ,i j i j

� 4 � 4where � and � are positive constants satisfying Ý � sÝ � s 1. This isi j i i j j
a multiplicative model, but a linear predictor for a GLM results using the log
link,

log � s  q �� q � � , 4.13Ž .i j i j

where  s log �, �� s log � , � � s log � . This Poisson loglinear modeli i j j
has additive main effects of the two classifications but no interaction.

� 4Since the Y are independent, the total sample size Ý Ý Y has ai j i j i j
Poisson distribution with mean Ý Ý � s �. Conditional on Ý Ý Y s n,i j i j i j i j

�the cell counts have a multinomial distribution with probabilities � si j
4� r� s � � . Similarly, you can check that conditional on n, the row totalsi j i j

� 4 � 4Y have a multinomial distribution with probabilities � s � andiq iq i
� 4the column totals Y have a multinomial distribution with probabilitiesqj

� 4� s � .qj j
Conditional on n, the model is a multinomial one that satisfies � s � �i j i j

s � � . This is independence of the two classifications. In fact, in Poissoniq qj
Ž .form independence is the loglinear model 4.13 . The inferences conducted

in Chapter 3 about independence in two-way contingency tables relate to
GLMs, either Poisson loglinear models or corresponding multinomial models
that fix n or the row or column totals. In Chapters 8 and 9 we present more
complex loglinear models for contingency tables.

4.4 MOMENTS AND LIKELIHOOD FOR GENERALIZED
LINEAR MODELS*

Having introduced GLMs for binary and count data, we now turn our
attention to details such as likelihood equations and methods for fitting
them. The remainder of this chapter is somewhat technical, providing general
results applying to most modeling methods presented in subsequent chapters.

Ž .See McCullagh and Nelder 1989 for further details.
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It is helpful to extend the notation for a GLM so that it can handle many
distributions that have a second parameter. The random component of the

Ž .GLM specifies that the N observations y , . . . , y on Y are independent,1 N
with probability mass or density function for y of formi

f y ; � , � s exp y � y b � ra � q c y , � . 4.14� 4Ž . Ž . Ž . Ž . Ž .i i i i i i

This is called the exponential dispersion family and � is called the dispersion
Ž .parameter Jorgensen 1987 . The parameter � is the natural parameter.� i

Ž . Ž .When � is known, 4.14 simplifies to the form 4.1 for the natural
exponential family, which is

f y ; � s a � b y exp y Q � .Ž . Ž . Ž . Ž .i i i i i i

Ž . Ž . Ž . Ž . w Ž . Ž .xWe identify Q � here with �ra � in 4.14 , a � with exp yb � ra � in
Ž . Ž . w Ž .x Ž . Ž .4.14 , and b y with exp c y, � in 4.14 . The more general formula 4.14
is not needed for one-parameter families such as the binomial and Poisson.

Ž . Ž .Usually, a � has form a � s �r� for a known weight � . For instance,i i
when y is a mean of n independent readings, such as a sample proportioni i

Ž .for n Bernoulli trials, � s n Section 4.4.2 .i i i

4.4.1 Mean and Variance Functions for the Random Component

Ž . Ž . Ž .General expressions for E Y and var Y use terms in 4.14 . Let L si i i
Ž .log f y ; � , � denote the contribution of y to the log likelihood; that is, thei i i

Ž .log-likelihood function is L sÝ L . Then, from 4.14 ,i i

L s y � y b � ra � q c y , � . 4.15Ž . Ž . Ž . Ž .i i i i i

Therefore,

� �2 2� L r�� s y y b � ra � , � L r�� syb � ra � ,Ž . Ž . Ž . Ž .i i i i i i i

�Ž . �Ž . Ž .where b � and b � denote the first two derivatives of b 
 evaluatedi i
at � . We now apply the general likelihood resultsi

22� L � L � L
E s 0 and yE s E ,2ž / ž /ž /�� ����

which hold under regularity conditions satisfied by the exponential family
Ž .Cox and Hinkley 1974, Sec. 4.8 . From the first formula applied with a single

w �Ž .x Ž .observation, E Y y b � ra � s 0, ori i

� s E Y s b� � . 4.16Ž . Ž . Ž .i i i
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From the second formula,

2 2� �b � ra � s E Y y b � ra � s var Y r a � ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .i i i i

so that

var Y s b� � a � . 4.17Ž . Ž . Ž . Ž .i i

Ž . Ž .In summary, the function b 
 in 4.14 determines moments of Y .i

4.4.2 Mean and Variance Functions for Poisson and Binomial

We illustrate the mean and variance expressions for Poisson and binomial
distributions. When Y is Poisson,i

ey� i� y i
i

f y ; � s s exp y log � y � y log y !Ž . Ž .i i i i i iy !i

s exp y � y exp � y log y ! ,Ž .i i i i

Ž . Ž .where � s log � . This has exponential dispersion form 4.14 with b � si i i
Ž . Ž . Ž .exp � , a � s 1, and c y , � sylog y !. The natural parameter is � si i i i

Ž . Ž .log � . From 4.16 and 4.17 ,i

E Y s b� � s exp � s � ,Ž . Ž . Ž .i i i i

var Y s b� � s exp � s � .Ž . Ž . Ž .i i i i

Ž .Next, suppose that n Y has a bin n , � distribution; that is, here y isi i i i i
Ž . Ž .the sample proportion rather than number of successes, so E Y is indepen-i
w Ž .x Ž . w Ž .xdent of n . Let � s log � r 1 y � . Then, � s exp � r 1 q exp � andi i i i i i i

Ž . w Ž .x Ž .log 1 y � sylog 1 q exp � . Extending 4.3 , one can show thati i

n n yn yi i i in yi if y ; � , n s � 1 y �Ž . Ž .i i i i iž /n yi i

y � y log 1 q exp � nŽ .i i i i
s exp q log . 4.18Ž .ž /n y1rn i ii

Ž . Ž . w Ž .xThis has exponential dispersion form 4.14 with b � s log 1 q exp � ,i i
niŽ . Ž .a � s 1rn , and c y , � s log . The natural parameter is the logit,i i ž /n yi i

w Ž .x Ž . Ž .� s log � r 1 y � . From 4.16 and 4.17 ,i i i

�E Y s b � s exp � r 1 q exp � s � ,Ž . Ž . Ž . Ž .i i i i i

2�var Y s b � a � s exp � r 1 q exp � n s � 1 y � rn .Ž . Ž . Ž . Ž . Ž . Ž .½ 5i i i i i i i i
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4.4.3 Systematic Component and Link Function

Ž .Let x , . . . , x denote values of explanatory variables for observation i.i1 i p
� 4The systematic component of a GLM relates parameters � to thesei

variables using a linear predictor

� s � x , i s 1, . . . , N.Ýi j i j
j

In matrix form,

� s X� ,

Ž .� Ž .�where � s � , . . . , � , � s � , . . . , � are column vectors of model1 N 1 p
parameters, and X is the N � p matrix of values of the explanatory variables
for the N subjects. In ordinary linear models, X is called the design matrix. It
need not refer to an experimental design, however, and the GLM literature
calls it the model matrix.

Ž . Ž .The GLM links � to � s E Y by a link function g 
 . Thus, � relates toi i i i
the explanatory variables by

� s g � s � x , i s 1, . . . , N.Ž . Ýi i j i j
j

Ž . Ž .The link function g for which g � s � in 4.14 is the canonical link. Fori i
it, the direct relationship

� s � xÝi j i j
j

occurs between the natural parameter and the linear predictor.
�Ž .Since � s b � , the natural parameter is the function of the mean,i i

Ž � .y1Ž . Ž �.y1Ž . �� s b � , where b 
 denotes the inverse function to b . Thus, thei i
� Ž .canonical link is the inverse of b . In the Poisson case, for instance, b � si

Ž . �Ž . Ž . Ž �.y1Ž .exp � , so b � s exp � s � . Thus, b 
 is the inverse of the expo-i i i i
Ž .nential function, which is the log function i.e., � s log � . The canonicali i

link is the log link.

4.4.4 Likelihood Equations for a GLM

Ž .For N independent observations, from 4.15 the log likelihood is

y � y b �Ž .i i i
L � s L s log f y ; � , � s q c y , � .Ž . Ž . Ž .Ý Ý Ý Ýi i i ia �Ž .i i i i

4.19Ž .

Ž .The notation L � reflects the dependence of � on the model parameters �.
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The likelihood equations are

� L � r�� s � L r�� s 0Ž . Ýj i j
i

Ž .for all j. To differentiate the log likelihood 4.19 , we use the chain rule,

� L � L �� �� ��i i i i i
s . 4.20Ž .

�� �� �� �� ��j i i i j

w �Ž .x Ž . �Ž . Ž .Since � L r�� s y y b � ra � , and since � s b � and var Y si i i i i i i
�Ž . Ž . Ž . Ž .b � a � from 4.16 and 4.17 ,i

� L r�� s y y � ra � , �� r�� s b� � s var Y ra � .Ž . Ž . Ž . Ž . Ž .i i i i i i i i

Also, since � sÝ � x ,i j j i j

��r�� s x .i j i j

Ž .Finally, since � s g � , �� r�� depends on the link function for the model.i i i i
Ž .In summary, substituting into 4.20 gives us

� L y y � a � �� y y � x ��Ž . Ž .i i i i i i i j i
s x s . 4.21Ž .i j�� a � var Y �� var Y ��Ž . Ž . Ž .j i i i i

The likelihood equations are

N y y � x ��Ž .i i i j i
s 0, j s 1, . . . , p. 4.22Ž .Ý var Y ��Ž .i iis1

Although � does not appear in these equations, it is there implicitly through
y1Ž .� , since � s g Ý � x . Different link functions yield different sets ofi i j j i j

equations.
Ž .Interestingly, the likelihood equations 4.22 depend on the distribution of

Ž .Y only through � and var Y . The variance itself depends on the meani i i
through a particular functional form

var Y s® �Ž . Ž .i i

Ž . Ž . Ž .for some function ®, such as ® � s � for the Poisson, ® � s � 1 y �i i i i i
Ž . 2 Ž .for the Bernoulli, and ® � s � i.e., constant for the normal. When Yi i

has distribution in the natural exponential family, the relationship between
Ž .the mean and the variance characterizes the distribution Jorgensen 1987 .�

For instance, if Y has distribution in the natural exponential family and ifi
Ž .® � s � , then necessarily Y has the Poisson distribution.i i i
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4.4.5 Likelihood Equations for Binomial GLMs

Ž .Using notation from Section 4.4.2, suppose that n Y has a bin n , �i i i i
distribution. Then y is a sample proportion of successes for n trials. Thei i

Ž .binomial GLM 4.8 for a single predictor extends with several predictors to

� s 	 � x , 4.23Ž .Ýi j i jž /
j

where 	 is the standard cdf of some class of continuous distributions. Since
Ž .� s � s 	 � with � sÝ � x ,i i i i j j i j

�� r�� s � � s � � x ,Ž . Ýi i i j i jž /
j

Ž . Ž . Žwhere � u s � 	 u r� u i.e., the probability density function corresponding
. Ž . Ž . Ž .to the cdf 	 . Since var Y s � 1 y � rn , the likelihood equations 4.22i i i i

simplify to

n y y � xŽ .i i i i j
� � x s 0, 4.24Ž .Ý Ý j i jž /� 1 y �Ž .i ii j

Ž . y1where � s 	 Ý � x . These depend on the link function 	 through thei j j i j
derivative of its inverse.

w Ž .x w Ž .xFor the logit link, � s log � r 1 y � , so ��r�� s 1r � 1 y � andi i i i i i i
Ž . Ž .�� r�� s �� r�� s � 1 y � . Then the likelihood equations 4.22 andi i i i i i

Ž .4.24 simplify to

n y y � x s 0, 4.25Ž . Ž .Ý i i i i j
i

Ž .where � satisfies 4.23 with 	 the standard logistic cdf.i

4.4.6 Asymptotic Covariance Matrix of Model Parameter Estimators

The likelihood function for the GLM also determines the asymptotic covari-
ˆance matrix of the ML estimator �. This matrix is the inverse of the

w 2 Ž . xinformation matrix IIIII , which has elements E y� L � r�� �� . To findh j
this, for the contribution L to the log likelihood we use the helpful resulti

� 2L � L � Li i i
E syE ,ž / ž /ž /�� �� �� ��h j h j
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Ž .which holds for exponential families Cox and Hinkley 1974, Sec. 4.8 . Thus,

2� L Y y � x �� Y y � x ��Ž . Ž .i i i ih i i i i j i
E syE from 4.21Ž .ž /�� �� var Y �� var Y ��Ž . Ž .h j i i i i

2yx x ��ih i j i
s .ž /var Y ��Ž .i i

Ž .Since L � sÝ L ,i i

22 N� L � x x ��Ž . ih i j i
E y s .Ý ž /ž /�� �� var Y ��Ž .h j i iis1

Generalizing from this typical element to the entire matrix, the information
matrix has the form

IIIII s X� WX, 4.26Ž .

where W is the diagonal matrix with main-diagonal elements

2w s �� r�� rvar Y . 4.27Ž . Ž . Ž .i i i i

ˆThe asymptotic covariance matrix of � is estimated by

$ y1y1 �ˆˆ ˆcov � s IIIII s X WX , 4.28Ž .Ž .Ž .
ˆ ˆ Ž .where W is W evaluated at �. From 4.27 , the form of W also depends on

the link function. We’ll see an example for Poisson GLMs next and for
binomial GLMs in Section 5.5.

4.4.7 Likelihood Equations and Covariance Matrix for
Poisson Loglinear Model

Ž .The general Poisson loglinear model 4.4 has the matrix form

log � s X� .

Ž . Ž .For the log link, � s log � , so � s exp � and �� r�� s exp � s � .i i i i i i i i
Ž . Ž .Since var Y s � , the likelihood equations 4.22 simplify toi i

y y � x s 0. 4.29Ž . Ž .Ý i i i j
i

These equate the sufficient statistics Ý y x for � to their expected values.i i i j
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Also, since

2w s �� r�� rvar Y s �Ž . Ž .i i i i i

ˆ � ˆ y1 ˆŽ . Ž .the estimated covariance matrix 4.28 of � is X WX , where W is the
diagonal matrix with elements of � on the main diagonal.ˆ

4.5 INFERENCE FOR GENERALIZED LINEAR MODELS

Ž .For most GLMs the likelihood equations 4.22 are nonlinear functions of �.
ˆFor now, we put off details about solving them for the ML estimator � and

focus instead on using the fit for statistical inference.
The Wald, score, and likelihood-ratio methods introduced in Section 1.3.3

for significance testing and interval estimation apply to any GLM. In this
section we concentrate on likelihood-ratio inference, through the de®iance of
the GLM.

4.5.1 Deviance and Goodness of Fit

From Section 4.1.5, the saturated GLM has a separate parameter for each
observation. It gives a perfect fit. This sounds good, but it is not a helpful
model. It does not smooth the data or have the advantages that a simpler
model has, such as parsimony. Nonetheless, it serves as a baseline for other
models, such as for checking model fit.

A saturated model explains all variation by the systematic component of
˜the model. Let � denote the estimate of � for the saturated model,

corresponding to estimated means � s y for all i. For a particular unsatu-˜ i i
ˆrated model, denote the corresponding ML estimates by � and � . Forˆ i

Ž .maximized log likelihood L �; y for that model and maximized log likeli-ˆ
Ž .hood L y; y in the saturated case,

maximum likelihood for model
y2 log sy2 L � ; y y L y; yŽ . Ž .ˆ

maximum likelihood for saturated model

describes lack of fit. It is the likelihood-ratio statistic for testing the null
hypothesis that the model holds against the alternative that a more general

Ž .model holds. From 4.19 ,

y2 L � ; y y L y; yŽ . Ž .ˆ

˜ ˜ ˆ ˆs 2 y � y b � ra � y 2 y � y b � ra � .Ž . Ž .Ž . Ž .Ý Ýi i i i i i
i i



INTRODUCTION TO GENERALIZED LINEAR MODELS140

Ž . Ž . Ž .Usually, a � in 4.14 has the form a � s �r� , and this statistic equalsi

˜ ˆ ˜ ˆ2 � y � y � y b � q b � r� s D y; � r� . 4.30Ž . Ž .ˆŽ . Ž .Ý ž /i i i i i i
i

Ž .This is called the scaled de®iance and D y; � is called the de®iance. Theˆ
greater the scaled deviance, the poorer the fit. For some GLMs the scaled
deviance has an approximate chi-squared distribution.

4.5.2 Deviance for Poisson Models

ˆ ˆ ˆŽ . Ž .For Poisson GLMs, by Section 4.4.2, � s log � and b � s exp � s � .ˆ ˆi i i i i
˜ ˜Ž . Ž .Similarly, � s log y and b � s y for the saturated model. Also a � s 1,i i i i

Ž .so the deviance and scaled deviance 4.30 equal

D y; � s 2 y log y r� y y q � . 4.31Ž . Ž .Ž .ˆ ˆ ˆÝ i i i i i
i

When a model with log link contains an intercept term, the likelihood
Ž .equation 4.29 implied by that parameter is Ý y sÝ� . Then the devianceˆi i

simplifies to

D y; � s 2 y log y r� . 4.32Ž . Ž .Ž .ˆ ˆÝ i i i
i

2 Ž .For two-way contingency tables, this reduces to the G statistic 3.11 in
Section 3.2.1, substituting cell count n for y and the independence fittedi j i
value � for � . For a Poisson or multinomial model applied to a contin-ˆ ˆi j i
gency table with a fixed number of cells N, we will see in Section 14.3 that

� 4the deviance has an approximate chi-squared distribution for large � .i

4.5.3 Deviance for Binomial Models: Grouped and Ungrouped Data

� 4 � 4Now consider binomial GLMs with sample proportions y based on ni i
ˆ ˆ ˆw Ž .x Ž . w Ž .xtrials. By Section 4.4.2, � s log � r 1 y � and b � s log 1 q exp � sˆ ˆi i i i i

˜ ˜Ž . w Ž .x Ž . Ž .ylog 1 y � . Similarly,� s log y r 1 y y and b � sylog 1 y y forˆ i i i i i i
Ž .the saturated model. Also, a � s 1rn , so � s 1 and � s n . The deviancei i i

Ž .4.30 equals

y �̂i i
2 n y log y log q log 1 y y y log 1 y �Ž . Ž .ˆÝ i i i i½ 5ž /1 y y 1 y �̂i ii

n y n � 1 y yˆi i i i i
s 2 n y log y 2 n y log q 2 n logÝ Ý Ýi i i i in y n y n y n � 1 y �ˆ ˆi i i i i i ii i i

n y n y n yi i i i i
s 2 n y log q 2 n y n y log .Ž .Ý Ýi i i i in � n y n �ˆ ˆi i i i ii i
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Ž .At setting i, n y is the number of successes and n y n y is the number ofi i i i i
failures, i s 1, . . . , N. Thus, the deviance is a sum over the 2 N cells of
successes and failures and has the same form,

D y; � s 2 observed � log observedrfitted , 4.33Ž . Ž . Ž .ˆ Ý
Ž .as the deviance 4.32 for Poisson loglinear models with intercept term.

With binomial responses, it is possible to construct the data file as
expressed here with the counts of successes and failures at each setting for
the predictors, or with the individual Bernoulli 0�1 observations at the
subject level. The deviance differs in the two cases. In the first case the
saturated model has a parameter at each setting for the predictors, whereas
in the second case it has a parameter for each subject. We refer to these as
grouped data and ungrouped data cases. The approximate chi-squared distri-
bution for the deviance occurs for grouped data but not for ungrouped data
Ž .see Problems 4.22 and 5.37 . With grouped data, the sample size increases
for a fixed number of settings of the predictors and hence a fixed number of
parameters for the saturated model.

4.5.4 Likelihood-Ratio Model Comparison Using the Deviance

Ž .For a Poisson or binomial model M, � s 1, so the deviance 4.30 equals

D y; � sy2 L � ; y y L y; y . 4.34Ž . Ž . Ž . Ž .ˆ ˆ

Consider two models, M with fitted values � and M with fitted values � ,ˆ ˆ0 0 1 1
with M a special case of M . Model M is said to be nested within M .0 1 0 1

Since M is simpler than M , a smaller set of parameter values satisfies0 1
M than satisfies M . Maximizing the log likelihood over a smaller space0 1

Ž . Ž .cannot yield a larger maximum. Thus, L � ; y F L � ; y , and it followsˆ ˆ0 1
Ž . Ž .from 4.34 with the same L y; y for each model that

D y; � F D y; � .Ž . Ž .ˆ ˆ1 0

Simpler models have larger deviances. Assuming that model M holds, the1
likelihood-ratio test of the hypothesis that M holds uses the test statistic0

y2 L � ; y y L � ; yŽ . Ž .ˆ ˆ0 1

sy2 L � ; y y L y; y y y2 L � ; y y L y; yŽ . Ž .� 4Ž . Ž .ˆ ˆ0 1

s D y; � y D y; � .Ž . Ž .ˆ ˆ0 1

The likelihood-ratio statistic comparing the two models is simply the differ-
ence between the deviances. This statistic is large when M fits poorly0
compared to M .1
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Ž .In fact, since the part in 4.30 involving the saturated model cancels, the
difference between deviances,

ˆ ˆ ˆ ˆD y; � y D y; � s 2 � y � y � y b � q b � ,Ž . Ž .ˆ ˆ Ž . Ž .Ý ž /0 1 i i 1 i 0 i 1 i 0 i

also has the form of the deviance. Under regularity conditions, this difference
has approximately a chi-squared null distribution with df equal to the
difference between the numbers of parameters in the two models.

For binomial GLMs and Poisson loglinear GLMs with intercept, from
Ž .expression 4.33 for the deviance, the difference in deviances uses the

observed counts and the two sets of fitted values in the form

D y; � y D y; � s 2 observed � log fitted rfitted .Ž .Ž . Ž .ˆ ˆ Ý0 1 1 0

With binomial responses, the test comparing models does not depend on
whether the data file has grouped or ungrouped form. The saturated model
differs in the two cases, but its log likelihood cancels when one forms the
difference between the deviances.

4.5.5 Residuals for GLMs

When a GLM fits poorly according to an overall goodness-of-fit test, exami-
nation of residuals highlights where the fit is poor. One type of residual uses

Ž . Ž .components of the deviance. In 4.30 let D y; � sÝd , whereˆ i

˜ ˆ ˜ ˆd s 2� y � y � y b � q b � .Ž . Ž .ž /i i i i i i i

The de®iance residual for observation i is

d � sign y y � , 4.35Ž .' Ž .ˆi i i

An alternative is the Pearson residual,

y y �̂i i
e s . 4.36Ž .i $ 1r2

var YŽ .i

Ž .For instance, for a Poisson GLM, var Y s � and the Pearson residual isi i

e s y y � r � .'Ž .ˆ ˆi i i i

For two-way contingency tables identifying y with cell count n and � withˆi i j i
Ž . 2 2the independence fitted value � , this has the form 3.12 ; then Ýe s X ,ˆ i j i j

the Pearson X 2 statistic. Similarly, the sum of squared deviance residuals
Ýd s G2, the likelihood-ratio statistic for testing independence.i j
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When the model holds, Pearson and deviance residuals are less variable
than standard normal because they compare y to the fitted means ratheri

Ž Ž . w Ž .x1r2than the true mean e.g., the denominator of 4.36 estimates var Y si
w Ž .x1r2 w Ž .x1r2 .var Y y � rather than var Y y � . Standardized residuals divideˆi i i i
the ordinary residuals by their asymptotic standard errors. For GLMs the

� 4asymptotic covariance matrix of the vector of the raw residuals y y � isˆi i

w xcov Y y � s cov Y I y Hat .Ž . Ž .ˆ

Here, I is the identity matrix and Hat is the hat matrix,

y1� �1r2 1r2Hat s W X X WX X W , 4.37Ž . Ž .
ˆŽ . Ž .where W is the diagonal matrix with elements 4.27 Pregibon 1981 . Let hi

denote the estimated diagonal element of Hat for observation i, called its
le®erage. Then, standardizing by dividing y y � by its estimated SE yieldsˆi i
the standardized Pearson residual

y y � eˆi i i
r s s . 4.38Ž .i 1r2 ˆ'ˆ 1 y hvar Y 1 y hŽ . iŽ .½ 5i i

ˆŽ .For Poisson GLMs, for instance, r s y y � r � 1 y h . Pierce and'ˆ ˆ Ž .i i i i i
Ž .Schafer 1986 presented standardized deviance residuals.

In linear models the hat matrix is so-named because Hat � y projects the
data to the fitted values, � s‘‘mu-hat.’’ For GLMs, applying the estimatedˆ

Ž . Ž .hat matrix to a linearized approximation for g y yields � s g � , theˆ ˆ
model’s estimated linear predictor values. The greater an observation’s lever-
age, the greater its potential influence on the fit. As in ordinary regression,
the leverages fall between 0 and 1 and sum to the number of model
parameters. Unlike ordinary regression, the hat values depend on the fit as
well as the model matrix, and points that have extreme predictor values need
not have high leverage.

4.6 FITTING GENERALIZED LINEAR MODELS

ˆFinally, we study how to find the ML estimators � of GLM parameters. The
ˆŽ .likelihood equations 4.22 are usually nonlinear in �. We describe a

general-purpose iterative method for solving nonlinear equations and apply it
two ways to determine the maximum of a likelihood function.

4.6.1 Newton–Raphson Method

The Newton�Raphson method is an iterative method for solving nonlinear
equations, such as equations whose solution determines the point at which a
function takes its maximum. It begins with an initial guess for the solution. It



INTRODUCTION TO GENERALIZED LINEAR MODELS144

obtains a second guess by approximating the function to be maximized in a
neighborhood of the initial guess by a second-degree polynomial and then
finding the location of that polynomial’s maximum value. It then approxi-
mates the function in a neighborhood of the second guess by another
second-degree polynomial, and the third guess is the location of its maxi-
mum. In this manner, the method generates a sequence of guesses. These
converge to the location of the maximum when the function is suitable
andror the initial guess is good.

ˆIn more detail, here’s how Newton�Raphson determines the value � at
Ž . � Ž Ž . Ž . .which a function L � is maximized. Let u s � L � r�� , � L � r�� , . . . .1 2

2 Ž .Let H denote the matrix having entries h s � L � r�� �� , called theab a b
Hessian matrix. Let uŽ t . and HŽ t . be u and H evaluated at �Ž t ., the guess t for
ˆ Ž . Ž .�. Step t in the iterative process t s 0, 1, 2, . . . approximates L � near
�Ž t . by the terms up to second order in its Taylor series expansion,

� �1Ž t . Ž t . Ž t . Ž t . Ž t . Ž t .L � f L � q u � y � q � y � H � y � .Ž . Ž . Ž . Ž . Ž .Ž .2

Ž . Ž t . Ž t .Ž Ž t ..Solving � L � r�� f u q H � y � s 0 for � yields the next guess.
That guess can be expressed as

y1Ž tq1. Ž t . Ž t . Ž t .� s � y H u , 4.39Ž . Ž .
Ž t . Žassuming that H is nonsingular. However, computing routines use stan-

dard methods for solving the linear equations rather than explicitly calculat-
.ing the inverse.

Ž Ž t ..Iterations proceed until changes in L � between successive cycles are
sufficiently small. The ML estimator is the limit of �Ž t . as t ™ �; however,

Ž .this need not happen if L � has other local maxima at which the derivative
Ž .of L � equals 0. In that case, a good initial estimate is crucial. To help

understand the Newton�Raphson process, work through these steps when �
Ž .has a single element Problem 4.34 . Then, Figure 4.6 illustrates a cycle of the

Ž .method, showing the parabolic second-order approximation at a given step.
In the next chapter we use Newton�Raphson for logistic regression

models. For now, we illustrate it with a simpler problem for which we know
the answer, maximizing the log likelihood based on an observation y from a

Ž . Ž .bin n, � distribution. From Section 1.3.2, the first two derivatives of L �
Ž . Ž .s y log � q n y y log 1 y � are

22u s y y n� r� 1 y � , H sy yr� q n y y r 1 y � .Ž . Ž . Ž . Ž .

Each Newton�Raphson step has the form

y1 Ž t .y n y y y y n�
Ž tq1. Ž t .� s � q q .2 2 Ž t . Ž t .Ž t . Ž t . � 1 y �Ž .� 1 y �Ž . Ž .
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FIGURE 4.6 Cycle of Newton�Raphson method.

This adjusts � Ž t . up if yrn � � Ž t . and down if yrn � � Ž t .. For instance,
1Ž0. Ž1. Ž t .with � s , you can check that � s yrn. When � s yrn, no adjust-2

ment occurs and � Ž tq1. s yrn, which is the correct answer for � . Forˆ
1starting values other than , adequate convergence usually takes four or five2

iterations.
Ž t . ˆThe convergence of � to � for the Newton�Raphson method is usually

fast. For large t, the convergence satisfies, for each j,

2Ž tq1. Ž t .ˆ ˆ� y � F c � y � for some c � 0j j j j

and is referred to as second-order. This implies that the number of correct
decimals in the approximation roughly doubles after sufficiently many itera-
tions. In practice, it often takes relatively few iterations for satisfactory
convergence.

4.6.2 Fisher Scoring Method

Fisher scoring is an alternative iterative method for solving likelihood equa-
tions. It resembles the Newton�Raphson method, the distinction being with
the Hessian matrix. Fisher scoring uses the expected ®alue of this matrix,
called the expected information, whereas Newton�Raphson uses the matrix
itself, called the obser®ed information.

Let Ž t . denote the approximation t for the ML estimate of the expectedIIIII
Ž t . Ž 2 Ž . .information matrix; that is, has elements yE � L � r�� �� , evalu-IIIII a b
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ated at �Ž t .. The formula for Fisher scoring is

y1Ž t .Ž tq1. Ž t . Ž t .� s � q uŽ .IIIII

or

Ž t .�Ž tq1. s Ž t .�Ž t . q uŽ t . . 4.40Ž .IIIII IIIII

For estimating a binomial parameter, from Section 1.3.2 the information is
w Ž .xnr � 1 y � . A step of Fisher scoring gives

Ž t .y1n y y n�
Ž tq1. Ž t .� s � q Ž t . Ž t . Ž t . Ž t .� 1 y � � 1 y �Ž . Ž .

y y n� Ž t . y
Ž t .s � q s .

n n

This gives the answer for � after a single iteration and stays at that value forˆ
successive iterations.

Ž . � Ž t . � Ž t .Formula 4.26 showed that s X WX. Similarly, s X W X, whereIIIII IIIII
Ž t . w Ž .x Ž t .W is W see 4.27 evaluated at � . The estimated asymptotic covariance

ŷ1 ˆ w Ž .xmatrix of � see 4.28 occurs as a by-product of this algorithm asII
Ž Ž t ..y1 Ž .for t at which convergence is adequate. From 4.22 , for both FisherII
scoring and Newton�Raphson, u has elements

N� L � y y � x ��Ž . Ž .i i i j i
u s s . 4.41Ž .Ýj �� var Y ��Ž .j i iis1

Ž .For GLMs with a canonical link, we’ll see Section 4.6.4 that the observed
and expected information are the same. For noncanonical link models, Fisher
scoring has the advantages that it produces the asymptotic covariance matrix
as a by-product, the expected information is necessarily nonnegative definite,
and as seen next, it is closely related to weighted least squares methods for
ordinary linear models. However, it need not have second-order convergence,
and for complex models the observed information is often easier to calculate.

Ž .Efron and Hinkley 1978 , developing arguments of R. A. Fisher, gave
reasons for preferring observed information. They argued that its variance

Žestimates better approximate a relevant conditional variance conditional on
.statistics not relevant to the parameter being estimated , it is ‘‘closer to the

data,’’ and it tends to agree more closely with Bayesian analyses.

4.6.3 ML as Iterative Reweighted Least Squares*

A relation exists between weighted least squares estimation and using Fisher
scoring to find ML estimates. We refer here to the general linear model of
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form

z s X� q � .

Ž .When the covariance matrix of � is V, the weighted least squares WLS
estimator of � is

y1� �y1 y1X V X X V z.Ž .
� Ž .From s X WX, expression 4.41 for elements of u, and since diagonalIIIII

Ž .2 Ž . Ž .elements of W are w s �� r�� rvar Y , it follows that in 4.40 ,i i i i

Ž t .�Ž t . q uŽ t . s X� W Ž t .z Ž t . ,IIIII

where z Ž t . has elements

�� Ž t .
iŽ t . Ž t . Ž t .z s x � q y y �Ž .Ýi i j j i i Ž t .��ij

�� Ž t .
iŽ t . Ž t .s � q y y � .Ž .i i i Ž t .��i

Ž .Equations 4.40 for Fisher scoring then have the form

X� W Ž t .X �Ž tq1. s X� W Ž t .z Ž t . .Ž .

These are the normal equations for using weighted least squares to fit a
linear model for a response variable z Ž t ., when the model matrix is X and the
inverse of the covariance matrix is W Ž t .. The equations have solution

y1� �Ž tq1. Ž t . Ž t . Ž t .� s X W X X W z .Ž .

The vector z in this formulation is a linearized form of the link function g,
evaluated at y,

g y f g � q y y � g� � s � q y y � ��r�� s z . 4.42Ž . Ž . Ž . Ž . Ž . Ž . Ž .i i i i i i i i i i i

Ž .This adjusted or ‘‘working’’ response ®ariable z has element i approximated
by z Ž t . for cycle t of the iterative scheme. That cycle regresses z Ž t . on X withi

Ž . Ž t . Ž tq1.weight i.e., inverse covariance W to obtain a new estimate � . This
estimate yields a new linear predictor value �Ž tq1. s X�Ž tq1. and a new
adjusted response value z Ž tq1. for the next cycle. The ML estimator results
from iterative use of weighted least squares, in which the weight matrix
changes at each cycle. The process is called iterati®e reweighted least squares.

A simple way to begin the iterative process uses the data y as the initial
estimate of �. This determines the first estimate of the weight matrix W and
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hence the initial estimate of �. It may be necessary to alter some observa-
Ž .tions slightly for this first cycle only so that g y , the initial value of z, is

finite. For instance, when g is the log link applied to counts, a count of
1y s 0 is problematic, so one could set y s . This is not a problem with thei i 2

model itself, since the log applies to the mean, and fitted means are usually
strictly positive in successive iterations.

4.6.4 Simplifications for Canonical Links*

Certain simplifications result with GLMs using the canonical link. For that
link,

� s � s � x .Ýi i j i j
j

Ž . Ž .Often, a � in the density or mass function 4.14 is identical for all
w Ž . xobservations, such as for Poisson GLMs a � s 1 and binomial GLMs with

w Ž . xeach n s 1 for which a � s 1rn s 1 . Then the part of the log likelihoodi i
Ž .4.19 involving both parameters and data is Ý y � , which simplifies toi i

y � x s � y x .Ý Ý Ý Ýi j i j j i i jž /ž /
i j j i

Sufficient statistics for estimating � in the GLM are then

y x , j s 1, . . . , p.Ý i i j
i

For the canonical link,

�� r�� s �� r�� s � b� � r�� s b� � .Ž . Ž .i i i i i i i

Ž .Thus, the contribution 4.21 to the likelihood equation for � simplifies toj

� L y y � y y � xŽ .i i i i i i j�s b � x s . 4.43Ž . Ž .i i j�� var Y a �Ž . Ž .j i

Ž .When a � is identical for all observations, the likelihood equations are

x y s x � , j s 1, . . . , p. 4.44Ž .Ý Ýi j i i j i
i i

These equations equate the sufficient statistics for the model parameters to
Ž .their expected values Nelder and Wedderburn 1972 . For a normal distribu-

tion with identity link, these are the normal equations. We obtained these for
Ž .Poisson loglinear models in 4.29 and for binomial logistic regression models

Ž . Ž .when each n s 1 in 4.25 .i
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Ž .From expression 4.43 for � L r�� , with the canonical link the secondi j
derivatives of the log likelihood have components

� 2L x ��i i j i
sy .ž /�� �� a � ��Ž .j h h

This does not depend on the observation y , soi

2 2� L � r�� �� s E � L � r�� �� .Ž . Ž .h j h j

That is, H sy , and the Newton�Raphson and Fisher scoring algorithmsIIIII
Ž .are identical for canonical link models Nelder and Wedderburn 1972 .

4.7 QUASI-LIKELIHOOD AND GENERALIZED LINEAR MODELS*

Ž .A GLM g � sÝ � x specifies � using a link function g and lineari j j i j i
ˆŽ . Ž .predictor. From 4.22 and 4.41 , the ML estimates � are the solutions of

the likelihood equations

N y y � x ��Ž .i i i j i
u � s s 0, j s 1, . . . , p , 4.45Ž . Ž .Ýj ž /® � ��Ž .i iis1

y1Ž . Ž . Ž .where � s g Ý � x and ® � s var Y . These equations set the scorei j j i j i i
� Ž .4functions u � , which are derivatives of the log likelihood with respect toj

� 4� , equal to 0. As we noted in Section 4.4.4, the likelihood equationsj
Ž .depend on the assumed distribution for Y only through � and ® � . Thei i i
Ž .choice of distribution determines the mean�variance relationship ® � .i

4.7.1 Mean–Variance Relationship Determines Quasi-likelihood Estimates

Ž .Wedderburn 1974 proposed an alternative approach, quasi-likelihood esti-
mation, which assumes only a mean�variance relationship rather than a
specific distribution for Y . It has a link function and linear predictor of thei
usual GLM form, but instead of assuming a distributional type for Y iti
assumes only

var Y s® �Ž . Ž .i i

for some chosen variance function ®. The equations that determine quasi-
Ž .likelihood estimates are the same as the likelihood equations 4.45 for

GLMs. They are not likelihood equations, however, without the additional
� 4assumption that Y has distribution in the natural exponential family.i

� 4To illustrate, suppose we assume that the Y are independent withi

® � s � .Ž .i i
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Ž . Ž . Ž .The quasi-likelihood QL estimates are the solution of 4.45 with ® �i
� 4replaced by � . Under the additional assumption that Y have distribution ini i

Ž .the exponential dispersion family 4.14 , these estimates are also ML esti-
Ž .mates. That case is simply the Poisson distribution. Thus, for ® � s �,

quasi-likelihood estimates are also ML estimates when the random compo-
nent has a Poisson distribution.

Ž .Wedderburn suggested using the estimating equations 4.45 for any
variance function, even if it does not occur for a member of the natural
exponential family. In fact, the purpose of the quasi-likelihood method was to
encompass a greater variety of cases, such as discussed in Section 4.7.2. The

Ž .QL estimates have asymptotic covariance matrix of the same form 4.28 as in
� ˆ y1 2Ž . Ž . Ž .GLMs, namely X WX with w s �� r�� rvar Y .i i i i

4.7.2 Overdispersion for Poisson GLMs and Quasi-likelihood

Ž .For count data, we’ve seen Section 4.3.3 that the Poisson assumption is
often unrealistic because of overdispersion�the variance exceeds the mean.
One cause for this is heterogeneity among subjects. This suggests an alterna-
tive to a Poisson GLM in which the mean�variance relationship has the form

® � s ��Ž .i i

for some constant �. The case � � 1 represents overdispersion for the
Poisson model.

Ž . Ž .In the estimating equations 4.45 with ® � s �� , � drops out. Thus,i i
the equations are identical to likelihood equations for Poisson models, and
model parameter estimates are also identical. Also,

2 2w s �� r�� var Y s �� r�� r�� ,Ž . Ž . Ž .i i i i i i i

ˆ � ˆ y1Ž . Ž .so the estimated cov � s X WX is � times that for the Poisson model.
Ž . Ž .When a variance function has the form ® � s � ®* � , usually � isi i

also unknown. However, � is not in the estimating equations. Let X 2 s
Ž .2 Ž .Ý y y � r®* � , a Pearson-type statistic for the simpler model withˆ ˆi i i

� s 1. Then X 2r� is a sum of squares of N standardized terms. When
X 2r� is approximately chi-squared or when � is approximately linear in �i

Ž . Ž . Ž 2 .with ®* � close to ®* � , then E X r� f N y p, the number of observa-ˆ i i
w 2 Ž .xtions minus the number of model parameters p. Hence, E X r N y p f �.

Ž .Using the motivation of moment estimation, Wedderburn 1974 suggested
ˆ 2 Ž .taking � s X r N y p as the estimated multiple of the covariance matrix.

In summary, this quasi-likelihood approach for count data is simple: Fit
the ordinary Poisson model and use its p parameter estimates. Multiply the

2'ordinary standard error estimates by X r N y p .Ž .
We illustrate for the horseshoe crab data analyzed with Poisson GLMs in

Section 4.3.2. With the log link, the fit using width to predict number of
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ˆsatellites was log � sy3.305 q 0.164 x, with SE s 0.020 for � s 0.164. Toˆ
improve the adequacy of using a chi-squared statistic to summarize fit, we
use the satellite totals and fit for all female crabs at a given width, to increase
the counts and fitted values relative to those for individual female crabs. The
N s 66 distinct width levels each have a total count y for the number ofi
satellites and a fitted total � . The Pearson statistic comparing these isˆ i
X 2 s 174.3. The quasi-likelihood adjustment for standard errors equals

Ž .'174.3r 66 y 2 s 1.65. Thus, SE s 1.65 0.020 s 0.033 is a more plausibleŽ .
ˆstandard error for � s 0.164 in this prediction equation.

Alternative ways of handling overdispersion include mixture models that
allow heterogeneity in the mean at fixed settings of predictors. For count

Ž .data these include Poisson GLMs having random effects Section 13.5 and
negative binomial GLMs that result when a Poisson parameter itself has a

Ž .gamma distribution Section 4.3.4 and 13.4 .

4.7.3 Overdispersion for Binomial GLMs and Quasi-likelihood

The quasi-likelihood approach can also handle overdispersion for counts
based on binary data. When y is the sample mean of n independent binaryi i
observations with parameter � , i s 1, . . . , N, then binomial sampling hasi
Ž . Ž . Ž .E Y s � and var Y s � 1 y � rn . A simple quasi-likelihood approachi i i i i i

uses the alternative variance function

® � s �� 1 y � rn . 4.46Ž . Ž . Ž .i i i i

Overdispersion occurs when � � 1. The quasi-likelihood estimates are the
same as ML estimates for the binomial model, since � drops out of the

Ž .estimating equations 4.45 . As in the overdispersed Poisson case, � enters
the denominator of w . Thus, the asymptotic covariance matrix multiplies byi

2'�, and standard errors multiply by � . An estimate of � using the X fit
2 Ž . Ž .statistic for the ordinary binomial model is X r N y p Finney 1947 .

Methods like these that use estimates from ordinary models but inflate
their standard errors are appropriate only if the model chosen describes well
the structural relationship between the mean of Y and the predictors. If a
large goodness-of-fit statistic is due to some other type of lack of fit, such as
failing to include a relevant interaction term, making an adjustment for
overdispersion will not address the inadequacy.

For counts with binary data, alternative mechanisms for handling overdis-
persion include mixture models such as binomial GLMs with random effects
Ž .Section 12.3 and models for which a binomial parameter itself has a beta

Ž .distribution Section 13.3 .

4.7.4 Teratology Overdispersion Example

Table 4.5 shows results of a teratology experiment in which female rats on
iron-deficient diets were assigned to four groups. Rats in group 1 were given
placebo injections, and rats in other groups were given injections of an iron
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( )TABLE 4.5 Response Counts of Litter Size, Number Dead for 58 Litters of Rats
in Low-Iron Teratology Study

Ž .Group 1: Untreated low iron
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .10, 1 11, 4 12, 9 4, 4 10, 10 11, 9 9, 9 11, 11 10, 10 10, 7 12, 12
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .10, 9 8, 8 11, 9 6, 4 9, 7 14, 14 12, 7 11, 9 13, 8 14, 5 10, 10
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .12, 10 13, 8 10, 10 14, 3 13, 13 4, 3 8, 8 13, 5 12, 12

Group 2: Injections days 7 and 10
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .10, 1 3, 1 13, 1 12, 0 14, 4 9, 2 13, 2 16, 1 11, 0 4, 0 1, 0 12, 0

Group 3: Injections days 0 and 7
Ž . Ž . Ž . Ž . Ž .8, 0 11, 1 14, 0 14, 1 11, 0

Group 4: Injections weekly
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .3, 0 13, 0 9, 2 17, 2 15, 0 2, 0 14, 1 8, 0 6, 0 17, 0

Ž .Source: Moore and Tsiatis 1991 .

supplement; this was done weekly in group 4, only on days 7 and 10 in group
2, and only on days 0 and 7 in group 3. The 58 rats were made pregnant,
sacrificed after three weeks, and then the total number of dead fetuses was
counted in each litter. In teratology experiments, due to unmeasured covari-
ates and genetic variability the probability of death may vary from litter to
litter within a particular treatment group.

Let y denote the proportion of dead fetuses out of the n in litter i iniŽ g . iŽ g .
treatment group g. Let � denote the probability of death for a fetus iniŽ g .

Ž .that litter. Consider the model with n y a bin n ,� variate, whereiŽ g . iŽ g . iŽ g . iŽ g .

� s � , g s 1, 2, 3, 4.iŽ g . g

That is, the model treats all litters in a particular group g as having the
same probability of death � . The ML fit has estimate � equal toˆg g
the sample proportion of deaths for all fetuses from litters in that group.

Ž . Ž .These equal � s 0.758 SE s 0.024 , � s 0.102 SE s 0.028 , � s 0.034ˆ ˆ ˆ1 2 3
Ž . Ž .SE s 0.024 , and � s 0.048 SE s 0.021 , where for group g, SE sˆ4

� 1 y � r Ý n . The estimated probability of death is considerablyˆ ˆ Ž .' Ž .g g i iŽ g .

higher for the placebo group.
For litter i in group g, n � is a fitted number of deaths andˆiŽ g . g
Ž .n 1 y � is a fitted number of nondeaths. Comparing these fitted valuesˆiŽ g . g

to the observed counts of deaths and nondeaths in the N s 58 litters using
the Pearson statistic gives X 2 s 154.7 with df s 58 y 4 s 54. There is
considerable evidence of overdispersion. With the quasi-likelihood approach,

ˆ 2� 4 Ž .� are the same as the binomial ML estimates; however, � s X r N y pˆg
ˆ1r2Ž .s 154.7r 58 y 4 s 2.86, so standard errors multiply by � s 1.69.

Even with this adjustment for overdispersion, strong evidence remains that
the probability of death is substantially higher for the placebo group. For
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instance, a 95% confidence interval for � y � is1 2

1r22 20.758 y 0.102 � 1.96 1.69 � 0.024 q 1.69 � 0.028Ž . Ž . Ž .

or 0.54, 0.78 .Ž .

Ž .This is wider, however, than the Wald interval of 0.59, 0.73 for comparing
independent proportions, which ignores the overdispersion.

4.8 GENERALIZED ADDITIVE MODELS*

The GLM generalizes the ordinary linear model to permit nonnormal distri-
butions and modeling functions of the mean. Quasi-likelihood provides a
further generalization, specifying how the variance depends on the mean
without assuming a given distribution. Another generalization replaces the
linear predictor by smooth functions of the predictors.

4.8.1 Smoothing Data

Ž .The GLM structure g � sÝ � x generalizes toi j j i j

g � s s x ,Ž . Ž .Ýi j i j
j

Ž .where s 
 is an unspecified smooth function of predictor j. A useful smoothj
function is the cubic spline. It has separate cubic polynomials over sets of
disjoint intervals, joined together smoothly at boundaries of those intervals.

Like GLMs, this model specifies a distribution for the random component
and a link function g. The resulting model is called a generalized additi®e

Ž .model, symbolized by GAM Hastie and Tibshirani 1990 . The GLM is the
special case in which each s is a linear function. Also possible is taking somej
s as smooth functions and others as linear functions or as dummy variablesj
for qualitative predictors.

The details for fitting GAMs are beyond our scope. The fitting algorithm
employs a generalization of the Newton�Raphson method that utilizes local
smoothing. This corresponds to subtracting from the log-likelihood function a
penalty function that increases as the smooth function gets more wiggly. The
model fit assigns a deviance and an approximate df value to each s in thej
additive predictor, enabling inference about those terms. For instance, a
smooth function having df s 5 is similar in overall complexity to a fourth-

Ždegree polynomial, which has five parameters. One’s choice of a df value or
.smoothing parameter determines how smooth the resulting GAM fit looks.

It is usually worth trying a variety of degrees of smoothing to find one that
smooths the data sufficiently so that the trend is not too irregular but does
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not smooth so much that it suppresses interesting patterns. This approach
may suggest that a linear model is adequate with a particular link or suggest
ways to improve on linearity. Some software packages that do not have
GAMs can smooth the data by employing a type of regression that gives
greater weight to nearby observations in predicting the value at a given point;
such locally weighted least squares regression is often referred to as lowess. We
prefer GAMs because they recognize explicitly the form of the response. For
instance, with a binary response, lowess can give predicted values below 0 or
above 1, which cannot happen with a GAM.

Even when one plans to use GLMs, a GAM can be helpful for exploratory
analysis. For instance, for continuous X with continuous responses, scatter
diagrams provide visual information about the dependence of Y on X. For
binary responses, the following example shows that such diagrams are not
very informative. Plotting the fitted smooth function for a predictor may
reveal a general trend without assuming a particular functional relationship.

Ž .FIGURE 4.7 Whether satellites are present 1, yes; 0, no , by width of female crab, with
smoothing fit of generalized additive model.
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4.8.2 GAMs for Horseshoe Crab Example

In Section 4.3.2, Figure 4.4 showed the trend relating number of satellites for
horseshoe crabs to their width. This smooth curve is the fit of a generalized
additive model, assuming a Poisson distribution and using the log link.

In the next chapter we’ll use logistic regression to model the probability
that a crab has at least one satellite. For crab i, let y s 1 if she has at leasti
one satellite and y s 0 otherwise. Figure 4.7 plots these data againsti
x s crab width. It consists of a set of points with y s 1 and a second set ofi
points with y s 0. The numbered symbols indicate the number of observa-i
tions at each point. It appears that y s 1 tends to occur relatively morei
often at higher x values. Figure 4.7 also shows a curve based on smoothing
the data using a GAM, assuming a binomial response and logit link. This
curve shows a roughly increasing trend and is more informative than viewing
the binary data alone. It suggests that an S-shaped regression function may
describe this relationship relatively well.

NOTES

Section 4.1: Generalized Linear Model

Ž . Ž .4.2. Distribution 4.1 is called a natural or linear exponential family to distinguish it from a
Ž .more general exponential family that replaces y by r y in the exponential term. For

Ž .other generalizations, see Jorgensen 1987 . Books on GLMs and related models, in�
approximate order of technical level from highest to lowest, are McCullagh and Nelder
Ž . Ž . Ž . Ž . Ž .1989 , Fahrmeir and Tutz 2001 , Aitkin et al. 1989 , Dobson 2002 , and Gill 2000 .

Ž .See also Firth 1991 .

Section 4.3: Generalized Linear Models for Counts

4.2. For further discussion of Poisson regression and related models for count data, see
Ž . Ž . Ž . Ž .Breslow 1984 , Cameron and Trivedi 1998 , Frome 1983 , Hinde 1982 , Lawless

Ž . Ž .1987 , and Seeber 1998 and references therein.

Section 4.4: Moments and Likelihood for Generalized Linear Models

Ž . Ž . Ž .4.3. The function b 
 in 4.14 is called the cumulant function, since when a � s 1 its
Ž .derivatives yield the cumulants of the distribution Jorgensen 1987 .�

For many GLMs, including Poisson models with log link and binary models with logit
link, with full-rank model matrix the Hessian is negative definite and the log likelihood
is a strictly concave function. Then ML estimates of model parameters exist and are

Ž .unique under quite general conditions Wedderburn 1976 .

Section 4.5: Inference for Generalized Linear Models

ˆŽ . w Ž .x4.4. The matrix W used in cov � see 4.28 , in the hat matrix for standardized Pearson
w Ž .x w Ž .xresiduals see 4.38 , and in Fisher scoring see 4.40 is the inverse of the covariance

Ž . Ž .matrix of the linearized form of g y see Section 4.6.3 .
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Ž .McCullagh and Nelder 1989, Chap. 12 discussed model checking for GLMs. For
Ž . Ž .discussions about residuals, see also Green 1984 , Pierce and Schafer 1986 , Pregibon

Ž . Ž . Ž .1980, 1981 , and Williams 1987 . Pregibon 1982 showed that the squared standardized
Pearson residual is the score statistic for testing whether the observation is an outlier.

Ž .Davison and Hinkley 1997, Sec. 7.2 discussed bootstrapping in GLMs.

Section 4.6: Fitting Generalized Linear Models

Ž .4.5. Fisher 1935b introduced the Fisher scoring method to calculate ML estimates for
probit models. For further discussion of GLM model fitting and the relationship

Ž .between iterative reweighted least squares and ML estimation, see Green 1984 ,
Ž . Ž . Ž .Jorgensen 1983 , McCullagh and Nelder 1989 , and Nelder and Wedderburn 1972 .�

Ž . Ž . Ž .Green 1984 , Jorgensen 1983 , and Palmgren and Ekholm 1987 also discussed this�
relation for exponential family nonlinear models.

Section 4.7: Quasi-likelihood and Generalized Linear Models

Ž .4.6. For more on quasi-likelihood, see Sections 11.4, 12.6.4, and 13.3, Breslow 1984 , Cox
Ž . Ž . Ž . Ž .1983 , Firth 1987 , Hinde and Demetrio 1998 , McCullagh 1983 , McCullagh and´

Ž . Ž . Ž .Nelder 1989 , Nelder and Pregibon 1987 , and Wedderburn 1974, 1976 . See Heyde
Ž .1997 for a theoretical perspective.

Section 4.8: Generalized Additi©e Models

4.7. Besides GAMs, other nonparametric smoothing methods can describe the dependence
Ž . Žof a binary response on a predictor. For instance, see Copas 1983 , Lloyd 1999, Chap.

. Ž .5 , and Section 15.3.3 for kernel smoothing and Kauermann and Tutz 2001 for models
with random effects.

PROBLEMS

Applications

4.1 In the 2000 U.S. presidential election, Palm Beach County in Florida
Žwas the focus of unusual voting patterns including a large number of

.illegal double votes apparently caused by a confusing ‘‘butterfly ballot.’’
Many voters claimed that they voted mistakenly for the Reform Party
candidate, Pat Buchanan, when they intended to vote for Al Gore.
Figure 4.8 shows the total number of votes for Buchanan plotted
against the number of votes for the Reform Party candidate in 1996
Ž . ŽRoss Perot , by county in Florida. For details, see A. Agresti and B.

.Presnell, J. Law Public Policy, Volume 13, Fall 2001, 117�134.
a. In county i, let � denote the proportion of the vote for Buchanani

and let x denote the proportion of the vote for Perot in 1996. Fori
the linear probability model fitted to all counties except Palm Beach
County, � sy0.0003 q 0.0304 x . Give the value of P in theˆ i i
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FIGURE 4.8 Total vote, by county in Florida, for Reform Party candidates Buchanan in 2000
and Perot in 1996.

interpretation: The estimated proportion vote for Buchanan in 2000
was roughly P% of that for Perot in 1996.

b. For Palm Beach County, � s 0.0079 and x s 0.0774. Does thisi i
result appear to be an outlier? Explain.

w Ž .xc. For logistic regression, log � r 1 y � sy7.164 q 12.219 x . Findˆ ˆi i i
� in Palm Beach County. Is that county an outlier for this model?ˆ i

4.2 For games in baseball’s National League during nine decades, Table
4.6 shows the percentage of times that the starting pitcher pitched a
complete game.

TABLE 4.6 Data for Problem 4.2

Percent Percent Percent
Decade Complete Decade Complete Decade Complete

1900�1909 72.7 1930�1939 44.3 1960�1969 27.2
1910�1919 63.4 1940�1949 41.6 1970�1979 22.5
1920�1929 50.0 1950�1959 32.8 1980�1989 13.3

Source: Data from George Will, Newsweek, Apr. 10, 1989.
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a. Treating the number of games as the same in each decade, the ML
fit of the linear probability model is � s 0.7578 y 0.0694 x, whereˆ

Ž .x s decade x s 1, 2, . . . , 9 . Interpret 0.7578 and y0.0694.
b. Substituting x s 10, 11, 12, predict the percentages of complete

games for the next three decades. Are these predictions plausible?
Why?

Ž . wc. The ML fit with logistic regression is � s exp 1.148 y 0.315 x r 1ˆ
Ž .xq exp 1.148 y 0.315 x . Obtain � for x s 10, 11, 12. Are theseˆ i

more plausible?

Ž .4.3 For Table 3.7 with scores 0, 0.5, 1.5, 4.0, 7.0 for alcohol consumption,
ML fitting of the linear probability model for malformation has output.

Parameter Estimate Std Error Wald 95% Conf Limits
Intercept 0.0025 0.0003 0.0019 0.0032
Alcohol 0.0011 0.0007 y0.0003 0.0025

Interpret the model fit. Use it to estimate the relative risk of malfor-
mation for alcohol consumption levels 0 and 7.0.

4.4 For Table 4.2, refit the linear probability model or the logistic regres-
Ž . Ž . Ž . Ž . Ž . Žsion model using the scores a 0, 2, 4, 6 , b 0, 1, 2, 3 , and c 1, 2,

ˆ.3, 4 . Compare � for the three choices. Compare fitted values. Sum-
marize the effect of linear transformations of scores, which preserve
relative sizes of spacings between scores.

4.5 For Table 4.3, let Y s 1 if a crab has at least one satellite, and Y s 0
otherwise. Using x s weight, fit the linear probability model.
a. Use ordinary least squares. Interpret the parameter estimates. Find

Ž .the estimated probability at the highest observed weight 5.20 kg .
Comment.

wb. Try to fit the model using ML, treating Y as binomial. The failure
Ž .is due to a fitted probability falling outside the 0, 1 range. The fit

Ž .in part a is ML for a normal random component, for which fitted
xvalues outside this range are permissible.

c. Fit the logistic regression model. Show that the fitted probability at
a weight of 5.20 kg equals 0.9968.

d. Fit the probit model. Find the fitted probability at 5.20 kg.

4.6 An experiment analyzes imperfection rates for two processes used to
fabricate silicon wafers for computer chips. For treatment A applied to
10 wafers, the numbers of imperfections are 8, 7, 6, 6, 3, 4, 7, 2, 3, 4.
Treatment B applied to 10 other wafers has 9, 9, 8, 14, 8, 13, 11, 5, 7, 6
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imperfections. Treat the counts as independent Poisson variates having
means � and � .A B

a. Fit the model log � s � q � x, where x s 1 for treatment B and
Ž .x s 0 for treatment A. Show that exp � s � r� , and interpretB A

its estimate.
b. Test H : � s � with the Wald or likelihood ratio test of0 A B

H : � s 0. Interpret.0

Žc. Construct a 95% confidence interval for � r� . Hint: First con-B A
.struct one for �.

d. Test H : � s � based on this result: If Y and Y are indepen-0 A B 1 2
Ž � .dent Poisson with means � and � , then Y Y q Y is binomial1 2 1 1 2

Ž .with n s Y q Y and � s � r � q � .1 2 1 1 2

4.7 For Table 4.3, Table 4.7 shows SAS output for a Poisson loglinear
model fit using X s weight and Y s number of satellites.

Ž .a. Estimate E Y for female crabs of average weight, 2.44 kg.
ˆb. Use � to describe the weight effect. Show how to construct the

reported confidence interval.
c. Construct a Wald test that Y is independent of X. Interpret.
d. Can you conduct a likelihood-ratio test of this hypothesis? If not,

what else do you need?
e. Is there evidence of overdispersion? If necessary, adjust standard

errors and interpret.

TABLE 4.7 SAS Output for Problem 4.7

Criterion DF Value
Deviance 171 560.8664
Pearson Chi-Square 171 535.8957
Log Likelihood 71.9524

Parameter Estimate Std Error Wald 95% Conf Limits Chi-Sq Pr > ChiSq
Intercept y0.4284 0.1789 y0.7791 y0.0777 5.73 0.0167
weight 0.5893 0.0650 0.4619 0.7167 82.15 <.0001

4.8 Refer to Problem 4.7. Using the identity link with x s weight, � sˆ
ˆ Ž .y2.60 q 2.264 x, where � s 2.264 has SE s 0.228. Repeat parts a

Ž .through c .

4.9 Refer to Table 4.3.
a. Fit a Poisson loglinear model using both W s weight and C s

color to predict Y s number of satellites. Assigning dummy vari-
ables, treat C as a nominal factor. Interpret parameter estimates.
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Ž . Ž .b. Estimate E Y for female crabs of average weight 2.44 kg that are
Ž . Ž .i medium light, and ii dark.

Žc. Test whether color is needed in the model. Hint: From Section
4.5.4, the likelihood-ratio statistic comparing models is the differ-

.ence in deviances.
d. The estimated color effects are monotone across the four cate-

gories. Fit a simpler model that treats C as quantitative and
assumes a linear effect. Interpret its color effect and repeat the

Ž . Ž .analyses of parts b and c . Compare the fit to the model in part
Ž .a . Interpret.

e. Add width to the model. What effect does the strong positive
correlation between width and weight have? Are both needed in the
model?

4.10 In Section 4.3.2, refer to the Poisson model with identity link. The fit
Ž .using least squares is � sy10.42 q 0.51 x SE s 0.11 . Explain whyˆ

the parameter estimates differ and why the SE values are so different.

4.11 For the negative binomial model fitted to the crab satellite counts with
ˆ Ž .log link and width predictor, � sy4.05, � s 0.192 SE s 0.048 ,ˆ

ˆy1 ˆŽ .k s 1.106 SE s 0.197 . Interpret. Why is SE for � so different from
SE s 0.020 for the corresponding Poisson GLM in Sec 4.3.2? Which is
more appropriate? Why?

4.12 Refer to Problem 4.6. The sample mean and variance are 5.0 and 4.2
for treatment A and 9.0 and 8.4 for treatment B.
a. Is there evidence of overdispersion for the Poisson model having a

dummy variable for treatment? Explain.
b. Fit the negative binomial loglinear model. Note that the estimated

dispersion parameter is 0 and that estimates of treatment means
and standard errors are the same as with the Poisson loglinear
GLM.

c. For the overall sample of 20 observations, the sample mean and
variance are 7.0 and 10.2. Fit the loglinear model having only an
intercept term under Poisson and negative binomial assumptions.
Compare results, and compare confidence intervals for the overall

Žmean response. Why do they differ? Note: This shows how the
Poisson model can deteriorate when an important covariate is

.unmeasured.

4.13 Table 4.8 shows the free-throw shooting, by game, of Shaq O’Neal of
Ž .the Los Angeles Lakers during the 2000 NBA basketball playoffs.

Commentators remarked that his shooting varied dramatically from
game to game. In game i, suppose that Y s number of free throwsi
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TABLE 4.8 Data for Problem 4.13

Number Number of Number Number of Number Number of
Game Made Attempts Game Made Attempts Game Made Attempts

1 4 5 9 4 12 17 8 12
2 5 11 10 1 4 18 1 6
3 5 14 11 13 27 19 18 39
4 5 12 12 5 17 20 3 13
5 2 7 13 6 12 21 10 17
6 7 10 14 9 9 22 1 6
7 6 14 15 7 12 23 3 12
8 9 15 16 3 10

Source: www.nba.com.

Ž . � 4made out of n attempts is a bin n , � variate and the Y arei i i i
independent.

a. Fit the model, � s � , and find and interpret � and its standardˆi
Žerror. Does the model appear to fit adequately? Note: You could

check this with a small-sample test of independence of the 23 � 2
.table of game and the binary outcome.

b. Adjust the standard error for overdispersion. Using the original SE
and its correction, find and compare 95% confidence intervals for
� . Interpret.

4.14 Refer to Table 13.6. Fit a loglinear model with a dummy variable for
Ž . Ž .race, a assuming a Poisson distribution, and b allowing overdisper-

sion with a quasi-likelihood approach. Compare results.

4.15 Refer to Problem 4.6. The wafers are also classified by thickness of
Ž .silicon coating z s 0, low; z s 1, high . The first five imperfection

counts reported for each treatment refer to z s 0 and the last five
refer to z s 1. Analyze these data.

14.6 Refer to Table 13.9 on frequency of sexual intercourse. Analyze these
data.

Theory and Methods

4.17 Describe the purpose of the link function of a GLM. What is the
identity link? Explain why it is not often used with binomial or Poisson
responses.

Ž .4.18 For known k, show that the negative binomial distribution 4.12 has
Ž . w Ž .xexponential family form 4.1 with natural parameter log �r � q k .
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4.19 For binary data, define a GLM using the log link. Show that effects
refer to the relative risk. Why do you think this link is not often used?
Ž .Hint: What happens if the linear predictor takes a positive value?

Ž . Ž .4.20 For the logistic regression model 4.6 with � � 0, show that a as
Ž . Ž . Ž .x ™ �, � x is monotone increasing, and b the curve for � x is the

cdf of a logistic distribution having mean y�r� and standard devia-
'Ž .tion �r � 3 .

Ž .4.21 Show representation 4.18 for the binomial distribution.

Ž . � 44.22 Let Y be a bin n , � variate for group i, i s 1, . . . , N, with Yi i i i
independent. Consider the model that � s 


 s � . Denote that1 N

� 4 Ž . Ž .common value by � . For observations y , show that � s Ý y r Ýn .ˆi i i
When all n s 1, for testing this model’s fit in the N � 2 table, showi
that X 2 s n. Thus, goodness-of-fit statistics can be completely unin-

Ž .formative for ungrouped data. See also Problem 5.37.

Ž .4.23 Suppose that Y is Poisson with g � s � q � x , where x s 1 fori i i i
i s 1, . . . , n from group A and x s 0 for i s n q 1, . . . , n q nA i A A B
from group B. Show that for any link function g, the likelihood

Ž .equations 4.22 imply that fitted means � and � equal the sampleˆ ˆA B
means.

4.24 For binary data with sample proportion y based on n trials, we usei i
Ž .quasi-likelihood to fit a model using variance function 4.46 . Show

that parameter estimates are the same as for the binomial GLM but
that the covariance matrix multiplies by �.

Ž .4.25 A binomial GLM � s 	 Ý � x with arbitrary inverse link functioni j j i j
Ž . Ž .	 assumes that n Y has a bin n , � distribution. Find w in 4.27i i i i i$ ˆŽ . Ž .and hence cov � . For logistic regression, show that w s n � 1 y � .i i i i

4.26 A GLM has parameter � with sufficient statistic S. A goodness-of-fit
test statistic T has observed value t . If � were known, a P-value iso

Ž . Ž � .P s P T G t ; � . Explain why P T G t S is the uniform minimumo o
variance unbiased estimator of P.

4.27 Let y be observation j of a count variable for group i, i s 1, . . . , I,i j
� 4 Ž .j s 1, . . . , n . Suppose that Y are independent Poisson with E Yi i j i j

s � .i
a. Show that the ML estimate of � is � s y sÝ y rn .ˆi i i j i j i

wb. Simplify the expression for the deviance for this model. For testing
Žthis model, it follows from Fisher 1970, p. 58, originally published
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2. Ž .in 1925 that the deviance and the Pearson statistic Ý Ý y y y ryi j i j i i
Ž .have approximate chi-squared distributions with df sÝ n y 1 .i i

2Ž . Ž .For a single group, Cochran 1954 referred to Ý y y y ry asj 1 j 1 1
the ®ariance test for the fit of a Poisson distribution, since it

xcompares the sample variance to the estimated Poisson variance y .1

4.28 Conditional on , Y has a Poisson distribution with mean . Values of
Ž . Ž . vary according to gamma density 13.12 , which has E  s �,

Ž . 2var  s � rk. Show that marginally Y has the negative binomial
Ž .distribution 4.12 . Explain why the negative binomial model is a way

to handle overdispersion for the Poisson.

Ž . Ž .4.29 Consider the class of binary models 4.8 and 4.9 . Suppose that the
standard cdf 	 corresponds to a probability density function � that is
symmetric around 0.

Ž .a. Show that x at which � x s 0.5 is x sy�r�.
Ž . Ž . Ž .b. Show that the rate of change in � x when � x s 0.5 is �� 0 .

' Ž .Show this is 0.25� for the logit link and �r 2� where � s 3.14 . . .
for the probit link.

c. Show that the probit regression curve has the shape of a normal cdf
� �with mean y�r� and standard deviation 1r � .

Ž 2 .4.30 Show the normal distribution N �, � with fixed � satisfies family
Ž .4.1 , and identify the components. Formulate the ordinary regression
model as a GLM.

4.31 In Problem 4.30, when � is also a parameter, show that it satisfies the
Ž .exponential dispersion family 4.14 .

1Ž .4.32 For binary observations, consider the model � x s q2
Ž . y1Ž .1r� tan � q � x . Which distribution has cdf of this form? Explain
when a GLM using this curve might be more appropriate than logistic
regression.

Ž . Ž .4.33 Find the form of the deviance residual 4.35 for an observation in a a
Ž . Ž .binomial GLM, and b Poisson GLM. Illustrate part b for a cell

count in a two-way contingency table for the model of independence.

ˆ Ž0.Ž .4.34 Consider the value � that maximizes a function L � . Let � denote
an initial guess.

� ˆ � Ž0. ˆ Ž0. � Ž0.Ž . Ž . Ž . Ž .a. Using L � s L � q � y � L � q 


 , argue that for
Ž0. ˆ � Ž0. ˆ Ž0. � Ž0.Ž . Ž . Ž .� close to � , approximately 0 s L � q � y � L � .

Ž1. ˆSolve this equation to obtain an approximation � for �.
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Ž t . ˆb. Let � denote approximation t for � , t s 0, 1, 2, . . . . Justify that
the next approximation is

� Ž tq1. s � Ž t . y L� � Ž t . rL� � Ž t . .Ž . Ž .

4.35 For n independent observations from a Poisson distribution, show that
Ž tq1.Fisher scoring gives � s y for all t � 0. By contrast, what happens

with Newton�Raphson?

4.36 Write a computer program using the Newton�Raphson algorithm to
maximize the likelihood for a binomial sample. For � s 0.3 based onˆ
n s 10, print out results of the first six iterations when the starting

Ž0. Ž . Ž . Ž .value � is a 0.1, b 0.2, . . . , i 0.9. Summarize the effects of the
starting value on speed of convergence. What happens if it is 0 or 1?

Ž . Ž . Ž .4.37 In a GLM, suppose that var Y s® � for � s E Y . Show that the
�Ž . w Ž .xy1r2 Ž t .link g satisfying g � s ® � has the same weight matrix W at

Ž .each cycle. Show this link for a Poisson random component is g � s 2
'� .

4.38 For noncanonical links in a GLM, show that the observed information
matrix may depend on the data and hence differs from the expected
information. Illustrate using the probit model.
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Logistic Regression

In introducing generalized linear models for binary data in Chapter 4 we
highlighted logistic regression. This is the most important model for categori-
cal response data. It is used increasingly in a wide variety of applications.
Early uses were in biomedical studies but the past 20 years have also seen
much use in social science research and marketing.

Recently, logistic regression has become a popular tool in business appli-
cations. Some credit-scoring applications use logistic regression to model the
probability that a subject is credit worthy. For instance, the probability that a
subject pays a bill on time may use predictors such as the size of the bill,
annual income, occupation, mortgage and debt obligations, percentage of
bills paid on time in the past, and other aspects of an applicant’s credit
history. A company that relies on catalog sales may determine whether to
send a catalog to a potential customer by modeling the probability of a sale
as a function of indices of past buying behavior.

Another area of increasing application is genetics. For instance, one
Žrecent article J. M. Henshall and M. E. Goddard, Genetics 151:885�894,

.1999 used logistic regression to estimate quantitative trait loci effects,
modeling the probability that an offspring inherits an allele of one type
instead of another type as a function of phenotypic values on various traits

Žfor that offspring. Another recent article D. F. Levinson et al., Amer. J.
.Hum. Genet., 67:652�663, 2000 used logistic regression for analysis of the

Ž .genotype data of affected sibling pairs ASPs and their parents from several
research centers. The model studied the probability that ASPs have identity-
by-descent allele sharing and tested its heterogeneity among the centers.

In this chapter we study logistic regression more closely. Section 5.1 covers
parameter interpretation. In Section 5.2 we present inferential methods for
those parameters. Sections 5.3 and 5.4 generalize to multiple predictors,
some of which may be qualitative. Finally, in Section 5.5 we apply GLM
model-fitting methods to determine and solve likelihood equations for logis-
tic regression.

165
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5.1 INTERPRETING PARAMETERS IN LOGISTIC REGRESSION

Ž .For a binary response variable Y and an explanatory variable X, let � x s
Ž � . Ž � .P Y s 1 X s x s 1 y P Y s 0 X s x . The logistic regression model is

exp � q � xŽ .
� x s . 5.1Ž . Ž .

1 q exp � q � xŽ .

Equivalently, the log odds, called the logit, has the linear relationship

� xŽ .
logit � x s log s � q � x . 5.2Ž . Ž .

1 y � xŽ .

This equates the logit link function to the linear predictor.

5.1.1 Interpreting �: Odds, Probabilities, and Linear Approximations

Ž . Ž .How can we interpret � in 5.2 ? Its sign determines whether � x is
increasing or decreasing as x increases. The rate of climb or descent

� �increases as � increases; as � ™ 0 the curve flattens to a horizontal straight
line. When � s 0, Y is independent of X. For quantitative x with � � 0, the

Ž . Žcurve for � x has the shape of the cdf of the logistic distribution recall
. Ž .Section 4.2.5 . Since the logistic density is symmetric, � x approaches 1 at

the same rate that it approaches 0.
Ž .Exponentiating both sides of 5.2 shows that the odds are an exponential

function of x. This provides a basic interpretation for the magnitude of � :
The odds increase multiplicatively by e � for every 1-unit increase in x. In
other words, e � is an odds ratio, the odds at X s x q 1 divided by the odds
at X s x.

Most scientists are not familiar with odds or logits, so the interpretation of
a multiplicative effect of e � on the odds scale or an additive effect of � on
the logit scale is not helpful to them. A simpler, although approximate slope

Ž .interpretation uses a linearization argument Berkson 1951 . Since it has a
Ž .curved rather than a linear appearance, the logistic regression function 5.1

Ž .implies that the rate of change in � x per unit change in x varies. A
straight line drawn tangent to the curve at a particular x value, shown in

Ž .Figure 5.1, describes the rate of change at that point. Calculating �� x r� x
Ž .using 5.1 yields a fairly complex function of the parameters and x, but it

Ž .w Ž .xsimplifies to the form �� x 1 y � x .
1Ž .For instance, the line tangent to the curve at x for which � x s has2

1 1Ž .Ž . Ž .slope � s �r4; when � x s 0.9 or 0.1, it has slope 0.09�. The slope2 2
Ž .approaches 0 as � x approaches 1.0 or 0. The steepest slope occurs at x for

1 1Ž . w Ž .which � x s ; that x value is x sy�r�. To check that � x s at this2 2
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FIGURE 5.1 Linear approximation to logistic regression curve.

1Ž . Ž . Ž .point, substitute y�r� for x in 5.1 , or substitute � x s in 5.2 and2
xsolve for x. This x value is sometimes called the median effecti®e le®el and

Ž .denoted EL . In toxicology studies it is called LD LD s lethal dose , the50 50
dose with a 50% chance of a lethal result.

1Ž .From this linear approximation, near x where � x s , a change in x of2
1Ž . Ž .Ž .1r� corresponds to a change in � x of roughly 1r� �r4 s ; that4

Ž .is, 1r� approximates the distance between x values where � x s 0.25 or
Ž . Ž .0.75 in reality, 0.27 and 0.73 and where � x s 0.50. The linear approxima-

tion works better for smaller changes in x, however.
Ž .An alternative way to interpret the effect reports the values of � x at

certain x values, such as their quartiles. This entails substituting those
Ž . Ž . Ž .quartiles for x into formula 5.1 for � x . The change in � x over the

middle half of x values, from the lower quartile to the upper quartile of x,
then describes the effect. It can be compared to the corresponding change
over the middle half of values of other predictors.

The intercept parameter � is not usually of particular interest. However,
w Ž .xby centering the predictor about 0 i.e., replacing x by x y x , � becomes

� �Ž . Ž . Žthe logit at that mean, and thus e r 1 q e s � x . As in ordinary
regression, centering is also helpful in complex models containing quadratic
or interaction terms to reduce correlations among model parameter esti-

.mates.
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5.1.2 Looking at the Data

Ž .In practice, these interpretations use formula 5.1 with ML estimates substi-
tuted for parameters. Before fitting the model and making such interpreta-
tions, look at the data to check that the logistic regression model is appropri-
ate. Since Y takes only values 0 and 1, it is difficult to check this by plotting Y
against x.

It can be helpful to plot sample proportions or logits against x. Let ni
denote the number of observations at setting i of x. Of them, let y denotei
the number of ‘‘1’’ outcomes, with p s y rn . Sample logit i isi i i

w Ž .x w Ž .xlog pr 1 y p s log y r n y y . This is not finite when y s 0 or n . Ani i i i i i i
ad hoc adjustment adds a positive constant to the number of outcomes of the
two types. The adjustment

1y qi 2
log 1n y y qi i 2

Ž .is the least-biased estimator of this form of the true logit Note 5.2 . The plot
of sample logits should be roughly linear.

When X is continuous and all n s 1, or when it is essentially continuousi
and all n are small, this is unsatisfactory. One could group the data withi
nearby x values into categories before calculating sample proportions and
sample logits. A better approach that does not require choosing arbitrary
categories uses a smoothing mechanism to reveal trends. One such smoothing

Ž .approach fits a generalized additive model Section 4.8 , which replaces the
linear predictor of a GLM by a smooth function. Inspect a plot of the fit
to see if severe discrepancies occur from the S-shaped trend predicted
by logistic regression.

5.1.3 Horseshoe Crabs Revisited

To illustrate logistic regression, we reanalyze the horseshoe crab data intro-
duced in Section 4.3.2. The binary response is whether a female crab has any

Ž .male crabs residing nearby satellites : Y s 1 if she has at least one satellite,
and Y s 0 if she has none. We first use as a predictor the female crab’s
width.

Figure 4.7 plotted the data and showed the smoothed prediction of the
Ž .mean provided by a generalized additive model GAM , assuming a binomial

response and logit link. The logistic regression model appears to be ade-
quate. This is also suggested by the grouping of the data used to investigate

Ž .the adequacy of Poisson regression models in Section 4.3.2 Table 4.4 . In
each of the eight width categories, we computed the sample proportion of
crabs having satellites and the mean width for the crabs in that category.
Figure 5.2 shows eight dots representing the sample proportions of female
crabs having satellites plotted against the mean widths for the eight cate-
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FIGURE 5.2 Observed and fitted proportions of satellites by width of female crab.

gories. The eight plotted sample proportions and the GAM smoothing curve
both show a roughly increasing trend, so we proceed with fitting the logistic
regression model with linear width predictor.

ŽWe defer to Section 5.5 details about ML fitting. Software e.g., for SAS
.see Table A.8 reports output such as Table 5.1 exhibits. For the ungrouped

Ž .data from Table 4.3, let � x denote the probability that a female horseshoe
crab of width x has a satellite. The ML fit is

exp y12.351 q 0.497xŽ .
� x s .Ž .ˆ

1 q exp y12.351 q 0.497xŽ .

TABLE 5.1 Computer Output for Logistic Regression Model with Horseshoe
Crab Data

Criteria For Assessing Goodness Of Fit
Criterion DF Value
Deviance 171 194.4527
Pearson Chi-Square 171 165.1434
Log Likelihood y97.2263

Std Likelihood-Ratio Wald
Parameter Estimate Error 95% Conf Limits Chi-Sq P>ChiSq
Intercept y12.3508 2.6287 y17.8097 y7.4573 22.07 <.0001
width 0.4972 0.1017 0.3084 0.7090 23.89 <.0001
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Ž .Substituting x s 26.3 cm, the mean width level in this sample, � x s 0.674.ˆ
1 ˆThe estimated probability equals when x s y�r� s 12.351r0.497 s 24.8.ˆ2

Ž .Figure 5.2 plots � x against width.ˆ
ˆŽ . Ž .The estimated odds of a satellite multiply by exp � s exp 0.497 s 1.64

for each 1-cm increase in width; that is, there is a 64% increase. To convey
the effect less technically, we could report the incremental rate of change in

Ž . Ž .the probability of a satellite. At the mean width, � x s 0.674, and � xˆ ˆ
ˆw Ž .Ž Ž ..x Ž .Ž .increases by about � � x 1 y � x s 0.497 0.674 0.326 s 0.11 for aˆ ˆ

Ž .1-cm increase in width. Or, we could report � x at the quartiles of x. Theˆ
lower quartile, median, and upper quartile for width are 24.9, 26.1, and 27.7;
Ž .� x at those values equals 0.51, 0.65, and 0.81, increasing by 0.30 over the xˆ

values for the middle half of the sample.
The latter summary is useful for comparing the effects of predictors having

w Ž .xdifferent units. For instance, with crab weight as the predictor, logit � x sˆ
y3.695 q 1.815 x. A 1-kg increase in weight is not comparable to a 1-cm

ˆ ˆincrease in width, so � s 0.497 for x s width is not comparable to � s 1.815
Ž .for x s weight. The quartiles for weight are 2.00, 2.35, and 2.85; � x atˆ

those values are 0.48, 0.64, and 0.81, increasing by 0.33 over the middle half
of the sampled weights. The effect is similar to that of width.

5.1.4 Logistic Regression with Retrospective Studies

Another property of logistic regression relates to situations in which the
explanatory variable X rather than the response variable Y is random. This
occurs with retrospective sampling designs, such as case�control biomedical

Ž . Ž .studies Section 2.1.6 . For samples of subjects having Y s 1 cases and
Ž .having Y s 0 controls , the value of X is observed. Evidence exists of an

association if the distribution of X values differs between cases and controls.
Ž .In retrospective studies, one can estimate odds ratios Section 2.2.4 . Effects

in the logistic regression model refer to odds ratios. Thus, one can fit such
models and estimate effects in case�control studies.

Here is a justification for this. Let Z indicate whether a subject is sampled
Ž . Ž � .1 s yes, 0 s no . Let � s P Z s 1 y s 1 denote the probability of sam-1

Ž � .pling a case, and let � s P Z s 1 y s 0 denote the probability of sampling0
a control. Even though the conditional distribution of Y given X s x is not

Ž � . Ž � .sampled, we need a model for P Y s 1 z s 1, x , assuming that P Y s 1 x
follows the logistic model. By Bayes’ theorem,

� �P Z s 1 y s 1, x P Y s 1 xŽ .Ž .
�P Y s 1 z s 1, x s . 5.3Ž . Ž .1 � �Ý P Z s 1 y s j, x P Y s j xŽ . Ž .js0

Ž � . Ž � .Now, suppose that P Z s 1 y, x s P Z s 1 y for y s 0 and 1; that is, for
each y, the sampling probabilities do not depend on x. For instance, often x
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refers to exposure of some type, such as whether someone has been a
smoker. Then, for cases and for controls, the probability of being sampled is
the same for smokers and nonsmokers. Under this assumption, substituting

Ž . Ž � .� and � in 5.3 and dividing numerator and denominator by P Y s 0 x ,1 0
Ž .5.3 simplifies to

� exp � q � xŽ .1
�P Y s 1 z s 1, x s .Ž .

� q � exp � q � xŽ .0 1

Then, dividing numerator and denominator by � and using � r� s0 1 0
w Ž .xexp log � r� yields1 0

�logit P Y s 1 z s 1, x s �* q � xŽ .

Ž .with �* s � q log � r� .1 0
Thus, the logistic regression model holds with the same effect parameter �

Ž � .as in the model for P Y s 1 x . If the sampling rate for cases is 10 times that
Ž .for controls, the intercept estimated is log 10 s 2.3 larger than the one

estimated with a prospective study. For related comments, see Anderson
Ž . Ž . Ž .1972 , Breslow and Day 1980, p. 203 , Breslow and Powers 1978 , Carroll

Ž . Ž . Ž . Ž .et al. 1995 , Farewell 1979 , Mantel 1973 , Prentice 1976a , and Prentice
Ž .and Pyke 1979 .

With case�control studies, one cannot estimate � in other binary-
response models. Unlike the odds ratio, the effect for the conditional
distribution of X given Y does not then equal that for Y given X. This is an
important advantage of the logit link and is a major reason why logit models
have surpassed other models in popularity in biomedical studies.

Many case�control studies employ matching. Each case is matched with
one or more control subjects. The controls are like the case on key character-
istics such as age. The model and subsequent analysis should take the
matching into account. In Section 10.2.5 we discuss logistic regression for
matched case�control studies.

Regardless of the sampling mechanism, logistic regression may or may not
describe a relationship well. In one special case, it necessarily holds. Given

Ž 2 .that Y s i, suppose that X has N � , � distribution, i s 0, 1. Then, byi
Ž � . Ž . Ž . 2Bayes’ theorem, P Y s 1 X s x equals 5.1 with � s � y � r�1 0

Ž .Cornfield 1962 . When a population is a mixture of two types of subjects,
one type with Y s 1 that is approximately normally distributed on X and the
other type with Y s 0 that is approximately normal on X with similar

Ž .variance, the logistic regression function 5.1 approximates well the curve for
Ž .� x . If the distributions are normal but with different variances, the model

Ž .applies also having a quadratic term Anderson 1975 . In that case, the
Ž .relationship is nonmonotone, with � x increasing and then decreasing, or

Ž .the reverse Problem 5.33 .
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5.2 INFERENCE FOR LOGISTIC REGRESSION

Ž .By Wald’s 1943 asymptotic results for ML estimators, parameter estimators
in logistic regression models have large-sample normal distributions. Thus,

Ž .inference can use the Wald, likelihood-ratio, score triad of methods
Ž .Section 1.3.3 .

5.2.1 Types of Inference

For the model with a single predictor,

logit � x s � q � x ,Ž .

significance tests focus on H : � s 0, the hypothesis of independence. The0
ˆ ˆWald test uses the log likelihood at � , with test statistic z s �rSE or its

square; under H , z 2 is asymptotically 	 2. The likelihood-ratio test uses0 1
ˆtwice the difference between the maximized log likelihood at � and at � s 0

and also has an asymptotic 	 2 null distribution. The score test uses the log1
Žlikelihood at � s 0 through the derivative of the log likelihood i.e., the

.score function at that point. The test statistic compares the sufficient
w Ž . 2 xstatistic for � to its null expected value, suitably standardized N 0, 1 or 	 .1

In Section 5.3.5 present this test of H : � s 0.0
For large samples, the three tests usually give similar results. The likeli-

hood-ratio test is preferred over the Wald. It uses more information, since it
ˆ � �incorporates the log likelihood at H as well as at �. When � is relatively0

large, the Wald test is not as powerful as the likelihood-ratio test and can
w Ž .even show aberrant behavior see Hauck and Donner 1977 and Problem

x5.38 .
Confidence intervals are more informative than tests. An interval for �

results from inverting a test of H : � s � . The interval is the set of � for0 0 0
2Ž . 2which the chi-squared test statistic is no greater than 	 � s z . For the1 �r2

ˆ 2 2 ˆwŽ . xWald approach, this means � y � rSE F z ; the interval is � �0 �r2
Ž .z SE .�r2

For summarizing the relationship, other characteristics may have greater
Ž .importance than � , such as � x at various x values. For fixed x s x ,0

ˆw Ž .xlogit � x s � q � x has a large-sample SE given by the estimated squareˆ ˆ0 0
root of

ˆ 2 ˆ ˆvar � q � x s var � q x var � q 2 x cov �, � .Ž .ˆ ˆ ˆŽ . Ž .Ž .0 0 0

ˆw Ž .x Ž .A 95% confidence interval for logit � x is � q � x � 1.96 SE. Substi-ˆ0 0
Ž . Ž .tuting each endpoint into the inverse transformation � x s exp logit r0

w Ž .x Ž .1 q exp logit gives a corresponding interval for � x .0
Each method of inference can also produce small-sample confidence

intervals and tests. We defer discussion of this until Section 6.7.
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5.2.2 Inference for Horseshoe Crab Data

We illustrate logistic regression inferences with the model for the probability
a horseshoe crab has a satellite, with width as the predictor. Table 5.1

ˆshowed the fit and standard errors. The statistic z s �rSE s 0.497r0.102 s
Ž .4.9 provides strong evidence of a positive width effect P � 0.0001 . The

equivalent Wald chi-squared statistic, z 2 s 23.9, has df s 1. The maximized
log likelihoods equal y112.88 under H : � s 0 and y97.23 for the full0

Ž .model. The likelihood-ratio statistic equals y2 y112.88 y 97.23 s 31.3,
with df s 1. This provides even stronger evidence than the Wald test.

Ž . ŽThe Wald 95% confidence interval for � is 0.497 � 1.96 0.102 , or 0.298,
. Ž0.697 . Table 5.1 reports a likelihood-ratio confidence interval of 0.308,
.0.709 , based on the profile likelihood function. The confidence interval for

Ž 0.308 0.709 .the effect on the odds per 1-cm increase in width equals e , e s
Ž .1.36, 2.03 . We infer that a 1-cm increase in width has at least a 36%
increase and at most a doubling in the odds of a satellite.

Most software for logistic regression also reports estimates and confidence
Ž . Žintervals for � x e.g., PROC GENMOD in SAS with the OBSTATS

.option . Consider this for crabs of width x s 26.5, near the mean width. The
Ž . Ž .estimated logit is y12.351 q 0.497 26.5 s 0.825, and � x s 0.695. Soft-ˆ

ware reports

$ $ $ˆ ˆvar � s 6.910, var � s 0.01035, cov �, � sy0.2668,Ž .ˆ ˆŽ . Ž .

from which

$
2var logit � x s 6.910 q x 0.01035 q 2 x y0.2668 .� 4Ž . Ž . Ž .ˆ

w Ž .xAt x s 26.5 this is 0.038, so the 95% confidence interval for logit � 26.5
'Ž . Ž .equals 0.825 � 1.96 0.038 , or 0.44, 1.21 . This translates to the interval

Ž . Ž Ž . w Ž .x0.61, 0.77 for the probability of satellites e.g., exp 0.44 r 1 q exp 0.44 s
. Ž0.61 . Alternatively, for the model fit using predictor x* s x y 26.5, � andˆ

.its SE are the estimated logit and its SE. Figure 5.3 plots the confidence
Ž .bands around the prediction equation for � x as a function of x. Hauck

Ž .1983 gave alternative bands for which the confidence coefficient applies
simultaneously to all possible predictor values.

ŽOne could ignore the model fit and simply use sample proportions i.e.,
.the saturated model to estimate such probabilities. Six female crabs in the

sample had x s 26.5, and four of them had satellites. The sample proportion
estimate at x s 26.5 is � s 4r6 s 0.67, similar to the model-based estimate.ˆ

Ž .The 95% score confidence interval Section 1.4.2 based on these six observa-
Ž .tions alone equals 0.30, 0.90 .

When the logistic regression model truly holds, the model-based estimator
of a probability is considerably better than the sample proportion. The model
has only two parameters to estimate, whereas the saturated model has a
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FIGURE 5.3 Prediction equation and 95% confidence bands for probability of satellite as a
function of width.

separate parameter for every distinct value of x. For instance, at x s 26.5,
software reports SE s 0.04 for the model-based estimate 0.695, whereas the

' 'SE is � 1 y � rn s 0.67 0.33 r6 s 0.19 for the sample proportionŽ . Ž . Ž .ˆ ˆ
Žof 0.67 with only 6 observations. The 95% confidence intervals are 0.61,

. Ž .0.77 using the model versus 0.30, 0.90 using the sample proportion. Instead
of using only 6 observations, the model uses the information that all 173
observations provide in estimating the two model parameters. The result is a
much more precise estimate.

Reality is a bit more complicated. In practice, the model is not exactly the
Ž .true relationship between � x and x. However, if it approximates the true

probabilities decently, its estimator still tends to be closer than the sample
proportion to the true value. The model smooths the sample data, somewhat
dampening the observed variability. The resulting estimators tend to be
better unless each sample proportion is based on an extremely large sample.
Section 6.4.5 discusses this advantage of using models.

5.2.3 Checking Goodness of Fit: Ungrouped and Grouped Data

In practice, there is no guarantee that a certain logistic regression model fits
the data well. For any type of binary data, one way to detect lack of fit uses a
likelihood-ratio test to compare the model to more complex ones. A more
complex model might contain a nonlinear effect, such as a quadratic term.
Models with multiple predictors would consider interaction. If more complex
models do not fit better, this provides some assurance that the model chosen
is reasonable.
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Other approaches to detecting lack of fit search for any way that the
model fails. This is simplest when the explanatory variables are solely
categorical, as we’ll illustrate in Section 5.4.3. At each setting of x, one can
multiply the estimated probabilities of the two outcomes by the number of
subjects at that setting to obtain estimated expected frequencies for y s 0
and y s 1. These are fitted ®alues. The test of the model compares the
observed counts and fitted values using a Pearson X 2 or likelihood-ratio G2

statistic. For a fixed number of settings, as the fitted counts increase, X 2 and
G2 have limiting chi-squared null distributions. The degrees of freedom,
called the residual df for the model, subtract the number of parameters in the

Žmodel from the number of parameters in the saturated model i.e., the
.number of settings of x .

The reason for the restriction to categorical predictors for a global test of
fit relates to the distinction in Section 4.5.3 that we mentioned between
grouped and ungrouped data for binomial models. The saturated model
differs in the two cases. An asymptotic chi-squared distribution for the
deviance results as n ™ 
 with a fixed number of parameters in that model
and hence a fixed number of settings of predictor values.

5.2.4 Goodness of Fit of Model for Horseshoe Crabs

We illustrate with a goodness-of-fit analysis for the model using x s width to
predict the probability that a female crab has a satellite. One way to check it
compares it to a more complex model, such as the model containing
a quadratic term. With width centered at 0 by subtracting its mean of 26.3,
that model has fit

2logit � x s 0.618 q 0.533 x q 0.040 x .Ž .ˆ

The quadratic estimate has SE s 0.046. There is not much evidence to
support adding that term. The likelihood-ratio statistic for testing that the

2 Ž .true coefficient of x is 0 equals 0.83 df s 1 .
We next consider overall goodness of fit. Width takes 66 distinct values for

the 173 crabs, with few observations at most widths. One can view the data as
a 66 � 2 contingency table. The two cells in each row count the number of
crabs with satellites and the number of crabs without satellites, at that width.
The chi-squared theory for X 2 and G2 applies when the number of levels of
x is fixed, and the number of observations at each level grows. Although we
grouped the data using the distinct width values rather than using 173
separate binary responses, this theory is violated here in two ways. First, most
fitted counts are very small. Second, when more data are collected, addi-
tional width values would occur, so the contingency table would contain more
cells rather than a fixed number. Because of this, X 2 and G2 for logistic
regression models with continuous or nearly continuous predictors do not

Žhave approximate chi-squared distributions. Normal approximations can be
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TABLE 5.2 Grouping of Observed and Fitted Values for Fit of Logistic
Regression Model to Horseshoe Crab Data

Number Number Fitted Fitted
Ž .Width cm Yes No Yes No

� 23.25 5 9 3.64 10.36
23.25�24.25 4 10 5.31 8.69
24.25�25.25 17 11 13.78 14.22
25.25�26.25 21 18 24.23 14.77

26.25�27.25 15 7 15.94 6.06
27.25�28.25 20 4 19.38 4.62
28.25�29.25 15 3 15.65 2.35

� 29.25 14 0 13.08 0.92

more appropriate, but no single method has received much attention; see
.Section 9.8.6 for references.

One could use X 2 and G2 to compare the observed and fitted values in
grouped form. Table 5.2 uses the groupings of Table 4.4, giving an 8 � 2
table. In each width category, the fitted value for a yes response is the sum of

Ž .the estimated probabilities � x for all crabs having width in that category;ˆ
Ž .the fitted value for a no response is the sum of 1 y � x for those crabs. Theˆ

fitted values are then much larger. Then, X 2 and G2 have better validity,
Ž .although the chi-squared theory still is not perfect since � x is not constant

in each category. Their values are X 2 s 5.3 and G2 s 6.2. Table 5.2 has
eight binomial samples, one for each width setting; the model has two
parameters, so df s 8 y 2 s 6. Neither X 2 nor G2 shows evidence of lack of

Ž .fit P � 0.4 . Thus, we can feel more comfortable about using the model for
the original ungrouped data.

5.2.5 Checking Goodness of Fit with Ungrouped Data by Grouping

As just noted, with ungrouped data or with continuous or nearly continuous
predictors, X 2 and G2 do not have limiting chi-squared distributions. They
are still useful for comparing models, as done above for checking a quadratic
term and as we will discuss in Sections 5.4.3 and 9.8.5. Also, as just noted,
one can apply them in an approximate manner to grouped observed and
fitted values for a partition of the space of x values. As the number of
explanatory variables increases, however, simultaneous grouping of values for
each variable can produce a contingency table with a large number of cells,
most of which have small counts.

Regardless of the number of predictors, one can partition observed and
fitted values according to the estimated probabilities of success using the
original ungrouped data. One common approach forms the groups in the
partition so they have approximately equal size. With 10 groups, the first pair
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of observed counts and corresponding fitted counts refers to the nr10
observations having the highest estimated probabilities, the next pair refers
to the nr10 observations having the second decile of estimated probabilities,
and so on. Each group has an observed count of subjects with each outcome
and a fitted value for each outcome. The fitted value for an outcome is the
sum of the estimated probabilities for that outcome for all observations in
that group.

This construction is the basis of a test due to Hosmer and Lemeshow
Ž .1980 . They proposed a Pearson statistic comparing the observed and fitted
counts for this partition. Let y denote the binary outcome for observation ji j
in group i of the partition, i s 1, . . . , g, j s 1, . . . , n . Let � denote theˆi i j
corresponding fitted probability for the model fitted to the ungrouped data.
Their statistic equals

2g Ý y yÝ �̂Ž .j i j j i j
.Ý

Ý � 1 y Ý � rnˆ ˆŽ . Ž .j i j j i j iis1

When many observations have the same estimated probability, there is some
arbitrariness in forming the groups, and different software may report some-
what different values. This statistic does not have a limiting chi-squared
distribution, because the observations in a group are not identical trials, since
they do not share a common success probability. However, Hosmer and
Lemeshow noted that when the number of distinct patterns of covariate
values equals the sample size, the null distribution is approximated by
chi-squared with df s g y 2.

For the logistic regression fit to the horseshoe crab data with continuous
width predictor, the Hosmer�Lemeshow statistic with g s 10 groups equals
3.5, with df s 8. It also indicates a decent fit.

Unfortunately, like other proposed global fit statistics, the Hosmer�
Lemeshow statistic does not have good power for detecting particular types

Ž .of lack of fit Hosmer et al. 1997 . In any case, a large value of a global fit
statistic merely indicates some lack of fit but provides no insight about its
nature. The approach of comparing the working model to a more complex
one is more useful from a scientific perspective, since it searches for lack of
fit of a particular type. For either approach, when the fit is poor, diagnostic
measures describe the influence of individual observations on the model fit
and highlight reasons for the inadequacy. We discuss these in Section 6.2.1.

5.3 LOGIT MODELS WITH CATEGORICAL PREDICTORS

Like ordinary regression, logistic regression extends to include qualitative
explanatory variables, often called factors. In this section we use dummy
variables to do this.
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5.3.1 ANOVA-Type Representation of Factors

For simplicity, we first consider a single factor X, with I categories. In row i
of the I � 2 table, y is the number of outcomes in the first columni
Ž .successes out of n trials. We treat y as binomial with parameter � .i i i

The logit model with a factor is

� i
log s � q � . 5.4Ž .i1 y � i

Ž .The higher � is, the higher the value of � . The right-hand side of 5.4i i
resembles the model formula for cell means in one-way ANOVA. As in

� 4ANOVA, the factor has as many parameters � as categories, but one isi
redundant. With I categories, X has I y 1 nonredundant parameters. One
parameter can be set to 0, say � s 0. If the values do not satisfy this, we canI

˜recode so that it is true. For instance, set � s � y � and � s � q � ,˜i i I I
˜which satisfy � s 0. ThenI

˜ ˜logit � s � q � s � y � q � q � s � q � ,Ž . Ž .˜ ˜Ž .i i I i I i

where the newly defined parameters satisfy the constraint. When � s 0, �I
equals the logit in row I, and � is the difference between the logits in rows ii
and I. Thus, � equals the log odds ratio for that pair of rows.i

� 4 � 4 Ž .For any � � 0 , � exist such that model 5.4 holds. The model has asi i
Ž .many parameters I as binomial observations and is saturated. When a

factor has no effect, � s � s ��� s � . Since this is equivalent to � s ���1 2 I 1
s � , this model with only an intercept term specifies statistical indepen-I
dence of X and Y.

5.3.2 Dummy Variables in Logit Models

Ž .An equivalent expression of model 5.4 uses dummy ®ariables. Let x s 1 fori
observations in row i and x s 0 otherwise, i s 1, . . . , I y 1. The model isi

logit � s � q � x q � x q ��� q� x .Ž .i 1 1 2 2 Iy1 Iy1

This accounts for parameter redundancy by not forming a dummy variable
Ž .for category I. The constraint � s 0 in 5.4 corresponds to this form ofI

dummy variable. The choice of category to exclude for the dummy variable is
arbitrary. Some software sets � s 0; this corresponds to a model with1
dummy variables for categories 2 through I, but not category 1.

Another way to impose constraints sets Ý � s 0. Suppose that X hasi i
I s 2 categories, so � sy� . This results from effect coding for a dummy1 2
variable, x s 1 in category 1 and x sy1 in category 2.
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The same substantive results occur for any coding scheme. For model
ˆŽ . � 4 � 4 � 45.4 , regardless of the constraint for � , � q � and hence � are theˆ ˆi i i

ˆ ˆ Ž .same. The differences � y � for pairs a, b of categories of X area b
ˆ ˆŽ .identical and represent estimated log odds ratios. Thus, exp � y � is thea b

estimated odds of success in category a of X divided by the estimated odds
of success in category b of X. Reparameterizing a model may change
parameter estimates but does not change the model fit or the effects of
interest.

ˆThe value � or � for a single category is irrelevant. Different constrainti i
systems result in different values. For a binary predictor, for instance, using
dummy variables with reference value � s 0, the log odds ratio equals2
� y � s � ; by contrast, for effect coding with �1 dummy variable and1 2 1

Ž .hence � q � s 0, the log odds ratio equals � y � s � y y� s 2� .1 2 1 2 1 1 1
A parameter or its estimate makes sense only by comparison with one for
another category.

5.3.3 Alcohol and Infant Malformation Example Revisited

We return now to Table 3.7 from the study of maternal alcohol consumption
and child’s congenital malformations, shown again in Table 5.3. For model
Ž .5.4 , we treat malformations as the response and alcohol consumption as an

ˆ� 4 � 4explanatory factor. Regardless of the constraint for � , � q � are theˆi i
sample logits, reported in Table 5.3. For instance,

ˆlogit � s � q � s log 48r17,066 sy5.87.Ž .Ž .ˆ ˆ1 1

ˆFor the coding that constrains � s 0, � sy3.61 and � sy2.26. For theˆ5 1
coding � s 0, � sy5.87. Table 5.3 shows that except for the slightˆ1
reversal between the first and second categories of alcohol consumption, the
logits and hence the sample proportions of malformation cases increase as
alcohol consumption increases.

The simpler model with all � s 0 specifies independence. For it, �̂i
equals the logit for the overall sample proportion of malformations, or

Ž . Ž .log 93r32481 sy5.86. To test H : independence df s 4 , the Pearson0

TABLE 5.3 Logits and Proportion of Malformation for Table 3.7

Proportion MalformedAlcohol
Consumption Present Absent Logit Observed Fitted

0 48 17,066 y5.87 0.0028 0.0026
� 1 38 14,464 y5.94 0.0026 0.0030
1�2 5 788 y5.06 0.0063 0.0041
3�5 1 126 y4.84 0.0079 0.0091
G 6 1 37 y3.61 0.0263 0.0231
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Ž . 2 Ž .statistic 3.10 is X s 12.1 P s 0.02 , and the likelihood-ratio statistic
Ž . 2 Ž .3.11 is G s 6.2 P s 0.19 . These provide mixed signals. Table 5.3 has a
mixture of very small, moderate, and extremely large counts. Even though
n s 32,574, the null sampling distributions of X 2 or G2 may not be close to
chi-squared. The P-values using the exact conditional distributions of X 2

and G2 are 0.03 and 0.13. These are closer, but still give differing evidence.
In any case, these statistics ignore the ordinality of alcohol consumption. The
sample suggests that malformations may tend to be more likely with higher
alcohol consumption. The first two percentages are similar and the next two
are also similar, however, and any of the last three percentages changes
substantially with the addition or deletion of one malformation case.

5.3.4 Linear Logit Model for I � 2 Tables

Ž .Model 5.4 treats the explanatory factor as nominal, since it is invariant to
the ordering of categories. For ordered factor categories, other models are
more parsimonious than this, yet more complex than the independence

� 4model. For instance, let scores x , x , . . . , x describe distances between1 2 I
categories of X. When one expects a monotone effect of X on Y, it is natural
to fit the linear logit model

logit � s � q � x . 5.5Ž . Ž .i i

The independence model is the special case � s 0.
The near-monotone increase in sample logits in Table 5.3 indicates that

Ž .the linear logit model 5.5 may fit better than the independence model. As
measured, alcohol consumption groups a naturally continuous variable. With

� 4scores x s 0, x s 0.5, x s 1.5, x s 4.0, x s 7.0 , the last score being1 2 3 4 5
somewhat arbitrary, Table 5.4 shows results. The estimated multiplicative

TABLE 5.4 Computer Output for Logistic Regression Model with Infant
Malformation Data

Criteria For Assessing Goodness Of Fit
Criterion DF Value

Deviance 3 1.9487
Pearson Chi-Square 3 2.0523
Log Likelihood y635.5968

Std Likelihood-Ratio Wald
Parameter Estimate Error 95% Conf Limits Chi-Sq Pr>ChiSq
Intercept y5.9605 0.1154 y6.1930 y5.7397 2666.41 <.0001
alcohol 0.3166 0.1254 0.0187 0.5236 6.37 0.0116
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effect of a unit increase in daily alcohol consumption on the odds of
Ž .malformation is exp 0.317 s 1.37. Table 5.3 shows the observed and fitted

proportions of malformation. The model seems to fit well, as statistics
comparing observed and fitted counts are G2 s 1.95 and X 2 s 2.05, with
df s 3.

5.3.5 Cochran–Armitage Trend Test

Ž . Ž .Armitage 1955 and Cochran 1954 were among the first to emphasize the
importance of utilizing ordered categories in a contingency table. For I � 2

Ž . � 4tables with ordered rows and I independent bin n , � variates y , theyi i i
proposed a trend statistic for testing independence by partitioning the
Pearson statistic for that hypothesis. They used a linear probability model,

� s � q � x , 5.6Ž .i i

fitted by ordinary least squares. For this model, the null hypothesis of
independence is H : � s 0. Let x sÝ n x rn. Let p s y rn , and let p s0 i i i i i i
Ž .Ý y rn denote the overall proportion of successes. The prediction equationi i
is

� s p q b x y x ,Ž .ˆ i i

where

Ý n p y p x y xŽ . Ž .i i i i
b s .2Ý n x y xŽ .i i i

2Ž .Denote the Pearson statistic for testing independence by X I . For I � 2
tables with ordered rows, it satisfies

1 22 2 2X I s n p y p s z q X L ,Ž . Ž . Ž .Ý i ip 1 y pŽ . i

where

1 22X L s n p y �Ž . Ž .ˆÝ i i ip 1 y pŽ . i

2
2b Ý x y x yŽ .i i i22z s n x y x s . 5.7Ž .Ž .Ý i i 2p 1 y pŽ . 'i p 1 y p Ý n x y xŽ . Ž .i i i

2Ž .When the linear probability model holds, X L is asymptotically chi-squared
with df s I y 2. It tests the fit of the model. The statistic z 2, with df s 1,
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Ž .tests H : � s 0 for the linear trend in the proportions 5.6 . The test of0
independence using this statistic is called the Cochran�Armitage trend test.

This analysis seems unrelated to the linear logit model. However, the
Cochran�Armitage statistic is equivalent to the score statistic for testing
H : � s 0 in that model. Moreover, this statistic relates to the statistic M 2 in0
Ž . 23.15 used to test for a linear trend in an I � J table; namely, it equals M

Ž .applied when J s 2, except with n y 1 replaced by n. When I s 2,
2Ž . 2 2Ž .X L s 0 and z s X I .

2Ž .For Table 5.3 on alcohol consumption and malformation, X I s 12.1.
Using the same scores as in the linear logit model, the Cochran�Armitage

2 Ž .trend test has z s 6.6 P-value s 0.010 . The test suggests strong evidence
of a positive slope. In addition,

X 2 I s 12.1 s 6.6 q 5.5,Ž .

2Ž . Ž .where X L s 5.5 df s 3 shows only slight evidence of departure of the
proportions from linearity. The trend test agrees with M 2 for the sample

Ž .correlation of r s 0.014 for n s 32,573 Section 3.4.5 . For the chosen
scores, the correlation seems weak. However, r has limited use as a descrip-
tive measure for tables that are highly discrete and unbalanced.

Ž .The Cochran�Armitage trend test i.e., the score test usually gives results
similar to the Wald or likelihood-ratio test of H : � s 0 in the linear logit0

� 4model. The asymptotics work well even for quite small n when n are equali
� 4and x are equally spaced. With Table 5.3, the Wald statistic equalsi

ˆ 2 2Ž . Ž . Ž .�rSE s 0.317r0.125 s 6.4 P s 0.012 and the likelihood-ratio statis-
Ž .tic equals 4.25 P s 0.039 . The highly unbalanced counts suggest that it is

safest to use the likelihood function through the likelihood-ratio approach.
This is also true for estimation. The profile likelihood 95% confidence

Ž .interval of 0.02, 0.52 for � reported in Table 5.4 is preferable to the Wald
Ž . Ž .interval of 0.317 � 1.96 0.125 s 0.07, 0.56 . Even though n is very large,

exact inference based on small-sample methods presented in Section 6.7.4 is
relevant here.

5.4 MULTIPLE LOGISTIC REGRESSION

Like ordinary regression, logistic regression extends to models with multiple
Ž . Ž .explanatory variables. For instance, the model for � x s P Y s 1 at values

Ž .x s x , . . . , x of p predictors is1 p

logit � x s � q � x q � x q ��� q� x . 5.8Ž . Ž .1 1 2 2 p p
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Ž .The alternative formula, directly specifying � x , is

exp � q � x q � x q ��� q� xŽ .1 1 2 2 p p
� x s . 5.9Ž . Ž .

1 q exp � q � x q � x q ��� q� xŽ .1 1 2 2 p p

The parameter � refers to the effect of x on the log odds that Y s 1,i i
Ž .controlling the other x . For instance, exp � is the multiplicative effect onj i

the odds of a 1-unit increase in x , at fixed levels of other x . An explanatoryi j
variable can be qualitative, using dummy variables for categories.

5.4.1 Logit Models for Multiway Contingency Tables

When all variables are categorical, a multiway contingency table displays the
data. We illustrate ideas with binary predictors X and Z. We treat the

Ž .sample size at given combinations i, k of X and Z as fixed and regard the
two counts on Y at each setting as binomial, with different binomials treated

Ž .as independent. Denote the two categories for each variable by 0, 1 , and let
dummy variables for X and Z have x s z s 1 and x s z s 0. The model1 1 2 2

logit P Y s 1 s � q � x q � z 5.10Ž . Ž .1 i 2 k

has main effects for X and Z but assumes an absence of interaction. The
effect of one factor is the same at each level of the other.

At a fixed level z of Z, the effect on the logit of changing categories ofk
X is

� q � 1 q � z y � q � 0 q � z s � . 5.11Ž . Ž . Ž .1 2 k 1 2 k 1

This logit difference equals the difference of log odds, which is the log odds
Ž .ratio between X and Y, fixing Z. Thus, exp � is the conditional odds ratio1

between X and Y. Controlling for Z, the odds of success when X s 1 equal
Ž .exp � times the odds when X s 0. This conditional odds ratio is the same1

Žat each level of Z; that is, there is homogeneous XY association Section
. Ž .2.3.5 . The lack of an interaction term in 5.10 implies a common odds ratio

for the partial tables. When � s 0, that common odds ratio equals 1. Then1
X and Y are independent in each partial table, or conditionally independent,

Ž .gi®en Z Section 2.3.4 .
Additivity on the logit scale is the generally accepted definition of no

interaction for categorical variables. However, one could, instead, define it as
additivity on some other scale, such as with probit or identity link. Significant
interaction can occur on one scale when there is none on another scale. In
some applications, a particular definition may be natural. For instance,
theory might assume an underlying normal distribution and predict that the
probit is an additive function of predictor effects.
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A factor with I categories needs I y 1 dummy variables, as we showed in
Section 5.3.2. An alternative representation of such factors resembles the way
that ANOVA models often express them. The model formula

X Zlogit P Y s 1 s � q � q � 5.11Ž . Ž .i k

� X 4represents effects of X with parameters � and effects of Z with parame-i
� Z4 Žters � . The X and Z superscripts are merely labels and do not representk

. Ž .powers. Model form 5.11 applies for any number of categories for X and
Z. The parameter � X denotes the effect on the logit of classification ini
category i of X. Conditional independence between X and Y, given Z,

X X X Ž .corresponds to � s � s ��� s � , whereby P Y s 1 does not change as1 2 I
i changes.

Ž .For each factor, one parameter in 5.11 is redundant. Fixing one at 0,
such as � X s � Z s 0, represents the category not having its own dummyI K
variable. When X and Z have two categories, the parameterization in model
Ž . Ž . X X5.11 then corresponds to that in model 5.10 with � s � and � s 0,1 1 2
and with � Z s � and � Z s 0.1 2 2

5.4.2 AIDS and AZT Example

Table 5.5 is from a study on the effects of AZT in slowing the development
of AIDS symptoms. In the study, 338 veterans whose immune systems were
beginning to falter after infection with the AIDS virus were randomly
assigned either to receive AZT immediately or to wait until their T cells
showed severe immune weakness. Table 5.5 cross-classifies the veterans’ race,
whether they received AZT immediately, and whether they developed AIDS
symptoms during the 3-year study.

Ž . ŽIn model 5.10 , we identify X with AZT treatment x s 1 for immediate1
. ŽAZT use, x s 0 otherwise and Z with race z s 1 for whites, z s 0 for2 1 2

.blacks , for predicting the probability that AIDS symptoms developed. Thus,
� is the log odds of developing AIDS symptoms for black subjects without
immediate AZT use, � is the increment to the log odds for those with1
immediate AZT use, and � is the increment to the log odds for white2

TABLE 5.5 Development of AIDS Symptoms by AZT Use and Race

Symptoms

Race AZT Use Yes No

White Yes 14 93
No 32 81

Black Yes 11 52
No 12 43

Source: New York Times, Feb. 15, 1991.
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TABLE 5.6 Computer Output for Logit Model with AIDS Symptoms Data

Goodness-of- Fit Statistics
Criterion DF Value Pr� ChiSq
Deviance 1 1.3835 0.2395
Pearson 1 1.3910 0.2382

Analysis of Maximum Likelihood Estimates
Parameter Estimate Std Error Wald Chi-Square Pr > ChiSq
Intercept y1.0736 0.2629 16.6705 � .0001
azt y0.7195 0.2790 6.6507 0.0099
race 0.0555 0.2886 0.0370 0.8476

Odds Ratio Estimates
Effect Estimate 95% Wald Confidence Limits
azt 0.487 0.282 0.841
race 1.057 0.600 1.861

Profile Likelihood Confidence Interval for Odds Ratios
Effect Estimate 95% Confidence Limits
azt 0.487 0.279 0.835
race 1.057 0.605 1.884

Obs race azt y n pi hat lower upper�
1 1 1 14 107 0.14962 0.09897 0.21987
2 1 0 32 113 0.26540 0.19668 0.34774
3 0 1 11 63 0.14270 0.08704 0.22519
4 0 0 12 55 0.25472 0.16953 0.36396

subjects. Table 5.6 shows output. The estimated odds ratio between immedi-
Ž .ate AZT use and development of AIDS symptoms equals exp y0.7195 s

0.487. For each race, the estimated odds of symptoms are half as high for
those who took AZT immediately. The Wald confidence interval for this

w Ž .x Ž .effect is exp y0.720 � 1.96 0.279 s 0.28, 0.84 . Similar results occur for
the likelihood-based interval.

The hypothesis of conditional independence of AZT treatment and devel-
Ž .opment of AIDS symptoms, controlling for race, is H : � s 0 in 5.10 . The0 1

Ž .likelihood-ratio statistic comparing model 5.10 with the simpler model
Ž . Ž .having � s 0 equals 6.9 df s 1 , showing evidence of association P s 0.01 .1

ˆ 2 2Ž . Ž .The Wald statistic � rSE s y0.720r0.279 s 6.65 provides similar re-1
sults.

Table 5.7 shows parameter estimates for three ways of defining factor
Ž . Ž . Ž .parameters in 5.11 : 1 setting the last parameter equal to 0, 2 setting the

Ž .first parameter equal to 0, and 3 having parameters sum to zero. For each
coding scheme, at a given combination of AZT use and race, the estimated
probability of developing AIDS symptoms is the same. For instance, the
intercept estimate plus the estimate for immediate AZT use plus the esti-
mate for being white is y1.738 for each scheme, so the estimated probability
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TABLE 5.7 Parameter Estimates for Logit Model Fitted to Table 5.5

Definition of Parameters

Parameter Last s Zero First s Zero Sum s Zero

Intercept y1.074 y1.738 y1.406

AZT Yes y0.720 0.000 y0.360
No 0.000 0.720 0.360

Race White 0.055 0.000 0.028
Black 0.000 y0.055 y0.028

FIGURE 5.4 Estimated effects of AZT use and race on probability of developing AIDS
Ž .symptoms dots are sample proportions .

that white veterans with immediate AZT use develop AIDS symptoms equals
Ž . w Ž .xexp y1.738 r 1 q exp y1.738 s 0.15. The bottom of Table 5.6 shows point

and interval estimates of the probabilities. Figure 5.4 shows a graphical
Ž .representation of the sample proportions the four dots and the point

estimates enclosed in 95% confidence intervals.
Similarly, for each coding scheme, � X y � X is identical and represents1 2

the conditional log odds ratio of X with the response, given Z. Here,
ˆX ˆXŽ . Ž .exp � y � s exp y0.720 s 0.49 estimates the common odds ratio be-1 2

tween immediate AZT use and AIDS symptoms, for each race.

5.4.3 Goodness of Fit as a Likelihood-Ratio Test

Ž .The likelihood-ratio statistic y2 L y L tests whether certain model pa-0 1
rameters are zero by comparing the log likelihood L for the fitted model M1 1
with L for a simpler model M . Denote this statistic for testing M , given0 0 0
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2Ž � . 2Ž .that M holds, by G M M . The goodness-of-fit statistic G M is a1 0 1
special case in which M s M and M is the saturated model. In testing0 1
whether M fits, we test whether all parameters in the saturated model but
not in M equal zero. The asymptotic df is the difference in the number of
parameters in the two models, which is the number of binomials modeled
minus the number of parameters in M.

Ž .We illustrate by checking the fit of model 5.10 for the AIDS data. For its
fit, white veterans with immediate AZT use had estimated probability 0.150
of developing AIDS symptoms during the study. Since 107 white veterans

Ž .took AZT, the fitted value is 107 0.150 s 16.0 for developing symptoms and
Ž .107 0.850 s 91.0 for not developing them. Similarly, one can obtain fitted

values for all eight cells in Table 5.5. The goodness-of-fit statistics comparing
these with the cell counts are G2 s 1.38 and X 2 s 1.39. The model has four
binomials, one at each combination of AZT use and race. Since it has three
parameters, residual df s 4 y 3 s 1. The small G2 and X 2 values suggest

Ž .that the model fits decently P � 0.2 .
Ž .For model 5.10 , the odds ratio between X and Y is the same at each

level of Z. The goodness-of-fit test checks this structure. That is, the test also
provides a test of homogeneous odds ratios. For Table 5.5, homogeneity is
plausible. Since residual df s 1, the more complex model that adds an
interaction term and permits the two odds ratios to differ is saturated.

Let L denote the maximized log likelihood for the saturated model. AsS
discussed in Section 4.5.4, the likelihood-ratio statistic for comparing models
M and M is1 0

2 �G M M sy2 L y LŽ .Ž .0 1 0 1

sy2 L y L y y2 L y LŽ . Ž .0 S 1 S

s G2 M y G2 M .Ž . Ž .0 1

The test statistic comparing two models is identical to the difference in G2

Ž .goodness-of-fit statistics deviances for the two models. To illustrate, con-
sider H : � s 0 for the race effect with the AIDS data. The likelihood-ratio0 2
statistic equals 0.04, suggesting that the simpler model is adequate. But this

2Ž . 2Ž .equals G M y G M s 1.42 y 1.38, where M is the simpler model0 1 0
with � s 0.2

The model comparison statistic often has an approximate chi-squared null
2Ž .distribution even when separate G M do not. For instance, when ai

predictor is continuous or a contingency table has very small fitted values, the
2Ž .sampling distribution of G M may be far from chi-squared. Nonetheless, ifi

Ždf for the comparison statistic is modest as in comparing two models that
. 2Ž � .differ by a few parameters , the null distribution of G M M is approxi-0 1

mately chi-squared.
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5.4.4 Horseshoe Crab Example Revisited

Like ordinary regression, logistic regression can have a mixture of quantita-
tive and qualitative predictors. We illustrate with the horseshoe crab data
Ž .Section 5.1.3 , using the female crab’s width and color as predictors. Color
has five categories: light, medium light, medium, medium dark, dark. It is a
surrogate for age, older crabs tending to be darker. The sample contained no
light crabs, so our models use only the other four categories.

We first treat color as qualitative. The four categories use three dummy
variables. The model is

logit � s � q � c q � c q � c q � x , 5.12Ž . Ž .1 1 2 2 3 3 4

Ž .where � s P Y s 1 , x s width in centimeters, and

c s 1 for medium-light color, and 0 otherwise,1

c s 1 for medium color, and 0 otherwise,2

c s 1 for medium-dark color, and 0 otherwise.3

Ž .The crab color is dark category 4 when c s c s c s 0. Table 5.8 shows1 2 3
Ž .the ML parameter estimates. For instance, for dark crabs, logit � sˆ

Ž .y12.715 q 0.468 x; by contrast, for medium-light crabs, c s 1, and logit �̂1
Ž .s y12.715 q 1.330 q 0.468 x sy11.385 q 0.468 x. At the average width

of 26.3 cm, � s 0.399 for dark crabs and 0.715 for medium-light crabs.ˆ
The model assumes a lack of interaction between color and width in their

Ž .effects. Width has the same coefficient 0.468 for all colors, so the shapes of
the curves relating width to � are identical. For each color, a 1-cm increase

Ž .in width has a multiplicative effect of exp 0.468 s 1.60 on the odds that
Y s 1. Figure 5.5 displays the fitted model. Any one curve equals any other

TABLE 5.8 Computer Output for Model with Width and Color Predictors

Criteria For Assessing Goodness Of Fit
Criterion DF Value
Deviance 168 187.4570
Pearson Chi-Square 168 168.6590
Log Likelihood y93.7285

Standard Likelihood-Ratio 95% Chi-
Parameter Estimate Error Confidence Limits Square Pr>ChiSq
intercept y12.7151 2.7618 y18.4564 y7.5788 21.20 <.0001
c1 1.3299 0.8525 y0.2738 3.1354 2.43 0.1188
c2 1.4023 0.5484 0.3527 2.5260 6.54 0.0106
c3 1.1061 0.5921 y0.0279 2.3138 3.49 0.0617
width 0.4680 0.1055 0.2713 0.6870 19.66 <.0001
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FIGURE 5.5 Logistic regression model using width and color predictors of satellite presence
for horseshoe crabs.

curve shifted to the right or left. The parallelism of curves in the horizontal
dimension implies that any two curves never cross. At all width values, color
Ž .4 dark has a lower estimated probability of a satellite than the other colors.

There is a noticeable positive effect of width.
The exponentiated difference between two color parameter estimates is an

odds ratio comparing those colors. For instance, the difference for medium-
light crabs and dark crabs equals 1.330. At any given width, the estimated

Ž .odds that a medium-light crab has a satellite are exp 1.330 s 3.8 times the
estimated odds for a dark crab. At width x s 26.3, the odds equal
0.715r0.285 s 2.51 for a medium-light crab and 0.399r0.601 s 0.66 for a
dark crab, for which 2.51r0.66 s 3.8.

5.4.5 Model Comparison

Ž .To test whether color contributes significantly to model 5.12 , we test
H : � s � s � s 0. This states that controlling for width, the probability0 1 2 3
of a satellite is independent of color. We compare the maximized log-likeli-

Ž .hood L for the full model 5.12 to L for the simpler model. The test1 0
Ž .statistic y2 L y L s 7.0 has df s 3, the difference between the numbers0 1

of parameters in the two models. The chi-squared P-value of 0.07 provides
slight evidence of a color effect.

The more complex model allowing color � width interaction has three
additional terms, the cross-products of width with the color dummy variables.
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Fitting this model is equivalent to fitting logistic regression with width
predictor separately for crabs of each color. Each color then has a different-

Ž .shaped curve relating width to P Y s 1 , so a comparison of two colors
varies according to the width value. The likelihood-ratio statistic comparing
the models with and without the interaction terms equals 4.4, with df s 3.

Ž .The evidence of interaction is weak P s 0.22 .

5.4.6 Quantitative Treatment of Ordinal Predictor

Color has ordered categories, from lightest to darkest. A simpler model yet
treats this predictor as quantitative. Color may have a linear effect, for a set

� 4of monotone scores. To illustrate, for scores c s 1, 2, 3, 4 for the color
categories, the model

logit � s � q � c q � x 5.13Ž . Ž .1 2

ˆ ˆŽ . Ž .has � sy0.509 SE s 0.224 and � s 0.458 SE s 0.104 . This shows1 2
strong evidence of an effect for each. At a given width, for every one-category
increase in color darkness, the estimated odds of a satellite multiply by

Ž .exp y0.509 s 0.60.
The likelihood-ratio statistic comparing this fit to the more complex model

Ž . Ž .5.12 having a separate parameter for each color equals 1.7 df s 2 . This
Ž .statistic tests that the simpler model 5.13 is adequate, given that model

Ž .5.12 holds. It tests that when plotted against the color scores, the color
Ž .parameters in 5.12 follow a linear trend. The simplification seems permissi-

Ž .ble P s 0.44 .
Ž .The color parameter estimates in the qualitative-color model 5.12 are

Ž .1.33, 1.40, 1.11, 0 , the 0 value for the dark category reflecting its lack of a
dummy variable. Although these values do not depart significantly from a
linear trend, the first three are quite similar compared to the last one. Thus,

Ž . � 4another potential color scoring for model 5.13 is 1, 1, 1, 0 ; that is, score s 0
for dark-colored crabs, and score s 1 otherwise. The likelihood-ratio statistic

Ž . Ž .comparing model 5.13 with these binary scores to model 5.12 equals 0.5
Ž .df s 2 , showing that this simpler model is also adequate. Its fit is

logit � sy12.980 q 1.300c q 0.478 x , 5.14Ž . Ž .ˆ

with standard errors 0.526 and 0.104. At a given width, the estimated odds
Ž .that a lighter-colored crab has a satellite are exp 1.300 s 3.7 times the

estimated odds for a dark crab.
In summary, the qualitative-color model, the quantitative-color model with

� 4 � 4scores 1, 2, 3, 4 , and the model with binary color scores 1, 1, 1, 0 all suggest
that dark crabs are least likely to have satellites. A much larger sample is
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needed to determine which color scoring is most appropriate. It is advanta-
geous to treat ordinal predictors in a quantitative manner when such models
fit well. The model is simpler and easier to interpret, and tests of the
predictor effect are more powerful when it has a single parameter rather
than several parameters. In Section 6.4 we discuss this issue further.

5.4.7 Standardized and Probability-Based Interpretations

To compare effects of quantitative predictors having different units, it can be
helpful to report standardized coefficients. One approach fits the model to

Ž .standardized predictors, replacing each x by x y x rs . Then, eachj j j x j

regression coefficient represents the effect of a standard deviation change in
a predictor, controlling for the other variables. Equivalently, for each j one

ˆ Ž .can multiply unstandardized estimate � by s see also Note 5.9 .j x j

Regardless of the units, many find it difficult to understand odds or odds
ratio effects. The simpler interpretation of the approximate change in the

Ž .probability based on a linearization of the model Section 5.1.1 applies
also to multiple predictors. Consider a setting of predictors at which
Ž̂ .P Y s 1 s � . Then, controlling for the other predictors, a 1-unit increase inˆ

ˆ Ž .x corresponds approximately to a � � 1 y � change in � . For instance, atˆ ˆ ˆj j
Ž .predictor settings at which � s 0.5 for fit 5.14 , the approximate effect ofˆ

Ž .Ž .Ž .a 1-cm increase in width is 0.478 0.5 0.5 s 0.12. This is considerable,
since a 1-cm change in width is less than half a standard deviation.

This linear approximation deteriorates as the change in the predictor
increases. More precise interpretations use the probability formula directly.
To describe the effect of x , one could set the other predictors at theirj
sample means and compute the estimated probabilities at the smallest and
largest x values. These are sensitive to outliers, however. It is often morej
sensible to use the quartiles.

Ž .For fit 5.14 , the sample means are 26.3 for x and 0.873 for c. The lower
and upper quartiles of x are 24.9 and 27.7. At x s 24.9 and c s c, � s 0.51.ˆ
At x s 27.7 and c s c, � s 0.80. The change in � from 0.51 to 0.80 over theˆ ˆ
middle 50% of the range of width values reflects a strong width effect. Since
c takes only values 0 and 1, one could instead report this effect separately for
each. Also, when an explanatory variable is a dummy, it makes sense to
report the estimated probabilities at its two values rather than at quartiles,
which could be identical. At x s 26.3, � s 0.40 when c s 0 and � s 0.71ˆ ˆ
when c s 1. This color effect, differentiating dark crabs from others, is also
substantial.

Table 5.9 shows a way to present effects that can be understandable to
those not familiar with odds ratios. It also shows results of the extension of

Ž .model 5.14 , permitting interaction. The estimated width effect is then
greater for the lighter-colored crabs. However, the interaction is not signifi-
cant.
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( )TABLE 5.9 Summary of Effects in Model 5.14 with Crab Width
and Color as Predictors of Presence of Satellites

Variable Estimate SE Comparison Change in Probability

No interaction model
Intercept y12.980 2.727

ŽColor 0 s dark,
. Ž .1 s other 1.300 0.526 1, 0 at x 0.31 s 0.71 y 0.40

Ž . Ž .Width, x cm 0.478 0.104 UQ, LQ at c 0.29 s 0.80 y 0.51
Interaction model

Intercept y5.854 6.694
ŽColor 0 s dark,

.1 s other y6.958 7.318
Ž . Ž .Width, x cm 0.200 0.262 UQ, LQ at c s 0 0.13 s 0.43 y 0.30

Ž .Width � color 0.322 0.286 UQ, LQ at c s 1 0.29 s 0.84 y 0.55

5.5 FITTING LOGISTIC REGRESSION MODELS

The mechanics of ML estimation and model fitting for logistic regression are
special cases of the GLM fitting results of Section 4.6. With n subjects, we

Ž .treat the n binary responses as independent. Let x s x , . . . , x denotei i1 i p
setting i of values of p explanatory variables, i s 1, . . . , N. When explana-
tory variables are continuous, a different setting may occur for each subject,

Ž .in which case N s n. The logistic regression model 5.8 , regarding � as a
regression parameter with unit coefficient, is

exp Ý p � xŽ .js1 j i j
� x s . 5.15Ž . Ž .i p1 q exp Ý � xŽ .js1 j i j

5.5.1 Likelihood Equations

When more than one observation occurs at a fixed x value, it is sufficient toi
record the number of observations n and the number of successes. We theni
let y refer to this success count rather than to an individual binary response.i

� 4 Ž . Ž .Then Y , . . . , Y are independent binomials with E Y s n � x , where1 N i i i
n q ��� qn s n. Their joint probability mass function is proportional to the1 N
product of N binomial functions,

N
n yyy i ii� x 1 y � xŽ . Ž .Ł i i

is1

y iN N� xŽ . ni is exp log 1 y � xŽ .Ł Ł i½ 5½ 5ž /1 y � xŽ .is1 is1i

N� xŽ . ni is exp y log 1 y � x .Ž .Ý Łi i½ 5½ 51 y � xŽ . is1ii
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Ž .For model 5.15 , the ith logit is Ý � x , so the exponential term in thej j i j
w Ž .x w Ž . xlast expression equals exp Ý y Ý � x s exp Ý Ý y x � . Also, sincei i j j i j j i i i j j

w Ž .x w Ž .xy11 y � x s 1 q exp Ý � x , the log likelihood equalsi j j i j

L � s y x � y n log 1 q exp � x . 5.16Ž . Ž .Ý Ý Ý Ýi i j j i j i jž / ž /
j i i j

This depends on the binomial counts only through the sufficient statistics
� 4Ý y x , j s 1, . . . , p .i i i j

Ž .The likelihood equations result from setting � L � r�� s 0. Since

� L � exp Ý � xŽ . Ž .k k ik
s y x y n x ,Ý Ýi i j i i j�� 1 q exp Ý � xŽ .j k k iki i

the likelihood equations are

y x y n � x s 0, j s 1, . . . , p , 5.17Ž .ˆÝ Ýi i j i i i j
i i

ˆ ˆŽ . w Ž .x Ž .where � s exp Ý � x r 1 q exp Ý � x is the ML estimate of � x .ˆ i k k ik k k ik i
We observed these equations as a special case of those for binomial GLMs in
Ž . Ž .4.25 but there y is the proportion of successes . The equations arei
nonlinear and require iterative solution.

� 4Let X denote the N � p matrix of values of x . The likelihood equationsi j
Ž .5.17 have form

X� y s X�� , 5.18Ž .ˆ

where � s n � . This equation illustrates a fundamental result: For GLMsˆ ˆi i i
with canonical link, the likelihood equations equate the sufficient statistics to

Ž .the estimates of their expected values. Equation 4.44 showed this result in
Ž .the GLM context, and 5.18 are the normal equations in ordinary regression.

5.5.2 Asymptotic Covariance Matrix of Parameter Estimators

ˆThe ML estimators � have a large-sample normal distribution with covari-
ance matrix equal to the inverse of the information matrix. The observed
information matrix has elements

� 2L � x x n exp Ý � xŽ . Ž .i a ib i j j i j
y s s x x n � 1 y � . 5.19Ž . Ž .Ý Ý i a ib i i i2�� ��a b 1 q exp Ý � xi iŽ .j j i j

� 4This is not a function of y , so the observed and expected information arei
Ž .identical. This happens for all GLMs that use canonical links Section 4.6.4 .
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The estimated covariance matrix is the inverse of the matrix having
ˆŽ .elements 5.19 , substituting �. This has form

$ y1�ˆcov � s X diag n � 1 y � X , 5.20Ž .� 4Ž .ˆ ˆŽ . i i i

w Ž .xwhere diag n � 1 y � denotes the N � N diagonal matrix havingˆ ˆi i i
� Ž .4n � 1 y � on the main diagonal. This is the special case of the GLMˆ ˆi i i

ˆŽ .covariance matrix 4.28 with estimated diagonal weight matrix W having
Ž .elements w s n � 1 y � . The square roots of the main diagonal elementsˆ ˆ ˆi i i i

ˆŽ .of 5.20 are estimated standard errors of �.

5.5.3 Distribution of Probability Estimators
$ ˆŽ .Using cov � , one can conduct inference about � and related effects such as

odds ratios. One can also construct confidence intervals for response proba-
Ž .bilities � x at particular settings x.

$
�ˆ ˆw Ž .x Ž .The estimated variance of logit � x s x� is x cov � x . For large sam-ˆ

$
�ˆw Ž .x 'ples, logit � x � z x cov � x is a confidence interval for the true logit.ˆ Ž .�r2

Ž .The endpoints invert to a corresponding interval for � x using the transform
Ž . w Ž .x� s exp logit r 1 q exp logit .

5.5.4 Newton–Raphson Method Applied to Logistic Regression

We refer back to Section 4.6.1 for the Newton�Raphson iterative method.
Let

� L �Ž .
Ž t . Ž t .u s s y y n � xŽ .Ýj i i i i j�� Ž t .j i�

2� L �Ž .
Ž t . Ž t . Ž t .h s sy x x n � 1 y � .Ž .Ýab ia ib i i i�� �� Ž t .a b � i

Here, � Ž t ., approximation t for �, is obtained from �Ž t . throughˆ

exp Ý p � Ž t .xŽ .js1 j i jŽ t .� s . 5.21Ž .i p Ž t .1 q exp Ý � xŽ .js1 j i j

Ž t . Ž t . Ž . Ž tq1.We use u and H with formula 4.39 to obtain the next value � , which
in this context is

y1� �Ž tq1. Ž t . Ž t . Ž t . Ž t .� s � q X diag n � 1 y � X X y y � , 5.22Ž .Ž .� 4Ž .i i i

where �Ž t . s n � Ž t .. This is used to obtain � Ž tq1. , and so forth.i i i
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Ž0. Ž . Ž0.With an initial guess � , 5.21 yields � , and for t � 0 the iterations
Ž . Ž . Ž t . Ž t .proceed as just described using 5.22 and 5.21 . In the limit, � and �

ˆ Ž t .Ž .converge to the ML estimates � and � Walker and Duncan 1967 . The Hˆ
ˆ � w Ž .x Ž .matrices converge to H syX diag n � 1 y � X. By 5.20 the estimatedˆ ˆi i i

ˆasymptotic covariance matrix of � is a by-product of the Newton�Raphson
ˆy1method, namely yH .

From the argument in Section 4.6.3, �Ž tq1. has the iterative reweighted
Ž � y1 .y1 � y1 Ž t . Ž t .least squares form X V X X V z , where z has elementst t

� Ž t . y y n � Ž t .
i i i iŽ t .z s log q , 5.23Ž .i Ž t . Ž t . Ž t .1 y � n � 1 y �Ž .i i i i

� Ž t .Ž Ž t ..4and where V is a diagonal matrix with elements 1rn � 1 y � . In thist i i i
expression, z Ž t . is the linearized form of the logit link function for the sample

Ž t . w Ž .xdata, evaluated at � see 4.42 . From Section 3.1.6 the elements of V aret
estimated asymptotic variances of the sample logits. The ML estimate is the
limit of a sequence of weighted least squares estimates, where the weight
matrix changes at each cycle.

5.5.5 Convergence and Existence of Finite Estimates

The log-likelihood function for logistic regression models is strictly concave.
ŽML estimates exist and are unique except in certain boundary cases Haber-

.man 1974a; Wedderburn 1976; Albert and Anderson 1984 . Estimates do not
exist or may be infinite when there is no overlap in the sets of explanatory
variable values having y s 0 and having y s 1; that is, when a hyperplane
can pass through the space of predictor values such that on one side of that
hyperplane y s 0 for all observations, whereas on the other side, y s 1
always. There is then perfect discrimination, as one can predict the sample

Žoutcomes perfectly by knowing the predictor values except possibly at a
.boundary point . When there is overlap, ML estimates exist and are unique.

Ž .Similar results occur for the probit and some other links Silvapulle 1981 .
Figure 5.6 illustrates for a single explanatory variable. Here, y s 0 at

x s 10, 20, 30, 40, and y s 1 at x s 60, 70, 80, 90. An ideal fit has � s 0 forˆ
ˆ ˆx F 40 and � s 1 for x G 60. By letting � ™ 
 and, for fixed � , lettingˆ

ˆŽ .� sy� 50 so that � s 0.5 at x s 50, one generates a sequence withˆ ˆ
ever-increasing value of the likelihood that comes successively closer to a
perfect fit.

ˆIn practice, most software fails to recognize that � s 
. After a few cycles
of iterative fitting, the log likelihood looks flat at the working estimate, and
convergence criteria are satisfied. Because the log likelihood is so flat and
because variances come from the inverse of the matrix of negative second
derivatives, software typically reports huge standard errors. For these data,

Ž .for instance, PROC GENMOD in SAS reports logit � sy192.2 q 3.8 xˆ
with standard errors of 8.0 � 108 and 1.5 � 107.
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FIGURE 5.6 Perfect discrimination resulting in infinite logistic regression parameter estimate.

NOTES

Section 5.1: Interpreting Parameters in Logistic Regression

Ž .5.1. Books focusing on applied logistic regression include Collett 1991 and Hosmer and
Ž .Lemeshow 2000 . Books having major components on logistic regression include Chris-

Ž . Ž . Ž . Ž .tensen 1997 , Cox and Snell 1989 , and Morgan 1992 . Prentice 1976b and Stukel
Ž .1988 extended the scope by introducing shape parameters that modify the behavior of
the curve in extreme probability regions and allow for asymmetric treatment of the two
tails.

1Ž .5.2. Haldane 1956 recommended adding to the numerator and denominator of the2

sample logit. With this modification, the bias is on the order of only 1rn2, for large ni i
Ž .see Firth 1993a and Problem 14.4 .

Ž . Ž � .5.3. The Cornfield 1962 result about normal distributions for X Y s i implying the
Ž � .logistic curve for P Y s 1 x suggests that logistic regression is useful in discrimination

and classification problems. These use a subject’s x value to predict to which of two
Ž . Ž . Ž .populations they belong. Anderson 1975 , Bull and Donner 1987 , Efron 1975 , and

Ž .Press and Wilson 1978 compared logistic regression favorably to discriminant analysis,
which assumes that explanatory variables have a normal distribution at each level of Y.

Ž .5.4. Rosenbaum and Rubin 1983 used logistic regression to adjust for bias in comparing
two groups in observational studies. They defined the propensity as the probability of
being in one group, for a given setting of the explanatory variables x, and they used
logistic regression to estimate how propensity depends on x. In comparing the groups on
the response variable, they showed that one can control for differing distributions of the
groups on x by adjusting for the estimated propensity. This is done by using the
propensity to match samples from the groups or to subclassify subjects into several strata
consisting of intervals of propensity scores or to adjust directly by entering the propen-

Ž .sity in the model. See D’Agostino 1998 for a tutorial.

Ž . Ž . Ž .5.5. Adelbasit and Plackett 1983 , Chaloner and Larntz 1988 , Minkin 1987 , and Wu
Ž .1985 discussed design problems for binary response experiments, such as choosing
settings for a predictor to optimize a criterion for estimating parameter values or
estimating the setting at which the response probability equals some fixed value. The
nonconstant variance makes this challenging.
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Section 5.2: Inference for Logistic Regression

Ž . Ž . Ž . Ž .5.6. Albert and Anderson 1984 , Berkson 1951, 1953, 1955 , Cox 1958a , Hodges 1958 ,
Ž .and Walker and Duncan 1967 discussed ML estimation for logistic regression. For

Ž .adjustments with complex sample surveys, see Hosmer and Lemeshow 2000, Sec. 6.4
Ž . Ž .and LaVange et al. 2001 . Scott and Wild 2001 discussed the analyses of case�

control studies with complex sampling designs.
Ž .5.7. Tsiatis 1980 suggested an alternative goodness-of-fit test that partitions values for the

explanatory variables into a set of regions and adds a dummy variable to the model for
each region. The test statistic compares the fit of this model to the simpler one, testing
that the extra parameters are not needed. The idea of grouping values to check model fit

Ž .by comparing observed and fitted counts extends to any GLM Pregibon 1982 . Hosmer
Ž .et al. 1997 compared various ways of doing this.

Section 5.3: Logit Models with Categorical Predictors

5.8. The Cochran�Armitage trend test is locally asymptotically efficient for both linear and
Ž .logistic alternatives for P Y s 1 . Its efficiency against linear alternatives follows from

the approximate normality of the sample proportions, with constant Bernoulli variance
Ž .when � s 0. For the linear logit model 5.5 , its efficiency follows from its equivalence

Ž .with the score test. See Problem 9.35 and Cox 1958a for related remarks. Tarone and
Ž .Gart 1980 showed that the score test for a binary linear trend model does not depend

Ž .on the link function. Gross 1981 noted that for the linear logit model, the local
asymptotic relative efficiency for testing independence using the statistic with an
incorrect set of scores equals the square of the Pearson correlation between the true and

Ž . Ž .incorrect scores. Simon 1978 gave related asymptotic results. Corcoran et al. 2001 ,
Ž . Ž .Mantel 1963 , and Podgor et al. 1996 extended the trend test.

Section 5.4: Multiple Logistic Regression

' Ž5.9. Since the standardized logistic cdf has standard deviation �r 3 , some software e.g.,
.PROC LOGISTIC in SAS defines a standardized estimate by multiplying the unstan-

'dardized estimate by s 3r� .x j

PROBLEMS

Applications

5.1 For a study using logistic regression to determine characteristics asso-
ciated with remission in cancer patients, Table 5.10 shows the most

Ž .important explanatory variable, a labeling index LI . This index mea-
sures proliferative activity of cells after a patient receives an injection
of tritiated thymidine, representing the percentage of cells that are
‘‘labeled.’’ The response Y measured whether the patient achieved

Ž .remission 1 s yes . Software reports Table 5.11 for a logistic regres-
sion model using LI to predict the probability of remission.
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TABLE 5.10 Data for Problem 5.1

Number Number of Number Number of Number Number of
LI of Cases Remissions LI of Cases Remissions LI of Cases Remissions

8 2 0 18 1 1 28 1 1
10 2 0 20 3 2 32 1 0
12 3 0 22 2 1 34 1 1
14 3 0 24 1 0 38 3 2
16 3 0 26 1 1

Ž .Source: Data reprinted with permission from E. T. Lee, Comput. Prog. Biomed. 4: 80�92 1974 .

TABLE 5.11 Computer Output for Problem 5.1

Intercept Intercept and
Criterion Only Covariates
y2LogL 34.372 26.073

Testing Global Null Hypothesis: BETA= 0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 8.2988 1 0.0040
Score 7.9311 1 0.0049
Wald 5.9594 1 0.0146

Parameter Estimate Standard Error Chi-Square Pr > ChiSq
Intercept y3.7771 1.3786 7.5064 0.0061
li 0.1449 0.0593 5.9594 0.0146

Odds Ratio Estimates
Effect Point Estimate 95% Wald Confidence Limits
li 1.156 1.029 1.298

Estimated Covariance Matrix
Variable Intercept li
Intercept 1.900616 y0.07653
li y0.07653 0.003521

Obs li remiss n pi hat lower upper�
1 8 0 2 0.06797 0.01121 0.31925
2 10 0 2 0.08879 0.01809 0.34010

a. Show how software obtained � s 0.068 when LI s 8.ˆ
b. Show that � s 0.5 when LI s 26.0.ˆ
c. Show that the rate of change in � is 0.009 when LI s 8 and 0.036ˆ

when LI s 26.
d. The lower quartile and upper quartile for LI are 14 and 28. Show

that � increases by 0.42, from 0.15 to 0.57, between those values.ˆ
e. For a unit change in LI, show that the estimated odds of remission

multiply by 1.16.
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f. Explain how to obtain the confidence interval reported for the odds
ratio. Interpret.

g. Construct a Wald test for the effect. Interpret.
h. Conduct a likelihood-ratio test for the effect, showing how to

construct the test statistic using the y2 log L values reported.
i. Show how software obtained the confidence interval for � reported

Ž .at LI s 8. Hint: Use the reported covariance matrix.

TABLE 5.12 Data for Problem 5.2a

Ft Temp TD Ft Temp TD Ft Temp TD Ft Temp TD Ft Temp TD

1 66 0 2 70 1 3 69 0 4 68 0 5 67 0
6 72 0 7 73 0 8 70 0 9 57 1 10 63 1

11 70 1 12 78 0 13 67 0 14 53 1 15 67 0
16 75 0 17 70 0 18 81 0 19 76 0 20 79 0
21 75 1 22 76 0 23 58 1
a Ž . Ž .Ft, flight number; Temp, temperature �F ; TD, thermal distress 1, yes; 0, no .

Ž .Source: Data based on Table 1 in J. Amer. Statist. Assoc., 84: 945�957, 1989 , by S. R. Dalal,
E. B. Fowlkes, and B. Hoadley. Reprinted with permission from the Journal of the American
Statistical Association.

5.2 For the 23 space shuttle flights before the Challenger mission disaster
in 1986, Table 5.12 shows the temperature at the time of the flight and
whether at least one primary O-ring suffered thermal distress.
a. Use logistic regression to model the effect of temperature on the

probability of thermal distress. Plot a figure of the fitted model, and
interpret.

b. Estimate the probability of thermal distress at 31�F, the tempera-
ture at the place and time of the Challenger flight.

c. Construct a confidence interval for the effect of temperature on the
odds of thermal distress, and test the statistical significance of the
effect.

d. Check the model fit by comparing it to a more complex model.

� 45.3 Refer to Table 4.2. Using scores 0, 2, 4, 5 for snoring, fit the logistic
regression model. Interpret using fitted probabilities, linear approxi-
mations, and effects on the odds. Analyze the goodness of fit.

Ž .5.4 Hastie and Tibshirani 1990, p. 282 described a study to determine
risk factors for kyphosis, severe forward flexion of the spine following
corrective spinal surgery. The age in months at the time of the
operation for the 18 subjects for whom kyphosis was present were 12,
15, 42, 52, 59, 73, 82, 91, 96, 105, 114, 120, 121, 128, 130, 139, 139, 157
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and for 22 of the subjects for whom kyphosis was absent were 1, 1, 2, 8,
11, 18, 22, 31, 37, 61, 72, 81, 97, 112, 118, 127, 131, 140, 151, 159, 177,
206.
a. Fit a logistic regression model using age as a predictor of whether

kyphosis is present. Test whether age has a significant effect.
b. Plot the data. Note the difference in dispersion on age at the two

w Ž .x 2levels of kyphosis. Fit the model logit � x s � q � x q � x .1 2
Test the significance of the squared age term, plot the fit, and

Ž .interpret. Note also Problem 5.33.

2Ž .5.5 Refer to Table 6.11. The Pearson test of independence has X I s
Ž .6.88 P s 0.14 . For equally spaced scores, the Cochran�Armitage

2 Ž .trend test has z s 6.67 P s 0.01 . Interpret, and explain why results
differ so. Analyze the data using a linear logit model. Test indepen-
dence using the Wald and likelihood-ratio tests, and compare results
to the Cochran�Armitage test. Check the fit of the model, and inter-
pret.

5.6 For Table 5.3, conduct the trend test using alcohol consumption scores
Ž . Ž .1, 2, 3, 4, 5 instead of 0.0, 0.5, 1.5, 4.0, 7.0 . Compare results, noting
the sensitivity to the choice of scores for highly unbalanced data.

Ž .5.7 Refer to Table 2.11. Using scores 0, 3, 9.5, 19.5, 37, 55 for cigarette
smoking, analyze these data using a logit model. Is the intercept
estimate meaningful? Explain.

5.8 A study used the 1998 Behavioral Risk Factors Social Survey to
consider factors associated with women’s use of oral contraceptives in
the United States. Table 5.13 summarizes effects for a logistic regres-
sion model for the probability of using oral contraceptives. Each
predictor uses a dummy variable, and the table lists the category
having dummy outcome 1. Interpret effects. Construct and interpret a
confidence interval for the conditional odds ratio between contracep-
tive use and education.

TABLE 5.13 Data for Problem 5.8

Variable Coding s 1 if: Estimate SE

Age 35 or younger y1.320 0.087
Race White 0.622 0.098
Education G 1 year college 0.501 0.077
Marital status Married y0.460 0.073

Source: Data courtesy of Debbie Wilson, College of Pharmacy, University of
Florida.
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TABLE 5.14 Computer Output for Problem 5.9

Criteria For Assessing Goodness Of Fit
Criterion DF Value
Deviance 1 0.3798
Pearson Chi-Square 1 0.1978
Log Likelihood y209.4783

Standard Likelihood Ratio Chi-
Parameter Estimate Error 95% Conf Limits Square
Intercept y3.5961 0.5069 y4.7754 y2.7349 50.33
def y0.8678 0.3671 y1.5633 y0.1140 5.59
vic 2.4044 0.6006 1.3068 3.7175 16.03

LR Statistics
Source DF Chi-Square Pr > ChiSq
def 1 5.01 0.0251
vic 1 20.35 <.0001

5.9 Refer to Table 2.6. Table 5.14 shows the results of fitting a logit model,
Ž .treating death penalty as the response 1 s yes and defendant’s race

Ž . Ž .1 s white and victims’ race 1 s white as dummy predictors.
a. Interpret parameter estimates. Which group is most likely to have

the yes response? Find the estimated probability in that case.
b. Interpret 95% confidence intervals for conditional odds ratios.
c. Test the effect of defendant’s race, controlling for victims’ race,

Ž . Ž .using a i Wald test, and ii likelihood-ratio test. Interpret.
d. Test the goodness of fit. Interpret.

5.10 Model the effects of victim’s race and defendant’s race for Table 2.13.
Interpret.

5.11 Table 5.15 appeared in a national study of 15- and 16-year-old adoles-
cent. The event of interest is ever having sexual intercourse. Analyze,

TABLE 5.15 Data for Problem 5.11

Intercourse

Race Gender Yes No

White Male 43 134
Female 26 149

Black Male 29 23
Female 22 36

Source: S. P. Morgan and J. D. Teachman, J. Marriage Fam.
Ž .50: 929�936 1988 . Reprinted with permission from the

National Council on Family Relations.
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including description and inference about the effects of gender and
race, goodness of fit, and summary interpretations.

Ž .5.12 According to the Independent newspaper London, Mar. 8, 1994 , the
Metropolitan Police in London reported 30,475 people as missing in
the year ending March 1993. For those of age 13 or less, 33 of 3271
missing males and 38 of 2486 missing females were still missing a year
later. For ages 14 to 18, the values were 63 of 7256 males and 108 of
8877 females; for ages 19 and above, the values were 157 of 5065 males

Žand 159 of 3520 females. Analyze and interpret. Thanks to Pat
.Altham for showing me these data.

5.13 The National Collegiate Athletic Association studied graduation rates
for freshman student athletes during the 1984�1985 academic year.

Ž . Ž .The sample size, number graduated totals were 796, 498 for white
Ž . Ž .females, 1625, 878 for white males, 143, 54 for black females, and

Ž . Ž60, 197 for black males J. J. McArdle and F. Hamagami, J. Amer.
.Statist. Assoc. 89: 1107�1123, 1994 . Analyze and interpret.

5.14 In a study designed to evaluate whether an educational program makes
sexually active adolescents more likely to obtain condoms, adolescents
were randomly assigned to two experimental groups. The educational
program, involving a lecture and videotape about transmission of the
HIV virus, was provided to one group but not the other. Table 5.16
summarizes results of a logistic regression model for factors observed
to influence teenagers to obtain condoms.

Ž .a. Find the parameter estimates for the fitted model, using 1, 0
dummy variables for the first three predictors. Based on the corre-
sponding confidence interval for the log odds ratio, determine the
standard error for the group effect.

b. Explain why either the estimate of 1.38 for the odds ratio for gender
or the corresponding confidence interval is incorrect. Show that if
the reported interval is correct, 1.38 is actually the log odds ratio,
and the estimated odds ratio equals 3.98.

TABLE 5.16 Data for Problem 5.14

95% Confidence
Variable Odds Ratio Interval

Ž . Ž .Group education vs. none 4.04 1.17, 13.9
Ž . Ž .Gender males vs. females 1.38 1.23. 12.88

Ž . Ž .SES high vs. low 5.82 1.87, 18.28
Ž .Lifetime number of partners 3.22 1.08, 11.31

Ž .Source: V. I. Rickert et al., Clin. Pediatr. 31: 205�210 1992 .
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TABLE 5.17 Data for Problem 5.15

Variable Effect P-value

Intercept y7.00 � 0.01
Alcohol use 0.10 0.03
Smoking 1.20 � 0.01
Race 0.30 0.02
Race � smoking 0.20 0.04

5.15 Table 5.17 shows estimated effects for a logistic regression model with
Ž .squamous cell esophageal cancer Y s 1, yes; Y s 0, no as the re-

Ž .sponse. Smoking status S equals 1 for at least one pack per day and 0
Ž .otherwise, alcohol consumption A equals the average number of

Ž .alcoholic drinks consumed per day, and race R equals 1 for blacks
and 0 for whites. To describe the race � smoking interaction, con-
struct the prediction equation when R s 1 and again when R s 0.
Find the fitted YS conditional odds ratio for each case. Similarly,
construct
the prediction equation when S s 1 and again when S s 0. Find the
fitted YR conditional odds ratios. Note that for each association,
the coefficient of the cross-product term is the difference between the
log odds ratios at the two fixed levels for the other variable. Explain
why the coefficient of S represents the log odds ratio between Y and S
for whites. To what hypotheses do the P-values for R and S refer?

5.16 A survey of high school students on Y s whether the subject has
driven a motor vehicle after consuming a substantial amount of alcohol
Ž . Ž . Ž .1 s yes , s s gender 1 s female , r s race 1 s black; 0 s white ,

Žand g s grade g s 1, grade 9; g s 1, grade 10; g s 1, grade 11;1 2 3
.g s g s g s 0, grade 12 has prediction equation1 2 3

ˆlogit P Y s 1 sy0.88 y 0.40 s y 0.72 r y 2.22 g y 1.43 g y 0.58 gŽ . 1 2 3

q 0.74 rg q 0.38 rg q 0.01rg .1 2 3

a. Carefully interpret effects. Explain the interaction by describing the
race effect at each grade and the grade effect for each race.

Ž .b. Replace r above by r 1 s black, 0 s other . The study also1
Ž .measured r 1 s Hispanic, 0 s other , with r s r s 0 for white.2 1 2

Suppose that the prediction equation is as above but with additional
terms y0.29 r q 0.53 r g q 0.25 r g y 0.06 r g . Interpret the2 2 1 2 2 2 3
effects.
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TABLE 5.18 Data for Problem 5.17

Patient D T Y Patient D T Y Patient D T Y

1 45 0 0 13 50 1 0 25 20 1 0
2 15 0 0 14 75 1 1 26 45 0 1
3 40 0 1 15 30 0 0 27 15 1 0
4 83 1 1 16 25 0 1 28 25 0 1
5 90 1 1 17 20 1 0 29 15 1 0
6 25 1 1 18 60 1 1 30 30 0 1
7 35 0 1 19 70 1 1 31 40 0 1
8 65 0 1 20 30 0 1 32 15 1 0
9 95 0 1 21 60 0 1 33 135 1 1

10 35 0 1 22 61 0 0 34 20 1 0
11 75 0 1 23 65 0 1 35 40 1 0
12 45 1 1 24 15 1 0

Ž .Source: Data from D. Collett, in Encyclopedia of Biostatistics New York: Wiley: 1998 , pp.
350�358.

5.17 Table 5.18 shows the results of a study about Y s whether a patient
having surgery with general anesthesia experienced a sore throat on

Ž .waking 0 s no, 1 s yes as a function of the D s duration of the
Ž .surgery in minutes and the T s type of device used to secure the
Ž .airway 0 s laryngeal mask airway, 1 s tracheal tube . Fit a logit

model using these predictors, interpret parameter estimates, and con-
duct inference about the effects.

Ž .5.18 Refer to model 5.2 for the horseshoe crabs using x s width.
Ž . Ž .a. Show that i at the mean width 26.3 , the estimated odds of a

Ž .satellite equal 2.07; ii at x s 27.3, the estimated odds equal 3.40;
ˆŽ . Ž . Ž .and iii since exp � s 1.64, 3.40 s 1.64 2.07, and the odds in-

crease by 64%.
b. Based on the 95% confidence interval for � , show that for x near

where � s 0.5, the rate of increase in the probability of a satellite
per 1-cm increase in x falls between about 0.07 and 0.17.

5.19 For Table 4.3, fit a logistic regression model for the probability of a
satellite, using color alone as the predictor.
a. Treat color as nominal. Explain why this model is saturated. Ex-

press its parameter estimates in terms of the sample logits for each
color.

b. Conduct a likelihood-ratio test that color has no effect.
c. Fit a model that treats color as quantitative. Interpret the fit, and

test that color has no effect.
Ž .d. Test the goodness of fit of the model in part c . Interpret.
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Ž .5.20 Refer to model 5.14 . Describe the effect of width by finding the
estimated probabilities of a satellite at its lower and upper quartiles,
separately for c s 1 and c s 0.

Ž .5.21 Refer to the prediction equation logit � sy10.071 y 0.509c qˆ
Ž .0.458 x for model 5.13 . The means and standard deviations are

c s 2.44 and s s 0.80 for color, and x s 26.30 and s s 2.11 for width.
w Ž . xFor standardized predictors e.g., x s width y 26.3 r2.11 , explain

why the estimated coefficients of c and x equal y0.41 and 0.97.
Interpret these by comparing the partial effects of a 1 standard
deviation increase in each predictor on the odds. Describe the color
effect by estimating the change in � between the first and last colorˆ
categories at the mean score for width.

Ž .5.22 Refer to model 5.12 .
a. Fit the model using x s weight. Interpret effects of weight and

color.
b. Does the model permitting interaction provide an improved fit?

Interpret.
Ž .c. For part b , construct a confidence interval for a difference be-

tween the slope parameters for medium-light and dark crabs.
Interpret.

d. Using models that treat color as quantitative, repeat the analyses in
Ž . Ž .parts a to c .

Ž .5.23 Fowlkes et al. 1988 reported results of a survey of employees of a
large national corporation to determine how satisfaction depends on
race, gender, age, and regional location. The data are at the book’s

Ž .Web site www. stat.ufl.edur� aarcdarcda.html . Fit a logit model to
these data and carefully interpret the parameter estimates. Fowlkes et

Ž .al. 1988 reported ‘‘The least-satisfied employees are less than 35
Ž .years of age, female, other race , and work in the Northeast; . . . . The

most satisfied group is greater than 44 years of age, male, other, and
working in the Pacific or Mid-Atlantic regions; the odds of such
employees being satisfied are about 3.5 to 1.’’ Show how these inter-
pretations result from the fit of this model.

5.24 Let Y denote a subject’s opinion about current laws legalizing abortion
Ž . Ž .1 s support , for gender h h s 1, female; h s 2, male , religious

Ž .affiliation i i s 1, Protestant; i s 2, Catholic; i s 3, Jewish , and
Žpolitical party affiliation j j s 1, Democrat; j s 2, Republican; j s 3,

.Independent . For survey data, software for fitting the model

G R Plogit P Y s 1 s � q � q � q �Ž . h i j
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ˆG ˆG ˆR ˆRreports � s 0.62, � s 0.08, � sy0.08, � sy0.16, � sˆ 1 2 1 2
ˆR ˆP ˆP ˆPy0.25, � s 0.41, � s 0.87, � sy1.27, � s 0.40.3 1 2 3

a. Interpret how the odds of support depends on religion.
Ž .b. Estimate the probability of support for the group most least likely

to support current laws.
c. If, instead, parameters used constraints � G s � R s � P s 0, report1 1 1

the estimates.

5.25 Table 5.19 refers to a sample of subjects randomly selected for an
Italian study on the relation between income and whether one pos-
sesses a travel credit card. At each level of annual income in millions
of lira, the table indicates the number of subjects sampled and the
number possessing at least one travel credit card. Analyze these data.

TABLE 5.19 Data for Problem 5.25

Income Number Income Number Income Number
Ž Ž Žmillions of Credit millions of Credit millions of Credit

. . .of lira Cases Cards of lira Cases Cards of lira Cases Cards

24 1 0 39 2 0 65 6 6
27 1 0 40 5 0 68 3 3
28 5 2 41 2 0 70 5 3
29 3 0 42 2 0 79 1 0
30 9 1 45 1 1 80 1 0
31 5 1 48 1 0 84 1 0
32 8 0 49 1 0 94 1 0
33 1 0 50 10 2 120 6 6
34 7 1 52 1 0 130 1 1
35 1 1 59 1 0
38 3 1 60 5 2

Source: Categorical Data Analysis, Quaderni del Corso Estivo di Statistica e Calcolo delle
Probabilita, n. 4., Istituto di Metodi Quantitativi, Universita Luigi Bocconi, by R. Piccarreta.` `

5.26 Refer to Table 9.1, treating marijuana use as the response variable.
Analyze these data.

Ž .5.27 The book’s Web site www. stat.ufl.edur� aarcdarcda.html contains
Ž .a five-way table relating occupational aspirations high, low to gender,

residence, IQ, and socioeconomic status. Analyze these data.

Theory and Methods

Ž . Ž . Ž .w Ž .x5.28 For model 5.1 , show that �� x r� x s �� x 1 y � x .
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Ž . Ž .5.29 For model 5.1 , when � x is small, explain why you can interpret
Ž . Ž . Ž .exp � approximately as � x q 1 r� x .

Ž .5.30 Prove that the logistic regression curve 5.1 has the steepest slope
1Ž . Ž .where � x s . Generalize to model 5.8 .2

Ž .5.31 The calibration problem is that of estimating x at which � x s � .0
For the linear logit model, argue that a confidence interval is the set of
x values for which

1r22ˆ ˆ ˆ� q � x y logit � r var � q x var � q 2 x cov �,� � z .Ž . Ž .ˆ ˆ ˆŽ . Ž .0 �r2

w Ž . xMorgan 1992, Sec. 2.7 surveyed other approaches.

5.32 A study for several professional sports of the effect of a player’s draft
Ž .position d d s 1, 2, 3, . . . of selection from the pool of potential

players in a given year on the probability � of eventually being named
Ž . Žan all star used the model logit � s � q � log d S. M. Berry, Chance,

.14:53�57, 2001 .
Ž . � � �a. Show that �r 1 y � s e d . Show that e s odds for the first

draft pick.
ˆb. In the United States, Berry reported � s 2.3 and � sy1.1 for proˆ

ˆbasketball and � s 0.7 and � sy0.6 for pro baseball. This sug-ˆ
gests that in basketball a first draft pick is more crucial and picks
with high d are relatively less likely to be all-stars. Explain why.

Ž 2 .5.33 For the population of subjects having Y s j, X has a N � , �j
distribution, j s 0,1.

Ž � .a. Using Bayes theorem, show that P Y s 1 x satisfies the logistic
Ž . 2regression model with � s � y � r� .1 0

Ž � . Ž 2 .b. Suppose that X Y s j is N � ,� with � � � . Show that thej j 0 1
Ž . wlogistic model holds with a quadratic term Anderson 1975 . Prob-

lem 5.4 showed that a quadratic term is helpful when x values have
quite different dispersion at y s 0 and y s 1. This result also
suggests that to test equality of means of normal distributions when
the variances differ, one can fit a quadratic logistic regression with
the two groups as the response and test the quadratic term; see

Ž . xO’Brien 1988 .
Ž � .c. Suppose that X Y s j has exponential dispersion family density

Ž . �w Ž .x Ž . Ž .4f x;  s exp x y b  ra � q c x, � . Find the relevant lo-j j j
gistic model.
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Ž � .d. For multiple predictors, suppose that X Y s j has a multivariate
Ž . Ž � .N � , � distribution, j s 0, 1. Show that P Y s 1 x satisfies lo-j

y1Ž . Žgistic regression with effect parameters � � y � Cornfield1 0
.1962 .

Ž . Ž .5.34 Suppose that � x s F x for some strictly increasing cdf F. Explain
why a monotone transformation of x exists such that the logistic
regression model holds. Generalize to alternative link functions.

Ž .5.35 For an I � 2 contingency table, consider logit model 5.4 .
� 4 � 4a. Given � � 0 , show how to find � satisfying � s 0.i i I

b. Prove that � s � s ��� s � is the independence model. Find its1 2 I
wŽ . Ž .xlikelihood equation, and show that � s logit Ý y r Ý n .ˆ i i i i

w Ž .x5.36 Construct the log-likelihood function for the model logit � x s � q
� x with independent binomial outcomes of y successes in n trials at0 0
x s 0 and y successes in n trials at x s 1. Derive the likelihood1 1

ˆequations, and show that � is the sample log odds ratio.

� 45.37 A study has n independent binary observations y , . . . , y wheni i1 in i
Ž .X s x , i s 1, . . . , N, with n sÝ n . Consider the model logit � si i i i

Ž .� q � x , where � s P Y s 1 .i i i j

a. Show that the kernel of the likelihood function is the same treating
the data as n Bernoulli observations or N binomial observations.

b. .For the saturated model, explain why the likelihood function is
Ždifferent for these two data forms. Hint: The number of parame-

.ters differs. Hence, the deviance reported by software depends on
the form of data entry.

c. Explain why the difference between deviances for two unsaturated
models does not depend on the form of data entry.

d. Suppose that each n s 1. Show that the deviance depends on �̂i i
Žbut not y . Hence, it is not useful for checking model fit see alsoi

.Problem 4.22 .

Ž . Ž .5.38 Suppose that Y has a bin n, � distribution. For the model, logit �
Ž .s � , consider testing H : � s 0 i.e., � s 0.5 . Let � s yrn.ˆ0

Ž .a. From Section 3.1.6, the asymptotic variance of � s logit � isˆ ˆ
w Ž .xy1n� 1 y � . Compare the estimated SE for the Wald test and

w Ž . x2the SE using the null value of � , using test statistic logit � rSE .ˆ
Show that the ratio of the Wald statistic to the statistic with null SE

Ž .equals 4� 1 y � . What is the implication about performance ofˆ ˆ
� �the Wald test if � is large and � tends to be near 0 or 1?ˆ
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b. Wald inference depends on the parameterization. How does the
wŽ . x2comparison of tests change with the scale � y 0.5 rSE , whereˆ

SE is now the estimated or null SE of � ?ˆ
Ž .c. Suppose that y s 0 or y s n. Show that the Wald test in part a

cannot reject H : � s � for any 0 � � � 1, whereas the Wald0 0 0
Ž . wtest in part b rejects every such � . Note: Analogous results apply0

for inference about the Poisson mean versus the log mean; see
Ž . xMantel 1987a .

Ž .5.39 Find the likelihood equations for model 5.10 . Show that they imply
the fitted values and that the sample values are identical in the
marginal two-way tables.

Ž .5.40 Consider the linear logit model 5.5 for an I � 2 table, with y ai
Ž .bin n , � variate.i i

a. Show that the log likelihood is

I I

L � s y � q � x y n log 1 q exp � q � x .Ž . Ž . Ž .Ý Ýi i i i
is1 is1

b. Show that the sufficient statistic for � is Ý y x , and explain whyi i i
this is essentially the variable utilized in the Cochran�Armitage

Ž .test. Hence that test is a score test of H : � s 0.0

c. Letting S sÝ y , show that the likelihood equations arei i

exp � q � xŽ .i
S s nÝ i 1 q exp � q � xŽ .ii

exp � q � xŽ .i
y x s n x .Ý Ýi i i i 1 q exp � q � xŽ .ii i

� 4d. Let � s n � . Explain why Ý � sÝ y andˆ ˆ ˆi i i i i i i

y �̂i i
x s x .Ý Ýi iS Ý �̂a ai i

Explain why this implies that the mean score on x across the rows
in the first column is the same for the model fit as for the observed
data. They are also identical for the second column.
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Ž .5.41 Let Y be bin n , � at x , and let p s y rn . For binomial GLMsi i i i i i i
with logit link:
a. For p near � , show thati i

p � p y �i i i i
log f log q .

1 y p 1 y � � 1 y �Ž .i i i i

Ž t . Ž .b. Show that z in 5.23 is a linearized version of the ith samplei
logit, evaluated at approximation � Ž t . for � .ˆi i$ ˆŽ . Ž .c. Verify the formula 5.20 for cov � .

5.42 Using graphs or tables, explain what is meant by no interaction in
modeling response Y and explanatory X and Z when:

Ž .a. All variables are continuous multiple regression .
Ž .b. Y and X are continuous, Z is categorical analysis of covariance .
Ž .c. Y is continuous, X and Z are categorical two-way ANOVA .

Ž .d. Y is binary, X and Z are categorical logit model .



C H A P T E R 6

Building and Applying Logistic
Regression Models

Having studied the basics of fitting and interpreting logistic regression
models, we now turn our attention to building and applying them. With
several explanatory variables, there are many potential models. In Section 6.1
we discuss strategies for model selection. After choosing a preliminary model,
model checking addresses whether systematic lack of fit exists. Section 6.2
covers diagnostics, such as residuals, for model checking.

In practice, a common application compares two groups on a binary
response, with data stratified by control variables. In Section 6.3 we present
logit-related analyses of such data. In Section 6.4 we show the advantages of
a well-chosen model in enhancing inferential power for detecting and esti-
mating associations. Section 6.5 covers power and sample size determination
for logistic regression. Although the logit is the most popular link function
for probabilities, other links are sometimes more appropriate. In Section 6.6
we present models using the probit link and links making a double log
transform.

For small samples or models with many parameters, ordinary large-sample
ML inference may perform poorly. In Section 6.7 we discuss conditional
logistic regression. Like small-sample methods for 2 � 2 tables, this uses
conditioning arguments to eliminate nuisance parameters.

6.1 STRATEGIES IN MODEL SELECTION

Model selection for logistic regression faces the same issues as for ordinary
regression. The selection process becomes harder as the number of explana-
tory variables increases, because of the rapid increase in possible effects and
interactions. There are two competing goals: The model should be complex
enough to fit the data well. On the other hand, it should be simple to
interpret, smoothing rather than overfitting the data.

211
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Most studies are designed to answer certain questions. Those questions
guide the choice of model terms. Confirmatory analyses then use a restricted
set of models. For instance, a study hypothesis about an effect may be tested
by comparing models with and without that effect. For studies that are
exploratory rather than confirmatory, a search among possible models may
provide clues about the dependence structure and raise questions for future
research.

In either case, it is helpful first to study the effect on Y of each predictor
Ž .by itself using graphics incorporating smoothing for a continuous predictor

or a contingency table for a discrete predictor. This gives a ‘‘feel’’ for the
marginal effects. Unbalanced data, with relatively few responses of one type,
limit the number of predictors for the model. One guideline suggests at least

Ž10 outcomes of each type should occur for every predictor Peduzzi et al.
.1996 . If y s 1 only 30 times out of n s 1000, for instance, the model should

contain no more than about three x terms. Such guidelines are approximate,
and this does not mean that if you have 500 outcomes of each type you are
well served by a model with 50 predictors.

Many model selection procedures exist, no one of which is always best.
Cautions that apply to ordinary regression hold for any generalized linear
model. For instance, a model with several predictors may suffer from multi-
collinearity�correlations among predictors making it seem that no one vari-
able is important when all the others are in the model. A variable may seem
to have little effect because it overlaps considerably with other predictors in
the model, itself being predicted well by the other predictors. Deleting such a
redundant predictor can be helpful, for instance to reduce standard errors of
other estimated effects.

6.1.1 Horseshoe Crab Example Revisited

ŽThe horseshoe crab data set in Table 4.3 has four predictors: color four
. Ž .categories , spine condition three categories , weight, and width of the

carapace shell. We now fit a logistic regression model using all these to
Ž .predict whether the female crab has satellites y s 1 .

We start by fitting a model containing main effects,

logit P Y s 1 s � q � weight q � width q � cŽ . 1 2 3 1

q � c q � c q � s q � s ,4 2 5 3 6 1 7 2

Ž . Ž . Ž .treating color c and spine condition s as qualitative factors , withi j
dummy variables for the first three colors and the first two spine conditions.
Table 6.1 shows results. A likelihood-ratio test that Y is jointly independent
of these predictors simultaneously tests H : � s ��� s � s 0. The test0 1 7

Ž .statistic equals 40.6 with df s 7 P � 0.0001 . This shows extremely strong
evidence that at least one predictor has an effect.
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TABLE 6.1 Computer Output from Fitting Model with All Main
Effects to Horseshoe Crab Data

Testing Global Null Hypothesis: BETA= 0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 40.5565 7 <.0001

Analysis of Maximum Likelihood Estimates
Parameter Estimate Std Error Chi-Square Pr > ChiSq
Intercept y9.2734 3.8378 5.8386 0.0157
weight 0.8258 0.7038 1.3765 0.2407
width 0.2631 0.1953 1.8152 0.1779
color 1 1.6087 0.9355 2.9567 0.0855
color 2 1.5058 0.5667 7.0607 0.0079
color 3 1.1198 0.5933 3.5624 0.0591
spine 1 y0.4003 0.5027 0.6340 0.4259
spine 2 y0.4963 0.6292 0.6222 0.4302

Although the overall test is highly significant, the Table 6.1 results are
discouraging. The estimates for weight and width are only slightly larger than
their SE values. The estimates for the factors compare each category to the
final one as a baseline. For color, the largest difference is less than two
standard errors; for spine condition, the largest difference is less than a
standard error.

The small P-value for the overall test, yet the lack of significance for
individual effects, is a warning sign of multicollinearity. In Section 5.2.2 we
showed strong evidence of a width effect. Controlling for weight, color, and
spine condition, little evidence remains of a partial width effect. However,

Ž .weight and width have a strong correlation 0.887 . For practical purposes
they are equally good predictors, but it is nearly redundant to use them both.

Ž . Ž . Ž .Our further analysis uses width W with color C and spine condition S as
predictors. For simplicity, we symbolize models by their highest-order terms,

Ž .regarding C and S as factors. For instance, C q S q W denotes a model
Ž .with main effects, whereas C q S*W denotes a model that has those main

effects plus an S � W interaction. It is not usually sensible to consider a
model with interaction but not the main effects that make up that interac-
tion.

6.1.2 Stepwise Procedures

In exploratory studies, an algorithmic method for searching among models
Ž .can be informative if we use results cautiously. Goodman 1971a proposed

methods analogous to forward selection and backward elimination in ordi-
nary regression.

Forward selection adds terms sequentially until further additions do not
improve the fit. At each stage it selects the term giving the greatest improve-
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ment in fit. The minimum P-value for testing the term in the model is a
sensible criterion, since reductions in deviance for different terms may have
different df values. A stepwise variation of this procedure retests, at each
stage, terms added at previous stages to see if they are still significant.

Backward elimination begins with a complex model and sequentially
removes terms. At each stage, it selects the term for which its removal has

Ž .the least damaging effect on the model e.g., largest P-value . The process
stops when any further deletion leads to a significantly poorer fit. With either
approach, for qualitative predictors with more than two categories, the
process should consider the entire variable at any stage rather than just
individual dummy variables. Add or drop the entire variable rather than
just one of its dummies. Otherwise, the result depends on the coding. The
same remark applies to interactions containing that variable.

Many statisticians prefer backward elimination over forward selection,
feeling it safer to delete terms from an overly complex model than to add
terms to an overly simple one. Forward selection can stop prematurely
because a particular test in the sequence has low power. Neither strategy
necessarily yields a meaningful model. Use variable selection procedures with
caution! When you evaluate many terms, one or two that are not important
may look impressive simply due to chance. For instance, when all the true
effects are weak, the largest sample effect may substantially overestimate its

Ž .true effect. See Westfall and Wolfinger 1997 and Westfall and Young
Ž .1993 for ways to adjust P-values to take multiple tests into account.

Some software has additional options for selecting a model. One approach
attempts to determine the best model with some fixed number of terms,
according to some criterion. If such a method and backward and forward
selection procedures yield quite different models, this is an indication that
such results are of dubious use. Another such indication would be when a
quite different model results from applying a given procedure to a bootstrap
sample of the same size from the sample distribution.

Finally, statistical significance should not be the sole criterion for inclusion
of a term in a model. It is sensible to include a variable that is central to the
purposes of the study and report its estimated effect even if it is not
statistically significant. Keeping it in the model may help reduce bias in
estimated effects of other predictors and may make it possible to compare

Žresults with other studies where the effect is significant perhaps because of a
.larger sample size. Algorithmic selection procedures are no substitute for

careful thought in guiding the formulation of models.

6.1.3 Backward Elimination for Horseshoe Crab Example

Table 6.2 summarizes results of fitting and comparing several logit models to
the horseshoe crab data with predictors width, color, and spine condition.

Ž 2 .The deviance G test of fit compares the model to the saturated model. As
noted in Sections 5.2.4 and 5.2.5, this is not approximately chi-squared when
a predictor is continuous, as width is. However, the difference of deviances
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TABLE 6.2 Results of Fitting Several Logistic Regression Models
to Horseshoe Crab Data

Deviance Models Deviance Corr.
a 2 Ž .Model Predictors G df AIC Compared Difference r y,�̂

Ž .1 C*S*W 170.44 152 212.4 � �
Ž . Ž . Ž . Ž .2 C*S q C*W q S*W 173.68 155 209.7 2 � 1 3.2 df s 3
Ž . Ž . Ž . Ž .3a C*S q S*W 177.34 158 207.3 3a � 2 3.7 df s 3
Ž . Ž . Ž . Ž .3b C*W q S*W 181.56 161 205.6 3b � 2 7.9 df s 6
Ž . Ž . Ž . Ž .3c C*S q C*W 173.69 157 205.7 3c � 2 0.0 df s 2
Ž . Ž . Ž . Ž .4a S q C*W 181.64 163 201.6 4a � 3c 8.0 df s 6
Ž . Ž . Ž . Ž .4b W q C*S 177.61 160 203.6 4b � 3c 3.9 df s 3
Ž . Ž . Ž . Ž .5 C q S q W 186.61 166 200.6 5 � 4b 9.0 df s 6
Ž . Ž . Ž . Ž .6a C q S 208.83 167 220.8 6a � 5 22.2 df s 1
Ž . Ž . Ž . Ž .6b S q W 194.42 169 202.4 6b � 5 7.8 df s 3
Ž . Ž . Ž . Ž .6c C q W 187.46 168 197.5 6c � 5 0.8 df s 2 0.452
Ž . Ž . Ž . Ž .7a C 212.06 169 220.1 7a � 6c 24.5 df s 1 0.285
Ž . Ž . Ž . Ž .7b W 194.45 171 198.5 7b � 6c 7.0 df s 3 0.402
Ž . Ž . Ž . Ž .8 C s dark q W 187.96 170 194.0 8 � 6c 0.5 df s 2 0.447

Ž . Ž . Ž .9 None 225.76 172 227.8 9 � 8 37.8 df s 2 0.000
aC, color; S, spine condition; W, width.

between two models that differ by a modest number of parameters is
Ž .relevant. That difference is the likelihood-ratio statistic y2 L y L com-0 1

paring the models, and it has an approximate null chi-squared distribution..
To select a model, we use backward elimination. We test only the

highest-order terms for each variable. It is inappropriate, for instance, to
remove a main effect term if the model has interactions involving that term.

Ž .We begin with the most complex model, symbolized by C*S*W , model 1
in Table 6.2. This model uses main effects for each term as well as the three
two-factor interactions and the three-factor interaction. It allows a separate

Žwidth effect at each CS combination. In fact, at some of those combinations
.y outcomes of only one type occur, so effects are not estimable. The

Žlikelihood-ratio statistic comparing this model to the simpler model C*S q
. Ž .C*W q S*W removing the three-factor interaction term equals 3.2 df s 3 .

Ž .This suggests that the three-factor term is not needed P s 0.36 , thank
goodness, so we continue the simplification process.

In the next stage we consider the three models that remove a two-factor
Ž .interaction. Of these, C*S q C*W gives essentially the same fit as the more

complex model, so we drop the S � W interaction. Next, we consider
Ž .dropping one of the other two-factor interactions. The model S q C*W ,

dropping the C � S interaction, has an increased deviance of 8.0 on df s 6
Ž . Ž .P s 0.24 ; the model W q C*S , dropping the C � W interaction, has an

Ž .increased deviance of 3.9 on df s 3 P s 0.27 . Neither increase is impor-
tant, suggesting that we can drop either and proceed. In either case, drop-
ping next the remaining interaction also seems permissible. For instance,
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Ž .dropping the C � S interaction from model W q C*S , leaving model
Ž . Ž .C q S q W , increases the deviance by 9.0 on df s 6 P s 0.17 .

The working model now has the main effects alone. In the next stage we
consider dropping one of them. Table 6.2 shows little consequence of

Ž .removing S. Both remaining variables C and W then have nonnegligible
Žeffects. For instance, removing C increases the deviance comparing models

. Ž .7b and 6c by 7.0 on df s 3 P s 0.07 . The analysis in Section 5.4.6 revealed
Ž .a noticeable difference between dark crabs category 4 and the others. The

simpler model that has a single dummy variable for color, equaling 0 for dark
Žcrabs and 1 otherwise, fits essentially as well. The deviance difference
.between models 8 and 6c equals 0.5, with df s 2. Further simplification

results in large increases in deviance and is unjustified.

6.1.4 AIC, Model Selection, and the Correct Model

In selecting a model, we are mistaken if we think that we have found the true
one. Any model is a simplification of reality. For instance, width does not
exactly have a linear effect on the probability of satellites, whether we use the
logit link or the identity link.

What is the logic of testing the fit of a model when we know that it does
not truly hold? A simple model that fits adequately has the advantages of
model parsimony. If a model has relatively little bias, describing reality well,
it tends to provide more accurate estimates of the quantities of interest. This
was discussed in Sections 3.3.7 and 5.2.2 and is examined further in Section
6.4.5.

Other criteria besides significance tests can help select a good model in
terms of estimating quantities of interest. The best known is the Akaike

Ž .information criterion AIC . It judges a model by how close its fitted values
tend to be to the true values, in terms of a certain expected value. Even
though a simple model is farther from the true model than is a more complex
model, it may be preferred because it tends to provide better estimates of
certain characteristics of the true model, such as cell probabilities. Thus, the
optimal model is the one that tends to have fit closest to reality. Given a
sample, Akaike showed that this criterion selects the model that minimizes

AIC sy2 maximized log likelihood�number of parameters in model .Ž .

This penalizes a model for having many parameters. With models for
categorical Y, this ordering is equivalent to one based on an adjustment of

w 2 Ž .xthe deviance, G y 2 df , by twice its residual df. For cogent arguments
Ž .supporting this criterion, see Burnham and Anderson 1998 .

We illustrate AIC for model selection using the models Table 6.2 lists.
That table also shows the AIC values. Of models using the three basic

Ž .variables, AIC is smallest AIC s 197.5 for C q W, having main effects of
color and width. The simpler model having a dummy variable for whether a

Ž .crab is dark fares better yet AIC s 194.0 . Either model seems reasonable.
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We should balance the lower AIC for the simpler model against its having
been suggested by the fit of C q W.

6.1.5 Using Causal Hypotheses to Guide Model Building

Although selection procedures are helpful exploratory tools, the model-build-
ing process should utilize theory and common sense. Often, a time ordering
among the variables suggests possible causal relationships. Analyzing a cer-

Žtain sequence of models helps to investigate those relationships Goodman
.1973 .

We illustrate with Table 6.3, from a British study. A sample of men and
women who had petitioned for divorce and a similar number of married

Ž . Ž .people were asked: a ‘‘Before you married your former husbandrwife,
Ž . Ž .had you ever made love with anyone else?’’; b ‘‘During your former

Ž .marriage, did you have have you had any affairs or brief sexual encounters
with another manrwoman?’’ The 2 � 2 � 2 � 2 table has variables G s
gender, E s whether reported extramarital sex, P s whether reported pre-
marital sex, and M s marital status.

The time points at which responses on the four variables occur suggests
the following ordering of the variables:

6 6 6G P E M
gender premarital extramarital marital

sex sex status

Any of these is an explanatory variable when a variable listed to its right is
the response. Figure 6.1 shows one possible causal structure. In this figure, a
variable at the tip of an arrow is a response for a model at some stage. The
explanatory variables have arrows pointing to the response, directly or
indirectly.

We first treat P as a response. Figure 6.1 predicts that G has a direct
effect on P, so the model of independence of these variables is inadequate.

( )TABLE 6.3 Marital Status by Report of Pre- and Extramarital Sex PMS and EMS

Gender

Women Men

PMS: Yes No Yes No

Marital Status EMS: Yes No Yes No Yes No Yes No

Divorced 17 54 36 214 28 60 17 68
Still married 4 25 4 322 11 42 4 130

Ž .Source: G. N. Gilbert, Modelling Society London: George Allen & Unwin, 1981 . Reprinted with
permission from Unwin Hyman Ltd.
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FIGURE 6.1 Causal diagram for Table 6.3.

At the second stage, E is the response. Figure 6.1 predicts that P and G
have direct effects on E. It also suggests that G has an indirect effect on E,
through its effect on P. These effects on E can be analyzed using the logit
model for E with additive G and P effects. If G has only an indirect effect
on E, the model with P alone as a predictor is adequate; that is, controlling
for P, E and G are conditionally independent. At the third stage, M is the
response. Figure 6.1 predicts that E has a direct effect on M, P has direct
effects and indirect effects through its effects on E, and G has indirect
effects through its effects on P and E. This suggests the logit model for M
having additive E and P effects. For this model, G and M are independent,
given P and E.

Table 6.4 shows results. The first stage, having P as the response, shows
strong evidence of a GP association. The sample odds ratio for their
marginal table is 0.27; the estimated odds of premarital sex for females are
0.27 times that for males. The second stage has E as the response. Only weak
evidence occurs that G had a direct as well as an indirect effect on E, as G2

Ž .drops by 2.9 df s 1 after adding G to a model already containing P as a
predictor. For this model, the estimated EP conditional odds ratio is 4.0.

The third stage has M as the response. Figure 6.1 specifies the logit model
with main effects of E and P, but it fits poorly. The model that allows an

TABLE 6.4 Goodness of Fit of Various Models for Table 6.3a

Response Potential Actual
2Stage Variable Explanatory Explanatory G df

1 P G None 75.3 1
Ž .G 0.0 0

2 E G, P None 48.9 3
Ž .P 2.9 2
Ž .G q P 0.0 1
Ž .3 M G, P, E E q P 18.2 5
Ž .E*P 5.2 4
Ž .E*P q G 0.7 3

aP, premarital sex; E, extramarital sex; M, marital status; G, gender.
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E � P interaction in their effects on M but assumes conditional indepen-
Ž 2 .dence of G and M fits much better G decrease of 13.0, df s 1 . The model

that also has a main effect for G fits slightly better yet. Either model is more
complicated than Figure 6.1 predicted, since the effects of E on M vary
according to the level of P. However, some preliminary thought about causal
relationships suggested a model similar to one giving a good fit. We leave it
to the reader to estimate and interpret effects for the third stage.

6.1.6 New Model-Building Strategies for Data Mining

As computing power continues to explode, enormous data sets are more
common. A financial institution that markets credit cards may have observa-
tions for millions of subjects to whom they sent advertising, on whether they
applied for a card. For their customers, they have monthly data on whether
they paid their bill on time plus information on many variables measured on
the credit card application. The analysis of huge data sets is called data
mining.

Model building for huge data sets is challenging. There is currently
considerable study of alternatives to traditional statistical methods, including
automated algorithms that ignore concepts such as sampling error or model-
ing. Significance tests are usually irrelevant, as nearly any variable has a
significant effect if n is sufficiently large. Model-building strategies view
some models as useful for prediction even if they have complex structure.
Nonetheless, a point of diminishing returns still occurs in adding predictors
to models. After a point, new predictors tend to be so correlated with a linear
combination of ones already in the model that they do not improve predictive
power. For large n, inference is less relevant than summary measures of
predictive power. This is a topic of the next section.

6.2 LOGISTIC REGRESSION DIAGNOSTICS

In Section 5.2.3 we introduced statistics for checking model fit in a global
sense. After selecting a preliminary model, we obtain further insight by
switching to a microscopic mode of analysis. In contingency tables, for
instance, the pattern of lack of fit revealed in cell-by-cell comparisons of
observed and fitted counts may suggest a better model. For continuous
predictors, graphical displays are also helpful. Such diagnostic analyses may
suggest a reason for the lack of fit, such as nonlinearity in the effect of an
explanatory variable.

6.2.1 Pearson, Deviance, and Standardized Residuals

With categorical predictors, it is useful to form residuals to compare ob-
served and fitted counts. Let y denote the binomial variate for n trials ati i
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setting i of the explanatory variables, i s 1, . . . , N. Let � denote the modelˆ i
Ž .estimate of P Y s 1 . Then n � is the fitted number of successes. For aˆi i

Ž .GLM with binomial random component, the Pearson residual 4.36 for this
fit is

y y n � y y n �ˆ ˆi i i i i i
e s s . 6.1Ž .i $ 1r2 n � 1 y �' Ž .ˆ ˆi i ivar YŽ .i

Ž .This divides the raw residual y y � by the estimated binomial standardˆi i
deviation of y . The Pearson statistic for testing the model fit satisfiesi

N
2 2X s e .Ý i

is1

Each squared Pearson residual is a component of X 2.
Ž .With � replaced by � in the numerator of 6.1 , e is the differenceˆ i i i

between a binomial random variable and its expectation, divided by its
estimated standard deviation. For large n , e then has an approximatei i
Ž .N 0, 1 distribution, when the model holds. Since � is estimated by � andˆi i

� 4 � 4 � 4the � depend on y , however, y y n � tend to be smaller thanˆ ˆi i i i i
� 4 � 4 Ž . 2 2y y n � and the e are less variable than N 0, 1 . If X has df s � , Xi i i i

2 ŽsÝ e is asymptotically comparable to the sum of squares of � rather thani i
.N independent standard normal random variables. Thus, when the model

Ž 2 .holds, E Ý e rN f �rN � 1.i i
The standardized Pearson residual is slightly larger in absolute value and

Ž .is approximately N 0, 1 when the model holds. In Section 4.5.5 we showed
the adjustment uses the leverage from an estimated hat matrix. For observa-

ˆtion i with leverage h , the standardized residual isi

e y y n �̂i i i i
r s s .i ˆ ˆ'1 y h n � 1 y � 1 y hŽ .ˆ ˆ' Ž .i i i i i

Absolute values larger than roughly 2 or 3 provide evidence of lack of fit.
An alternative residual uses components of the G2 fit statistic. These are

Ž .the de®iance residuals, introduced for GLMs in 4.35 . The deviance residual
for observation i is

d � sign y y n � , 6.2Ž .' Ž .ˆi i i i

where

y n y yi i i
d s 2 y log q n y y log .Ž .i i i iž /n � n y n �ˆ ˆi i i i i

Ž .This also tends to be less variable then N 0, 1 and can be standardized.
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Plots of residuals against explanatory variables or linear predictor values
may detect a type of lack of fit. When fitted values are very small, however,
just as X 2 and G2 lose relevance, so do residuals. When explanatory
variables are continuous, often n s 1 at each setting. Then y can equal onlyi i
0 or 1, and e can assume only two values. One must then be cautious abouti
regarding either outcome as extreme, and a single residual is usually uninfor-
mative. Plots of residuals also then have limited use, consisting simply of two
parallel lines of dots. The deviance itself is then completely uninformative
Ž .Problem 5.37 . When data can be grouped into sets of observations having
common predictor values, it is better to compute residuals for the grouped
data than for individual subjects.

6.2.2 Heart Disease Example

A sample of male residents of Framingham, Massachusetts, aged 40 through
Ž .59, were classified on several factors, including blood pressure Table 6.5 .

The response variable is whether they developed coronary heart disease
during a six-year follow-up period.

Let � be the probability of heart disease for blood pressure category i.i
The table shows the fit and the standardized Pearson residuals for two
logistic regression models. The first model,

logit � s � ,Ž .i

treats the response as independent of blood pressure. Some residuals for that
Ž 2model are large. This is not surprising, since the model fits poorly G s 30.0,

2 .X s 33.4, df s 7 .

TABLE 6.5 Standardized Pearson Residuals for Logit Models Fitted to
Data on Blood Pressure and Heart Disease

Fitted ResidualObserved
Blood Sample Heart Indep. Linear Indep. Linear

Pressure Size Disease Model Logit Model Logit

� 117 156 3 10.8 5.2 y2.62 y1.11
117�126 252 17 17.4 10.6 y0.12 2.37
127�136 284 12 19.7 15.1 y2.02 y0.95
137�146 271 16 18.8 18.1 y0.74 y0.57
147�156 139 12 9.6 11.6 0.84 0.13
157�166 85 8 5.9 8.9 0.93 y0.33
167�186 99 16 6.9 14.2 3.76 0.65
� 186 43 8 3.0 8.4 3.07 y0.18

Ž .Source: Data from Cornfield 1962 .
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TABLE 6.6 Residuals Reported in SAS for Heart Disease Data of Table 6.5 a

Observation Statistics
Observ disease n blood Reschi Resdev StReschi

1 3 156 111.5 y0.9794 y1.0617 y1.1058
2 17 252 121.5 2.0057 1.8501 2.3746
3 12 284 131.5 y0.8133 y0.8420 y0.9453
4 16 271 141.5 y0.5067 y0.5162 y0.5727
5 12 139 151.5 0.1176 0.1170 0.1261
6 8 85 161.5 y0.3042 y0.3088 y0.3261
7 16 99 176.5 0.5135 0.5050 0.6520
8 8 43 191.5 y0.1395 y0.1402 y0.1773

aReschi, Pearson residual; StReschi, adjusted residual.

A plot of the residuals show an increasing trend. This suggests the linear
logit model,

logit � s � q � x ,Ž .i i

� 4 Žwith scores x for blood pressure level. We used scores 111.5, 121.5, 131.5,i
.141.5, 151.5, 161.5, 176.5, 191.5 . The nonextreme scores are midpoints for

the intervals of blood pressure. The trend in residuals disappears for this
model, and only the second category shows some evidence of lack of fit.

Table 6.6 reports residuals for the linear logit model, as reported by SAS.
Ž . Ž .The Pearson residuals Reschi , deviance residuals Resdev , and standard-
Ž .ized Pearson residuals StReschi show similar results. Each is somewhat

large in the second category. One relatively large residual is not surprising,
however. With many residuals, some may be large purely by chance. Here the

FIGURE 6.2 Observed and predicted proportions of heart disease for linear logit model.
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Ž 2 2 .overall fit statistics G s 5.9, X s 6.3 with df s 6 do not indicate prob-
lems. In analyzing residual patterns, we should be cautious about attributing
patterns to what might be chance variation from a model.

Another useful graphical display for showing lack of fit compares observed
and fitted proportions by plotting them against each other or by plotting both
of them against explanatory variables. For the linear logit model, Figure 6.2
plots both the observed proportions and the estimated probabilities of heart
disease against blood pressure. The fit seems decent.

Studying residuals helps us understand either why a model fits poorly or
where there is lack of fit in a generally good-fitting model. The next example
illustrates the second case.

6.2.3 Graduate Admissions Example

Table 6.7 refers to graduate school applications to the 23 departments in the
College of Liberal Arts and Sciences at the University of Florida during the

Ž .1997�1998 academic year. It cross-classifies applicant’s gender G , whether
Ž . Ž .admitted A , and department D to which the prospective students applied.

We consider logit models with A as the response variable. Let y denote thei k
number admitted and let � denote the probability of admission for genderi k

� 4 Ž .i in department k. We treat Y as independent bin n , � . Other thingsi k ik ik
being equal, one would hope the admissions decision is independent of
gender. However, the model with no gender effect, given the department,

logit � s � q � D ,Ž .i k k

Ž 2 2 .fits rather poorly G s 44.7, X s 40.9, df s 23 .

TABLE 6.7 Data Relating Admission to Gender and Department
for Model with No Gender Effect

Females Males Std. Res Females Males Std. Res
Dept Yes No Yes No (Fem,Yes) Dept Yes No Yes No (Fem,Yes)
anth 32 81 21 41 y0.76 ling 21 10 7 8 1.37
astr 6 0 3 8 2.87 math 25 18 31 37 1.29
chem 12 43 34 110 y0.27 phil 3 0 9 6 1.34
clas 3 1 4 0 y1.07 phys 10 11 25 53 1.32
comm 52 149 5 10 y0.63 poli 25 34 39 49 y0.23
comp 8 7 6 12 1.16 psyc 2 123 4 41 y2.27
engl 35 100 30 112 0.94 reli 3 3 0 2 1.26
geog 9 1 11 11 2.17 roma 29 13 6 3 0.14
geol 6 3 15 6 y0.26 soci 16 33 7 17 0.30
germ 17 0 4 1 1.89 stat 23 9 36 14 y0.01
hist 9 9 21 19 y0.18 zool 4 62 10 54 y1.76
lati 26 7 25 16 1.65

Source: Data courtesy of James Booth.
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Table 6.7 also reports standardized Pearson residuals for the number of
females who were admitted for this model. For instance, the astronomy
department admitted 6 females, which was 2.87 standard deviations higher
than the model predicted. Each department has only a single nonredundant
standardized residual, because of marginal constraints for the model. The

Ž .model has fit � s y q y rn , corresponding to an independence fitˆ i k 1k 2 k qk
Ž . Ž� s � in each partial table. Now, y y n � s y y n y qˆ ˆ ˆ1k 2 k 1k 1k 1k 1k 1k 1k

. Ž . Ž . Ž .y rn s n rn y y n rn y sy y y n � . Thus, stan-ˆ2 k qk 2 k qk 1k 1k qk 2 k 2 k 2 k 2 k
Ž . Ž .dard errors of y y n � and y y n � are identical. The stan-ˆ ˆ1k 1k 1k 2 k 2 k 2 k

dardized residuals are identical in absolute value for males and females but
of different sign. Astronomy admitted 3 males, and their standardized resid-
ual was y2.87; the number admitted was 2.87 standard deviations fewer than
predicted. This is another advantage of standardized over ordinary Pearson
residuals. The model of independence in a partial table has df s 1. Only one
bit of information exists about how the data depart from independence, yet
the ordinary Pearson residual for males need not equal the ordinary Pearson
residual for females.

Departments with large standardized Pearson residuals reveal the reason
for the lack of fit. Significantly more females were admitted than the model
predicts in the astronomy and geography departments, and fewer in the
psychology department. Without these three departments, the model fits

Ž 2 2 .reasonably well G s 24.4, X s 22.8, df s 20 .
For the complete data, adding a gender effect to the model does not

Ž 2 2 .provide an improved fit G s 42.4, X s 39.0, df s 22 , because the de-
partments just described have associations in different directions and of
greater magnitude than other departments. This model has an ML estimate
of 1.19 for the GA conditional odds ratio, the odds of admission being 19%
higher for females than males, given department. By contrast, the marginal
table collapsed over department has a GA sample odds ratio of 0.94, the
overall odds of admission being 6% lower for females. This illustrates

Ž .Simpson’s paradox Section 2.3.2 , the conditional association having differ-
ent direction than the marginal association.

6.2.4 Influence Diagnostics for Logistic Regression

Other regression diagnostic tools are also helpful in assessing fit. These
Žinclude plots of ordered residuals against normal percentiles Haberman

.1973a and analyses that describe an observation’s influence on parameter
estimates and fit statistics. Whenever a residual indicates that a model fits an
observation poorly, it can be informative to delete the observation and refit
the model to remaining ones. This is equivalent to adding a parameter to the
model for that observation, forcing a perfect fit for it.

As in ordinary regression, an observation may be relatively influential in
determining parameter estimates. The greater an observation’s leverage,
the greater its potential influence. The fit could be quite different if an
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observation that appears to be an outlier on y and has large leverage is
deleted. However, a single observation can have a more exorbitant influence
in ordinary regression than a single binary observation in logistic regression,
since there is no bound on the distance of y from its expected value. Also, ini
Section 4.5.5 we observed that the GLM estimated hat matrix

$ y1� �1r2 1r2ˆ ˆ ˆHats W X X WX X WŽ .

depends on the fit as well as the model matrix X. For logistic regression, in
ˆSection 5.5.2 we showed that the weight matrix W is diagonal with element

Ž .w s n � 1 y � for the n observations at setting i of predictors. Pointsˆ ˆ ˆi i i i i
that have extreme predictor values need not have high leverage. In fact, the
leverage can be small if � is close to 0 or 1.ˆ i

Several measures that describe the effect on parameter estimates and fit
statistics of removing an observation from the data set are related alge-

Ž .braically to the observation’s leverage Pregibon 1981; Williams 1987 . In
logistic regression, the observation could be a single binary response or a
binomial response for a set of subjects all having the same predictor values.
Influence measures for each observation include:

1. For each model parameter, the change in the parameter estimate when
the observation is deleted. This change, divided by its standard error, is
called Dfbeta.

2. A measure of the change in a joint confidence interval for the parame-
ters produced by deleting the observation. This confidence interval
displacement diagnostic is denoted by c.

3. The change in X 2 or G2 goodness-of-fit statistics when the observation
is deleted.

For each measure, the larger the value, the greater the influence. We
illustrate them using the linear logit model with blood pressure as a predictor

Žfor heart disease in Table 6.5. Table 6.8 contains simple approximations due
.to Pregibon 1981 for the Dfbeta measure for the coefficient of blood

pressure, the confidence interval diagnostic c, the change in G2, and the
2 Ž 2 .change in X . This is the square of the standardized Pearson residual, r .i

All their values show that deleting the second observation has the greatest
effect. This is not surprising, as that observation has the only relatively large
residual. By contrast, Table 6.8 also contains the changes in X 2 and G2 for
deleting observations in fitting the independence model. At the low and high
ends of the blood pressure values, several changes are very large. However,
these all relate to removing an entire binomial sample at a blood pressure
level instead of removing a single subject’s binary observation. Such subject-
level deletions have little effect even for this model.

With continuous or multiple predictors, it can be informative to plot these
diagnostics, for instance against the estimated probabilities. See Cook and
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TABLE 6.8 Diagnostic Measures for Logistic Regression Models Fitted
to Heart Disease Data

Blood Pearson Likelihood-Ratio Pearson Likelihood-Ratio
2 2 2 a 2 aPressure Dfbeta c X Diff. G Diff. X Diff. G Diff.

111.5 0.49 0.34 1.22 1.39 6.86 9.13
121.5 y1.14 2.26 5.64 5.04 0.02 0.02
131.5 0.33 0.31 0.89 0.94 4.08 4.56
141.5 0.08 0.09 0.33 0.34 0.55 0.57
151.5 0.01 0.00 0.02 0.02 0.70 0.66
161.5 y0.07 0.02 0.11 0.11 0.87 0.80
176.5 0.40 0.26 0.42 0.42 14.17 10.83
191.5 y0.12 0.02 0.03 0.03 9.41 6.73
aIndependence model; other values refer to model with blood pressure predictor.

Ž .Source: Data from Cornfield 1962 .

Ž . Ž . Ž .Weisberg 1999, Chap. 22 , Fowlkes 1987 , and Landwehr et al. 1984 for
examples of useful diagnostic plots.

6.2.5 Summarizing Predictive Power: R and R-Squared Measures

In ordinary regression, R2 describes the proportional reduction in variation
in comparing the conditional variation of the response to the marginal
variation. It and the multiple correlation R describe the power of the
explanatory variables to predict the response, with R s 1 for perfect predic-
tion. Despite various attempts to define analogs for categorical response
models, no proposed measure is as widely useful as R and R2. We present a
few proposed measures in this section.

Ž . � 4For any GLM, the correlation r y, � between the observed responses yˆ i
� 4and the model’s fitted values � measures predictive power. For leastˆ i

squares regression, this is the multiple correlation between Y and the
predictors. An advantage of the correlation relative to its square is the appeal
of working on the original scale and its approximate proportionality to effect
size: For a small effect with a single predictor, doubling the slope corre-
sponds roughly to doubling the correlation. This measure can be useful for
comparing fits of different models to the same data set.

In logistic regression, � for a particular model is the estimated probabilityˆ i
Ž .� for binary observation i. Table 6.2 shows r y, � for a few models fitted toˆ ˆi

the horseshoe crab data. Width alone has r s 0.402, and adding color to the
model increases r to 0.452. The simpler model that uses color merely to
indicate whether a crab is dark does essentially as well, with r s 0.447. The
complex model containing color, spine condition, width, and all their two-
and three-way interactions has r s 0.526. This seems considerably higher,
but with multiple predictors the r estimates become more highly biased in
estimating the true correlation. It can be misleading to compare r values for
models with greatly different df values. After a jackknife adjustment designed
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to reduce bias, there is little difference between r for this overly complex
Ž .model and the simpler model Zheng and Agresti 2000 . Little is lost and

much is gained by using the simpler model.
� 4Another way to measure the association between the binary responses yi

� 4and their fitted values � uses the proportional reduction in squared errorˆ i

2Ý y y �Ž .ˆi i i
1 y ,2Ý y y yŽ .i i

Ž .obtained by using � instead of y sÝ y rn as a predictor of y Efron 1978 .ˆ i i i
Ž .Amemiya 1981 suggested a related measure that weights squared deviations

by inverse predicted variances. For logistic regression, unlike normal GLMs,
Ž .these and r y, � need not be nondecreasing as the model gets moreˆ

complex. Like any correlation-type measure, they can depend strongly on the
range of observed values of explanatory variables.

Other measures directly use the likelihood function. Denote the maxi-
mized log likelihood by L for a given model, L for the saturated model,M S
and L for the null model containing only an intercept term. Probabilities0
are no greater than 1.0, so log likelihoods are nonpositive. As the model
complexity increases, the parameter space expands, so the maximized log
likelihood increases. Thus, L F L F L F 0. The measure0 M S

L y LM 0
6.3Ž .

L y LS 0

falls between 0 and 1. It equals 0 when the model provides no improvement
in fit over the null model, and it equals 1 when the model fits as well as the
saturated model. A weakness is the log likelihood is not an easily inter-
pretable scale. Interpreting the numerical value is difficult, other than in a
comparative sense for different models.

For n independent Bernoulli observations, the maximized log likelihood is

n n
1yy iy ilog � 1 y � s y log � q 1 y y log 1 y � .Ž .Ž . Ž .ˆ ˆ ˆ ˆŁ Ýi i i i i i

is1 is1

Ž .The null model gives � s Ý y rn s y, so thatˆ i i

L s n y log y q 1 y y log 1 y y .Ž . Ž . Ž .0

The saturated model has a parameter for each subject and implies that
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Ž .� s y for all i. Thus, L s 0 and 6.3 simplifies toˆ i i S

L y L0 M
D s .

L0

Ž .McFadden 1974 proposed this measure.
With multiple observations at each setting of explanatory variables, the

data file can take the grouped-data form of N binomial counts rather than n
Bernoulli indicators. The saturated model then has a parameter for each
count. It gives N fitted proportions equal to the N sample proportions of

Ž .success. Then L is nonzero and 6.3 takes a different value than whenS
calculated using individual subjects. For N binomial counts, the maximized

2 2Ž .likelihoods are related to the G goodness-of-fit statistic by G M s
Ž . Ž .y2 L y L , so 6.3 becomesM S

G2 0 y G2 MŽ . Ž .
D* s .2G 0Ž .

Ž . Ž .Goodman 1971a and Theil 1970 discussed this and related partial associa-
tion measures.

With grouped data D* can be large even when predictive power is weak at
the subject level. For instance, a model can fit much better than the null
model even though fitted probabilities are close to 0.5 for the entire sample.
In particular, D* s 1 when it fits perfectly, regardless of how well one can
predict individual subject’s responses on Y with that model. Also, suppose
that the population satisfies the given model, but not the null model. As the

2Ž .sample size n increases with number of settings N fixed, G M behaves like
2Ž .a chi-squared random variable but G 0 grows unboundedly. Thus, D* ™ 1

as n ™ 	, and its magnitude tends to depend on n. This measure confounds
model goodness of fit with predictive power. Similar behavior occurs for R2

Žin regression analyses when calculated using means of Y values rather than
.individual subjects at N different x settings. It is more sensible to use D for

binary, ungrouped data.

6.2.6 Summarizing Predictive Power: Classification Tables
and ROC Curves

A classification table cross-classifies the binary response with a prediction of
whether y s 0 or 1. The prediction is y s 1 when � � � and y s 0 whenˆ ˆ ˆi 0
� F � , for some cutoff � . Most classification tables use � s 0.5 andˆ i 0 0 0
summarize predictive power by

� �sensitivity s P y s 1 y s 1 and specificity s P y s 0 y s 0Ž . Ž .ˆ ˆ
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FIGURE 6.3 ROC curve for logistic regression model with horseshoe crab data.

Ž .Recall Sections 2.1.2. Limitations of this table are that it collapses continu-
ous predictive values � into binary ones, the choice of � is arbitrary, and itˆ 0
is highly sensitive to the relative numbers of times y s 1 and y s 0.

Ž .A recei®er operating characteristic ROC curve is a plot of sensitivity as a
Ž .function of 1 y specificity for the possible cutoffs � . This curve usually0

Ž . Ž .has a concave shape connecting the points 0, 0 and 1, 1 . The higher the
area under the curve, the better the predictions. The ROC curve is more
informative than the classification table, since it summarizes predictive power
for all possible � . Figure 6.3 shows how PROC LOGISTIC in SAS reports0
the ROC curve for the model for the horseshoe crabs using width and color
as predictors.

The area under a ROC curve is identical to the value of another measure
of predictive power, the concordance index. Consider all pairs of observations
Ž .i, j such that y s 1 and y s 0. The concordance index c estimates thei j
probability that the predictions and the outcomes are concordant, the obser-

Ž .vation with the larger y also having the larger � Harrell et al. 1982 . A valueˆ
c s 0.5 means predictions were no better than random guessing. This corre-
sponds to a model having only an intercept term and an ROC curve that is a

Ž . Ž .straight line connecting points 0, 0 and 1, 1 . For the horseshoe crab data,
c s 0.639 with color alone as a predictor, 0.742 with width alone, 0.771 with
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width and color, and 0.772 with width and a dummy for whether a crab has
dark color.

ROC curves are a popular way of evaluating diagnostic tests. Sometimes
Žsuch tests have J � 2 ordered response categories rather than positive, nega-

.tive . The ROC curve then refers to the various possible cutoffs for defining a
result to be positive. It plots sensitivity against 1 y specificity for the possible

Ž . wcollapsings of the J categories to a positive, negative scale see Toledano
Ž .xand Gatsonis 1996 .

6.3 INFERENCE ABOUT CONDITIONAL ASSOCIATIONS
IN 2 � 2 � K TABLES

The analysis of the graduate admissions data in Sections 6.2.3 used the model
of conditional independence. This model is an important one in biomedical
studies that investigate whether an association exists between a treatment
variable and a disease outcome after controlling for a possibly confounding
variable that might influence that association. In this section we review the
test of conditional independence as a logit model analysis for a 2 � 2 � K

Ž .contingency table. We also present a test Mantel and Haenszel 1959 that
seems non-model-based but relates to the logit model.

We illustrate using Table 6.9, showing results of a clinical trial with eight
centers. The study compared two cream preparations, an active drug and a

TABLE 6.9 Clinical Trial Relating Treatment to Response for Eight Centers

Response

Ž .Center Treatment Success Failure Odds Ratio � var n11k 11 k

1 Drug 11 25 1.19 10.36 3.79
Control 10 27

2 Drug 16 4 1.82 14.62 2.47
Control 22 10

3 Drug 14 5 4.80 10.50 2.41
Control 7 12

4 Drug 2 14 2.29 1.45 0.70
Control 1 16

5 Drug 6 11 	 3.52 1.20
Control 0 12

6 Drug 1 10 	 0.52 0.25
Control 0 10

7 Drug 1 4 2.0 0.71 0.42
Control 1 8

8 Drug 4 2 0.33 4.62 0.62
Control 6 1

Ž .Source: Beitler and Landis 1985 .
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control, on their success in curing an infection. This table illustrates a
common pharmaceutical application, comparing two treatments on a binary
response with observations from several strata. The strata are often medical
centers or clinics; or they may be levels of age or severity of the condition
being treated or combinations of levels of several control variables; or they
may be different studies of the same sort evaluated in a meta analysis.

6.3.1 Using Logit Models to Test Conditional Independence

For a binary response Y, we study the effect of a binary predictor X,
Ž � .controlling for a qualitative covariate Z. Let � s P Y s 1 X s i, Z s k .i k

Consider the model

logit � s � q � x q � Z , i s 1, 2, k s 1, . . . , K , 6.4Ž . Ž .i k i k

where x s 1 and x s 0. This model assumes that the XY conditional odds1 2
Ž .ratio is the same at each category of Z, namely exp � . The null hypothesis

ˆ 2Ž .of XY conditional independence is H : � s 0. The Wald statistic is �rSE .0
The likelihood-ratio statistic is the difference between G2 statistics for the
reduced model

logit � s � q � Z 6.5Ž . Ž .i k k

and the full model. These tests are sensible when X has a similar effect at
each category of Z. They have df s 1.

Ž .Alternatively, since the reduced model 6.5 is equivalent to conditional
independence of X and Y, one could test conditional independence using a
goodness-of-fit test of that model. That test has df s K when X is binary.

Ž .This corresponds to comparing model 6.5 and the saturated model, which
permits � � 0 and contains XZ interaction parameters. When no interaction
exists or when interaction exists but it has minor substantive importance, it
follows from results to be presented in Section 6.4.2 that this approach is less
powerful, especially when K is large. However, when the direction of the XY
association varies among categories of Z, it can be more powerful.

6.3.2 Cochran–Mantel–Haenszel Test of Conditional Independence

Ž .Mantel and Haenszel 1959 proposed a non-model-based test of H : condi-0
tional independence in 2 � 2 � K tables. Focusing on retrospective studies

Ž .of disease, they treated response column marginal totals as fixed. Thus, in
� 4each partial table k of cell counts n , their analysis conditions on both thei jk

Ž 4 Ž .predictor totals n , n and the response outcome totals n , n .1qk 2qk q1 k q2 k
Ž .The usual sampling schemes then yield a hypergeometric distribution 3.16

for the first cell count n in each partial table. That count determines11 k
� 4n ,n , n , given the marginal totals.12 k 21 k 22 k
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Under H , the hypergeometric mean and variance of n are0 11 k

� s E n s n n rnŽ .11 k 11 k 1qk q1 k qqk

var n s n n n n rn2 n y 1 .Ž . Ž .11 k 1qk 2qk q1 k q2 k qqk qqk

Cell counts from different partial tables are independent. The test statistic
combines information from the K tables by comparing Ý n to its nullk 11 k
expected value. It equals

2Ý n y �Ž .k 11 k 11 k
CMH s . 6.6Ž .

Ý var nŽ .k 11 k

This statistic has a large-sample chi-squared null distribution with df s 1.
ŽWhen the odds ratio 
 � 1 in partial table k, we expect that n yX Y Žk . 11 k

.� � 0. When 
 � 1 in every partial table or 
 � 1 in each table,11 k X Y Žk . X Y Žk .
Ž .Ý n y � tends to be relatively large in absolute value. This test worksk 11 k 11 k

best when the XY association is similar in each partial table. In this sense it
Ž .is similar to the tests of H : � s 0 in logit model 6.4 . When the sample0

sizes in the strata are moderately large, this test usually gives similar results.
Ž . ŽIn fact, it is a score test Section 1.3.3 of H : � s 0 in that model Day and0

.Byar 1979 .
Ž .Cochran 1954 proposed a similar statistic. He treated the rows in each

2 � 2 table as two independent binomials rather than a hypergeometric.
Ž . Ž .Cochran’s statistic is 6.6 with var n replaced by11 k

var n s n n n n rn3 .Ž .11 k 1qk 2qk q1 k q2 k qqk

Ž .Because of the similarity in their approaches, we call 6.6 the
Ž .Cochran�Mantel�Haenszel CMH statistic. The Mantel and Haenszel ap-

proach using the hypergeometric is more general in that it also applies to
some cases in which the rows are not independent binomial samples from
two populations. Examples are retrospective studies and randomized clinical
trials with the available subjects randomly allocated to two treatments. In the
first case the column totals are naturally fixed. In the second, under the null
hypothesis the column margins are the same regardless of how subjects were
assigned to treatments, and randomization arguments lead to the hypergeo-
metric in each 2 � 2 table.

Ž . Ž .Mantel and Haenszel 1959 proposed 6.6 with a continuity correction.
The P-value from the test then better approximates an exact conditional test
Ž .Section 6.7.5 but it tends to be conservative. The CMH statistic generalizes

Ž .for I � J � K tables Section 7.5.3 .

6.3.3 Multicenter Clinical Trial Example

For the multicenter clinical trial, Table 6.9 reports the sample odds ratio for
each table and the expected value and variance of the number of successes
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Ž .for the drug treatment n under H : conditional independence. In each11 k 0
table except the last, the sample odds ratio shows a positive association.
Thus, it makes sense to combine results with CMH s 6.38, with df s 1.

Ž .There is considerable evidence against H P s 0.012 .0
Ž .Similar results occur in testing H : � s 0 in logit model 6.4 . The model0

ˆ 2Ž .fit has � s 0.777 with SE s 0.307. The Wald statistic is 0.777r0.307 s 6.42
Ž . Ž .P s 0.011 . The likelihood-ratio statistic equals 6.67 P s 0.010 .

6.3.4 CMH Test and Sparse Data*

Ž .In summary, for logit model 6.4 , CMH is the score statistic alternative to
the likelihood-ratio or Wald test of H : � s 0. As n ™ 	 with fixed K , the0
tests have the same asymptotic chi-squared behavior under H . An advantage0
of CMH is that its chi-squared limit also applies with an alternative asymp-
totic scheme in which K ™ 	 as n ™ 	. The asymptotic theory for likeli-

Ž .hood-ratio and Wald tests requires the number of parameters and hence K
to be fixed, so it does not apply to this scheme. An application of this type is
when each stratum has a single matched pair of subjects, one in each group.

With strata of matched pairs, n s n s 1 for each k. Then n s 2 K ,1qk 2qk
so K ™ 	 as n ™ 	. Table 6.10 shows the data layout for this situation.

ŽWhen both subjects in stratum k make the same response as in the first case
.in Table 6.10 , n s 0 or n s 0. Given the marginal counts, theq1 k q2 k

internal counts are then completely determined, and � s n and11 k 11 k
Ž . Žvar n s 0. When the subjects make differing responses as in the second11 k
. Ž .case , n s n s 1, so that � s 0.5 and var n s 0.25. Thus, aq1 k q2 k 11 k 11 k

matched pair contributes to the CMH statistic only when the two subjects’
responses differ. Let K * denote the number of the K tables that satisfy this.
Although each n can take only two values, the central limit theorem11 k
implies that Ý n is approximately normal for large K *. Thus, the distribu-k 11 k
tion of CMH is approximately chi-squared.

Usually, when K grows with n, each stratum has few observations. There
may be more than two observations, such as case�control studies that match
several controls with each case. Contingency tables with relatively few obser-
vations are referred to as sparse. The nonstandard setting in which K ™ 	 as
n ™ 	 is called sparse-data asymptotics. Ordinary ML estimation then breaks
down because the number of parameters is not fixed, instead having the same
order as the sample size. In particular, an approximate chi-squared distribu-
tion holds for the likelihood-ratio and Wald statistics for testing conditional

TABLE 6.10 Stratum Containing a Matched Pair

Response ResponseElement
of Pair Success Failure Success Failure

First 1 0 1 0
Second 1 0 0 1
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independence only when the strata marginal totals generally exceed about 5
to 10 and K is fixed and small relative to n.

6.3.5 Estimation of Common Odds Ratio

It is more informative to estimate the strength of association than to test
hypotheses about it. When the association seems stable among partial tables,
it is helpful to combine the K sample odds ratios into a summary measure of

Ž .conditional association. The logit model 6.4 implies homogeneous associa-
Ž .tion, 
 s ��� s 
 s exp � . The ML estimate of the commonX Y Ž1. X Y ŽK .

ˆŽ .odds ratio is exp � .
Other estimators of a common odds ratio are not model-based. Woolf

Ž .1955 proposed an exponentiated weighted average of the K sample log
Ž .odds ratios. Mantel and Haenszel 1959 proposed that

Ý n n rn Ý p p nŽ .k 11 k 22 k qqk k 11 � k 22 � k qqk

̂ s s , 6.7Ž .MH Ý n n rn Ý p p nŽ .k 12 k 21 k qqk k 12 � k 21 � k qqk

where p s n rn . This gives more weight to strata with larger samplei j � k i jk qqk
sizes. It is preferred over the ML estimator when K is large and the data are

ˆsparse. The ML estimator � of the log odds ratio then tends to be too large
in absolute value. For sparse-data asymptotics with only a single matched

pˆ wpair in each stratum, for instance, �™ 2�. This con®ergence in probability
ˆŽ � � .means that for any � � 0, P � y 2� � � ™ 1 as n ™ 	; see Problem

x10.24.
ˆŽ . Ž .Hauck 1979 gave an asymptotic variance for log 
 that applies for aMH

ˆŽ .fixed number of strata. In that case log 
 is slightly less efficient than theMH
ˆ Ž . Ž .ML estimator � unless � s 0 Tarone et al. 1983 . Robins et al. 1986

derived an estimated variance that applies both for these standard asymp-
totics with large n and fixed K and for sparse asymptotics in which K is also

ˆ Ž . Ž .large. Expressing 
 s RrS s Ý R r Ý S with R s n n rn ,MH k k k k k 11 k 22 k qqk
ˆŽ .their derivation showed that log 
 y log 
 is approximately proportionalMH

Ž . Ž .to R y 
S . They also showed that E R y 
S s 0 and derived the vari-
Ž .ance of R y 
S . Their result is

1
2 y1ˆ� log 
 s n n q n RŽ .ˆ ÝMH qqk 11 k 22 k k22 R k

1
y1q n n q n SŽ .Ý qqk 12 k 21 k k22S k

1
y1q n n q n S q n q n R .Ž . Ž .Ý qqk 11 k 22 k k 12 k 21 k k2 RS k
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For the eight-center clinical trial summarized by Table 6.9,

11 � 27 r73 q ��� q 4 � 1 r13Ž . Ž .

̂ s s 2.13.MH 25 � 10 r73 q ��� q 2 � 6 r13Ž . Ž .

ˆ ˆw xFor log 
 s 0.758, � log 
 s 0.303. A 95% confidence interval for theˆMH MH
Ž . Ž .common odds ratio is exp 0.758 � 1.96 � 0.303 or 1.18, 3.87 . Similar

Ž . Ž .results occur using model 6.4 . The 95% confidence interval for exp � is
Ž . Ž . Žexp 0.777 � 1.96 � 0.307 , or 1.19, 3.97 , using the Wald interval, and 1.20,
.4.02 using the likelihood-ratio interval. Although the evidence of an effect is

considerable, inference about its size is rather imprecise. The odds of success
may be as little as 20% higher with the drug, or they may be as much as four
times as high.

ˆIf the true odds ratios are not identical but do not vary drastically, 
M H
still is a useful summary of the conditional associations. Similarly, the CMH
test is a powerful summary of evidence against H : conditional indepen-0
dence, as long as the sample associations fall primarily in a single direction. It
is not necessary to assume equality of odds ratios to use the CMH test.

6.3.6 Testing Homogeneity of Odds Ratios

The homogeneous association condition 
 s ��� s 
 for 2 � 2 � KX Y Ž1. X Y ŽK .
Ž .tables is equivalent to logit model 6.4 . A test of homogeneous association is

implicitly a goodness-of-fit test of this model. The usual G2 and X 2 test
statistics provide this, with df s K y 1. They test that the K y 1 parameters

win the saturated model that are the coefficients of interaction terms cross
Ž .products of the dummy variable for x with K y 1 dummy variables for

x Ž .categories of Z all equal 0. Breslow and Day 1980, p. 142 proposed an
Ž .alternative large-sample test Note 6.5 .

For the eight-center clinical trial data in Table 6.9, G2 s 9.7 and X 2 s 8.0
Ž .df s 7 do not contradict the hypothesis of equal odds ratios. It is reason-

Žable to summarize the conditional association by a single odds ratio e.g.,
ˆ .
 s 2.1 for all eight partial tables. In fact, even with a small P-value in aMH
test of homogeneous association, if the variability in the sample odds ratios is

ˆnot substantial, a summary measure such as 
 is useful. A test ofMH
homogeneity is not a prerequisite for this measure or for testing conditional
independence.

6.3.7 Summarizing Heterogeneity in Odds Ratios

In practice, a predictor effect is often similar from stratum to stratum. In
multicenter clinical trials comparing a new drug to a standard, for example, if
the new drug is truly more beneficial, the true effect is usually positive in
each stratum.
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In strict terms, however, a model with homogeneous effects is unrealistic.
First, we rarely expect the true odds ratio to be exactly the same in each

Ž .stratum, because of unmeasured covariates that affect it. Breslow 1976
discussed modeling of the log odds ratio using a set of explanatory variables.

� Z4Second, the model regards the strata effects � as fixed effects, treatingk
them as the only strata of interest. Often the strata are merely a sampling of
the possible ones. Multicenter clinical trials have data for certain centers but
many other centers could have been used. Scientists would like their conclu-
sions to apply to all such centers, not only those in the study.

A somewhat different logit model treats the true log odds ratios in partial
Ž 2 .tables as a random sample from a N �, � distribution. Fitting the model

yields an estimated mean log odds ratio and an estimated variability about
that mean. The inference applies to the population of strata rather than only
those sampled. This type of model uses random effects in the linear predictor
to induce this extra type of variability. In Chapter 12 we discuss GLMs with
random effects, and in Section 12.3.4 we fit such a model to Table 6.9.

6.4 USING MODELS TO IMPROVE INFERENTIAL POWER

When contingency tables have ordered categories, in Section 3.4 we showed
that tests that utilize the ordering can have improved power. Testing inde-

Žpendence against a linear trend alternative in a linear logit model Sections
.5.3.4, and 5.4.6 is a way to do this. In this section we present the reason for

these power improvements.

6.4.1 Directed Alternatives

Consider an I � 2 contingency table for I binomial variates with parameters
� 4� . H : independence statesi 0

logit � s � .Ž .i

The ordinary X 2 and G2 statistics of Section 3.2.1 refer to the general
alternative,

logit � s � q � ,Ž .i i

which is saturated. They test H : � s � s ��� s � s 0 in that model,0 1 2 I
Ž .with df s I y 1 . Their general alternative treats both classifications as

2Ž . 2Ž . 2Ž .nominal. Denote these test statistics as G I and X I . Recall that G I
2Ž � . Ž .is the likelihood-ratio statistic G M M sy2 L y L for comparing0 1 0 1

Ž .the saturated model M with the independence I model M .1 0
Ordinal test statistics refer to narrower, usually more relevant, alterna-

tives. With ordered rows, an example is a test of H : � s 0 in the linear logit0
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Ž . 2Ž � . 2Ž .model, logit � s � q � x . The likelihood-ratio statistic G I L s G Ii i
2Ž .y G L compares the linear logit model and the independence model.

When a test statistic focuses on a single parameter, such as � in that model,
it has df s 1. Now, df equals the mean of the chi-squared distribution.
A large test statistic with df s 1 falls farther out in its right-hand tail than a

2Ž . 2Ž . Ž .comparable value of X I or G I with df s I y 1 . Thus, it has
a smaller P-value.

6.4.2 Noncentral Chi-Squared Distribution

2Ž � . 2Ž .To compare power of G I L and G I , it is necessary to compare their
nonnull sampling distributions. When H is false, their distributions are0
approximately noncentral chi-squared. This distribution, introduced by R. A.

Ž .Fisher in 1928, arises from the following construction: If Z � N � , 1 , i si i
1, . . . , � , and if Z , . . . , Z are independent, ÝZ 2 has the noncentral chi-1 � i
squared distribution with df s � and noncentrality parameter  sÝ�2. Itsi

Ž . Ž .mean is � q  and its variance is 2 � q 2 . The ordinary central chi-
squared distribution, which occurs when H is true, has  s 0.0

Let X 2 denote a noncentral chi-squared random variable with df s �� ,
and noncentrality . A fundamental result for chi-squared analyses is that,
for fixed ,

2 2P X � � � increases as � decreases .Ž .� , �

That is, the power for rejecting H at a fixed �-level increases as the df of0
Ž .the test decreases e.g., Das Gupta and Perlman 1974 . For fixed � , the

power equals � when  s 0, and it increases as  increases. The inverse
relation between power and df suggests that focusing the noncentrality on a
statistic having a small df value can improve power.

6.4.3 Increased Power for Narrower Alternatives

w Ž .xSuppose that X has, at least approximately, a linear effect on logit P Y s 1 .
To test independence, it is then sensible to use a statistic having strong power
for that effect. This is the purpose of the tests based on the linear logit

2Ž � .model, using the likelihood-ratio statistic G I L , the Wald statistic z s
ˆ Ž .�rSE, and the Cochran�Armitage score statistic.

2Ž � . 2Ž .When is G I L more powerful than G I ? The statistics satisfy

2 2 � 2G I s G I L q G L ,Ž . Ž . Ž .

2Ž .where G L tests goodness of fit of the linear logit model. When the linear
2Ž .logit model holds, G L has an asymptotic chi-squared distribution with
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2Ž . 2Ž � .df s I y 2; then if � � 0, G I and G I L both have approximate
noncentral chi-squared distributions with the same noncentrality. Whereas

2Ž . 2Ž � . 2Ž � .df s I y 1 for G I , df s 1 for G I L . Thus, G I L is more powerful,
since it uses fewer degrees of freedom.

2Ž .When the linear logit model does not hold, G I has greater noncentral-
2Ž � .ity than G I L , the discrepancy increasing as the model fits more poorly.

2Ž � .However, when the model approximates reality fairly well, usually G I L is
still more powerful. That test’s df value of 1 more than compensates for its
loss in noncentrality. The closer the true relationship is to the linear logit, the

2Ž � . 2Ž .more nearly G I L captures the same noncentrality as G I , and the
2Ž .more powerful it is compared to G I . To illustrate, Figure 6.4 plots power

as a function of noncentrality when df s 1 and 7. When the noncentrality of
a test having df s 1 is at least about half that of a test having df s 7, the test
with df s 1 is more powerful. The linear logit model then helps detect a key

Ž .component of an association. As Mantel 1963 argued in a similar context,
‘‘that a linear regression is being tested does not mean that an assumption of
linearity is being made. Rather it is that test of a linear component of
regression provides power for detecting any progressive association which
may exist.’’

The improved power results from sacrificing power in other cases. The
2Ž . 2Ž � .G I test can have greater power than G I L when the linear logit model

describes reality very poorly.
The remark about the desirability of focusing noncentrality holds for

nominal variables also. For instance, consider testing conditional indepen-
Ž .dence in 2 � 2 � K tables. One approach tests � s 0 in model 6.4 , using

Ž .df s 1. Another approach tests goodness of fit of model 6.5 , using df s K

FIGURE 6.4 Power and noncentrality, for df s 1 and df s 7, when � s 0.05.
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TABLE 6.11 Change in Clinical Condition by Degree of Infiltration

Degree of Infiltration Proportion
Clinical Change High Low High

Worse 1 11 0.08
Stationary 13 53 0.20
Slight improvement 16 42 0.28
Moderate improvement 15 27 0.36
Marked improvement 7 11 0.39

Ž .Source: Reprinted with permission from the Biometric Society Cochran 1954 .

Ž . Ž .Section 6.3.1 . When model 6.4 holds, both tests have the same noncentral-
ity. Thus, the test of � s 0 is more powerful, since is has fewer degrees of
freedom.

6.4.4 Treatment of Leprosy Example

Table 6.11 refers to an experiment on the use of sulfones and streptomycin
drugs in the treatment of leprosy. The degree of infiltration at the start of the
experiment measures a type of skin damage. The response is the change in
the overall clinical condition of the patient after 48 weeks of treatment. We

� 4use response scores y1, 0, 1, 2, 3 . The question of interest is whether
subjects with high infiltration changed differently from those with low infil-
tration.

Here, the clinical change response variable is ordinal. It seems natural to
Ž .compare the mean change for the two infiltration levels. Cochran 1954 and

Ž .Yates 1948 noted that this analysis is identical to a trend test treating the
binary variable as the response. That test is sensitive to linearity between
clinical change and the proportion of cases with high infiltration.

2Ž . Ž .The test G I s 7.28 df s 4 does not show much evidence of associa-
Ž .tion P s 0.12 , but it ignores the row ordering. The sample proportion of

high infiltration increases monotonically as the clinical change improves. The
2Ž � .test of H : � s 0 in the linear logit model has G I L s 6.65, with df s 10

Ž .P s 0.01 . It gives strong evidence of more positive clinical change at the
higher level of infiltration. Using the ordering by decreasing df from 4 to 1

2Ž .pays a strong dividend. In addition, G L s 0.63 with df s 3 suggests that
the linear trend model fits well.

6.4.5 Model Smoothing Improves Precision of Estimation

Using directed alternatives can improve not only test power, but also estima-
tion of cell probabilities and summary measures. In generic form, let � be
true cell probabilities in a contingency table, let p denote sample proportions,
and let � denote model-based ML estimates of �.ˆ
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When � satisfy a certain model, both � for that model and p areˆ
consistent estimators of �. The model-based estimator � is better, as its trueˆ
asymptotic standard error cannot exceed that of p. This happens because of
model parsimony: The unsaturated model, on which � is based, has fewerˆ
parameters than the saturated model, on which p is based. In fact, model-

Ž .based estimators are also more efficient in estimating functions g � of cell
probabilities. For any differentiable function g,

' 'asymp. var n g � F asymp. var n g p .Ž . Ž .ˆ

In Section 14.2.2 we prove this result. It holds more generally than for
Ž .categorical data models Altham 1984 . This is one reason that statisticians

prefer parsimonious models.
In reality, of course, a chosen model is unlikely to hold exactly. However,

when the model approximates � well, unless n is extremely large, � is stillˆ
better than p. Although � is biased, it has smaller variance than p , andˆ i i

Ž . Ž .MSE � � MSE p when its variance plus squared bias is smaller thanˆ i i
Ž .var p . In Section 3.3.7 we showed that in two-way tables, independence-i

model estimates of cell probabilities can be better than sample proportions
even when that model does not hold.

6.5 SAMPLE SIZE AND POWER CONSIDERATIONS*

In any statistical procedure, the sample size n influences the results. Strong
effects are likely to be detected even when n is small. By contrast, detection
of weak effects requires large n. A study design should reflect the sample size
needed to provide good power for detecting the effect.

6.5.1 Sample Size and Power for Comparing Two Proportions

For test statistics having large-sample normal distributions, power calcula-
tions can use ordinary methods. To illustrate, consider a test comparing
binomial parameters � and � for two medical treatments. An experiment1 2
plans independent samples of size n s nr2 receiving each treatment. Thei
researchers expect � f 0.6 for each, and a difference of at least 0.10 isi
important. In testing H : � s � , the variance of the difference � y � inˆ ˆ0 1 2 1 2

Ž . Ž . Ž . Ž .sample proportions is � 1 y � r nr2 q � 1 y � r nr2 f 0.6 � 0.41 1 2 2
Ž .� 4rn s 0.96rn. In particular,

� y � y � y �Ž .ˆ ˆŽ .1 2 1 2
z s 1r20.96rnŽ .

has approximately a standard normal distribution for � and � near 0.6.1 2
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The power of an �-level test of H is approximately0

� �� y �ˆ ˆ1 2
P G z .�r21r20.96rnŽ .

When � y � s 0.10, for � s 0.05, this equals1 2

� y � y 0.10ˆ ˆŽ .1 2 1r2P � 1.96 y 0.10 nr0.96Ž .1r20.96rnŽ .

� y � y 0.10ˆ ˆŽ .1 2 1r2qP � y1.96 y 0.10 nr0.96Ž .1r20.96rnŽ .

1r2 1r2s P z � 1.96 y 0.10 nr0.96 q P z � y1.96 y 0.10 nr0.96Ž . Ž .

1r2 1r2s 1 y � 1.96 y 0.10 nr0.96 q � y1.96 y 0.10 nr0.96 ,Ž . Ž .

where � is the standard normal cdf. The power is approximately 0.11 when
n s 50 and 0.30 when n s 200. It is not easy to attain significance when
effects are small and the sample is not very large. Figure 6.5 shows how the
power increases in n when � y � s 0.1. By contrast, it shows how the1 2
power improves when � y � s 0.2.1 2

Ž . Ž . ŽFor a given P type I error s � and P type II error s � and hence
.power s 1 y � , one can determine the sample size needed to attain those

FIGURE 6.5 Approximate power for testing equality of proportions, with true values near
middle of range and � s 0.05.
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values. A study using n s n requires approximately1 2

2 2n s n s z q z � 1 y � q � 1 y � r � y � .Ž . Ž . Ž . Ž .1 2 �r2 � 1 1 2 2 1 2

For a test with � s 0.05 and � s 0.10 when � and � are truly about 0.601 2
and 0.70, n s n s 473. This formula also provides the sample sizes needed1 2
for a comparable confidence interval for � y � . With about 473 subjects in1 2
each group, a 95% confidence interval has only a 0.10 chance of containing 0
when actually, � s 0.60 and � s 0.70.1 2

This sample-size formula is approximate and may underestimate slightly
the actual values required. It is adequate for most practical work, though, in

Ž .which only rough conjectures are available for � and � . Fleiss 19811 2
showed more precise formulas.

6.5.2 Sample Size Determination in Logistic Regression

w Ž .xConsider now the model logit � x s � q � x , i s 1, . . . , n, in which x isi i
w Ž . xquantitative. We use � so as not to confuse with � s P type II error . The

sample size needed to achieve a certain power for testing H : � s 0 depends0
� Ž .4on the variance of � . This depends on � x , and formulas for n use a guessˆ i

Ž .for � s � x and the distribution of X. The effect size is the log odds ratio �ˆ
Ž . Ž .comparing � x to � x q s , the probability for a standard deviation abovex

the mean of x. For a one-sided test when X is approximately normal, Hsieh
Ž .1989 derived

22 2n s z q z exp y� r4 1 q 2�� r �� ,Ž . Ž .Ž . ˆ ˆ� �

where

2 2 2� s 1 q 1 q � exp 5� r4 r 1 q exp y� r4 .Ž . Ž . Ž .
� �The value n decreases as � ™ 0.5 and as � increases.ˆ

We illustrate for modeling the effect of x s cholesterol level on the
probability of severe heart disease for a population for which that probability
at an average level of cholesterol is about 0.08. Researchers want the test to
be sensitive to a 50% increase in this probability, for a standard deviation
increase in cholesterol. The odds of severe heart disease at the mean
cholesterol level equal 0.08r0.92 s 0.087, and the odds one standard devia-
tion above the mean equal 0.12r0.88 s 0.136. The odds ratio equals

Ž .0.136r0.087 s 1.57, and � s log 1.57 s 0.450. For � s 0.05 and � s 0.10,
� s 1.306 and n s 612.

6.5.3 Sample Size in Multiple Logistic Regression

A multiple logistic regression model requires larger n to detect effects. Let R
denote the multiple correlation between the predictor X of interest and the



SAMPLE SIZE AND POWER CONSIDERATIONS 243

Ž 2 .others in the model. The formula for n above divides by 1 y R . In that
formula, � is evaluated at the mean of all the explanatory variables, and theˆ
odds ratio refers to the effect of X at the mean level of the other predictors.

Consider the example in Section 6.5.2 when blood pressure is also a
predictor. If the correlation between cholesterol and blood pressure is 0.40,

w Ž .2 xwe need n f 612r 1 y 0.40 s 729.
These formulas provide, at best, rough indications of sample size. Most

applications have only a crude guess for � and R, and X may be far fromˆ
Ž .normally distributed. For other work on this problem, see Hsieh et al. 1998

Ž .and Whittemore 1981 .

6.5.4 Power for Chi-Squared Tests in Contingency Tables

When hypotheses are false, squared normal and X 2 and G2 statistics have
Ž .large-sample noncentral chi-squared distributions Section 6.4.2 . Suppose

that H is equivalent to model M for a contingency table. Let � denote the0 i
Ž .true probability in cell i, and let � M denote the value to which the MLi

Ž .estimate � for model M converges, where Ý� sÝ� M s 1. For aˆ i i i
multinomial sample of size n, the noncentrality parameter for X 2 equals

2
� y � MŽ .i i

 s n . 6.8Ž .Ý
� MŽ .ii

This has the same form as X 2, with � in place of the sample proportion pi i
Ž . 2and � M in place of � . The noncentrality parameter for G equalsˆi i

� i
 s 2n � log . 6.9Ž .Ý i � MŽ .ii

TABLE 6.12 Power of Chi-Squared Test for � s 0.05

Noncentrality

df 0.0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 5.0 7.0 10.0 15.0 25.0

1 .050 .073 .097 .121 .146 .170 .293 .410 .516 .609 .754 .885 .972 .998
2 .050 .065 .081 .098 .115 .133 .226 .322 .415 .504 .655 .815 .944 .996
3 .050 .062 .075 .088 .102 .116 .192 .275 .358 .440 .590 .761 .917 .993
4 .050 .060 .071 .082 .093 .106 .172 .244 .320 .396 .540 .716 .891 .989
6 .050 .058 .066 .075 .084 .094 .146 .206 .270 .336 .468 .644 .843 .980
8 .050 .057 .064 .071 .079 .087 .131 .182 .238 .296 .417 .588 .799 .968

10 .050 .056 .062 .068 .075 .082 .121 .166 .215 .268 .379 .542 .760 .956
20 .050 .053 .056 .060 .063 .066 .096 .125 .158 .193 .273 .402 .611 .883
50 .050 .052 .054 .056 .059 .061 .076 .092 .110 .129 .173 .250 .398 .687

Source: Reprinted with permission from G. E. Haynam, Z. Govindarajulu, and F. C. Leone, in
ŽSelected Tables in Mathematical Statistics, eds. H. L. Harter and D. B. Owen Chicago: Markham,

.1970 .
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Ž .When H is true, all � s � M . Then, for either statistic,  s 0 and the0 i i
central chi-squared distribution applies.

To determine the approximate power for a chi-squared test with df s � ,
Ž . � 4 Ž . � Ž .41 choose a hypothetical set of true values � , 2 calculate � M byi i

� 4 Ž .fitting to � the model M for H , 3 calculate the noncentrality parameteri 0
Ž . w 2 2Ž .x, and 4 calculate P X � � � . Table 6.12 shows an excerpt from a� , �

table of noncentral chi-squared probabilities for step 4 with � s 0.05.

6.5.5 Power for Testing Conditional Independence

Ž .We use an example based on one in O’Brien 1986 . A standard fetal heart
rate monitoring test predicts whether a fetus will require nonroutine care

Ž .following delivery. The standard test has categories worrisome, reassuring .
The response Y is whether the newborn required some nonroutine medical

Ž .care during the first week after birth 1 s yes, 0 s no . A new fetal heart
Žrate monitoring test is developed, having categories very worrisome, some-

.what worrisome, reassuring . A physician plans to study whether this new test
can help make predictions about the outcome; that is, given the result of the
standard test, is there an association between the response and the result of
the new test? A relevant statistic tests the effect of the new monitoring test in

Ž . Ž .the logit model having the new test N and standard test S as qualitative
predictors.

To help select n, a statistician asks the physician to conjecture about the
joint distribution of the explanatory variables, with questions such as ‘‘What
proportion of the cases do you think will be scored ‘reassuring’ by both

Ž .tests?’’ For each NS combination, the physician also guessed P Y s 1 .
Table 6.13 shows one scenario for marginal and conditional probabilities.

� 4These yield a joint distribution � from their product, such as 0.04 � 0.40i jk
s 0.016 for the proportion of cases judged worrisome by the standard test
and very worrisome by the new test and requiring nonroutine medical care.

Ž . Ž .These joint probabilities yield fitted probabilities � M and � M for the0 1
Ž � 4null and alternative logit models. One can get these by entering � ini jk

TABLE 6.13 Scenario for Power Computation

Joint
Ž .Standard New Probability P nonroutine care

Worrisome Very worrisome 0.04 0.40
Somewhat worrisome 0.08 0.32
Reassuring 0.04 0.27

Reassuring Very worrisome 0.02 0.30
Somewhat worrisome 0.18 0.22
Reassuring 0.64 0.15

Ž .Source: Reprinted with permission from O’Brien 1986 .
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percentage form as counts in software for logistic regression, fit the relevant
.model, and divide the fitted counts by 100 to get the fitted joint probabilities.

Ž .The likelihood-ratio test comparing these models has noncentrality 6.9 with
Ž . Ž . Ž .� M playing the role of � and � M playing the role of � M .1 0
For the scenario in Table 6.13, the noncentrality equals 0.00816n, with

df s 2. For n s 400, 600, and 1000, the approximate powers when � s 0.05
are 0.35, 0.49, and 0.73. This scenario predicts 64% of the observations to
occur at only one combination of the factors. The lack of dispersion for the
factors weakens the power.

6.5.6 Effects of Sample Size on Model Selection and Inference

The effects of sample size suggest some cautions for model selection. For
small n, the most parsimonious model accepted in a goodness-of-fit test may
be quite simple. By contrast, larger samples usually require more complex
models to pass goodness-of-fit tests. Then, some effects that are statistically
significant may be weak and substantively unimportant. With large n it may
be adequate to use a model that is simpler than models that pass goodness-
of-fit tests. An analysis that focuses solely on goodness-of-fit tests is incom-
plete. It is also necessary to estimate model parameters and describe strengths
of effects.

These remarks merely reflect limitations of significance testing. Null
hypotheses are rarely true. With large enough n, they will be rejected. A
more relevant concern is whether the difference between true parameter
values and null hypothesis values is sufficient to be important. Many method-
ologists overemphasize testing and underutilize estimation methods such as
confidence intervals. When the P-value is small, a confidence interval speci-
fies the extent to which H may be false, thus helping us determine whether0
rejecting it has practical importance. When the P-value is not small, the
confidence interval indicates whether some plausible parameter values are
far from H . A wide confidence interval containing the H value indicates0 0
that the test had weak power at important alternatives.

6.6 PROBIT AND COMPLEMENTARY LOG-LOG MODELS*

For binary responses, in this section we discuss two alternatives to logit
Ž .models. Like the logit model, these models have form 4.8 ,

� x s � � q � x 6.10Ž . Ž . Ž .
for a continuous cdf �. The following argument motivates this class.

6.6.1 Tolerance Motivation for Binary Response Models

In toxicology, binary response models describe the effect of dosage of a toxin
on whether a subject dies. The tolerance distribution provides justification for
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Ž .model 6.10 . Let x denote the dosage level. For a randomly selected subject,
let Y s 1 if the subject dies. Suppose that the subject has tolerance T for the

Ž . Ž .dosage, with Y s 1 equivalent to T F x . For instance, an insect survives if
the dosage x is less than T and dies if the dosage is at least T. Tolerances

Ž . Ž .vary among subjects, and let F t s P T F t . For fixed dosage x, the
probability a randomly selected subject dies is

�� x s P Y s 1 X s x s P T F x s F x .Ž . Ž . Ž . Ž .

That is, the appropriate binary model is the one having the shape of the cdf
F of the tolerance distribution. Let � denote the standard cdf for the family
to which F belongs. A common standardization uses the mean and standard
deviation of T , so that

� x s F x s � x y � r� .Ž . Ž . Ž .

Ž . Ž .Then, the model has form � x s � � q � x .

6.6.2 Probit Models

Toxicological experiments often measure dosage as the log concentration
Ž .Bliss 1935 . Often, the tolerance distribution for the dosage is approximately
Ž 2 . Ž 2 . Ž .N �, � for unknown � and � . If F is the N �, � cdf, then � x has the

Ž . Ž .form � x s � � q � x , where � is the standard normal cdf, � sy�r�
and � s 1r� . In GLM form,

y1� � x s � q � x 6.11Ž . Ž .
y1Ž .is the probit model. The probit link function is � � . Whereas the cdf maps

Ž . Ž .the real line onto the 0, 1 probability scale, the inverse cdf maps the 0, 1
Ž .scale for � x onto the real line values for linear predictors in binary

response models.
Ž . w Ž . xThe response curve for � x or for 1 y � x , when � � 0 has the

appearance of the normal cdf with mean � sy�r� and standard deviation
� �� s 1r � . Since 68% of the normal density falls within a standard devia-

� � Ž .tion of the mean, 1r � is the distance between x values where � x s 0.16
Ž . Ž . Ž .or 0.84 and where � x s 0.50. The rate of change in � x is �� x r� x s

Ž . Ž .�� � q � x , where � � is the standard normal density function. The rate is
Ž . Ž .1r2highest when � q � x s 0 i.e., at x sy�r� , where it equals �r 2� s

1Ž . Ž .0.40� for � s 3.14 . . . . At that point, � x s .2
Ž .By comparison, in logistic regression with parameter � , the curve for � x

'� � Ž .is a logistic cdf with standard deviation �r � 3 . Its rate of change in � x
1Ž .at x sy�r� is 0.25�. The rates of change where � x s are the same2

for the cdf ’s corresponding to the probit and logistic curves when the logistic
� is 0.40r0.25 s 1.6 times the probit �. The standard deviations are the

'same when the logistic � is �r 3 s 1.8 times the probit �. When both
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models fit well, parameter estimates in logistic regression are about 1.6 to 1.8
times those in probit models.

Ž .The likelihood equations that 4.24 showed for binomial regression mod-
Ž .els apply to probit models see also Problem 6.32 . One can solve them using

Ž .the Fisher scoring algorithm for GLMs Bliss 1935, Fisher 1935b .
Newton�Raphson yields the same ML estimates but slightly different stan-
dard errors. For the information matrix inverted to obtain the asymptotic
covariance matrix, Newon�Raphson uses observed information, whereas
Fisher scoring uses expected information. These differ for binary links other
than the logit.

6.6.3 Beetle Mortality Example

Table 6.14 reports the number of beetles killed after 5 hours of exposure to
Ž .gaseous carbon disulfide at various concentrations. Figure 6.6 plots as dots

the proportion killed against the log concentration. The proportion jumps up
at about x s 1.8, and it is close to 1 above there.

The ML fit of the probit model is

y1� � x sy34.96 q 19.74 x .Ž .ˆ

Ž .For this fit, � x s 0.5 at x s 34.96r19.74 s 1.77. The fit corresponds to aˆ
normal tolerance distribution with � s 1.77 and � s 1r19.74 s 0.05. The

Ž . Ž 2 .curve for � x is that of a N 1.77, 0.05 cdf.ˆ
Ž .At dosage x with n beetles, n � x is the fitted count for death,ˆi i i i

i s 1, . . . , 8. Table 6.14 reports the fitted values and Figure 6.6 shows the fit.
The table also shows fitted values for the linear logit model. These models fit
similarly and rather poorly. The G2 goodness-of-fit statistic equals 11.1 for
the logit model and 10.0 for the probit model, with df s 6.

TABLE 6.14 Beetles Killed after Exposure to Carbon Disulfide

Fitted ValuesNumber Number
Log Dose of Beetles Killed Comp. Log-Log Probit Logit

1.691 59 6 5.7 3.4 3.5
1.724 60 13 11.3 10.7 9.8
1.755 62 18 20.9 23.4 22.4
1.784 56 28 30.3 33.8 33.9
1.811 63 52 47.7 49.6 50.0
1.837 59 53 54.2 53.4 53.3
1.861 62 61 61.1 59.7 59.2
1.884 60 60 59.9 59.2 58.8

Ž .Source: Data reprinted with permission from Bliss 1935 .
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FIGURE 6.6 Proportion of beetles killed versus log dosage, with fits of probit and complemen-
tary log-log models.

6.6.4 Complementary Log-Log Link Models

The logit and probit links are symmetric about 0.5, in the sense that

link � x sylink 1 y � x .Ž . Ž .

To illustrate,

logit � x s log � x r 1 y � xŽ . Ž . Ž .Ž .
sylog 1 y � x r� x sylogit 1 y � x .Ž . Ž . Ž .Ž .

Ž .This means that the response curve for � x has a symmetric appearance
Ž . Ž .about the point where � x s 0.5, so � x approaches 0 at the same rate it

approaches 1. Logit and probit models are inappropriate when this is badly
violated.

The response curve

� x s 1 y exp yexp � q � x 6.12Ž . Ž . Ž .

Ž .has the shape shown in Figure 6.7. It is asymmetric, � x approaching 0
fairly slowly but approaching 1 quite sharply. For this model,

log ylog 1 y � x s � q � x .Ž .Ž .

The link for this GLM is called the complementary log-log link, since the
Ž .log-log link applies to the complement of � x .
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FIGURE 6.7 Model with complementary log�log link.

Ž .To interpret model 6.12 , we note that at x and x ,1 2

log ylog 1 y � x y log ylog 1 y � x s � x y x ,Ž . Ž . Ž .Ž . Ž .2 1 2 1

so that

log 1 y � xŽ .2
s exp � x y xŽ .2 1log 1 y � xŽ .1

and

w Ž .xexp � x yx2 11 y � x s 1 y � x .Ž . Ž .2 1

For x y x s 1, the complement probability at x equals the complement2 1 2
Ž .probability at x raised to the power exp � .1

Ž .A related model to 6.12 is

� x s exp yexp � q � x . 6.13Ž . Ž . Ž .

Ž .For it, � x approaches 0 sharply but approaches 1 slowly. As x increases,
the curve is monotone decreasing when � � 0, and monotone increasing
when � � 0. In GLM form it uses the log-log link

log ylog � x s � q � x .Ž .Ž .

When the complementary log-log model holds for the probability of a
success, the log-log model holds for the probability of a failure.

Ž . Ž .Model 6.13 with log-log link is the special case of 6.10 with cdf of the
Ž .extreme ®alue or Gumbel distribution. The cdf equals

F x s exp yexp y x y a rb� 4Ž . Ž .
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for parameters b � 0 and y	 � a � 	. It has mean a q 0.577b and
'standard deviation � br 6 . Models with log-log links can be fitted using the

Fisher scoring algorithm for GLMs.

6.6.5 Beetle Mortality Example Revisited

Ž .For the beetle mortality data Table 6.14 , the complementary log-log model
ˆhas ML estimates � sy39.52 and � s 22.01. At dosage x s 1.7, the fittedˆ

Ž . � w Ž .x4probability of survival is 1 y � x s exp yexp y39.52 q 22.01 1.7 sˆ
0.885, whereas at x s 1.8 it is 0.332 and at x s 1.9 it is 5 � 10y5. The
probability of survival at dosage x q 0.1 equals the probability at dosage x

Ž . Ž .9.03raised to the power exp 22.01 � 0.1 s 9.03. For instance, 0.332 s 0.885 .
Table 6.14 shows the fitted values and Figure 6.6 shows the fit. They are

Ž 2 .close to the observed death counts G s 3.5, df s 6 . The fit seems ade-
Ž . Ž .quate. Aranda-Ordaz 1981 and Stukel 1988 discussed these data further.

6.7 CONDITIONAL LOGISTIC REGRESSION AND EXACT
DISTRIBUTIONS*

ML estimators of logistic model parameters work best when the sample size
n is large compared to the number of parameters. When n is small or when
the number of parameters grows as n does, improved inference results using
conditional maximum likelihood. In this section we present this approach and
in Section 10.2 apply it with matched case�control studies.

6.7.1 Conditional Likelihood

This conditional likelihood approach eliminates nuisance parameters by
conditioning on their sufficient statistics. This generalizes Fisher’s method for

Ž .2 � 2 tables Section 3.5 . The conditional likelihood refers to a conditional
distribution defined for potential samples that provide the same information
about the nuisance parameters that occurs in the observed sample.

We begin with a general exposition and then discuss special cases. Let yi
Ždenote the binary response for subject i, i s 1, . . . , N. For now, each yi

.refers to a single trial, so n s 1. Let x be the value of predictor j for thati i j
subject, j s 1, . . . , p. The model is

pexp y � qÝ � xŽ .i js1 j i j
P Y s y s , 6.14Ž . Ž .i i p1 q exp � qÝ � xŽ .js1 j i j

Ž .where substituting y s 1 gives the usual expression, such as 5.15 . Here, wei
explicitly separate the intercept from the coefficients of the p predictors. For
N independent observations,

pexp Ý y � qÝ Ý y x �Ž . Ž .i i js1 i i i j j
P Y s y , . . . , Y s y s . 6.15Ž . Ž .1 1 N N pŁ 1 q exp � qÝ � xŽ .i js1 j i j
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From this likelihood function, the sufficient statistic for � is Ý y x , j sj i i i j
1, . . . , p. The sufficient statistic for � is Ý y , the total number of successes.i i

Usually, some parameters refer to effects of primary interest. Others may
be there to adjust for relevant effects, but their values are not of special
interest. We can eliminate the latter parameters from the likelihood by

Žconditioning on their sufficient statistics. We illustrate by eliminating � . In
Section 10.2.5 we show that for models for matched case�control studies,
intercept terms cause difficulties with inference about the primary parame-

.ters, so it can be helpful to eliminate them. Since the sufficient statistic for �
is Ý y , we condition on Ý y . Suppose that Ý y s t. Denote the conditionali i i i i i
reference set of samples having the same value of Ý y as observed byi i

S t s y*, . . . , y* : y * s t .Ž . Ž . Ý1 N i½ 5
i

� 4With y such that Ý y s t, the conditional likelihood function equalsi i i

P Y s y , . . . , Y s yŽ .1 1 N N
P Y s y , . . . , Y s y y s t sÝ1 1 N N iž / Ý P Y s y *, . . . , Y s y *Ž .SŽ t . 1 1 N Ni

p pexp t� qÝ Ý y x � Ł 1 q exp � qÝ � xŽ . Ž .js1 i i i j j i js1 j i j
s p pÝ exp t� qÝ Ý y *x � rŁ 1 q exp � qÝ � xŽ . Ž .SŽ t . js1 i i i j j i js1 j i j

pexp Ý Ý y x �Ž .js1 i i i j j
s .pÝ exp Ý Ý y *x �Ž .SŽ t . js1 i i i j j

This does not depend on � .
A conditional likelihood is used just like an ordinary likelihood. For the

parameters in it, their conditional ML estimates are the values maximizing it.
Calculated using iterative methods, the estimators are asymptotically normal
with covariance matrix equal to the negative inverse of the matrix of second
partial derivatives of the conditional log likelihood.

6.7.2 Small-Sample Conditional Inference for Logistic Regression

For small samples, inference for a parameter uses the conditional distribu-
tion after eliminating all other parameters. With it, one can calculate proba-

Žbilities such as P-values exactly rather than with crude approximations Cox
.1970 .

Ž .For instance, suppose that inference focuses on � in model 6.14 . Top
eliminate other parameters, we condition on their sufficient statistics

Ž .T sÝ y x , j s 0, . . . , p y 1 where x s 1 . With an argument like thatj i i i j i0
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just shown, one obtains the conditional distribution

�P Y s y , . . . , Y s y T s t , j s 0, . . . , p y 1Ž .1 1 N N j j

exp Ý y x � exp t �Ž . Ž .i i i p p p p
s s ,

Ý exp t *�Ý exp Ý y *x � Ž .Ž . SŽ t , . . . , t . p pSŽ t , . . . , t . i i i p p 0 py10 py1

where

S t , . . . , t s y*, . . . , y* : y *x s t , j s 0, . . . , p y 1 .Ž .Ž . Ý0 py1 1 N i i j j½ 5
i

This depends only on � . Inference for � uses the conditional distributionp p
Ž .of its sufficient statistic, T sÝ y x , given the others. Let c t , . . . , t , tp i i i p 0 py1

Ž .denote the number of data vectors in S t , . . . , t for which T s t. The0 py1 p
conditional distribution of T isp

c t , . . . , t , t exp t�Ž . Ž .0 py1 p
�P T s t T s t , j s 0, . . . , p y 1 s ,Ž .p j j Ý c t , . . . , t , u exp u�Ž . Ž .u 0 py1 p

6.16Ž .

where the denominator summation refers to the possible values u of T .p
For testing H : � s 0, the conditional distribution simplifies. For H :0 p a

� � 0 and observed T s t , the exact conditional P-value isp p obs

Ý c t , . . . , t ,tŽ .tG t 0 py1obs�P T s t T s t , j s 0, . . . , p y 1 s ,Ž .Ý p j j Ý c t , . . . , t , uŽ .u 0 py1tGt obs

the proportion of data configurations in the conditional set that have the
sufficient statistic for � at least as large as observed. Implementing thisp

� Ž .4inference requires calculating c t , . . . , t , u . For all but the simplest0 py1
Žproblems, computations are intensive and require specialized software e.g.,

.LogXact of Cytel Software or PROC LOGISTIC in SAS . In the remainder
of this section we consider special cases for small-sample inference.

6.7.3 Small-Sample Conditional Inference for 2 � 2 Contingency Tables

First, consider logistic regression with a single predictor x,

logit P Y s 1 s � q � x , i s 1, . . . , N , 6.17Ž . Ž .i i

when x takes only two values. The model applies to 2 � 2 tables, wherei
x s 1 denotes row 1 and x s 0 denotes row 2. The sufficient statistic for �i i
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is Ý y , which is the first column total. The sufficient statistic for � isi i
T sÝ y x , which simplifies to the number of successes in the first row.i i i
Equivalently, the sufficient statistics for the model are the numbers of
successes in the two rows. Let s and s denote these binomial variates. The1 2
row totals n and n are their indices.1 2

To eliminate � , we condition on s s s q s , the first column total. Since1 2
N s n q n is fixed, so then is the other column marginal total. Fixing both1 2
sets of marginal totals yields hypergeometric probabilities for s that depend1

w Ž . Ž .xonly on � see 3.20 , identifying 
 s exp � . In that case the conditional
N y nn 11Ž . Ž .distribution satisfies 6.16 with c t , t s and with t s s and0 0ž / t y tž /t 0

t s s . The resulting exact conditional test that � s 0 is Fisher’s exact test for1
Ž .2 � 2 tables Section 3.5.1 .

6.7.4 Small-Sample Conditional Inference for Linear Logit Model

Ž .The linear logit model, logit � s � q � x , applies to I � 2 tables withi i
� 4ordered rows. We discussed this model in Section 5.3.4. For it, the data yi

� Ž .4 � 4are I independent bin n , � counts, with fixed row totals n . Condition-i i i
ing on s sÝ y and hence the column totals yields a conditional likelihoodi
free of � . Exact inference about � uses its sufficient statistic, T sÝ x y .i i

Ž .From 6.16 its distribution has the form

� tc s, t eŽ .
P T s t y s s ; � s . 6.18Ž .Ý i � už / Ý c s, u eŽ .ui

niŽ .Here, c s, u equals the sum of Ł for all tables with the giveni ž /yimarginal totals that have T s u.
When � s 0, the cell counts have the multiple hypergeometric distribu-
Ž .tion 3.19 . To test this, ordering the tables with the given margins by T is

Žequivalent to ordering them by the Cochran�Armitage statistic Section
.5.3.5 . Thus, this test for the linear logit model is an exact trend test.

In Section 5.3.5 we applied the Cochran�Armitage test to Table 5.3 on
maternal alcohol consumption and infant malformation. Even though n s
32,573, the table is highly unbalanced, with both very small and very large
counts. It is safer to use small-sample methods. For the exact conditional
trend test with the same scores, the one-sided P-value for H : � � 0 isa
0.0168. The two-sided P-value is 0.0172, reflecting asymmetry of the condi-
tional distribution, given the marginal counts. This is not much different from
the two-sided P-value of 0.010 obtained with the large-sample Cochran�
Armitage test.
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6.7.5 Small-Sample Tests of Conditional Independence in 2 � 2 � K Tables

� 4For 2 � 2 � K tables n , the Cochran�Mantel�Haenszel test uses Ý n .i jk k 11 k
Ž .For logit model 6.4 , this is the sufficient statistic for � , the effect of X. To

conduct a small-sample test of � s 0, one needs to eliminate the other
model parameters. Constructing the likelihood reveals that the sufficient

� Z4 � 4statistics for � are the column marginal totals n in each partial table.k qj k
When X and Z are predictors, it is natural to treat the numbers of trials
� 4n at each combination of XZ values as fixed. Thus, exact inferenceiqk
about � conditions on the row and column totals in each stratum.

Conditional on the strata margins, an exact test uses Ý n . Hypergeo-k 11 k
metric probabilities occur in each partial table for the independent null

� 4distributions of n , k s 1, . . . , K . The product of the K mass functions11 k
� 4 w Ž .gives the null joint distribution of n , k s 1, . . . , K . This is 6.19 below,11 k

xsetting 
 s 1. This determines the null distribution of Ý n . Fork 11 k
H : � � 0, the P-value is the null probability that Ý n is at least as largea k 11 k

Ž .as observed, for the fixed strata marginal totals. Mehta et al. 1985 pre-
sented a fast algorithm. The test simplifies to Fisher’s exact test when K s 1.

6.7.6 Promotion Discrimination Example

Table 6.15 refers to U.S. government computer specialists of similar seniority
considered for promotion. The table cross-classifies promotion decision by
employee’s race, considered for three separate months. We test conditional

Ž .independence of promotion decision and race, or H : � s 0, in model 6.4 .0
The table contains several small counts. The overall sample size is not small
Ž . Ž .n s 74 , but one marginal count collapsing over month of decision equals
zero, so we might be wary of using the CMH test.

Ž .For H : � � 0 i.e., odds ratio � 1 , the probability of promotion wasa
lower for black employees than for white employees. For the margins of the
partial tables in Table 6.15, n can range between 0 and 4, n can range111 112
between 0 and 4, and n can range between 0 and 2. The total Ý n can113 k 11 k
range between 0 and 10. The sample data are the most extreme possible

TABLE 6.15 Promotion Decisions by Race and by Month

July August September
Promotions Promotions Promotions

Race Yes No Yes No Yes No

Black 0 7 0 7 0 8
White 4 16 4 13 2 13

ŽSource: J. Gastwirth, Statistical Reasoning in Law and Public Policy San Diego, CA: Academic
.Press, 1988 , p. 266.
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result in each case. The observed Ý n s 0, and the P-value is the nullk 11 k
probability of this outcome. Software provides P s 0.026. A two-sided P-
value, based on summing the probabilities of all tables no more likely than
the observed table, equals 0.056.

6.7.7 Exact Conditional Estimation and Comparison of Odds Ratios

Ž .For model 6.4 of homogeneous association in 2 � 2 � K tables, the
Ž .ordinary ML estimator of the odds ratio 
 s exp � behaves poorly for

sparse-data asymptotics. The conditional ML estimator maximizes the condi-
tional likelihood function after reducing the parameter space by conditioning

Žon sufficient statistics for the other parameters Andersen 1970; Birch
.1964b .

� 4 � 4For cell counts n , given n , n for all k, the conditional probabil-i jk iqk qj k
Ž .ity mass function that n s t , . . . , n s t is the product of the func-111 1 11 K K

Ž .tions 3.20 from the separate strata, or

n n y n1qk qqk 1qk tk
ž / ž /t n y tk q1 k k
�P n s t n , n , n ;
 s .Ž .Ł Ł11 k k 1qk q1 k qqk n y nnk k qqk 1qk1qk uÝ 
u ž / ž /n y uu q1 k

6.19Ž .

ˆ Ž .The conditional ML estimator 
 maximizes 6.19 . Like the Mantel�Haenszel
ˆestimator 
 , it has good properties for both standard and sparse-dataMH

Ž .asymptotic cases Andersen 1970; Breslow 1981 , since the number of param-
ˆeters does not change as K does. It can be slightly more efficient than 
 ,MH

except when 
 s 1.0, where they are equally efficient, or for matched pairs,
Ž .where they are identical Breslow 1981 .

Ž .The conditional distribution 6.19 propagates one for Ý n , which isk 11 k
used to test H : 
 s 
 for an arbitrary value. Then, a 95% confidence0 0
interval for 
 consists of all 
 for which the P-value exceeds 0.05. Such an0

Žinterval is guaranteed to have at least the nominal coverage probability Gart
.1970; Kim and Agresti 1995; Mehta et al. 1985 . This extends the interval for

Ž .a single 2 � 2 table Section 3.6.1 . For the promotion discrimination case
Ž .Table 6.15 , Ý n s 0, so the lower bound of any confidence interval for 
k 11 k
should be 0. For the generalization to several strata of Cornfield’s tail-method

Ž .interval, StatXact reports a 95% confidence interval of 0, 1.01 .
Ž .Zelen 1971 presented a small-sample test of homogeneity of the odds

Ž .ratios. See Agresti 1992 for discussion of this and other small-sample
methods for contingency tables.
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TABLE 6.16 Example for Exact Conditional Logistic Regression

Length Cases of Sample
a a aCephalexin Age of Stay Diarrhea Size

0 0 0 0 385
0 0 1 5 233
0 1 0 3 789
0 1 1 47 1081
1 1 1 5 5

aSee the text for an explanation of 0 and 1.
Source: Based on study by E. Jaffe and V. Chang, Cornell Medical Center, reported in the

Ž .Manual for LogXact Cambridge, MA: CYTEL Software, 1999 , p. 259.

6.7.8 Diarrhea Example

The final example deals with a larger number of variables. Table 6.16 refers
to 2493 patients having stays in a hospital. The response is whether they
suffered an acute form of diarrhea during their stay. The three predictors are

Ž . Žage 1 for over 50 years old, 0 for under 50 , length of stay in hospital 1 for
.more than 1 week, 0 for less than 1 week , and exposure to an antibiotic

Ž .called Cephalexin 1 for yes, 0 for no . We discuss estimation of the effect of
Cephalexin, controlling for age and length of stay, using a model containing
only main-effect terms.

The sample size is large, yet relatively few cases of acute diarrhea
occurred. Moreover, all subjects having exposure to Cephalexin were also
diarrhea cases. Such boundary outcomes in which none or all responses fall
in one category cause infinite ML estimates of some model parameters. An
ML estimate of 	 for the Cephalexin effect means that the likelihood
function increases continually as the parameter estimate for Cephalexin
increases indefinitely.

To study the Cephalexin effect, we use an exact distribution, conditioning
on sufficient statistics for the other predictors. Although the estimate of the
log-odds-ratio parameter for the effect of Cephalexin is infinite, it is possible
to construct a confidence interval by inverting the family of tests for the
parameter, using the conditional distribution. Doing this, a 95% confidence

Ž .interval is 19, 	 for the odds ratio. Assuming that the main-effects model is
valid, Cephalexin appears to have a strong effect. Similarly, P � 0.0001 for
testing that the log odds ratio equals zero.

Results must be qualified somewhat because no Cephalexin cases occurred
at the first three combinations of levels of age and length of stay. In fact, the

Žfirst three rows of Table 6.16 make no contribution to the analysis Problem
.6.18 . The data actually provide evidence about the effect of Cephalexin only

for older subjects having a long stay.
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6.7.9 Complications from Discreteness

Like Fisher’s exact test, exact conditional inference for contingency tables is
conservative because of discreteness. This is especially true when n is small
or the data are unbalanced, with most observations falling in a single column
or row. Using mid-P-values or P-values based on a finer partitioning of the

Ž .sample space Note 3.9 in tests and related confidence intervals reduces
Ž .conservativeness. For the promotion discrimination data Table 6.15 , we

Ž .reported a 95% confidence interval for the common odds ratio of 0, 1.01 .
Inverting exact tests of H : 
 s 
 with the mid-P-value yields the interval0 0
Ž .0, 0.78 . However, this approach cannot guarantee that the actual coverage
probability is bounded below by 0.95.

� 4A particular problem occurs when no other set of y* values has the samei
value of a given sufficient statistic Ý y x as the observed data. In that casei i i j
the conditional distribution of the sufficient statistic for the parameter of
interest is degenerate. The P-value for the exact test then equals 1.0. This
commonly happens when at least one explanatory variable x whose effect isj
conditioned out for the inference is continuous, with unequally spaced
observed values.

Finally, a limitation of the conditional approach is requiring sufficient
statistics for the nuisance parameters. This happens only with GLMs that use
the canonical link. Thus, for instance, the conditional approach works for
logit models but not probit models.

NOTES

Section 6.1: Strategies in Model Selection

w 26.1. A Bayesian argument motivates the Bayesian information criterion BIC s G y
Ž .Ž .xlog n df , an alternative to AIC. It takes sample size into account. Compared to AIC,
BIC gravitates less quickly toward more complex models as n increases. For details and

Ž .critiques, see Raftery 1986 and the February 1999 issue of Sociological Methods and
Research.

6.2. Tree-structured methods such as CART are alternatives to logistic regression that
formalize a decision process using a sequential set of questions that branch in different
directions depending on a subject’s responses. An example is deciding whether a subject

Ž .with chest pains may be suffering a heart attack. Zhang et al. 1998 surveyed such
methods.

Section 6.2: Logistic Regression Diagnostics

Ž . Ž .6.3. For logistic regression diagnostics, see Copas 1988 , Fowlkes 1987 , Hosmer and
Ž . Ž . Ž . Ž .Lemeshow 2000, Chap. 5 , Johnson 1985 , Landwehr et al. 1984 , and Pregibon 1981 .

Separate diagnostics are useful for checking the adequacy of each component of a GLM
Ž . Ž .McCullagh and Nelder 1989, Chap. 12 . For a family g �; � of link functions indexed
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Ž .by parameter � , Pregibon 1980 showed how to estimate � giving the link with best fit
Ž .and how to check the adequacy of a given link g �; � .0

Ž . Ž . Ž . Ž .6.4. Amemiya 1981 , Efron 1978 , Maddala 1983 , and Zheng and Agresti 2000 and
references therein reviewed R2 measures for binary regression. Hosmer and Lemeshow
Ž . Ž .2000, Sec. 5.2.3 discussed classification tables and their limitations. Pepe 2000 and
references therein surveyed ROC methodology.

Section 6.3: Inference about Conditional Associations in 2 � 2 � K Tables

ˆ6.5. Analogs of 
 summarize differences of proportions or relative risks from severalMH
Ž . Ž .strata Greenland and Robins 1985 . Breslow and Day 1980, p. 142 proposed an

alternative large-sample test of homogeneity of odds ratios. In each partial table let
ˆ� 4� have the same marginals as the data observed, yet have odds ratio equal to 
 .ˆ i jk MH

� 4 � 4 Ž .Their test statistic has the Pearson form comparing n to � . Tarone 1985ˆi jk i jk
ˆshowed that because of the inefficiency of 
 one must adjust the Breslow�DayMH

statistic for it to have a limiting chi-squared null distribution with df s K y 1. This
Ž .adjustment is usually minor. Jones et al. 1989 reviewed and compared several tests of

homogeneity in sparse and nonsparse settings. Other work on comparing odds ratios and
Ž .estimating a common value include Breslow and Day 1980, Sec. 4.4 , Donner and

Ž . Ž . Ž .Hauck 1986 , Gart 1970 , and Liang and Self 1985 . For modeling the odds ratio, see
Ž . Ž . Ž .Breslow 1976 , Breslow and Day 1980, Sec. 7.5 , and Prentice 1976a . Breslow

emphasized retrospective studies, in which the conditional approach is natural since the
outcome totals are fixed.

Section 6.5: Sample Size and Power Considerations

Ž .6.6. For sample-size determination for comparing proportions, Fleiss 1981, Sec. 3.2 pro-
Ž . Ž .vided tables. See Lachin 1977 for the I � J case. Chapman and Meng 1966 , Drost

Ž . Ž . Ž . Ž .et al. 1989 , Haberman 1974a, pp. 109�112 , Harkness and Katz 1964 , Mitra 1958 ,
Ž .and Patnaik 1949 derived theory for asymptotic nonnull behavior of chi-squared

Ž .statistics; see also Section 14.3.5. O‘Brien’s 1986 simulation results suggested that the
noncentral chi-squared approximation for G2 holds well for a wide range of powers.

Ž .Read and Cressie 1988, pp. 147�148 listed other articles that studied the nonnull
behavior of X 2 and G2.

Section 6.6: Probit and Complementary Log-Log Models

Ž . Ž .6.7. Finney 1971 is the standard reference on probit modeling. Chambers and Cox 1967
showed that it is difficult to distinguish between probit and logit models unless n is

Ž .extremely large. Ashford and Sowden 1970 generalized the probit model for multivari-
Ž .ate binary responses; see also Lesaffre and Molenberghs 1991 and Ochi and Prentice

Ž . Ž .1984 . Wedderburn 1976 showed that the log likelihood is concave for probit and
complementary log-log links.

Section 6.7: Conditional Logistic Regression

6.8. For details about conditional logistic regression, see Section 10.2, Breslow and Day
Ž . Ž . Ž . Ž .1980, Chap. 7 , Cox 1970 , and Hosmer and Lemeshow 2000, Chap. 5 . Liang 1984
showed that conditional ML estimators and conditional score tests are asymptotically
equivalent to their unconditional counterparts under sampling from exponential fami-

Ž .lies. For exact inference using the conditional likelihood, see Hirji et al. 1987 , Mehta
Ž . Ž . Ž .and Patel 1995 , and the LogXact manual Cytel Software . Mehta et al. 2000

discussed Monte Carlo approximations.
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PROBLEMS

Applications

6.1 For the horseshoe crab data, fit a model using weight and width as
Ž .predictors. Conduct a a likelihood-ratio test of H : � s � s 0, and0 1 2

Ž .b separate tests for the partial effects. Why does neither test in part
Ž . Ž .b show evidence of an effect when the test in part a shows strong
evidence?

6.2 Refer to the data for Problem 8.13. Treating opinion about premarital
sex as the response variable, use backward elimination to select a
model. Interpret.

Ž .6.3 Refer to Table 6.4. Fit the stage 3 model denoted there by E*P q G .
Use parameter estimates to interpret the G effect and the dependence
of the E effect on P.

6.4 Discern the reasons that Simpson’s paradox occurs for Table 6.7.

6.5 Refer to Problem 2.12.
a. Fit the model with G and D main effects. Using it, estimate the

AG conditional odds ratio. Compare to the marginal odds ratio, and
explain why they are so different. Test its goodness of fit.

b. Fit the model of no G effect, given the department. Use X 2 to test
Žfit. Obtain residuals, and interpret the lack of fit. Each department

has a single nonredundant standardized Pearson residual. They
6 2 2 .satisfy Ý r s X , their squares giving six df s 1 components.is1 i

c. Fit the two models excluding department A. Again consider lack of
fit, and interpret.

6.6 Conduct a residual analysis for the independence model with Table
6.11. What type of lack of fit is indicated?

6.7 Table 6.17, refers to the effectiveness of immediately injected or
11 -hour-delayed penicillin in protecting rabbits against lethal injection2

with �-hemolytic streptococci.
a. Let X s delay, Y s whether cured, and Z s penicillin level. Fit

Ž .the logit model 6.4 . Argue that the pattern of 0 cell counts
ˆZ ˆZŽ .suggests that with no intercept � sy	 and � s 	. What does1 5

your software report?
b. Using the logit model, conduct the likelihood-ratio test of XY

conditional independence. Interpret.
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TABLE 6.17 Data for Problem 6.7

ResponsePenicillin
Level Delay Cured Died

1 None 0 68
11 h 0 52

1 None 3 34
11 h 0 62

1 None 6 02
11 h 2 42

1 None 5 1
11 h 6 02

4 None 2 0
11 h 5 02

Ž .Source: Reprinted with permission from Mantel 1963 .

c. Test XY conditional independence using the Cochran�Mantel�
Haenszel test. Interpret.

Ž .d. Estimate the XY conditional odds ratio using i ML with the logit
Ž .model, and ii the Mantel�Haenszel estimate. Interpret.

e. The small cell counts make large-sample analyses questionnable.
Conduct small-sample inference, and interpret.

6.8 Refer to Table 2.6. Use the CMH statistic to test independence of
death penalty verdict and victim’s race, controlling for defendant’s
race. Show another test of this hypothesis, and compare results.

6.9 Treatments A and B were compared on a binary response for 40 pairs
of subjects matched on relevant covariates. For each pair, treatments
were assigned to the subjects randomly. Twenty pairs of subjects made
the same response for each treatment. Six pairs had a success for the
subject receiving A and a failure for the subject receiving B, whereas
the other 14 pairs had a success for B and a failure for A. Use the
Cochran�Mantel�Haenszel procedure to test independence of re-

Žsponse and treatment. In Section 10.1 we present an equivalent test,
.McNemar’s test.

6.10 Refer to Section 6.5.1. Suppose that � s 0.7 and � s 0.6. What1 2
sample size is needed for the test to have approximate power 0.80,

Ž . Ž .when � s 0.05, for a H : � � � , and b H : � � � ?a 1 2 a 1 2
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6.11 Refer to Section 6.5.1. Suppose that � s 0.63 and � s 0.57. When1 2
treatment sample sizes are equal, explain why the joint probabilities in
the 2 � 2 table are 0.315 and 0.185 in the row for treatment A and
0.285 and 0.215 in the row for treatment B. For the model of indepen-
dence, explain why the fitted joint probabilities are 0.30 for success
and 0.20 for failure, in each row. Show that X 2 has noncentrality
parameter 0.00375n and df s 1. For n s 200 and � s 0.05, find the
power.

6.12 In an experiment designed to compare two treatments on a three-cate-
gory response, a researcher expects the conditional distributions to be

Ž . Ž .approximately 0.2, 0.2, 0.6 and 0.3, 0.3, 0.4 .
Ž . 2 Ž .a. With � s 0.05, find the approximate power using i X , and ii

G2 to compare the distributions with 100 observations for each
treatment. Compare results.

b. What sample size is needed for each treatment for the tests in part
Ž .a to have approximate power 0.90?

6.13 The horseshoe crab width values in Table 4.3 have x s 26.3 and
s s 2.1. If the true relationship were similar to the fitted equation inx

Ž .Section 5.1.3, about how large a sample yields P type II error s 0.10,
with � s 0.05, for testing H : � s 0 against H : � � 0?0 a

6.14 Refer to Problem 5.1. Table 6.18 shows output for fitting a probit
Ž .model. Interpret the parameter estimates a using characteristics of

Ž .the normal cdf response curve, b finding the estimated rate of change
Ž .in the probability of remission where it equals 0.5, and c finding the

difference between the estimated probabilities of remission at the
upper and lower quartiles of the labeling index, 14 and 28.

TABLE 6.18 Data for Problem 6.14

Standard Likelihood Ratio 95% Chi-
Parameter Estimate Error Confidence Limits Square Pr� ChiSq
Intercept y2.3178 0.7795 y4.0114 y0.9084 8.84 0.0029
LI 0.0878 0.0328 0.0275 0.1575 7.19 0.0073

6.15 Use probit models to describe the effects of width and color on the
probability of a satellite for Table 4.3. Interpret.

6.16 Refer to Table 6.14. Fit the model having log-log link rather than
complementary log-log. Test the fit. Why does it fit so poorly?
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Ž .6.17 For the linear logit model with Table 3.9 and scores 0, 15, 30 ,
conduct the exact test of H : � s 0 and find a point and interval0
estimate of � using the conditional likelihood. Interpret.

6.18 Refer to Table 6.16. Apply conditional logistic regression to the model
discussed in Section 6.7.8.
a. Obtain an exact P-value for testing no C effect against the alterna-

tive of a positive effect. Construct a 95% confidence interval for the
conditional CD odds ratio.

b. Construct the partial tables relating C to D for the combinations of
Ž .levels of A, L . Note that three tables have no data when C s 1.

For the sole partial table having data at both C levels, find a 95%
exact confidence interval for the odds ratio and find an exact
one-sided P-value. Compare to results using the entire data set.
Comment about the contribution to inference of tables having only
a single positive row total or a single positive column total.

c. Obtain the ordinary ML fit of the logistic regression model. To
investigate the sensitivity of the estimated C effect, find the change
in the estimate and SE after adding one observation to the data set,

Ž . Ž .a case with no diarrhea when C, A, L s 1, 1, 1 .

6.19 Consider Table 6.19, from a study of nonmetastatic osteosarcoma
ŽA. M. Goorin, J. Clin Oncol. 5: 1178�1184, 1987, and the manual

.for LogXact . The response is whether the subject achieved a three-year
disease-free interval.
a. Show that each predictor has a significant effect when used individ-

ually without the others.
b. Try to fit a main-effects logistic regression model containing all

three predictors. Explain why the ML estimate for the effect of
lymphocytic infiltration is infinite.

TABLE 6.19 Data for Problem 6.19

Disease-FreeLymphocytic Osteoblastic
Infiltration Gender Pathology Yes No

High Female No 3 0
Yes 2 0

Male No 4 0
Yes 1 0

Low Female No 5 0
Yes 3 2

Male No 5 4
Yes 6 11

Ž .Source: LogXact 4 for Windows Cambridge, MA: CYTEL Software, 1999 .
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Ž .c. Using conditional logistic regression, i conduct an exact test for
the effect of lymphocytic infiltration, controlling for the other

Ž .variables; and ii find a 95% confidence interval for the effect.
Interpret results.

6.20 Use the methods discussed in this chapter to select a model for Table
5.5.

6.21 Logistic regression is applied increasingly to large financial databases,
such as for credit scoring to model the influence of predictors on
whether a consumer is creditworthy. The data archive found under the
index at www. stat.uni-muenchen.de contains such a data set that in-
cludes 20 covariates for 1000 observations. Build a model for credit-
worthiness using the predictors running account, duration of credit,
payment of previous credits, intended use, gender, and marital status.

Theory and Methods

6.22 For a sequence of s nested models M , . . . , M , model M is the most1 s s
complex. Let � denote the difference in residual df between M and1
M .s

2Ž � . 2Ž � .a. Explain why for j � k, G M M F G M M .j k j s

b. Assume model M , so that M also holds when k � j. For all k � j,j k
w 2Ž � . 2Ž .xas n ™ 	, P G M M � � � F � . Explain why.j k �

Ž .c. Gabriel 1966 suggested a simultaneous testing procedure in which,
for each pair of models, the critical value for differences between

2 2Ž .G values is � � . The final model accepted must be more�

complex than any model rejected in a pairwise comparison. Since
Ž .part b is true for all j � k, argue that Gabriel’s procedure has type

I error probability no greater than � .

6.23 Prove that the Pearson residuals for the linear logit model applied to a
I � 2 contingency table satisfy X 2 sÝI e2. Note that this holds for ais1 i
binomial GLM with any link.

Ž . � 46.24 Refer to logit model 6.4 for a 2 � 2 � K contingency table n .i jk

a. Using dummy variables, write the log-likelihood function. Identify
the sufficient statistics for the various parameters. Explain how to
conduct exact conditional inference about the effect of X, controlling
for Z.
b. Using a basic result for testing in exponential families, explain why
uniformly most powerful unbiased tests of conditional XY indepen-

Ž .dence are based on Ý n Birch 1964b; Lehmann 1986, Sec. 4.8 .k 11 k
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� 4 Ž6.25 Suppose that � in a 2 � 2 � 2 table are, by row, 0.15, 0.10 r 0.10,i jk
. Ž .0.15 when Z s 1 and 0.10, 0.15 r 0.15, 0.10 when Z s 2. For testing

conditional XY independence with logit models having Y as a re-
sponse, explain why the likelihood-ratio test comparing models X q Z
and Z is not consistent but the likelihood-ratio test of fit of the XY
conditional independence model is.

Ž 2 .6.26 Refer to Section 6.4.1. When Y is N � ,� , consider the comparisoni
Ž .of � , . . . , � based on independent samples at the I categories of X.1 I

When approximately � s � q � x , explain why the t or F test of H :i i 0
� s 0 is more powerful than the one-way ANOVA F test. Describe a

� 4pattern for � for which the ANOVA test would be more powerful.i

6.27 For a multinomial distribution, let � sÝ b � , and suppose that � si i i i
Ž . � 4f 
 � 0, i s 1, . . . , I. For sample proportions p , let S sÝ b p .i i i i i

ˆ ˆŽ .Let T sÝ b � , where � s f 
 , for the ML estimator 
 of 
 .ˆ ˆi i i i i

Ž . w 2 Ž .2 xa. Show that var S s Ý b � y Ý b � rn.i i i i i i

ˆ � 2Ž . w Ž .xw Ž .xb. Using the delta method, show var T f var 
 Ý b f 
 .i i i

Ž . w Ž .xc. By computing the information for L 
 sÝ n log f 
 , show thati i i
ˆ � 2 y1Ž . w Ž Ž .. Ž .xvar 
 is approximately nÝ f 
 rf 
 .i i i

' 'w Ž .x w Ž .x wd. Asymptotically, show that var n T y � F var n S y � . Hint:
Ž . Ž .Show that var T rvar S is a squared correlation between two

random variables, where with probability � the first equals b andi i
�Ž . Ž . xthe second equals f 
 rf 
 .i i

6.28 A threshold model can also motivate the probit model. For it, there is
an unobserved continuous response Y * such that the observed y s 0i
if y * F � and y s 1 if y * � � . Suppose that y * s � q � , wherei i i i i i

� 4 Ž 2 .� s � q � x and where � are independent from a N 0, � distri-i i i
bution. For identifiability one can set � s 1 and the threshold � s 0.
Show that the probit model holds and explain why � represents the
expected number of standard deviation change in Y * for a 1-unit
increase in x.

6.29 Consider the choice between two options, such as two product brands.
Let U denote the utility of outcome y s 0 and U the utility of y s 1.0 1
For y s 0 and 1, suppose that U s � q � x q � , using a scale suchy y y y
that � has some standardized distribution. A subject selects y s 1 ify
U � U for that subject.1 0

Ž .a. If � and � are independent N 0, 1 random variables, show that0 1
Ž .P Y s 1 satisfies the probit model.

b. If � are independent extreme-value random variables, with cdfy
Ž . w Ž .x Ž .F � s exp yexp y� , show that P Y s 1 satisfies the logistic

Ž .regression model Maddala 1983, p. 60; McFadden 1974 .
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Ž .6.30 Consider model 6.12 with complementary log-log link.
1Ž .a. Find x at which � x s .2

Ž .b. Show the greatest rate of change of � x occurs at x sy�r�.
Ž .What does � x equal at that point? Give the corresponding result

for the model with log-log link, and compare to the logit and probit
models.

Ž .6.31 Suppose that log-log model 6.13 holds. Explain how to interpret �.

6.32 Let y , i s 1, . . . , n, denote n independent binary random variables.i
y1w Ž .xa. Derive the log likelihood for the probit model � � x sÝ � x .i j j i j

b. Show that the likelihood equations for the logistic and probit
regression models are

y y � z x s 0, j s 0, . . . , p ,Ž .ˆÝ i i i i j
i

ˆŽ . Ž .where z s 1 for the logistic case and z s � Ý � x r� 1 y �ˆ ˆi i j j i j i i
Žfor the probit case. When the link is not canonical, there is no

.reduction of the data in sufficient statistics.

6.33 Sometimes, sample proportions are continuous rather than of the
Ž . Ž .binomial form number of successes r number of trials . Each observa-

tion is any real number between 0 and 1, such as the proportion of a
tooth surface that is covered with plaque. For independent responses
� 4 Ž . Ž . Ž .y , Aitchison and Shen 1980 and Bartlett 1937 modeled logit Y �i i
Ž 2 .N � , � . Then Y itself is said to have a logistic-normal distribution.i i

Ž 2 .a. Expressing a N � , � variate as � q � Z, where Z is standard
Ž . w Ž .xnormal, show that Y s exp � q � Z r 1 q exp � q � Z .i i i

b. Show that for small � ,

e � i e � i 1 e � i 1 y e � iŽ .
2 2Y s q � Z q � Z q ��� .i � � � 3i i i �1 q e 1 q e 1 q e i2 1 q eŽ .

� i Ž � i.c. Letting � s e r 1 q e , when � is close to 0 show thati

2 2E Y f � , var Y f � 1 y � � .Ž . Ž . Ž .i i i i i

� 4 Ž .d. For independent continuous proportions y , let � s E Y . For ai i i
GLM, it is sensible to use an inverse cdf link for � , but it is uncleari
how to choose a distribution for Y . The approximate moments fori

Žthe logistic-normal motivate a quasi-likelihood approach Wedder-
. Ž . w Ž .x2burn 1974 with variance function ® � s � � 1 y � for un-i i i
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known �. Explain why this provides similar results as fitting a
normal regression model to the sample logits assuming constant

Žvariance. The QL approach has the advantage of not requiring
adjustment of 0 or 1 observations, for which sample logits don’t

.exist.
Ž .e. Wedderburn 1974 gave an example with response the proportion

of a leaf showing a type of blotch. Envision an approximation of
binomial form based on cutting each leaf into a large number of
small regions of the same size and observing for each region
whether it is mostly covered with blotch. Explain why this suggests

Ž . Ž .that ® � s �� 1 y � . What violation of the binomial assump-i i i
wtions might make this questionnable? The parametric family of

Žbeta distributions has variance function of this form see Section
. Ž .13.3.1 . Barndorff-Nielsen and Jorgensen 1991 proposed a distri-�

Ž . w Ž .x3 Ž . xbution having ® � s � � 1 y � ; see also Cox 1996 .i i i

6.34 For independent binomial sampling, construct the log likelihood and
identify the sufficient statistics to be conditioned out to perform exact

Ž .inference about � in model 6.4 .

Žy. Ž Žy1. Žyn .. Žyi .6.35 Let � s � , . . . , � , where � denotes the estimate ofˆ ˆ ˆ ˆ
Ž .E Y for binary observation i after fitting the model without thati

observation. Cross-validation declares a model to have good predictive
Ž Žy. . Ž .power if corr � , y is high. Consider the model logit � s � for allˆ i

Žyi . w Ž .xw Ž . xi. Show that � s y and hence � s nr n y 1 y y 1rn y , andˆ ˆi i
Ž Žy. .hence corr � , y sy1 regardless of how well the model fits. Thus,ˆ

Žcross-validation can be misleading with binary data Zheng and Agresti
.2000 .



C H A P T E R 7

Logit Models for Multinomial
Responses

In Chapters 5 and 6 we discussed modeling binary response variables with
binomial GLMs. Multicategory responses use multinomial GLMs. In this

Žchapter we generalize logistic regression for multinomial nominal and ordi-
.nal response variables.
In Section 7.1 we present a model for nominal responses that uses a

separate binary logit model for each pair of response categories. In Section
7.2 we present a model for ordinal responses that uses logits of cumulative
response probabilities. In Section 7.3 we use other link functions for those
cumulative probabilities. Section 7.4 covers alternative ordinal-response mod-
els.

In Section 7.5 we discuss tests of conditional independence with multino-
mial responses using models and using generalizations of the Cochran�
Mantel�Haenszel statistic. In the final section we introduce a multinomial
logit model for discrete-choice modeling of a subject’s choice from one of
several options when values of predictors may depend on the option.

7.1 NOMINAL RESPONSES: BASELINE-CATEGORY
LOGIT MODELS

ŽLet Y be a categorical response with J categories. Multicategory also called
.polytomous logit models for nominal response variables simultaneously de-

Jscribe log odds for all pairs of categories. Given a certain choice of J y 1ž /2
of these, the rest are redundant.

7.1.1 Baseline-Category Logits

Ž . Ž � .Let � x s P Y s j x at a fixed setting x for explanatory variables, withj
Ž .Ý � x s 1. For observations at that setting, we treat the counts at the Jj j

� Ž . Ž .4categories of Y as multinomial with probabilities � x , . . . , � x .1 J

267
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Logit models pair each response category with a baseline category, often
the last one or the most common one. The model

� xŽ .j �log s � q � x, j s 1, . . . , J y 1, 7.1Ž .j j� xŽ .J

simultaneously describes the effects of x on these J y 1 logits. The effects
vary according to the response paired with the baseline. These J y 1 equa-
tions determine parameters for logits with other pairs of response categories,
since

� x � x � xŽ . Ž . Ž .a a b
log s log y log .

� x � x � xŽ . Ž . Ž .b J J

With categorical predictors, X 2 and G2 goodness-of-fit statistics provide a
model check when data are not sparse. When an explanatory variable is
continuous or the data are sparse, such statistics are still valid for comparing

Žnested models differing by relatively few terms Haberman 1974a, pp.
.372�373; 1977a .

7.1.2 Alligator Food Choice Example

Table 7.1 is from a study of factors influencing the primary food choice of
alligators. It used 219 alligators captured in four Florida lakes. The nominal
response variable is the primary food type, in volume, found in an alligator’s
stomach. This had five categories: fish, invertebrate, reptile, bird, other. The
invertebrates included apple snails, aquatic insects, and crayfish. The reptiles
were primarily turtles, although one stomach contained the tags of 23 baby
alligators released in the lake the previous year! The ‘‘other’’ category
consisted of amphibian, mammal, plant material, stones or other debris, or
no food or dominant type. Table 7.1 also classifies the alligators according to

Ž .L s lake of capture Hancock, Oklawaha, Trafford, George , G s gender
Ž . Ž .male, female , and S s size F 2.3 meters long, � 2.3 meters long .

Baseline-category logit models can investigate the effects of L, G, and S
on primary food type. Table 7.2 contains fit statistics for several models. We

Ž .denote a model by its predictors: for instance, L q S having additive lake
Ž .and size effects and having no predictors. The data are sparse, 219

observations scattered among 80 cells. Thus, G2 is more reliable for compar-
2wŽ . � Ž .x 2ing models than for testing fit. The statistics G G s 2.1 and G s

wŽ . � Ž .xL q S G q L q S s 2.2, each based on df s 4, suggest simplifying by
Žcollapsing the table over gender. Other analyses, not presented here, show

.that adding interaction terms including G do not improve the fit significantly.
The G2 and X 2 values for the collapsed table indicate that both L and S

Ž .have effects. Table 7.3 exhibits fitted values for model L q S for the
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TABLE 7.1 Primary Food Choice of Alligators

Primary Food ChoiceSize
Ž .Lake Gender m Fish Invertebrate Reptile Bird Other

Hancock Male F 2.3 7 1 0 0 5
� 2.3 4 0 0 1 2

Female F 2.3 16 3 2 2 3
� 2.3 3 0 1 2 3

Oklawaha Male F 2.3 2 2 0 0 1
� 2.3 13 7 6 0 0

Female F 2.3 3 9 1 0 2
� 2.3 0 1 0 1 0

Trafford Male F 2.3 3 7 1 0 1
� 2.3 8 6 6 3 5

Female F 2.3 2 4 1 1 4
� 2.3 0 1 0 0 0

George Male F 2.3 13 10 0 2 2
� 2.3 9 0 0 1 2

Female F 2.3 3 9 1 0 1
� 2.3 8 1 0 0 1

Source: Data courtesy of Clint Moore, from an unpublished manuscript by M. F. Delaney and C.
T. Moore.

TABLE 7.2 Goodness of Fit of Baseline-Category
Logit Models for Table 7.1

a 2 2Model G X df

Ž . 116.8 106.5 60
Ž .G 114.7 101.2 56
Ž .S 101.6 86.9 56
Ž .L 73.6 79.6 48
Ž .L q S 52.5 58.0 44
Ž .G q L q S 50.3 52.6 40

Collapsed over G
Ž . 81.4 73.1 28
Ž .S 66.2 54.3 24
Ž .L 38.2 32.7 16
Ž .L q S 17.1 15.0 12

aG, gender; S, size; L, lake of capture. See the text for
details.
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TABLE 7.3 Observed and Fitted Values for Study of Alligator’s Primary Food Choice

Primary Food ChoiceSize of alligator
Ž .Lake meters Fish Invertebrate Reptile Bird Other

Hancock F 2.3 23 4 2 2 8
Ž . Ž . Ž . Ž . Ž .20.9 3.6 1.9 2.7 9.9

� 2.3 7 0 1 3 5
Ž . Ž . Ž . Ž . Ž .9.1 0.4 1.1 2.3 3.1

Oklawaha F 2.3 5 11 1 0 3
Ž . Ž . Ž . Ž . Ž .5.2 12.0 1.5 0.2 1.1

� 2.3 13 8 6 1 0
Ž . Ž . Ž . Ž . Ž .12.8 7.0 5.5 0.8 1.9

Trafford F 2.3 5 11 2 1 5
Ž . Ž . Ž . Ž . Ž .4.4 12.4 2.1 0.9 4.2

� 2.3 89 7 6 3 5
Ž . Ž . Ž . Ž . Ž .8.6 5.6 5.9 3.1 5.8

George F 2.3 16 19 1 2 3
Ž . Ž . Ž . Ž . Ž .18.5 16.9 0.5 1.2 3.8

� 2.3 17 1 0 1 3
Ž . Ž . Ž . Ž . Ž .14.5 3.1 0.5 1.8 2.2

collapsed table. Absolute values of standardized Pearson residuals comparing
observed and fitted values exceed 2 in only two of the 40 cells and exceed 3 in
none of the cells. The fit seems adequate.

Fish was the most common food choice. We now estimate the effects of
lake and size on the odds that alligators select other primary food types
instead of fish. With fish as the baseline category, Table 7.4 contains ML
estimates of effect parameters. These result from models using dummy
variables for the first three lakes and for size. The table uses letter subscripts
to denote the food choice categories. For example, the prediction equation
for the log odds of selecting invertebrates instead of fish is

log � r� sy1.55 q 1.46 s y 1.66 z q 0.94 z q 1.12 z ,ˆ ˆŽ .I F H O T

TABLE 7.4 Estimated Parameters in Logit Model for Alligator Food Choice,
Based on Dummy Variable for First Size Category and Each Lake Except

aLake George

Lake
bLogit Intercept Size F 2.3 Hancock Oklawaha Trafford

Ž . Ž . Ž . Ž . Ž .log � r� y1.55 1.46 0.40 y1.66 0.61 0.94 0.47 1.12 0.49I F
Ž . Ž . Ž . Ž . Ž .log � r� y3.31 y0.35 0.58 1.24 1.19 2.46 1.12 2.94 1.12R F
Ž . Ž . Ž . Ž . Ž .log � r� y2.09 y0.63 0.64 0.70 0.78 y0.65 1.20 1.09 0.84B F
Ž . Ž . Ž . Ž . Ž .log � r� y1.90 0.33 0.45 0.83 0.56 0.01 0.78 1.52 0.62O F

aSE values in parentheses.
I, invertebrate; R, reptile; B, bird; O, other; F, fish.
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where s s 1 for size F 2.3 meters and 0 otherwise, z is a dummy variableH
Ž .for Lake Hancock z s 1 for alligators in that lake and 0 otherwise , and zH O

and z are dummy variables for lakes Oklawaha and Trafford. Size ofT
alligator has a noticeable effect. For a given lake, for small alligators the
estimated odds that primary food choice was invertebrates instead of fish are

Ž .exp 1.46 s 4.3 times the estimated odds for large alligators; the Wald 95%
w Ž .x Ž .confidence interval is exp 1.46 � 1.96 0.396 s 2.0, 9.3 . The lake effects

indicate that the estimated odds that the primary food choice was inverte-
brates instead of fish are relatively higher at Lakes Trafford and Oklawaha
and relatively lower at Lake Hancock than they are at Lake George.

The equations in Table 7.4 determine those for other food-choice pairs.
Ž .For instance, for invertebrate, other ,

log � r� s log � r� y log � r�ˆ ˆ ˆ ˆ ˆ ˆŽ . Ž . Ž .I O I F O F

s y1.55 q 1.46 s y 1.66 z q 0.94 z q 1.12 zŽ .H O T

y y1.90 q 0.33s q 0.83 z q 0.01 z q 1.52 zŽ .H O T

s 0.35 q 1.13s y 2.48 z q 0.93 z y 0.39 z .H O T

7.1.3 Estimating Response Probabilities

The equation that expresses multinomial logit models directly in terms of
� Ž .4response probabilities � x isj

exp � q �� xŽ .j j
� x s 7.2Ž . Ž .�j Jy11 qÝ exp � q � xŽ .hs1 h h

Ž . Ž .with � s 0 and � s 0. This follows from 7.1 , using the fact that 7.1 alsoJ J
Žholds with j s J by setting � s 0 and � s 0. Also, the parameters equalJ J

.zero for a baseline category for identifiability reasons; see Problem 7.26. The
Ž .denominator of 7.2 is the same for each j. The numerators for various j

Ž . Ž .sum to the denominator, so Ý � x s 1. For J s 2, 7.2 simplifies to thej j
Ž .formula of type 5.1 used for binary logistic regression.

From Table 7.4 the estimated probability that a large alligator in Lake
Hancock has invertebrates as the primary food choice is

ey1 .55y1 .66

� s s 0.023.ˆ I y1 .55y1 .66 y3 .31q1 .24 y2 .09q0 .70 y1 .90q0 .831 q e q e q e q e

The estimated probabilities for reptile, bird, other, and fish are 0.072, 0.141,
0.194, and 0.570.

This example used qualitative predictors. Multinomial logit models can
also contain quantitative predictors. In this study, the biologists used the size
dummy variable to distinguish between adult and subadult alligators. How-
ever, the alligators’ actual length was measured and is quantitative. With
quantitative predictors, it is informative to plot the estimated probabilities.
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FIGURE 7.1 Estimated probabilities for primary food choice.

To illustrate, for alligators at one lake, Figure 7.1 plots the estimated
Žprobabilities that primary food choice is fish, invertebrate, or other which

.combines the other, bird, and reptile categories as a function of length. With
more than two response categories, the probability for a given category need

Ž .not continuously increase or decrease Problem 7.27 .

7.1.4 Fitting of Baseline-Category Logit Models*

ML fitting of multinomial logit models maximizes the likelihood subject to
� Ž .4� x simultaneously satisfying the J y 1 equations that specify the model.j

Ž .For i s 1, . . . , n, let y s y , . . . , y represent the multinomial trial fori i1 i J
subject i, where y s 1 when the response is in category j and y s 0i j i j

Ž .�otherwise. Thus, Ý y s 1. Let x s x , . . . , x denote explanatory vari-j i j i i1 i p
Ž .�able values for subject i. Let � s � , . . . ,� denote parameters for thej j1 j p

jth logit.
Ž . Ž .Since � s 1 y � q ��� q� and y s 1 y y q ��� qy , theJ 1 Jy1 i J i1 i, Jy1

contribution to the log likelihood by subject i is

J Jy1 Jy1 Jy1
y i jlog � x s y log� x q 1 y y log 1 y � xŽ . Ž . Ž .Ł Ý Ý Ýj i i j j i i j j iž /js1 js1 js1 js1

Jy1 Jy1� xŽ .j i
s y log q log 1 y � x .Ž .Ý Ýi j j iJy11 yÝ � xŽ .js1 j ijs1 js1
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Thus, the baseline-category logits are the natural parameters for the multino-
mial distribution.

Now assume n independent observations. In the last expression above,
� Ž .substituting � q � x for the logit in the first term and � x sj j i J i

w Jy1 Ž � .x1r 1 qÝ exp � q � x in the second term, the log likelihood isjs1 j j i

n J
y i jlog � xŽ .Ł Ł j i

is1 js1

n Jy1 Jy1
� �s y � q � x y log 1 q exp � q � xŽ . Ž .Ý Ý Ýi j j j i j j i½ 5

is1 js1 js1

pJy1 n n

s � y q � x yÝ Ý Ý Ýj i j jk ik i jž / ž /
js1 is1 ks1 is1

n Jy1
�y log 1 q exp � q � x .Ž .Ý Ý j j i

is1 js1

The sufficient statistic for � is Ý x y , j s 1, . . . , J y 1, k s 1, . . . , p. Thejk i ik i j
sufficient statistic for � is Ý y sÝ x y for x s 1; this is the totalj i i j i i0 i j i0
number of outcomes in category j.

The likelihood equations equate the sufficient statistics to their expected
values. The log likelihood is concave, and the Newton�Raphson method
yields the ML parameter estimates. The estimators have large-sample normal
distributions. Their asymptotic standard errors are square roots of diagonal
elements of the inverse information matrix.

Most statistical software can fit multinomial logit models, but some can fit
only binary logistic regression models. An alternative fitting approach fits
binary logit models separately for the J y 1 pairings of responses: model
Ž .7.1 for j s 1 alone, using only observations in category 1 or J of the

Ž .response variable to obtain estimates of � and � ; model 7.1 using only1 1
categories 2 and J to obtain estimates of � and � ; in this manner,2 2
obtaining J y 1 separate fits of logit models. A logit model fitted using data
from only two response categories is the same as a regular logit model fitted
conditional on classification into one of those categories. For instance, the jth
baseline-category logit is a logit of conditional probabilities

� x r � x q � x � xŽ . Ž . Ž . Ž .Ž .j j J j
log s log .

� x� x r � x q � x Ž .Ž . Ž . Ž .Ž . JJ j J

The separate-fitting estimates differ from the ML estimates for simultane-
ous fitting of the J y 1 logits. They are less efficient, tending to have larger

Ž .standard errors. However, Begg and Gray 1984 showed that the efficiency
loss is minor when the response category having highest prevalence is the
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baseline. To illustrate this approach, we used the data for the categories
Ž .invertebrate and fish alone. The fit is log � r� sy1.69 q 1.66 s yˆ ˆI F

Ž .1.78 z q 1.05z q 1.22 z , with standard errors 0.43, 0.62, 0.49, 0.52 forH O T
the effects. The effects are similar to those from simultaneous fitting with all
five response categories�see the first row of Table 7.4. The estimated
standard errors are only slightly larger, since 155 of the 219 observations
were in the fish or invertebrate categories of food type.

7.1.5 Multicategory Logit Model as Multivariate GLM*

For a univariate response variable in the natural exponential family, a GLM
Ž . � Ž .has form g � s x � for a link function g, expected response � s E Y ,i i i i

vector of values x of p explanatory variables for observation i, and parame-i
Ž .�ter vector � s � , . . . , � . This extends to a multivariate GLM for distribu-1 p

Ž .tions in the multivariate exponential family Problem 7.24 , such as the
multinomial.

Ž .� Ž .Let y s y , y , . . . be a vector response for subject i, with � s E Y .i i1 i2 i i
Let g be a vector of link functions. The multivariate GLM has the form

g � s X � , 7.3Ž . Ž .i i

where row h of the model matrix X for observation i contains values ofi
Žexplanatory variables for y . For details, see Fahrmeir and Tutz 2001,ih

.Chap. 3 .
The baseline-category logit model is a multivariate GLM. Here y si

Ž .� Ž Ž . Ž ..�y , . . . , y , since y is redundant. Then, � s � x , . . . , � xi1 i, Jy1 i J i 1 i Jy1 i
and

g � s log � r 1 y � q ��� q� .Ž . Ž .� 4j i i j i1 i , Jy1

The model matrix for observation i is

1 x�
i

�1 x iX s .i
���� 0�1 x i

� Ž � � .with 0 entries in other locations, and � s � , � , . . . , � , � . One can1 1 Jy1 Jy1
also formulate it for grouped data using sample proportions in the categories.

7.2 ORDINAL RESPONSES: CUMULATIVE LOGIT MODELS

In Section 6.4.1 we showed the benefits of utilizing the ordinality of a
variable by focusing inferences on a single parameter. These benefits extend
to models for ordinal responses. Models with terms that reflect ordinal
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characteristics such as monotone trend have improved model parsimony and
power. In this section we introduce the most popular logit model for ordinal
responses.

7.2.1 Cumulative Logits

One way to use category ordering forms logits of cumulative probabilities,

�P Y F j x s � x q ��� q� x , j s 1, . . . , J .Ž . Ž .Ž . 1 j

The cumulati®e logits are defined as

�P Y F j xŽ .
�logit P Y F j x s logŽ .

�1 y P Y F j xŽ .
� x q ��� q� xŽ . Ž .1 j

s log , j s 1, . . . , J y 1. 7.4Ž .
� x q ��� q� xŽ . Ž .jq1 J

Each cumulative logit uses all J response categories.
w Ž .xA model for logit P Y F j alone is an ordinary logit model for a binary

response in which categories 1 to j form one outcome and categories j q 1
to J form the second. Better, models can use all J y 1 cumulative logits in a
single parsimonious model.

7.2.2 Proportional Odds Model

A model that simultaneously uses all cumulative logits is

��logit P Y F j x s � q � x, j s 1, . . . , J y 1. 7.5Ž .Ž . j

� 4Each cumulative logit has its own intercept. The � are increasing in j,j
Ž � .since P Y F j x increases in j for fixed x, and the logit is an increasing

function of this probability.
This model has the same effects � for each logit. For a continuous

predictor x, Figure 7.2 depicts the model when J s 4. For fixed j, the

FIGURE 7.2 Cumulative logit model with effect independent of cutpoint.



LOGIT MODELS FOR MULTINOMIAL RESPONSES276

FIGURE 7.3 Category probabilities in cumulative logit model.

response curve is a logistic regression curve for a binary response with
outcomes Y F j and Y � j. The response curves for j s 1, 2, and 3 have the
same shape. They share exactly the same rate of increase or decrease but are

Ž .horizontally displaced from each other. For j � k, the curve for P Y F k is
Ž . Ž .the curve for P Y F j translated by � y � r� units in the x direction;k j

that is,

� �P Y F k X s x s P Y F j X s x q � y � r� .Ž . Ž .Ž .k j

Figure 7.3 portrays the curves for the category probabilities.
Ž .The cumulative logit model 7.5 satisfies

� �logit P Y F j x y logit P Y F j xŽ . Ž .1 2

� �P Y F j x rP Y � j xŽ . Ž .1 1 �s log s � x y x .Ž .1 2� �P Y F j x rP Y � j xŽ . Ž .2 2

An odds ratio of cumulative probabilities is called a cumulati®e odds ratio.
w �Ž .xThe odds of making response F j at x s x are exp � x y x times the1 1 2

odds at x s x . The log cumulative odds ratio is proportional to the distance2
between x and x . The same proportionality constant applies to each logit.1 2

Ž . Ž .Because of this property, McCullagh 1980 called 7.5 a proportional odds
model.
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FIGURE 7.4 Uniform odds ratios ADrBC whenever x y x s 1, for all response cutpoints1 2
with proportional odds model.

With a single predictor, the cumulative odds ratio equals e � whenever
x y x s 1. Figure 7.4 illustrates the constant cumulative odds ratio this1 2
model then implies for all j. It shows the J-category response collapsed into

Ž .the binary outcome F j, � j and shows the sets of cells that determine
the cumulative odds ratio ADrBC that takes the same value e � for each
such collapsing.

Ž .Model 7.5 constrains the J y 1 response curves to have the same shape.
Thus, its fit is not the same as fitting separate logit models for each j. Again

Ž .let y , . . . , y be binary indicators of the response for subject i. Thei1 i J
likelihood function is

n J n J
yy i ji j � �Ž .� x s P Y F j x y P Y F j y 1 xŽ . Ž .Ž .Ł Ł Ł Łj i i i

is1 js1 is1 js1

y� � i jn J exp � q � x exp � q � xŽ . Ž .j i jy1 i
s y ,Ł Ł � �ž /1 q exp � q � x 1 q exp � q � xŽ . Ž .is1 js1 j i jy1 i

7.6Ž .

Ž� 4 . Ž .viewed as a function of � , � . McCullagh 1980 and Walker and Duncanj
Ž .1967 used Fisher scoring algorithms to obtain ML estimates.

7.2.3 Latent Variable Motivation*

A regression model for a continuous variable assumed to underlie Y moti-
vates the common effect � for different j in the proportional odds model
Ž .Anderson and Philips 1981 . Let Y * denote this underlying variable. In
statistics, such an unobserved variable is called a latent ®ariable. Suppose that

Ž .it has cdf G y* y � , where values of y* vary around a location parameter �
Ž . Ž . �such as a mean that depends on x through � x s � x. Suppose that
y	 s � � � � ��� � � s 	 are cutpoints of the continuous scale such0 1 J
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FIGURE 7.5 Ordinal measurement and underlying regression model for a latent variable.

that the observed response Y satisfies

Y s j if � � Y * F � .jy1 j

That is, Y falls in category j when the latent variable falls in the jth interval
Ž .of values Figure 7.5 . Then

� � �P Y F j x s P Y * F � x s G � y � x .Ž . Ž .Ž .j j

The appropriate model for Y implies that the link Gy1, the inverse of the cdf
Ž � . �for Y *, applies to P Y F j x . If Y * s � x q 
 , where the cdf G of 
 is the

Ž . y1logistic Section 4.2.5 , then G is the logit link and a proportional odds
model results. Normality for 
 implies a probit link for cumulative probabili-

Ž .ties Section 7.3.1 .
In this derivation, the same parameters � occur for the effects on Y

� 4regardless of how the cutpoints � chop up the scale for the latent variable.j
The effect parameters are invariant to the choice of categories for Y. If a
continuous variable measuring political philosophy has a linear regression
with some predictor variables, then the same effect parameters apply to a

Ždiscrete version of political philosophy with the categories liberal, moderate,
. Žconservative or very liberal, slightly liberal, moderate, slightly conservative,

.very conservative . This feature makes it possible to compare estimates from
studies using different response scales.
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Ž .Note that the use of a cdf of form G y* y � for the latent variable
results in linear predictor � y �� x rather than � q �� x. When � � 0, as xj j
increases each cumulative logit then decreases, so each cumulative probabil-
ity decreases and relatively less probability mass falls at the low end of the Y
scale. Thus, Y tends to be larger at higher values of x. With this parameteri-

Žzation the sign of � has the usual meaning. However, most software e.g.,
. Ž .SAS uses form 7.5 .

7.2.4 Mental Impairment Example

Table 7.5 comes from a study of mental health for a random sample of adult
residents of Alachua County, Florida. It relates mental impairment to two
explanatory variables. Mental impairment is an ordinal response, with cate-

Žgories well, mild symptom formation, moderate symptom formation, im-
.paired . The life events index x is a composite measure of the number and1

severity of important life events such as birth of child, new job, divorce, or
death in family that occurred to the subject within the past 3 years. Socioeco-

Ž . Ž .nomic status x s SES is measured here as binary 1 s high, 0 s low .2

TABLE 7.5 Mental Impairment by SES and Life Events

Life Life
a aMental SES Events Mental SES Events

Subject Impairment x x Subject Impairment x x2 1 2 1

1 Well 1 1 21 Mild 1 9
2 Well 1 9 22 Mild 0 3
3 Well 1 4 23 Mild 1 3
4 Well 1 3 24 Mild 1 1
5 Well 0 2 25 Moderate 0 0
6 Well 1 0 26 Moderate 1 4
7 Well 0 1 27 Moderate 0 3
8 Well 1 3 28 Moderate 0 9
9 Well 1 3 29 Moderate 1 6

10 Well 1 7 30 Moderate 0 4
11 Well 0 1 31 Moderate 0 3
12 Well 0 2 32 Impaired 1 8
13 Mild 1 5 33 Impaired 1 2
14 Mild 0 6 34 Impaired 1 7
15 Mild 1 3 35 Impaired 0 5
16 Mild 0 1 36 Impaired 0 4
17 Mild 1 8 37 Impaired 0 4
18 Mild 1 2 38 Impaired 1 8
19 Mild 0 5 39 Impaired 0 8
20 Mild 1 5 40 Impaired 0 9

a0, low; 1, high.
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TABLE 7.6 Output for Fitting Cumulative Logit Model to Table 7.5

Score Test for the Proportional Odds Assumption
Chi-Square DF Pr� ChiSq

2.3255 4 0.6761

Std Like. Ratio 95% Chi-
Parameter Estimate Error Conf Limits Square Pr > Chi Sq
Intercept1 y0.2819 0.6423 y1.5615 0.9839 0.19 0.6607
Intercept2 1.2128 0.6607 y0.0507 2.5656 3.37 0.0664
Intercept3 2.2094 0.7210 0.8590 3.7123 9.39 0.0022
life y0.3189 0.1210 y0.5718 y0.0920 6.95 0.0084
ses 1.1112 0.6109 y0.0641 2.3471 3.31 0.0689

Ž .The main-effects model of form 7.5 is

�logit P Y F j x s � q � x q � x .Ž . j 1 1 2 2

Table 7.6 shows output. With J s 4 response categories, the model has three
� 4� intercepts. Usually, these are not of interest except for computingj
response probabilities. The parameter estimates yield estimated logits and

Ž . Ž . Ž .hence estimates of P Y F j , P Y � j , or P Y s j . We illustrate for sub-
Ž .jects at the mean life events score of x s 4.275 with low SES x s 0 . Since1 2

� sy0.282, the estimated probability of response well isˆ1

exp y0.282 y 0.319 4.275Ž .ˆ ˆP Y s 1 s P Y F 1 s s 0.16.Ž . Ž .
1 q exp y0.282 y 0.319 4.275Ž .

Ž̂ .Figure 7.6 plots P Y � 2 as a function of the life events index, at the two
levels of SES.

Ž .FIGURE 7.6 Estimated values of P Y � 2 for Table 7.5.
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ˆ ˆThe effect estimates � sy0.319 and � s 1.111 suggest that the cumu-1 2
lative probability starting at the well end of the scale decreases as the life
events score increases and increases at the higher level of SES. Given the life
events score, at the high SES level the estimated odds of mental impairment
below any fixed level are e1.111 s 3.0 times the estimated odds at the low
SES level.

Descriptions of effects can compare cumulative probabilities rather than
use odds ratios. These can be easier to understand. We describe effects of
quantitative variables by comparing probabilities at their quartiles. We de-
scribe effects of qualitative variables by comparing probabilities for different
categories. We control for quantitative variables by setting them at their
mean. We control for qualitative variables by fixing the category, unless there
are several, in which case we can set each at their dummy means. We

Ž .illustrate again with P Y s 1 , the well outcome. First, we describe the SES
Ž̂ . Žeffect. At the mean life events of 4.275, P Y s 1 s 0.37 at high SES i.e.,

. Ž .x s 1 and 0.16 at low SES x s 0 . Next, we describe the life events effect.2 2
The lower and upper quartiles of the life events score are 2.0 and 6.5. For

Ž̂ .high SES, P Y s 1 changes from 0.55 to 0.22 between these quartiles; for
Žlow SES, it changes from 0.28 to 0.09. Note that comparing 0.55 to 0.28 at

the lower quartile and 0.22 to 0.09 at the upper quartile provides further
.information about the SES effect. The sample effect is substantial for both

predictors.
The output in Table 7.6, taken from SAS, also presents a score test of the

proportional odds property. This tests whether the effects are the same for
each cumulative logit against the alternative of separate effects. It com-
pares the model with one parameter for x and one for x to a more1 2
complex model with three parameters for each, allowing different effects

w Ž . w Ž .x w Ž .xfor logit P Y F 1 , logit P Y F 2 , and logit P Y F 3 . Here, the score
statistic equals 2.33. It has df s 4, since the more complex model has four
additional parameters. The more complex model does not fit significantly

Ž .better P s 0.68 .

7.2.5 More Complex Models

More complex cumulative logit models are formulated as in ordinary logistic
regression. They simply require a set of intercept parameters rather than a
single one. In the previous example, for instance, permitting interaction
yields a model with ML fit

ˆ �logit P Y F j x s � y 0.420 x q 0.371 x q 0.181 x x ,Ž . ˆj 1 2 1 2

where the coefficient of x x has SE s 0.238. The estimated effect of life1 2
events on the cumulative logit is y0.420 for the low SES group and
Ž .y0.420 q 0.181 sy0.239 for the high SES group. The impact of life
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events seems more severe for the low SES group, but the difference in effects
is not significant.

Models in this section used the proportional odds assumption of the same
effects for different cumulative logits. An advantage is that effects are simple
to summarize and interpret, requiring only a single parameter for each
predictor. The models generalize to include separate effects, replacing � in
Ž .7.5 by � . This implies nonparallelism of curves for different logits. How-j
ever, curves for different cumulative probabilities then cross for some x
values. Such models violate the proper order among the cumulative probabil-
ities.

Even if such a model fits better over the observed range of x, for reasons
of parsimony the simple model might be preferable. One case is when effects
ˆ� 4� with different logits are not substantially different in practical terms.j

Then the significance in a test of proportional odds may reflect primarily a
large value of n. Even with smaller n, although effect estimators using the
simple model are biased, they may have smaller MSE than estimators from a
more complex model having many more parameters. So even if a test of
proportional odds has a small P-value, don’t discard this model automati-
cally.

If a proportional odds model fits poorly in terms of practical as well as
Ž .statistical significance, alternative strategies exist. These include 1 trying a

Žlink function for which the response curve is nonsymmetric e.g., complemen-
. Ž .tary log-log ; 2 adding additional terms, such as interactions, to the linear
Ž . Ž .predictor; 3 adding dispersion parameters; 4 permitting separate effects

Žfor each logit for some but not all predictors i.e., partial proportional odds;
Ž .and 5 fitting baseline-category logit models and using the ordinality in an

Ž .informal way in interpreting the associations. For approach 4 , see Peterson
Ž . Ž .and Harrell 1990 , Stokes et al. 2000, Sec. 15.13 , and criticism by Cox

Ž .1995 . In the next section we generalize the cumulative logit model to permit
Ž . Ž .extensions 1 and 3 .

7.3 ORDINAL RESPONSES: CUMULATIVE LINK MODELS

Cumulative logit models use the logit link. As in univariate GLMs, other link
functions are possible. Let Gy1 denote a link function that is the inverse of

Ž .the continuous cdf G recall Section 4.2.5 . The cumulati®e link model

�y1 �G P Y F j x s � q � x 7.7Ž .Ž . j

links the cumulative probabilities to the linear predictor. The logit link
y1Ž . w Ž .xfunction G u s log ur 1 y u is the inverse of the standard logistic cdf.

Ž . Ž .As in the proportional odds model 7.5 , effects of x in 7.7 are assumed
the same for each cutpoint, j s 1, . . . , J y 1. In Section 7.2.3 we showed that
this assumption holds when a linear regression for a latent variable Y * has
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Ž .standardized cdf G. Model 7.7 results from discrete measurement of Y *
Ž � .from a location-parameter family having cdf G y* y � x . The parameters

� 4� are category cutpoints on a standardized version of the latent scale. Inj
this sense, cumulative link models are regression models, using a linear
predictor �� x to describe effects of explanatory variables on crude ordinal
measurement of Y *. Using y� rather than q� in the linear predictor

ˆ Žmerely results in change of sign of �. Most software e.g., GENMOD and
.LOGISTIC in SAS fits it in q� form.

7.3.1 Types of Cumulative Links

Use of the standard normal cdf � for G gives the cumulati®e probit model.
Ž .This generalizes the binary probit model Section 6.6 to ordinal responses. It

is appropriate when the distribution for Y * is normal. Parameters in probit
models can be interpreted in terms of the latent variable Y *. For instance,

y1w Ž .xconsider the model � P Y F j s � y � x. From Section 7.2.3, sincej
Ž .Y * s � x q 
 where 
 � N 0, 1 has cdf �, � has the interpretation that a

Ž .1-unit increase in x corresponds to a � increase in E Y * . When 
 need not
be in standardized form with � s 1, a 1-unit increase in x corresponds to a

Ž .� standard deviation increase in E Y * . Cumulative logit models provide fits
similar to those for cumulative probit models, and their parameter interpre-
tation is simpler.

An underlying extreme value distribution for Y * implies a model of the
form

��log ylog 1 y P Y F j x s � q � x .� 4Ž . j

In section 6.6 we introduced this complementary log-log link for binary data.
The ordinal model using this link is sometimes called a proportional hazards
model since it results from a generalization of the proportional hazards

Žmodel for survival data to handle grouped survival times Prentice and
.Gloeckler 1978 . It has the property

�w Ž .xexp � x yx1 2� �P Y � j x s P Y � j x .Ž . Ž .1 2

Ž .With this link, P Y F j approaches 1.0 at a faster rate than it approaches
� w Ž .x40.0. The related log-log link log ylog P Y F j is appropriate when the

complementary log-log link holds for the categories listed in reverse order.

7.3.2 Estimation for Cumulative Link Models

Ž . Ž .McCullagh 1980 and Thompson and Baker 1981 treated cumulative link
models as multivariate GLMs. McCullagh presented a Fisher scoring algo-

Ž .rithm for ML estimation, expressing the likelihood in the form 7.6 using
cumulative probabilities. McCullagh showed that sufficiently large n guaran-

Ž . Ž .tees a unique maximum of the likelihood. Burridge 1981 and Pratt 1981
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showed that the log likelihood is concave for many cumulative link models,
including the logit, probit, and complementary log-log. Iterative algorithms
usually converge rapidly to the ML estimates.

7.3.3 Life Table Example

Table 7.7 shows the life-length distribution for U.S. residents in 1981, by race
and gender. Life length uses five ordered categories. The underlying continu-
ous cdf of life length increases slowly at small to moderate ages but increases
sharply at older ages. This suggests the complementary log-log link. This link
also results from assuming that the hazard rate increases exponentially with

Ž .age, which happens for an extreme value distribution the Gompertz .
Ž . Ž .For gender G 1 s female; 0 s male , race R 1 s black; 0 s white , and

life length Y, Table 7.7 contains fitted distributions for the model

�log ylog 1 y P Y F j G s g , R s r s � q � g q � r .� 4Ž . j 1 2

Goodness-of-fit statistics are irrelevant, since the table contains population
distributions. The model describes well the four distributions. Its parameter
values are � sy0.658 and � s 0.626. The fitted cdf’s satisfy1 2

Ž .exp 0.658� �P Y � j G s 0, R s r s P Y � j G s 1, R s r .Ž . Ž .

Given race, the proportion of men living longer than a fixed time equaled the
Ž .proportion for women raised to the exp 0.658 s 1.93 power. Given gender,

the proportion of blacks living longer than a fixed time equaled the propor-
Ž .tion for whites to the exp 0.626 s 1.87 power. The � and � values1 2

indicate that white men and black women had similar distributions, that
white women tended to have longest lives and black men tended to have
shortest lives. If the probability of living longer than some fixed time equaled
� for white women, that probability was about � 2 for white men and black
women and � 4 for black men.

( ) aTABLE 7.7 Life-Length Distribution of U.S. Residents Percent , 1981

Males Females

Life Length White Black White Black

Ž . Ž . Ž . Ž .0�20 2.4 2.4 3.6 4.4 1.6 1.2 2.7 2.3
Ž . Ž . Ž . Ž .20�40 3.4 3.5 7.5 6.4 1.4 1.9 2.9 3.4
Ž . Ž . Ž . Ž .40�50 3.8 4.4 8.3 7.7 2.2 2.4 4.4 4.3
Ž . Ž . Ž . Ž .50�60 17.5 16.7 25.0 26.1 9.9 9.6 16.3 16.3
Ž . Ž . Ž . Ž .Over 65 72.9 73.0 55.6 55.4 84.9 84.9 73.7 73.7

a Ž .Values in parentheses are fit of proportional hazards i.e., complementary log-log link model.
ŽSource: Data from Statistical Abstract of the United States Washington, DC: U.S. Bureau of the

.Census, 1984 , p. 69.
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7.3.4 Incorporating Dispersion Effects*

For cumulative link models, settings of the explanatory variables are stochas-
Ž � .tically ordered on the response: For any pair x and x , either P Y F j x F1 2 1

Ž � . Ž � . Ž � .P Y F j x for all j or P Y F j x G P Y F j x for all j. Figure 7.7a2 1 2
illustrates for underlying continuous density functions and cdf’s at two
settings of x. When this is violated and such models fit poorly, often it is
because the dispersion also varies with x. For instance, perhaps responses
tend to concentrate around the same location but more dispersion occurs

Ž � . Ž � .at x than at x . Then perhaps P Y F j x � P Y F j x for small j but1 2 1 2
Ž � . Ž � .P Y F j x � P Y F j x for large j. In other words, at x the responses1 2 1

concentrate more at the extreme categories than at x . Figure 7.7b illustrates2
for underlying continuous distributions.

A cumulative link model that incorporates dispersion effects is

� q �� xjy1 �G P Y F j x s . 7.8Ž .Ž . �exp � xŽ .

ŽAgain, one can replace q by y to more closely mimic a location�scale
.family for an underlying continuous variable. The denominator contains

Ž . Ž .FIGURE 7.7 a Distribution 1 stochastically higher than distribution 2; b distributions not
stochastically ordered.
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scale parameters � that describe the dispersion’s dependence on x. The
Ž .ordinary model 7.7 is the special case � s 0. Otherwise, the cumulative

probabilities tend to shrink toward each other when �� x � 0. This creates
higher probabilities in the end categories and overall greater dispersion. The

Ž .cumulative probabilities tend to move apart creating less dispersion when
�� x � 0.

To illustrate, we use this model to compare two groups on an ordinal
scale. Suppose that x is a dummy variable with x s 1 for the first group.

Ž .With cumulative logits, model 7.8 is

logit P Y F j s � , x s 0,Ž . j

logit P Y F j s � q � rexp  , x s 1.Ž . Ž .Ž .j

The case  s 0 is the usual model, in which � is a location shift that
determines a common cumulative log odds ratio for all 2 � 2 collapsings of
the 2 � J table. When  � 0 the difference between the logits for the two
groups, and hence the cumulative odds ratio, varies as j does. When  � 0,

Ž .responses at x s 1 tend to be more disperse than at x s 0. See Cox 1995
Ž .and McCullagh 1980 for model fitting and examples.

7.4 ALTERNATIVE MODELS FOR ORDINAL RESPONSES*

Models for ordinal responses need not use cumulative probabilities. In this
section we discuss alternative logit models and a simpler model that resem-
bles ordinary regression.

7.4.1 Adjacent-Categories Logits

The adjacent-categories logits are

� j
�logit P Y s j Y s j or j q 1 s log , j s 1, . . . , J y 1. 7.9Ž .Ž .

� jq1

These logits are a basic set equivalent to the baseline-category logits. The
connections are

� � � �j j jq1 Jy1
log s log q log q ��� qlog , 7.10Ž .

� � � �J jq1 jq2 J

and

� � �j j jq1
log s log y log , j s 1, . . . , J y 1.

� � �jq1 J J

JEither set determines logits for all pairs of response categories.ž /2
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Models using adjacent-categories logits can be expressed as baseline-cate-
gory logit models. For instance, consider the adjacent-categories logit model

� xŽ .j �log s � q � x, j s 1, . . . , J y 1, 7.11Ž .j� xŽ .jq1

Ž . Ž .with common effect �. From adding J y j terms as in 7.10 , the equivalent
baseline-category logit model is

Jy1� xŽ .j �log s � q � J y j x, j s 1, . . . , J y 1Ž .Ý k� xŽ .J ksj

s � * q �� u , j s 1, . . . , J y 1j j

Ž .with u s J y j x. The adjacent-categories logit model corresponds to aj
baseline-category logit model with adjusted model matrix but also a single

Ž .parameter for each predictor. With some software one can fit model 7.11 by
fitting the equivalent baseline-category logit model.

The construction of the adjacent-categories logits recognizes the ordering
of Y categories. To benefit from this in model parsimony requires appropri-
ate specification of the linear predictor. For instance, if an explanatory
variable has similar effect for each logit, advantages accrue from having a

Ž .single parameter instead of J y 1 parameters describing that effect. When
Ž .used with this proportional odds form, model 7.11 with adjacent-categories

Ž .logits fit well in similar situations as model 7.5 with cumulative logits. They
both imply stochastically ordered distributions for Y at different predictor
values.

The choice of model should depend less on goodness of fit than on
whether one prefers effects to refer to individual response categories, as the
adjacent-categories logits provide, or instead to groupings of categories using
the entire scale or an underlying latent variable, which cumulative logits
provide. Since effects in cumulative logit models refer to the entire scale,
they are usually larger. The ratio of estimate to standard error, however, is
usually similar for the two model types. An advantage of the cumulative logit
model is the approximate invariance of effect estimates to the choice and
number of response categories. This does not happen with the adjacent-cate-
gories logits.

7.4.2 Job Satisfaction Example

Ž .Table 7.8 refers to the relationship between job satisfaction Y and income,
stratified by gender, for black Americans. For simplicity, we use income

Ž . Ž .scores 1, 2, 3, 4 . For income x and gender g 1 s females, 0 s males ,
consider the model

log � r� s � q � x q � g , j s 1, 2, 3.Ž .j jq1 j 1 2
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TABLE 7.8 Job Satisfaction and Income, Controlling for Gender

Job Satisfaction

Income Very A Little Moderately Very
Ž .Gender dollars Dissatisfied Satisfied Satisfied Satisfied

Female � 5000 1 3 11 2
5000�15,000 2 3 17 3
15,000�25,000 0 1 8 5
� 25,000 0 2 4 2

Male � 5000 1 1 2 1
5000�15,000 0 3 5 1
15,000�25,000 0 0 7 3
� 25,000 0 1 9 6

Source:1991, General Social Survey, National Opinion Research Center.

It describes the odds of being very dissatisfied instead of a little satisfied, a
little instead of moderately satisfied, and moderately instead of very satisfied.

This model is equivalent to the baseline-category logit model

log � r� s �	 q � 4 y j x q � 4 y j g , j s 1, 2, 3.Ž . Ž .Ž .j 4 j 1 2

The value of the first predictor in this model is set equal to 3 x in the
Ž . Ž .equation for log � r� , 2 x in the equation for log � r� , and x in the1 4 2 4
Ž . Žequation for log � r� . Some software e.g., PROC CATMOD in SAS; see3 4

.Table A.12 allows one to enter a row of a model matrix for each baseline-
category logit at a given setting of predictors. Then, after fitting the
baseline-category logit model that constrains the effects to be the same for
each logit, the estimated regression parameters are the ML estimates
of parameters for the adjacent-categories logit model. The ML fit gives
ˆ ˆŽ . Ž .� sy0.389 SE s 0.155 and � s 0.045 SE s 0.314 . For this parameter-1 2

ˆization, � � 0 means the odds of lower job satisfaction decrease as income1
increases. Given gender, the estimated odds of response in the lower of two

Ž .adjacent categories multiplies by exp y0.389 s 0.68 for each category in-
Žcrease in income. The model describes 24 logits three for each income �

. 2gender combination with five parameters. Its deviance G s 12.6 with
df s 19. This model with a linear trend for the income effect and a lack of
interaction between income and gender seems adequate.

Similar substantive results occur with a cumulative logit model. Its de-
2 ˆŽviance G s 13.3 with df s 19. The income effect is larger � sy0.51,1
.SE s 0.20 , since it refers to the entire response scale rather than adjacent

ˆcategories. However, significance is similar, with � rSE fy2.5 for each1
model.
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7.4.3 Continuation-Ratio Logits

Continuation-ratio logits are defined as

� j
log , j s 1, . . . , J y 1 7.12Ž .

� q ��� q�jq1 J

or as

� jq1
log , j s 1, . . . , J y 1. 7.13Ž .

� q ��� q�1 j

The continuation-ratio logit model form is useful when a sequential mecha-
nism, such as survival through various age periods, determines the response

Ž . Ž � .outcome e.g., Tutz 1991 . Let � s P Y s j Y G j . With explanatory vari-j
ables,

� xŽ .j
� x s , j s 1, . . . , J y 1. 7.14Ž . Ž .j � x q ��� q� xŽ . Ž .j J

Ž .The continuation-ratio logits 7.12 are ordinary logits of these conditional
w Ž . Ž Ž ..xprobabilities: namely, log � x r 1 y � x .j j

� 4At the ith setting x of x, let y , j s 1, . . . , J denote the responsei i j
counts, with n sÝ y . When n s 1, y indicates whether the response isi j i j i i j

Ž .in category j, as in Section 7.1.4. Let b n, y; � denote the binomial probabil-
ity of y successes in n trials with parameter � for each trial. By expressing

Ž . Ž . Ž � .the multinomial probability of y , . . . , y in the form p y p y y ���i1 i J i1 i2 i1
Ž � .p y y , . . . , y , one can show that the multinomial mass function hasi J i1 i, Jy1

factorization

b n , y ; � x b n y y , y ; � x ���Ž . Ž .i i1 1 i i i1 i2 2 i

b n y y y ��� yy , y ; � x . 7.15Ž . Ž .i i1 i , Jy2 i , Jy1 Jy1 i

The full likelihood is the product of multinomial mass functions from the
different x values. Thus, the log likelihood is a sum of terms such thati
different � enter into different terms. When parameters in the modelj

Ž . Ž .specification for logit � are distinct from those for logit � wheneverj k
j � k, maximizing each term separately maximizes the full log likelihood.
Thus, separate fitting of models for different continuation-ratio logits gives
the same results as simultaneous fitting. The sum of the J y 1 separate G2

statistics provides an overall goodness-of-fit statistic pertaining to the simul-
taneous fitting of J y 1 models.

Because these logits refer to a binary response in which one category
combines levels of the original scale, separate fitting can use methods for

Ž .binary logit models. Similar remarks apply to continuation-ratio logits 7.13 ,
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although those logits and the subsequent analysis do not give equivalent
results. Sometimes, simpler models with the same effects for each logit are

Ž .plausible McCullagh and Nelder 1989, p. 164; Tutz 1991 .

7.4.4 Developmental Toxicity Study with Pregnant Mice

We illustrate continuation-ratio logits using Table 7.9 from a developmental
toxicity study. Such experiments with rodents test substances posing potential

Ž .danger to developing fetuses. Diethylene glycol dimethyl ether diEGdiME ,
one such substance, is an industrial solvent used in the manufacture of
protective coatings such as lacquer and metal coatings.

This study administered diEGdiME in distilled water to pregnant mice.
Each mouse was exposed to one of five concentration levels for 10 days early
in the pregnancy. The mice exposed to level 0 formed a control group. Two
days later, the uterine contents of the pregnant mice were examined for

Ždefects. Each fetus has three possible outcomes nonlive, malformation,
.normal . The outcomes are ordered, with nonlive the least desirable result.

Ž .We use continuation-ratio logits to model 1 the probability � of a nonlive1
Ž . Ž .fetus, and 2 the conditional probability � r � q � of a malformed fetus,2 2 3

given that the fetus was live.
We fitted the continuation-ratio logit models

� x � xŽ . Ž .1 i 2 i
log s � q � x , log s � q � x ,1 1 i 2 2 i� x q � x � xŽ . Ž . Ž .2 i 3 i 3 i

� 4using x scores 0, 62.5, 125, 250, 500 for concentration level. The ML esti-i
ˆ ˆŽ . Ž .mates are � s 0.0064 SE s 0.0004 and � s 0.0174 SE s 0.0012 . In1 2

each case, the less desirable outcome is more likely as the concentration
increases. For instance, given that a fetus was live, the estimated odds that it

Ž .was malformed rather than normal multiplies by exp 1.74 s 5.7 for every
100-unit increase in the concentration of diEGdiME. The likelihood-ratio fit

TABLE 7.9 Outcomes for Pregnant Mice in Developmental Toxicity Study

ResponseConcentration
Ž .mgrkg per day Nonlive Malformation Normal

Ž .0 controls 15 1 281
62.5 17 0 225

125 22 7 283
250 38 59 202
500 144 132 9
a Ž .Based on results in C. J. Price et al., Fund. Appl. Toxicol. 8:115�126 1987 . I thank
Louise Ryan for showing me these data.
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statistics are G2 s 5.78 for j s 1 and G2 s 6.06 for j s 2, each based on
2 Ž 2 .df s 3. Their sum, G s 11.84 or similarly X s 9.76 , with df s 6, summa-

rizes the fit.
This analysis treats pregnancy outcomes for different fetuses as indepen-

dent, identical observations. In fact, each pregnant mouse had a litter of
fetuses, and statistical dependence may exist among different fetuses in the
same litter. Different litters at a given concentration level may also have
different response probabilities. Heterogeneity of various sorts among the

Žlitters e.g., due to varying physical characteristics among different pregnant
.mice would cause these probabilities to vary somewhat. Either statistical

dependence or heterogeneous probabilities violates the binomial assumption
and causes overdispersion. At a fixed concentration level, the number of
fetuses in a litter that die may vary among pregnant mice more than if the
counts were independent and identical binomial variates. The total G2 shows

Ž .some evidence of lack of fit P s 0.07 but may reflect overdispersion caused
by these factors rather than an inappropriate choice of response curve.

To account for overdispersion, we could adjust standard errors using the
Ž .quasi-likelihood approach Section 4.7 . This multiplies standard errors by

2' 'X rdf s 9.76r6 s 1.28. For each logit, strong evidence remains that
� � 0. In Chapters 12 and 13 we present other methods that account for thej
clustering of fetuses in litters.

7.4.5 Mean Response Models for Ordered Response

We now present a model that resembles ordinary regression for a continuous
response variable. For scores ® F ® F ��� F® , let1 2 J

M x s ®� xŽ . Ž .Ý j j
j

denote the mean response. The model

M x s � q �� x 7.16Ž . Ž .

assumes a linear relationship between the mean and the explanatory vari-
Ž .ables. With J s 2, it is the linear probability model Section 4.2.1 . With

J � 2, it does not structurally specify the response probabilities but merely
describes the dependence of the mean on x.

Assuming independent multinomial sampling at different x , Bhapkari
Ž . Ž . Ž .1968 , Grizzle et al. 1969 , and Williams and Grizzle 1972 presented

Ž .weighted least squares WLS fits for mean response models. The WLS
approach, described in Section 15.1, applies when all explanatory variables
are categorical. The ML approach for maximizing the product multinomial
likelihood applies for categorical or continuous explanatory variables. Haber
Ž . Ž .1985 and Lipsitz 1992 presented algorithms for ML fitting of a family,
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including mean response models. This is somewhat complex, since the
probabilities in the multinomial likelihood are not direct functions of the

Ž . Ž .parameters in 7.16 . Specialized software is available see Appendix A .

7.4.6 Job Satisfaction Example Revisited

We illustrate for Table 7.8, modeling the mean of Y s job satisfaction using
Ž .income x and gender g 1 s females, 0 s males . For simplicity, we use job

Ž .satisfaction scores and income scores 1, 2, 3, 4 . The model has ML fit,

M̂ s 2.59 q 0.181 x y 0.030 g ,

with SE s 0.069 for income and 0.145 for gender. Given gender, the esti-
mated increase in mean job satisfaction is about 0.2 response category for
each category increase of income. Although the evidence is strong of a

w Ž .2 xpositive effect e.g., Wald statistic 0.181r0.069 s 6.8, df s 1, P s 0.009 ,
the strength of the effect is weak. Job satisfaction at the highest income level
is estimated to average about half a category higher than at the lowest

Ž .income level, since 3 0.181 s 0.54. Similar results occur with the WLS
solution, for which the estimated income effect of 0.182 has SE s 0.068
Ž .Table A.12 shows the use of CATMOD in SAS .

The deviance for testing the model fit equals 5.1. Since means occur at
eight income � gender settings and the model has three parameters, residual
df s 5. The fit seems adequate.

7.4.7 Advantages and Disadvantages of Mean Response Models

Treating ordinal variables in a quantitative manner is sensible if their
categorical nature reflects crude measurement of an inherently continuous
variable. Mean response models have the advantage of closely resembling
ordinary regression.

With J s 2, in Section 4.2.1 we noted that linear probability models have
Ž .a structural difficulty because of the restriction of probabilities to 0, 1 . A

similar difficulty occurs here, since a linear model can have predicted means
outside the range of assigned scores. This happens less frequently when J is
large and reasonable dispersion of responses occurs throughout the domain
of interest for the explanatory variables. The notion of an underlying latent
variable makes more sense for an ordinal variable than for a strictly binary
response, so this difficulty has less relevance here.

Unlike logit models, mean response models do not uniquely determine cell
probabilities. Thus, mean response models do not specify structural aspects
such as stochastic orderings. These models do not represent the categorical
response structure as fully as do models for probabilities, and conditions such
as independence do not occur as special cases. However, they provide
simpler descriptions than odds ratios or summaries from cumulative link
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models. As J increases, they also interface with ordinary regression models.
For large J, they are a simple mechanism for approximating results for a
regression model we would use if we could measure Y continuously.

7.5 TESTING CONDITIONAL INDEPENDENCE IN
I � J � K TABLES*

Ž .In Section 6.3.2 we introduced the Cochran�Mantel�Haenszel CMH test of
conditional independence for 2 � 2 � K tables. This section presents related
tests with multicategory responses for I � J � K tables. Likelihood-ratio
tests compare the fit of a model specifying XY conditional independence
with a model having dependence. Alternatively, generalizations of the CMH
statistic are score statistics for certain models.

7.5.1 Using Multinomial Models to Test Conditional Independence

Ž .Treating Z as a nominal control factor, we discuss four cases with Y, X as
Ž . Ž . Ž . Ž .ordinal, ordinal , ordinal, nominal , nominal, ordinal , nominal, nominal .
For ordinal Y we use cumulative logit models, but other ordinal links yield
analogous tests. As we noted in Section 6.3.2 when the XY association is
similar in the partial tables, the power benefits from basing a test statistic on
a model of homogeneous association.

� 41. Y ordinal, X ordinal. Let x be ordered scores. The modeli

Z�logit P Y F j X s i , Z s k s � q � x q � 7.17Ž .Ž . j i k

has the same linear trend for the X effect in each partial table. For it,
XY conditional independence is H : � s 0. Likelihood-ratio, score, or0
Wald statistics for H provide large-sample chi-squared tests with0
df s 1 that are sensitive to the trend alternative.

2. Y ordinal, X nominal. An alternative to conditional independence that
treats X as a factor is

Z�logit P Y F j X s i , Z s k s � q � q � ,Ž . j i k

with constraint such as � s 0. For this model, XY conditional inde-I
pendence is H : � s ��� s � . Large-sample chi-squared tests have0 1 I
df s I y 1.

3. Y nominal, X ordinal. When Y is nominal, analogous tests use
baseline-category logit models. The model of XY conditional indepen-
dence is

�P Y s j X s i , Z s kŽ .
log s � . 7.18Ž .jk�P Y s J X s i , Z s kŽ .
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� 4For ordered scores x , a test that is sensitive to the same linear trendi
alternatives in each partial table compares this model to

�P Y s j X s i , Z s kŽ .
log s � q � x .jk j i�P Y s J X s i , Z s kŽ .

Conditional independence is H : � s ��� s � s 0. Large-sample0 1 Jy1
chi-squared tests have df s J y 1.

4. Y nominal, X nominal. An alternative to XY conditional independence
that treats X as a factor is

�P Y s j X s i , Z s kŽ .
log s � q � 7.19Ž .jk i j�P Y s J X s i , Z s kŽ .

with constraint such as � s 0 for each j. For each j, X and Z haveI j
additive effects of form � q � . Conditional independence is H :k i 0
� s ��� s � for j s 1, . . . , J y 1. Large-sample chi-squared tests1 j I j

Ž .Ž .have df s I y 1 J y 1 .

Table 7.10 summarizes the four tests. They work well when the model
describes at least a major component of the departure from conditional
independence. This does not mean that one must test the fit of the model to

Ž .use the test see the remarks at the end of Section 6.3.2 .
Occasionally, the association may change dramatically across the K partial

tables. When Z is ordinal, an alternative by which a log odds ratio changes
linearly across levels of Z is sometimes of use. For instance, when Z s age

Ž .of subject, the association between a risk factor X e.g., level of smoking and
Ž .a response Y e.g., severity of heart disease may tend to increase with Z.

When Z is nominal, one can test the conditional independence models

TABLE 7.10 Summary of Models for Testing Conditional Independence

Conditional
Y-X Model Independence df

Zw Ž .xOrd-Ord logit P Y F j s � q � x q � � s 0 1j i k

Zw Ž .x-Nom logit P Y F j s � q � q � � s ��� s � I y 1j i k 1 I

Ž .P Y s j
Nom-Ord log s � q � x � s ��� s � s 0 J y 1jk j i 1 Jy1Ž .P Y s J

Ž .P Y s j
Ž .Ž .-Nom log s � q � all � s 0 I y 1 J y 1jk i j i jŽ .P Y s J
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against a more general alternative with separate effect parameters at each
level of Z. Allowing effects to vary across levels of Z, however, results in the
test df being multiplied by K , which handicaps power.

7.5.2 Job Satisfaction Example Revisited

Ž .We now revisit the job satisfaction data Table 7.8 . Table 7.11 summarizes
the fit of several models. The model treating income as an ordinal predictor

� 4uses scores 3, 10, 20, 35 , approximate midpoints of categories in thousands
of dollars. Each likelihood-ratio test compares a given model to the model
deleting the income effect, controlling for gender.

Ž .Testing conditional independence with the cumulative logit model 7.17
yields likelihood-ratio statistic 19.62 y 13.95 s 5.7 with df s 20 y 19 s 1,
strong evidence of an effect. Models that treat either or both variables as
nominal do not provide such strong evidence. Focusing the test on a linear
trend alternative yields a smaller P-value. However, we learn more from
estimating parameters than from significance tests, as in Sections 7.4.2 and
7.4.6.

7.5.3 Generalized Cochran–Mantel�Haenszel Tests for
I � J � K Tables

Ž . Ž . Ž .Birch 1965 , Landis et al. 1978 , and Mantel and Byar 1978 generalized
Ž .the CMH statistic Section 6.3.2 . The tests treat X and Y symmetrically, so

the three cases correspond to treating both as nominal, both as ordinal, or
one of each. Conditional on row and column totals, each stratum has
Ž .Ž .I y 1 J y 1 nonredundant cell counts. Let

�
n s n , n , . . . , n , . . . , n .Ž .k 11 k 12 k 1, Jy1 ,k Iy1 , Jy1 ,k

TABLE 7.11 Summary of Model-Based Likelihood-Ratio Tests of
Conditional Independence for Table 7.8

Test
2Satisfaction Income G Fit df Statistic df P-value

Ordinal Ordinal 13.95 19 5.7 1 0.017
Nominal 10.51 17 9.1 3 0.028
Not in model 19.62 20 � � �

Nominal Ordinal 11.74 15 7.6 3 0.054
Nominal 7.09 9 12.3 9 0.198
Not in model 19.37 18 � � �
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Ž .Let � s E n under H : conditional independence, namelyk k 0

�
� s n n , n n , . . . , n n rn .Ž .k 1qk q1 k 1qk q2 k Iy1 ,q,k q, Jy1 ,k qqk

Let V denote the null covariance matrix of n , wherek k

n � � n y n � n � � n y n �Ž . Ž .iqk i i qqk i qk qj k j j qqk qj k
� �cov n , n sŽ .i jk i j k 2n n y 1Ž .qqk qqk

with � s 1 when a s b and � s 0 otherwise.ab ab
The most general statistic treats rows and columns as unordered. Sum-

ming over the K strata, let

n s n , � s � , V s V .Ý Ý Ýk k k

The generalized CMH statistic for nominal X and Y is

� y1CMH s n y � V n y � . 7.20Ž . Ž . Ž .

Ž .Ž .Its large-sample chi-squared distribution has df s I y 1 J y 1 . The df
Ž . Ž .value equals that for the statistics comparing logit models 7.18 and 7.19 .

Both statistics are sensitive to detecting a conditional association that is
similar in each stratum. For K s 1 stratum with n observations, CMH s
wŽ . x 2 2 Ž .n y 1 rn X , where X is the Pearson statistic 3.10 .

Ž .Mantel 1963 introduced a generalized statistic for ordinal X and Y.
� 4 � 4Using ordered scores u and ® , it is sensitive to a correlation of commoni j

sign in each stratum. Evidence of a positive trend occurs if in each stratum
T sÝ Ý u ® n exceeds its null expectation. Given the marginal totals ink i j i j i jk
each stratum, under conditional independence

E T s u n ® n n ,Ž . Ý Ýk i iqk j qj k qqk
i j

21 Ý u nŽ .i i iqk2var T s u n yŽ . Ýk i iqkn y 1 nqqk qqki

�

2Ý ® nŽ .j j qj k2® n y .Ý j qj k nqqkj

w Ž .x w Ž .x1r2The statistic T y E T r var T equals the correlation between X andk k k

Y in stratum k multiplied by n y 1 . To summarize across the K strata,' qqk
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Ž .Mantel 1963 proposed

2
Ý Ý Ý u ® n y E Ý Ý u ® nŽ .� 4k i j i j i jk i j i j i jk2M s . 7.21Ž .

Ý var Ý Ý u ® nŽ .k i j i j i jk

This has an approximate � 2 null distribution, the same as for testing H :1 0
Ž . 2 Ž .� s 0 in ordinal model 7.17 . For K s 1, this is the M statistic 3.15 .

Ž . Ž . Ž .Landis et al. 1978 presented a statistic that has 7.20 and 7.21 as
special cases. His statistic also can treat X as nominal and Y as ordinal,
summarizing information about how I row means compare to their null

Ž .expected values, with df s I y 1 see Note 7.7 .

7.5.4 Job Satisfaction Example Revisited

Table 7.12 shows output from conducting generalized CMH tests for Table
� 47.8. Statistics treating a variable as ordinal used scores 3, 10, 20, 35 for

� 4 Žincome and scores 1, 3, 4, 5 for job satisfaction. Table A.12 shows the use of
PROC FREQ in SAS, but with different scores.

The general association alternative treats X and Y as nominal and uses
Ž .7.20 . It is sensitive to any association that is similar in each level of Z. The
row mean scores differ alternative treats rows as nominal and columns as
ordinal. It is sensitive to variation among the I row mean scores on Y, when
that variation is similar in each level of Z. Finally, the nonzero correlation

Ž .alternative treats X and Y as ordinal and uses 7.21 . It is sensitive to a
similar linear trend in each level of Z. As in the model-based analyses that
Table 7.11 summarized, the evidence is stronger using the df s 1 ordinal test.

7.5.5 Related Score Tests for Multinomial Logit Models

The generalized CMH tests seem to be non-model-based alternatives to
those of Section 7.5.1 using multinomial logit models. However, a close
connection exists between them. For various multinomial logit models, the
generalized CMH tests are score tests.

TABLE 7.12 Output for Generalized Cochran–Mantel–Haenszel Tests
with Job Satisfaction and Income Data

Summary Statistics for income by satisf
Controlling for gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)
Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 6.1563 0.0131
2 Row Mean Scores Differ 3 9.0342 0.0288
3 General Association 9 10.2001 0.3345
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Ž .The generalized CMH test 7.20 that treats X and Y as nominal is the
Ž .Ž .� 4 Ž .score test that the I y 1 J y 1 � parameters in logit model 7.19 equali j

0. The generalized CMH test using M 2 that treats X and Y as ordinal is the
Ž .score test of � s 0 in model 7.17 . For the cumulative logit model, the

� 4 2 � 4equivalence has the same x scores in the model as in M , and the ®i j
scores in M 2 are average rank scores. For the adjacent-categories logit

Ž . � 4 2model analog of 7.17 , the ® scores in M are any equally spaced scores.j
With large samples in each stratum, the generalized CMH tests give

similar results as likelihood-ratio tests comparing the relevant models. An
advantage of the model-based approach is providing estimates of effects. An
advantage of the generalized CMH tests is maintaining good performance
under sparse asymptotics whereby K grows as n does. Remarks in Section
6.3.4 apply here also.

7.5.6 Exact Tests of Conditional Independence

In principle, exact tests of conditional independence can use the generalized
CMH statistics, generalizing Section 6.7.5 for 2 � 2 � K tables. To eliminate
nuisance parameters, one conditions on row and column totals in each
stratum. The distribution of counts in each stratum is the multiple hypergeo-

Ž .metric Section 3.5.7 , and this propagates an exact conditional distribution
for the statistic of interest. The P-value is the probability of those tables
having the same strata margins as observed but test statistic at least as large

Ž .as observed see Birch 1965; Kim and Agresti 1997; Mehta et al. 1988 .

7.6 DISCRETE-CHOICE MULTINOMIAL LOGIT MODELS*

An important application of multinomial logit models is determining effects
of explanatory variables on a subject’s choice from a discrete set of
options�for instance, the choice of transportation system to take to work
Ž . Ždrive, bus, subway, walk, bicycle , housing buy house, buy condominium,

. Ž .rent , primary shopping location downtown, mall, catalogs, Internet , or
product brand. Models for response variables consisting of a discrete set of
choices are called discrete-choice models.

7.6.1 Discrete-Choice Modeling

In many discrete-choice applications, an explanatory variable takes different
values for different response choices. As predictors of choice of transporta-
tion system, cost and time to reach destination take different values for each
option. As a predictor of choice of product brand, price varies according to
the option. Explanatory variables of this type are characteristics of the choices.
They differ from the usual ones, for which values remain constant across the
choice set. Such variables, characteristics of the chooser, include income,
education, and other demographic characteristics.
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Ž .McFadden 1974 proposed a discrete-choice model for explanatory vari-
ables that are characteristics of the choices. His model also permits the
choice set to vary among subjects. For instance, some subjects may not have
the subway as an option for travel to work. For subject i and response choice

Ž .�j, let x s x , . . . , x denote the values of the p explanatory variables,i j i j1 i j p
Ž .and let x s x , . . . , x . Conditional on the choice set C for subject i, thei i1 i p i

model for the probability of selecting option j is

exp �� xŽ .i j
� x s . 7.22Ž . Ž .�j i Ý exp � xŽ .hgC ihi

For each pair of choices a and b, this model has the logit form

�log � x r� x s � x y x . 7.23Ž . Ž . Ž . Ž .a i b i ia ib

Conditional on the choice being a or b, a variable’s influence depends on the
distance between the subject’s values of that variable for those choices. If the
values are the same, the model asserts that the variable has no influence on
the choice between a and b. Reflecting this property, McFadden originally

Ž .referred to model 7.22 as a conditional logit model.
Ž .From 7.23 , the odds of choosing a over b do not depend on the other

alternatives in the choice set or on their values of the explanatory variables.
Ž .Luce 1959 called this property independence from irrele®ant alternati®es. It is

unrealistic in some applications. For instance, for travel options auto and red
bus, suppose that 80% choose auto, an odds of 4.0. Now suppose that the

Ž .options are auto, red bus, and blue bus. According to 7.23 , the odds are still
4.0 of choosing auto instead of red bus, but intuitively, we expect them to be

Ž . Ž .about 8.0 10% choosing each bus option , McFadden 1974 stated: ‘‘Appli-
cation of the model should be limited to situations where the alternatives can
plausibly be assumed to be distinct and weighed independently in the eyes of
each decision-maker.’’

7.6.2 Discrete-Choice and Multinomial Logit Models

Ž .Model 7.22 can also incorporate explanatory variables that are characteris-
Ž .tics of the chooser. This may seem surprising, since 7.22 has a single

parameter for each explanatory variable; that is, the parameter vector is the
Ž .same for each pair of choices. However, multinomial logit model 7.2 has

Ž .discrete-choice form 7.22 after replacing such an explanatory variable by J
artificial variables; the jth is the product of the explanatory variable with a
dummy variable that equals 1 when the response choice is j. For instance, for
a single explanatory variable, let x denote its value for subject i. Fori
j s 1, . . . , J, let � equal 1 when k s j and 0 otherwise, and letjk

�
z s � , . . . , � ,� x , . . . , � x .Ž .i j j1 j J j1 i j J i
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Ž .� � Ž . ŽLet � s � , . . . , � ,� , . . . , � . Then � z s � q � x , and 7.2 is with1 J 1 J i j j j i
.� s � s 0 for identifiabilityJ J

exp � q � xŽ .j j i
� x sŽ .j i exp � q � x q ��� qexp � q � xŽ . Ž .1 1 i J J i

exp ��zŽ .i j
s .� �exp � z q ��� qexp � zŽ . Ž .i1 i J

Ž .This has form 7.22 .
With this approach, discrete-choice models can contain characteristics of

Ž .the chooser and the choices. Thus, model 7.22 is very general. The ordinary
Ž .multinomial logit model 7.2 using baseline-category logits is a special case.

7.6.3 Shopping Choice Example

Ž .McFadden 1974 used multinomial logit models to describe how residents of
Pittsburgh, Pennsylvania chose a shopping destination. The five possible
destinations were different city zones. One explanatory variable measured
shopping opportunities, defined to be the retail employment in the zone as a
percentage of total retail employment in the region. The other explanatory
variable was price of the trip, defined from a separate analysis using auto
in-vehicle time and auto operating cost.

Ž .The ML estimates of model parameters were y1.06 SE s 0.28 for price
Ž . Ž .of trip and 0.84 SE s 0.23 for shopping opportunity. From 7.23 ,

log � r� sy1.06 P y P q 0.84 S y S ,Ž . Ž .ˆ ˆŽ .a b a b a b

where P s price and S s shopping opportunity. Not surprisingly, a destina-
tion is relatively more attractive as the trip price decreases and as the
shopping opportunity increases. Given values of P and S for each destina-

Ž .tion, the sample analog of 7.22 provides estimated probabilities of choosing
each destination.

NOTES

Section 7.1: Nominal Responses: Baseline-Category Logit Models

7.1. Multicategory models derive from latent variable constructions that generalize those for
binary responses. One approach uses the principle of selecting the category having

Ž . Ž .maximum utility Problem 6.29 . Fahrmeir and Tutz 2001, Chap. 3 gave discussion and
Ž .references. Baseline-category logit models were developed in Bock 1970 , Haberman

Ž . Ž . Ž . Ž .1974a, pp. 352�373 , Mantel 1966 , Nerlove and Press 1973 , and Theil 1969, 1970 .
Ž . Ž .Lesaffre and Albert 1989 presented regression diagnostics. Amemiya 1981 , Haber-

Ž . Ž .man 1982 , and Theil 1970 presented R-squared measures.
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Section 7.2: Ordinal Responses: Cumulati©e Logit Models

Ž . Ž .7.2. Early uses of cumulative logit models include Bock and Jones 1968 , Simon 1974 , Snell
Ž . Ž . Ž . Ž .1964 , Walker and Duncan 1967 , and Williams and Grizzle 1972 . McCullagh 1980

Ž .popularized the proportional odds case. Later articles include Agresti and Lang 1993a ,
Ž . Ž . Ž .Hastie and Tibshirani 1987 , Peterson and Harrell 1990 , and Tutz 1989 . See also

Ž .Section 11.3.3, Note 11.3, and Section 12.4.1. McCullagh and Nelder 1989, Sec. 5.6
suggested using cumulative totals in forming residuals.

Ž . Ž .7.3. McCullagh 1980 noted that score tests for model 7.5 are equivalent to nonparametric
w Ž .xtests using average ranks. For instance, for 2 � J tables assume that logit P Y F j s

� q � x, with x an indicator. The score test of H : � s 0 is equivalent to a discretej 0
Ž .version of the Wilcoxon�Mann�Whitney test. Whitehead 1993 gave sample size

formulas for this case. The sample size n needed for a certain power decreases as JJ
Ž 2 .increases: When response categories have equal probabilities, n f 0.75n r 1 y 1rJ .J 2

Thus, for large J, n f 0.75n , and 1 y 1rJ 2 is a type of efficiency measure of using JJ 2
categories instead of a continuous response. The efficiency loss is minor with J f 5, but

Ž .major in collapsing to J s 2. Edwardes 1997 innovatively adapted the test by treating
the cutpoints as random. This relates to random effects models of Section 12.4.1.

Section 7.3: Ordinal Responses: Cumulati©e Link Models

Ž . Ž .7.4. Aitchison and Silvey 1957 and Bock and Jones 1968, Chap. 8 studied cumulative
Ž .probit models. Farewell 1982 generalized the complementary log-log model to allow

variation among the sample in the category boundaries for the underlying scale; this
Ž . Ž .relates to random effects models Section 12.4 . Genter and Farewell 1985 introduced

a generalized link function that permits comparison of fits provided by probit, comple-
Ž .mentary log-log, and other links. Yee and Wild 1996 defined generalized additive

Ž . Ž .models for nominal and ordinal responses. Hamada and Wu 1990 and Nair 1987
Ž .presented alternatives to model 7.8 for detecting dispersion effects.

7.5. Some authors have considered inference relating generally to stochastic ordering; see,
Ž .for instance, Dardanoni and Forcina 1998 and survey articles in a 2002 issue of J.

Ž .Statist. Plann. Inference Vol. 107, Nos. 1�2 .

Section 7.4: Alternati©e Models for Ordinal Responses

Ž .7.6. The ratio of a pdf to the complement of the cdf is the hazard function Section 9.7.3 .
For discrete variables, this is the ratio found in continuation-ratio logits. Hence,

Ž .continuation-ratio logits are sometimes interpreted as log hazards. Thompson 1977
used them in modeling discrete survival-time data. When lengths of time intervals
approach 0, his model converges to the Cox proportional hazards model. Other applica-

Ž . Ž .tions of continuation-ratio logits include Laara and Matthews 1985 and Tutz 1991 .¨¨ ¨

Section 7.5: Testing Conditional Independence in I � J � K Tables

7.7. Let B s u m v denote a matrix of constants based on row scores u and columnk k k k
scores v for stratum k, where m denotes the Kronecker product. The Landis et al.k
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Ž .1978 generalized statistic is
� y1

�2L s B n y � B V B B n y � .Ž . Ž .Ý Ý Ýk k k k k k k k k
k k k

Ž . Ž . 2 2When u s u , . . . , u and v s ® , . . . , ® for all strata, L s M . When u is ank 1 I k 1 J k
Ž . Ž . Ž .I y 1 � I matrix I, y1 , where I is an identity matrix of size I y 1 and 1 denotes a

Ž . 2column vector of I y 1 ones, and v is the analogous matrix of size J y 1 � J, Lk
Ž . Ž .Ž . Ž . 2simplifies to 7.20 with df s I y 1 J y 1 . With this u and v s ® , . . . , ® , L sumsk k 1 J

over the strata information about how I row means compare to their null expected
values, and it has df s I y 1. Rank score versions are analogs for ordered categorical
responses of strata-adjusted Spearman correlation and Kruskal�Wallis tests. Landis et

Ž . Ž . Ž .al. 1998 and Stokes et al. 2000 reviewed CMH methods. Koch et al. 1982 reviewed
related methods.

Section 7.6: Discrete-Choice Multinomial Logit Models

Ž . Ž7.8. McFadden’s model relates to models proposed by Bradley and Terry 1952 see Section
. Ž . Ž . Ž .10.6 and Luce 1959 . See Train 1986 for a text treatment. McFadden 1982 discussed

hierarchical models having a nesting of choices in a tree-like structure. For other
Ž . Ž .discussion, see Maddala 1983 and Small 1987 . Models that do not assume indepen-

Ž .dence from irrelevant alternatives result with probit link Amemiya 1981 or with the
Ž .logit link but including random effects Brownstone and Train 1999 . Methods in Section

12.6 for random effects models are useful for fitting such models. These include Monte
Carlo methods for approximating integrals that determine the likelihood function. See

Ž .Stern 1997 for a review.

PROBLEMS

Applications

Ž7.1 For Table 7.13, let Y s belief in life after death, x s gender 1 s1
. Ž .females, 0 s males , and x s race 1 s whites, 0 s blacks . Table2

7.14 shows the fit of the model

log � r� s � q � G x q � R x , j s 1, 2,Ž .j 3 j j 1 j 2

with SE values in parentheses.

TABLE 7.13 Data for Problem 7.1

Belief in Afterlife

Race Gender Yes Undecided No

White Female 371 49 74
Male 250 45 71

Black Female 64 9 15
Male 25 5 13

Source: 1991 General Social Survey, National Opinion
Research Center.
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TABLE 7.14 Fit of Model for Problem 7.1

Belief Categories for Logit

Parameter YesrNo UndecidedrNo

Ž . Ž .Intercept 0.883 0.243 y0.758 0.361
Ž . Ž .Gender 0.419 0.171 0.105 0.246
Ž . Ž .Race 0.342 0.237 0.271 0.354

Ž .a. Find the prediction equation for log � r� .1 2

b. Using the yes and no response categories, interpret the conditional
gender effect using a 95% confidence interval for an odds ratio.

Ž̂ .c. Show that for white females, � s P Y s yes s 0.76.ˆ1

d. Without calculating estimated probabilities, explain why the inter-
cept estimates indicate that for black males � � � � � . Useˆ ˆ ˆ1 3 2
the intercept and gender estimates to show that the same ordering
applies for black females.

e. Without calculating estimated probabilities, explain why the esti-
mates in the gender and race rows indicate that � is highest forˆ 3
black males.

f. For this fit, G2 s 0.9. Explain why residual df s 2. Deleting the
gender effect, G2 s 8.0. Test whether opinion is independent of
gender, given race. Interpret.

Ž7.2 A model fit predicting preference for U.S. President Democrat, Re-
. Ž .publican, Independent using x s annual income in $10,000 is

Ž . Ž .log � r� s 3.3 y 0.2 x and log � r� s 1.0 q 0.3 x.ˆ ˆ ˆ ˆD I R I

Ž .a. Find the prediction equation for log � r� and interpret theˆ ˆR D
slope. For what range of x is � � � ?ˆ ˆR D

b. Find the prediction equation for � .ˆ I

c. Plot � , � , and � for x between 0 and 10, and interpret.ˆ ˆ ˆD I R

7.3 Table 7.15 refers to the effect on political party identification of
gender and race. Find a baseline-category logit model that fits well.

TABLE 7.15 Data for Problem 7.3

Party Identification

Gender Race Democrat Republican Independent

Male White 132 176 127
Black 42 6 12

Female White 172 129 130
Black 56 4 15
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Interpret estimated effects on the odds that party identification is
Democrat instead of Republican.

TABLE 7.16 Data for Problem 7.4 a

Males Females

Length Choice Length Choice Length Choice Length Choice
Ž . Ž . Ž . Ž .m m m m

1.30 I 1.80 F 1.24 I 2.56 O
1.32 F 1.85 F 1.30 I 2.67 F
1.32 F 1.93 I 1.45 I 2.72 I
1.40 F 1.93 F 1.45 O 2.79 F
1.42 I 1.98 I 1.55 I 2.84 F
1.42 F 2.03 F 1.60 I
1.47 I 2.03 F 1.60 I
1.47 F 2.31 F 1.65 F
1.50 I 2.36 F 1.78 I
1.52 I 2.46 F 1.78 O
1.63 I 3.25 O 1.80 I
1.65 O 3.28 O 1.88 I
1.65 O 3.33 F 2.16 F
1.65 I 3.56 F 2.26 F
1.65 F 3.58 F 2.31 F
1.68 F 3.66 F 2.36 F
1.70 I 3.68 O 2.39 F
1.73 O 3.71 F 2.41 F
1.78 F 3.89 F 2.44 F
1.78 O

aI, invertebrates; F, fish; O, other.

7.4 For 63 alligators caught in Lake George, Florida, Table 7.16 classifies
Ž .primary food choice as fish, invertebrate, other and shows length in

Ž .meters. Alligators are called subadults if length � 1.83 meters 6 feet
and adults if length � 1.83 meters.

Ž .a. Measuring length as adult, subadult , find a model that adequately
describes effects of gender and length on food choice. Interpret the
effects. For adult females, find the estimated probabilities of the
food-choice categories.

b. Using only observations for which primary food choice was fish or
invertebrate, find a model that adequately describes effects of
gender and binary length. Compare parameter estimates and stan-
dard errors for this separate-fitting approach to those obtained with
simultaneous fitting, including the other category.

c. Treating length as binary loses information. Adapt the model in
Ž .part a to use the continuous measurements. Interpret, explaining

how the estimated outcome probabilities vary with length. Find the
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estimated length at which the invertebrate and other categories are
equally likely.

7.5 For recent data from a General Social Survey, the cumulative logit
Ž . Žmodel 7.5 with Y s political ideology very liberal, slightly liberal,

.moderate, slightly conservative, very conservative and x s 1 for the
ˆ428 Democrats and x s 0 for the 407 Republicans has � s 0.975

ˆŽ .SE s 0.129 and � sy2.469. Interpret �. Find the estimated prob-ˆ1
ability of a very liberal response for each group.

ˆ7.6 Refer to Problem 7.5. With adjacent-categories logits, � s 0.435. In-
Žterpret using odds ratios for adjacent categories and for the very

.liberal, very conservative pair of categories.

7.7 Table 7.17 is an expanded version of a data set analyzed in Section
Ž . Ž .8.4.2. The response categories are 1 not injured, 2 injured but not

Ž .transported by emergency medical services, 3 injured and transported
Ž .by emergency medical services but not hospitalized, 4 injured and

Ž .hospitalized but did not die, and 5 injured and died. Table 7.18 shows
Ž .output for a model of form 7.5 , using dummy variables for predictors.

a. Why are there four intercepts? Explain how they determine the
estimated response distribution for males in urban areas wearing
seat belts.

b. Construct a confidence interval for the effect of gender, given
seat-belt use and location. Interpret.

c. Find the estimated cumulative odds ratio between the response and
seat-belt use for those in rural locations and for those in urban
locations, given gender. Based on this, explain how the effect of
seat-belt use varies by region, and explain how to interpret the
interaction estimate, y0.1244.

TABLE 7.17 Data for Problem 7.7

Response

Gender Location Seat Belt 1 2 3 4 5

Female Urban No 7,287 175 720 91 10
Yes 11,587 126 577 48 8

Rural No 3,246 73 710 159 31
Yes 6,134 94 564 82 17

Male Urban No 10,381 136 566 96 14
Yes 10,969 83 259 37 1

Rural No 6,123 141 710 188 45
Yes 6,693 74 353 74 12

Source: Data courtesy of Cristanna Cook, Medical Care Development, Augusta, Maine.
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TABLE 7.18 Output for Problem 7.7

Parameter DF Estimate Std Error
Intercept1 1 3.3074 0.0351
Intercept2 1 3.4818 0.0355
Intercept3 1 5.3494 0.0470
Intercept4 1 7.2563 0.0914
gender female 1 y0.5463 0.0272
gender male 0 0.0000 0.0000
location rural 1 y0.6988 0.0424
location urban 0 0.0000 0.0000
seatbelt no 1 y0.7602 0.0393
seatbelt yes 0 0.0000 0.0000
location*seatbelt rural no 1 y0.1244 0.0548
location*seatbelt rural yes 0 0.0000 0.0000
location*seatbelt urban no 0 0.0000 0.0000
location*seatbelt urban yes 0 0.0000 0.0000

7.8 Refer to the cumulative logit model for Table 7.8.
ˆa. Compare the estimated income effect � sy0.510 to the estimate1

after collapsing the response to three categories by combining
Ž . Ž .categories i very satisfied and moderately satisfied, and ii very

dissatisfied and a little satisfied. What property of the model does
this reflect?

ˆ ˆb. Consider � rSE using the full scale to � rSE for the collapsing in1 1
Ž Ž ..part a i . Usually, a disadvantage of collapsing multinomial re-

sponses is that the significance of effects diminishes.
c. Check whether an improved model results from permitting interac-

tion between income and gender. Interpret.

7.9 Table 7.19 refers to a clinical trial for the treatment of small-cell lung
cancer. Patients were randomly assigned to two treatment groups. The
sequential therapy administered the same combination of chemothera-
peutic agents in each treatment cycle; the alternating therapy had
three different combinations, alternating from cycle to cycle.

TABLE 7.19 Data for Problem 7.9

Response to Chemotherapy

Progressive No Partial Complete
Therapy Gender Disease Change Remission Remission

Sequential Male 28 45 29 26
Female 4 12 5 2

Alternating Male 41 44 20 20
Female 12 7 3 1

Ž .Source: W. Holtbrugge and M. Schumacher, Appl. Statist. 40: 249�259 1991 .
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a. Fit a cumulative logit model with main effects for treatment and
gender. Interpret.

b. Fit the model that also contains an interaction term. Interpret.
Does it fit better? Explain why it is equivalent to using the four
gender�treatment combinations as levels of a single factor.

7.10 Refer to Table 7.13. Treating belief in an afterlife as ordinal, fit and
interpret an ordinal model.

Ž .7.11 Table 9.7 displays associations among smoking status S , breathing
Ž . Ž .test results B , and age A for workers in certain industrial plants.

Treat B as a response.
a. Specify a baseline-category logit model with additive factor effects

of S and A. This model has deviance G2 s 25.9. Show that df s 4,
and explain why this model treats all variables as nominal.

b. Treat B as ordinal and S as ordinal in terms of how recently one
� 4was a smoker, with scores s . Consider the modeli

�P B s k q 1 S s i , A s jŽ .
log s � q � s q � a q � s ak 1 i 2 j 3 i j�P B s k S s i , A s jŽ .

with a s 0 and a s 1. Show that this assumes a linear effect of S1 2
with slope � for age � 40 and � q � for age 40�59. Using1 1 3

ˆ ˆ ˆ� 4 Ž .s s i , � s 0.115, � s 0.311, and � s 0.663 SE s 0.164 . In-i 1 2 3
terpret the interaction.

Ž .c. From part b , for age 40�59 show that the estimated odds of
abnormal rather than borderline breathing for current smokers are

Ž .2.18 times those for former smokers and exp 2 � 0.778 s 4.74
times those for never smokers. Explain why the squares of these
values are estimated odds of abnormal rather than normal breath-
ing.

Ž .7.12 The book’s Web site www. stat.ufl.edur�aarcdarcda.html has a 7 �
2 table that refers to subjects who graduated from high school in 1965.
They were classified as protestors if they took part in at least one
demonstration, protest march, or sit-in, and classified according to

Ž .their party identification in 1982. Analyze the data, using response a
Ž .party identification, b whether a protestor. Compare interpretations.

y1 ˆw Ž .x7.13 For Table 7.5, the cumulative probit model has fit � P Y F j s �̂ j
y 0.195 x q 0.683 x , with � sy0.161, � s 0.746, and � s 1.339.ˆ ˆ ˆ1 2 1 2 3
Find the means and standard deviation for the two normal cdf ’s that

Ž̂ .provide the curves for P Y � 2 as a function of x s life events index,1
at the two levels of x s SES. Interpret effects.2
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7.14 Analyze Table 7.8 with a cumulative probit model. Compare interpre-
tations to those in the text with other ordinal models.

7.15 Fit a model with complementary log-log link to Table 7.20, which
shows family income distributions by percent for families in the north-
east U.S. Interpret the difference between the income distributions.

TABLE 7.20 Data for Problem 7.15

Ž .Income $1000

Year 0�3 3�5 5�7 7�10 10�12 12�15 15 q

1960 6.5 8.2 11.3 23.5 15.6 12.7 22.2
1970 4.3 6.0 7.7 13.2 10.5 16.3 42.1

ŽSource: Reproduced with permission from the Royal Statistical Society, London McCullagh
.1980 .

7.16 Table 7.21 shows results of fitting the mean response model to Table
� 4 � 47.8 using scores 3, 10, 20, 35 for income and 1, 3, 4, 5 for job satisfac-

tion. Interpret the income effect, provide a confidence interval for the
difference in mean satisfaction at income levels 35 and 3, controlling
for gender, and check the model fit.

TABLE 7.21 Results for Problem 7.16

Source DF Chi-Square Pr > ChiSq

Residual 5 6.99 0.2211

Analysis of Weighted Least Squares Estimates
Effect Parameter Estimate Std Error Chi-Square Pr > ChiSq

Intercept 1 3.8076 0.1796 449.47 <.0001
gender 2 y0.0687 0.1419 0.23 0.6283
income 3 0.0160 0.0066 5.97 0.0146

Ž .7.17 The book’s Web site www. stat.ufl.edur�aarcdarcda.html has a 3 �
Ž .4 � 4 table that cross-classifies dumping severity Y and operation

Ž . Ž .X for four hospitals H . The four operations refer to treatments for
duodenal ulcer patients and have a natural ordering. Dumping severity
describes a possible undesirable side effect of the operation. Its three
categories are also ordered.
a. Table 7.22 shows results of generalized CMH tests. Interpret,

explaining how one test can be much more significant than the
others.
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TABLE 7.22 Results for Problem 7.17

Summary Statistics for dumping by operate
Controlling for hospital

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 6.3404 0.0118
2 Row Mean Scores Differ 3 6.5901 0.0862
3 General Association 6 10.5983 0.1016

� 4b. Let x s i . Fit the modeli

�logit P Y F j H s h , X s i s � q � q � x .Ž . j h i

Test conditional independence of X and Y using it, and interpret
�̂. Which generalized CMH test has the same spirit as this?

c. Does an improved fit result from allowing the operation effect to
vary by hospital? Interpret.

d. Find a mean response model that fits well. Interpret.

7.18 Table 7.23 refers to a study that randomly assigned subjects to a
control or treatment group. Daily during the study, treatment subjects
ate cereal containing psyllium. The study analyzed the effect on LDL
cholesterol.
a. Model the ending cholesterol level as a function of treatment, using

the beginning level as a covariate. Interpret the treatment effect.
Ž .b. Repeat part a , now treating the beginning level as qualitative.

Compare results.
Ž .c. An alternative to part b uses a generalized CMH test relating

treatment to the ending response for partial tables defined by
beginning cholesterol level. Apply such a test, taking into account
the response ordering, to compare treatments. Interpret, and com-

Ž .pare to part b .

TABLE 7.23 Data for Problem 7.18

Ending LDL Cholesterol Level

Control Treatment

Beginning F 3.4 3.4�4.1 4.1�4.9 � 4.9 3.4 3.4�4.1 4.1�4.9 � 4.9

F 3.4 18 8 0 0 21 4 2 0
3.4�4.1 16 30 13 2 17 25 6 0
4.1�4.9 0 14 28 7 11 35 36 6
� 4.9 0 2 15 22 1 5 14 12

Source: Data courtesy of Sallee Anderson, Kellogg Co.
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7.19 Analyze Table 7.5 with each type of model studied in this chapter.
Write a report summarizing results and advantages and disadvantages
of each modeling strategy.

Ž .7.20 The book’s Web site www. stat.ufl.edur�aarcdarcda.html has a 4 �
4 � 5 table that cross-classifies assessment of cognitive impairment,

Ž .Alzheimer’s disease, and age. Analyze these data, treating a
Ž .Alzheimer’s disease, and b cognitive impairment, as the response

variable.

Ž .7.21 Analyze Table 9.5 using logit models that treat a party affiliation, and
Ž .b ideology, as the response variable.

Ž .7.22 The book’s Web site www. stat.ufl.edur�aarcdarcda.html has a 4 �
2 � 3 � 3 table that refers to a sample of residents of Copenhagen.

Ž .The variables are type of housing H , degree of contact with other
Ž . Ž .residents C , feeling of influence on apartment management I , and

Ž .satisfaction with housing conditions S . Treating S as the response
variable, analyze these data.

7.23 Refer to Table 7.17. Analyze these data.

Theory and Methods

7.24 A multivariate generalization of the exponential dispersion family
Ž .4.14 is

�f y ; � , � s exp y � y b � ra � q c y , � ,� 4Ž . Ž . Ž . Ž .i i i i i i

where � is the natural parameter. Show that the multinomial variate yi i
�defined in Section 7.1.5 for a single trial with parameters � , j sj

4 Ž .1, . . . , J y 1 is in the J y 1 -parameter exponential family, with base-
line-category logits as natural parameters.

� 4 Ž7.25 Cell counts y in an I � J contingency table have a multinomial n;i j
� 4. � Ž . 4� distribution. Show that P Y s n , i s 1, . . . , I, j s 1, . . . , Ji j i j i j
can be expressed as

Iy1 Jy1
y1nd n! n ! exp n log �Ž .Ž .ŁŁ Ý Ýi j i j i j

i j is1 js1

Iy1 Jy1

q n log � r� q n log � r�Ž . Ž .Ý Ýiq i J I J qj I j I J
is1 js1
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where � s � � r� � and d is a constant independent of thei j i j I J i J I j
� 4data. Find an alternative expression using local odds ratios � , byi j

showing that

n log � s s log� , where s s n .ÝÝ ÝÝ Ý Ýi j i j i j i j i j ab
i j i j aFi bFj

Ž .7.26 Suppose that we express 7.2 as

exp � q �� xŽ .j j
� x s .Ž . �j JÝ exp � q � xŽ .hs1 h h

Ž � .Show that dividing numerator and denominator by exp � q � xJ J
yields new parameters � * s � y � and � * s � y � that satisfyj j J j j J
� s 0 and � s 0. Thus, without loss of generality, � s 0 andJ J J
� s 0.J

7.27 When J s 3, suppose that

� x s exp � q � x r 1 q exp � q � x q exp � q � x ,Ž . Ž . Ž .Ž .j j j 1 1 2 2

Ž . Ž .j s 1, 2. Show that � x is a decreasing in x if � � 0 and � � 0,3 1 2
Ž . Ž .b increasing in x if � � 0 and � � 0, and c nonmonotone when1 2
� and � have different signs.1 2

7.28 Refer to the log-likelihood function for the baseline-category logit
Ž .model Section 7.1.4 . Denote the sufficient statistics by np sÝ yj i i j

Žand S sÝ x y , j s 1, . . . J y 1, k s 1, . . . , p. Let S s S , . . . ,jk i ik i j 11
.�S , . . . S , . . . , S . Condition on Ý y , j s 1, . . . , J. Under the null1 t J 1 J t i i j

hypothesis that explanatory variables have no effect, show that

E S s n p m m , var S s n V m � ,Ž . Ž . Ž . Ž .

� �Ž . Ž . Ž .where p s p , . . . , p ; m s x , . . . , x , where x s Ý x rn; �1 J 1 t k i ik
2 2Ž . w Ž .Ž .x Ž .has elements s , where s s Ý x y x x y x r n y 1 ; Vk ® k ® i i k k i® ®

Ž .has elements ® s p 1 y p and ® sy p p , and m denotes thei i i i i j i j
Ž .Kronecker product Zelen 1991 .

7.29 Is the proportional odds model a special case of a baseline-category
logit model? Explain why or why not.

Ž .7.30 Prove factorization 7.15 for the multinomial distribution.
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w Ž .x7.31 Show that for the model, logit P Y F j s � q � x, cumulative prob-j j
abilities may be misordered for some x values.

� 47.32 For an I � J contingency table with ordinal Y and scores x s i fori
x, consider the model

�logit P Y F j X s x s � q � x . 7.24Ž .Ž .i j i

w Ž � .x w Ž � .xa. Show that logit P Y F j X s x y logit P Y F j X s x s �.iq1 i
Show that this difference in logits is a log cumulative odds ratio for
the 2 � 2 table consisting of rows i and i q 1 and the binary

Ž .response having cutpoint following category j. Thus, 7.24 is a
uniform association model in cumulative odds ratios.

b. Show that residual df s IJ y I y J.
c. Show that independence of X and Y is the special case � s 0.
d. Using the same linear predictor but with adjacent-categories logits,

Ž .show that uniform association applies to the local odds ratios 2.10 .
Ž . � 4e. A generalization of 7.24 replaces � x by unordered parametersi

� 4� , hence treating X as nominal. For rows a and b, show that thei
log cumulative odds ratio equals � y � for all J y 1 cutpoints.a b

Ž .7.33 Suppose that model 7.24 holds for a 2 � J table with J � 2, and let
x y x s 1. Explain why local log odds ratios are typically smaller in2 1

wabsolute value than the cumulative log odds ratio �. In fact, on p. 122
Ž .of their first edition, McCullagh and Nelder 1989 noted that local

� 4odds ratios � relate to � by1 j

log� s � P Y F j q 1 y P Y F j y 1 q o � , j s 1, . . . , J y 1,Ž . Ž . Ž .1 j

Ž . xwhere o � r� ™ 0 as � ™ 0.

Ž7.34 A response scale has the categories strongly agree, mildly agree,
.mildly disagree, strongly disagree, don’t know . One way to model such

a scale uses a logit model for the probability of a don’t know response
and uses a separate ordinal model for the ordered categories condi-
tional on response in one of those categories. Explain how to construct
a likelihood to do this simultaneously.

y1w Ž .x �7.35 For the cumulative probit model � P Y F j s � y � x, explainj
why a 1-unit increase in x corresponds to a � standard deviationi i
increase in the expected underlying latent response, controlling for
other predictors.
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Ž .7.36 For cumulative link model 7.7 , show that for 1 F j � k F J y 1,
Ž � . Ž � .P Y F k x s P Y F j x* , where x* is obtained by increasing the ith

Ž .component of x by � y � r� . Interpret.k j i

7.37 A cumulative link model for an I � J contingency table with a qualita-
tive predictor is

y1G P Y F j s � q � , i s 1, . . . , I , j s 1, . . . , J y 1 .Ž . j i

Ž .Ž .a. Show that the residual df s I y 1 J y 2 .
b. When this model holds, show that independence corresponds to

� s ��� s � and the test of independence has df s I y 1.1 I

c. When this model holds, show that the rows are stochastically
ordered on Y.

Ž . Ž .7.38 F y s 1 y exp y� y for y � 0 is a negative exponential cdf with1
Ž . Ž .parameter �, and F y s 1 y exp y� y for y � 0. Show that the2

difference between the cdf ’s on a complementary log-log scale is
identical for all y. Give implications for categorical data analysis.

w Ž .x � Ž . Ž .7.39 Consider the model Link � x s � q � x, where � x is 7.14 .j j j j

a. Explain why this model can be fitted separately for j s 1, . . . , J y 1.
b. For the complementary log-log link, show that this model is equiva-

Žlent to one using the same link for cumulative probabilities Laara¨¨ ¨
.and Matthews 1985 .

7.40 Why is it not optimal to fit mean response models for ordinal re-
sponses using ordinary least squares as is done for normal regression?

7.41 When X and Y are ordinal, explain how to test conditional indepen-
wdence by allowing a different trend in each partial table. Hint:

Ž . xGeneralize model 7.17 by replacing � by � .k

7.42 A cafe has four entrees: chicken, beef, fish, vegetarian. Specify a model´
Ž . Žof form 7.22 for the selection of an entree using x s gender 1 s´

.female, 0 s male and u s cost of entree, which is a characteristic of´
the choices. Interpret the model parameters.
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Loglinear Models for
Contingency Tables

In Section 4.3 we introduced loglinear models as generalized linear models
Ž .GLMs using the log link function with a Poisson response. A common use is
modeling cell counts in contingency tables. The models specify how the
expected count depends on levels of the categorical variables for that cell as
well as associations and interactions among those variables. The purpose of
loglinear modeling is the analysis of association and interaction patterns.

In Section 8.1 we introduce loglinear models for two-way contingency
tables. In Sections 8.2 and 8.3 we extend them to three-way tables, and in
Section 8.4 discuss models for multiway tables. Loglinear models are of use
primarily when at least two variables are response variables. With a single
categorical response, it is simpler and more natural to use logit models.
When one variable is treated as a response and the others as explanatory
variables, logit models for that response variable are equivalent to certain
loglinear models. Section 8.5 covers this connection. In Sections 8.6 and 8.7
we discuss ML loglinear model fitting.

8.1 LOGLINEAR MODELS FOR TWO-WAY TABLES

Consider an I � J contingency table that cross-classifies a multinomial sam-
� 4ple of n subjects on two categorical responses. The cell probabilities are � i j

� 4and the expected frequencies are � s n� . Loglinear model formulas usei j i j
� 4 � 4� rather than � , so they also apply with Poisson sampling for N s IJi j i j

� 4 � Ž .4independent cell counts Y having � s E Y . In either case we denotei j i j i j
� 4the observed cell counts by n .i j

8.1.1 Independence Model

� 4Under statistical independence, in Section 4.3.6 we noted that the � havei j
the structure

� s �� � .i j i j
314
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For multinomial sampling, for instance, � s n� � . Denote the rowi j iq qj
variable by X and the column variable by Y. The formula expressing
independence is multiplicative. Thus, log � has additive formi j

log � s � q �X q �Y 8.1Ž .i j i j

for a row effect �X and a column effect �Y. This is the loglinear modeli j
of independence. As usual, identifiability requires constraints such as �X sI
�Y s 0.J

� 4The ML fitted values are � s n n rn , the estimated expected fre-ˆ i j iq qj
quencies for chi-squared tests of independence. The tests using X 2 and G2

Ž .Section 3.2.1 are also goodness-of-fit tests of this loglinear model.

8.1.2 Interpretation of Parameters

Loglinear models for contingency tables are GLMs that treat the N cell
counts as independent observations of a Poisson random component. Loglin-
ear GLMs identify the data as the N cell counts rather than the individual
classifications of the n subjects. The expected cell counts link to the explana-

Ž .tory terms using the log link. As 8.1 illustrates, of the cross-classified
variables, the model does not distinguish between response and explanatory

� 4variables. It treats both jointly as responses, modeling � for combinationsi j
of their levels. To interpret parameters, however, it is helpful to treat the
variables asymmetrically.

We illustrate with the independence model for I � 2 tables. In row i, the
logit equals

�P Y s 1 X s iŽ .
�logit P Y s 1 X s i s logŽ .

�P Y s 2 X s iŽ .

�i1
s log s log � y log �i1 i2�i2

s � q �X q �Y y � q �X q �Y s�Y y �Y .Ž . Ž .i 1 i 2 1 2

w Ž � .xThe final term does not depend on i; that is, logit P Y s 1 X s i is
identical at each level of X. Thus, independence implies a model of form,

w Ž � .xlogit P Y s 1 X s i s � . In each row, the odds of response in column 1
Ž . Ž Y Y .equal exp � s exp � y � .1 2

An analogous property holds when J � 2. Differences between two pa-
rameters for a given variable relate to the log odds of making one response,
relative to the other, on that variable. Of course, with a single response
variable, logit models apply directly and loglinear models are unneeded.



LOGLINEAR MODELS FOR CONTINGENCY TABLES316

8.1.3 Saturated Model

Statistically dependent variables satisfy a more complex loglinear model,

log � s � q �X q �Y q �X Y . 8.2Ž .i j i j i j

� X Y 4The � are association terms that reflect deviations from independence.i j
Ž .The right-hand side of 8.2 resembles the formula for cell means in two-way

� X Y 4ANOVA, allowing interaction. The � represent interactions between Xi j
and Y, whereby the effect of one variable on � depends on the level of thei j

Ž . X Yother. The independence model 8.1 results when all � s 0.i j
X Y Ž . Ž . � X 4 � Y 4With constraints � s � s 0 in 8.1 and 8.2 , � and � are,I J i j

Ž .equivalently, coefficients of dummy variables for the first I y 1 categories
Ž . X Yof X and the first J y 1 categories of Y. Thus, � is the coefficient of thei j

X Y Ž .Ž .product of dummy variables for � and � . Since there are I y 1 J y 1i j
X Y X Y Ž .Ž .such cross products, � s � s 0, and only I y 1 J y 1 of theseI j i J

parameters are nonredundant. Tests of independence analyze whether
Ž .Ž .these I y 1 J y 1 parameters equal zero, so they have residual df s

Ž .Ž .I y 1 J y 1 .
Ž . Ž . Ž .The number of parameters in model 8.2 equals 1 q I y 1 q J y 1 q

Ž .Ž .I y 1 J y 1 s IJ, the number of cells. Hence, this model describes per-
� 4 Ž .fectly any � � 0 see Problem 8.16 . It is the most general model fori j

two-way contingency tables, the saturated model. For it, direct relationships
� X Y 4exist between log odds ratios and � . For instance, for 2 � 2 tables,i j

� �11 22
log � s log s log � q log � y log � y log �11 22 12 21� �12 21

s � q �X q �Y q �X Y q � q �X q �Y q �X YŽ . Ž .1 1 11 2 2 22

y � q �X q �Y q �X Y y � q �X q �Y q �X YŽ . Ž .1 2 12 2 1 21

s �X Y q �X Y y �X Y y �X Y . 8.3Ž .11 22 12 21

� X Y 4Thus, � determine the association.i j
In practice, unsaturated models are preferable, since their fit smooths the

sample data and has simpler interpretations. For tables with at least three
variables, unsaturated models can include association terms. Then, loglinear

Žmodels are more commonly used to describe associations through two-factor
. Ž .terms than to describe odds through single-factor terms .

Ž .Like others in this book, model 8.2 is hierarchical. This means that the
model includes all lower-order terms composed from variables contained in a
higher-order model term. When the model contains �X Y, it also contains �X

i j i
and �Y. A reason for including lower-order terms is that, otherwise, thej
statistical significance and the interpretation of a higher-order term depends
on how variables are coded. This is undesirable, and with hierarchical models
the same results occur no matter how variables are coded.
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An example of a nonhierarchical model is

log � s � q �X q �X Y .i j i i j

This model permits association but forces unnatural behavior of expected
frequencies, with the pattern depending on constraints used for parameters.
For instance, with constraints whereby parameters are zero at the last level,
log � s � in every column. Nonhierarchical models are rarely sensible inI j
practice. Using them is analogous to using ANOVA or regression models
with interaction terms but without the corresponding main effects.

When a model has two-factor terms, interpretations focus on them rather
than on the single-factor terms. By analogy with two-way ANOVA with
two-factor interaction, it can be misleading to report main effects. The
estimates of the main-effect terms depend on the coding scheme used for the

Žhigher-order effects, and the interpretation also depends on that scheme see
.Problem 8.16 . Normally, we restrict our attention to the highest-order terms

for a variable, as we illustrate in Section 8.2.

8.1.4 Alternative Parameter Constraints

As with the independence model, the parameter constraints for the saturated
model are arbitrary. Instead of setting all �X Y s �X Y s 0, one could setI j i J
Ý �X Y sÝ �X Y s 0 for all i and j. Different software uses different con-i i j j i j
straints. What is unique are contrasts such as �X Y q �X Y y �X Y y �X Y in11 22 12 21
Ž .8.3 that determine odds ratios.

For instance, suppose that a log odds ratio equals 2.0 in a 2 � 2 table.
With the first set of constraints, 2.0 is the coefficient of a product of a
dummy variable indicating the first category of X and a dummy variable
indicating the first category of Y. With it, �X Y s 2.0 and �X Y s �X Y s �X Y

11 12 21 22
s 0. For sum-to-zero constraints, �X Y s �X Y s 0.5, �X Y s �X Y sy0.5. For11 22 12 21

Ž .either set, the log odds ratio 8.3 equals 2.0. For a set of parameters, an
advantage of setting a baseline parameter equal to 0 instead of the sum equal
to 0 is that some parameters in a set can have infinite estimates.

8.1.5 Multinomial Models for Cell Probabilities

Conditional on the sum n of the cell counts, Poisson loglinear models for
� 4 � Ž .4� become multinomial models for cell probabilities � s � r ÝÝ� .i j i j i j ab
To illustrate, for the saturated model,

exp � q �X q �Y q �X YŽ .i j i j
� s . 8.4Ž .i j X Y X Yexp � q � q � q �Ž .Ý Ý a b ab

a b
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� 4This representation implies the usual constraints for probabilities, � G 0i j
and Ý Ý � s 1. The � intercept parameter cancels in the multinomiali j i j

Ž .model 8.4 . This parameter relates purely to the total sample size, which is
random in the Poisson model but not in the multinomial model.

8.2 LOGLINEAR MODELS FOR INDEPENDENCE AND
INTERACTION IN THREE-WAY TABLES

In Section 2.3 we introduced three-way contingency tables and related
structure such as conditional independence and homogeneous association.
Loglinear models for three-way tables describe their independence and
association patterns.

8.2.1 Types of Independence

A three-way I � J � K cross-classification of response variables X, Y, and Z
has several potential types of independence. We assume a multinomial

� 4distribution with cell probabilities � , and Ý Ý Ý � s 1.0. The modelsi jk i j k i jk
� 4also apply to Poisson sampling with means � .i jk

The three variables are mutually independent when

� s � � � for all i , j, and k . 8.5Ž .i jk iqq qjq qqk

� 4For expected frequencies � , mutual independence has loglinear formi jk

log � s � q �X q �Y q �Z . 8.6Ž .i jk i j k

Variable Y is jointly independent of X and Z when

� s � � for all i , j, and k . 8.7Ž .i jk iqk qjq

This is ordinary two-way independence between Y and a variable composed
of the IK combinations of levels of X and Z. The loglinear model is

log � s � q �X q �Y q �Z q �X Z . 8.8Ž .i jk i j k ik

Similarly, X could be jointly independent of Y and Z, or Z could be jointly
Ž .independent of X and Y. Mutual independence 8.5 implies joint indepen-

dence of any one variable from the others.
From Section 2.3, X and Y are conditionally independent, gi®en Z when

independence holds for each partial table within which Z is fixed. That is, if
Ž � .� s P X s i, Y s j Z s k , theni j � k

� s � � for all i , j, and k .i j � k iq� k qj � k
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For joint probabilities over the entire table, equivalently

� s � � r� for all i , j, and k . 8.9Ž .i jk iqk qj k qqk

Conditional independence of X and Y, given Z, is the loglinear model

log � s � q �X q �Y q �Z q �X Z q �Y Z . 8.10Ž .i jk i j k ik jk

This is a weaker condition than mutual or joint independence. Mutual
independence implies that Y is jointly independent of X and Z, which itself
implies that X and Y are conditionally independent. Table 8.1 summarizes
these three types of independence.

In Section 2.3.2 we showed that partial associations can be quite different
from marginal associations. For instance, conditional independence does not
imply marginal independence. Conditional independence and marginal inde-
pendence both hold when one of the stronger types of independence studied
above applies. Figure 8.1 summarizes relationships among the four types of
independence.

8.2.2 Homogeneous Association and Three-Factor Interaction

Ž . Ž . Ž .Loglinear models 8.6 , 8.8 , and 8.10 have three, two, and one pair of
conditionally independent variables, respectively. In the latter two models,

TABLE 8.1 Summary of Loglinear Independence Models

Probabilistic Association Terms
Model Form for � in Loglinear Model Interpretationi jk

Ž .8.6 � � � None Variables mutually independentiqq qjq qqk
X ZŽ .8.8 � � � Y independent of X and Ziqk qjq i k
X Z Y ZŽ .8.10 � � r� � q � X and Y independent, given Ziqk qj k qqk ik jk

FIGURE 8.1 Relationships among types of XY independence.
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Ž X Y .the doubly subscripted terms such as � pertain to conditionally depen-i j
dent variables. A model that permits all three pairs to be conditionally
dependent is

log � s � q �X q �Y q �Z q �X Y q �X Z q �Y Z . 8.11Ž .i jk i j k i j ik jk

From exponentiating both sides, the cell probabilities have form

� s � � 	 .i jk i j jk ik

No closed-form expression exists for the three components in terms of
� 4 Ž .margins of � except in certain special cases see Note 9.2 .i jk

For this model, in the next section we show that conditional odds ratios
between any two variables are identical at each category of the third variable.

Ž . Ž .That is, each pair has homogeneous association Section 2.3.5 . Model 8.11 is
called the loglinear model of homogeneous association or of no three-factor
interaction.

The general loglinear model for a three-way table is

log � s � q �X q �Y q �Z q�X Y q �X Z q �Y Z q �X Y Z . 8.12Ž .i jk i j k i j i k jk i jk

With dummy variables, �X Y Z is the coefficient of the product of the ithi jk
dummy variable for X, jth dummy variable for Y, and kth dummy variable
for Z. The total number of nonredundant parameters is

1 q I y 1 q J y 1 q K y 1 q I y 1 J y 1 q I y 1 K y 1Ž . Ž . Ž . Ž . Ž . Ž . Ž .
q J y 1 K y 1 q I y 1 J y 1 K y 1 s IJK ,Ž . Ž . Ž . Ž . Ž .

the total number of cell counts. This model has as many parameters as
� 4observations and is saturated. It describes all possible positive � . Eachi jk

pair of variables may be conditionally dependent, and an odds ratio for any
pair may vary across categories of the third variable.

Ž .Setting certain parameters equal to zero in 8.12 yields the models
introduced previously. Table 8.2 lists some of these models. To ease referring
to models, Table 8.2 assigns to each model a symbol that lists the highest-order

TABLE 8.2 Loglinear Models for Three-Dimensional Tables

Loglinear Model Symbol
X Y Z Ž .log � s � q � q � q � X, Y, Zi jk i j k
X Y Z X Y Ž .log � s � q � q � q � q � XY, Zi jk i j k i j
X Y Z X Y YZ Ž .log � s � q � q � q � q � q � XY, YZi jk i j k i j jk
X Y Z X Y YZ XZ Ž .log � s � q � q � q � q � q � q � XY, YZ, XZi jk i j k i j jk ik
X Y Z X Y YZ XZ X YZ Ž .log � s � q � q � q � q � q � q � q � XYZi jk i j k i j jk ik i jk
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Ž . Ž .term s for each variable. For instance, the model 8.10 of conditional
Ž .independence between X and Y has symbol XZ, YZ , since its highest-order

terms are �X Z and �Y Z. In the notation we used for logit models in Sectionsi k jk
Ž .6.1 and 7.1.2 this stands for X*Z q Y *Z , which is itself shorthand for

Ž .notation X q Y q Z q X � Z q Y � Z that has the main effects as well as
interactions.

8.2.3 Interpreting Model Parameters

Interpretations of loglinear model parameters use their highest-order terms.
Ž .For instance, interpretations for model 8.11 use the two-factor terms to

describe conditional odds ratios. At a fixed level k of Z, the conditional
Ž .Ž .association between X and Y uses I y 1 J y 1 odds ratios, such as the

local odds ratios

� �i jk iq1 , jq1 , k
� s , 1 F i F I y 1, 1 F j F J y 1. 8.13Ž .i jŽk . � �i , jq1 ,k iq1 , j , k

Ž .Ž . � 4Similarly, I y 1 K y 1 odds ratios � describe XZ conditional associ-iŽ j.k
Ž .Ž . � 4ation, and J y 1 K y 1 odds ratios � describe YZ conditionalŽ i. jk

association. Loglinear models have characterizations using constraints on
conditional odds ratios. For instance, conditional independence of X and Y

� 4is equivalent to � s 1, i s 1, . . . , I y 1, j s 1, . . . , J y 1, k s 1, . . . , K .i jŽk .
The two-factor parameters relate directly to the conditional odds ratios.

Ž . Ž .To illustrate, substituting 8.11 for model XY, XZ, YZ into log � yieldsi jŽk .

� �i jk iq1 , jq1 ,k X Y X Y X Y X Ylog � s log s � q � y � y � . 8.14Ž .i jŽk . i j iq1 , jq1 i , jq1 iq1 , j� �iq1 , jk 1, jq1 , k

Since the right-hand side is the same for all k, an absence of three-factor
interaction is equivalent to

� s � s 


 s � for all i and j.i jŽ1. i jŽ2. i jŽK .

The same argument for the other conditional odds ratios shows that model
Ž .XY, XZ, YZ is also equivalent to

� s � s 


 s � for all i and k ,iŽ1.k iŽ2.k iŽ J .k

and to

� s � s 


 s � for all j and k .Ž1. jk Ž2. jk Ž I . jk

Any model not having the three-factor interaction term has a homogeneous
association for each pair of variables.
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When X and Y have two categories, only one nonredundant �X Y parame-i j
Ž .ter occurs. Thus, expression 8.14 is simplified depending on the constraints.

By the same argument as in Section 8.1.3 for 2 � 2 tables, the conditional log
odds ratio simplifies to �X Y with dummy-variable constraints setting parame-11
ters at the second level of X or Y equal to 0.

X Y Z Ž .The � term in the general model 8.12 refers to three-factor interac-i jk
tion. It describes how the odds ratio between two variables changes across
categories of the third. We illustrate for 2 � 2 � 2 tables. By direct substitu-
tion of the general model formula,

� � � r � �Ž . Ž .11Ž1. 111 221 121 211
log s log

� � � r � �Ž . Ž .11Ž2. 112 222 122 212

s �X Y Z q �X Y Z y �X Y Z y �X Y ZŽ .111 221 121 211

y �X Y Z q �X Y Z y �X Y Z y �X Y Z .Ž .112 222 122 212

Only one parameter is nonredundant. For constraints setting the second-cat-
egory parameters equal to 0, this log ratio of odds ratios equals �X Y Z. When111
�X Y Z s 0, � s � , giving homogeneous XY association.111 11Ž1. 11Ž2.

8.2.4 Alcohol, Cigarette, and Marijuana Use Example

Table 8.3 refers to a 1992 survey by the Wright State University School of
Medicine and the United Health Services in Dayton, Ohio. The survey asked
2276 students in their final year of high school in a nonurban area near
Dayton, Ohio whether they had ever used alcohol, cigarettes, or marijuana.
Denote the variables in this 2 � 2 � 2 table by A for alcohol use, C for
cigarette use, and M for marijuana use.

Section 8.7 covers the fitting of loglinear models. For now, we emphasize
interpretation. Table 8.4 shows fitted values for several loglinear models. The

TABLE 8.3 Alcohol, Cigarette, and Marijuana Use
for High School Seniors

Marijuana UseAlcohol Cigarette
Use Use Yes No

Yes Yes 911 538
No 44 456

No Yes 3 43
No 2 279

Source: Data courtesy of Harry Khamis, Wright State
University.
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TABLE 8.4 Fitted Values for Loglinear Models Applied to Table 8.3
aLoglinear ModelAlcohol Cigarette Marijuana

Ž . Ž . Ž . Ž . Ž .Use Use Use A, C, M AC, M AM, CM AC, AM, CM ACM

Yes Yes Yes 540.0 611.2 909.24 910.4 911
No 740.2 837.8 438.84 538.6 538

No Yes 282.1 210.9 45.76 44.6 44
No 386.7 289.1 555.16 455.4 456

No Yes Yes 90.6 19.4 4.76 3.6 3
No 124.2 26.6 142.16 42.4 43

No Yes 47.3 118.5 0.24 1.4 2
No 64.9 162.5 179.84 279.6 279

aA, alcohol use; C, cigarette use; M, marijuana use.

Ž .fit for model AC, AM, CM is close to the observed data, which are the
Ž .fitted values for the saturated model ACM . The other models fit poorly.

Table 8.5 illustrates model association patterns by presenting estimated
conditional and marginal odds ratios. For example, the entry 1.0 for the AC

Ž .conditional association for the model AM, CM of AC conditional indepen-
dence is the common value of the AC fitted odds ratios at the two levels
of M,

909.24 � 0.24 438.84 � 179.84
1.0 s s .

45.76 � 4.76 555.16 � 142.16

The entry 2.7 for the AC marginal association for this model is the odds ratio
for the marginal AC fitted table. The odds ratios for the observed data are

Ž .those reported for the saturated model ACM .
Table 8.5 shows that estimated conditional odds ratios equal 1.0 for each

pairwise term not appearing in a model, such as the AC association in model
Ž .AM, CM . For that model, the estimated marginal AC odds ratio differs
from 1.0, since conditional independence does not imply marginal indepen-
dence. Some models have conditional associations that are necessarily the

TABLE 8.5 Estimated Odds Ratios for Loglinear Models in Table 8.5

Conditional Association Marginal Association

Model AC AM CM AC AM CM

Ž .A, C, M 1.0 1.0 1.0 1.0 1.0 1.0
Ž .AC, M 17.7 1.0 1.0 17.7 1.0 1.0
Ž .AM, CM 1.0 61.9 25.1 2.7 61.9 25.1
Ž .AC, AM, CM 7.8 19.8 17.3 17.7 61.9 25.1
Ž .ACM level 1 13.8 24.3 17.5 17.7 61.9 25.1
Ž .ACM level 2 7.7 13.5 9.7
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same as the corresponding marginal associations. In Section 9.1.2 we present
a condition guaranteeing this.

Ž .Model AC, AM, CM permits all pairwise associations but maintains
homogeneous odds ratios between two variables at each level of the third.
The AC fitted conditional odds ratios for this model equal 7.8. One can
calculate this odds ratio using the model’s fitted values at either level of M,

ˆAC ˆAC ˆAC ˆACw Ž .x Ž .or from 8.14 using exp � q � y � y � .11 22 12 21
Table 8.5 shows that estimated odds ratios are very dependent on the

model. This highlights the importance of good model selection. An estimate
from this table is informative only to the extent that its model fits well. In the
next section we discuss goodness of fit.

8.3 INFERENCE FOR LOGLINEAR MODELS

A good-fitting loglinear model provides a basis for describing and making
inferences about associations among categorical responses. Standard meth-
ods apply for checking fit and making inference about model parameters.

8.3.1 Chi-Squared Goodness-of-Fit Tests

As usual, X 2 and G2 test whether a model holds by comparing cell fitted
values to observed counts. Here df equals the number of cell counts minus
the number of model parameters.

Ž .For the student survey Table 8.3 , Table 8.6 shows results of testing fit for
several loglinear models. Models that lack any association term fit poorly.

Ž . ŽThe model AC, AM, CM that has all pairwise associations fits well P s
.0.54 . It is suggested by other criteria also, such as minimizing

AIC sy2 maximized log likelihood�number of parameters in modelŽ .
w 2 Ž .xor equivalently, minimizing G y 2 df .

TABLE 8.6 Goodness-of-Fit Tests for Loglinear Models in Table 8.4
2 2 aModel G X df P-value

Ž .A, C, M 1286.0 1411.4 4 � 0.001
Ž .A, CM 534.2 505.6 3 � 0.001
Ž .C, AM 939.6 824.2 3 � 0.001
Ž .M, AC 843.8 704.9 3 � 0.001
Ž .AC, AM 497.4 443.8 2 � 0.001
Ž .AC, CM 92.0 80.8 2 � 0.001
Ž .AM, CM 187.8 177.6 2 � 0.001
Ž .AC, AM, CM 0.4 0.4 1 0.54
Ž .ACM 0.0 0.0 0 �

aP-value for G2 statistic.
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8.3.2 Inference about Conditional Associations

Tests about conditional associations compare loglinear models. The likeli-
Ž . 2Ž � .hood-ratio statistic y2 L y L is identical to the difference G M M s0 1 0 1

2Ž . 2Ž .G M y G M between deviances for models without that term and with0 1
Ž .it. For model XY, XZ, YZ , consider the hypothesis of XY conditional

X Y Ž .Ž .independence. This is H : � s 0 for the I y 1 J y 1 XY association0 i j
2Ž . 2Ž .parameters. The test statistic is G XZ, YZ y G XY, XZ, YZ , with df s

Ž .Ž .I y 1 J y 1 . This has the same purpose as the generalized CMH and
model-based tests for nominal variables presented in Section 7.5.

For instance, the test of conditional independence between alcohol use
Ž .and cigarette smoking compares model AM, CM with the alternative

Ž .AC, AM, CM . The test statistic is

2 �G AM , CM AC , AM , CM s 187.8 y 0.4 s 187.4,Ž . Ž .

Ž . Ž .with df s 2 y 1 s 1 P � 0.001 . The statistics comparing AC, CM and
Ž . Ž .AC, AM with AC, AM, CM also provide strong evidence of AM and CM
conditional associations. Further analyses of Table 8.3 use model
Ž .AC, AM, CM .

With large sample sizes, statistically significant effects can be weak and
unimportant. A more relevant concern is whether the associations are strong
enough to be important. Confidence intervals are more useful than tests for

Ž .assessing this. Table 8.7 shows output from fitting model AC, AM, CM with

TABLE 8.7 Output for Fitting Loglinear Model to Table 8.3

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/ DF
Deviance 1 0.3740 0.3740
Pearson Chi-Square 1 0.4011 0.4011

Standard Wald
Parameter Estimate Error Chi-Square Pr>ChiSq
Intercept 5.6334 0.0597 8903.96 <.0001
a 1 0.4877 0.0758 41.44 <.0001
c 1 y1.8867 0.1627 134.47 <.0001
m 1 y5.3090 0.4752 124.82 <.0001
a*m 1 1 2.9860 0.4647 41.29 <.0001
a*c 1 1 2.0545 0.1741 139.32 <.0001
c*m 1 1 2.8479 0.1638 302.14 <.0001

LR Statistics
Source DF Chi-Square Pr>ChiSq
a*m 1 91.64 <.0001
a*c 1 187.38 <.0001
c*m 1 497.00 <.0001
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parameters in the last row and in the last column equal to zero, such as by
Ž .using 1, 0 dummy variables for each classification. Consider the conditional

ˆACŽ .AC odds ratio, assuming model AC, AM, CM . Table 8.7 reports � s11
2.054, with SE s 0.174. For these constraints, this is the estimated condi-
tional log odds ratio. A 95% Wald confidence interval for the true condi-

w Ž .x Ž .tional AC odds ratio is exp 2.054 � 1.96 0.174 , or 5.5, 11.0 . Strong posi-
tive association exists between cigarette use and alcohol use, both for users
and nonusers of marijuana.

Ž .For model AC, AM, CM , the 95% Wald confidence intervals are
Ž . Ž .8.0, 49.2 for the AM conditional odds ratio and 12.5, 23.8 for the CM
conditional odds ratio. The intervals are wide, but these associations also are
strong. Table 8.5 shows that estimated marginal associations are even stronger.
Controlling for outcome on one response moderates the association some-
what between the other two.

The analyses in this section pertain to associations. A different analysis
pertains to comparing single-variable marginal distributions, for instance to
determine if students used cigarettes more than alcohol or marijuana. That
type of analysis is presented in Section 10.1.

8.4 LOGLINEAR MODELS FOR HIGHER DIMENSIONS

Loglinear models for three-way tables are more complex than for two-way
tables, because of the variety of potential association terms. Loglinear models
for three-way tables extend readily, however, to multiway tables. As the
number of dimensions increases, some complications arise. One is the in-
crease in the number of possible association and interaction terms, making
model selection more difficult. Another is the increase in number of cells. In
Section 9.8 we show that this can cause difficulties with existence of estimates
and appropriateness of asymptotic theory.

8.4.1 Four-Way Contingency Tables

We illustrate models for higher dimensions using a four-way table with
variables W, X, Y, and Z. Interpretations are simplest when the model has
no three-factor interaction terms. Such models are special cases of

log � s � q �W q �X q �Y q �Z
hi jk h i j k

q �W X q �W Y q �W Z q �X Y q �X Z q �Y Z ,hi h j hk i j ik jk

Ž .denoted by WX, WY, WZ, XY, XZ, YZ . Each pair of variables is condition-
ally dependent, with the same odds ratios at each combination of categories
of the other two variables. An absence of a two-factor term implies condi-
tional independence, given the other two variables.
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A variety of models exhibit three-factor interaction. A model could con-
Ž .tain any of WXY, WXZ, WYZ, or XYZ terms. For model WXY, WZ, XZ, YZ ,

each pair of variables is conditionally dependent, but at each level of Z the
WX association, the WY association, and the XY association may vary across
categories of the remaining variable. The conditional association between Z
and another variable is homogeneous. The saturated model contains all the
three-factor terms plus a four-factor interaction term.

8.4.2 Automobile Accident Example

Table 8.8 summarizes observations of 68,694 passengers in autos and light
trucks involved in accidents in the state of Maine in 1991. The table classifies

Ž . Ž . Ž .passengers by gender G , location of accident L , seat-belt use S , and
Ž .injury I . Table 8.8 reports the sample proportion of passengers who were

injured. For each GL combination, the proportion of injuries was about
halved for passengers wearing seat belts.

Table 8.9 displays tests of fit for several loglinear models. To investigate
Ž .the complexity of model needed, we consider models G, I, L, S ,

TABLE 8.8 Loglinear Models for Injury, Seat-Belt Use, Gender, and Locationa

Sample
Ž . Ž .Injury GI, GL, GS, IL, IS, LS GLS, GI, IL, ISSeat Proportion

Gender Location Belt No Yes No Yes No Yes Yes

Female Urban No 7,287 996 7,166.4 993.0 7,273.2 1,009.8 0.12
Yes 11,587 759 11,748.3 721.3 11,632.6 713.4 0.06

Rural No 3,246 973 3,353.8 988.8 3,254.7 964.3 0.23
Yes 6,134 757 5,985.5 781.9 6,093.5 797.5 0.11

Male Urban No 10,381 812 10,471.5 845.1 10,358.9 834.1 0.07
Yes 10,969 380 10,837.8 387.6 10,959.2 389.8 0.03

Rural No 6,123 1,084 6,045.3 1,038.1 6,150.2 1,056.8 0.15
Yes 6,693 513 6,811.4 518.2 6,697.6 508.4 0.07

aG, gender; I, injury; L, location; S, seat-belt use.
Source:Data courtesy of Cristanna Cook, Medical Care Development, Augusta, Maine.

TABLE 8.9 Goodness-of-Fit Tests for Loglinear Models in Table 8.8
2Model G df P-Value

Ž .G, I, L, S 2792.8 11 � 0.0001
Ž .GI, GL, GS, IL, IS, LS 23.4 5 � 0.001
Ž .GIL, GIS, GLS, ILS 1.3 1 0.25
Ž .GIL, GS, IS, LS 18.6 4 0.001
Ž .GIS, GL, IL, LS 22.8 4 � 0.001
Ž .GLS, GI, IL, IS 7.5 4 0.11
Ž .ILS, GI, GL, GS 20.6 4 � 0.001
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TABLE 8.10 Estimated Conditional Odds Ratios for Models of Table 8.8

Loglinear Model

Ž . Ž .Odds Ratio GI, GL, GS, IL, IS, LS GLS, GI, IL, IS

GI 0.58 0.58
IL 2.13 2.13
IS 0.44 0.44
GL S s no 1.23 1.33

S s yes 1.23 1.17
GS Ls urban 0.63 0.66

Ls rural 0.63 0.58
LS Gs female 1.09 1.17

Gs male 1.09 1.03

Ž . Ž .GI, GL, GS, IL, IS, LS , and GIL, GIS, GLS, ILS having all terms of vary-
Ž .ing complexity. Model G, I, L, S of mutual independence fits very poorly.

Ž .Model GI, GL, GS, IL, IS, LS fits much better but still has a lack of fit
Ž . Ž . Ž 2 .P � 0.001 . Model GIL, GIS, GLS, ILS fits well G s 1.3, df s 1 but is
complex and difficult to interpret. This suggests studying models more

Ž . Žcomplex than GI, GL, GS, IL, IS, LS but simpler than GIL,
.GIS, GLS, ILS .

Ž .First, however, we analyze model GI, GL, GS, IL, IS, LS , which focuses
on pairwise associations. Table 8.8 displays its fitted values. Table 8.10
reports the model-based estimated conditional odds ratios. One can obtain
them directly using the fitted values for partial tables relating two variables at
any combination of levels of the other two. They also follow directly from

ˆIS ˆIS ˆIS ˆISŽ .parameter estimates; for instance, 0.44 s exp � q � y � y � .11 22 12 21
Since the sample size is large, the estimates of odds ratios are quite

precise. For instance, the standard error of the estimated IS conditional log
odds ratio of y0.814 is 0.028. A 95% Wald confidence interval for the true

w Ž .x Ž .odds ratio is exp y0.814 � 1.96 0.028 or 0.42, 0.47 . This model estimates
that the odds of injury for passengers wearing seat belts were less than half
the odds for passengers not wearing them, at each gender�location combina-
tion. The fitted odds ratios in Table 8.10 also suggest that other factors being
fixed, injury was more likely in rural than urban accidents and more likely for
females than for males. The estimated odds that males used seat belts were
only 0.63 times the estimated odds for females.

Interpretations are more complex for models containing three-factor inter-
action terms. Table 8.9 shows results of adding a single three-factor term to

Ž .model GI, GL, GS, IL, IS, LS . Of the four possible models,
Ž .GLS, GI, IL, IS appears to fit best. Table 8.8 also displays its fit. Given the
large sample size, its G2 value suggests that it fits quite well.

Ž .For model GLS, GI, IL, IS , each pair of variables is conditionally depen-
dent, and at each category of I the association between any two of the others
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varies across categories of the remaining variable. For this model, it is
inappropriate to interpret the GL, GS, and LS two-factor terms on their
own. Since I does not occur in a three-factor interaction, the conditional

Ž .odds ratio between I and each variable see the top portion of Table 8.10 is
the same at each combination of categories of the other two variables.

When a model has a three-factor interaction term but no term of higher
order than that, one can study the interaction by calculating fitted odds ratios
between two variables at each level of the third. One can do this at any levels
of remaining variables not involved in the interaction. The bottom portion of

Ž .Table 8.10 illustrates this for model GLS, GI, IL, IS . For instance, the
Ž .fitted GS odds ratio of 0.66 for L s urban refers to four fitted values for

Ž . Žurban accidents, both the four with injury s no and the four with injury s
. Ž . Ž .yes ; for example, 0.66 s 7273.2 � 10,959.2 r 11,632.6 � 10,358.9 .

8.4.3 Large Samples and Statistical versus Practical Significance

Ž . ŽModel GLS, GI, IL, IS seems to fit much better than GI, GL, GS,
. 2IL, IS, LS . The difference in G values of 23.4 y 7.5 s 15.9 has df s 5 y 4

Ž .s 1 P s 0.0001 . Table 8.10 indicates, however, that the degree of three-
factor interaction is weak. The fitted odds ratio between any two of G, L,
and S is similar at both levels of the third variable. The significantly better fit

Ž .of model GLS, GI, IL, IS reflects mainly the enormous sample size.
As in any test, a statistically significant effect need not be practically

important. With huge samples, it is crucial to focus on estimation rather than
hypothesis testing. For instance, a comparison of fitted odds ratios for the
two models in Table 8.10 suggests that the simpler model
Ž .GI, GL, GS, IL, IS, LS is adequate for most purposes.

8.4.4 Dissimilarity Index

� 4For a table of arbitrary dimension with cell counts n s np and fittedi i
� 4values � s n� , one can summarize the closeness of a model fit to the dataˆ ˆi i

Ž .by the dissimilarity index Gini 1914 ,

̂ s n y � r2n s p y � r2 .ˆ ˆÝ Ýi i i i
i i

This index falls between 0 and 1, with smaller values representing a better
fit. It represents the proportion of sample cases that must move to different
cells for the model to fit perfectly.

ˆThe dissimilarity index  estimates a corresponding population index 
describing model lack of fit. The value  s 0 occurs when the model holds
perfectly. In practice, this is unrealistic for unsaturated models, and  � 0.

ˆThe estimator  helps study whether the lack of fit is important in a practical
ˆsense. When  � 0.02 or 0.03, the sample data follow the model pattern
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ˆquite closely, even though the model is not perfect. When  is near 0, 
Ž .tends to overestimate , substantially so for small n. Firth and Kuha 2000

ˆprovided an approximate variance for  and studied ways to reduce its
estimation bias.

ˆŽ .For Table 8.8, model GI, GL, GS, IL, IS, LS has  s 0.008, and model
ˆŽ .GLS, GI, IL, IS has  s 0.003. For either model, moving less than 1% of

the data yields a perfect fit. The relatively large G2 value for
Ž .GI, GL, GS, IL, IS, LS indicated that it does not truly hold. Nevertheless,

ˆthe small  value suggests that, in practical terms, it fits decently.

8.5 LOGLINEAR�LOGIT MODEL CONNECTION

Loglinear models treat categorical response variables symmetrically, focusing
on associations and interactions in their joint distribution. Logit models, by
contrast, describe how a single categorical response depends on explanatory
variables. The model types seem distinct, but connections exist between
them. For a loglinear model, forming logits on one response helps to
interpret the model. Moreover, logit models with categorical explanatory
variables have equivalent loglinear models.

8.5.1 Using Logit Models to Interpret Loglinear Models

To understand implications of a loglinear model formula, it can help to form
Ž .a logit on one variable. We illustrate with the loglinear model XY, XZ, YZ .

When Y is binary, its logit is

�P Y s 1 X s i , Z s k �Ž . i1k
log s log s log � y log �i1k i2 k�P Y s 2 X s i , Z s k �Ž . i2 k

s � q �X q �Y q �Z q �X Y q �X Z q �Y ZŽ .i 1 k i1 i k 1k

y � q �X q �Y q �Z q �X Y q �X Z q �Y ZŽ .i 2 k i2 i k 2 k

s �Y y �Y q �X Y y �X Y q �Y Z y �Y Z .Ž . Ž . Ž .1 2 i1 i2 1k 2 k

The first parenthetical term is a constant, not depending on i or k. The
second parenthetical term depends on the category i of X. The third
parenthetical term depends on the category k of Z. This logit has the
additive form

X Z�logit P Y s 1 X s i , Z s k s � q � q � . 8.15Ž . Ž .i k

Using the notation summarizing logit models by their predictors, we denote it
Ž .by X q Z .
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In Section 5.4.1 we discussed this logit model. When Y is binary, the
Ž . X Zloglinear model XY, XZ, YZ is equivalent to it. The � terms for associa-i k

tion among explanatory variables cancel in the difference in logarithms the
logit defines. The logit model does not study this association.

8.5.2 Auto Accident Example Revisited

Ž .For the Maine auto accidents Table 8.8 , in Section 8.4.2 we showed that the
Ž .loglinear model GLS, GI, LI, IS ,

log � s � q �G q �I q �L q �S q �G I q �G L q �G S
g i ll s g i ll s g i g ll g s

q �IL q �IS q �LS q �G LS ,i ll i s ll s g ll s

Ž .fits well. It is natural to treat injury I as a response variable and gender
Ž . Ž . Ž .G , location L , and seat-belt use S as explanatory variables, or perhaps S
as a response with G and L as explanatory. One can show that this loglinear

Ž .model is equivalent to logit model G q L q S ,

G L S�logit P I s 1 G s g , L s ll , S s s s � q � q � q � . 8.16Ž .Ž . g ll s

For instance, the seat-belt effects in the two models satisfy � S s �IS y �IS .s 1 s 2 s
In the logit calculation, all terms in the loglinear model not having the injury
index i cancel. Fitted values, goodness-of-fit statistics, residual df, and
standardized Pearson residuals for the logit model are identical to those for
the loglinear model.

Odds ratios describing effects on I relate to two-factor loglinear parame-
ters and main-effect logit parameters. In the logit model, the log odds ratio
for the effect of S on I equals � S y � S. This equals �IS q �IS y �IS y �IS

1 2 11 22 12 21
in the loglinear model. Their estimates are the same no matter how software

ˆS ˆSsets up constraints. For Table 8.8, � y � sy0.817 for the logit model,1 2
ˆIS ˆIS ˆIS ˆISand � q � y � y � sy0.817 for the loglinear model.11 22 12 21

Loglinear models are GLMs that treat the 16 cell counts in Table 8.8 as 16
independent Poisson variates. Logit models are GLMs that treat the table as
binomial counts. Logit models with I as the response treat the marginal GLS

� 4 � 4table n as fixed and regard n as eight independent binomialgqll s g1 ll s
variates on that response. Although the sampling models differ, the results
from fits of corresponding models are identical.

8.5.3 Correspondence between Loglinear and Logit Models

Ž . w Ž .xIn the derivation of the logit model X q Z see 8.15 from loglinear model
Ž . X Z Ž .XY, XZ, YZ , the � term cancels. It might seem as if the model XY, YZik
omitting this term is also equivalent to that logit model. Indeed, forming the

Ž .logit on Y for XY, YZ results in the same logit formula. The loglinear
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TABLE 8.11 Equivalent Loglinear and Logit Models for a Three-Way Table
with Binary Response Variable Y

Loglinear Symbol Logit Model Logit Symbol

Ž . Ž .Y, XZ � �
XŽ . Ž .XY, XZ � q � Xi
ZŽ . Ž .YZ, XZ � q � Zk
X ZŽ . Ž .XY, YZ, XZ � q � q � X q Zi k
X Z XZŽ . Ž .XYZ � q � q � q� X*Zi k ik

model that has the same fit as the logit model, however, contains a general
interaction term for relationships among the explanatory variables. The logit
model does not assume anything about relationships among explanatory
variables, so it allows an arbitrary interaction pattern for them.

Table 8.11 summarizes equivalent logit and loglinear models for three-way
tables when Y is a binary response. Each loglinear model contains the XZ
association term relating the explanatory variables in the logit models. The

Ž .simple loglinear model Y, XZ states that Y is jointly independent of both
X and Z, and is equivalent to the logit model having only an intercept.

Ž .The saturated loglinear model XYZ contains the three-factor interaction
term. When Y is a binary response, this model is equivalent to a logit model
with an interaction between the predictors X and Z. For instance, the effect
of X on Y depends on Z, meaning that the XY odds ratio varies across its
categories. That logit model is also saturated.

Analogous correspondences hold when Y has several categories, using
baseline-category logit models. An advantage of the loglinear approach
is its generality. It applies when more than one response variable exists.
The alcohol�cigarette�marijuana example in Section 8.2.4, for instance, used
loglinear models to study association patterns among three response vari-
ables. Loglinear models are most natural when at least two variables
are response variables. When only one is a response, it is more sensible to
use logit models directly.

8.5.4 Generalized Loglinear Model*

Ž .� Ž .�Let n s n , . . . , n and � s � , . . . , � denote column vectors of ob-1 N 1 N
served and expected counts for the N cells of a contingency table, with
n sÝ n . For simplicity we use a single index, but the table may be multidi-i i
mensional. Loglinear models for positive Poisson means have the form

log � s X� 8.17Ž .

for model matrix X and column vector � of model parameters.
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We illustrate with the independence model, log � s � q �X q �Y, for ai j i j
2 � 2 table. With constraints �X s �Y s 0, it is2 2

log �11 1 1 1 �
log � X12 1 1 0 �s 1 .
log � 1 0 121 Y�11 0 0log �22

Ž .A generalization of 8.17 allows many additional models. This generalized
loglinear model is

C log A� s X� 8.18Ž . Ž .

Ž .for matrices C and A. The ordinary loglinear model 8.17 results when C and
A are identity matrices. Other special cases include logit models for binary or
multicategory responses.

For instance, the loglinear model of independence for a 2 � 2 table is
equivalent to a model by which the logit for Y is the same in each row of X
Ž . Ž .see Section 8.1.2 . That logit model has form 8.18 : A is a 4 � 4 identity

Ž .�matrix, so A� is the 4 � 1 vector � s � , � , � , � ; the product11 12 21 22
Ž .C log A� forms the logit in row 1 and the logit in row 2 using

1 y1 0 0C s ;
0 0 1 y1

Ž .�then X s 1, 1 is a 2 � 1 matrix, and � is a single constant � , so X� forms
a common value for those two logits.

In Chapters 10 and 11 we use the generalized loglinear model for models
outside the classes of GLMs studied thus far. An example is modeling
marginal distributions of multivariate responses.

8.6 LOGLINEAR MODEL FITTING: LIKELIHOOD EQUATIONS
AND ASYMPTOTIC DISTRIBUTIONS*

In discussing the fitting of loglinear models, we first derive sufficient statistics
and likelihood equations. We then present large-sample normal distributions
for ML estimators of model parameters and cell probabilities. We illustrate
results with models for three-way tables. For simplicity, derivations use the
Poisson sampling model, which does not require a constraint on parameters
such as the multinomial does.
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8.6.1 Minimal Sufficient Statistics

� 4For three-way tables, the joint Poisson probability that cell counts Y s ni jk i jk
is

ey� i jk n i jk�i jk
,ŁŁŁ n !i j k i jk

where the product refers to all cells of the table. The kernel of the log
likelihood is

L � s n log � y � . 8.19Ž . Ž .Ý Ý Ý Ý ÝÝi jk i jk i jk
i j k i j k

Ž .For the general loglinear model 8.12 , this simplifies to

L � s n� q n �X q n �Y q n �ZŽ . Ý Ý Ýiqq i qjq j qqk k
i j k

q n �X Y q n �X Z q n �Y ZÝÝ ÝÝ ÝÝi jq i j iqk ik qj k jk
i j i k j k

q n �X Y Z y exp � q 


 q�X Y Z . 8.20Ž .Ž .Ý Ý Ý Ý ÝÝi jk i jk i jk
i j k i j k

Since the Poisson distribution is in the exponential family, coefficients of
� 4the parameters are sufficient statistics. For this saturated model, n arei jk

� X Y Z4coefficients of � , so there is no reduction of the data. For simpleri jk
Ž .models, certain parameters are zero and 8.20 simplifies. For instance, for

Ž .the model X, Y, Z of mutual independence, sufficient statistics are the
Ž . � X 4 � Y 4 � Z4 � 4 � 4coefficients in 8.20 of � , � , and � . These are n , n ,i j k iqq qjq

� 4and n .qqk
Table 8.12 lists minimal sufficient statistics for several loglinear models.

Ž .Each one is the coefficient of the highest-order term s in which a variable
appears. In fact, they are the marginal distributions for terms in the model
symbol. Simpler models use more condensed sample information. For in-

Ž .stance, whereas X, Y, Z uses only the single-factor marginal distributions,
Ž .XY, XZ, YZ uses the two-way marginal tables.

TABLE 8.12 Minimal Sufficient Statistics for
Fitting Loglinear Models

Model Minimal Sufficient Statistics

Ž . � 4 � 4 � 4X, Y, Z n , n , niqq qjq qqk
Ž . � 4 � 4XY, Z n , ni jq qqk
Ž . � 4 � 4XY, YZ n , ni jq qj k
Ž . � 4 � 4 � 4XY, XZ, YZ n , n , ni jq iqk qj k
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8.6.2 Likelihood Equations for Loglinear Models

The fitted values for a model are solutions to the likelihood equations. We
Ž .derive likelihood equations using general representation 8.17 for a loglinear

Ž .model. For a vector of counts n with � s E n , the model is log � s X�, for
Ž .which log � sÝ x � for all i.i j i j j

Ž .Extending 8.19 , for Poisson sampling the log likelihood is

L � s n log � y �Ž . Ý Ýi i i
i i

s n x � y exp x � . 8.21Ž .Ý Ý Ý Ýi i j j i j jž / ž /
i j i j

The sufficient statistic for � is its coefficient, Ý n x . Sincej i i i j

�
exp x � s x exp x � s x � ,Ý Ýi j j i j i j j i j iž / ž /��j j j

� L �Ž .
s n x y � x , j s 1,2, . . . , p.Ý Ýi i j i i j��j i i

The likelihood equations equate these derivatives to zero. They have the
form

X� n s X�� . 8.22Ž .ˆ

These equations equate the sufficient statistics to their expected values, a
Ž .result obtained with GLM theory in 4.29 . For models considered so far,

these sufficient statistics are the marginal tables in the model symbol.
Ž . Ž .To illustrate, consider model XZ, YZ . Its log likelihood is 8.20 with

�X Y s �X Y Z s 0. The log-likelihood derivatives

� L � L
s n y � and s n y �iqk iqk qj k qj kX Z Y Z�� ��i k jk

yield the likelihood equations

� s n for all i and k , 8.23Ž .ˆ iqk iqk

� s n for all j and k . 8.24Ž .ˆqj k qj k

Derivatives with respect to lower-order terms yield equations implied by
Ž . Ž .these Problem 8.30 . For model XZ, YZ , the fitted values have the same

XZ and YZ marginal totals as the observed data.



LOGLINEAR MODELS FOR CONTINGENCY TABLES336

8.6.3 Birch’s Results for Loglinear Models

Ž . Ž . Ž .For model XZ, YZ , from 8.23 , 8.24 , and Table 8.12, the minimal suffi-
cient statistics are the ML estimates of the corresponding marginal distribu-

Ž .tions of expected frequencies. Equation 8.22 gives the corresponding result
Ž .for any loglinear model. Birch 1963 showed that likelihood equations

for loglinear models match minimal sufficient statistics to their expected
Ž . Ž .values. Poisson GLM theory implied this result in 4.29 and 4.44 . Thus,

fitted values for loglinear models are smoothed versions of the cell counts
that match them in certain marginal distributions but have associations and
interactions satisfying the model-implied patterns.

Birch showed that a unique set of fitted values both satisfy the model and
match the data in the minimal sufficient statistics. Hence, if we find such a
solution, it must be the ML solution. To illustrate, the independence model
for a two-way table

log � s � q �X q �Y
i j i j

� 4 � 4has minimal sufficient statistics n and n . The likelihood equations areiq qj

� s n , � s n , for all i and j.ˆ ˆiq iq qj qj

� 4The fitted values � s n n rn satisfy these equations and also satisfy theˆ i j iq qj
model. Birch’s result implies that they are the ML estimates.

8.6.4 Direct versus Iterative Calculation of Fitted Values

To illustrate how to solve likelihood equations, we continue the analysis of
Ž . Ž .model XZ, YZ . From 8.9 , the model satisfies

� �iqk qj k
� s for all i , j, and k .i jk �qqk

For Poisson sampling, the related formula uses expected frequencies. Setting
� 4� s � rn, this is � s � � r� . The likelihood equationsi jk i jk i jk iqk qj k qqk

Ž . Ž .8.23 and 8.24 specify that ML estimates satisfy � s n and � sˆ ˆiqk iqk qj k
n and thus also � s n . Since ML estimates of functions of param-ˆqj k qqk qqk
eters are the same functions of the ML estimates of those parameters,

� � n nˆ ˆiqk qj k iqk qj k
� s s .ˆ i jk � nˆqqk qqk

This solution satisfies the model and matches the data in the sufficient
statistics. Thus, it is the unique ML solution.
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TABLE 8.13 Fitted Values for Loglinear Models in Three-Way Tables
aModel Probabilistic Form Fitted Value

n n niqq qjq qqkŽ .X, Y, Z � s � � � � sˆi jk iqq qjq qqk i jk 2n
n ni jq qqkŽ .XY, Z � s � � � sˆi jk i jq qqk i jk n

� � n ni jq iqk i jq iqkŽ .XY, XZ � s � sˆi jk i jk� niqq iqq

Ž . Ž .XY, XZ, YZ � s � � 	 Iterative methods Section 8.7i jk i j jk ik

Ž .XYZ No restriction � s nˆ i jk i jk

a Ž .Formulas for models not listed are obtained by symmetry; for example, for XZ, Y , � sˆ i jk
n n rn.iqk qjq

� 4Similar reasoning produces � for all except one model in Table 8.12.ˆ i jk
� 4Table 8.13 shows formulas. That table also expresses � in terms ofi jk

marginal probabilities. These expressions and the likelihood equations deter-
mine the ML formulas, using the approach just described.

For models having explicit formulas for � , the estimates are said to beˆ i jk
direct. Many loglinear models do not have direct estimates. ML estimation
then requires iterative methods. Of models in Tables 8.12 and 8.13, the only

Ž .one not having direct estimates is XY, XZ, YZ . Although the two-way
marginal tables are its minimal sufficient statistics, it is not possible to

� 4 � 4 � 4 � 4express � directly in terms of � , � , and � . Direct estimatesi jk i jq iqk qj k
do not exist for unsaturated models containing all two-factor associations. In
practice, it is not essential to know which models have direct estimates.
Iterative methods for models not having direct estimates also apply with
models that have direct estimates. Statistical software for loglinear models
uses such iterative methods for all cases.

8.6.5 Chi-Squared Goodness-of-Fit Tests

Model goodness-of-fit statistics compare fitted cell counts to sample counts.
For Poisson GLMs, in Section 4.5.2 we showed that for models with an
intercept term, the deviance equals the G2 statistic. With a fixed number of
cells, G2 and X 2 have approximate chi-squared null distributions when
expected frequencies are large. The df equal the difference in dimension
between the alternative and null hypotheses. This equals the difference
between the number of parameters in the general case and when the model
holds.

Ž .We illustrate with model X, Y, Z , for multinomial sampling with proba-
� 4bilities � . In the general case, the only constraint is Ý Ý Ý � s 1, soi jk i j k i jk

Ž . � 4there are IJK y 1 parameters. For model X, Y, Z , � s � � �i jk iqq qjq qqk
� 4 Ž . � 4are determined by I y 1 of � since Ý � s 1 , J y 1 of � , andiqq i iqq qjq

� 4K y 1 of � . Thus,qqk

df s IJK y 1 y I y 1 q J y 1 q K y 1 s IJK y I y J y K q 2.Ž . Ž . Ž . Ž .



LOGLINEAR MODELS FOR CONTINGENCY TABLES338

TABLE 8.14 Residual Degrees of Freedom for Loglinear
Models for Three-Way Tables

Model Degrees of Freedom

Ž .X, Y, Z IJK y I y J y K q 2
Ž . Ž .Ž .XY, Z K y 1 IJ y 1
Ž . Ž .Ž .XZ, Y J y 1 IK y 1
Ž . Ž .Ž .YZ, X I y 1 JK y 1
Ž . Ž .Ž .XY, YZ J I y 1 K y 1
Ž . Ž .Ž .XZ, YZ K I y 1 J y 1
Ž . Ž .Ž .XY, XZ I J y 1 K y 1
Ž . Ž .Ž .Ž .XY, XZ, YZ I y 1 J y 1 K y 1
Ž .XYZ 0

The same df formula applies for Poisson sampling. Then, the general case
� 4has IJK � parameters. The residual df equal the number of cells in thei jk

table minus the number of parameters in the Poisson loglinear model for
� 4 Ž . w Ž .� . For instance, model X, Y, Z has residual df s IJK y 1 q I y 1 qi jk
Ž . Ž .xJ y 1 q K y 1 , reflecting the single intercept parameter � and con-
straints such as �X s �Y s �Z s 0. This equals the number of linearlyI J K
independent parameters equated to zero in the saturated model to obtain the
given model. Table 8.14 shows df formulas for testing three-way loglinear
models.

8.6.6 Covariance Matrix of ML Parameter Estimators

To present large-sample distributions of ML parameter estimators, we return
Ž .to general expression log � sÝ x � , from which we obtained the log-like-i j i j j

lihood derivatives

� L �Ž .
s n x y � x , j s 1, 2, . . . , p.Ý Ýi i j i i j��j i i

The Hessian matrix of second partial derivatives has elements

� 2L � ��Ž . i
sy xÝ i j�� �� ��j k ki

�
sy x exp x � sy x x � .Ý Ý Ýi j ih h i j i k iž /½ 5��ki h i

Like logistic regression models, loglinear models are GLMs using the canoni-
cal link; thus this matrix does not depend on the observed data. The
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information matrix, the negative of this matrix, is

IIIII s X� diag � X,Ž .

Ž .where diag � has the elements of � on the main diagonal.
ˆFor a fixed number of cells, as n ™ �, the ML estimator � is asymptoti-

cally normal with mean � and covariance matrix IIIIIy1. Thus, for Poisson
sampling, the asymptotic covariance matrix

y1�ˆcov � s X diag � X . 8.25Ž . Ž .Ž .
Substituting ML fitted values and then taking square roots of diagonal

ˆelements yields standard errors for �. This also follows from the general
Ž .expression 4.28 for GLMs, as noted in Section 4.4.7.

8.6.7 Connection between Multinomial and Poisson Loglinear Models

�Similar asymptotic results hold with multinomial sampling. When Y , i si
41, . . . , N are independent Poisson random variables, the conditional distri-

� 4 �bution of Y given n sÝ Y is multinomial with parameters � s � ri i i i i
Ž .4 Ž .Ý � . Birch 1963 showed that ML estimates of loglinear model parame-a a
ters are the same for multinomial sampling as for independent Poisson
sampling. He showed that estimates are also the same for independent
multinomial sampling, as long as the model contains a term for the marginal
distribution fixed by the sampling design. To illustrate, suppose that at each
combination of categories of X and Z, an independent multinomial sample

� 4 X Zoccurs on Y. Then, n are fixed. The model must contain � , so theiqk ik
� 4fitted values satisfy � s n .ˆ iqk iqk

That separate inferential theory is unnecessary for multinomial loglinear
models follows from the following argument. Express the Poisson loglinear

� 4model for � asi

log � s � q x � ,i i

Ž . Ž �.�where 1, x is row i of the model matrix X and �, � is the modeli
parameter vector. The Poisson log likelihood is

L s L �, � s n log � y �Ž . Ý Ýi i i
i i

s n � q x � y exp � q x � s n� q n x � y � ,Ž . Ž .Ý Ý Ýi i i i i
i i i

Ž . w Ž .xwhere � sÝ � sÝ exp � q x � . Since log � s � q log Ý exp x � , thisi i i i i i
log likelihood has the form

L s L � , � s n x � y nlog exp x � q nlog � y � . 8.26Ž . Ž . Ž . Ž .Ý Ýi i i½ 5
i i
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Ž . Ž . w Ž .x Ž .Now � s � r Ý � s exp � q x � r Ý exp � q x � , and exp � can-i i a a i a a
Ž .cels in the numerator and denominator. Thus, the first term in braces on

Ž .the right-hand side in 8.26 is Ýn log � , which is the multinomial logi i
likelihood, conditional on the total cell count n. Unconditionally, n sÝ ni i
has a Poisson distribution with expectation Ý � s � , so the second term ini i
Ž .8.26 is the Poisson log likelihood for n. Since � enters only in the first term,

ˆthe ML estimator � and its covariance matrix for the Poisson log likelihood
Ž .L �, � are identical to those for the multinomial log likelihood. The Poisson

Ž .loglinear model has one more parameter i.e., � than the multinomial log-
Ž .linear model because of the random sample size. See Birch 1963 , Lang

Ž . Ž . Ž .1996c , McCullagh and Nelder 1989, p. 211 , and Palmgren 1981 for
details.

For a multinomial sample, we show in Section 14.4.1 that the estimated
covariance matrix of loglinear parameter estimators is

$ y1� �ˆcov � s X diag � y ��rn X . 8.27Ž . Ž .� 4ˆ ˆ ˆŽ .

The intercept � from the Poisson model is not relevant, and X for the
multinomial model deletes the column of X pertaining to it in the Poisson
model.

A similar argument applies with several independent multinomial samples.
Each log-likelihood term is a sum of components from different samples, but
the Poisson log likelihood again decomposes into two parts. One part is a
Poisson log likelihood for the independent sample sizes, and the other part is

Ž .the sum of the independent multinomial log likelihoods. Palmgren 1981
showed that conditional on observed marginal totals for explanatory vari-
ables, the asymptotic covariances for estimators of parameters involving the
response are the same as for Poisson sampling. For a single multinomial

Ž . Ž .sample, Palmgren’s result implies that 8.27 is identical to 8.25 with the row
Ž . Ž .and column referring to � deleted. Birch 1963 and Goodman 1970 gave

Ž .related results. Lang 1996c gave an elegant discussion of connections
between multinomial and Poisson models. His results imply that the asymp-
totic variance of any linear contrast of estimated log means within a covariate
level is identical for the two models.

8.6.8 Distribution of Probability Estimators

For multinomial sampling, the ML estimates of cell probabilities are � sˆ
Ž . Ž .�rn. We next give the asymptotic cov � . Lang 1996c showed the asymp-ˆ ˆ

totic covariance matrix for � for Poisson sampling and its connection withˆ
Ž .cov � .ˆ
The saturated model has � s p, the sample proportions. Under multino-ˆ

Ž . Ž .mial sampling, from 3.7 and 3.8 , their covariance matrix is

�cov p s diag � y � � rn. 8.28Ž . Ž . Ž .
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With I independent multinomial samples on a response variable with J
categories, � and p consist of I sets of proportions, each having J y 1

Ž .nonredundant elements. Then, cov p is a block diagonal matrix. Each of the
Ž . Ž . Ž .independent samples has a J y 1 � J y 1 block of form 8.28 , and the

matrix contains zeros off the main diagonal of blocks.
Now assume an unsaturated model. Using the delta method we show in

Sections 14.2.2 and 14.4.1 that � has an asymptotic normal distributionˆ
about �. The estimated covariance matrix equals

$ $ $ $y1� �cov � s cov p X X cov p X X cov p rn.Ž . Ž . Ž . Ž .ˆ ½ 5
For a single multinomial sample, this expression equals

$ y1� � �cov � s diag � y � � X X diag � y � � XŽ . Ž . Ž .Ž .ˆ ˆ ˆ ˆ ˆ ˆ ˆ½
� �X diag � y � � rn.Ž .ˆ ˆ ˆ 5

For tables with many cells, it is not unusual to have a sample proportion of
0 in a cell. In this case the ordinary standard error is 0, which is unappealing.
An advantage of fitting a model is that it typically has a positive fitted
probability and standard error.

8.6.9 Uniqueness of ML Estimates

� 4When all n � 0 , the ML estimates exist and are unique. To show this, fori
simplicity we use Poisson sampling. Suppose that the model is parameterized

Ž .so that X has full rank. Birch 1963 showed that the likelihood equations are
soluble, by noting that the kernel of the Poisson log likelihood

L � s n log � y �Ž . Ž .Ý i i i
i

Ž .has individual terms converging to y� as log � ™ ��; thus, the logi
likelihood is bounded above and attains its maximum at finite values of the
model parameters. It is stationary at this maximum, since it has continuous
first partial derivatives.

Birch showed that the likelihood equations have a unique solution, and
the likelihood is maximized at that point. He proved this by showing that the

� 2 4 w � ( ) xmatrix of values y� Lr�� �� i.e., the information matrix X diag � X ish j
nonsingular and nonnegative definite, and hence positive definite. Nonsingu-
larity follows from X having full rank and the diagonal matrix having positive

� � 2� 4 ( ) w Ž .xelements � . Any quadratic form c X diag � Xc equals Ý � Ý x c'i i i j i j j
G 0, so the matrix is also nonnegative definite.
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8.7 LOGLINEAR MODEL FITTING: ITERATIVE METHODS
AND THEIR APPLICATION*

When a loglinear model does not have direct estimates, iterative algorithms
such as Newton�Raphson can solve the likelihood equations. In this section
we also present a simpler but more limited method, iterati®e proportional
fitting.

8.7.1 Newton�Raphson Method

In Section 4.6.1 we introduced the Newton�Raphson method. Referring to
Ž .notation there, we identify L � as the log likelihood for Poisson loglinear

models.
Ž .From 8.21 , let

L � s n x � y exp x � .Ž . Ý Ý Ý Ýi ih h ih hž / ž /
i h i h

Then

� L �Ž .
u s s n x y � x ,Ý Ýj i i j i i j��j i i

� 2L �Ž .
h s sy � x x ,Ýjk i i j i k�� ��j k i

so that

uŽ t . s n y �Ž t . x and hŽ t . sy �Ž t . x x .Ž .Ý Ýj i i i j jk i i j i k
i i

The t th approximation �Žt. for � derives from �Žt. through �Ž t . sˆ
Ž Ž t .. Ž tq1. Ž .exp X� . It generates the next value � using 4.39 , which in this

context is

y1� �Ž tq1. Ž t . Ž t . Ž t .� s � q X diag � X X n y � .Ž . Ž .

This in turn produces �Ž tq1. , and so on.
Alternatively, �Ž tq1. can be expressed as

y1Ž tq1. Ž t . Ž t .� sy H r , 8.29Ž . Ž .

Ž t . Ž t . Ž t . Ž t . Ž t .where r sÝ� x log � q n y � r� . The expression in bracketsŽ .j i i j i i i i
is the first term in the Taylor series expansion of log n at log �Ž t ..i i
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The iterative process begins with all �Ž0. s n , or with an adjustment suchi i
1Ž0. Ž1.Ž .as � s n q if any n s 0. Then 8.29 produces � , and for t � 0 thei i i2

� 4 Ž .iterations proceed as just described with n . For loglinear models L � isi
concave, and �Ž t . and �Ž t . usually converge rapidly to the ML estimates �̂

ˆ Ž t . ˆ � Ž .and � as t increases. The H matrix converges to H syX diag � X. Byˆ
ˆ ˆy1Ž .8.25 , the estimated large-sample covariance matrix of � is yH , a

by-product of the method.
Ž .As we discussed in Section 4.6.3 for GLMs, 8.29 has the iterative

reweighted least squares form

y1� �Ž tq1. y1 y1 Ž t .ˆ ˆ� s X V X X V z .Ž .t t

Ž t . Ž t . Ž t . Ž t . ˆŽ .Here, z has elements n s log � q n y � r� and V si i i i i t
w Ž Ž t ..xy1 Ž tq1.diag � . Thus, � is the weighted least squares solution for a model

z Ž t . s X� q � ,

� 4 � Ž t .4 � Ž0. 4 Ž1.where � are uncorrelated with variances 1r� . With � s n , � isi i i i
Ž .the weighted least squares estimate for model log n s X� q � .

8.7.2 Iterative Proportional Fitting

Ž .The iterati®e proportional fitting IPF algorithm is a simple method for
� 4calculating � for loglinear models. Introduced by Deming and Stephanˆ i

Ž .1940 , it has the following steps:

� Ž0.41. Start with � satisfying a model no more complex than the one beingi
� Ž0. 4fitted. For instance, � � 1.0 are trivially adequate.i

� Ž0.42. By multiplying by appropriate factors, adjust � successively to matchi
each marginal table in the set of minimal sufficient statistics.

3. Continue until the maximum difference between the sufficient statistics
and their fitted values is sufficiently close to zero.

Ž .We illustrate using model XY, XZ, YZ . Its minimal sufficient statistics
� 4 � 4 � 4are n , n , and n . Initial estimates must satisfy the model. Thei jq iqk qj k

first cycle of the IPF algorithm has three steps:

n n ni jq iqk qj kŽ1. Ž0. Ž2. Ž1. Ž3. Ž2.� s � , � s � , � s � .i jk i jk i jk i jk i jk i jkŽ0. Ž1. Ž2.� � �i jq iqk qj k

Summing both sides of the first expression over k shows that �Ž1. s n fori jq i jq
all i and j. After step 1, observed and fitted values match in the XY marginal
table. After step 2, all �Ž2. s n , but the XY marginal tables no longeriqk iqk
match. After step 3, all �Ž3. s n , but the XY and XZ marginal tables noqj k qj k
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longer match. A new cycle begins by again matching the XY marginal tables,
Ž4. Ž3. Ž Ž3. .using � s � n r� , and so on.i jk i jk i jq i jq

At each step, the updated estimates continue to satisfy the model. For
Ž Ž0. .instance, step 1 uses the same adjustment factor n r� at differenti jq i jq

levels k of Z. Thus, XY odds ratios from different levels of Z have ratio
equal to 1, and the homogeneous association pattern continues at each step.

As the cycles progress, the G2 statistic comparing cell counts to the
Župdated fit is monotone decreasing, and the process must converge Fienberg

.1970a; Haberman 1974a . The IPF algorithm produces ML estimates because
it generates a sequence of fitted values converging to a solution that both
satisfies the model and matches the sufficient statistics. By Birch’s results
Ž .Section 8.6.3 , only one such solution exists, and it is ML.

The IPF method works even for models having direct estimates. Then, IPF
Ž .normally yields ML estimates within one cycle Haberman 1974a, p. 197 . We

illustrate with the model of independence. The minimal sufficient statistics
� 4 � 4 � Ž0. 4are n and n . With � � 1.0 , the first cycle givesiq qj i j

n niq iqŽ1. Ž0.� s � s ,i j i j Ž0. J�iq

n n nqj iq qjŽ2. Ž1.� s � s .i j i j Ž1. n�qj

The IPF algorithm then gives �Ž t . s n n rn for all t � 2.ˆ i j iq qj

8.7.3 Comparison of Iterative Methods

The IPF algorithm is simple and easy to implement. It converges to the ML
fit even when the likelihood is poorly behaved, for instance with zero fitted
counts and estimates on the boundary of the parameter space. The
Newton�Raphson method is more complex, requiring solving a system of
equations at each step. Newton�Raphson is sometimes not feasible when the
model is of high dimensionality�for instance, when the contingency table
and parameter vector are huge.

However, IPF has disadvantages. It is applicable primarily to models for
which likelihood equations equate observed and fitted counts in marginal
tables. By contrast, Newton�Raphson is a general-purpose method that can
solve more complex likelihood equations. IPF sometimes converges slowly
compared to Newton�Raphson. Unlike Newton�Raphson, IPF does not
produce the model parameter estimates and their estimated covariance
matrix as a by-product. Fitted values that IPF produces can generate this

� 4 Žinformation. Model parameter estimates are contrasts of log � see Prob-ˆ i
ˆ. Ž . Ž .lems 8.16 and 8.17 , and substituting fitted values into 8.25 yields cov � .

Because Newton�Raphson applies to a wide variety of models and also
yields standard errors, it is the fitting routine used by most software for
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loglinear models. IPF is increasingly viewed as primarily of historical interest.
However, for some applications the analysis is more transparent using IPF, as
the next example illustrates.

8.7.4 Contingency Table Standardization

Table 8.15 relates education and attitudes toward legalized abortion using a
General Social Survey, conducted by the National Opinion Research Center.

Ž .To make patterns of association clearer, Smith 1976 standardized the table
so that all row and column marginal totals equal 100 while maintaining the
sample odds ratio structure.

The IPF routine to standardize with margins of 100 is

�Ž0. s ni j i j

and then for t s 1, 3, 5, . . . ,

100 100
Ž t . Ž ty1. Ž tq1. Ž t .� s � , � s � .i j i j i j i jŽ ty1. Ž t .� �iq qj

At the end of each odd-numbered step, all row totals equal 100. At the end
of each even-numbered step, all column totals equal 100. Odds ratios do not

Ž . Ž .change at each odd even step, since all counts in a given row column
multiply by the same constant.

The IPF algorithm converges to the entries in parentheses in Table 8.15.
The association is clearer in this standardized table. A ridge appears down
the main diagonal, with higher levels of education having more favorable
attitudes about abortion. The other counts fall away smoothly on both sides.

Table standardization is useful for comparing tables having different
Ž .marginal structures. Mosteller 1968 compared intergenerational occupa-

TABLE 8.15 Marginal Standardization of Attitudes toward Abortion
by Years of Schooling

Attitude toward Legalized Abortion

Generally Middle Generally
Schooling Disapprove Position Approve Total

Less than high school 209 101 237
Ž . Ž . Ž . Ž .49.4 32.0 18.6 100

High school 151 126 426
Ž . Ž . Ž . Ž .32.8 36.6 30.6 100

More than high school 16 21 138
Ž . Ž . Ž . Ž .17.8 31.3 50.9 100
Ž . Ž . Ž .Total 100 100 100

Ž .Source: Smith 1976 .
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Ž .tional mobility tables from Britain and Denmark. Yule 1912 compared
three hospitals on vaccination and recovery for smallpox patients. A modern
application is adjusting sample data to match marginal distributions specified
by census results.

The process of table standardization is called raking the table. Imrey et al.
Ž . Ž .1981 and Little and Wu 1991 derived the asymptotic covariance matrix for

� 4 � Ž .4raked sample proportions. For sample counts n with � s E n , leti j i j i j
ˆ� 4 � 4E denote expected frequencies for the standardized table and E fittedi j i j

values in the standardized table. The standardization process corresponds to
fitting the model

log E r� s � q �E q � A .Ž .i j i j i j

That is, maintaining the odds ratios means that the two-way tables of
ˆ� 4 � 4E r� and of E rn satisfy independence.i j i j i j i j

ˆ� 4The fitted values E in the standardized table satisfyi j

ˆ ˆ ˆE ˆAlog E y log n s � q � q � .i j i j i j

The adjustment term, ylog n , to the log link of the fit is called an offset.i j
The fit corresponds to using log n as a predictor on the right-hand side andi j
forcing its coefficient to equal 1.0. Standard GLM software can fit models
having offsets. To rake a table, one enters as sample data pseudo-values that
satisfy independence and have the desired margins, taking log n as ani j

Ž .offset. For SAS, see Table A.14 . In Section 9.7.1 we discuss further the use
of model offsets.

NOTES

Section 8.2: Loglinear Models for Independence and Interaction in Three-Way Tables

Ž .8.1. Roy and Mitra 1956 discussed types of independence for three-way tables and their
Ž .large-sample tests. Birch’s 1963 article on ML estimation for loglinear models was part

of substantial research on loglinear models in the 1960s, much due to L. A. Goodman
Ž . Ž .see Section 16.4 . Haberman 1974a presented an influential theoretical study of
loglinear models.

Section 8.3: Inference for Loglinear Models

Ž . Ž . Ž . Ž .8.2. Goodman 1970, 1971b , Haberman 1974a, Chap. 5 , Lauritzen 1996 , Sundberg 1975 ,
Ž .and Whittaker 1990, Sec. 12.4 discussed families of loglinear models that have direct

ML estimates and interpretations in terms of independence, conditional independence,
or equiprobability. Such models are called decomposable, since expected frequencies
decompose into products and ratios of expected marginal sufficient statistics. Haberman
proved conditions under which loglinear models have direct estimates. Baglivo et al.
Ž . Ž . Ž .1992 , Forster et al. 1996 , and Morgan and Blumenstein 1991 discussed exact
inference.
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Ž .8.3. For methods that allow for misclassification error, see Kuha and Skinner 1997 and
Ž .Kuha et al. 1998 and references therein. For treatment of missing data, see Little

Ž . Ž .1998 , Schafer 1997, Chap. 8 , and their references.

Section 8.7: Loglinear Model Fitting: Iterati©e Methods and Their Application

Ž .8.4. Deming 1964, Chap. VII described early work on IPF by Deming and Stephan.
Ž .Darroch 1962 used IPF to obtain ML estimates in contingency tables. Bishop et al.

Ž . Ž . Ž .1975 , Fienberg 1970a , and Speed 1998 presented other applications of IPF. Darroch
Ž .and Ratcliff 1972 generalized IPF for models in which sufficient statistics are more

complex than marginal tables.
Ž . Ž8.5. For further discussion of table raking, see Bishop et al. 1975, pp. 76�102 , Fleiss 1981,

. Ž . Ž . Ž .Chap. 14 , Haberman 1979, Chap. 9 , Hoem 1987 , and Little and Wu 1991 .

PROBLEMS

Applications

8.1 The 1988 General Social Survey compiled by the National Opinion
Research Center asked: ‘‘Do you support or oppose the following

Ž .measures to deal with AIDS? 1 Have the government pay all of the
Ž .health care costs of AIDS patients; 2 Develop a government informa-

tion program to promote safe sex practices, such as the use of con-
Ž .doms.’’ Table 8.16 summarizes opinions about health care costs H

Ž .and the information program I , classified also by the respondent’s
Ž .gender G .

Ž . Ž . Ž . Ža. Fit loglinear models GH, GI , GH, HI , GI, HI , and GH, GI,
.HI . Show that models that lack the HI term fit poorly.

Ž .b. For model GH, GI, HI , show that 95% Wald confidence intervals
Ž . Ž .equal 0.55, 1.10 for the GH conditional odds ratio and 0.99, 2.55

for the GI conditional odds ratio. Interpret. Is it plausible that
gender has no effect on opinion for these issues?

TABLE 8.16 Data for Problem 8.1

Health OpinionInformation
Gender Opinion Support Oppose

Male Support 76 160
Oppose 6 25

Female Support 114 181
Oppose 11 48

Source: 1988 General Social Survey, National Opinion Research
Center.
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TABLE 8.17 Data for Problem 8.2a

Home

President Busing 1 2 3

1 1 41 65 0
2 71 157 1
3 1 17 0

2 1 2 5 0
2 3 44 0
3 1 0 0

3 1 0 3 1
2 0 10 0
3 0 0 1

a1, Yes; 2, no; 3, don’t know.
Source: 1991 General Social Survey, National Opinion Research
Center.

8.2 Refer to Table 8.17 from the 1991 General Social Survey. White
Ž . Ž .subjects were asked: B ‘‘Do you favor busing of NegrorBlack and

Ž .white school children from one school district to another?’’, P ‘‘If
Ž .your party nominated a NegrorBlack for President, would you vote

Ž .for him if he were qualified for the job?’’, D ‘‘During the last few
years, has anyone in your family brought a friend who was a
Ž .NegrorBlack home for dinner?’’ The response scale for each item

Ž . Ž .was yes, no, don’t know . Fit model BD, BP, DP .
a. Using the yes and no categories, estimate the conditional odds ratio

for each pair of variables. Interpret.
b. Analyze the model’s goodness of fit. Interpret.
c. Conduct inference for the BP conditional association using a Wald

or likelihood-ratio confidence interval and test. Interpret.

8.3 Refer to Section 8.3.2. Explain why software for which parameters sum
ˆAC ˆACto zero across levels of each index reports � s � s 0.514 and11 22

ˆAC ˆAC� s � sy0.514, with SE s 0.044 for each term.12 21

8.4 Refer to Table 2.6. Let D s defendant’s race, V s victims’ race, and
Ž .P s death penalty verdict. Fit the loglinear model DV, DP, PV .

a. Using the fitted values, estimate and interpret the odds ratio
between D and P at each level of V. Note the common odds ratio
property.

Ž .b. Calculate the marginal odds ratio between D and P, i using the
Ž .fitted values, and ii using the sample data. Why are they equal?

Ž .Contrast the odds ratio with part a . Explain why Simpson’s para-
dox occurs.
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TABLE 8.18 Data for Problem 8.5

InjurySafety Equipment Whether
in Use Ejected Nonfatal Fatal

Seat belt Yes 1,105 14
No 411,111 483

None Yes 4,624 497
No 157,342 1,008

Source: Florida Department of Highway Safety and Motor Vehicles.

c. Fit the corresponding logit model, treating P as the response. Show
the correspondence between parameter estimates and fit statistics.

d. Is there a simpler model that fits well? Interpret, and show the
logit�loglinear connection.

8.5 Table 8.18 refers to automobile accident records in Florida in 1988.
a. Find a loglinear model that describes the data well. Interpret

associations.
b. Treating whether killed as the response, fit an equivalent logit

model. Interpret the effects.
c. Since n is large, goodness-of-fit statistics are large unless the model

fits very well. Calculate the dissimilarity index for the model in part
Ž .a , and interpret.

8.6 Refer to Table 8.19. Subjects were asked their opinions about govern-
Ž . Ž .ment spending on the environment E , health H , assistance to big

Ž . Ž .cities C , and law enforcement L .

TABLE 8.19 Data for Problem 8.6 a

Cities

1 2 3Law
Environment Health Enforcement: 1 2 3 1 2 3 1 2 3

1 1 62 17 5 90 42 3 74 31 11
2 11 7 0 22 18 1 19 14 3
3 2 3 1 2 0 1 1 3 1

2 1 11 3 0 21 13 2 20 8 3
2 1 4 0 6 9 0 6 5 2
3 1 0 1 2 1 1 4 3 1

3 1 3 0 0 2 1 0 9 2 1
2 1 0 0 2 1 0 4 2 0
3 1 0 0 0 0 0 1 2 3

a1, Too little; 2, about right; 3, too much.
Source: 1989 General Social Survey, National Opinion Research Center.
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TABLE 8.20 Output for Fitting Model to Table 8.19

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/ DF
Deviance 48 31.6695 0.6598
Pearson Chi-Square 48 26.5224 0.5526
Log Likelihood 1284.9404

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square
e*h 1 1 1 2.1425 0.5566 1.0515 3.2335 14.81
e*h 1 2 1 1.4221 0.6034 0.2394 2.6049 5.55
e*h 2 1 1 0.7294 0.5667 y0.3813 1.8402 1.66
e*h 2 2 1 0.3183 0.6211 y0.8991 1.5356 0.26
e*l 1 1 1 y0.1328 0.6378 y1.3829 1.1172 0.04
e*l 1 2 1 0.3739 0.6975 y0.9931 1.7410 0.29
e*l 2 1 1 y0.2630 0.6796 y1.5949 1.0689 0.15
e*l 2 2 1 0.4250 0.7361 y1.0178 1.8678 0.33
e*c 1 1 1 1.2000 0.5177 0.1854 2.2147 5.37
e*c 1 2 1 1.3896 0.4774 0.4540 2.3253 8.47
e*c 2 1 1 0.6917 0.5605 y0.4068 1.7902 1.52
e*c 2 2 1 1.3767 0.5024 0.3921 2.3614 7.51
h*c 1 1 1 y0.1865 0.4547 y1.0777 0.7048 0.17
h*c 1 2 1 0.7464 0.4808 y0.1959 1.6886 2.41
h*c 2 1 1 y0.4675 0.4978 y1.4431 0.5081 0.88
h*c 2 2 1 0.7293 0.5023 y0.2553 1.7138 2.11
h*l 1 1 1 1.8741 0.5079 0.8786 2.8696 13.61
h*l 1 2 1 1.0366 0.5262 0.0052 2.0680 3.88
h*l 2 1 1 1.9371 0.6226 0.7168 3.1574 9.68
h*l 2 2 1 1.8230 0.6355 0.5775 3.0686 8.23
c*l 1 1 1 0.8735 0.4604 y0.0289 1.7760 3.60
c*l 1 2 1 0.5707 0.4863 y0.3824 1.5239 1.38
c*l 2 1 1 1.0793 0.4326 0.2314 1.9271 6.23
c*l 2 2 1 1.2058 0.4462 0.3312 2.0804 7.30

a. Table 8.20 shows some results, including the two-factor estimates,
for the homogeneous association model. Check the fit, and inter-
pret.

b. All estimates at category 3 of each variable equal 0. Report the
estimated conditional odds ratios using the too much and too little
categories for each pair of variables. Summarize the associations.

Ž .Based on these results, which term s might you consider dropping
from the model? Why?

ˆEH� 4c. Table 8.21 reports � when parameters sum to zero within rowseh
and within columns, and when parameters are zero in the first row
and first column. Show how these yield the estimated EH condi-
tional odds ratio for the too much and too little categories. Com-

Ž .pare to part b . Construct a confidence interval for that odds ratio.
Interpret.
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TABLE 8.21 Parameter Estimates for Problem 8.6

Sum to Zero Constraints Zero for First Level
H H

E 1 2 3 1 2 3

1 0.509 0.166 y0.676 0 0 0
2 y0.065 y0.099 0.163 0 0.309 1.413
3 y0.445 y0.068 0.513 0 0.720 2.142

8.7 Refer to the loglinear models for Table 8.8.
a. Explain why the fitted odds ratios in Table 8.10 for model

Ž .GI, GL, GS, IL, IS, LS suggest that the most likely accident case
for injury is females not wearing seat belts in rural locations.

Ž .b. Fit model GLS, GI, IL, IS . Using model parameter estimates,
show that the fitted IS conditional odds ratio equals 0.44. Show that
for each injury level, the estimated conditional LS odds ratio is 1.17

Ž . Ž .for G s female and 1.03 for G s male . How can you get these
using the model parameter estimates?

8.8 Consider the following two-stage model for Table 8.8. The first stage is
a logit model with S as the response for the three-way GLS table. The
second stage is a logit model with these three variables as predictors
for I in the four-way table. Explain why this composite model is
sensible, fit the models, and interpret results.

8.9 Refer to the logit model in Problem 5.24. Let A s opinion on abor-
tion.
a. Give the symbol for the loglinear model that is equivalent to this

logit model.
Ž .b. Which logit model corresponds to loglinear model AR, AP, GRP ?

Ž .c. State the equivalent loglinear and logit models for which i A is
Ž .jointly independent of G, R, and P; ii there are main effects of R

Ž .on A, but A is conditionally independent of G and P, given R; iii
there is interaction between P and R in their effects on A, and G
has main effects.

8.10 For a multiway contingency table, when is a logit model more appro-
priate than a loglinear model? When is a loglinear model more
appropriate?

8.11 Using software, conduct the analyses described in this chapter for the
Ž .student survey data Table 8.3 .
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8.12 Standardize Table 10.6. Describe the migration patterns.

Ž .8.13 The book’s Web site www. stat.ufl.edur�aarcdarcda.html has a 2 �
3 � 2 � 2 table relating responses on frequency of attending religious
services, political views, opinion on making birth control available to
teenagers, and opinion about a man and woman having sexual rela-
tions before marriage. Analyze these data using loglinear models.

Theory and Methods

� 4 Ž .8.14 Suppose that � s n� satisfy the independence model 8.1 .i j i j
Y Y Ž .a. Show that � y � s log � r� .a b qa qb

� Y 4b. Show that all � s 0 is equivalent to � s 1rJ for all j.j qj

8.15 Refer to the independence model, � s �� � . For the correspondingi j i j
Ž .loglinear model 8.1 :

a. Show that one can constrain Ý�X sÝ�Y s 0 by settingi j

�X s log � y log � I , �Y s log � y log � J,Ý Ýi i h j j hž / ž /
h h

� s log � q log � Iq log � J.Ý Ýh hž / ž /
h h

b. Show that one can constrain �X s �Y s 0 by defining �X s log �1 1 i i
y log � and �Y s log � y log � . Then, what does � equal?1 j j 1

8.16 For an I � J table, let � s log � , and let a dot subscript denote thei j i j
Ž . Xmean for that index e.g., � sÝ � rJ . Then, let � s � , � s � yi. j i j . . i i.

� , �Y s � y � , and �X Y s � y � y � q � .. . j . j . . i j i j i. . j . .

a. Show that log � s � q �X q �Y q �X Y. Hence, any set of positivei j i j i j
� 4� satisfies the saturated model.i j

b. Show that Ý �X sÝ �Y sÝ �X Y sÝ �X Y s 0.i i j j i i j j i j

c. For 2 � 2 tables, show that log � s 4�X Y.11
X Y Ž .d. For 2 � J tables, show that � s Ý log � r2 J, where � s11 j j j

� � r� � , j s 2, . . . , J.11 2 j 21 1 j

e. Alternative constraints have other odds ratio formulas. Let � s � ,11
�X s � y � , �Y s � y � , and �X Y s � y � y � q � .i i1 11 j 1 j 11 i j i j i1 1 j 11
Then, show that the saturated model holds with �X s �Y s �X Y s1 1 1 j

X Y X Y Ž .� s 0 for all i and j, and � s log � � r� � .i1 i j 11 i j 1 j i1
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8.17 Suppose that all � � 0. Let � s log � , and consider modeli jk i jk i jk
parameters with zero-sum constraints.

Ž .a. For the general loglinear model 8.12 , define parameters in the
Ž X Y .fashion of Problem 8.16 e.g., � s � y � y � q � .i j i j. i. . . j. . . .

Ž . X Yb. For model XY, XZ, YZ with a 2 � 2 � 2 table, show that �11
1s log � .11Ž k .4

Ž .c. For XYZ with a 2 � 2 � 2 table, show that

1X Y Z� s log � r� .111 11Ž1. 11Ž2.8

Thus, �X Y Z s 0 is equivalent to � s � .i jk 11Ž1. 11Ž2.

8.18 Two balanced coins are flipped, independently. Let X s whether the
Ž .first flip resulted in a head yes, no , Y s whether the second flip

resulted in a head, and Z s whether both flips had the same result.
Using this example, show that marginal independence for each pair of
three variables does not imply that the variables are mutually indepen-
dent.

8.19 For three categorical variables X, Y, and Z:
a. When Y is jointly independent of X and Z, show that X and Y are

conditionally independent, given Z.
b. Prove that mutual independence of X, Y, and Z implies that X and

Y are both marginally and conditionally independent.
c. When X is independent of Y and Y is independent of Z, does it

follow that X is independent of Z? Explain.
d. When any pair of variables is conditionally independent, explain

why there is no three-factor interaction.

8.20 Suppose that X and Y are conditionally independent, given Z, and X
and Z are marginally independent.
a. Show that X is jointly independent of Y and Z.
b. Show X and Y are marginally independent.

Ž .c. Show that if X and Z are conditionally rather than marginally
independent, then X and Y are still marginally independent.

18.21 A 2 � 2 � 2 table satisfies � s � s � s , all i, j, k. Giveiqq qjq qqk 2
� 4 Ž . Ž . Ž . Ž .an example of � that satisfies model a X, Y, Z , b XY, Z ,i jk

Ž . Ž . Ž . Ž . Ž . Ž .c XY, YZ , d XY, XZ, YZ , and e XYZ , but in each case not a
simpler model.

Ž .8.22 Suppose that model XY, XZ, YZ holds in a 2 � 2 � 2 table, and the
common XY conditional log odds ratio at the two levels of Z is
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positive. If the XZ and YZ conditional log odds ratios are both
positive or both negative, show that the XY marginal odds ratio is
larger than the XY conditional odds ratio. Hence, Simpson’s paradox
cannot occur for the XY association.

8.23 Show that the general loglinear model in T dimensions has 2T terms.
T TwHint: It has an intercept, single-factor terms, two-factorž / ž /1 2

xterms, . . . .

� 48.24 Each of T responses is binary. For dummy variables z , . . . , z , the1 T
loglinear model of mutual independence has the form

log � s � z q 


 q� z .z , . . . , z 1 1 T T1 T

Ž .Show how to express the general loglinear model Cox 1972 .

8.25 Consider a cross-classification of W, X, Y, Z.
Ž .a. Explain why WXZ, WYZ is the most general loglinear model for

which X and Y are conditionally independent.
b. State the model symbol for which X and Y are conditionally

independent and there is no three-factor interaction.

8.26 For a four-way table with binary response Y, give the equivalent
loglinear and logit models that have:
a. Main effects of A, B, and C on Y.
b. Interaction between A and B in their effects on Y, and C has main

effects.
Ž .c. Repeat part a for a nominal response Y with a baseline-category

logit model.

� 48.27 For a 3 � 3 table with ordered rows having scores x , identify alli
Ž . Ž .terms in the generalized loglinear model 8.18 for models a

w Ž .x Ž . w Ž . Ž .xlogit P Y F j s � q � x , and b log P Y s j rP Y s 3 s � qj i j
� x .j i

8.28 For the independence model for a two-way table, derive minimal
sufficient statistics, likelihood equations, fitted values, and residual df.

8.29 For the loglinear model for an I � J table, log � s � q �X, showi j i
Ž .that � s n rJ and residual df s I J y 1 .ˆ i j iq

Ž .8.30 Write the log likelihood L for model XZ, YZ . Calculate � Lr�� and
show that it implies � s n. Show that � Lr��X s n y � .ˆqqq i iqq iqq
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Similarly, differentiate with respect to each parameter to obtain likeli-
Ž . Ž .hood equations. Show 8.23 and 8.24 imply the other equations, so

those equations determine the ML estimates.

Ž . Ž . Ž .8.31 For model XY, Z , derive a minimal sufficient statistics, b likeli-
Ž . Ž .hood equations, c fitted values, and d residual df for tests of fit.

Ž .8.32 Consider the loglinear model with symbol XZ, YZ .
� 4a. For fixed k, show that � equal the fitted values for testingˆ i jk

independence between X and Y within level k of Z.
b. Show that the Pearson and likelihood-ratio statistics for testing this

model’s fit have form X 2 sÝX 2, where X 2 tests independencek k
between X and Y at level k of Z.

Ž . Ž .8.33 Verify the df values shown in Table 8.14 for models XY, Z , XY, YZ ,
Ž .and XY, XZ, YZ .

Ž . Ž .8.34 Verify that loglinear model GLS, GI, LI, IS implies logit model 8.16 .
Show that the conditional log odds ratio for the effect of S on I equals
� S y � S in the logit model and �IS q �IS y �IS y�IS in the loglinear1 2 11 22 12 21
model.

8.35 Table 8.22 shows fitted values for models for four-way tables that have
direct estimates.

Ž .a. Use Birch’s results to verify that the entry is correct for W, X, Y, Z .
Verify its residual df.

Ž . Ž .b. Motivate the estimate and df formulas for WX, YZ , WXY, Z ,
Ž . Ž .WXY, WZ , and WXY, WXZ using composite variables and the

w Ž .corresponding results for two-way tables e.g., for WXY, WZ , given
xW, Z is independent of the composite XY variable .

TABLE 8.22 Data for Problem 8.35a

Model Expected Frequency Estimate Residual DF
3Ž .W, X, Y, Z n n n n rn HIJK y H y I y J y K q 3hqqq qiqq qqjq qqqk

2Ž .WX, Y, Z n n n rn HIJK y HI y J y K q 2hiqq qqjq qqqk
Ž .WX, WY, Z n n n rn n HIJK y HI y HJ y K q H q 1hiqq hqjq qqqk hqqq
Ž . Ž .Ž .WX, YZ n n rn HI y 1 JK y 1hiqq qqj k
Ž .WX, WY, XZ n n n rn n HIJK y HI y HJ y IK q H q Ihiqq hqjq qiqk hqqq qiqq

2Ž . Ž .WX, WY, WZ n n n r n HIJK y HI y HJ y HK q 2 Hhiqq hqjq hqqk hqqq
Ž . Ž .Ž .WXY, Z n n rn HIJ y 1 K y 1hi jq qqqk
Ž . Ž .Ž .WXY, WZ n n rn H IJ y 1 K y 1hi jq hqqk hqqq
Ž . Ž .Ž .WXY, WXZ n n rn HI J y 1 K y 1hi jq hiqk hiqq

aNumber of levels of W, X, Y, Z, denoted by H, I, J, K. Estimates for other models of each type
are obtained by symmetry.
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� 48.36 A T-dimensional table n has I categories in dimension i.ab . . . t i

a. Find minimal sufficient statistics, ML estimates of cell probabilities,
and residual df for the mutual independence model.

b. Find the minimal sufficient statistics and residual df for the hierar-
chical model having all two-factor associations but no three-factor
interactions.

Ž .8.37 Consider loglinear model X, Y, Z for a 2 � 2 � 2 table.
a. Express the model in the form log � s X�.

� � � 4b. Show that the likelihood equations X n s X � equate n andˆ i jk
� 4� in the one-dimensional margins.ˆ i jk

Ž . Ž . Ž . Ž .8.38 Apply IPF to model a X, YZ , and b XZ, YZ . Show that the ML
estimates result within one cycle.

� 4 � 48.39 Given target row totals r � 0 and column totals c � 0 :i j

� 4a. Explain how to use IPF to adjust sample proportions p to havei j
these totals but maintain the sample odds ratios.

b. Show how to find cell proportions that have these totals and for
Žwhich all local odds ratios equal � � 0. Hint: Take initial values of

1.0 in all cells in the first row and in the first column. This
determines all other initial cell entries such that all local odds ratios

.equal � .
c. Explain how cell proportions are determined by the marginal pro-

portions and the local odds ratios.

8.40 Refer to Birch’s results in Section 8.6.3. Show that L has individual
terms converging to y� as log � ™ ��. Explain why positive defi-i
niteness of the information matrix implies that the solution of the
likelihood equations is unique, with likelihood maximized at that point.



C H A P T E R 9

Building and Extending
rLoglinear Logit Models

In Chapters 5 through 7 we presented logistic regression models, which use
the logit link for binomial or multinomial responses. In Chapter 8 we
presented loglinear models for contingency tables, which use the log link for
Poisson cell counts. Equivalences between them were discussed in Section
8.5.3. In this chapter we discuss building and extending these models with
contingency tables.

In Section 9.1 we present graphs that show a model’s association and
conditional independence patterns. In Section 9.2 we discuss selection and
comparison of loglinear models. Diagnostics for checking models, such as
residuals, are presented in Section 9.3.

The loglinear models of Chapter 8 treat all variables as nominal. In
Section 9.4 we present loglinear models of association between ordinal
variables. In Sections 9.5 and 9.6 we present generalizations that replace
fixed scores by parameters. In the final section we discuss complications that
occur with sparse contingency tables.

9.1 ASSOCIATION GRAPHS AND COLLAPSIBILITY

A graphical representation for associations in loglinear models indicates the
pairs of conditionally independent variables. This representation helps reveal
implications of models. Our presentation derives partly from Darroch et al.
Ž .1980 , who used mathematical graph theory to represent certain loglinear

Ž .models called graphical models having a conditional independence struc-
ture.

9.1.1 Association Graphs

An association graph has a set of vertices, each vertex representing a variable.
An edge connecting two variables represents a conditional association be-

357
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Ž .FIGURE 9.1 Association graph for model WX, WY, WZ, YZ .

Ž .tween them. For instance, loglinear model WX, WY, WZ, YZ lacks XY and
XZ terms. It assumes independence between X and Y and between X and
Z, conditional on the remaining two variables. Figure 9.1 portrays this
model’s association graph. The four variables form the vertices. The four
edges represent pairwise conditional associations. Edges do not connect X
and Y or X and Z, the conditionally independent pairs.

Two loglinear models with the same pairwise associations have the same
association graph. For instance, this association graph is also the one for

Ž .model WX, WYZ , which adds a three-factor WYZ interaction.
A path in an association graph is a sequence of edges leading from one

variable to another. Two variables X and Y are said to be separated by a
subset of variables if all paths connecting X and Y intersect that subset. For
instance, in Figure 9.1, W separates X and Y, since any path connecting X

� 4and Y goes through W. The subset W, Z also separates X and Y.
A fundamental result states that two variables are conditionally independent

Žgiven any subset of variables that separates them Kreiner 1987; Whittaker
.1990, p. 67 . Thus, not only are X and Y conditionally independent given W

and Z, but also given W alone. Similarly, X and Z are conditionally
independent given W alone.

9.1.2 Collapsibility in Three-Way Contingency Tables

In Section 2.3.3 we showed that conditional associations in partial tables
usually differ from marginal associations. Under certain collapsibility condi-
tions, however, they are the same.

For three-way tables, XY marginal and conditional odds ratios are identical if
either Z and X are conditionally independent or if Z and Y are conditionally
independent.

Ž .The conditions state that the variable treated as the control Z is condition-
ally independent of X or Y, or both. These conditions occur for loglinear

Ž . Ž .models XY, YZ and XY, XZ . Thus, the fitted XY odds ratio is identical
in the partial tables and the marginal table for models with association
graphs

X Y Z and Y X Z
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or even simpler models, but not for the model with graph

X Z Y

in which an edge connects Z to both X and Y. The proof follows directly
Ž . Ž . Ž .from the formulas for models XY, YZ and XY, XZ Problem 9.26 .

Ž .We illustrate for the student survey Table 8.3 from Section 8.2.4, with
A s alcohol use, C s cigarette use, and M s marijuana use. Model
Ž .AM, CM specifies AC conditional independence, given M. It has associa-
tion graph

A M C.

Consider the AM association. Since C is conditionally independent of A, the
AM fitted conditional odds ratios are the same as the AM fitted marginal
odds ratio collapsed over C. From Table 8.5, both equal 61.9. Similarly, the
CM association is collapsible. The AC association is not, because M is

Ž .conditionally dependent with both A and C in model AM, CM . Thus, A
and C may be marginally dependent, even though they are conditionally
independent. In fact, from Table 8.5, the fitted AC marginal odds ratio for
this model is 2.7.

Ž .For model AC, AM, CM , no pair is conditionally independent. No
collapsibility conditions are fulfilled. Table 8.5 showed that each pair has
quite different fitted marginal and conditional associations for this model.
When a model contains all two-factor effects, effects may change after
collapsing over any variable.

9.1.3 Collapsibility and Logit Models

The collapsibility conditions apply also to logit models. For instance, suppose
that a clinical trial studies the association between a binary treatment

Ž .variable X x s 1, x s 0 and a binary response Y, using data from K1 2
Ž .centers Z . The logit model

Z�logit P Y s 1 X s i , Z s k s � q � x q �Ž . i k

has the same treatment effect � for each center. Since this model corre-
Ž .sponds to loglinear model XY, XZ, YZ , this effect may differ after collaps-

ing the 2 � 2 � K table over centers. The estimated XY conditional odds
ˆŽ .ratio, exp � , typically differs from the sample odds ratio in the marginal

2 � 2 table.
Next, consider the simpler model that lacks center effects,

�logit P Y s 1 X s i , Z s k s � q � x .Ž . i

For a given treatment, the success probability is identical for each center.
The model satisfies a collapsibility condition, because it states that Z is
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conditionally independent of Y, given X. This logit model is equivalent to
Ž .loglinear model XY, XZ , for which the XY association is collapsible. So,

when center effects are negligible and the simpler model fits nearly as well,
the estimated treatment effect is approximately the marginal XY odds ratio.

9.1.4 Collapsibility and Association Graphs for Multiway Tables

Ž .Bishop et al. 1975, p. 47 provided a parametric collapsibility condition with
multiway tables:

Suppose that a model for a multiway table partitions variables into three
mutually exclusive subsets, A, B, C, such that B separates A and C. After
collapsing the table over the variables in C, parameters relating variables in A and
parameters relating variables in A to variables in B are unchanged.

Ž . Ž . � 4We illustrate using model WX, WY, WZ, YZ Figure 9.1 . Let A s X ,
� 4 � 4B s W , and C s Y, Z . Since the XY and XZ terms do not appear, all

parameters linking set A with set C equal zero, and B separates A and C. If
we collapse over Y and Z, the WX association is unchanged. Next, identify

� 4 � 4 � 4A s Y, Z , B s W , C s X . Then, conditional associations among W, Y,
and Z remain the same after collapsing over X.

This result also implies that when any variable is independent of all other
variables, collapsing over it does not affect any other model terms. For

Ž .instance, associations among W, X, and Y in model WX, WY, XY, Z are
Ž .the same as in WX, WY, XY .

When set B contains more than one variable, although parameter values
are unchanged in collapsing over set C, the ML estimates of those parame-
ters may differ slightly. A stronger collapsibility definition also requires that
the estimates be identical. This condition of commutativity of fitting and
collapsing holds if the model contains the highest-order term relating vari-

Ž .ables in B to each other. Asmussen and Edwards 1983 discussed this
Ž .property, which relates to decomposability of tables Note 8.2 .

9.2 MODEL SELECTION AND COMPARISON

Strategies for selecting and comparing loglinear models are similar to those
for logistic regression discussed in Section 6.1. A model should be complex
enough to fit well but also relatively simple to interpret, smoothing rather
than overfitting the data.

9.2.1 Considerations in Model Selection

The potentially useful models are usually a small subset of the possible
models. A study designed to answer certain questions through confirmatory
analyses may plan to compare models that differ only by the inclusion of
certain terms. Also, models should recognize distinctions between response
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and explanatory variables. The modeling process should concentrate on
terms linking responses and terms linking explanatory variables to responses.
The model should contain the most general interaction term relating the
explanatory variables. From the likelihood equations, this has the effect of
equating the fitted totals to the sample totals at combinations of their levels.
This is natural, since one normally treats such totals as fixed. Related to this,
certain marginal totals are often fixed by the sampling design. Any potential
model should include those totals as sufficient statistics, so likelihood equa-
tions equate them to the fitted totals.

Consider Table 8.8 with I s automobile injury and S s seat-belt use as
responses and G s gender and L s location as explanatory variables. Then

� 4we treat n as fixed at each combination for G and L. For example,gqllq

20,629 women had accidents in urban locations, so the fitted counts should
have 20,629 women in urban locations. To ensure this, a loglinear model
should contain the GL term, which implies from its likelihood equations that
� 4 Ž .� s n . Thus, the model should be at least as complex as GL, S, Iˆ gqllq gqllq

and focus on the effects of G and L on S and I as well as the SI association.
� 4If S is also explanatory and only I is a response, n should be fixed.gqll s

With a single categorical response, relevant loglinear models correspond to
logit models for that response. One should then use logit rather than
loglinear models, when the main focus is describing effects on that response.

For exploratory studies, a search among potential models may provide
clues about associations and interactions. One approach first fits the model
having single-factor terms, then the model having two-factor and single-factor
terms, then the model having three-factor and lower terms, and so on. Fitting
such models often reveals a restricted range of good-fitting models. In
Section 8.4.2 we used this strategy with the automobile injury data set.
Automatic search mechanisms among possible models, such as backward
elimination, may also be useful but should be used with care and skepticism.
Such a strategy need not yield a meaningful model.

9.2.2 Model Building for the Dayton Student Survey

Ž . Ž .In Sections 8.2.4 and 8.3.2 we analyzed the use of alcohol A , cigarettes C ,
Ž .and marijuana M by a sample of high school seniors. The study also

Ž . Ž .classified students by gender G and race R . Table 9.1 shows the five-di-
mensional contingency table. In selecting a model, we treat A, C, and M as
responses and G and R as explanatory. Thus, a model should contain the
GR term, which forces the GR fitted marginal totals to equal the sample
marginal totals

Table 9.2 displays goodness-of-fit tests for several models. Because many
cell counts are small, the chi-squared approximation for G2 may be poor, but
this index is useful for comparing models. The first model listed contains only
the GR association and assumes conditional independence for the other nine
pairs of associations. It fits horribly, which is no surprise. Model 2, with all
two-factor terms, on the other hand, seems to fit well. Model 3, containing all
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TABLE 9.1 Alcohol, Cigarette, and Marijuana Use for High School Seniors

Marijuana Use

Race s White Race s Other

Female Male Female MaleAlcohol Cigarette
Use Use Yes No Yes No Yes No Yes No

Yes Yes 405 268 453 228 23 23 30 19
No 13 218 28 201 2 19 1 18

No Yes 1 17 1 17 0 1 1 8
No 1 117 1 133 0 12 0 17

Source: Harry Khamis, Wright State University.

TABLE 9.2 Goodness-of-Fit Tests for Loglinear Models for Table 9.1
a 2Model G df

1. Mutual independence q GR 1325.1 25
2. Homogeneous association 15.3 16
3. All three-factor terms 5.3 6

Ž .4a. 2 �AC 201.2 17
Ž .4b. 2 �AM 107.0 17
Ž .4c. 2 �CM 513.5 17
Ž .4d. 2 �AG 18.7 17
Ž .4e. 2 �AR 20.3 17
Ž .4f. 2 �CG 16.3 17
Ž .4g. 2 �CR 15.8 17
Ž .4h. 2 �GM 25.2 17
Ž .4i. 2 �MR 18.9 17
Ž .5. AC, AM, CM, AG, AR, GM, GR, MR 16.7 18
Ž .6. AC, AM, CM, AG, AR, GM, GR 19.9 19
Ž .7. AC, AM, CM, AG, AR, GR 28.8 20

aG, gender; R, race; A, alcohol use; C, cigarette use; M, marijuana use.

the three-factor interaction terms, also fits well, but the improvement in fit is
Ž 2 .not great difference in G of 15.3 y 5.3 s 10.0 based on df s 16 y 6 s 10 .

Thus, we consider models without three-factor terms. Beginning with model
2, we eliminate two-factor terms. We use backward elimination, sequentially
taking out terms for which the resulting increase in G2 is smallest, when
refitting the model.

Table 9.2 shows the start of this process. Nine pairwise associations are
Ž .candidates for removal from model 2 all except GR , shown in models 4a

through 4i. The smallest increase in G2, compared to model 2, occurs in
Ž .removing the CR term i.e., model 4g . The increase is 15.8 y 15.3 s 0.5,

with df s 17 y 16 s 1, so this elimination seems sensible. After removing it,
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Žthe smallest additional increase results from removing the CG term model
. 2 25 , resulting in G s 16.7 with df s 18, and a change in G of 0.9 based on

Ž . 2df s 1. Removing next the MR term model 6 yields G s 19.9 with
df s 19, a change in G2 of 3.2 based on df s 1.

Further removals have a more severe effect. For instance, removing the
AG term increases G2 by 5.3, with df s 1, for a P-value of 0.02. One cannot
take such P-values literally, since the data suggested these tests, but it seems

w Ž .safest not to drop additional terms. See Westfall and Wolfinger 1997 and
Ž .Westfall and Young 1993 for methods of adjusting P-values to account for

x Ž .multiple tests . Model 6, denoted by AC, AM, CM, AG, AR, GM, GR , has
association graph

M G

C A R

� 4 � 4Every path between C and G, R involves a variable in A, M . Given the
outcome on alcohol use and marijuana use, the model states that cigarette
use is independent of both gender and race. Collapsing over the explanatory
variables race and gender, the conditional associations between C and A and

Ž .between C and M are the same as with the model AC, AM, CM fitted in
Section 8.2.4.

Removing the GM term from this model yields model 7 in Table 9.2. Its
� 4 � 4association graph reveals that A separates G, R from C, M . Thus, all

pairwise conditional associations among A, C, and M in model 7 are
Ž .identical to those in model AC, AM, CM , collapsing over G and R. In fact,
Ž 2 .model 7 does not fit poorly G s 28.8 with df s 20 considering the large

ˆŽ .sample size. Its sample dissimilarity index is � s 0.036. Hence, one might
collapse over gender and race in studying associations among the primary
variables. An advantage of the full five-variable model is that it estimates
effects of gender and race on these responses, in particular the effects of race
and gender on alcohol use and the effect of gender on marijuana use.

9.2.3 Loglinear Model Comparison Statistics

Consider two loglinear models, M and M , with M a special case of M . By1 0 0 1
Sections 4.5.4 and 5.4.3, the likelihood-ratio statistic for testing M against0

2Ž � . 2Ž . 2Ž .M is G M M s G M y G M . We used this statistic above in1 0 1 0 1
comparing pairs of models.

� 4Let n denote a column vector of the observed cell counts n . Let � andˆi 0
� 4 � 4� denote vectors of the fitted values � and � for M and M . Theˆ ˆ ˆ1 0 i 1 i 0 1

2Ž .deviance G M for the simpler model partitions into0

2 2 2 �G M s G M q G M M . 9.1Ž . Ž . Ž .Ž .0 1 0 1

2Ž .Just as G M measures the distance of fitted values for M from n,
2Ž � .G M M measures the distance of fit � from fit � . In this sense,ˆ ˆ0 1 0 1
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Ž .decomposition 9.1 expresses a certain orthogonality: The distance of n from
� equals the distance of n from � plus the distance of � from � .ˆ ˆ ˆ ˆ0 1 1 0

The model comparison statistic equals

2 �G M M s 2 n log n r� y 2 n log n r�Ž . Ž .Ž . ˆ ˆÝ Ý0 1 i i 0 i i i 1 i
i i

s 2 n log � r� . 9.2Ž .ˆ ˆŽ .Ý i 1 i 0 i
i

Ž .The two loglinear models have the matrix form 8.17 , or

log � s X � and log � s X � .0 0 0 1 1 1

Since M is simpler than M , one can express log � s X � s X �� , where0 1 0 0 0 1 1
�� equals � with 0 elements appended corresponding to the extra parame-1 0

Ž .ters in � but not in � . Then, from 9.2 ,1 0

� � �2 ˆ ˆ�G M M s 2n log � y log � s 2n X � y X �Ž . ˆ ˆŽ .0 1 1 0 1 1 1 1

� ��ˆ ˆs 2� X � y X � s 2� log � y log �ˆ ˆ ˆ ˆŽ .1 1 1 1 1 1 1 0

s 2 � log � r� , 9.3Ž .ˆ ˆ ˆŽ .Ý 1 i 1 i 0 i

where the replacement of n by � follows from the likelihood equationsˆ 1
� � w Ž .x Ž .n X s � X for M Recall 8.22 . Statistic 9.3 has the same form asˆ1 1 1 1

2Ž . � 4G M , but with � playing the role of the observed data. Note thatˆ0 1 i
2Ž . 2Ž � .G M is the special case of G M M with M saturated.0 0 1 1

2Ž . 2Ž .The Pearson difference X M y X M does not have Pearson form.0 1
It is not even necessarily nonnegative. A more appropriate Pearson statistic
for comparing models is

22 �X M M s � y � r� . 9.4Ž .Ž . ˆ ˆ ˆŽ .Ý0 1 1 i 0 i 0 i

� 4 � 4 Ž . Ž .This has the usual form with � in place of n . Statistics 9.3 and 9.4ˆ1 i i
depend on the data only through the fitted values and thus only through
sufficient statistics for M .1

2Ž . 2Ž .When M holds, G M and G M have asymptotic chi-squared distri-0 0 1
2Ž � .butions, and G M M is asymptotically chi-squared with df equal to the0 1

Ž .difference between df for M and M . Haberman 1977a showed that0 1
2Ž � . 2Ž � .G M M and X M M have the same null large-sample behavior, even0 1 0 1

Žfor fairly sparse tables. Under certain conditions, their difference converges
. 2Ž .in probability to 0 as n increases. When M holds but M does not, G M1 0 1

still has its asymptotic chi-squared distribution, but the other two statistics
tend to grow unboundedly as n increases.
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9.2.4 Partitioning Chi-Squared with Model Comparisons

Ž .Equation 9.1 utilizes the property by which a chi-squared statistic with
df � 1 partitions into components. We used such partitionings in tests for
trend with ordinal predictors in linear logit or linear probability models
Ž . ŽSection 5.3.5 and with ordinal responses in cumulative logit models Section

.7.2 . More generally, this property applies with a set of nested models to test
a sequence of hypotheses. The separate tests for comparing pairs of models
are asymptotically independent.

For example, a chi-squared decomposition with J y 1 models justifies the
partitioning of G2 stated in Section 3.3.3 for 2 � J tables. For j s 2, . . . , J,
let M denote the model that satisfiesj

� s � � r � � s 1, i s 1, . . . , j y 1.Ž . Ž .i 1 i 2, iq1 1, iq1 2 i

For M , the 2 � j table consisting of columns 1 through j satisfies indepen-j
dence. Model M is independence in the complete 2 � J table. Model M isJ h

Ž .a special case of M whenever h � j. By 9.2 ,j

2 2 � 2G M s G M M q G MŽ . Ž .Ž .J J Jy1 Jy1

2 � 2 � 2s G M M q G M M q G MŽ .Ž . Ž .J Jy1 Jy1 Jy2 Jy2

2 � 2 � 2s ��� s G M M q ��� qG M M q G M .Ž .Ž . Ž .J Jy1 3 2 2

Ž . 2Ž � . 2From 9.3 , G M M has the G form with the fitted values for modelj jy1
M playing the role of the observed data. Substitution of fitted values forjy1

Ž . 2Ž � . 2the two models into 9.3 shows that G M M is identical to G forj jy1
testing independence in a 2 � 2 table; the first column combines column 1
through j y 1 of the original table, and the second column is column j of the
original table.

With several preplanned comparisons, simultaneous test procedures lessen
the probability of attributing importance to sample effects that simply reflect
chance variation. These procedures use adjusted significance levels. For a set

Ž .1r sof s tests for nested models, when each test has level 1 y 1 y � , the
Ž . Ž .overall asymptotic P type I error F � Goodman 1969a . For instance,

Ž .suppose that we test the fit of WXZ, WY, XY, ZY , compare that model to
Ž . ŽWX, WZ, XZ, WY, XY, ZY , and compare that model to WX, WZ, XZ,

.WY, ZY . To ensure overall � s 0.05 for the s s 3 tests, use level 1 y
Ž .1r30.95 s 0.017 for each.

9.2.5 Identical Marginal and Conditional Tests of Independence

2Ž � .A test using G M M simplifies dramatically when both models have0 1
direct estimates. In that case, the models have independence linkages neces-



BUILDING AND EXTENDING LOGLINEARr LOGIT MODELS366

sary to ensure collapsibility. A test of conditional independence has the same
result as the test of independence applied to the marginal table. Sundberg
Ž .1975 proved the following: When two direct models M and M are0 1

2Ž � .identical except for a pairwise association term, G M M is identical to0 1
G2 for testing independence in the marginal table for that pair of variables.

Ž . Ž .Bishop 1971 and Goodman 1970, 1971b have related discussion.
2wŽ . � Ž .x X Y Ž .For instance, G X, Y, Z XY, Z tests � s 0 in model XY, Z .

Thus, it tests XY conditional independence under the assumption that X
and Y are jointly independent of Z. Using the two sets of fitted values, from
Ž .9.3 , it equals

n n n n rni jq qqk i jq qqk
2 logÝÝÝ 2n n n n rniqq qjq qqki j k

ni jq
s 2 n log ,ÝÝ i jq n n rniqq qjqi j

2wŽ .xwhich equals G X, Y for testing independence in the marginal XY table.
This is not surprising. The collapsibility conditions imply that for model
Ž .XY, Z , the marginal XY association is the same as the conditional XY
association.

9.3 DIAGNOSTICS FOR CHECKING MODELS

2Ž � .The model comparison test using G M M is useful for detecting whether0 1
an extra term improves a model fit. Cell residuals provide a cell-specific
indication of model lack of fit.

9.3.1 Residuals for Loglinear Models

ŽIn Section 4.5.5 we noted that residuals for the independence model Section
.3.3.1 extend to any Poisson GLM. For cell i in a contingency table with

observed count n and fitted value � , the Pearson residual isˆi i

n y �̂i i
e s . 9.5Ž .i

�'ˆ i

These relate to the Pearson statistic by Ýe2 s X 2.i
Ž .Like the Pearson residual 6.1 for binomial models, the asymptotic

� 4 Ž . Žvariances of e are less than 1.0. They average residual df r number ofi
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. Ž .cells . Haberman 1973a defined the standardized Pearson residual,

ˆ'r s e r 1 y h ,i i i

ˆwhere the leverage h is a diagonal element of the estimated hat matrixi
Ž .Section 4.5.5 . This has an asymptotic standard normal distribution and is
preferable to the Pearson residual. A closed-form expression applies for

Ž .loglinear models having direct estimates Haberman 1978, p. 275 . Alterna-
Ž .tive residuals use components of the deviance Section 4.5.5 .

9.3.2 Student Survey Example Revisited

For Table 9.1 cross-classifying alcohol, cigarette, and marijuana use by
gender and race, we suggested in Section 9.2.2 that the model with all
two-factor associations is plausible. For it, the only large standardized Pear-
son residual equals 3.2, resulting from a fitted value of 3.1 in the cell having
a count of 8. Further comparisons suggested that the simpler model
Ž .AC, AM, CM, AG, AR, GM, GR is adequate. Its only large standardized
residual equals 3.3, referring to a fitted value of 2.9 in that cell. The number
of nonwhite males who did not use alcohol or marijuana but who smoked
cigarettes is somewhat greater than either model predicts. The standardized
Pearson residuals do not suggest problems with either model, considering the
large sample size and many cells studied.

9.3.3 Correspondence between Loglinear and Logit Residuals

In Section 8.5 we showed that logit models in contingency tables are equiva-
lent to certain loglinear models. However, a Pearson residual for a logit
model differs from a Pearson residual for a loglinear model. The numerators
comparing the ith observed and fitted binomial or Poisson count are the
same, since the model fitted values are the same. However, the logit model

w Ž .xuses a fitted binomial standard deviation in the denominator see 6.1 ,
wwhereas the loglinear model uses a fitted Poisson standard deviation see

Ž .x9.5 . Thus, the logit Pearson residual exceeds the loglinear Pearson residual
Ž .9.5 .

Once standardized by dividing by estimated standard errors, the standard-
ized Pearson residuals are identical for the two models. This is another
reason for preferring standardized residuals over ordinary Pearson residuals.

9.4 MODELING ORDINAL ASSOCIATIONS

The loglinear models presented so far have a serious limitation	they treat
all classifications as nominal. If the order of a variable’s categories changes in
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TABLE 9.3 Opinions about Premarital Sex and Availability of Teenage Birth Control
aTeenage Birth Control

Strongly Strongly
Premarital Sex Disagree Disagree Agree Agree

Always wrong 81 68 60 38
1Ž . Ž . Ž . Ž .42.4 51.2 86.4 67.0

27.6 3.1 y4.1 y4.8
3Ž . Ž . Ž . Ž .80.9 67.6 69.4 29.1

Almost always wrong 24 26 29 14
Ž . Ž . Ž . Ž .16.0 19.3 32.5 25.2

2.3 1.8 y0.8 y2.8
Ž . Ž . Ž . Ž .20.8 23.1 31.5 17.6

Wrong only sometimes 18 41 74 42
Ž . Ž . Ž . Ž .30.1 36.3 61.2 47.4
y2.7 1.0 2.2 y1.0
Ž . Ž . Ž . Ž .24.4 36.1 65.7 48.8

Not wrong at all 36 57 161 157
Ž . Ž . Ž . Ž .70.6 85.2 143.8 111.4
y6.1 y4.6 2.4 6.8
Ž . Ž . Ž . Ž .33.0 65.1 157.4 155.5

a1 Independence model fit; 2standardized Pearson residuals for the independence model fit;
3 linear-by-linear association model fit.
Source: 1991 General Social Survey, National Opinion Research Center.

any way, the fit is the same. For ordinal classifications, these models ignore
important information.

Refer to Table 9.3. Subjects were asked their opinion about a man and
Žwoman having sexual relations before marriage always wrong, almost always

.wrong, wrong only sometimes, not wrong at all . They were also asked
whether methods of birth control should be available to teenagers between

Ž .the ages of 14 and 16 strongly disagree, disagree, agree, strongly agree . For
2Ž .the loglinear model of independence, denoted by I, G I s 127.6 with

df s 9. The model fits poorly. Yet, adding the ordinary association term
makes it saturated and unhelpful.

Table 9.3 also contains fitted values and standardized residuals for inde-
pendence. The residuals in the corners stand out. Sample counts are much
larger than independence predicts where both responses are the most nega-
tive possible or the most positive possible. By contrast, the counts are much
smaller than fitted values where one response is the most positive and the
other is the most negative. Cross-classifications of ordinal variables often
exhibit their greatest deviations from independence in the corner cells. This
pattern for Table 9.3 indicates lack of fit in the form of a positive trend.
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Subjects who are more willing to make birth control available to teenagers
also tend to feel more tolerant about premarital sex.

Models for ordinal variables use association terms that permit trends. The
models are more complex than the independence model, yet unsaturated.
Models with association and interaction terms exist in situations in which
nominal models are saturated. Tests with ordinal models have improved
power for detecting trends.

9.4.1 Linear-by-Linear Association in Two-Way Tables

For two-way tables, a simple model for two ordinal variables assigns ordered
row scores u F u F ��� F u and column scores ® F ® F ��� F® . The1 2 I 1 2 J
model is

log � s � q �X q �Y q � u ® , 9.6Ž .i j i j i j

with constraints such as �X s �Y s 0. This is the special case of the satu-I J
Ž . X Yrated model 8.2 in which � s � u ® . It requires only one parameter toi j i j

Ž .Ž .describe association, whereas the saturated model requires I y 1 J y 1 .
Independence occurs when � s 0. The term � u ® represents the devia-i j

tion of log � from independence. The deviation is linear in the Y scores ati j
a fixed level of X and linear in the X scores at a fixed level of Y. In column

Ž .j, for instance, the deviation is a linear function of X, having form slope �
Ž . Ž .score for X , with slope � ® . Because of this property, 9.6 is called thej

Ž .linear-by-linear association model abbreviated, L � L . The model has its
greatest departures from independence in the corners of the table. Birch
Ž . Ž . Ž .1965 , Goodman 1979a , and Haberman 1974b introduced special cases.

The direction and strength of the association depend on �. When � � 0,
Y tends to increase as X increases. Expected frequencies are larger than

Ž .expected under independence in cells where X and Y are both high or both
low. When � � 0, Y tends to decrease as X increases. When the data display
a positive or negative trend, the L � L model usually fits much better than
the independence model.

For the 2 � 2 table using the cells intersecting rows a and c with columns
b and d, direct substitution shows that the model has

� �ab cd
log s � u y u ® y ® . 9.7Ž . Ž . Ž .c a d b� �ad cb

� �This log odds ratio is stronger as � increases and for pairs of categories that
are farther apart. Simple interpretations result when u y u s ��� s u y2 1 I

� 4 � 4u and ® y ® s ��� s® y ® . When u s i and ® s j , for instance,Iy1 2 1 J Jy1 i j
Ž .the local odds ratios 2.10 for adjacent rows and adjacent columns have

� Ž .common value e . Goodman 1979a called this case uniform association.
Figure 9.2 portrays local odds ratios having uniform value.
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ŽFIGURE 9.2 Constant odds ratio implied by uniform association model. Note: � s the
.constant log odds ratio for adjacent rows and adjacent columns.

The choice of scores affects the interpretation of �. Often, the response
scale discretizes an inherently continuous scale. It is sensible to choose scores
that approximate distances between midpoints of categories for the underly-
ing scale, such as we did in measuring alcohol consumption for a linear logit
model in Section 3.4.5. It is sometimes useful to standardize the scores,
subtracting the mean and dividing by the standard deviation, so

u 
 s ®
 s 0Ý Ýi iq j qj

u2
 s ®2
 s 1.Ý Ýi iq j qj

Then, � represents the log odds ratios for standard deviation distances in the
X and Y directions. The L � L model tends to fit well when an underlying
continuous distribution is approximately bivariate normal. For standardized

Ž 2 .scores, � is then comparable to �r 1 y � , where � is the underlying
Žcorrelation. For weak associations, � f � see Becker 1989b; Goodman

.1981a, b, 1985 .

9.4.2 Corresponding Logit Model for Adjacent Responses

A logit formulation of the L � L model treats Y as a response and X as
Ž � .explanatory. Let 
 s P Y s j X s i . Using logits for adjacent responsej � i

Ž .categories Section 7.4.1 ,

 �jq1 � i i , jq1 Y Ylog s log s � y � q � ® y ® u .Ž .Ž .jq1 j jq1 j i
 �j � i i j

� 4For unit-spaced ® , this simplifies toj


 jq1 � i
log s � q � uj i
 j � i
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where � s �Y y �Y. The same linear logit effect � applies simultaneouslyj jq1 j
Ž .for all J y 1 pairs of adjacent response categories: The odds Y s j q 1

instead of Y s j multiply by e � for each unit change in X. In using
equal-interval response scores, we implicitly assume that the effect of X is
the same on each of the J y 1 adjacent-categories logits for Y.

9.4.3 Likelihood Equations and Model Fitting

Ž .The Poisson log-likelihood L � sÝ Ý n log � yÝ Ý � simplifies fori j i j i j i j i j
Ž .the L � L model 9.6 to

L � s n� q n �X q n �Y q � u ® nŽ . Ý Ý Ý Ýiq i qj j i j i j
i j i j

y exp � q �X q �Y q � u ® .Ž .Ý Ý i j i j
i j

Ž . Ž X Y .Differentiating L � with respect to � , � , � and setting the three partiali j
derivatives equal to zero yields likelihood equations

� s n , i s 1, . . . , I , � s n , j s 1, . . . , J ,ˆ ˆiq iq qj qj

u ® � s u ® n .ˆÝÝ ÝÝi j i j i j i j
i j i j

Iterative methods such as Newton�Raphson yield the ML fit.
Let p s n rn and 
 s � rn. The third likelihood equation impliesˆ ˆi j i j i j i j

that

u ®
 s u ® p .ˆÝÝ ÝÝi j i j i j i j
i j i j

Since marginal distributions and hence marginal means and variances are
identical for fitted and observed distributions, the third equation implies the
correlation between the scores for X and Y is the same for both distribu-
tions. The fitted counts display the same positive or negative trend as the
data.

� 4 � 4 Ž .Since u and ® are fixed, the L � L model 9.6 has only one morei j
Ž .parameter � than the independence model. Its residual

df s IJ y 1 q I y 1 q J y 1 q 1 s IJ y I y J ,Ž . Ž .

unsaturated for all but 2 � 2 tables.

9.4.4 Sex Opinions Example

Table 9.3 also reports fitted values for the linear-by-linear association model
� 4applied to Table 9.3, using scores 1, 2, 3, 4 for rows and columns. Table 9.4



BUILDING AND EXTENDING LOGLINEARr LOGIT MODELS372

TABLE 9.4 Output for Fitting Linear-by-Linear Association Model to Table 9.3

Criteria For Assessing Goodness Of Fit
Criterion DF Value
Deviance 8 11.5337
Pearson Chi-Square 8 11.5085

Standard Wald 95% Conf. Chi-
Parameter Estimate Error Limits Square Pr� ChiSq
Intercept 0.4735 0.4339 y0.3769 1.3239 1.19 0.2751
premar 1 1.7537 0.2343 1.2944 2.2129 56.01 �.0001
premar 2 0.1077 0.1988 y0.2820 0.4974 0.29 0.5880
premar 3 y0.0163 0.1264 y0.2641 0.2314 0.02 0.8972
premar 4 0.0000 0.0000 0.0000 0.0000 . .
birth 1 1.8797 0.2491 1.3914 2.3679 56.94 �.0001
birth 2 1.4156 0.1996 1.0243 1.8068 50.29 �.0001
birth 3 1.1551 0.1291 0.9021 1.4082 80.07 �.0001
birth 4 0.0000 0.0000 0.0000 0.0000 . .
linlin 0.2858 0.0282 0.2305 0.3412 102.46 �.0001

LR Statistics
Source DF Chi-Square Pr� ChiSq
linlin 1 116.12 �.0001

Ž .shows software output. To get this, we added a variable denoted ‘‘linlin’’ to
the independence model having values equal to the product of row and

2Ž .column number. Compared to the independence model, for which G I s
w 2Ž .127.6 with df s 9, the L � L model fits dramatically better G L � L s

x11.5, df s 8 . This is especially noticeable in the corners, where it predicts
the greatest departures from independence.

ˆ Ž .The ML estimate � s 0.286 SE s 0.028 indicates that subjects having
more favorable attitudes about teen birth control also tend to have more
tolerant attitudes about premarital sex. The estimated local odds ratio is

ˆŽ . Ž . Žexp � s exp 0.286 s 1.33. A 95% Wald confidence interval is exp 0.286 �
. Ž .1.96 � 0.028 , or 1.26, 1.41 . The strength of association seems weak. From

Ž .9.7 , however, nonlocal odds ratios are stronger. The estimated odds ratio
for the four corner cells equals

ˆexp � u y u ® y ® s exp 0.286 4 y 1 4 y 1 s 13.1.Ž . Ž . Ž . Ž .4 1 4 1

Ž . Ž .This also results from the corner fitted values, 80.9 � 155.5 r 29.1 � 33.0
s 13.1.

ˆTwo sets of scores having the same spacings yield the same � and the
same fit. Any other sets of equally spaced scores yield the same fit but an

ˆ � 4appropriately rescaled �. For instance, using row scores 2, 4, 6, 8 with
2 ˆ� 4 Ž® s j also yields G s 11.5, but � s 0.143 with SE s 0.014 both half asj
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.large . For Table 9.3, one might regard categories 2 and 3 as farther apart
� 4than categories 1 and 2, or categories 3 and 4. Scores such as 1, 2, 4, 5 for

rows and columns recognize this. The L � L model then has G2 s 8.8
ˆŽ . Ž .df s 8 and � s 0.146 SE s 0.014 .

One need not regard the scores as approximations for distances between
categories or as reasonable scalings of ordinal variables in order for the
models to be valid. They simply imply a certain pattern for the odds ratios. If
the L � L model fits well with equally spaced row and column scores, the
uniform local odds ratio describes the association regardless of whether the
scores are sensible indexes of true distances between categories.

� 4For scores u s i with Table 9.3, the marginal mean and standardi
deviation for premarital sex are 2.81 and 1.26. The standardized scores are
�Ž . 4 Ž .i y 2.81 r1.26 , or y1.44, y0.65, 0.15, 0.95 . The standardized equal-inter-

Ž .val scores for birth control are y1.65, y0.69, 0.27, 1.23 . For these scores,
ˆ ˆ 2Ž .� s 0.374. By solving � s �r 1 y � for �, � s 0.333. If there is anˆ ˆ ˆ ˆ
underlying bivariate normal distribution, we estimate the correlation to be
0.333.

9.4.5 Directed Ordinal Test of Independence

For the linear-by-linear association model, H : independence is H : � s 0.0 0
The likelihood-ratio test statistic equals

2 � 2 2G I L � L s G I y G L � L .Ž . Ž . Ž .
Designed to detect positive or negative trends, it has df s 1. For Table 9.3,

2Ž � .G I L � L s 127.6 y 11.5 s 116.1. This has P � 0.0001, extremely strong
2 ˆ 2Ž .evidence of an association. The Wald statistic z s �rSE s

Ž .2 Ž .0.286r0.0282 s 102.5 df s 1 also shows strong evidence. The correlation
Ž .statistic 3.15 presented in Section 3.4.1 for testing independence is the score

Ž .statistic for H : � s 0 in this model. It equals 112.6 df s 1 .0
2Ž � .When the L � L model holds, the ordinal test using G I L � L is

2Ž .asymptotically more powerful than the test using G I . This is true for the
same reason given in Section 6.4.2 for the linear logit model. The power of a
chi-squared test increases when df decrease, for fixed noncentrality. When

2Ž � .the L � L model holds, the noncentrality is the same for G I L � L and
2Ž . 2Ž � .G I ; thus G I L � L is more powerful, since its df s 1 compared to

Ž .Ž . 2Ž .I y 1 J y 1 for G I . The power advantage increases as I and J in-
2Ž � .crease, since the noncentrality remains focused on df s 1 for G I L � L

2Ž .but df also increases for G I .

9.5 ASSOCIATION MODELS*

Generalizations of the linear-by-linear association model apply to multiway
tables or treat scores as parameters rather than fixed. The models are called
association models, because they focus on the association structure.
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9.5.1 Row and Column Effects Models

We first present a model that treats X as nominal and Y as ordinal. It is
appropriate for two-way tables with ordered columns, using scores ® F ® F1 2
��� F® . Since the rows are unordered, they do not have scores. ReplacingJ

� 4 Ž .the ordered values � u in the linear-by-linear term � u ® in model 9.6 byi i j
� 4unordered parameters � givesi

log � s � q �X q �Y q � ® . 9.8Ž .i j i j i j

X Y � 4Constraints are needed such as � s � s � s 0. The � are called rowI J I i
effects. The model is called the row effects model.

Ž . Ž � 4.Model 9.8 has I y 1 more parameters the � than the independencei
model. Independence is the special case � s ��� s � . A corresponding1 I
column effects model has association term u � . It treats X as ordinal withi j

� 4 � 4scores u and Y as nominal with parameters � . The row effects andi j
Ž .column effects models were developed by Goodman 1979a , Haberman

Ž . Ž .1974b , and Simon 1974 .

9.5.2 Logit Model for Adjacent Responses

� 4With ® y ® s 1 , the row effects model has adjacent-categories logitjq1 j
form

�P Y s j q 1 X s iŽ .
log s � q � . 9.9Ž .j i�P Y s j X s iŽ .

The effect in row i is identical for each pair of adjacent responses. Plots of
Ž .these logits against i i s 1, . . . , I for different j are parallel. Goodman

Ž . Ž .1983 referred to model 9.9 as the parallel odds model.
� 4Differences among � compare rows with respect to their conditionali

distributions on Y. When � s � , rows h and i have identical conditionali h
distributions. If � � � , Y is stochastically higher in row i than row h.i h

Ž . � 4The likelihood equations for the row effects model 9.8 are � s n ,ˆ iq iq
� 4� s n , andˆqj qj

® � s ® n , i s 1, . . . , I.ˆÝ Ýj i j j i j
j

Let 
 s � r� and p s n rn . Since � s n , the third likelihoodˆ ˆ ˆ ˆj � i i j iq j � i i j iq iq iq
equation is Ý ®
 sÝ ® p . For the conditional distribution within eachˆj j j � i j j j � i
row, the mean column score is the same for the fitted and sample distribu-
tions. The likelihood equations are solved using iterative methods.
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TABLE 9.5 Observed Frequencies and Fitted Values for Political Ideology Data
aPolitical Ideology

Party Affiliation Liberal Moderate Conservative Total

Democrat 143 156 100 399
1Ž . Ž . Ž .102.0 161.4 135.6
2Ž . Ž . Ž .136.6 168.7 93.6

Independent 119 210 141 470
Ž . Ž . Ž .120.2 190.1 159.7
Ž . Ž . Ž .123.8 200.4 145.8

Republican 15 72 127 214
Ž . Ž . Ž .54.7 86.6 72.7
Ž . Ž . Ž .16.6 68.9 128.6

a1 Independence model; 2 row effects model.
Ž .Source: Based on data in R. D. Hedlund, Public Opinion Quart. 41: 498�514 1978 .

9.5.3 Political Ideology Example

Table 9.5 displays the relationship between political ideology and political
party affiliation for a sample of voters in a presidential primary in Wisconsin.

Ž .The table shows fitted values for the independence I model and the row
Ž . � 4effects R model with ® s j .j

Table 9.6 shows output. Goodness-of-fit tests show that independence is
Ž 2Ž .inadequate. Adding the row effects parameters much improves the fit G I

2Ž . .s 105.7, df s 4; G R s 2.8, df s 2 . Also, testing H : � s � s � using0 1 2 3
2Ž � . Ž .G I R s 102.9 df s 2 shows very strong evidence of an association. In

Table 9.5, the improved fit is especially noticeable at the ends of the ordinal
scale, where the model has greatest deviation from independence.

The output uses dummy variables for the first two categories of each
classification. The interaction term equals the product of the score for
ideology and a parameter for party. Thus, the row effect estimates satisfy
� s 0, and the other two estimates contrast the first two parties withˆ3
Republicans. The estimates are � sy1.213 and � sy0.943. The furtherˆ ˆ1 2
� falls in the negative direction, the greater the tendency for the party i toˆ i
locate at the liberal end of the ideology scale, relative to Republicans. In this
sample the Republicans are much more conservative than the other two

Ž . Ž .groups, and the Democrats row 1 are the most liberal. From 9.9 the model
predicts constant odds ratios for adjacent columns of political ideology. For
instance, since � y � s 1.213, the estimated odds that Republicans wereˆ ˆ3 1
conservative instead of moderate, or moderate instead of liberal, were

Ž .exp 1.213 s 3.36 times the corresponding estimated odds for Democrats.
Figure 9.3 shows the parallelism of the estimated logits for the row effects
model.

The loglinear model does not distinguish between response and explana-
tory variables. Instead, one could use a cumulative logit model to describe
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TABLE 9.6 Output for Fitting Row Effects Model to Table 9.5

Criteria For Assessing Goodness Of Fit
Criterion DF Value
Deviance 2 2.8149
Pearson Chi-Square 2 2.8039

Std Wald 95% Conf. Chi- Pr �
Parameter Estimate Error Limits Square ChiSq
Intercept 4.8565 0.0858 4.6883 5.0246 3204.02 �.0001
party Democ 3.3230 0.3188 2.6981 3.9479 108.63 �.0001
party Indep 2.9536 0.3149 2.3364 3.5707 87.98 �.0001
party Repub 0.0000 0.0000 0.0000 0.0000 . .
ideology 1 y2.0488 0.2216 y2.4831 y1.6145 85.50 �.0001
ideology 2 y0.6244 0.1139 y0.8476 y0.4013 30.08 �.0001
ideology 3 0.0000 0.0000 0.0000 0.0000 . .
score*party Democ y1.2134 0.1304 y1.4690 y0.9577 86.56 �.0001
score*party Indep y0.9426 0.1260 y1.1896 y0.6956 55.95 �.0001
score*party Repub 0.0000 0.0000 0.0000 0.0000 . .

LR Statistics
Source DF Chi-Square Pr� ChiSq
score*party 2 102.85 �.0001

FIGURE 9.3 Observed and predicted logits for adjacent response categories.
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the effects of party affiliation on ideology, or a baseline-category logit model
to describe linear effects of ideology on party affiliation.

9.5.4 Ordinal Variables in Models for Multiway Tables

Multidimensional tables with ordinal responses can use generalizations of
association models. In three dimensions, the rich collection of models in-

Ž .cludes 1 association models that are more parsimonious than the nominal
Ž . Ž .model XY, XZ, YZ , and 2 models permitting heterogeneous association

Ž .that, unlike model XYZ , are unsaturated.
Ž .Models for association that are special cases of XY, XZ, YZ replace �

association terms by structured terms that account for ordinality. For in-
stance, when both X and Y are ordinal, alternatives to �X Y are a linear-by-i j
linear term � u ® , a row effects term � ® , or a column effects term u � ;i j i j i j
these provide a stochastic ordering of conditional distributions within rows
and within columns, or just within rows, or just within columns. With a
linear-by-linear term, the model is

log � s � q �X q �Y q �Z q � u ® q �X Z q �Y Z . 9.10Ž .i jk i j k i j i k jk

Ž .The conditional local odds ratios 8.13 then satisfy

log � s � u y u ® y ® for all k .Ž . Ž .i jŽk . iq1 i jq1 j

The association is the same in different partial tables, with homogeneous
linear-by-linear XY association.

When the association is heterogeneous, structured terms for ordinal
variables make effects simpler to interpret than in the saturated model. For
instance, the heterogeneous linear-by-linear XY association model

log � s � q �X q �Y q �Z q � u ® q �X Z q �Y Z 9.11Ž .i jk i j k k i j i k jk

allows the XY association to change across levels of Z. With unit-spaced
scores,

log � s � for all i and j.i jŽk . k

It has uniform association within each level of Z, but heterogeneity among
levels of Z in the strength of association. Fitting it corresponds to fitting the

Ž .L � L model 9.6 separately at each level of Z.

9.5.5 Air Pollution and Breathing Examples

Ž .Table 9.7 displays associations among smoking status S , breathing test
Ž . Ž .results B , and age A for workers in certain industrial plants in Houston,
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TABLE 9.7 Cross-Classification of Industrial Workers by Breathing Test Results

Breathing Test Results

Age Smoking Status Normal Borderline Abnormal

� 40 Never smoked 577 27 7
Former smoker 192 20 3
Current smoker 682 46 11

40�59 Never smoked 164 4 0
Former smoker 145 15 7
Current smoker 245 47 27

Source: From p. 21 of Public Program Analysis by R. N. Forthofer and R. G. Lehnen. Copyright
� 1981 by Lifetime Learning Publications, Belmont, CA 94002, a division of Wadsworth, Inc.
Reprinted by permission of Van Nostrand Reinhold. All rights reserved.

Ž . Ž 2 .Texas. The loglinear model SA, SB, BA fits poorly G s 25.9, df s 4 .
Thus, simpler models such as homogeneous linear-by-linear SB association

Ž 2 .are not plausible G s 29.1, df s 7, using equally spaced scores . The
heterogeneous linear-by-linear SB association model fits much better with

Ž 2 .only one additional parameter G s 10.8, df s 6 . With integer scores for S
ˆ ˆand B, � s 0.115 for the younger group and � s 0.781 for the older group,1 2

with SE s 0.167 for the difference. The effect of smoking seems much
Ž .stronger for the older group, with estimated local odds ratio of exp 0.781 s

Ž .2.18 compared to exp 0.115 s 1.12 for the younger group. Here, it may be
Žmore natural to use logit models with B as the response variable Problem

.7.11 .
When strata are ordered, roughly a linear trend may exist across strata in

certain log odds ratios as Table 9.8 illustrates. The data refer to a sample of
coal miners, measured on B s breathlessness, W s wheeze, and A s age,
where B and W are response variables. One could use a separate logit model
to describe effects of age on each response. To study whether the BW

Ž .association varies by age, we fit model BW, AB, AW . It has residual
G2 s 26.7, with df s 8. Table 9.8 reports the standardized Pearson residuals.
They show a decreasing tendency as age increases.

This suggests the model

log � s BW , AB, AW q kI i s j s 1  , 9.12Ž . Ž . Ž .i jk

where I is the indicator function. It amends the homogeneous association
model by adding  in the cell for � , . . . , 9 in the cell for � . Then, the111 119
BW log odds ratio changes linearly in the age category. The model fit has
ˆ Ž . sy0.131 SE s 0.029 . The estimated BW log odds ratio at level k of age
is 3.676 y 0.131k, decreasing from 3.55 to 2.50. The model has residual

2 Ž . Ž .G s 6.80 df s 7 . McCullagh and Nelder 1989, Sec. 6.6 showed other
analyses.
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TABLE 9.8 Coal Miners Classified by Breathlessness, Wheeze, and Age

Breathlessness

Yes No

Wheeze Wheeze Wheeze Wheeze Std. Pearson
aAge Yes No Yes No Residual

20�24 9 7 95 1841 0.75
25�29 23 9 105 1654 2.20
30�34 54 19 177 1863 2.10
35�39 121 48 257 2357 1.77
40�44 169 54 273 1778 1.13
45�49 269 88 324 1712 y0.42
50�54 404 117 245 1324 0.81
55�59 406 152 225 967 y3.65
60�64 372 106 132 526 y1.44
aResidual refers to yes�yes and no�no cells; reverse sign for yes�no and no�yes cells.

Ž .Source: Reprinted with permission from Ashford and Sowden 1970 .

9.5.6 Other Ordinal Tests of Conditional Independence

Tests of conditional independence of ordinal classifications can generalize
2Ž � .G I L � L . For instance, one can compare the XY conditional indepen-

Ž .dence model XZ, YZ to the homogeneous linear-by-linear XY association
Ž .model 9.10 . It tests � s 0 in that model, with df s 1. This is an alternative

to the ordinal test of conditional independence in Section 7.5.3. Like Mantel’s
Ž .score statistic 7.21 , this statistic uses correlation information, since

Ž . Ž .Ý Ý Ý u ® n is the sufficient statistic for � in model 9.10 . In fact, thek i j i j i jk
Mantel statistic provides the score test of H : � s 0 in that model.0

Exact, small-sample tests can use likelihood-ratio, score, or Wald statistics
Žfor such models. Computations require special algorithms Agresti et al.

.1990; Kim and Agresti 1997 .

9.6 ASSOCIATION MODELS, CORRELATION MODELS, AND
CORRESPONDENCE ANALYSIS*

Ž .The linear-by-linear association L � L model is a special case of the row
Ž .effects R model, which has parameter row scores, and the column effects

Ž .C model, which has parameter column scores. These models are special
cases of a more general model with row and column parameter scores.

9.6.1 Multiplicative Row and Column Effects Model

� 4 � 4 Ž .Replacing u and ® in the L � L model 9.6 by parameters yields the rowi j
Ž . Ž .and column effects RC model Goodman 1979a

log � s � q �X q �Y q �� � . 9.13Ž .i j i j i j
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� 4 � 4Identifiability requires location and scale constraints on � and � . Thei j
Ž .Ž .residual df s I y 2 J y 2 . This model is not loglinear, because the predic-

Ž .tor is a multiplicative rather than linear function of parameters � and � . Iti j
treats classifications as nominal; the same fit results from a permutation of
rows or columns. Parameter interpretation is simplest when at least one
variable is ordinal, through the local log odds ratios

log� s � � y � � y � .Ž . Ž .i j iq1 i jq1 j

Although it may seem appealing to use parameters instead of arbitrary
scores, the RC model presents complications that do not occur with loglinear
models. The likelihood may not be concave and may have local maxima.
Independence is a special case, but it is awkward to test independence using

Ž .the RC model. Haberman 1981 showed that the null distribution of
2Ž . 2Ž .G I y G RC is not chi-squared but rather that of the maximum eigen-

value from a Wishart matrix.
When one set of parameter scores is fixed, the RC model simplifies to the

Ž .R or C model. Goodman 1979a suggested an iterative model-fitting algo-
rithm that exploits this. A cycle of the algorithm has two steps. First, for

� 4some initial guess of � , it estimates the row scores as in the R model. Then,j
treating the estimated row scores from the first step as fixed, it estimates the
column scores as in the C model. Those estimates serve as fixed column
scores in the first step of the next cycle, for reestimating the row scores in the
R model. There is no guarantee of convergence to ML estimates, but this

Ž .seems to happen when the model fits well. Haberman 1995 provided more
sophisticated fitting methods for association models.

Ž .Goodman 1985 expressed the association term in the saturated model in
a form that generalizes the �� � term in the RC model, namely,i j

M
X Y� s � � � 9.14Ž .Ýi j k ik jk

ks1

Ž .where M s min I y 1, J y 1 . The parameters satisfy constraints such as

� 
 s � 
 s 0 for all k ,Ý Ýi k iq jk qj
i j

�2 
 s � 2 
 s 1 for all k , 9.15Ž .Ý Ýi k iq jk qj
i j

� � 
 s � � 
 s 0 for all k � h.Ý Ýi k ih iq jk jh qj
i j

Ž . Ž .When � s 0 for k � M*, model 9.14 is called the RC M* model. Seek
Ž . Ž .Becker 1990 for ML model fitting. The RC model 9.13 is the case

M* s 1.
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TABLE 9.9 Cross-Classification of Mental Health Status and Socioeconomic Status

Mental Health Status

Parents’ Mild Moderate
Socioeconomic Symptom Symptom
Status Well Formation Formation Impaired

Ž .A high 64 94 58 46
B 57 94 54 40
C 57 105 65 60
D 72 141 77 94
E 36 97 54 78
Ž .F low 21 71 54 71

Source: Reprinted with permission from L. Srole et al. Mental Health in the Metropolis: The
Ž .Midtown Manhattan Study, New York: NYU Press, 1978 , p. 289.

9.6.2 Mental Health Status Example

Table 9.9 describes the relationship between child’s mental impairment and
Žparents’ socioeconomic status for a sample of residents of Manhattan Good-

. Ž 2 . Ž .man 1979a . The RC model fits well G s 3.6, df s 8 . For scaling 9.15 ,
Ž .the ML estimates are y1.11, y1.12, y0.37, 0.03, 1.01, 1.82 for the row

ˆŽ .scores, y1.68, y0.14, 0.14, 1.41 for the column scores, and � s 0.17. Nearly
all estimated local log odds ratios are positive, indicating a tendency for
mental health to be better at higher levels of parents’ SES.

2ŽOrdinal loglinear models also fit well. For equal-interval scores, G L �
. Ž . 2Ž � . Ž .L s 9.9 df s 14 . The statistic G L � L RC s 6.3 df s 6 tests that

row and column scores in the RC model are equal-interval. The parameter
scores do not provide a significantly better fit. It is sufficient to use a uniform

ˆlocal odds ratio to describe the table. For unit-spaced scores, � s 0.091
Ž . Ž .SE s 0.015 , so the fitted local odds ratio is exp 0.091 s 1.09. There is
strong evidence of positive association, but the degree of association is rather
weak, at least locally.

9.6.3 Correlation Models

A correlation model for two-way tables has many features in common with
Ž .the RC model Goodman 1985 . In its simplest form, it is


 s 
 
 1 q �� � , 9.16Ž .Ž .i j iq qj i j

� 4 � 4where � and � are score parameters satisfyingi i

� 
 s � 
 s 0 and �2
 s � 2
 s 1.Ý Ý Ý Ýi iq j qj i iq j qj
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The parameter � is the correlation between the scores for joint distribution
Ž .9.16 .

The correlation model is also called the canonical correlation model,
Ž .because ML estimates of the scores maximize the correlation for 9.16 . The

general canonical correlation model is

M


 s 
 
 1 q � � �Ýi j iq qj k ik jkž /
ks1

Ž .where 0 F � F ��� F � F 1 and with constraints such as in 9.15 . TheM 1
� 4 �parameter � is the correlation between � , i s 1, . . . , I and � , j sk ik jk

4 � 4 � 41, . . . , J . The � and � are standardized scores that maximize thei1 j1
� 4 � 4correlation � for the joint distribution; � and � are standardized1 i2 j2

� 4 � 4scores that maximize the correlation � , subject to � and � being2 i1 i2
� 4 � 4uncorrelated and � and � being uncorrelated, and so on.j1 j2

Ž .Unsaturated models result from replacing M by M* � min I y 1, J y 1 .
Ž . Ž .Gilula and Haberman 1986 and Goodman 1985 discussed ML fitting.

Ž . Ž .When � is close to zero in 9.16 , Goodman 1981a, 1985, 1986 noted that
ML estimates of � and the score parameters are similar to those of � and
the score parameters in the RC model. Correlation models can also use fixed
scores instead of parameter scores.

Goodman discussed advantages of association models over correlation
models. The correlation model is not defined for all possible combinations of
score values because of the constraint 0 F 
 F 1, ML fitted values do noti j
have the same marginal totals as the observed data, and the model is not

Ž .simply generalizable to multiway tables. Gilula and Haberman 1988 ana-
lyzed multiway tables with correlation models by treating explanatory vari-
ables as a single variable and response variables as a second variable.

9.6.4 Correspondence Analysis

Correspondence analysis is a graphical way to represent associations in
two-way contingency tables. The rows and columns are represented by points

Ž .on a graph, the positions of which indicate associations. Goodman 1985, 1986
� 4 � 4noted that coordinates of the points are reparameterizations of � and �i k jk

in the general canonical correlation model. Correspondence analysis uses
adjusted scores

x s � � , y s � � .i k k ik jk k jk

These are close to zero for dimensions k in which the correlation � is closek
to zero. A correspondence analysis graph uses the first two dimensions,

Ž . Ž .plotting x , x for each row and y , y for each column.i1 i2 j1 j2
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TABLE 9.10 Scores from Correspondence Analysis Applied to Table 9.9

Dimension Dimension

Column Score 1 2 3 Row Score 1 2 3

1 0.260 0.012 0.023 1 0.181 y0.018 0.028
2 0.030 0.024 y0.019 2 0.185 y0.011 y0.026
3 y0.013 y0.069 y0.002 3 0.059 y0.021 y0.010
4 y0.236 0.019 0.016 4 y0.008 0.042 0.011

5 y0.164 0.044 y0.009
6 y0.287 y0.061 0.005

Source: Reprinted with permission from the Institute of Mathematical Statistics, based on
Ž .Goodman 1985 .

Ž .Goodman 1985, 1986 used Table 9.9 to illustrate the similarities of
correspondence analysis to analyses using correlation models and association

Ž .models. For the general canonical correlation model, M s min I y 1, J y 1
Ž .s 3. Its estimated squared correlations are 0.0260, 0.0014, and 0.0003 . The

association is rather weak. Table 9.10 contains estimated row and column
scores for the correspondence analysis of these three dimensions. Both sets
of scores in the first dimension fall in a monotone increasing pattern, except
for a slight discrepancy between the first two row scores. This indicates an
overall positive association. The scores for the second and third dimension

ˆ ˆare close to zero, reflecting the relatively small � and � .2 3
Figure 9.4 exhibits the results of the correspondence analysis. The hori-

zontal axis has estimates for the first dimension, and the vertical axis has
Ž .estimates for the second dimension. Six points circles represent the six

Ž . Ž .rows, with point i giving x , x . Similarly, four points squares display theˆ ˆi1 i2
Ž .estimates y , y . Both sets of points lie close to the horizontal axis, sinceˆ ˆj1 j2

the first dimension is more important than the second.

FIGURE 9.4 Graphical display of scores from first two dimensions of correspondence analysis.
w Ž . xBased on Escoufier 1982 ; reprinted with permission.
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Row points that are close together represent rows with similar conditional
distributions across the columns. Close column points represent columns with
similar conditional distributions across rows. Row points close to column
points represent combinations that are more likely than expected under
independence. Figure 9.4 shows a tendency for subjects at the high end of
one scale to be at the high end of the other and for subjects at the low end of
one to be at the low end of the other.

Correspondence analysis is used mainly as a descriptive tool. Goodman
Ž .1986 developed inferential methods for it. For Table 9.9, inferential analysis
reveals that the first dimension, accounting for 94% of the total squared
correlation, is adequate for describing the association. Goodman argued for
choosing the unsaturated model employing only one dimension and having
graphics display fitted scores for that dimension alone. Then, correspondence

Ž .analysis is equivalent to a ML analysis using correlation model 9.16 . The
Ž .estimated scores for that model are y1.09, y1.17, y0.37, 0.05, 1.01, 1.80

Ž .for the rows and y1.60, y0.19, 0.09, 1.48 for the columns. The model fits
Ž 2 .well G s 2.75, df s 8 . The quality of fit and the estimated scores are

similar to those we saw in Section 9.6.2 for the RC model. More parsimo-
nious correlation models also fit these data well, such as ones using equally
spaced scores.

All analyses of Table 9.9 have yielded similar conclusions about the
association. They all neglect, however, that mental health is a natural
response variable. It may make more sense to use an ordinal logit model.

Like correlation models, a severe limitation of correspondence analysis is
Ž .nontrivial generalization to multiway tables. Greenacre 1993 showed dis-

plays of several pairwise associations in a single plot.

9.6.5 Model Selection and Score Choice for Ordinal Variables

The past three sections showed several ways to use category orderings in
model building. With allowance for ordinal effects, the variety of potential
models is much greater than standard loglinear models. To choose among
models, one approach uses the standard models for guidance. If a standard
model fits well, simplify by replacing some parameters with structured terms
for ordinal classifications.

Association, correlation, and correspondence analysis models have scores
for categories of ordinal variables. Parameter interpretations are simplest for
equally spaced scores. With parameter scores, the resulting ML estimates of
scores need not be monotone. Constrained versions of the models force

Žmonotonicity by maximizing the likelihood subject to order restrictions e.g.,
.Agresti et al. 1987; Ritov and Gilula 1991 . Disadvantages exist, however, of

treating scores as parameters. The model becomes less parsimonious, and
Žtests of effects may be less powerful because of a greater df value recall

.Section 6.4.3 . When one variable alone is a response, cumulative link models
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Ž .Sections 7.2 and 7.3 for that response do not require preassigned or
parameter scores.

9.7 POISSON REGRESSION FOR RATES

Loglinear models need not refer to contingency tables. In Section 4.3 we
introduced Poisson regression for modeling counts. When outcomes occur
over time, space, or some other index of size, it is more relevant to model
their rate of occurrence than their raw number.

9.7.1 Analyzing Rates Using Loglinear Models with Offsets

When a response count n has index equal to t , the sample rate is n rt . Itsi i i i
expected value is � rt . With an explanatory variable x, a loglinear model fori i
the expected rate has form

log � rt s � q � x . 9.17Ž . Ž .i i i

This model has equivalent representation

log � y log t s � q � x .i i i

As noted in Section 8.7.4, the adjustment term, ylog t , to the log link of thei
mean is called an offset. The fit correspond to using log t as a predictor oni
the right-hand side and forcing its coefficient to equal 1.0.

Ž .For model 9.17 , the expected response count satisfies

� s t exp � q � x .Ž .i i i

The mean is proportional to the index, with proportionality constant depend-
ing on the value of x. The identity link is also sometimes useful. The model is
then

� rt s � q � x , or � s � t q � x t .i i i i i i i

This does not require an offset. It corresponds to an ordinary Poisson GLM
using identity link with t and x t as explanatory variables and no intercept.i i i
It provides additive, rather than multiplicative, predictor effects. It is less
useful with many predictors, as the fitting process may fail because of
negative fitted counts at some iteration.

9.7.2 Modeling Death Rates for Heart Valve Operations

Ž .Laird and Olivier 1981 analyzed patient survival after heart valve replace-
ment operations. A sample of 109 patients were classified by type of heart
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TABLE 9.11 Data on Heart Valve Replacement Operations

Type of Heart Valve

Age Aortic Mitral

� 55 Deaths 4 1
Time at risk 1259 2082
Death rate 0.0032 0.0005

55 q Deaths 7 9
Time at risk 1417 1647
Death rate 0.0049 0.0055

Ž .Source: Reprinted with permission, based on data in Laird and Olivier 1981 .

Ž . Ž .valve aortic, mitral and by age � 55, G 55 . Follow-up observations oc-
curred until the patient died or the study ended. Operations occurred
throughout the study period, and follow-up observations covered lengths of
time varying from 3 to 97 months. The response was whether the subject died
and the follow-up time. For subjects who died, this is the time after the
operation until death; for the others, it is the time until the study ended or
the subject withdrew from it.

Table 9.11 lists the numbers of deaths during the follow-up period, by
valve type and age. These counts are the first layer of a three-way contin-

Ž .gency table that classifies valve type, age, and whether died yes, no . The
subjects not tabulated in Table 9.11 were not observed to die. They are
censored, since we know only a lower bound for how long they lived after the
operation. It is inappropriate to analyze that 2 � 2 � 2 table using binary
GLMs for the probability of death, since subjects had differing times at risk;
it is not sensible to treat a subject who could be observed for 3 months and a
subject who could be observed for 97 months as identical trials with the same
probability. To use age and valve type as predictors in a model for frequency
of death, the proper baseline is not the number of subjects but rather the
total time that subjects were at risk. Thus, we model the rate of death.

The time at risk for a subject is their follow-up time of observation. For a
given age and valve type, the total time at risk is the sum of the times at risk

Ž .for all subjects in that cell those who died and those censored . Table 9.11
lists those total times in months. The sample rate, also shown in that table,
divides the number of deaths by total time at risk. For instance, 4 deaths in
1259 months of observation occurred for younger subjects with aortic valve
replacement, so their sample rate is 4r1259 s 0.0032.

We now model effects of age and valve type on the rate. Let a be a
dummy variable for age, with a s 0 for the younger age group and a s 11 2
for the older group. Let ® be a dummy variable for valve type, with ® s 0 for1
aortic and ® s 1 for mitral. Let n denote the number of deaths for age a2 i j i
and valve type ® , with expected value � for total time at risk t . Given t ,j i j i j i j
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TABLE 9.12 Fit to Table 9.11 for Poisson Regression Models

Log Link Identity Link

Age Aortic Mitral Aortic Mitral

� 55 Number of deaths 2.28 2.72 3.16 1.19
Death rate 0.0018 0.0013 0.0025 0.0006

55 q Number of deaths 8.72 7.28 9.17 7.48
Death rate 0.0062 0.0044 0.0065 0.0046

the expected rate is � rt . The modeli j i j

log � rt s � q � a q � ® 9.18Ž .Ž .i j i j 1 i 2 j

assumes a lack of interaction in the effects.
� 4Model fitting uses standard iterative methods, treating n as indepen-i j

� 4 � 4dent Poisson variates with means � . This is done conditional on t . Tablei j i j
9.12 presents the fitted death counts and estimated rates. The estimated
effects are

ˆ ˆ� s 1.221 SE s 0.514 , � sy0.330 SE s 0.438 .Ž . Ž .1 2

There is evidence of an age effect. Given valve type, the estimated rate for
Ž .the older age group is exp 1.221 s 3.4 times that for the younger age group.

Ž .The 95% Wald confidence interval for � of 1.221 � 1.96 0.514 translates to1
Ž . Ž . Ž1.2, 9.3 for the true multiplicative effect exp � . The likelihood-ratio1

Ž . .confidence interval is 1.3, 10.4 . The study contains much censored data. Of
the 109 patients, only 21 died during the study period. Both effect estimates
are imprecise. Note, though, that the analysis uses all 109 patients through
their contributions to the times at risk.

� 4 � 4 2Goodness-of-fit statistics comparing n to fitted values � are G s 3.2ˆi j i j
and X 2 s 3.1. The residual df s 1, since the four response counts have three
parameters. The mild evidence of lack of fit corresponds to evidence of
interaction between valve type and age. However, the model without valve-

w Ž .x 2type effects i.e., � s 0 in 9.18 fits nearly as well, with G s 3.8 and2
2 Ž .X s 3.8 df s 2 . Models omitting age effects fit poorly.
The corresponding model with identity link

� s � t q � a t q � ® ti j i j 1 i i j 2 j i j

2 2 Ž .shows a good fit, with G s 1.1 and X s 1.1 df s 1 . Table 9.12 shows the
ˆ Žfit. Substantive conclusions are similar. The estimate � s 0.0040 SE s1

.0.0014 then represents an estimated difference in death rates between the
older and younger age groups for each valve type.



BUILDING AND EXTENDING LOGLINEARr LOGIT MODELS388

9.7.3 Modeling Survival Times*

A method for modeling survival times relates to the Poisson loglinear model
for rates. This method focuses on times until death rather than on numbers
of deaths. Let T denote the time to some event, such as death or such as

Ž .product failure in a reliability study. Let f t denote the probability density
Ž . Ž .function pdf and F t the cdf of T. A connection exists between ML

estimation using a Poisson likelihood for numbers of events and a negative
Ž .exponential likelihood for T Aitkin and Clayton 1980 .

Ž .A subject having T s t contributes f t to the likelihood. For a subject
whose censoring time equals t, we know only that T � t. Thus, this subject

Ž . Ž .contributes P T � t s 1 y F t . Using the indicator w s 1 for death and 0i
for censoring for subject i, the survival-time likelihood for n independent
observations is

n
w 1ywi if t 1 y F t .Ž . Ž .Ł i i

is1

The log likelihood equals

w log f t q 1 y w log 1 y F t . 9.19Ž . Ž . Ž . Ž .Ý Ýi i i i
i i

Further analysis requires a parametric form for f and a model for the
dependence of its parameters on explanatory variables.

Most survival models focus on the rate at which death occurs rather than
Ž .on E T . The hazard function

�w xf t P t � T � t q � T � tŽ .
h t s s limŽ .

1 y F t ��x0Ž .

represents the instantaneous rate of death for subjects who have survived to
time t. A simple density for survival modeling is the negative exponential.
The pdf is

f t s �ey� t , t � 0.Ž .

Ž . y� t Ž . y1The cdf is F t s 1 y e for t � 0, and E T s � . The hazard function
is

h t s �, t � 0,Ž .

constant for all t.
Now we include explanatory variables x. Suppose that the hazard function

for a negative exponential survival distribution is

h t ; x s �exp �� x . 9.20Ž . Ž . Ž .
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Ž .That is, the distribution for T has parameter depending on x through 9.20 .
Ž .The choice of functional form 9.20 for explanatory variable effects ensures

Ž .the hazard is nonnegative at all x. For instance, loglinear model 9.18
Ž .corresponds to a multiplicative model of type 9.20 for the rate itself.

Ž . Ž .Now, consider the log likelihood 9.19 with f t equal to the negative
Ž � .exponential density with parameter � exp � x . For subject i, let

� s t � exp �� x .Ž .i i i

With this substitution, the log likelihood simplifies to

w log � y � y w log t .Ý Ý Ýi i i i i
i i i

The first two terms involve �. This part is identical to the log likelihood for
� 4 � 4independent Poisson variates w with expected values � . In this applica-i i

� 4tion w are binary rather than Poisson, but that is irrelevant to the processi
of maximizing with respect to �. This process is equivalent to maximizing the
likelihood for the Poisson loglinear model

log � y log t s log � q �� xi i i

Ž . � 4with offset log t , using observations w . When we sum terms in the logi i
likelihood for subjects having a common value of x, the observed data are the

Ž . Ž .numbers of deaths Ýw at each setting of x, and the offset is the log of Ýti i
at each setting.

The assumption of constant hazard over time is often not sensible. As
products wear out, their failure rate increases. A generalization divides the
time scale into disjoint time intervals and assumes constant hazard in each,
namely,

h t ; x s � exp �� xŽ . Ž .k

for t in interval k, k s 1, . . . . A separate hazard rate applies to each piece
of the time scale. Consider the contingency table for numbers of deaths, in
which one dimension is a discrete time scale and other dimensions represent

Ž .categorical explanatory variables. Holford 1980 and Laird and Olivier
Ž .1981 showed that Poisson loglinear models and likelihoods for this table are
equivalent to loglinear hazard models and likelihoods that assume piecewise
exponential hazards for the survival times.

For short time intervals, the piecewise exponential approach is essentially
nonparametric, making no assumption about the dependence of the hazard

Ž .on time. This suggests the generalization of model 9.20 that replaces � by
Ž .an unspecified function � t , so that

h t ; x s � t exp �� x .Ž . Ž . Ž .
This is the Cox proportional hazards model. Its ratio of hazards

�h t ; x rh t ; x s exp � x y xŽ . Ž . Ž .1 2 1 2

is the same for all t.
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TABLE 9.13 Number of Deaths from Lung Cancer

aFollow-up Histology
Time

I II IIIInterval Disease
Ž .months Stage: 1 2 3 1 2 3 1 2 3

0�2 9 12 42 5 4 28 1 1 19
Ž .157 134 212 77 71 130 21 22 101

2�4 2 7 26 2 3 19 1 1 11
Ž .139 110 136 68 63 72 17 18 63

4�6 9 5 12 3 5 10 1 3 7
Ž .126 96 90 63 58 42 14 14 43

6�8 10 10 10 2 4 5 1 1 6
Ž .102 86 64 55 42 21 12 10 32

8�10 1 4 5 2 2 0 0 0 3
Ž .88 66 47 50 35 14 10 8 21

10�12 3 3 4 2 1 3 1 0 3
Ž .82 59 39 45 32 13 8 8 14

12 q 1 4 1 2 4 2 0 2 3
Ž .76 51 29 42 28 7 6 6 10

aValues in parentheses represent total follow-up.
Ž .Source: Reprinted with permission from the Biometric Society, based on Holford 1980 .

9.7.4 Lung Cancer Survival Example*

Table 9.13 describes survival for 539 males diagnosed with lung cancer. The
Ž . Ž .prognostic factors are histology H and stage S of disease. For a piecewise

Ž .exponential hazard approach, the time scale for follow-up T was divided
into two-month intervals.

Let � denote the expected number of deaths and t the total time ati jk i jk
risk for histology i and state of disease j, in follow-up time interval k. The
model

log � rt s � q �H q �S q �T 9.21Ž .Ž .i jk i jk i j k

2 Ž .has residual G s 43.9 df s 52 . All models assuming no interaction be-
tween follow-up time interval and either prognostic factor are proportional
hazards models, since they have the same effects of histology and stage of
disease for each time interval. Table 9.14 summarizes results of fitting several
such models. Although stage of disease is an important prognostic factor,
histology did not contribute significant additional information.

Ž .For model 9.21 , the effects of stage of disease satisfy

ˆS ˆS� y � s 0.470 SE s 0.174 ,Ž .2 1

ˆS ˆS� y � s 1.324 SE s 0.152 .Ž .3 1
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TABLE 9.14 Results for Poisson Regression Models
of Proportional Hazards Form with Table 9.13

a 2Effects G df

T 170.7 56
T q H 143.1 54
T q S 45.8 54
T q S q H 43.9 52
T q S q H q S � H 41.5 48
aT , time scale for follow-up; H, histology; S, disease stage.

For instance, at a fixed follow-up time for a given histology, the estimated
Ž .death rate at the third stage of disease is exp 1.324 s 3.8 times that at the

first stage. Adding interaction terms between stage and time does not sig-
Ž 2 .nificantly improve the fit change in G s 14.9, change in df s 12 . The

ˆS� 4� are very similar for the simpler model without the histology effects.j

9.7.5 Analyzing Weighted Data*

The process of fitting a loglinear model with an offset is also useful in other
� 4 � 4applications. For expected frequencies � and fixed constants t , consider ai i

model

log � rt s � q � x q � x q ��� .Ž .i i 1 i1 2 i2

� 4Standard loglinear models have t s 1 . The general form is useful for thei
analysis of categorical data with sampling designs more complex than simple
random sampling.

Many surveys have sampling designs employing stratification andror clus-
tering. Case weights inflate or deflate the influence of each observation
according to features of that design. Adding the case weights for subjects in a
particular cell i provides a total weighted frequency for that cell. The average
cell weight z is defined to be the total weighted frequency divided by the celli

� 4count. Conditional on z , loglinear models for the weighted expectedi
� 4 y1frequencies z � s � rt with t s z express the model as a standardi i i i i i

� 4 � 4loglinear model for log � , with offset log t sylog z . Fitting this modeli i i
Žprovides appropriate parameter estimates and standard errors Clogg and

.Eliason 1987 .

9.8 EMPTY CELLS AND SPARSENESS IN MODELING
CONTINGENCY TABLES

Contingency tables having small cell counts are said to be sparse. We end
this chapter by discussing effects of sparse tables on model fitting. Sparse
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tables occur when the sample size n is small. They also occur when n is large
but so is the number of cells. Sparseness is common in tables with many
variables. The following discussion refers to a generic contingency table and

� 4 � 4model, with cell counts n and expected frequencies � for n observationsi i
in N cells.

9.8.1 Empty Cells: Sampling versus Structural Zeros

Sparse tables usually contain cells with n s 0. These empty cells are of twoi
types: sampling zeros and structural zeros. In most cases, even though n s 0,i
� � 0. It is possible to have observations in the cell, and n � 0 withi i
sufficiently large n. This empty cell is called a sampling zero. The empty cells
in Table 9.1 for the student survey are sampling zeros.

An empty cell in which observations are impossible is called a structural
zero. For such cells � s 0 and necessarily � s 0 and n s 0 regardless of n.ˆi i i
For a table that cross classifies cancer patients on their gender, race, and

Ž .type of cancer, some cancers e.g., prostate cancer, ovarian cancer are
gender specific. Thus, certain cells have structural zeros. Contingency tables
with structural zeros are called incomplete tables.

Sampling zeros are part of the data set. A count of 0 is a permissible
outcome for a Poisson or multinomial variate. It contributes to the likelihood
function and model fitting. A structural zero, on the other hand, is not an
observation and is not part of the data. Sampling zeros are much more
common than structural zeros, and the remaining discussion refers to them.

9.8.2 Existence of Estimates in Loglinear rrrrr Logit Models

Sampling zeros can affect the existence of finite ML estimates of loglinear
Ž .and logit model parameters. Haberman 1973b, 1974a , generalizing work by

Ž . Ž .Birch 1963 and Fienberg 1970b , studied this. Let n denote the vector of
cell counts and � their expected values. Haberman showed results 1 through
5 for Poisson sampling, but by result 6 they apply also to multinomial
sampling.

1. The log-likelihood function is a strictly concave function of log �.
2. If a ML estimate of � exists, it is unique and satisfies the likelihood

equations X� n s X��. Conversely, if � satisfies the model and also theˆ ˆ
likelihood equations, it is the ML estimate of �.

3. If all n � 0, ML estimates of loglinear model parameters exist.i

4. Suppose that ML parameter estimates exist for a loglinear model that
equates observed and fitted counts in certain marginal tables. Then
those marginal tables have uniformly positive counts.

5. If ML estimates exist for a model M, they also exist for any special case
of M.
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6. For any loglinear model, the ML estimates � are identical for multino-ˆ
mial and independent Poisson sampling, and those estimates exist in
the same situations.

To illustrate, consider the saturated model. By results 2 and 3, when all
n � 0, the ML estimate of � is n. By result 4, parameter estimates do noti

� 4exist when any n s 0. Model parameter estimates are contrasts of log � ,ˆi i
and since � s n for the saturated model, the estimates are finite only whenˆ
all n � 0.i

For unsaturated models, by results 3 and 4 ML estimates exist when all
n � 0 and do not exist when any count is zero in the set of sufficienti
marginal tables. Suppose that at least one n s 0 but the sufficient marginali

Ž .counts are all positive. For hierarchical loglinear models, Glonek et al. 1988
showed that the positivity of the sufficient counts implies the existence of ML

Ž .estimates if and only if the model is decomposable Note 8.2 , which includes
the conditional independence models. Models having all pairs of variables

Ž .associated, however, are more complex. For model XY, XZ, YZ , for in-
stance, ML estimates exist when only one n s 0 but may not exist when ati
least two cells are empty. For instance, ML estimates do not exist for Table

Ž .9.15, even though all sufficient statistics the two-way marginal totals are
Ž .positive Problem 9.47 .

Haberman showed that the supremum of the likelihood function is finite.
This motivated him to define extended ML estimators of �. These always
exist but may equal 0 and, falling on the boundary, need not have the same

w Ž .xproperties as regular ML estimators see also Baker et al. 1985 . A sequence
of estimates satisfying the model that converges to the extended estimate has
log likelihood approaching its supremum. In this extended sense, � s 0 isˆ i
the ML estimate of � for the saturated model when n s 0, and one cani i
have infinite loglinear parameter estimates.

When a sufficient marginal count for a factor equals zero, infinite esti-
mates occur for that term. For instance, when a XY marginal total equals

ˆX Y� 4zero, infinite estimates occur among � for loglinear models such asi j
ˆXŽ . � 4XY, XZ, YZ , and infinite estimates occur among � for the effect of Xi

on Y in logit models. Sometimes, however, not even infinite estimates exist.
An example is estimating the log odds ratio when both entries in a row or
column of a 2 � 2 table equal 0.

TABLE 9.15 Data for Which ML Estimates Do Not Exist
a( )for Model XY, XZ, YZ

Z: 1 2

X Y: 1 2 1 2

1 0 � � �
2 � � � 0
aCells containing * may contain any positive numbers.
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Ž .A value of � or y� for a ML parameter estimate implies that ML fitted
values equal 0 in some cells, and some odds ratio estimates equal � or 0. One
potential indicator is when the iterative fitting process does not converge,
typically because an estimate keeps increasing from cycle to cycle. Most
software, however, is fooled after a certain point in the iterative process by
the nearly flat likelihood. It reports convergence, but because of the very

Žslight curvature of the log likelihood, the estimated standard errors based on
.inverting the information matrix of second partial derivatives are extremely

large and numerically unstable. Slight changes in the data then often cause
dramatic changes in the estimates and their standard errors. A danger with
sparse data is that one might not realize that a true estimated effect is
infinite and, as a consequence, report estimated effects and results of
statistical inferences that are invalid and highly unstable.

Many ML analyses are unharmed by empty cells. Even when a parameter
estimate is infinite, this is not fatal to data analysis. The likelihood-ratio
confidence interval for the true log odds ratio has one endpoint that is finite.

ˆFor instance, when n s 0 but other n � 0 in a 2 � 2 table, log � sy�11 i j
Ž .and a confidence interval has form y�, U for some finite upper bound U.

When the pattern of empty cells forces certain fitted values for a model to
Ž .equal 0, this affects the df for testing model fit Haslett 1990 .

9.8.3 Clinical Trials Example

Table 9.16 shows results of a clinical trial conducted at five centers. The
purpose was to compare an active drug to placebo for treating fungal

Ž .infections, with a binary success, failure response. For these data, let
Ž .Y s response, X s treatment x s 1 for active drug and x s 0 for placebo ,1 2

and Z s center.
Centers 1 and 3 had no successes. Thus, the 5 � 2 marginal table relating

response to center, collapsed over treatment, contains zero counts. The last
two columns of Table 9.16 show this marginal table. Infinite ML estimates
occur for terms in loglinear or logit models containing the YZ association. An
example is the logit model

Z�logit P Y s 1 X s i , Z s k s � x q � .Ž . i k

Ž � Z4We omit the intercept, so the � need no constraint; then, these refer tok
.center effects rather than contrasts between centers and a baseline center.

The likelihood function increases continually as � Z and � Z decrease toward1 3
y�; that is, as the logit decreases toward y�, so the fitted probability of
success decreases toward the ML estimate of 0 for those centers.

The counts in the 2 � 2 marginal table relating response to treatment,
shown in the bottom panel of Table 9.16, are all positive. The empty cells in
Table 9.16 affect the center estimates, but not the treatment estimate, for
this logit model. In the limit as the log likelihood increases, the fitted values

ˆ Ž .have a log odds ratio � s 1.55 SE s 0.70 . Most software reports this, but
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TABLE 9.16 Clinical Trial Relating Treatment to Response with XY and
aYZ Marginal Tables

Response YZ Marginal

Center Treatment Success Failure Success Failure

1 Active drug 0 5 0 14Placebo 0 9
2 Active drug 1 12 1 22Placebo 0 10
3 Active drug 0 7 0 12Placebo 0 5
4 Active drug 6 3 8 9Placebo 2 6
5 Active drug 5 9 7 21Placebo 2 12

XY Active drug 12 36
marginal Placebo 4 42
aX, Treatment; Y, response; Z, center.
Source: Data courtesy of Diane Connell, Sandoz Pharmaceuticals Corporation.

ˆZ ˆZinstead of � s � sy� reports large numbers with extremely large stan-1 3
dard errors. For instance, PROC GENMOD in SAS reports values of about

ˆZ ˆZy26 for � and � , with standard errors of about 200,000.1 3
ˆThe treatment estimate � s 1.55 also results from deleting centers 1 and 3

from the analysis. When a center contains responses of only one type, it
Žprovides no information about this odds ratio. It does provide information

.about the size of some other measures, such as the difference of proportions.
In fact, such tables also make no contribution to standard tests of conditional

Ž .independence, such as the Cochran�Mantel�Haenszel test Section 6.3.2
Ž .and exact test Section 6.7.5 .

An alternative strategy in multicenter analyses combines centers of a
similar type. Then, if each resulting partial table has responses with both
outcomes, the inferences use all data. For Table 9.16, perhaps centers 1 and
3 are similar to center 2, since the success rate is very low for that center.
Combining these three centers and refitting the model to this table and the

ˆ Ž .tables for the other two centers yields � s 1.56 SE s 0.70 . Usually, this
strategy produces results similar to deleting the table with no outcomes of a
particular type.

9.8.4 Effect of Small Samples on X 2 and G2

Although empty cells and sparse tables need not affect parameter estimates
of interest, they can cause sampling distributions of goodness-of-fit statistics
to be far from chi-squared. The true sampling distributions converge to
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chi-squared as n ™ �, for a fixed number of cells N. The adequacy of the
chi-squared approximation depends both on n and N.

Cochran studied the chi-squared approximation for X 2 in several articles.
In 1954, he suggested that to test independence with df � 1, a minimum
expected value � f 1 is permissible as long as no more than about 20% ofi

Ž . Ž . Ž .� � 5. Koehler 1986 , Koehler and Larntz 1980 , and Larntz 1978 showedi
that X 2 applies with smaller n and more sparse tables than G2. The
distribution of G2 is usually poorly approximated by chi-squared when nrN
is less than 5. Depending on the sparseness, P-values based on referring G2

to a chi-squared distribution can be too large or too small. When most � arei
smaller than 0.5, treating G2 as chi-squared gives a highly conservative test;
when H is true, reported P-values tend to be much larger than true ones.0
When most � are between 0.5 and 4, G2 tends to be too liberal; thei
reported P-value tends to be too small.

The size of nrN that produces adequate approximations for X 2 tends to
Ž .decrease as N increases Koehler and Larntz 1980 . However, the approxi-

mation tends to be poor for sparse tables containing both small and moder-
Ž .ately large � Haberman 1988 . It is difficult to give a guideline that coversi

Ž .all cases. For other discussion, see Cressie and Read 1989 and Lawal
Ž .1984 .

For fixed n and N, the chi-squared approximation is better for tests with
smaller df. For instance, in testing conditional independence in I � J � K

2wŽ . � Ž .x Ž Ž .Ž ..tables, G XZ, YZ XY, XZ, YZ with df s I y 1 J y 1 is closer to
2Ž . w Ž .Ž .xchi-squared than G XZ, YZ with df s K I y 1 J y 1 . The ordinal test

of H : � s 0 with the homogeneous linear-by-linear XY association model0
Ž .9.10 has df s 1, and behaves even better.

9.8.5 Model-Based Tests and Sparseness

Ž . Ž . 2Ž � . 2Ž � .From 9.3 and 9.4 , the model-based statistics G M M and X M M0 1 0 1
depend on the data only through the fitted values, and hence only through
minimal sufficient statistics for the more complex model. These statistics
have null distributions converging to chi-squared as the expected values of
the minimal sufficient statistics grow. For most loglinear models, these
sufficient statistics refer to marginal tables. Marginal totals are more nearly

2Ž � .normally distributed than are single cell counts. Thus, G M M and0 1
2Ž � .X M M converge to their limiting chi-squared distribution more quickly0 1

2Ž . 2Ž .than does G M and X M , which depend also on individual cell counts.0 0
� 4When � are small but the sufficient marginal totals for M are mostly inˆ i 1

at least the range 5 to 10, the chi-squared approximation is usually adequate
Ž .for model comparison statistics. Haberman 1977a provided theoretical

justification.

9.8.6 Alternative Asymptotics and Alternative Statistics

When large-sample approximations are inadequate, exact small-sample meth-
ods are an alternative. When they are infeasible, it is often possible to
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approximate exact distributions precisely using Monte Carlo methods
Že.g., Booth and Butler 1999; Forster et al. 1996; Kim and Agresti 1997;

.Mehta et al. 1988 .
An alternative approach uses sparse asymptotic approximations that apply

� 4when the number of cells N increases as n increases. For this approach, �i
Ž .need not increase, as they must do in the usual fixed N, n ™ � large-sam-

ple theory. For goodness-of-fit testing of a specified multinomial, Koehler
Ž . 2and Larntz 1980 showed that a standardized version of G has an approxi-

Ž .mate normal distribution for very sparse tables. Koehler 1986 presented
limiting normal distributions for G2 for use in testing models having direct

Ž .ML estimates. McCullagh 1986 reviewed ways of handling sparse tables and
2 Ž .presented an alternative approximation for G . Zelterman 1987 gave nor-

mal approximations for X 2 and proposed an alternative statistic.

9.8.7 Adding Constants to Cells of a Contingency Table

Empty cells and sparse tables can cause problems with existence of estimates
for loglinear model parameters, estimation of odds ratios, performance of
computational algorithms, and asymptotic approximations of chi-squared
statistics. However, they need not be problematic. The likelihood can still be
maximized, a point estimate of � for an effect still usually has a finite lower
bound for a likelihood-based confidence interval, and one can use small-sam-
ple inferential methods rather than asymptotic ones.

One way to obtain finite estimates of all effects and ensure convergence of
fitting algorithms is to add a small constant to cell counts. Some algorithms

1 Ž .add to each cell, as Goodman 1964b, 1970, 1971a recommended for2

saturated models. An example of the beneficial effect of this for a saturated
Žmodel is bias reduction for estimating an odds ratio in a 2 � 2 table Gart

1.1966; Gart and Zweiful 1967 . Adding to each cell before fitting an2

unsaturated model smooths the data too much, however, causing havoc with
sampling distributions. This operation has too conservative an influence on
estimated effects and test statistics. The effect is very severe with a large
number of cells.

1Even for a saturated model, adding to each cell is not a panacea for all2

purposes. When the ordinary ML estimate of an odds ratio is infinite, the
1estimate after adding to each cell is finite, as are the endpoints of any2

confidence interval. However, it is more sensible to use an upper bound of �
for the odds ratio, since no sample evidence suggests that the odds ratio falls
below any given value.

When in doubt about the effect of sparse data, one should perform a
sensitivity analysis. For example, for each possibly influential observation,
delete it or move it to another cell to see how results vary with small

Ž .perturbations to the data. Influence diagnostics for GLMs Williams 1987
are also useful for this purpose. Often, some associations are not affected by
empty cells and give stable results for the various analyses, whereas others
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that are affected are highly unstable. Use caution in making conclusions
about an association if small changes in the data are influential.

Later chapters show ways to smooth data in a less ad hoc manner than
adding arbitrary constants to cells. These include random effects models
Ž . Ž .Section 12.3 and Bayesian methods Section 15.2 .

NOTES

Section 9.1: Association Graphs and Collapsibility

Ž .9.1. Darroch et al. 1980 defined a class of graphical models that contains the family of
Ž .decomposable models see Note 8.2 . For expositions on graphical models and their

relevant independence graphs, which show the conditional independence structure, see
Ž . Ž . Ž .also Anderson and Bockenholt 2000 , Edwards 2000 , Edwards and Kreiner 1983 ,¨

Ž . Ž . Ž . Ž .Kreiner 1998 , Lauritzen 1996 , and Whittaker 1990 . Whittaker 1990, Sec. 12.5
summarized connections with various definitions of collapsibility.

Ž .9.2 For I � J � 2 tables, the collapsibility conditions Section 9.1.2 are necessary as well
Ž .as sufficient Simpson 1951; Whittemore 1978 . For I � J � K tables, Ducharme and

Ž .Lepage 1986 showed the conditions are necessary and sufficient for the odds ratios to
Žremain the same no matter how the levels of Z are pooled i.e., no matter how Z is

.partially collapsed .
Ž .Darroch 1962 defined a perfect table as one for which for all i, j, k,
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For perfect tables, homogeneous association implies that


 s 
 
 
 r
 
 
� 4i jk i jq iqk qj k iqq qjq qqk

Ž .and conditional odds ratios are identical to marginal odds ratios. Whittemore 1978
used perfect tables to illustrate that for I � J � K tables with K � 2, conditional and
marginal odds ratios can be identical even when no pair of variables is conditionally

Ž .independent. See also Davis 1986b .
Suppose that the difference of proportions or relative risk, computed for a binary

response Y and predictor X, is the same at every level of Z. If Z is independent of X
in the marginal XZ table or if Z is conditionally independent of Y given X, the

Ž .measure has the same value in the marginal XY table Shapiro 1982 . Thus, for
factorial designs with the same number of observations at each combination of levels,

Ž .the difference of proportions and relative risk are collapsible. See also Wermuth 1987 .

Section 9.2: Model Selection and Comparison

Ž .9.3. Articles on loglinear model selection include Aitkin 1979, 1980 , Benedetti and Brown
Ž . Ž . Ž . Ž .1978 , Brown 1976 , Goodman 1970, 1971a , Wermuth 1976 , and Whittaker and

Ž . 2Aitkin 1978 . When a certain model holds, G rdf has an asymptotic mean of 1.
Ž .Goodman 1971a recommended this index for comparing fits. Smaller values represent

better fits.
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Ž . Ž .9.4. Kullback et al. 1962 and Lancaster 1951 were among the first to partition chi-squared
Ž . Ž .statistics in multiway tables. Goodman 1970 and Plackett 1962 noted difficulties with

their approaches. When observations have distribution in the natural exponential
Ž . 2Ž � . Ž .family, Simon 1973 showed G M M s 2Ý � log � r� whenever models areˆ ˆ ˆ0 1 i 1 i 1 i 0 i

Ž .linear in the natural parameters. See Lang 1996b for partitionings for more complex
models.

Section 9.4: Modeling Ordinal Associations

Ž .9.5. Goodman 1979a stimulated research on loglinear models for ordinal data. His work
Ž . X Yextended Haberman 1974b , who expressed the � association term with an expan-

sion in orthogonal polynomials. For more general ordinal models for multiway tables,
Ž . Ž . Ž . Ž .see Agresti 1984 , Becker 1989a , Becker and Clogg 1989 , and Goodman 1986 .

Section 9.6: Association Models, Correlation Models, and Correspondence Analysis

Ž .9.6. Early articles on the RC model include Goodman 1979a, 1981a, b and Andersen
Ž . Ž1980, pp. 210�216 , apparently partly motivated by earlier work of G. Rasch see

. Ž . Ž .Andersen 1995 . Anderson and Bockenholt 2000 , Becker 1989a, b, 1990 , Becker and¨
Ž . Ž . Ž .Clogg 1989 , Chuang et al. 1985 , and Goodman 1985, 1986, 1996 discussed general-

Ž .izations for multiway tables. Anderson 1984 discussed a related model. Anderson and
Ž .Vermunt 2000 showed that RC and related association models arise when observed

variables are conditionally independent given a latent variable that is conditionally
normal, given the observed variables. Their work generalizes results in Lauritzen and

Ž . Ž .Wermuth 1989 and discussion by Whittaker of van der Heijden et al. 1989 . See also
Ž . Ž .de Falguerolles et al. 1995 . Clogg and Shihadeh 1994 surveyed association models

and related correlation models.
Ž .9.7. Kendall and Stuart 1979, Chap. 33 surveyed basic canonical correlation methods for

Ž .contingency tables. See also Williams 1952 , who discussed earlier work by R. A.
Fisher and others. Karl Pearson often analyzed tables by assuming an underlying

Ž .bivariate normal distribution Section 16.1 . For estimating that distribution’s correla-
Ž . Ž . Žtion, see Becker 1989b , Goodman 1981b , Kendall and Stuart 1979, Chaps. 26 and

. Ž . Ž .33 , Lancaster 1969, Chap. X , the Pearson 1904 tetrachoric correlation for 2 � 2
Ž .tables, and the Lancaster and Hamdan 1964 polychoric correlation for I � J tables.

9.8. Correspondence analysis gained popularity in France under the influence of Benzecri´
Ž . Ž .see, e.g., 1973 . Goodman 1996 attributed its origins to H. O. Hartley, publishing

Ž . Ž .under his original German name Hirschfeld, 1935 . Greenacre 1993 related it to the
Ž .singular value decomposition of a matrix. For other discussion, see Escoufier 1982 ,

Ž . Ž .Friendly 2000, Chap. 5 , Goodman 1986, 1996, 2000 , Michailidis and de Leeuw
Ž . Ž . Ž .1998 , van der Heijden and de Leeuw 1985 , and van der Heijden et al. 1989 .

Ž .Gabriel 1971 discussed related work on biplots.

Section 9.7: Poisson Regression for Rates

Ž .9.9. Another application using offsets is table standardization Section 8.7.4 . For analyses
Ž . Ž .of rate data, see Breslow and Day 1987, Sec. 4.5 , Freeman and Holford 1980 , Frome

Ž . Ž .1983 , and Hoem 1987 . Articles dealing with grouped survival data, particularly
Ž .loglinear and logit models for survival probabilities, include Aranda-Ordaz 1983 ,

Ž . Ž . Ž .Larson 1984 , Prentice and Gloeckler 1978 , Schluchter and Jackson 1989 , Stokes et
Ž . Ž . Ž .al. 2000, Chap. 17 , and Thompson 1977 . Aitkin and Clayton 1980 discussed

exponential survival models and also presented similar models having hazard functions
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Ž .for Weibull or extreme-value survival distributions. Log likelihood 9.19 actually
applies only for noninformati®e censoring mechanisms. It does not make sense if
subjects tend to withdraw from the study because of factors related to it, perhaps
because of health effects related to one of the treatments.

Ž .9.10. Lindsey and Mersch 1992 showed a clever way to use loglinear models to fit
Ž . Ž .exponential family distributions f y;� of form 4.14 with � known. One breaks the

�Ž .4response scale into intervals y y � r2, y q � r2 . Counts in those intervals followk k k k
� Ž . 4a multinomial with probabilities approximated by f y , � � . The log expected countk k

approximations are linear in � with an offset.

PROBLEMS

Applications

9.1 Use odds ratios in Table 8.3 to illustrate the collapsibility conditions.
Ž .a. For A, C, M , all conditional odds ratios equal 1.0. Explain why all

reported marginal odds ratios equal 1.0.
Ž . Ž .b. For AC, M , explain why i all conditional odds ratios are the

Ž .same as the marginal odds ratios, and ii all � s n .ˆacq acq

Ž . Ž .c. For AM, CM , explain why i the AC conditional odds ratios of
Ž .1.0 need not be the same as the AC marginal odds ratio, ii the

AM and CM conditional odds ratios are the same as the marginal
Ž .odds ratios, and iii all � s n and � s n .ˆ ˆaqm aqm qc m qc m

Ž . Ž .d. For AC, AM, CM , explain why i no conditional odds ratios need
Ž .be the same as the related marginal odds ratios, and ii the fitted

marginal odds ratios must equal the sample marginal odds ratios.

Ž .9.2 Table 9.17 summarizes a study with variables age of mother A ,
Ž . Ž .length of gestation G in days, infant survival I , and number of

Ž .cigarettes smoked per day during the prenatal period S . Treat G and
I as response variables and A and S as explanatory.
a. Explain why a loglinear model should include the � AS term.

Ž . Ž . Žb. Fit the models AGIS , AGI, AIS, AGS, GIS , AG, AI, AS,
. Ž .GI, GS, IS , and AS, G, I . Identify a subset of models nested

between two of these that may fit well. Select one such model.
Ž . Ž .c. Use i forward selection, and ii backward elimination to build a

model. Compare the results of the strategies, and interpret the
models chosen.

�Ž . Ž .9.3 Refer to Table 2.13. Consider the nested set DVP , DP, VP, DV ,
Ž . Ž . Ž .4VP, DV , P, DV , D, V, P . Partition chi-squared to compare the
four pairs, ensuring that the overall type I error probability for the four
comparisons does not exceed � s 0.10. Which model would you select,

Ž .using a backward comparison starting with DVP ? Show that the final
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TABLE 9.17 Data for Problem 9.2

Infant Survival

Age Smoking Gestation No Yes

� 30 � 5 F 260 50 315
� 260 24 4012

5 q F 260 9 40
� 260 6 459

30 q � 5 F 260 41 147
� 260 14 1594

5 q F 260 4 11
� 260 1 124

Ž .Source: N. Wermuth, pp. 279�295 in Proc. 9th International Biometrics Conference, Vol. 1 1976 .
Reprinted with permission from the Biometric Society.

model selected depends on the choice of nested set, by repeating the
Ž . Ž . Ž . Ž .analysis with DP, VP, DV , DP, DV , P, DV , D, V, P .

9.4 Consider the loglinear model selection for Table 6.3.
a. Why is it not sensible to consider models omitting the �G M term?

Ž .b. Using forward selection starting with GM, E, P , show that model
Ž .GM, GP, EG, EMP seems reasonable.

Ž .c. Using backward elimination, show that GM, GP, EMP or
Ž .GM, GP, EG, EMP seems reasonable.

d. The EMP interaction seems vital. To describe it, show that the
effect of extramarital sex on divorce is greater for subjects who had
no premarital sex.

Ž .e. Use residuals to describe the lack of fit of model GM, EMP .

Ž .9.5 For model AC, AM, CM with Table 8.3, the standardized Pearson
residual in each cell equals �0.63. Interpret, and explain why each one

Ž .has the same absolute value. By contrast, model AM, CM has stan-
Ždardized Pearson residual �3.70 in each cell where M s yes e.g.,

.q3.70 when A s C s yes and �12.80 in each cell where M s no
Ž .e.g., q12.80 when A s C s yes . Interpret.

9.6 Refer to Table 8.8. Conduct a residual analysis with the model of no
three-factor interaction to describe the nature of the interaction.

9.7 Perform a residual analysis for the independence model with Table
3.2. Explain why it suggests that the linear-by-linear association model
may fit better. Fit it, compare to the independence model, and inter-
pret.
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9.8 Refer to Problem 9.7.
ˆa. Using standardized scores, find �. Comment on the strength of

association.
b. Fit a model in which job satisfaction scores are parameters. Inter-

pret the estimated scores, and compare the fit to the L � L model.

9.9 Refer to Table 9.3.
a. For the linear-by-linear association model, construct a 95% confi-

dence interval for the odds ratio using the four corner cells. Inter-
pret.

b. Fit the column effects model. Compare estimated column scores to
Ž .the equal-interval scores in part a . Test that the true column

scores are equal-interval, given that the model holds. Interpret.
Construct a 95% confidence interval for the odds ratio using the

Ž .four corner cells. Compare to part a .

9.10 A weak local association may be substantively important for nonlocal
categories. Illustrate with the L � L model for Table 9.9, showing how
the estimated odd ratio for the four corner cells compares to the
estimated local odds ratio.

9.11 Refer to Table 7.8. Fit the homogeneous linear-by-linear association
model, and interpret. Test conditional independence between income
Ž . Ž . Ž . Ž .I and job satisfaction S , controlling for gender G , using a that

Ž . Ž .model, and b model IS, IG, SG . Explain why the results are so
different.

9.12 Fit the RC model to Table 9.3. Interpret the estimated scores. Does it
fit better than the uniform association model?

9.13 Replicate the results in Section 9.6 for the correlation and correspon-
dence models with Table 9.9.

9.14 One hundred leukemia patients were randomly assigned to two treat-
ments. During the study, 10 subjects on treatment A died and 18
subjects on treatment B died. The total time at risk was 170.4 years for
treatment A and 147.3 years for treatment B. Test whether the two
treatments have the same death rates. Compare the rates with a
confidence interval.

9.15 For Table 9.11, fit a model in which death rate depends only on age.
Interpret the age effect.

Ž .9.16 Consider model 9.18 . What is the effect on the model parameter
estimates, their standard errors, and the goodness-of-fit statistics when
Ž .a the times at risk are doubled, but the numbers of deaths stay the
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Ž .same; b the times at risk stay the same, but the numbers of deaths
Ž .double; and c the times at risk and the numbers of deaths both

double.

9.17 Consider Table 9.13. Explain how one could analyze whether the
hazard depends on time.

Ž9.18 An article by W. A. Ray et al. Amer. J. Epidemiol. 132: 873�884,
.1992 dealt with motor vehicle accident rates for 16,262 subjects aged

65�84 years, with data on each for up to 4 years. In 17.3 thousand
years of observation, the women had 175 accidents in which an injury
occurred. In 21.4 thousand years, men had 320 injurious accidents.
a. Find a 95% confidence interval for the true overall rate of injurious

accidents.
b. Using a model, compare the rates for men and women.

Ž .9.19 A table at the text’s Web site www. stat.ufl.edur	aarcdarcda.html
Ž .shows the number of train miles in millions and the number of

collisions involving British Rail passenger trains between 1970 and
1984. A Poisson model assuming a constant log rate � over the 14-year

Ž . 2 Ž .period has � sy4.177 SE s 0.1325 and X s 14.8 df s 13 .ˆ
Interpret.

Ž .9.20 Table 9.18 lists total attendance in thousands and the total number of
arrests in the 1987�1988 season for soccer teams in the Second
Division of the British football league. Let Y s number of arrests for a

Ž .team, and let t s total attendance. Explain why the model E Y s � t

TABLE 9.18 Data for Problem 9.20

Attendance Attendance
Ž . Ž .Team thousands Arrests Team thousands Arrests

Aston Villa 404 308 Shrewsbury 108 68
Bradford City 286 197 Swindon Town 210 67
Leeds United 443 184 Sheffield Utd. 224 60
Bournemouth 169 149 Stoke City 211 57
West Brom 222 132 Barnsley 168 55
Hudderfield 150 126 Millwall 185 44
Middlesbro 321 110 Hull City 158 38
Birmingham 189 101 Manchester City 429 35
Ipswich Town 258 99 Plymouth 226 29
Leicester City 223 81 Reading 150 20
Blackburn 211 79 Oldham 148 19
Crystal Palace 215 78

Ž .Source: The Independent London , Dec. 21, 1988. Thanks to P. M. E. Altham for showing me
these data.
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might be plausible. Assuming Poisson sampling, fit it and interpret.
Plot arrests against attendance, and overlay the prediction equation.
Use residuals to identify teams that had arrest counts much different
than expected.

TABLE 9.19 Data for Problem 9.21

Person-Years Coronary Deaths

Age Nonsmokers Smokers Nonsmokers Smokers

35�44 18,793 52,407 2 32
45�54 10,673 43,248 12 104
55�64 5710 28,612 28 206
65�74 2585 12,663 28 186
75�84 1462 5317 31 102

Ž .Source: R. Doll and A. B. Hill, Natl. Cancer Inst. Monogr. 19: 205�268 1966 . See also N. R.
ŽBreslow in A Celebration of Statistics, ed. A. C. Atkinson and S. E. Fienberg, New York:

.Springer-Verlag, 1985 .

9.21 Table 9.19 is based on a study with British doctors.
a. For each age, find the sample coronary death rates per 1000

person-years for nonsmokers and smokers. To compare them, take
their ratio and describe its dependence on age.

b. Fit a main-effects model for the log rates having four parameters
for age and one for smoking. In discussing lack of fit, show that this
model assumes a constant ratio of nonsmokers’ to smokers’ coro-
nary death rates over age.

Ž .c. From part a , explain why it is sensible to add a quantitative
interaction of age and smoking. For this model, show that the log
ratio of coronary death rates changes linearly with age. Assign
scores to age, fit the model, and interpret.

9.22 Analyze Table 9.9 using ordinal logit models. Interpret, and discuss
advantagesrdisadvantages compared to loglinear analyses.

9.23 Refer to Problem 8.6. Analyze these data, using methods of this
chapter.

Theory and Methods

9.24 In a 2 � 2 � K table, the true XY conditional odds ratios are identi-
cal, but different from the XY marginal odds ratio. Is there three-fac-
tor interaction? Is Z conditionally independent of X or Y ? Explain.
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Ž .9.25 Consider loglinear model WX, XY, YZ . Explain why W and Z are
independent given X alone or given Y alone or given both X and Y.
When are W and Y conditionally independent? When are X and Z
conditionally independent?

Ž .9.26 Suppose that loglinear model XY, XZ holds.
a. Find � and log � . Show the loglinear model for the XYi jq i jq

� X Y 4marginal table has the same association parameters as � ini j
Ž .XY, XZ . Deduce that odds ratios are the same in the XY marginal
table as in the partial tables. Using an analogous result for model
Ž .XY, YZ , deduce the collapsibility conditions in Section 9.1.2.

Ž .b. Calculate log � for model XY, XZ, YZ , and explain why mar-i jq
ginal associations need not equal conditional associations.

9.27 For a four-way table, is the WX conditional association the same as the
Ž . Ž .WX marginal association for the loglinear model a WX, XYZ ? and

Ž . Ž .b WX, WZ, XY, YZ ? Why?

9.28 Loglinear model M is a special case of loglinear model M .0 1

a. Explain why the fitted values for the two models are identical in the
sufficient marginal distributions for M .0

Ž . � 4b. Haberman 1974a showed that when � satisfy any model that is aˆ i
special case of M , Ý � log � sÝ � log � . Thus, � is theˆ ˆ ˆ ˆ ˆ0 i 1 i i i 0 i i 0

� 4orthogonal projection of � onto the linear manifold of log �ˆ 1
2Ž . 2Ž .satisfying M . Using this, show that G M y G M s0 0 1

Ž .2Ý � log � r� .ˆ ˆ ˆi 1 i 1 i 0 i

2Ž � . 29.29 Refer to Section 9.2.4. Show that G M M equals G for inde-j jy1
pendence in the 2 � 2 table comparing columns 1 through j y 1 with
column j.

9.30 For T categorical variables X , . . . , X , explain why:1 T
2Ž . 2Ž . 2Ž .a. G X , X , . . . , X s G X , X q G X X , X1 2 T 1 2 1 2 3

2Ž .q ��� qG X X ��� X , X .1 2 Ty1 T
2Ž . 2Ž . 2Ž .b. G X ��� X , X sG X , X qG X X , X X1 Ty1 T 1 T 1 T 1 2

2Ž .q ��� qG X X ��� X , X X ��� X X .1 2 Ty1 1 2 Ty2 T

9.31 For I � 2 contingency tables, explain why the linear-by-linear associa-
Ž .tion model is equivalent to the linear logit model 5.5 .

Ž . � 4 � 49.32 Consider the L � L model 9.6 with ® s j replaced by ® s 2 j .j j
ˆ ˆ 2� 4 � 4Explain why � is halved but � , � , and G are unchanged.ˆ i j i j
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Ž . Ž .9.33 Lehmann 1966 defined X, Y to be positi®ely likelihood-ratio
Ž . Ž .dependent if their joint density satisfies f x , y f x , y G1 1 2 2

Ž . Ž .f x , y f x , y whenever x � x and y � y . Then, the conditional1 2 2 1 1 2 1 2
Ž . Ž .distribution of Y X stochastically increases as X Y increases

Ž .Goodman 1981a .
a. For the L � L model, show that the conditional distributions of Y

and of X are stochastically ordered. What is its nature if � � 0?
Ž .b. In row effects model 9.8 , if � � � , show that the conditionali h

distribution of Y is stochastically higher in row i than in row h.
Explain why � s ��� s � is equivalent to the equality of the I1 I
conditional distributions within rows.

Ž .9.34 Yule 1906 defined a table to be isotropic if an ordering of rows and of
columns exists such that the local log odds ratios are all nonnegative
w Ž .xsee also Goodman 1981a .

Ž .a. Show that a table is isotropic if it satisfies i the linear-by-linear
Ž . Ž .association model, ii the row effects model, and iii the RC

model.
b. Explain why a table that is isotropic for a certain ordering is still

isotropic when adjacent rows or columns are combined.

9.35 Consider the log likelihood for the linear-by-linear association model.
a. Differentiating with respect to � and evaluating at � s 0 and null

estimates of parameters, show that the score function is propor-
tional to

u ® p y p p .Ž .Ý Ý i j i j iq qj
i j

b. Use the delta method to show that its null SE is

1r2
2 22 2u p y u p ® p y ® p n .Ž . Ž .Ý Ý Ý Ýi iq i iq j qj j qj½ 5

c. Construct a score statistic for testing independence. Show that it is
Ž . w Ž .essentially the correlation test 3.15 . Hirotsu 1982 discussed a

xfamily of score tests for ordered alternatives.

9.36 Given the parenthetical result in Problem 7.33, show that if cumulative
Ž . � �logit model 7.24 holds and � is small, the linear-by-linear association

� 4model should fit well with row scores x and ‘‘ridit’’ column scoresi
� w Ž . Ž .x 4® s P Y F j y 1 q P Y F j r2 , with its � parameter about twicej

Ž .� for model 7.24 .
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Ž .9.37 Consider the row effects model 9.8 .
a. Show that no loss of generality occurs in letting �X s �Y s � s 0.I J I

� 4 � 4 �b. Show that minimal sufficient statistics are n , n , and Ý ® n ,iq qj j j i j
4i s 1, . . . , I , and derive the likelihood equations.

9.38 Show that the column effects model corresponds to a baseline-category
logit model for Y that is linear in scores for X, with slope depending
on the paired response categories.

Ž .9.39 Refer to the homogeneous linear-by-linear association model 9.10 .
a. Show that the likelihood equations are, for all i, j, and k,

� s n , � s n , u ® � s u ® n .ˆ ˆ ˆÝÝ ÝÝiqk iqk qj k qj k i j i jq i j i jq
i j i j

Ž .Ž .b. Show that residual df s K I y 1 J y 1 y 1.
Ž .c. When I s J s 2, explain why it is equivalent to XY, XZ, YZ .

d. Show how the last likelihood equation above changes for heteroge-
Ž .neous linear-by-linear XY association 9.11 . Explain why, in each

stratum, the fitted XY correlation equals the sample correlation.

Ž .9.40 When model XY, XZ, YZ is inadequate and variables are ordinal,
Ž .useful models are nested between it and XYZ . For ordered scores

� 4 � 4 � 4u , ® , and w , consideri j k

log � s � q �X q �Y q �Z q �X Y q �X Z q �Y Z q � u ® w . 9.22Ž .i jk i j k i j i k jk i j k

a. Define � s � r� s � r� s � r� . Fori jk i jŽkq1. i jŽk . iŽ jq1. k iŽ j.k Ž iq1. jk Ž i. jk
Ž .unit-spaced scores, show that log � s �. Goodman 1979a calledi jk

this the uniform interaction model.
b. Show that log odds ratios for any two variables change linearly

across levels of the third variable.
c. Show that the likelihood equations are those for model

Ž .XY, XZ, YZ plus

u ® w � s u ® w n .ˆÝÝÝ ÝÝÝi j k i jk i j k i jk
i j k i j k

Ž . Ž .d. Explain why model 9.12 is a special case of model 9.22 .

9.41 Construct a model having general XZ and YZ associations, but row
Ž . Ž .effects for the XY association that are a homogeneous, and b

heterogeneous across levels of Z. Interpret.
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9.42 Explain why the RC model requires scale constraints for the scores.
Ž .Ž .Show the residual df s I y 2 J y 2 . Find and interpret the likeli-

hood equations. Explain why the fit is invariant to category orderings.

Ž . Ž .9.43 Refer to correlation model 9.16 Goodman 1985, 1986 .
a. Show that � is the correlation between the scores.

Ž .b. If this model holds, show that Ý � 
 r
 s �� andi i i j q j j
Ž .Ý � 
 r
 s �� . Interpret.j j i j iq i

Ž .c. With � close to zero, show that log 
 has form � q  q �� � qi j i i i j
Ž . Ž .o � , where o � r� ™ 0 as � ™ 0. Thus, when the association is

weak, the correlation model is similar to the linear-by-linear associ-
� 4 � 4ation model with � s � and scores u s � and ® s � .i i j j

9.44 For the general canonical correlation model, show that Ý�2 sk
Ž .2Ý Ý 
 y 
 
 r
 
 . Thus, the squared correlations partitioni j i j iq qj iq qj

Ž . 2a dependence measure that is the noncentrality 6.8 of X for the
w Ž .independence model with n s 1. Goodman 1986 stated other parti-

xtionings.

Ž . � 49.45 Refer to model 9.18 . Given the times at risk t , show that sufficienti j
� 4 � 4statistics are n and n .iq qj

9.46 Refer to Section 9.7.3. Let T sÝt and W sÝw . Suppose thati i
survival times have a negative exponential distribution with parameter
�.

ˆŽ .a. Using log likelihood 9.19 , show that � s WrT.
b. Conditional on T , show that W has a Poisson distribution with

ˆmean T�. Using the Poisson likelihood, show that � s WrT.

w9.47 Show that ML estimates do not exist for Table 9.15. Hint: Haberman
Ž .1973b, 1974a, p. 398 : If � s c � 0, then marginal constraints theˆ111

xmodel satisfy imply that � syc.ˆ222

9.48 For a loglinear model, explain heuristically why the ML estimate of a
parameter is infinite when its sufficient statistic takes its maximum or
minimum possible value, for given values of other sufficient statistics.



C H A P T E R 1 0

Models for Matched Pairs

We next introduce methods for comparing categorical responses for two
samples when each observation in one sample pairs with an observation in
the other. Such matched-pairs data commonly occur in studies with repeated
measurement of subjects, such as longitudinal studies that observe subjects
over time. Because of the matching, the responses in the two samples are
statistically dependent. This is the first of four chapters on special methods
for handling such dependence.

Table 10.1 illustrates matched-pairs data. For a poll of a random sample
of 1600 voting-age British citizens, 944 indicated approval of the Prime
Minister’s performance in office. Six months later, of these same 1600 people,
880 indicated approval. The two cells with identical row and column response
form the main diagonal of the table. These subjects had the same opinion at
both surveys. They compose most of the sample, since relatively few people
changed opinion. A strong association exists between opinions six months

Ž . Ž .apart, the sample odds ratio being 794 � 570 r 150 � 86 s 35.1.
For matched pairs with a categorical response, a two-way contingency

table with the same row and column categories summarizes the data. The
table is square. In this chapter we present analyses of square tables. In
Section 10.1 we describe methods for comparing proportions with a binary
response. In Section 10.2 we discuss logistic regression analyses of such data.
For multicategory responses, Section 10.3 covers nominal and ordinal logit

TABLE 10.1 Rating of Performance of Prime Minister

Second SurveyFirst
Survey Approve Disapprove Total

Approve 794 150 944
Disapprove 86 570 656

Total 880 720 1600

409



MODELS FOR MATCHED PAIRS410

models for comparing the response distributions. In Section 10.4 we intro-
duce loglinear models for square tables. In Sections 10.5 and 10.6 we discuss
two matched-pairs applications for which models for square tables are useful:
analyzing agreement between two observers who rate a common set of
subjects, and evaluating preferences of treatments based on their pairwise
evaluation.

Section 10.7 extends the models of Sections 10.2 through 10.4 to multiway
tables that result from matched sets of observations. In Chapter 11 we extend
them further to incorporate explanatory variables.

10.1 COMPARING DEPENDENT PROPORTIONS

For each of n matched pairs, let � denote the probability of outcome a forab
the first observation and outcome b for the second. Let n count theab
number of such pairs, with p s n rn the sample proportion. We treatab ab
� 4 Ž � 4.n as a sample from a multinomial n; � distribution. Then p is theab ab aq
proportion in category a for observation 1, and p is the correspondingqa
proportion for observation 2. We compare samples by comparing marginal

� 4 � 4proportions p with p . With matched samples, these proportions areaq qa
correlated, and methods for independent samples are inappropriate.

In this section we consider binary outcomes. When � s � , then1q q1
� s � also, and there is marginal homogeneity. Since2q q2

� y � s � q � y � q � s � y � ,Ž . Ž .1q q1 11 12 11 21 12 21

marginal homogeneity in 2 � 2 tables is equivalent to � s � . The table12 21
then shows symmetry across the main diagonal.

10.1.1 Inference for Dependent Proportions

One comparison of the marginal distributions uses � s � y � . Letq1 1q

d s p y p s p y p .q1 1q 2q q2

Ž . Ž . ŽFrom formula 1.3 for multinomial covariances, cov p , p s cov p qq1 1q 11
. Ž .p , p q p simplifies to � � y � � rn. Thus,21 11 12 11 22 12 21

'var n d s � 1 y � q � 1 y � y 2 � � y � � .Ž . Ž . Ž .Ž . 1q 1q q1 q1 11 22 12 21

10.1Ž .

For large samples, d has approximately a normal sampling distribution. A
confidence interval for � s � y � is thenq1 1q

d � z � d ,Ž .ˆ�r2
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where

2� d s p 1 y p q p 1 y p y 2 p p y p p rnŽ . Ž . Ž . Ž .ˆ 1q 1q q1 q1 11 22 12 21

2s p q p y p y p rn , 10.2Ž . Ž . Ž .12 21 12 21

with the second formula following after substitution and some algebra.
Inverting the score test of H : � s � is more complex but provides coverage0 0

Ž .probabilities closer to the nominal values Tango 1998 , as does adding 1 to
Ž .each cell before computing d and � d .ˆ

Ž .The hypothesis of marginal homogeneity is H : � s � i.e., � s 0 .0 1q q1
Ž .The ratio z s dr� d or its square is a Wald test statistic. Under H , anˆ 0

alternative estimated variance is

p q p n q n12 21 12 212� d s s . 10.3Ž . Ž .ˆ0 2n n

Ž .The score test statistic z s dr� d simplifies toˆ0 0

n y n21 12
z s . 10.4Ž .0 1r2n q nŽ .21 12

The square of z is a chi-squared statistic with df s 1. The test using it is0
Ž .called McNemar’s test McNemar 1947 .

The McNemar statistic depends only on cases classified in different cate-
gories for the two observations. The n q n on the main diagonal are11 22
irrelevant to inference about whether � and � differ. This may seem1q q1
surprising, but all cases contribute to inference about how much � and1q
� differ: for instance, to estimating � and the standard error.q1

10.1.2 Prime Minister Approval Rating Example

For Table 10.1, the sample proportions of approval of the prime minister’s
performance are p s 944r1600 s 0.59 for the first survey and p s1q q1

Ž .880r1600 s 0.55 for the second. Using 10.2 , a 95% confidence interval for
Ž . Ž . Ž .� y � is 0.55 y 0.59 � 1.96 0.0095 , or y0.06, y0.02 . The approvalq1 1q

rating appears to have dropped between 2 and 6%.
Ž .For testing marginal homogeneity, the test statistic 10.4 using the null

variance is

86 y 150
z s sy4.17.0 1r286 q 150Ž .

It shows strong evidence of a drop in the approval rating.
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10.1.3 Increased Precision with Dependent Samples

Ž . Ž .The final term of formula 10.1 , based on cov p , p , reflects theq1 1q
dependence between the marginal proportions. By contrast, for independent
samples of size n each to estimate binomial probabilities � and � , the1 2
covariance for the sample proportions is zero, and

'var n difference of sample proportions s � 1 y � q � 1 y � .Ž . Ž . Ž .1 1 2 2

Dependent samples usually exhibit a positive dependence, with log � s
w x Ž .log � � r� � � 0; that is, � � � � � . From 10.1 , positive de-11 22 12 21 11 22 12 21

Ž .pendence implies that var d is smaller than when the samples are indepen-
dent.

A study design using dependent samples can help improve the precision of
Žstatistical inferences for within-subject effects. By contrast, standard errors

tend to be larger, per given number of observations, for between-subject
.group comparisons. The improvement is substantial when samples are highly

correlated. To illustrate, Table 10.1 with dependent samples of size 1600
each has a standard error of 0.0095 for d s 0.55 y 0.59. The two observa-
tions have strong association, the sample odds ratio being 35.1. Independent
samples of size 1600 each with � y � s 0.55 y 0.59 have a standard errorˆ ˆ1 2
of 0.0175 for the difference, nearly twice as large.

10.1.4 Small-Sample Test Comparing Matched Proportions

The null hypothesis of marginal homogeneity for binary matched pairs is,
Ž .equivalently, H : � s � or � r � q � s 0.5. For small samples,0 12 21 21 21 12

Ž .an exact test conditions on n* s n q n Mosteller 1952 . Under H , n21 12 0 21
1 1Ž . Ž .has a binomial n*, distribution, for which E n s n*. The P-value for212 2

the test is a binomial tail probability.
For instance, for Table 10.1, consider H : � � � , or equivalently,a q1 1q

H : � � � . Since n* s 86 q 150 s 236, the reference distribution isa 21 12
1Ž .bin 236, . The P-value is the probability of at least 150 successes out of 2362

trials, which equals 0.00002. The P-value for H : � � � doubles this.a q1 1q
When n* � 10, the reference binomial distribution is approximately nor-

1 1 1Ž .Ž .mal with mean n* and variance n* . The standardized normal test2 2 2

statistic equals

1n y n* n y n21 21 122
z s s .1r2 1r21 1 n q nŽ .n*Ž . Ž . 21 122 2

Ž .This is identical to the McNemar statistic 10.4 .
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10.1.5 Connection between McNemar and Cochran–Mantel–Haenszel Tests

An alternative representation of binary responses for n matched pairs
presents the data in n partial tables, one 2 � 2 table for each pair. It has
columns that are the two possible outcomes for each measurement. Row 1
shows the outcome of the first observation, and row 2 shows the outcome of
the second.

Table 10.2 shows the four possible partial tables in this representation.
For Table 10.1, the full three-way table has 1600 partial tables; 794 look like

Ž .the one for subject 1 i.e., ‘‘approve’’ at both surveys , 570 who disapproved at
each survey have tables like the one for subject 2, 86 have tables like the one
for subject 3, and 150 have tables like the one for subject 4. The 1600 subjects
from Table 10.1 provide 3200 observations in a 2 � 2 � 1600 contingency
table. Collapsing this table over the 1600 partial tables yields a 2 � 2 table

Ž . Ž .with first row equal to 944, 656 and second row equal to 880, 720 . These
Ž .are the total number of approve, disapprove responses for the two surveys.

They form the marginal counts in Table 10.1.
For each subject, suppose that the probability of approval is identical in

each survey. Then, conditional independence exists between the opinion
outcome and the survey time, controlling for subject. The probability of
approval is then also the same for each survey in the marginal table collapsed
over the subjects. But this implies that the true probabilities for Table 10.1
satisfy marginal homogeneity. Thus, a test of conditional independence in the
2 � 2 � 1600 table provides a test of marginal homogeneity for Table 10.1.

To test conditional independence in this three-way table, one can use the
Ž . Ž .Cochran�Mantel�Haenszel CMH statistic 6.6 . The result of that chi-

squared statistic is algebraically identical to the squared McNemar’s statistic,
Ž .2 Ž . Ž .namely n y n r n q n for tables of form 10.1 . McNemar’s test is21 12 12 21

a special case of the CMH test applied to the binary responses of n matched
pairs displayed in n partial tables. This connection is not helpful for compu-
tational purposes, since the McNemar statistic is simple. But it does suggest

TABLE 10.2 Representation of Four Types of Matched
Pairs Contributing to Counts in Table 10.1

Response

Subject Survey Approve Disapprove

1 First 1 0
Second 1 0

2 First 0 1
Second 0 1

3 First 0 1
Second 1 0

4 First 1 0
Second 0 1



MODELS FOR MATCHED PAIRS414

ways of handling more complex matched data. With several outcome cate-
gories or several observations, one can test marginal homogeneity by applying

Ž .the generalized CMH tests Section 7.5 using a single stratum for each
Žsubject, with each row representing a particular observation Darroch 1981;

.Mantel and Byar 1978 .
Coming sections refer to the 2 � 2 � n table representation of matched-

pairs data as the subject-specific table. They refer to the 2 � 2 table of form
of Table 10.1 as the population-a®eraged table, since its margins provide
direct estimates of population marginal proportions.

10.2 CONDITIONAL LOGISTIC REGRESSION FOR BINARY
MATCHED PAIRS

In Section 6.7 we introduced conditional logistic regression for eliminating
nuisance parameters from an analysis. We now study this for binary
matched-pairs data. The models refer to subject-specific tables.

10.2.1 Marginal versus Conditional Models for Matched Pairs

Ž .The analyses of Section 10.1 occur in the context of models. Let Y , Y1 2
denote the pair of observations for a randomly selected subject, where a ‘‘1’’

Ž .outcome denotes category 1 success and ‘‘0’’ denotes category 2. The
Ž . Ž .difference � s P Y s 1 y P Y s 1 between marginal probabilities occurs2 1

as a parameter in

P Y s 1 s � q � x , 10.5Ž . Ž .t t

Ž . Ž .where x s 0 and x s 1; then, P Y s 1 s � and P Y s 1 s � q � .1 2 1 2
Alternatively, the logit link yields

logit P Y s 1 s � q � x . 10.6Ž . Ž .t t

The parameter � is a log odds ratio with the marginal distributions.
Ž . Ž .Models 10.5 and 10.6 are marginal models: They focus on the marginal

distributions of responses for the two observations. For instance, in terms of
Ž .the population-averaged table, the ML estimate of � in 10.6 is the log odds

ˆ w xratio of marginal proportions, � s log p p rp p . See Problem 10.26q1 2q q2 1q
for its asymptotic variance.

By contrast, the subject-specific table having strata like Table 10.2 implic-
Ž .itly allows probabilities to vary by subject. Let Y , Y denote the ith pair ofi1 i2

observations, i s 1, . . . , n. A model then has the form

link P Y s 1 s � q � x . 10.7Ž . Ž .i t i t

This is called a conditional model, since the effect � is defined conditional on
the subject. Its estimate describes conditional association for the three-way
table stratified by subject. The effect is subject-specific, since it is defined at
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Ž . Ž .the subject level. By contrast, the effects in marginal models 10.5 and 10.6
are population-a®eraged, since they refer to averaging over the entire popula-
tion rather than to individual subjects.

For the identity link, subject-specific and population-averaged effects are
Ž .identical. For instance, for the conditional model 10.7 with identity link,

Ž . Ž .� s P Y s 1 y P Y s 1 for all i, and averaging this over subjects in thei2 i1
Ž .population equates � to the � parameter in model 10.5 . For nonlinear

Ž .links, however, the effects differ. For model 10.7 with the logit link, for
instance,

P Y s 1 s exp � q � x r 1 q exp � q � x .Ž . Ž . Ž .i t i t i t

ŽThe average of this for the population does not have the form exp � q
. w Ž .x Ž .� x r 1 q exp � q � x corresponding to the marginal logit model 10.6 .t t

We now take a closer look at the conditional model with logit link.

10.2.2 A Logit Model with Subject-Specific Probabilities

Ž .Model 10.7 differs from models in earlier chapters by permitting subjects to
Ž . Ž .have their own probability distributions. Cox 1958b, 1970 and Rasch 1961

presented this model with logit link. This model for Y , observation t fori t
subject i, is

logit P Y s 1 s � q � x , 10.8Ž . Ž .i t i t

where x s 0 and x s 1. Although permitting subject-specific distributions,1 2
it assumes a common effect �. For subject i,

exp � exp � q �Ž . Ž .i i
P Y s 1 s , P Y s 1 s .Ž . Ž .i1 i21 q exp � 1 q exp � q �Ž . Ž .i i

The parameter � compares the response distributions. For each subject,
Ž .the odds of success for observation 2 are exp � times the odds for observa-

tion 1.
Ž .Given the parameters, with model 10.8 one normally assumes indepen-

dence of responses for different subjects and for the two observations on the
same subject. However, averaged over all subjects, the responses are nonneg-

� � � �atively associated. Suppose that � is small compared to � . A subject withi
Ž .a large positive � has high P Y s 1 for each t and is likely to have ai i t

Ž .success each time; a subject with a large negative � has low P Y s 1 fori i t
each t and is likely to have a failure each time. The greater the variability in
� 4� , the greater the overall positive association between responses, successesi
Ž . Ž .failures for observation 1 tending to occur with successes failures for
observation 2. This is true for any �. The positive association reflects the
shared value of � for each observation in a pair. No association occurs onlyi

� 4when � are identical. Thus, the model does account for the dependence ini
matched pairs. Fitting it takes into account nonnegative association through
the structure of the model.
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� 4For this model, the large number of � causes difficulties with the fittingi
Ž .process and with the properties of ordinary ML estimators Problem 10.24 .

The remedy of conditional ML treats them as nuisance parameters and
maximizes the likelihood function for a conditional distribution that elimi-

Ž .nates them. A note on terminology: We’ve referred to model 10.8 as a
conditional model, meaning that its effect � is subject-specific, conditional
on the subject. The analyses described below for such models are examples of
conditional logistic regression; but here the term conditional refers to the ML
analysis that is performed conditional on sufficient statistics for nuisance
parameters, to eliminate those parameters from the likelihood.

10.2.3 Conditional ML Inference for Binary Matched Pairs

Ž .For model 10.8 , assuming independence of responses for different subjects
and for the two observations on the same subject, the joint mass function for
�Ž . Ž .4y , y , . . . , y , y is11 12 n1 n2

y 1yyi1 i1n exp � 1Ž .iŁ ž /ž /1 q exp � 1 q exp �Ž . Ž .is1 i i

�

y 1yyi2 i2exp � q � 1Ž .i
.ž /ž /1 q exp � q � 1 q exp � q �Ž . Ž .i i

In terms of the data, this is proportional to

exp � y q y q � y .Ž .Ý Ýi i1 i2 i2ž /
i i

� 4To eliminate � , we condition on their sufficient statistics, the pairwisei
� 4 Ž .success totals S s y q y . Given S s 0, P Y s Y s 0 s 1, and giveni i1 i2 i i1 i2

Ž . Ž .S s 2, P Y s Y s 1 s 1. The distribution of Y , Y depends on � onlyi i1 i2 i1 i2
when S s 1; that is, only when outcomes differ for the two responses. Giveni
y q y s 1, the conditional distribution isi1 i2

�P Y s y , Y s y S s 1Ž .i1 i1 i2 i2 i

s P Y s y , Y s y P Y s 1, Y s 0 q P Y s 0, Y s 1Ž . Ž . Ž .i1 i1 i2 i2 i1 i2 i1 i2

yy 1yy 1yyi2i1 i1 i2Ž . Ž .exp � 1 exp � q � 1i iž / ž /ž / ž /Ž . Ž . Ž . Ž .1 q exp � 1 q exp � 1 q exp � q � 1 q exp � q �i i i is Ž . Ž .exp � 1 1 exp � q �i i
q

Ž . Ž .Ž . Ž .1 q exp � 1 q exp � q � 1 q exp � 1 q exp � q �i i i i

s exp � r 1 q exp � , y s 0, y s 1Ž . Ž . i1 i2

s 1r 1 q exp � , y s 1, y s 0.Ž . i1 i2
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� 4Again, let n denote the counts for the four possible sequences. Forab
subjects having S s 1, Ý y s n , the number of subjects having success fori i i1 12
observation 1 and failure for observation 2. Similarily, for those subjects,
Ý y s n and Ý S s n* s n q n . Since n is the sum of n* indepen-i i2 21 i i 12 21 21
dent, identical Bernoulli variates, its conditional distribution is binomial with

Ž . w Ž .x Ž .parameter exp � r 1 q exp � . For testing marginal homogeneity � s 0 ,
1the parameter equals . In summary, the conditional analysis for the logit2

model implies that pairs in which y s y are irrelevant to inference abouti1 i2
�. When this model is realistic, it provides justification for comparing
marginal distributions using only the n q n pairings having outcomes in12 21
different categories at the two observations.

Conditional on S s 1, the joint distribution of the matched pairs isi

y ny i2 21i11 exp � exp �Ž . Ž .
s 10.9Ž .Ł n*ž / ž /1 q exp � 1 q exp �Ž . Ž . 1 q exp �S s1 Ž .i

where the product refers to all pairs having S s 1. Differentiating the log ofi
this conditional likelihood and equating to 0 and solving yields the condi-

Ž .tional ML estimator of � in model 10.8 . You can check that it and its
standard error are

�̂ s log n rn , SE s 1rn q 1rn . 10.10Ž . Ž .'21 12 21 12

10.2.4 Random Effects in Binary Matched-Pairs Model

An alternative remedy to handling the huge number of nuisance parameters
Ž . � 4 � 4in logit model 10.8 treats � as random effects. This regards � as ani i

unobserved random sample from a probability distribution, usually assumed
Ž 2 . � 4to be N �, � with unknown � and � . It eliminates � by averaging withi

respect to their distribution, yielding a marginal distribution. The likelihood
Ž 2 .function then depends on � as well as the N �, � parameters. It has only

three parameters and is more manageable. For matched pairs with non-
ˆ Ž .negative sample log odds ratio, this approach also yields � s log n rn21 12

Ž .Neuhaus et al. 1994 . This model is an example of a generalized linear mixed
model, containing both random effects and the fixed effect �. Its analysis is
presented in Chapter 12.

Ž .Model 10.8 implies that the true odds ratio for each of the n subject-
Ž .specific partial tables equals exp � . In Section 6.3.5 we presented the

Mantel�Haenszel estimate of a common odds ratio for several 2 � 2 tables.
In fact, that estimator applied to subject-specific tables of the form shown in
Table 10.2 is algebraically identical to n rn for tables of the form shown21 12

Žin Table 10.1. Recall that partial tables with responses in only one column
.do not contribute to the CMH test or Mantel�Haenszel estimate. In

summary, the Mantel�Haenszel estimate, the conditional ML estimate, and



MODELS FOR MATCHED PAIRS418

Ž .with nonnegative log odds ratio the ML estimate for the random effects
ˆŽ . Ž .version of logit model 10.8 yield exp � s n rn .21 12

10.2.5 Logistic Regression for Matched Case–Control Studies

Ž .The two observations y , y in a matched pair need not refer to the samei1 i2
subject. For instance, case�control studies that match a single control with
each case yield matched-pairs data. For a binary response Y, each case
Ž . Ž .Y s 1 is matched with a control Y s 0 according to criteria that could
affect the response. Subjects in the matched pairs are measured on the

Ž .predictor variable s of interest, X, and the XY association is analyzed.
Table 10.3 illustrates. A case�control study of acute myocardial infarction

Ž .MI among Navajo Indians matched 144 victims of MI according to age and
gender with 144 people free of heart disease. Subjects were asked whether

Ž .they had ever been diagnosed as having diabetes x s 0, no; x s 1, yes .
Table 10.3 has the same form as Table 10.1 except that the levels of X rather
than the levels of Y form the rows and the columns.

One can display the data for each matched case�control pair using a
partial table of the form shown in Table 10.2, but reversing the roles of X
and Y. The X values have four possible patterns, shown in Table 10.4. There
are 37 partial tables of type a, since for 37 pairs the case had diabetes and
the control did not, 16 partial tables of type b, 9 of type c, and 82 of type d.

Now, for subject t in matched pair i, consider the model

logit P Y s 1 s � q � x . 10.11Ž . Ž .i t i i t

TABLE 10.3 Previous Diagnoses of Diabetes for
( )Myocardial Infarction MI Case–Control Pairs

MI Cases

MI Controls Diabetes No Diabetes Total

Diabetes 9 16 25
No diabetes 37 82 119

Total 46 98 144

Ž .Source: J. L. Coulehan et al., Amer. J. Public Health 76: 412�414 1986 ,
reprinted with permission from the American Public Health Association.

TABLE 10.4 Possible Case–Control Pairs for Table 10.3

a b c d

Diabetes Case Control Case Control Case Control Case Control

Yes 1 0 0 1 1 1 0 0
No 0 1 1 0 0 0 1 1
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The probabilities modeled refer to the distribution of Y given X, but the
retrospective study provides information only about the distribution of X

Ž .given Y. One can estimate the odds ratio exp � , however, since it refers to
Žthe XY odds ratio, which relates to both conditional distributions Sections

.2.2.4, 5.1.4 . Even though this study reverses the roles of X and Y in terms of
Ž .which is fixed and which is random, the conditional ML estimate of exp � is

simply n rn s 37r16 s 2.3.21 12

10.2.6 Conditional ML for Matched Pairs with Multiple Predictors

When the binary response has p predictors for case�control or subject-
specific matched pairs, the model generalizes to

logit P Y s 1 s � q � x q � x q 			 q� x , 10.12Ž . Ž .i t i 1 1 i t 2 2 i t p p i t

where x denotes the value of predictor h for observation t in pair i,hit
t s 1, 2. Typically, one predictor is an explanatory variable of interest, such
as diabetes status. The others are covariates being controlled, in addition to
those already controlled by virtue of using them to form the matched pairs.

� 4The conditional ML approach to estimating � conditions on sufficientj
statistics for � to eliminate them from the likelihood.i

Ž .� Ž .�Let x s x , . . . , x and � s � , . . . , � . A generalization of thei t 1 i t p i t 1 p
derivation in Section 10.2.3 shows that

� � ��P Y s 0, Y s 1 S s 1 s exp x � exp x � q exp x � ,Ž . Ž . Ž .Ž .i1 i2 i i2 i1 i2

� � ��P Y s 1, Y s 0 S s 1 s exp x � exp x � q exp x � . 10.13Ž . Ž . Ž . Ž .Ž .i1 i2 i i1 i1 i2

Ž � .Dividing numerator and denominator by exp x � shows that the firsti1
equation has the form of logistic regression with no intercept and with
predictor values x* s x y x . In fact, one can obtain conditional MLi i2 i1

Ž .estimates for model 10.12 by fitting a logistic regression model to those
Ž .pairs alone, using artificial response y* s 1 when y s 0, y s 1 , y* s 0i1 i2

Ž .when y s 1, y s 0 , no intercept, and predictor values x*. This addressesi1 i2 i
Žthe same likelihood as the conditional likelihood Breslow et al. 1978;

.Chamberlain 1980 .
Ž .To illustrate, for model 10.11 with Table 10.3, let y* s y y y andi i2 i1

x* s x y x . If t s 1 refers to the control and t s 2 to the case, theni i2 i1
y * s 1 always. Since x s 1 represents ‘‘yes’’ for diabetes and x s 0i i t i t

Ž . Ž .represents ‘‘no,’’ y* s 1, x* sy1 for 16 observations, y* s 1, x* s 0 fori i i i
.9 q 82 s 91 observations, and y* s 1, x* sq1 for 37 observations. Thei i

ˆlogit model that forces � s 0 has � s 0.84. With a single binary predictor,ˆ
Ž .the estimate is identical to log n rn .21 12
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10.2.7 Marginal Models and Conditional Models: Extensions

For binary matched-pairs data, Section 10.1 presented analyses for a marginal
Ž .i.e., population-averaged model, and this section presented analyses for a

Ž .conditional i.e., subject-specific model. These models generalize to multino-
Ž .mial responses and to matched sets. For instance, Chamberlain 1980

discussed conditional ML for matched pairs on a multinomial response. For
Ž .binary responses, model 10.12 applies when � refers to a set of repeatedi

measurements on subject i. Or, it could refer to a matched set that is a
cluster of subjects, such as children from family i or fetuses from litter i.

With extensions of the conditional model to matched-set clusters, the
conditional ML approach is restricted to estimating � that are within-j
cluster effects, such as occur in case�control and crossover studies. For these,
the explanatory variable varies in t for each i. Conditional ML cannot
estimate a between-cluster effect. Statistics providing information about such
an effect use subject totals at different levels of the relevant explanatory

� 4variable; however, those totals sum the sufficient statistics for � , so theyi
are themselves fixed and have degenerate distributions after conditioning on
the sufficient statistics. An explanatory variable that is constant in t for each

wi cancels out of the conditional likelihood. You can observe this for matched
Ž . xpairs with 10.13 for any j for which x s x all i. For it, at best one canji1 ji2

stratify by its levels and fit a model estimating within-cluster effects sepa-
rately at each level. An advantage of using the random effects approach
instead of conditional ML with the conditional model is that it is not
restricted to estimating within-cluster effects.

In the remainder of this chapter we emphasize marginal models for
matched pairs with multinomial responses. In the following chapter we deal
with marginal model extensions allowing matched sets and explanatory vari-
ables. Conditional models using a random effects approach have extra
computational complexities. We mention briefly some multinomial condi-
tional models in this chapter, but we defer most discussion to Chapter 12.

10.3 MARGINAL MODELS FOR SQUARE CONTINGENCY TABLES

Matched pairs analyses generalize from binary to I � 2 outcome categories.
� 4 Ž .A square I � I table n shows counts of possible sequences a, b ofab

Ž . Ž .outcomes for Y , Y . Let � s P Y s a, Y s b . Marginal homogeneity is1 2 ab 1 2
Ž . Ž . � ŽP Y s a s P Y s a for a s 1, . . . , I. Marginal models compare P Y s1 2 1
.4 � Ž .4a and P Y s a .2

10.3.1 Marginal Models for Ordinal Classifications

Ž .For ordered categories, marginal model 10.6 for binary matched pairs
extends using ordinal logits. With cumulative logits,

logit P Y F j s � q � x , t s 1, 2, j s 1, . . . , I y 1, 10.14Ž . Ž .t j t
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where x s 0 and x s 1. This model has proportional odds structure1 2
Ž . Ž .Section 7.2.2 . The odds of outcome Y F j equal exp � times the odds of2
outcome Y F j. The model implies stochastically ordered marginal distribu-1
tions, with � � 0 meaning that Y tends to be higher than Y . Marginal1 2
homogeneity corresponds to � s 0.

Ž .Model fitting treats Y , Y as dependent. The ML approach maximizes1 2
� 4the multinomial likelihood for � . This is not simple. Since the modelab
� Ž . 4 � Ž . 4refers to marginal probabilities P Y s a s � and P Y s b s � ,1 aq 2 qb

one cannot substitute the model formula in the kernel Ý Ý n log � ofa b ab ab
the log likelihood, which has joint probabilities. We defer discussion of ML

Ž .model fitting of marginal models to Section 11.2.5. Model 10.14 describes
Ž .the 2 I y 1 marginal probabilities by I parameters, so df s I y 2 for testing

fit. Alternatively, one can compare margins using summaries such as a
Ž .difference in means for chosen category scores Problem 10.38 .

10.3.2 Premarital and Extramarital Sex Example

Refer to Table 10.5. For a General Social Survey, subjects gave their opinion
Ž .about premarital sex a couple having sex before marriage and extramarital

Žsex a married person having sex with someone other than the marriage
.partner . The response categories are 1 s always wrong, 2 s almost always

wrong, 3 s wrong only sometimes, 4 s not wrong at all.
Ž .The sample cumulative marginal proportions are 0.307, 0.389, 0.611 for

Ž .premarital sex and 0.815, 0.918, 0.987 for extramarital sex. This suggests that
responses on premarital sex tended to be higher on the ordinal scale than

Ž .those on extramarital sex. With scores 1, 2, 3, 4 , the mean for premarital sex
is 2.69, closest to the ‘‘wrong only sometimes’’ score, and the mean response
for extramarital sex is 1.28, closest to the ‘‘always wrong’’ score.

ˆŽ . Ž .The cumulative logit model 10.14 has � s 2.51 SE s 0.13 . There is
strong evidence that population responses are more positive on premarital
than on extramarital sex. The fit of the marginal homogeneity model has

2 Ž . Ž . 2 Ž .G s 348.1 df s 3 , and the fit of model 10.14 has G s 35.1 df s 2 . The
ordinal model does not fit well, but it fits much better than the marginal
homogeneity model. Models to be considered in Section 10.4.7 fit better yet.

TABLE 10.5 Opinions on Premarital Sex and Extramarital Sex

Extramarital SexPremarital
Sex 1 2 3 4 Total

1 144 2 0 0 146
2 33 4 2 0 39
3 84 14 6 1 105
4 126 29 25 5 185

Total 387 49 33 6 475
Source: 1989 General Social Survey, National Opinion Research Center.
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10.3.3 Marginal Models for Nominal Classifications

With nominal responses, it is not sensible to assume the same effect for each
logit. A baseline-category logit model has form

log P Y s j rP Y s I s � q � x , t s 1, 2, j s 1, . . . , I y 1,Ž . Ž .t t j j t

10.15Ž .

Ž .where x s 0 and x s 1. This model has 2 I y 1 parameters for the1 2
Ž .2 I y 1 marginal probabilities. It is saturated.

Marginal homogeneity is the special case � s 			 s � s 0. To fit it,1 Iy1
Ž . Ž .Lipsitz et al. 1990 and Madanksy 1963 maximized the multinomial likeli-

� 4hood for n subject to these constraints. Iterative methods produce fittedab
� 4 � 4 2 2values � . Comparing these to n using G or X tests marginalˆab ab

homogeneity, with df s I y 1.
Ž .Bhapkar 1966 tested marginal homogeneity by exploiting the asymptotic

normality of marginal proportions. Let d s p y p , and let d� sa qa aq
Ž .d , . . . , d . It is redundant to include d , since Ýd s 0. The sample1 Iy1 I a

ˆ 'covariance matrix V of n d has elements

® sy p q p y p y p p y p for a � b ,Ž . Ž . Ž .âb ab b a qa aq qb bq

2® s p q p y 2 p y p y p .Ž .âa qa aq aa qa aq

' w Ž .xNow n d y E d has an asymptotic multivariate normal distribution with
ˆ Ž .estimated covariance matrix V. Under marginal homogeneity, E d s 0,

and

� ˆy1W s nd V d 10.16Ž .

is asymptotically chi-squared with df s I y 1. This is a Wald test for parame-
Ž . Ž .ters in the analog of model 10.15 using the identity link. Stuart 1955

� ˆy1 ˆproposed W s nd V d, which uses the sample null covariance matrix V0 0 0
and is the score test. This has

® sy p q p for a � b ,Ž .âb0 ab b a

® s p q p y 2 p .âa0 qa aq aa

Ž . Ž .Ireland et al. 1969 noted that W s W r 1 y W rn . For I s 2, W is0 0 0
Ž .McNemar’s statistic, the square of 10.4 .

These tests use all I y 1 degrees of freedom available for comparisons of
I pairs of marginal proportions. With ordered categories, when I is large and

Ž .the dependence between classifications is strong, ordinal tests with df s 1
Ž .can be much more powerful Agresti 1984, p. 209 .
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TABLE 10.6 Migration from 1980 to 1985, with Fit of Marginal Homogeneity Model

Residence in 1985Residence
in 1980 Northeast Midwest South West Total

Northeast 11,607 100 366 124 12,197
Ž . Ž . Ž . Ž . Ž .11,607 98.1 265.7 94.0 12,064.7

Midwest 87 13,677 515 302 14,581
Ž . Ž . Ž . Ž . Ž .88.7 13,677 379.1 323.3 14,377.1

South 172 255 17,819 270 18,486
Ž . Ž . Ž . Ž . Ž .276.5 350.8 17,819 287.3 18,733.5

West 63 176 286 10,192 10,717
Ž . Ž . Ž . Ž . Ž .92.5 251.3 269.8 10,192 10,805.6

Total 11,929 14,178 18,986 10,888 55,981
Ž . Ž . Ž . Ž .12,064.7 14,377.1 18,733.5 10,805.6

Source: Data based on Table 12 of U.S. Bureau of the Census, Current Population Reports,
ŽSeries P-20, No. 420, Geographical Mobility: 1985 Washington, DC: U.S. Government Printing

.Office , 1987.

10.3.4 Migration Example

For a sample of U.S. residents, Table 10.6 compares region of residence in
1985 with 1980. Relatively few people changed region, 95% of the observa-
tions falling on the main diagonal. The ML fit of marginal homogeneity,

2 Ž .shown in Table 10.6, gives G s 240.8 df s 3 . Statistics using differences in
sample marginal proportions give similar results. For instance, Bhapkar’s

Ž . Ž .statistic 10.16 is W s 236.5 df s 3 .
The sample marginal proportions for the four regions were

Ž . Ž .0.218, 0.260, 0.330, 0.191 in 1980 and 0.213, 0.253, 0.339, 0.194 in 1985. Lit-
tle change occurred over such a short time period. The large test statistics
reflect the huge sample size. To estimate the change for a given region, we

Ž .apply 10.2 to the collapsed 2 � 2 table that combines the other regions. A
Ž . Ž .95% confidence interval for � y � is 0.2131 y 0.2179 � 1.96 0.00054 ,q1 1q

or y0.005 � 0.001. Similarly, a 95% confidence interval for � y � isq2 2q
y0.007 � 0.001, for � y � is 0.009 � 0.001, and for � y � isq3 3q q4 4q
0.003 � 0.001. Although strong evidence of change occurs for all four
regions, the changes were small.

10.4 SYMMETRY, QUASI-SYMMETRY, AND QUASI-INDEPENDENCE

An alternative analysis of square contingency tables directly models the joint
distribution using logit or loglinear models. Some models have marginal
homogeneity as a special case.
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� 4An I � I joint distribution � satisfies symmetry ifab

� s � whenever a � b. 10.17Ž .ab b a

Under symmetry, � sÝ � sÝ � s � for all a, so marginal homo-aq b ab b b a qa
geneity occurs. For I s 2, symmetry is equivalent to marginal homogeneity,
but for I � 2, marginal homogeneity can occur without symmetry.

10.4.1 Symmetry as Logit and Loglinear Models

When all � � 0, symmetry is a logit and a loglinear model. In logit form, itab
is trivially

log � r� s 0 for all a � b.Ž .ab b a

� 4For expected frequencies � s n� , it has the loglinear formab ab

log � s 
 q 
 q 
 q 
 10.18Ž .ab a b ab

where all 
 s 
 . Both classifications have the same single-factor parame-ab b a
� 4ters 
 , so log � s log � . Identifiability requires constraints. A simplera ab b a

expression is log � s 
 , with all 
 s 
 .ab ab ab b a
� 4For Poisson or multinomial cell counts n , the likelihood equations areab

� q � s n q n for all a � b and � s n for all a.ˆ ˆ ˆab b a ab b a aa aa

The main diagonal has perfect fit. The solution that satisfies symmetry is

n q nab b a
� s for all a, b.ˆab 2

IThe logit symmetry model has no parameters for the binomial pairsž /2
�Ž .4 Ž .n , n with a � b, so its residual df s I I y 1 r2. Equivalently, theab b a

Ž . 2loglinear symmetry model log � s 
 
 s 
 for I Poisson countsab ab ab b a
I 2� 4 � 4 � 4 w Ž . xn has 
 with a � b and I 
 , so df s I y I q I I y 1 r2 sab ab aaž /2

Ž . Ž . 2I I y 1 r2. For testing symmetry, Bowker 1948 showed that X simplifies
to

2n y nŽ .ab b a2X s .ÝÝ n q nab b aa�b

Ž .For I s 2 this is McNemar’s statistic, the square of 10.4 . The standardized
Pearson residuals equal

1r2r s n y n n q n .Ž . Ž .ab ab b a ab b a
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Only one residual for each pair of categories is nonredundant, since r sab
yr . They satisfy Ý r 2 s X 2.b a a� b ab

The symmetry model is very simple. Except for a few specialized applica-
tions, such as describing intraobserver agreement for pairs of measurements
by an observer, it rarely fits well. When the marginal distributions differ
substantially, it fits poorly.

10.4.2 Quasi-symmetry

One can accommodate marginal heterogeneity by permitting the main-effect
Ž .terms in the symmetry model 10.18 to differ. The resulting loglinear model,

called quasi-symmetry, is

log � s 
 q 
X q 
Y q 
 , 10.19Ž .ab a b ab

Ž .where 
 s 
 for all a � b Caussinus 1966 . Symmetry is the special caseab b a

X s 
Y for a s 1, . . . , I, and independence is the special case in which alla a

 s 0.ab

The likelihood equations for quasi-symmetry are

� s n , a s 1, . . . , Iˆaq aq

� s n , b s 1, . . . , I 10.20Ž .ˆqb qb

� q � s n q n for a F b.ˆ ˆab b a ab b a

Only one of the first two sets of equations is needed. The other is redundant,
Ž .Ž . Ž .given the other two. The residual df s I y 1 I y 2 r2. From 10.20 ,

� s n for a s 1, . . . , I. Otherwise, the likelihood equations do not have aˆaa aa
direct solution. They are solved using iterative methods such as

Ž .Newton�Raphson and IPF Caussinus 1966 .
The quasi-symmetry model has multiplicative form

� s � � � , where � s � all a � b 10.21Ž .ab a b ab ab b a

Ž .and all parameters are positive. The symmetry model is 10.21 with � s �a a
for all a. This equation indicates that a table satisfying quasi-symmetry is the
cellwise product of a table satisfying independence with one satisfying sym-
metry. The association symmetry implies that odds ratios on one side of the
main diagonal are identical to corresponding odds ratios on the other side. In
fact, the model can be defined by properties such as

� � � �ab II b a II
s for all a � b 10.22Ž .

� � � �a I I b bI Ia

Ž .or � s � for local odds ratios. Goodman 1979a referred to it as theab b a
symmetric association model.
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The meaning of quasi-symmetry is less obvious than symmetry. However, it
usually fits much better and has greater scope. One way to interpret its
parameters relates to subject-specific logit models. For such models having

Ž .additivity of subject terms and occasion terms, of which model 10.8 is the
simplest case, the joint distribution in the corresponding population-averaged

Žtable necessarily satisfies quasi-symmetry see Darroch 1981; Section 13.2.7
.shows this . Consider the generalization of baseline-category logit model

Ž .10.15 to a subject-specific model

log P Y s j rP Y s I s � q � x , t s 1, 2, j s 1, . . . , I y 1.Ž . Ž .i t i t i j j t

Ž .This has the additive form of 10.8 for each j. The model implies, averaging
Ž .over subjects, that the quasi-symmetry model 10.19 holds for the I � I

� Y X 4 Xpopulation-averaged table with � s 
 y 
 , when one constrains 
 sj j j I
Y � 4
 s 0. In fact, for the conditional ML analysis that conditions out � , theI i j

ˆ� 4conditional ML estimates of � relate to the ordinary ML fit of quasi-sym-j
ˆ ˆY ˆX� 4 Ž .metry by � s 
 y 
 Conaway 1989 . This provides an interpretation forj j j

the main-effect terms in quasi-symmetry.
Related results hold for multiple occasions using a multivariate form

Ž . Ž10.33 of quasi-symmetry e.g., Agresti 1997; Conaway 1989; Darroch 1981;
.Tjur 1982; see also Section 13.2.7 . In addition, quasi-symmetry contains as a

special case other useful models. These include the ones in Sections 10.4.3
and 10.6.3.

10.4.3 Quasi-independence

Square tables usually exhibit positive dependence, manifested by larger
counts on the main diagonal than the independence model predicts. Condi-
tional on the event that a matched pair falls off the main diagonal, though,
the relationship may have a simple structure.

A square contingency table satisfies quasi-independence when the variables
are independent, given that the row and column outcomes differ. This has
the loglinear form

log � s 
 q 
X q 
Y q � I a s b , 10.23Ž . Ž .ab a b a

Ž .where I 	 is the indicator function,

1, a s bI a s b sŽ . ½ 0, a � b.

This adds a parameter to the independence model for each cell on the main
Ž . � 4diagonal. The first three terms in 10.23 specify independence, and �a

� 4permit � to depart from this pattern and have arbitrary positive values.aa
When � � 0, � is larger than under independence.a aa

The likelihood equations for quasi-independence are

� s n , � s n , � s n , a s 1, . . . , I.ˆ ˆ ˆaq aq qa qa aa aa
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A perfect fit occurs on the main diagonal, but independence holds for the
remaining cells. The model implies that odds ratios equal 1.0 for all rectangu-
larly formed 2 � 2 tables in which all cells fall off the main diagonal. One
can fit the model using Newton�Raphson or IPF. The model has I more

Ž .2parameters than the independence model, so its residual df s I y 1 y I.
It applies to tables with I G 3.

Ž .Quasi-independence is the special case of quasi-symmetry 10.21 in which
� 4 Ž .� for a � b are identical. Caussinus 1966, p. 146 showed that they areab
equivalent when I s 3.

10.4.4 Migration Revisited

We now return to Table 10.6 on migration patterns. Not surprisingly, the
2 2 Žindependence model fits terribly, with G s 125,923 and X s 146,929. The

2 .maximum possible value of X is 3n s 167,943; see Problem 3.33. The
symmetry model is also unpromising. For instance, 124 people moved from
the northeast to the west, but only 63 people made the reverse move. The

2 Ž .deviance for testing symmetry is G s 243.6 df s 6 .
Quasi-independence states that for people who moved, residence in 1985

is independent of region in 1980. Table 10.7 contains its fitted values, for
2 Ž .which G s 69.5 df s 5 . This model fits much better than the indepen-

dence model, primarily because it forces a perfect fit on the main diagonal,
where most observations occur. However, lack of fit is apparent off that
diagonal. Many more people moved from the northeast to the south and
many fewer moved from the west to the south than quasi-independence
predicts.

TABLE 10.7 Fit of Models to Table 10.6
aResidence in 1985Residence

in 1980 Northeast Midwest South West Total

Northeast 11,607 100 366 124 12,197
1Ž . Ž . Ž .126.6 312.9 150.5

2Ž . Ž . Ž .95.8 370.4 123.8
Midwest 87 13,677 515 302 14,581

Ž . Ž . Ž .117.4 531.1 255.5
Ž . Ž . Ž .91.2 501.7 311.1

South 172 255 17,189 270 18,486
Ž . Ž . Ž .133.2 243.8 290.0
Ž . Ž . Ž .167.6 238.3 261.1

West 63 176 286 10,192 10,717
Ž . Ž . Ž .71.4 130.6 323.0
Ž . Ž . Ž .63.2 166.9 294.9

Total 11,929 14,178 18,986 10,888 55,981
a1Quasi-independence fit; 2quasi-symmetry fit; both models giving perfect fit on main diagonal.
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The quasi-symmetry model has G2 s 3.0, with df s 3. Table 10.7 displays
its fit, which is much better than with quasi-independence. The lack of
symmetry in cell probabilities reflects slight marginal heterogeneity. The
subject-specific effects can be described using the model’s parameter esti-

ˆY ˆX ˆY ˆX ˆY ˆX� 4mates, 
 y 
 sy0.672, 
 y 
 sy0.623, 
 y 
 s 0.122 . For in-1 1 2 2 3 3
stance, for a given subject the estimated odds of living in the south instead of

Ž .the west in 1985 were exp 0.122 s 1.13 times the odds in 1980. We’ll see in
Chapter 12 that such subject-specific effects tend to be stronger than those in
corresponding marginal models, especially in tables like this with strong
association.

A related application with matched samples is the study of occupational
mobility. Each observation pairs parent’s occupation with child’s occupation
Ž .Goodman 1979b; Hout et al. 1987 .

10.4.5 Marginal Homogeneity and Quasi-symmetry

Marginal homogeneity is not equivalent to a loglinear model. However,
quasi-symmetry is a useful model for studying marginal homogeneity.

Ž .Caussinus 1966 showed that symmetry is equivalent to quasi-symmetry and
marginal homogeneity holding simultaneously. We have seen that symmetry
implies both quasi-symmetry and marginal homogeneity. Now we give
Caussinus’s argument for the converse, that the joint occurrence of quasi-
symmetry and marginal homogeneity implies symmetry.

Ž .From 10.21 , if quasi-symmetry holds, � s � � � , where � s � �ab a b ab ab b a
0 for all a � b. Equivalently,

� s � � ,ab a ab

where � s � r� and � s � � � also satisfies � s � � 0 for alla a a ab a b ab ab b a
a � b. If there is also marginal homogeneity, then

� s � � s � � s � ,Ý Ýjq j jb a a j qj
ab

or

� s � � � s � � � , j s 1, . . . , I.Ý Ý Ý Ýj a a j jb a a j b jž / ž /ž / ž /
a ab b

� 4 �Thus, each � is a weighted average of � , with weights � rÝ � � 0,j a a j b b j
4 � 4a s 1, . . . , I . Any set � satisfying this must be identical. Otherwise, therea

would be a � that is no greater than any � but smaller than at least one,j a
and hence it could not be a positive weighted average of all of them. But

� 4since � are identical, � s � � s � � s � � s � , so symmetrya ab a ab b ab b b a b a
holds. Thus, a table that satisfies both quasi-symmetry and marginal homo-
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geneity also satisfies symmetry. Since the converse holds,

quasi-symmetry q marginal homogeneity s symmetry. 10.24Ž .

Ž .It follows that when quasi-symmetry QS holds, marginal homogeneity
Ž . Ž . � X Y 4MH is equivalent to symmetry S , which is 
 s 
 , a s 1, . . . , I in thea a
QS model. Thus, conditional on quasi-symmetry, testing marginal homogene-
ity is equivalent to testing symmetry. A test of marginal homogeneity com-
pares fit statistics for the symmetry and quasi-symmetry models,

2 � 2 2G S QS s G S y G QS , 10.25Ž . Ž . Ž . Ž .

with df s I y 1. This is an alternative to approaches using marginal models
discussed in Section 10.3.3.

2Ž . 2Ž .Table 10.6 on migration from 1980 to 1985 has G S s 243.6 and G QS
2Ž � . Ž .s 3.0. The difference G S QS s 240.6 df s 3 shows extremely strong

evidence of marginal heterogeneity. Results are similar to those quoted in
Ž .Section 10.3.4 for the likelihood-ratio test based on model 10.15 , for which

2 Ž .G s 240.8, or the Wald test, for which W s 236.5 both with df s 3 .

10.4.6 Ordinal Quasi-symmetry Model

The loglinear models presented so far for square tables treat classifications
as nominal. With ordered categories, more parsimonious models are useful.
Let u F 			 F u denote ordered scores for both the row and columns. An1 I
ordinal quasi-symmetry model is

log � s 
 q 
 q 
 q � u q 
 , 10.26Ž .ab a b b ab

where 
 s 
 for all a � b. It is the special case of the quasi-symmetryab b a
Ž .model 10.19 in which


Y y 
X s � ub b b

has a linear trend. Symmetry is the special case � s 0.
This model has logit representation,

log � r� s � u y u for a F b. 10.27Ž . Ž . Ž .ab b a b a

Ž .This is the special case of the linear logit model, logit � s � q � x, with
Ž .� s 0, x s u y u and � equal to the conditional probability of cell a,b ,b a

Ž . Ž . � �given response sequence a, b or b, a . The greater the value of � , the
greater the difference between � and � and hence between the marginalab b a
distributions.
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The likelihood equations for ordinal quasi-symmetry are

u � s u n , u � s u n ,ˆ ˆÝ Ý Ý Ýa aq a aq b qb b qb
a a b b

� q � s n q n for a � b.ˆ ˆab b a ab b a

The fitted marginal counts need not equal the observed marginal counts.
However, dividing the first two equations by n shows that they have the same
means.

When � � 0, this model implies stochastically ordered margins. When
Ž . Ž .� � 0 � � 0 , responses have a higher mean in the column row distri-

Ž .bution. Like the ordinal marginal models Section 10.3.1 , this model
concentrates the marginal effect on df s 1. A test of marginal homogeneity
Ž .H : � s 0 uses0

ordinal quasi-symmetry q marginal homogeneity s symmetry.

The likelihood-ratio test statistic compares the deviance for symmetry and
ordinal quasi-symmetry.

Ž .One can fit this model by fitting 10.27 with logit model software: Identify
Ž .n , n as binomial with n q n trials, and fit a logit model with noab b a ab b a

Ž .intercept and predictor x s u y u . One can also fit 10.26 using iterativeb a
methods for loglinear models.

10.4.7 Premarital and Extramarital Sex Revisited

For Table 10.5 on attitudes toward premarital and extramarital sex, a cursory
Ž 2glance at the data reveals that the symmetry model is inadequate G s 402.2,

. Ž 2 .df s 6 . By comparison, quasi-symmetry fits well G s 1.4, df s 3 . The
� 4simpler model of ordinal quasi-symmetry also fits well: With scores 1, 2, 3, 4 ,

2 Ž .G s 2.1 df s 5 .
ˆ Ž .The ML estimate � sy2.86. From 10.27 , the estimated probability that

outcome on premarital sex is x categories more positive than the outcome on
Ž .extramarital sex equals exp 2.86 x times the reverse probability. For instance,

the estimated probability that premarital sex is judged almost always wrong
Ž .and extramarital sex is always wrong equals exp 2.86 s 17.4 times the

estimated probability that premarital sex is always wrong and extramarital sex
is almost always wrong.

10.4.8 Other Ordinal Models for Square Tables

For ordered classifications, when symmetry does not hold, often either
� � � for all a � b, or � � � for all a � b. A generalization ofab b a ab b a
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symmetry with this property is the logit model

log � r� s  for a � b. 10.28Ž . Ž .ab b a

It implies that for all a � b,

� �P Y s a, Y s b Y � Y s P Y s b , Y s a Y � Y .Ž . Ž .i1 i2 i1 i2 i1 i2 i1 i2

The pattern of probabilities for cells above the main diagonal is a mirror
image of the pattern for cells below it. This property is called conditional

Ž .symmetry McCullagh 1978 . Problem 10.35 shows the corresponding loglin-
ear model and its fit. Symmetry is the special case  s 0.

� 4Another model generalizes quasi-independence. Let u be ordered scores.a
The model

log � s 
 q 
X q 
Y q � u u q � I a s b 10.29Ž . Ž .ab a b a b a

w Ž .xpermits linear-by-linear association see 9.6 off the main diagonal. It is a
special case of quasi-symmetry, and quasi-independence is the special case
� s 0. For equal-interval scores, it implies uniform local association, given

Ž .that responses differ. Goodman 1979a called it quasi-uniform association.
For Table 10.5 on opinions about premarital and extramarital sex, the

Ž .conditional symmetry model has  sy4.130 SE s 0.451 . The estimatedˆ
Ž .probability that extramarital sex is considered more wrong are exp 4.13 s

62.2 times the estimated probability that premarital sex is considered more
ˆ Ž .wrong. The quasi-uniform association model has � s 0.632 SE s 0.106 . Off

Ž .the main diagonal, the estimated local odds ratio equals exp 0.632 s 1.88.

10.5 MEASURING AGREEMENT BETWEEN OBSERVERS

We now discuss an application, analyzing agreement between two observers,
that uses matched-pairs models. We illustrate with Table 10.8. This shows
ratings by two pathologists, labeled A and B, who separately classified 118
slides regarding the presence and extent of carcinoma of the uterine cervix.

Ž . Ž .The rating scale has the ordered categories 1 negative, 2 atypical squa-
Ž . Ž .mous hyperplasia, 3 carcinoma in situ, 4 squamous or invasive carcinoma.

10.5.1 Agreement: Departures from Independence

Let � denote the probability that observer A classifies a slide in category aab
and observer B classifies it in category b. Then � is the probability thataa
they both choose category a, and Ý � is the total probability of agreement.a aa
Perfect agreement occurs when Ý � s 1.a aa

With subjective scales, agreement is less than perfect. Analyses focus on
describing strength of agreement and detecting patterns of disagreement.
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TABLE 10.8 Diagnoses of Carcinoma
aPathologist B

Pathologist A 1 2 3 4 Total

1 22 2 2 0 26
Ž . Ž . Ž . Ž .8.5 y0.5 y5.9 y1.8

2 5 7 14 0 26
Ž . Ž . Ž . Ž .y0.5 3.2 y0.5 y1.8

3 0 2 36 0 38
Ž . Ž . Ž . Ž .y4.1 y1.2 5.5 y2.3

4 0 1 17 10 28
Ž . Ž . Ž . Ž .y3.3 y1.3 0.3 5.9

Total 27 12 69 10 118
aValues in parentheses are standardized Pearson residuals for the independence model.
Source: N. S. Holmquist, C. A. McMahon, and O. D. Williams, Arch. Pathol. 84: 334�345
Ž .1967 ; reprinted with permission from the American Medical Association. See also Landis

Ž .and Koch 1977 .

Agreement and association are distinct facets of the joint distribution. Strong
agreement requires strong association, but strong association can exist with-
out strong agreement. If observer A consistently rates subjects one category
higher than observer B, strength of agreement is poor even though the
association is strong.

� 4 � 4Evaluations of agreement compare n to the values n n rn pre-ab aq qb
dicted under independence. That model is a baseline, showing the agreement
expected if no association existed between ratings. Normally, it fits poorly if

Ž .even mild agreement exists, but its cell standardized residuals Section 3.3.1
show patterns of agreement and disagreement. Ideally, standardized residu-
als are large positive on the main diagonal and large negative off that
diagonal. The sizes are influenced by sample size n, however, larger values
tending to occur as n increases.

Ž 2 .The independence model fits Table 10.8 poorly G s 118.0, df s 9 .
That table reports the standardized Pearson residuals in parentheses. The
large positive residuals on the main diagonal indicate that agreement for
each category is greater than expected by chance, especially for the first
category. Off the main diagonal they are primarily negative. Disagreements
occurred less than expected under independence, although the evidence of
this is weaker for categories closer together. The most common disagree-
ments were observer B choosing category 3 and observer A instead choosing
category 2 or 4.

10.5.2 Using Quasi-independence to Analyze Agreement

More complex models add components that relate to agreement beyond that
expected under independence. A useful generalization is quasi-independence
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TABLE 10.9 Fitted Values for Carcinoma Diagnoses of Table 10.8
aPathologist B

Pathologist A 1 2 3 4

1 22 2 2 0
1Ž . Ž . Ž . Ž .22 0.7 3.3 0.0
2Ž . Ž . Ž . Ž .22 2.4 1.6 0.0

2 5 7 14 0
Ž . Ž . Ž . Ž .2.4 7 16.6 0.0
Ž . Ž . Ž . Ž .4.6 7 14.4 0.0

3 0 36 0
Ž . Ž . Ž . Ž .0.8 1.2 36 0.0
Ž . Ž . Ž . Ž .0.4 1.6 36 0.0

4 0 1 17 10
Ž . Ž . Ž . Ž .1.9 3.0 13.1 10
Ž . Ž . Ž . Ž .0.0 1.0 17.0 10

a1Quasi-independence model; 2quasi-symmetry model.

Ž . � 410.23 , which adds main-diagonal parameters � . For Table 10.8, thisa
2 Ž .model has G s 13.2 df s 5 . It fits much better than independence, but

some lack of fit remains. Table 10.9 shows the fit.
For two subjects, suppose that each observer classifies one in category a

and one in category b. The odds that the observers agree rather than
disagree on which is in category a and which is in category b equal

� � � �aa bb aa bb
 s s . 10.30Ž .ab � � � �ab b a ab b a

As  increases, the observers are more likely to agree for that pair ofab
categories. Under quasi-independence,

 s exp � q � .Ž .ab a b

� 4Larger � represent stronger agreement. For instance, for Table 10.8,a
ˆ ˆ� s 0.6 and � s 1.9, and  s 12.3. The degree of agreement also seemsˆ2 3 23
fairly strong for other pairs of categories.

10.5.3 Quasi-symmetry and Agreement Modeling

For Table 10.8, the quasi-independence model shows some lack of fit. Given
that the pathologists disagree, some association remains between ratings. For

Ž .observer agreement tables, this is common. Quasi-symmetry 10.19 often fits
much better, because it permits association. For Table 10.8, it has G2 s 1.0
Ž .df s 2 . Table 10.9 displays the fit. It is not unusual for tables to have many
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Žempty cells. When n q n s 0 for any pair such as categories 1 and 4 inab b a
.Table 10.8 , the ML fitted values for quasi-symmetry in those cells must also

be zero since one of its likelihood equations is � q � s n q n . Oneˆ ˆab b a ab b a
should eliminate those cells from the fitting process to get the proper
residual df value.

ˆ ˆ ˆ ˆ ˆŽ .Under quasi-symmetry,  s exp 
 q 
 y 
 y 
 , where 
 sâb aa bb ab b a ab

̂ . For categories 2 and 3 of Table 10.8, for instance,  s 10.7.ˆb a 23

Loglinear models directly address the association component of agree-
ment. The quasi-symmetry model also yields information about similarity of
marginal distributions. The simpler symmetry model that forces the margins

Ž 2 .to be identical fits Table 10.8 poorly G s 39.2, df s 5 . The statistic
2Ž � . Ž .G S QS s 39.2 y 1.0 s 38.2 df s 3 provides strong evidence of marginal

heterogeneity. In Table 10.8, differences in marginal proportions are substan-
tial in each category but the first. The marginal heterogeneity is one reason
that the agreement is not stronger.

Models for agreement can take ordering of categories into account.
Conditional on observer disagreement, a tendency usually remains for high
Ž . Ž .low ratings by one observer to occur with relatively high low ratings by the

Ž .other observer see Problem 10.41 .

10.5.4 Kappa Measure of Agreement

An alternative approach summarizes agreement with a single index. For
Ž .nominal scales, the most popular measure is Cohen’s kappa Cohen 1960 . It

compares the probability of agreement Ý � to that expected if the ratingsa aa
were independent, Ý � � , bya aq qa

Ý � yÝ � �a aa a aq qa
� s .

1 yÝ � �a aq qa

The denominator equals the numerator with Ý � replaced by its maximuma aa
possible value of 1, corresponding to perfect agreement. Kappa equals 0
when the agreement merely equals that expected under independence. It
equals 1.0 when perfect agreement occurs. The stronger the agreement, the
higher is � , for given marginal distributions. Negative values occur when
agreement is weaker than expected by chance, but this rarely happens.

For multinomial sampling, the sample value � has a large-sample normalˆ
Ž .distribution. Its estimated asymptotic variance Fleiss et al. 1969 is

1 P 1 y P 2 1 y P 2 P P yÝ p p q pŽ . Ž . Ž .o o o o e a aa aq qa2� � s qŽ .ˆ ˆ 2 3½n 1 y P 1 y PŽ . Ž .e e

2 2 21 y P Ý Ý p p q p y 4PŽ . Ž .o a b ab bq qa e
q ,4 51 y PŽ .e
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where P sÝ p and P sÝ p p . It is rarely plausible that agreemento a aa e a aq qa
is no better than expected by chance. Thus, rather than testing H : � s 0,0
it is more relevant to estimate strength of agreement by interval estimation
of � .

ŽFor Table 10.8, P s 0.636 and P s 0.281. Sample kappa equals 0.636 yo e
. Ž .0.281 r 1 y 0.281 s 0.493. The difference between observed agreement and

that expected under independence is about 50% of the maximum possible
difference. The estimated standard error is 0.057, so � apparently falls
roughly between 0.4 and 0.6, moderately strong agreement.

10.5.5 Weighted Kappa: Quantifying Disagreement

Kappa treats classifications as nominal. When categories are ordered, the
seriousness of a disagreement depends on the difference between the ratings.
For nominal classifications also, some disagreements may be considered

Žmore severe than others. The measure weighted kappa Spitzer et al.
. � 41967 uses weights w satisfying 0 F w F 1, with all w s 1 and allab ab aa

�w s w to describe closeness of agreement. One possibility is w s 1 yab b a ab
� � Ž .4a y b r I y 1 , for which agreement is greater for cells nearer the main

Ž . � Ž .2 Ž .24diagonal. Fleiss and Cohen 1973 suggested w s 1 y a y b r I y 1 .ab
The weighted agreement is Ý Ý w � and weighted kappa isa b ab ab

Ý Ý w � yÝ Ý w � �a b ab ab a b ab aq qb
� s .w 1 yÝ Ý w � �a b ab aq qb

Controversy surrounds the utility of kappa and weighted kappa, partly
because their values depend strongly on the marginal distributions. The same
diagnostic rating process can yield quite different values, depending on the

Ž .proportions of cases of the various types Problem 10.40 . In summarizing a
contingency table by a single number, the reduction in information can be
severe. It is helpful to construct models providing more detailed investigation
of the agreement and disagreement structure rather than to depend solely on
a summary index.

10.5.6 Extensions to Multiple Observers

With several observers, ordinary loglinear models are not usually relevant.
Their description of agreement and association between two observers is
conditional on ratings by the others. It is more relevant to study this
marginally, without conditioning on the other ratings. Hence, for R ob-
servers, modelling simultaneously the pairwise agreement and association

Rstructure requires studying the pairs of two-way marginal distributionsž /2Ž .Becker and Agresti 1992 .
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Other approaches have also been used. For instance, generalizations of
Žkappa summarize pairwise agreements or multiple agreements Fleiss 1981,

.Sec. 13.2; Landis and Koch 1977 . Or, it may make sense to use a mixture
model that assumes latent classes of subjects for whom the observers agree
and subjects for whom they disagree. Such an analysis is shown in Section
13.1.2.

10.6 BRADLEY–TERRY MODEL FOR PAIRED PREFERENCES

Sometimes, categorical outcomes result from pairwise evaluations. A com-
mon example is athletic competitions, when the outcome for a team or player

Ž .consists of categories win, lose . Another example is pairwise comparison
of product brands, such as two brands of wine of some type. When a wine
critic rates I brands of sauvignon blanc, it might be difficult to establish an
outright ranking, especially if I is large. However, for any given pair, the
critic could probably state a preference after tasting them at the same
occasion. An overall ranking of the wines could then be based on the
pairwise preferences. We present a model for this in this section.

10.6.1 Bradley–Terry Model

Ž .Bradley and Terry 1952 proposed a logit model for paired evaluations.
Let � denote the probability that a is preferred to b. Suppose thatab
� q � s 1 for all pairs; that is, a tie cannot occur. The Bradley�Terryab b a
model is

� ab
log s � y � . 10.31Ž .a b� b a

Alternatively,

� s exp � r exp � q exp � .Ž . Ž . Ž .ab a a b

1 1Thus, � s when � s � and � � when � � � .ab a b ab a b2 2
ˆŽ .Identifiability requires a constraint such as � s 0 or Ý exp � s 1.I a a

I Ž� 4 . Ž .Since the model describes probabilities � for a � b by I y 1abž /2

I Ž .parameters, residual df s y I y 1 .ž /2
For a � b, let N denote the sample number of evaluations, with aab

preferred n times and b preferred n s N y n times. A squareab b a ab ab
contingency table with empty cells on the main diagonal summarizes results.
When the N comparisons are independent with probability � for each,ab ab

Ž .n has a bin N , � distribution. If evaluations for different pairs are alsoab ab ab
independent, ordinary methods for logit models apply for fitting the model.
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TABLE 10.10 Results of 1987 Season for American League Baseball Teams
aLosing TeamWinning

Team Milwaukee Detroit Toronto New York Boston Cleveland Baltimore

Ž . Ž . Ž . Ž . Ž . Ž .Milwaukee � 7 7.0 9 7.4 7 7.6 7 8.0 9 9.2 11 10.8
Ž . Ž . Ž . Ž . Ž . Ž .Detroit 6 6.0 � 7 7.0 5 7.1 11 7.6 9 8.8 9 10.5
Ž . Ž . Ž . Ž . Ž . Ž .Toronto 4 5.6 6 6.0 � 7 6.7 7 7.1 8 8.4 12 10.2
Ž . Ž . Ž . Ž . Ž . Ž .New York 6 5.4 8 5.9 6 6.3 � 6 7.0 7 8.3 10 10.1
Ž . Ž . Ž . Ž . Ž . Ž .Boston 6 5.0 2 5.4 6 5.9 7 6.0 � 7 7.9 12 9.8
Ž . Ž . Ž . Ž . Ž . Ž .Cleveland 4 3.8 4 4.2 5 4.6 6 4.7 6 5.1 � 6 8.6
Ž . Ž . Ž . Ž . Ž . Ž .Baltimore 2 2.2 4 2.5 1 2.8 3 2.9 1 3.2 7 4.4 �

aValues in parentheses represent the fit of the Bradley�Terry model.
Ž .Source: American League Red Book, 1988 St. Louis, MO: Sporting News Publishing Co.

10.6.2 Home Team Advantage in Baseball

Table 10.10 shows results of the 1987 season for the seven baseball teams in
the Eastern Division of the American League. For instance, of games
between Boston and New York, Boston won 7 and New York won 6. Table
10.10 shows the population of regular-season games. We regard this as a
sample estimate of a conceptual distribution representing the long-run per-
formance of teams as constituted in 1987.

7We fitted the Bradley�Terry model as a logit model for s 21 indepen-ž /2
dent binomial samples, using an appropriate model matrix and no intercept
Ž . Ž 2e.g., for SAS, see Table A.19 . The model fits adequately G s 15.7,

. � 4df s 15 . Table 10.10 contains the fitted values � . Table 10.11 displaysˆab
the sample proportion of games each team won and the model estimates of

ˆ ˆ ˆ ˆ� 4 Ž . � Ž .4 w Ž . x� setting � s 0 and exp � setting Ý exp � s 1 . When Bostona 7 a a a
played New York, the estimated probability that Boston won is

ˆ ˆ ˆ ˆ� s exp � exp � q exp � s 0.46.Ž . Ž . Ž .54 5 5 4

ˆ ˆ ˆThe standard error of each � and of each � y � is about 0.3, so nota a b
much evidence exists of a difference among the top five teams.

TABLE 10.11 Results of Fitting Bradley–Terry Models to Baseball Data

ˆ ˆ ˆŽ . Ž .Winning � exp � exp �i i i
Ž . Ž . Ž .Team Percentage 10.31 10.31 10.32

Milwaukee 64.1 1.58 0.218 0.220
Detroit 60.2 1.44 0.189 0.190
Toronto 56.4 1.29 0.164 0.164
New York 55.1 1.25 0.158 0.157
Boston 51.3 1.11 0.136 0.137
Cleveland 39.7 0.68 0.089 0.088
Baltimore 23.1 0.00 0.045 0.044
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TABLE 10.12 Wins rrrrr Losses by Home and Away Team, 1987

Away Team

Home Team Milwaukee Detroit Toronto New York Boston Cleveland Baltimore

Milwaukee � 4-3 4-2 4-3 6-1 4-2 6-0
Detroit 3-3 � 4-2 4-3 6-0 6-1 4-3
Toronto 2-5 4-3 � 2-4 4-3 4-2 6-0
New York 3-3 5-1 2-5 � 4-3 4-2 6-1
Boston 5-1 2-5 3-3 4-2 � 5-2 6-0
Cleveland 2-5 3-3 3-4 4-3 4-2 � 2-4
Baltimore 2-5 1-5 1-6 2-4 1-6 3-4 �

Ž .Source: American League Red Book, 1988 St. Louis, MO: Sporting News Publishing Co. .

This model does not recognize which team is the home team. Most sports
have a home field advantage: A team is more likely to win when it plays at its
home city. Table 10.12 contains results for the 1987 season according to the
Ž .home team, away team classification. For instance, when Boston was the
home team, it beat New York 4 times and lost 2 times; when New York was
the home team, it beat Boston 4 times and lost 3 times. Now for all a � b, let
�* denote the probability that team a beats team b, when a is the homeab
team. Consider logit model

�*ab
log s � q � y � . 10.32Ž . Ž .a b1 y �*ab

When � � 0, a home field advantage exists. The home team of two evenly
Ž . w Ž .xmatched teams has probability exp � r 1 q exp � of winning.

Ž .For Table 10.12, model 10.32 describes 42 binomial distributions with 7
2 ˆŽ . � Ž .4parameters. It has G s 38.6 df s 35 . Table 10.11 displays exp � , whicha

are similar to those obtained previously. The estimate of the home-field
parameter is � s 0.302. For two evenly matched teams, the home team hadˆ
estimated probability 0.575 of winning. When Boston played New York, the
estimated probability of a Boston win was 0.54 at Boston and 0.39 at New
York.

Ž .Model 10.32 is a useful generalization of the Bradley�Terry model
whenever an order effect exists. For instance, in pairwise taste evaluations,
the product tasted first may have a slight advantage.

10.6.3 Bradley–Terry Model and Quasi-symmetry

Ž .Fienberg and Larntz 1976 showed that the Bradley�Terry model is a logit
Ž .formulation of the quasi-symmetry model 10.19 . For quasi-symmetry, given

Ž . Ž .that an observation is in cell a, b or b, a , the logit of the conditional
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Ž .probability of cell a, b equals

�ab X Y X Y X Y X Ylog s 
 q 
 q 
 q 
 y 
 q 
 q 
 q 
Ž . Ž .a b ab b a b a�b a

s 
X y 
Y y 
X y 
Y s � y � ,Ž . Ž .a a b b a b

X Y ˆX ˆY ˆ� 4 � 4 � 4where � s 
 y 
 . Estimates 
 and 
 for quasi-symmetry yield �a a a a a a
for the Bradley�Terry model.

10.6.4 Extensions to Ties and Ordinal Evaluations

The Bradley�Terry model extends to ordinal comparisons, such as the
Ževaluation scale much better, slightly better, the same, slightly worse, much

.worse in comparing two products. With cumulative logits and an I-category
evaluation scale, let Y denote the response for a comparison of a with b.ab
The model is

logit P Y F j s � q � y � .Ž . Ž .ab j a b

Ž . Ž . Ž .Since P Y F j s P Y � I y j s 1 y P Y F I y j , it follows thatab b a b a
w Ž x w Ž .xlogit P Y F j sy logit P Y F I y j . Thus, necessarily, � sy� .ab b a j Iyj

Ž .The most common ordered preference scale is win, tie, lose . Then,
� sy� .1 2

10.7 MARGINAL AND QUASI-SYMMETRY MODELS FOR
MATCHED SETS*

Methods for matched pairs extend to matched sets. Here we present mainly
the loglinear modeling approach; in Chapters 11 and 12 we present exten-
sions of the marginal and conditional logit modeling approaches.

10.7.1 Marginal Homogeneity, Complete Symmetry, and Quasi-symmetry

Ž .Let Y , Y , . . . , Y denote the T responses in each matched set. With I1 2 T
response categories, a contingency table with I T cells summarizes the possi-

Ž .ble outcomes. Let i s i , . . . , i denote the cell having Y s i , t s 1, . . . , T.1 T t t
Ž .Let � s P Y s i , t s 1, . . . , T , and let � s n� . Theni t t i i

P Y s j s � ,Ž .t q	 	 	qjq	 	 	q

� Ž . 4where the j subscript is in position t, and P Y s j , j s 1, . . . , I is thet
marginal distribution for Y .t
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This T-way table satisfies marginal homogeneity if

P Y s j s P Y s j s 			 s P Y s j for j s 1, . . . , I.Ž . Ž . Ž .1 2 T

It satisfies complete symmetry if

� s �i j

Ž . Ž .for any permutation j s j , . . . , j of i s i , . . . , i . Complete symmetry1 T 1 T
implies marginal homogeneity, but the converse does not hold except when
T s I s 2.

Complete symmetry is a loglinear model. One representation is

log � s 
 ,i ab . . . m

Ž .where a is the minimum of i , . . . , i , b is the next smallest, . . . , and m is1 T
the maximum. In a three-way table, for instance, log � s log � s122 212

� 4log � s 
 . The number of 
 parameters is the number of ways221 122 ab . . . m
I q T y 1of selecting T out of I items with replacement, which is . Thus,ž /T

I q T y 1T Ž .residual df s I y Haberman 1978, p. 518 .ž /T
An I T table satisfies quasi-symmetry if

log � s 
 q 
 q 			 q
 q 
 10.33Ž .i 1 i 2 i T i ab . . . m1 2 T

where 
 is defined as in the complete symmetry model. It has symmet-ab . . . m
ric association and higher-order interaction terms, but permits each single-
factor marginal distribution to have its own parameters. Identifiability re-
quires constraints such as 
 s 0 for each t. One set of main-effect terms ist I

Ž . Ž .Ž .redundant Problem 10.31 . This model has I y 1 T y 1 more parameters
than complete symmetry. It is fitted using iterative methods.

For ordinal responses, a simpler model with quantitative main effects uses
� 4ordered scores u . The ordinal quasi-symmetry model isa

log � s � u q � u q 			 q� u q 
i 1 i 2 i T i ab . . . m1 2 T

where one can set � s 0. Complete symmetry is the special case � sT 1
			 s � .T

Ž .When quasi-symmetry 10.33 or ordinal quasi-symmetry holds, marginal
homogeneity is equivalent to complete symmetry. Marginal heterogeneity

Ž . Ž .occurs if quasi-symmetry QS holds but complete symmetry S does not.
The statistic

2 � 2 2G S QS s G S y G QSŽ . Ž . Ž .
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tests marginal homogeneity. Under complete symmetry, it is asymptotically
Ž .Ž .chi-squared with df s I y 1 T y 1 . The corresponding test for the ordinal

Ž .quasi-symmetry model has df s T y 1 .

10.7.2 Attitudes toward Legalized Abortion Example

Refer to Table 10.13. Subjects indicated whether they support legalized
Ž .abortion in three situations: 1 if the family has a very low income and

Ž .cannot afford any more children, 2 when the woman is not married and
Ž .does not want to marry the man, and 3 when the woman wants it for any

reason. The table also classifies subjects by gender, resulting in a 24 table.
ŽLet � denote the expected frequency for gender g 1 s female; 0 sg hi j

. Ž .male with response sequence h, i, j for the three questions. Consider the
model

log � s � g q 
 ,g hi j abc

Ž . Ž . Ž .where the interaction term is 
 when h, i, j s 1, 1, 1 , 
 when h, i, j111 112
Ž . Ž . Ž . Ž . Ž . Ž .s 1, 1, 2 or 1, 2, 1 or 2, 1, 1 , 
 when h, i, j s 1, 2, 2 or 2, 1, 2 or122

Ž . Ž . Ž .2, 2, 1 , and 
 when h, i, j s 2, 2, 2 . This model implies the same222
complete symmetry pattern of probabilities for each gender. Its fit has
G2 s 39.2 with df s 11.

Adding main-effect terms for the three issues implies the same quasi-sym-
metric pattern for each gender. It fits much better, having G2 s 10.2 with
df s 9. Thus, it seems plausible to assume a symmetric association structure.
In fact, the loglinear model with only two-factor association terms has fitted
log odds ratios of 3.2 for items 1 and 2, 2.6 for items 1 and 3, and 3.3 for
items 2 and 3.

One can test marginal homogeneity, given gender, by the likelihood-ratio
statistic 39.2 y 10.2 s 29.0, with df s 2. An analysis of the main-effect terms
in the quasi-symmetry model shows greater support for legalized abortion
when the family has a low income and cannot afford any more children than
in the other two instances.

TABLE 10.13 Support for Legalizing Abortion in Three Situations, by Gender
aSequence of Responses on the Three Items

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Gender 1, 1, 1 1, 1, 2 2, 1, 1 2, 1, 2 1, 2, 1 1, 2, 2 2, 2, 1 2, 2, 2

Male 342 26 6 21 11 32 19 356
Female 440 25 14 18 14 47 22 457
a Ž . Ž .Items are 1 if the family has a very low income and cannot afford anymore children, 2 when

Ž .the woman is not married and does not want to marry the man, and 3 when the woman wants it
for any reason. 1, yes; 2, no.
Source: Data from 1994 General Social Survey, National Opinion Research Center.
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10.7.3 Types of Marginal Symmetry

A general type of symmetry for I T tables has marginal homogeneity and
T Ž .complete symmetry as special cases. For an I table, P Y s j , . . . , Y s j ,t 1 t h1 h

where h is between 1 and T , is a h-dimensional marginal probability, h s 1
giving single-variable marginal probabilities. There is hth-order marginal

Ž .symmetry if for all h-tuples j s j , . . . , j , this probability is the same for1 h
Ž .each permutation of j and for all combinations t s t , . . . , t of h of the T1 h

responses.
For h s 1, first-order marginal symmetry is marginal homogeneity. Sec-

Ž .ond-order marginal symmetry occurs if for all t and u, P Y s a, Y s b ist u
Ž .the same and the equality holds for all pairs of outcomes a, b . In other

words, the two-way marginal tables exhibit symmetry, and they are identical.
T th-order marginal symmetry in an I T table is complete symmetry.

When hth-order symmetry holds, ith-order marginal symmetry holds for
any i � h. For instance, complete symmetry implies second-order marginal
symmetry, which itself implies marginal homogeneity. Although this hierarchy
is mathematically attractive, the higher-order symmetries are usually too
restrictive to fit well in practice.

10.7.4 Marginal Models: Multiway Tables

In practice, usually the form of the joint distribution is of secondary interest.
Research questions pertain instead to the marginal distributions. The
marginal models of Section 10.3 for matched pairs extend to matched sets.
For instance, with ordinal classifications, a cumulative logit model is

logit P Y F j s � q � , j s 1, . . . , I y 1, t s 1, . . . , T . 10.34Ž . Ž .t j t

In the next chapter we study marginal models in more general contexts,
extending the analyses of this chapter to incorporate matched sets and
explanatory variables.

NOTES

Section 10.1: Comparing Dependent Proportions

Ž .10.1. Miettinen 1969 generalized the McNemar test to case�control sets having several
controls per case. The Table 10.2 representation is then useful. Each of n matched

Ž .sets forms a stratum of a 2 � 2 � n table with one observation in column 1 the case
Ž .and several observations in column 2 the controls .

Ž . Ž .Altham 1971 and Ghosh et al. 2000 presented Bayesian analyses for binary
Ž . Ž . Ž .matched pairs. Copas 1973 , Gart 1969 , Kenward and Jones 1994 , and Miettinen

Ž . Ž1969 studied generalizations of matched-pairs designs. With some approaches Ghosh
.et al. 2000; Liang and Zeger 1988; Suissa and Shuster 1991 , inferences about

marginal homogeneity also use the main-diagonal observations.
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Section 10.4: Symmetry, Quasi-symmetry, and Quasi-independence

Ž . Ž .10.2. For other discussion of quasi-symmetry, see Darroch 1981 and McCullagh 1982 .
Ž .The term quasi-independence originated in Goodman 1968 . A more general defini-

Ž .tion of it is � s � � for some fixed set of cells. See Caussinus 1966 , Fienbergab a b
Ž . Ž .1970b, 1972 , and Goodman 1968 . Caussinus used the concept to analyze tables that
deleted a certain set of cells from consideration, and Goodman used it in earlier

Ž .analyses of social mobility. Altham 1975 used it with triangular tables, for which
Žobservations occur only above or only below the main diagonal. Stigler 1999, Chap.

.19 summarized early uses, including Karl Pearson’s handling in 1913 of a triangular
Ž . Ž .array. Booth and Butler 1999 and Smith et al. 1996 discussed exact tests for

square-table models.
10.3. The effect � in ordinal quasi-symmetry relates to the occasion effect in a subject-

Ž .specific adjacent-categories-logit model Agresti 1993 . Conditional symmetry is a
special case of diagonals-parameter symmetry,

log � r� s  , a � b.Ž .ab b a bya

Ž . Ž .See Goodman 1979b, 1985 and Hout et al. 1987 .
10.4. In some applications a table is a priori symmetric or independent, but one can observe

Ž .only the pair i, j rather than their order, thus leading to an upper-triangular table.
Ž .See Khamis 1983 for examples and ML fitting of models for such three-way tables

that are symmetric within layers.

Section 10.5: Measuring Agreement between Obser©ers

10.5. Kappa and weighted kappa relate to the intraclass correlation, a measure of interrater
Ž .reliability for interval scales Fleiss 1981; Fleiss and Cohen 1973; Kraemer 1979 .

Ž . Ž .Banerjee et al. 1999 and Fleiss 1981, Chap. 13 reviewed kappa and its generaliza-
Ž . Ž . Ž .tions. See Becker and Agresti 1992 , Goodman 1979b , Tanner and Young 1985 ,

and Problem 10.41 for examples of modeling agreement with loglinear models.
Ž .Darroch and McCloud 1986 showed that quasi-symmetry has an important role in

agreement modeling.

Section 10.6: Bradley–Terry Model for Paired Preferences

Ž .10.6. Zermelo 1929 proposed a model that is equivalent to the Bradley�Terry model.
Ž . Ž . Ž .Luce 1959 provided an axiomatic basis for it. Mosteller 1951 and Thurstone 1927

proposed an analogous model with probit link. An interesting interview of Ralph
Ž .Bradley by M. Hollander Stat. Sci. 16: 75�100, 2001 discussed food-tasting applica-

Ž .tions that motivated its development. For extensions, see Bradley 1976 . Fienberg and
Ž . Ž .Larntz 1976 and Imrey et al. 1976 related it to quasi-independence. Dittrich et al.

Ž . Ž .1998 allowed covariates. Matthews and Morris 1995 gave an application with a
factorial design, ties, and allowance for dependence among judgments. Bockenholt¨

Ž . Ž .and Dillon 1997 modeled dependence with ordinal preferences. David 1988 and
Ž .Imrey 1998 surveyed paired preference methods.
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TABLE 10.14 Data for Problem 10.1

Let Patient Die

Suicide Yes No

Yes 1097 90
No 203 435

Source: 1994 General Social Survey, National Opinion Re-
search Center.

PROBLEMS

Applications

10.1 Table 10.14 shows results when subjects were asked ‘‘Do you think a
person has the right to end his or her own life if this person has an
incurable disease?’’ and ‘‘When a person has a disease that cannot be
cured, do you think doctors should be allowed to end the patient’s life
by some painless means if the patient and his family request it?’’ The
table refers to these variables as ‘‘suicide’’ and ‘‘let patient die.’’
a. Compare the marginal proportions using a confidence interval.
b. Perform McNemar’s test, and interpret.

Ž .c. Find the conditional ML estimate of � for model 10.8 . Interpret.

10.2 Refer to Table 8.16 and Problem 8.1. Treat the data as matched pairs
on opinion, stratified by gender. Testing independence for the 2 � 2

Ž . Ž .table using entries 6, 160 in row 1 and 11, 181 in row 2 tests
Ž .equality of � for logit model 10.8 for each gender. Explain why.

10.3 A crossover experiment with 100 subjects compares two drugs for
Ž .treating migraine headaches. The response scale is success 1 or

Ž .failure 0 . Half the study subjects, randomly selected, used drug A
the first time they had a headache and drug B the next time. For

Ž . Ž . Ž .them, 6 had outcomes 1, 1 for A, B , 25 had outcomes 1, 0 , 10
Ž . Ž .had outcomes 0, 1 , and 9 had outcomes 0, 0 . For the 50 subjects

Ž . Ž .who took the drugs in the reverse order, 10 were 1, 1 for A, B , 20
Ž . Ž . Ž .were 1, 0 , 12 were 0, 1 , and 8 were 0, 0 .

a. Ignoring treatment order, compare the success probabilities for the
two drugs. Interpret.

b. McNemar’s test uses only the pairs of outcomes that differ. For
this study, Table 10.15 shows such data from both treatment
orders. Testing independence for this table tests whether success

Ž .rates are identical for the treatments Gart 1969 . Explain why.
Analyze these data, and interpret.
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TABLE 10.15 Data for Problem 10.3

Treatment That Is BetterTreatment
Order First Second

A, then B 25 10
B, then A 12 20

10.4 A case�control study has 8 pairs of subjects. The cases have colon
cancer, and the controls are matched with the cases on gender and
age. A possible explanatory variable is the extent of red meat in a

Žsubject’s diet, measured as ‘‘1 s high’’ or ‘‘0 s low.’’ The case, con-
. Ž . Ž . Ž .trol observations on this were 1, 1 for 3 pairs, 0, 0 for 1 pair, 1, 0

Ž .for 3 pairs, and 0, 1 for 1 pair.
Ž .a. Cross-classify the 8 pairs in terms of diet 1 or 0 for the case

Ž .against diet 1 or 0 for the control. Call this Table A. Display the
Ž .2 � 2 � 8 table with eight partial tables relating diet 1 or 0 to

Ž .response case or control for the 8 pairs. Call this Table B.
b. Calculate the McNemar z 2 for Table A and the CMH statistic for

Table B. Compare.
c. Show that the Mantel�Haenszel estimate of a common odds ratio

for Table B is identical to n rn for Table A.12 21

d. For Table B with pairs deleted in which the case and the control
had the same diet, show that the CMH statistic and the
Mantel�Haenszel odds ratio estimate do not change.

e. This sample size is small for large-sample tests. Use the binomial
distribution with Table A to find the exact P-value for testing
marginal homogeneity against the alternative hypothesis of a higher
incidence of colon cancer for the high-red-meat diet.

10.5 Each week Variety magazine summarizes reviews of new movies by
critics in several cities. Each review is categorized as pro, con, or
mixed, according to whether the overall evaluation is positive, nega-
tive, or a mixture of the two. Table 10.16 summarizes the ratings from

TABLE 10.16 Data for Problem 10.5

Ebert

Siskel Con Mixed Pro

Con 24 8 13
Mixed 8 13 11
Pro 10 9 64

Source: A. Agresti and L. Winner, CHANCE 10: 10�14
Ž .1997 , reprinted with permission, copyright 1997 by the
American Statistical Association.
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April 1995 through September 1996 for Chicago film critics Gene
Siskel and Roger Ebert.
a. Fit the symmetry model, quasi-independence model, and quasi-

symmetry model. Interpret.
b. Test marginal homogeneity using models, and interpret.
c. Analyze these data using agreement models andror measures of

agreement.

10.6 Refer to Table 10.5. Fit the ordinal quasi-symmetry model using
u s 1 and u s 4 and picking u and u that are unequally spaced1 4 2 3
but represent sensible choices. Compare results and interpretations to
those in Sections 10.3.2 and 10.4.7.

10.7 Refer to all four items in Table 8.19.
a. Fit the complete symmetry and quasi-symmetry models. Test

marginal homogeneity. Interpret.
b. Fit the ordinal quasi-symmetry model. Test marginal homogeneity.

Interpret the effects.

10.8 Table 10.17 shows subjects’ purchase choice of instant decaffeinated
coffee at two times.

a. Fit the symmetry model and use residuals to analyze changes.
b. Test marginal homogeneity. Show that the small P-value reflects a

decrease in the proportion choosing High Point and an increase in
the proportion choosing Sanka, with no evidence of change for the
other coffees.

2 Ž .c. Show that quasi-independence has G s 13.8 df s 11 . Interpret,
and suggest other analyses that might be useful.

TABLE 10.17 Data for Problem 10.8

Second Purchase

First High Taster’s
Purchase Point Choice Sanka Nescafe Brim

High Point 93 17 44 7 10
Taster’s Choice 9 46 11 0 9
Sanka 17 11 155 9 12
Nescafe 6 4 9 15 2
Brim 10 4 12 2 27

Ž .Source: Based on data from R. Grover and V. Srinivasan, J. Market. Res. 24: 139�153 1987 .
Reprinted with permission from the American Marketing Association.
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TABLE 10.18 Data for Problem 10.9

Son’s StatusFather’s
Status 1 2 3 4 5 Total

1 50 45 8 18 8 129
2 28 174 84 154 55 495
3 11 78 110 223 96 518
4 14 150 185 714 447 1510
5 3 42 72 320 411 848

Total 106 489 459 1429 1017 3500

Ž .Source: Reprinted with permission from D. V. Glass ed , Social Mobility in Britain, Glencoe, IL:
Ž .Free Press 1954 .

10.9 Table 10.18 relates father’s and son’s occupational status for a British
Ž . Ž .sample. Analyze these data, using models of a symmetry, b quasi-

Ž . Ž . Ž .symmetry, c ordinal quasi-symmetry, d conditional symmetry, e
Ž . Ž .marginal homogeneity, f quasi-independence, and g quasi-uniform

association. Interpret using their fit and lack of fit.

10.10 For Table 10.18, use kappa to describe agreement. Interpret.

10.11 Table 10.19 displays multiple sclerosis diagnoses for two neurologists
who classified patients in two sites, Winnipeg and New Orleans. The

Ž . Ž . Ž . Ž .diagnostic classes are 1 certain; 2 probable; 3 possible; and 4
doubtful, unlikely, or definitely not. For the New Orleans patients,

Ž .study the agreement using a the independence model and residuals,
Ž . Ž .b more complex models, and c kappa. Interpret each.

TABLE 10.19 Data for Problem 10.11

Winnipeg Neurologist

Winnipeg Patients New Orleans PatientsNew Orleans
Neurologist 1 2 3 4 1 2 3 4

1 38 5 0 1 5 3 0 0
2 33 11 3 0 3 11 4 0
3 10 14 5 6 2 13 3 4
4 3 7 3 10 1 2 4 14

Ž .Source: J. R. Landis and G. G. Koch, Biometrics 33: 159�174 1977 . Reprinted with permission
from the Biometric Society.
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10.12 For Problem 10.11, construct a model that describes agreement
between neurologists for the two sites simultaneously.

10.13 Calculate kappa for a 4 � 4 table having n s 5 all i, n s 15,i i i, iq1
i s 1, 2, 3, n s 15, and n s 0 otherwise. Explain why strong asso-41 i j
ciation does not imply strong agreement.

10.14 Refer to Table 10.8. Based on the reported standardized residuals,
Ž .explain why the linear-by-linear association model 9.6 might fit well.

Fit it and describe the association.

10.15 In 1990, a sample of psychology graduate students at the University of
Florida made blind, pairwise preference tests of three cola drinks.
For 49 comparisons of Coke and Pepsi, Coke was preferred 29 times.
For 47 comparisons of Classic Coke and Pepsi, Classic Coke was
preferred 19 times. For 50 comparisons of Coke and Classic Coke,
Coke was preferred 31 times. Comparisons resulting in ties are not
reported.
a. Fit the Bradley�Terry model, analyze the quality of fit, and rank

the drinks. Is there sufficient evidence to conclude a preference
for one drink?

b. Estimate the probability that Coke is preferred to Pepsi, using the
model, and compare to the sample proportion.

10.16 Table 10.20 refers to journal citations among four statistics journals
during 1987�1989. The more often articles in a particular journal are
cited, the more prestige that journal accrues. For citations involving
pair A and B, view it as a victory for A if it is cited by B and a defeat
for A if it cites B. Fit the Bradley�Terry model. Interpret the fit, and
give a prestige ranking of the journals. For citations involving Com-
mun. Stat. and JRSS-B, estimate the probability that the Commun.
Stat. article cites the JRSS-B article.

TABLE 10.20 Data for Problem 10.16

Cited Journal

Citing Journal Biometrika Commun. Stat. JASA JRSS-B

Biometrika 714 33 320 284
Commun. Stat. 730 425 813 276
JASA 498 68 1072 325
JRSS-B 221 17 142 188

Ž .Source: Stigler 1994 . Reprinted with permission from the Institute of Mathematical Statistics.
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TABLE 10.21 Data for Problem 10.17

Loser

Winner Seles Graf Sabatini Navratilova Sanchez

Seles � 2 1 3 2
Graf 3 � 6 3 7
Sabatini 0 3 � 1 3
Navratilova 3 0 2 � 3
Sanchez 0 1 2 1 �

10.17 Table 10.21 refers to matches for several women tennis players during
1989 and 1990.
a. Fit the Bradley�Terry model. Interpret, and rank the players.
b. Estimate the probability of Seles beating Graf. Compare the model

estimate to the sample proportion. Construct a 90% confidence
interval for the probability.

c. Which pairs of players are significantly different according to a
80% simultaneous Bonferroni comparison?

10.18 Refer to Problem 3.3 on basketball free-throw shooting. Analyze
these data.

10.19 Refer to Table 2.12 and Problem 2.19. Using models, describe the
relationship between husband’s and wife’s sexual fun.

10.20 Refer to Table 8.19. The two-way table relating responses for the
Ž . Ž .environment as rows and cities as columns has cell counts, by row,

Ž .108, 179, 157 r 21, 55, 52 r 5, 6, 24 . Analyze these data.

Theory and Methods

10.21 Explain the following analogy: McNemar’s test is to binary data as the
paired difference t test is to normally distributed data.

'Ž . w Ž10.22 For a 2 � 2 table, derive cov p , p , and show that var n p yq1 1q q1
.x Ž .p equals 10.1 .1q

Ž .10.23 Refer to the subject-specific model 10.8 for binary matched pairs.
Ž .a. Show that exp � is a conditional odds ratio between observation

and outcome. Explain the distinction between it and the odds ratio
Ž . Ž .exp � for model 10.6 .
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ˆŽ .b. Using the conditional distribution 10.9 , show that � s
Ž .log n rn .21 12

c. For a random sample of n pairs, explain why

n1 1 exp � q �Ž .i
E n rn s .Ž . Ý21 n 1 q exp � 1 q exp � q �Ž . Ž .i iis1

Ž .Similarily, state E n rn . Using their ratio for fixed n and as12 p6 6 Ž . Žn �, explain why n rn exp � . Hint: Apply the law of21 12
large numbers due to A. A. Markov for independent but not
identically distributed random variables, or use Chebyshev’s in-

.equality.
Ž .d. Show that the Mantel�Haenszel estimator 6.7 of a common odds

ˆŽ .ratio in the 2 � 2 � n form of the data simplifies to exp � s
n rn .21 12

ˆŽ .e. Use the delta method to show 10.10 for the SE of �.
f. For a table of the form shown in Table 10.2, show that the CMH

Ž .statistic 6.6 is algebraically identical to the McNemar statistic
Ž .2 Ž .n y n r n q n for tables of Table 10.1 type.21 12 21 12

10.24 Refer to Problem 10.23. Unlike the conditional ML estimator of � ,
Žthe unconditional ML estimator is inconsistent Andersen 1980, pp.

.244�245; first shown by him in 1973 . Show this as follows:
a. Assuming independence of responses for different subjects and

different observations by the same subject, find the log likelihood.
Ž .Show that the likelihood equations are y sÝ P Y s 1 andqt i i t

Ž .y sÝ P Y s 1 .iq t i t

Ž . w Ž .x Ž . w Žb. Substituting exp � r 1 q exp � q exp � q � r 1 q exp � qi i i i
.x� in the second likelihood equation, show that � sy� for theˆi

n subjects with y s 0, � s � for the n subjects with y s 2,ˆ22 iq i 11 iq
ˆand � sy�r2 for the n q n subjects with y s 1.ˆi 21 12 iq

Ž .c. By breaking Ý P Y s 1 into components for the sets of subjectsi i t
having y s 0, y s 2, and y s 1, show that the first like-iq iq iq

Ž . Ž . Žlihood equation is, for t s 1, y s n 0 q n 1 q n qq1 22 11 21
ˆ ˆ. Ž . w Ž .xn exp y�r2 r 1 q exp y�r2 . Explain why y s n q n ,12 q1 11 12

ˆand solve the first likelihood equation to show that � s
p 6ˆŽ .2 log n rn . Hence, as a result of Problem 10.23, � 2�.21 12

Ž .10.25 Consider marginal model 10.6 when Y and Y are independent and1 2
Ž . � 4conditional model 10.8 when � are identical. Explain why they arei

equivalent.
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ˆ Ž . Ž .10.26 Let � s log p p rp p refer to marginal model 10.6 andM q1 2q q2 1q
ˆ Ž . Ž .� s log n rn to conditional model 10.8 . Using the deltaC 21 12

ˆ' Ž .method, show that the asymptotic variance of n � y � isM M

y1 y1
� � q � � y 2 � � y � � r � � � � .Ž . Ž . Ž . Ž .1q 2q q1 q2 11 22 12 21 1q 2q q1 q2

Under the independence condition of the previous problem, � s � .M C
In that case, show that the asymptotic variances satisfy

y1 y1ˆ'var n � s � � q � �Ž . Ž .Ž .M 1q 2q q1 q2

y1 y1F � � q � �Ž . Ž .1q q2 q1 2q

y1 y1 ˆ's � q � s var n �Ž .12 21 C

Ž .10.27 Refer to model 10.12 for a matched-pairs study. For the conditional
Ž .ML approach, show that the conditional distribution satisfies 10.13

and does not depend on � when S s 0 or 2. Show what happens toi
� in the conditional distribution for a predictor for which x s xj ji1 ji2
all i.

Ž .10.28 Consider model 10.12 for a study with matched sets of T observa-
Ž .tions rather than matched pairs. Explain how 10.13 generalizes and

construct the form of the conditional likelihood.

10.29 Give an example illustrating that when I � 2, marginal homogeneity
does not imply symmetry.

Ž .10.30 Derive the likelihood equations and residual df for a symmetry,
Ž . Ž . Ž .b quasi-symmetry, c quasi-independence, and d ordinal quasi-
symmetry.

Ž . X Y10.31 For the quasi-symmetry model 10.19 , let 
 s 
 y 
 . Show thata a a
one can express it equivalently as log � s 
 q 
 q 
* , with 
*ab a ab ab
s 
* . Hence, one needs only one set of main-effect parameters.b a

Ž .10.32 Show that quasi-symmetry is equivalent Caussinus 1966 to

� � � r � � � s 1 all a, b , and c.Ž . Ž .ab bc ca b a cb ac

Ž .10.33 Derive the covariance matrix 10.16 for the difference vector d.
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10.34 Construct the loglinear model satisfying both marginal homogeneity
Ž .Žand statistical independence. Show that � s p q p p qˆab qa aq qb

. Ž .p r4 and residual df s I I y 1 .bq

Ž . Ž .10.35 Consider the conditional symmetry CS model 10.28 .
a. Show that it has the loglinear representation

log � s 
 q  I a � b ,Ž .ab min Ža , b. , max Ža , b.

Ž . Ž .where I 	 is an indicator see also Bishop et al. 1975, pp. 285�286 .
b. Show that the likelihood equations are

� q � s n q n for all a F b , � s n .ˆ ˆ ˆÝÝ ÝÝab b a ab b a ab ab
a�b a�b

wŽ . Ž .xc. Show that  s log ÝÝ n r ÝÝ n , � s n , a sˆ ˆa� b ab a� b ab aa aa
w Ž .xŽ . w Ž . x1, . . . , I, � s exp  I a � b n q n r exp  q 1 for a � b.ˆ ˆ ˆab ab b a

d. Show that the estimated asymptotic variance of  isˆ

y1 y1

n q n .ÝÝ ÝÝab abž / ž /
a�b a�b

Ž .Ž .e. Show that residual df s I q 1 I y 2 r2.
f. Show that conditional symmetry q marginal homogeneity s

2Ž � .symmetry. Explain why G S CS tests marginal homogeneity
Ž . 2Ž � .df s 1 . When the model holds G S CS is more powerful

2Ž � .asymptotically than G S QS . Why?

10.36 Identify loglinear models that correspond to the logit models, for
Ž . Ž . Ž . Ž . Ž . Ž .a � b, log � r� s a 0, b  , c � y � , and d � b y a .ab b a a b

10.37 A nonmodel-based ordinal measure of marginal heterogeneity is

�̂ s p p y p p .ÝÝ ÝÝaq qb aq qb
a�b a�b

ˆ Ž . Ž .Show that � estimates � s P Y � Y y P Y � Y , where Y has1 2 2 1 1
� 4 � 4distribution � and Y is independent from � . Show thataq 2 qb

marginal homogeneity implies that � s 0. Show that the estimated
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ˆasymptotic variance of � is

2
2ˆ ˆ� p y � p n,ÝÝ ÝÝab ab ab abž /

a ab b

ˆ ˆ ˆ ˆ ˆ ˆ Ž .where � s F q F y F y F with F s p q 			 qpab b1 by1,1 a2 ay1,2 a1 1q aq
ˆ Ž . Ž .and F s p q 			 qp Agresti 1984, pp. 208�209 .a2 q1 qa

� 410.38 For ordered scores u , let y sÝ u p and y sÝ u p . Showa 1 a a aq 2 a a qa
Ž . Ž .that marginal homogeneity implies that E Y s E Y and1 2

22u y u p y y y y n.Ž . Ž .Ý Ý a b ab 1 2
a b

Ž .estimates var Y y Y . Construct a test of marginal homogeneity1 2
Ž .Bhapkar 1968 .

10.39 Consider the multiplicative model for a square table,

� � 1 y � , a � bŽ .a b
� sab 2½ � q �� 1 y � , a s b.Ž .a a a

Ž . Ž .a. Show that the model satisfies i symmetry, ii marginal homo-
Ž . Ž .geneity, iii quasi-symmetry, iv quasi-independence.

b. Show that � s � s � , a s 1, . . . , I.a aq qa

c. Show that � s Cohen’s kappa, and interpret � s 0 and � s 1 for
this model.

10.40 A 2 � 2 table has a true odds ratio of 10. Find the cell probabilities
Ž . Ž . Ž .for which a � s � s 0.5, b � s � s 0.3, and c � s1q q1 1q q1 1q

Ž� s 0.1. Find the value of kappa for each. This shows that for aq1
given association, kappa depends strongly on the marginal probabili-

.ties; see also Sprott 2000, p. 59.

10.41 A model for agreement on an ordinal response partitions beyond-
chance agreement into that due to a baseline association and a

Ž .main-diagonal increment A. Agresti, Biometrics 44: 539�548, 1988 .
� 4For ordered scores u , the model isa

log � s 
 q 
 A q 
B q � u u q � I a s b . 10.35Ž . Ž .ab a b a b

a. Show that this is a special case of quasi-symmetry and of quasi-
Ž .association 10.29 .
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Ž . Ž .2b. For agreement odds 10.30 , show that log  s u y u � q 2� .ab b a
For unit-spaced scores, show the local odds ratios have log � s �ab
when none of the four cells falls on the main diagonal.

� 4 � 4c. Find the likelihood equations and show that � and n shareˆab ab
the same marginal distributions, correlation, and prevalence of
exact agreement.

� 4 Ž . 2d. For Table 10.8 using u s a , show that 10.35 has G s 4.8a
ˆ ˆŽ . Ž . Ž .df s 7 , with � s 0.842 SE s 0.427 and � s 1.316 SE s 0.420 .

ˆInterpret using  and � for a y b � 1.â, aq1 ab

10.42 Refer to the Bradley�Terry model.
Ž . Ž . Ž .a. Show that log � r� s log � r� q log � r� .ac ca ab b a bc cb

Žb. With this model, is it possible that a could be preferred to b i.e.,
.� � � and b could be preferred to c, yet c could be pre-ab b a

ferred to a? Explain.
� 4c. Explain why � are not identifiable without a constraint such asa

Ž � 4� s 0. Hint: Show the model holds when � * s � y c for anyI a a
.c.

Ž .10.43 Refer to model 10.32 .
a. Construct a more general model having home-team parameters

� 4 � 4� and away-team parameters � , such that the probabilityH i Ai
team i beats team j when i is the home team is

Ž . w Ž . Ž .xexp � r exp � q exp � , where � s 0 but � is unre-H i H i A j A I H i
stricted.

� 4 Ž . Ž .b. Interpret the case � s � q c , when i c s 0, and ii c � 0.H i Ai

Ž .c. Fit the model to Table 10.12. Compare the fit to model 10.32 .
ˆ ˆ� 4 � 4Compare � and � to describe how teams play at home andH i Ai

away.

10.44 Find the log likelihood for the Bradley�Terry model. From the
Ž � 4.kernel, show that given N the minimal sufficient statistics areab

� 4n . Thus, explain how ‘‘victory totals’’ determine the estimatedaq
ranking.

10.45 Explain how to fit the complete symmetry model in T dimensions.

10.46 Prove that if k th-order marginal symmetry holds, jth-order marginal
symmetry holds for any j � k.

10.47 Suppose that quasi-symmetry holds for an I T table. When the table is
collapsed over a variable, show that the model holds for the I Ty1

table with the same main effects.
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Analyzing Repeated Categorical
Response Data

Many studies observe the response variable for each subject repeatedly, at
several times or under various conditions. Repeated categorical response
data occur commonly in health-related applications, especially in longitudinal
studies. For example, a physician might evaluate patients at weekly intervals
regarding whether a new drug treatment is successful. In some cases explana-
tory variables may also vary over time. But the repeated responses need not
refer to different times. A dental study might measure whether there is decay
for each tooth in a subject’s mouth.

Often, the responses refer to matched sets, or clusters, of subjects. An
Ž .example is a survival, nonsurvival response for each fetus in a litter, for a

sample of pregnant mice exposed to various dosages of a toxin. A multistage
sample to study factors affecting obesity in children may regard children from
the same family as a cluster. Observations within a cluster tend to be more
alike than observations from different clusters. Ordinary analyses that ignore
this may be badly inappropriate.

In this chapter we generalize methods of Chapter 10, which referred to
matched pairs. In Section 11.1 we compare marginal distributions in T-way
tables. The remaining sections extend models to include explanatory vari-
ables. For instance, many studies compare the repeated measurements for
different groups or treatments. In Section 11.2 we use ML methods for fitting
marginal models. In Section 11.3 we use generalized estimating equations
Ž .GEE , a multivariate version of quasi-likelihood that is computationally
simpler than ML. Section 11.4 covers technical details about the GEE
approach. In the final section we introduce a transitional approach that
models observations in terms of previous outcomes.

455
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11.1 COMPARING MARGINAL DISTRIBUTIONS:
MULTIPLE RESPONSES

Usually, the multivariate dependence among repeated responses is of less
interest than their marginal distributions. For instance, in treating a chronic

Ž .condition such as a phobia with some treatment, the primary goal might be
to study whether the probability of success increases over the T weeks of a
treatment period. The T success probabilities refer to the T first-order
marginal distributions. In Sections 10.2.1 and 10.3 we compared marginal

Ž .distributions for matched pairs T s 2 using models that apply directly to
the marginal distributions. In this section we extend this approach to T � 2.

11.1.1 Binary Marginal Models and Marginal Homogeneity

Ž .Denote T binary responses by Y , Y , . . . , Y . The marginal logit model1 2 T
Ž .10.6 for matched pairs extends to

logit P Y s 1 s � q � , t s 1, . . . , T , 11.1Ž . Ž .t t

with a constraint such as � s 0 or � s 0. For a possible sequence ofT
Ž .outcomes i s i , i , . . . , i where each i s 0 or 1, let1 2 T t

� s P Y s i , Y s i , . . . , Y s i .Ž .i 1 1 2 2 T T

Let � denote the vector of these probabilities for the possible i. They refer
to a 2T table that cross-classifies the T responses and describes the joint

Ž .distribution of Y , . . . , Y . The sample cell proportions are the ML esti-1 T
mates of �, and the sample proportion with y s 1 is the ML estimate oft
Ž .P Y s 1 .t

Ž .Model 11.1 is saturated, describing T marginal probabilities by T param-
Ž . Ž .eters. Marginal homogeneity, for which P Y s 1 s ��� s P Y s 1 , is the1 T

special case � s ��� s � . Even though this case has only one parameter,1 T
ML fitting is not simple. The multinomial likelihood refers to the 2T joint cell

� Ž .4probabilities � rather than the T marginal probabilities P Y s 1 . Fittingt
methods are described in Section 11.2.5.

Let n denote the sample cell count in cell i. The kernel of the logi
Ž . Ž .likelihood L � is Ý n log � . Let L p denote the log likelihood evaluatedi i i

� 4 Ž .at the sample proportions p s n rn , the ML fit of model 11.1 . Leti i
Ž M H .L � denote the maximized log likelihood assuming marginal homogene-ˆ

Žity. The likelihood-ratio test of marginal homogeneity Lipsitz et al. 1990;
.Madansky 1963 uses

M H M Hy2 L � y L p s 2 n log p r� . 11.2Ž . Ž . Ž .ˆ ˆŽ .Ý i i i
i
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TABLE 11.1 Responses to Three Drugs in a Crossover Study

Drug A Favorable Drug A Unfavorable

B Favorable B Unfavorable B Favorable B Unfavorable

C Favorable 6 2 2 6
C Unfavorable 16 4 4 6

Ž .Source: Reprinted with permission from the Biometric Society Grizzle et al. 1969 .

The asymptotic null chi-squared distribution has df s T y 1, since the gen-
Ž .eral model 11.1 has T y 1 more parameters than marginal homogeneity.

11.1.2 Crossover Drug Comparison Example

Table 11.1 comes from a crossover study in which each subject used each of
three drugs for treatment of a chronic condition at three times. The response
measured the reaction as favorable or unfavorable. The 23 table gives the
Ž .favorable, unfavorable classification for reaction to drug A in the first
dimension, drug B in the second, and drug C in the third. We assume that
the drugs have no carryover effects and that the severity of the condition
remained stable for each subject throughout the experiment. These assump-
tions are reasonable for many chronic conditions, such as migraine headache.

Ž . Ž .The sample proportion favorable was 0.61, 0.61, 0.35 for drugs A, B, C .
Ž .The likelihood-ratio statistic for testing marginal homogeneity is 5.95 df s 2 ,

for a P-value of 0.05. For simultaneous confidence intervals comparing pairs
of treatments with overall error probability no greater than 0.05, the Bonfer-

Ž .roni method uses confidence coefficient 1 y 0.05r3 s 0.9833 for each. For
Ž .instance, from formula 10.1 , the estimate 0.261 s 0.609 y 0.348 of the

difference between drugs A and C has an estimated standard error of 0.108.
Ž .The confidence interval for the true difference is 0.261 � 2.39 0.108 , or

Ž .0.002, 0.520 . The same interval holds for comparison of drugs B and C.
There is some evidence that the proportion of favorable responses is lower
for drug C.

The sample size is not large, however, so we view these results with
caution. For each pair of drugs, a 2 � 2 table relates the two responses. An

Ž .exact binomial test Section 10.4.1 uses its off-diagonal counts. These yield
P-values of 1.0 for comparing drugs A and B and 0.036 for comparing A with
C and for comparing B with C.

11.1.3 Modeling Margins of a Multicategory Response

Ž .The binary marginal model 11.1 extends to multinomial responses. With
baseline-category logits for I outcome categories, the saturated model is

log P Y s j rP Y s I s � , t s 1, . . . , T , j s 1, . . . , I y 1.Ž . Ž .t t t j

11.3Ž .
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Ž . Ž .Marginal homogeneity, whereby P Y s j s ��� s P Y s j for j s1 T
1, . . . , I y 1, is the special case in which

� s � s ��� s � , j s 1, . . . , I y 1.1 j 2 j T j

The likelihood-ratio test of marginal homogeneity comparing the two models
Ž . Ž .Ž .has form 11.2 and df s T y 1 I y 1 .

For an ordinal response, an unsaturated model that is more complex than
marginal homogeneity focuses on shifts up and down in the T margins. One
such model is

logit P Y F j s � q � , t s 1, . . . , T , j s 1, . . . , I y 1, 11.4Ž . Ž .t j t

with constraint such as � s 0. Marginal homogeneity is the special caseT
� 4� s ��� s � . Its test has df s T y 1. The � satisfy � � . . . � �1 T j 1 Iy1

because of the ordering of the cumulative probabilities. These models can be
fitted using ML methodology presented in Section 11.2.5.

11.1.4 Wald and Generalized CMH Score Tests of Marginal Homogeneity

In this chapter we focus on modeling the marginal distributions rather than
merely testing marginal homogeneity. However, a variety of tests are avail-
able besides the likelihood ratio, so we briefly summarize a couple of them.

Ž .Let p t denote the sample proportion in category j for response Y , letj t

p s p t rT , d t s p t y p ,Ž . Ž . Ž .Ýj j j j j
t

� Ž . 4and let d denote the vector of d t , t s 1, . . . , T y 1, j s 1, . . . , I y 1 . Letj
ˆ ' Ž .V denote the estimated covariance matrix of n d. Bhapkar 1973 proposed
the Wald statistic

� ˆy1W s nd V d. 11.5Ž .

Ž .for the general alternative. This generalizes 10.16 and has a large-sample
Ž .Ž .chi-squared distribution with df s I y 1 T y 1 .

Other statistics are special cases of the generalized Cochran�Mantel�
Ž . Ž .Haenszel CMH statistic Section 7.5.3 . Recall that for the binary case

Ž . Ž .I s 2 with matched pairs T s 2 , the CMH statistic applies to a three-way
Ž .table see, e.g., Table 10.2 in which each stratum shows the two outcomes

for a given subject. A generalization of Table 10.2 provides n strata of T � I
tables. The kth stratum gives the T outcomes for subject k. Row t in a
stratum has a 1 in the column that is the outcome for observation t, and 0 in

Ž .all other columns or 0 in every column if that observation is missing .
Probability distributions for the subject-stratified setup naturally relate to
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Ž .subject-specific models such as logit model 10.8 , rather than to marginal
Žmodels. However, conditional independence in this three-way table given

. Tsubject corresponds to an exchangeability among variables in the I table
that implies marginal homogeneity. A generalized CMH test of conditional
independence in the T � I � n table also tests marginal homogeneity using a
sampling distribution generated under the stronger exchangeability condition
Ž .Darroch 1981 . For an ordinal response with fixed scores, the generalized
CMH statistic for detecting variability among T means is appropriate.

When I s 2 and T s 2, this CMH approach is equivalent to McNemar’s
statistic. When I s 2 but T � 2, the generalized CMH statistic treating the T

Ž .responses as unordered is identical to a statistic Cochran 1950 proposed.
Ž .His statistic, called Cochran’s Q, has df s T y 1 Problem 11.22 .

11.2 MARGINAL MODELING: MAXIMUM LIKELIHOOD APPROACH

Analyses above compared marginal distributions, but without accounting for
explanatory variables. We now include such predictors. In this section we use
ML, but we defer model fitting details to the end of the section.

11.2.1 Longitudinal Mental Depression Example

We use Table 11.2 to illustrate a variety of analyses in this and the next
chapter. It refers to a longitudinal study comparing a new drug with a

Žstandard drug for treatment of subjects suffering mental depression Koch
.et al. 1977 . Subjects were classified into two initial diagnosis groups accord-

ing to whether severity of depression was mild or severe. In each group,
subjects were randomly assigned to one of the two drugs. Following 1 week, 2
weeks, and 4 weeks of treatment, each subject’s suffering from mental
depression was classified as normal or abnormal.

TABLE 11.2 Cross-Classification of Responses on Depression
at Three Times by Diagnosis and Treatment

aResponse at Three Times

Diagnosis Treatment NNN NNA NAN NAA ANN ANA AAN AAA

Mild Standard 16 13 9 3 14 4 15 6
New drug 31 0 6 0 22 2 9 0

Severe Standard 2 2 8 9 9 15 27 28
New drug 7 2 5 2 31 5 32 6

aN, normal; A, abnormal.
Ž .Source: Reprinted with permission from the Biometric Society Koch et al. 1977 .
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Table 11.2 shows four groups, the combinations of categories of the two
explanatory variables: treatment type and severity of initial diagnosis. Since

Ž .the study observed the binary response depression assessment at T s 3
occasions, Table 11.2 shows a 23 table for each group. The three depression
assessments form a multivariate response variable with three components,
with Y s 1 for normal and 0 for abnormal. The 12 marginal distributionst
result from three repeated observations for each of the four groups.

Let s denote the severity of the initial diagnosis, with s s 1 for severe and
s s 0 for mild. Let d denote the drug, with d s 1 for new and d s 0 for

Ž .standard. Let t denote the time of measurement. Koch et al. 1977 noted
that if the time metric reflects cumulative drug dosage, a logit scale often has

Ž .a linear effect for the logarithm of time. They used scores 0, 1, 2 , the logs to
Ž .base 2 of the week numbers 1, 2, and 4 , for time.

Ž .Table 11.3 shows sample proportions of normal responses i.e., y s 1 fort
the 12 marginal distributions. For instance, from Table 11.2, the sample
proportion of normal responses after week 1 for subjects with mild initial

Ž . Ždiagnosis using the standard drug was 16 q 13 q 9 q 3 r 16 q 13 q 9 q 3
. Ž .q 14 q 4 q 15 q 6 s 0.51. The sample proportion of normal responses 1

Ž .increased over time for each group; 2 increased at a faster rate for the new
Ž .drug than the standard, for each fixed initial diagnosis; and 3 was higher for

the mild than the severe initial diagnosis, for each treatment at each
occasion. In such a study the company that developed the new drug would
hope to show that patients have a significantly higher rate of improvement
with it.

The marginal logit model

logit P Y s 1 s � q � s q � d q � tŽ .t 1 2 3

Žhas the main effects of the explanatory variables severity of initial diagnosis
. Ž .and drug and of the variable time that specifies the different components

of the multivariate response. Its linear time effect � is the same for each3
group.

The natural sampling assumption is multinomial for the eight cells in the
23 cross-classification of the three responses, independently for the four

TABLE 11.3 Sample Marginal Proportions of Normal Response for
Depression Data of Table 11.2

Sample Proportion

Diagnosis Treatment Week 1 Week 2 Week 4

Mild Standard 0.51 0.59 0.68
New drug 0.53 0.79 0.97

Severe Standard 0.21 0.28 0.46
New drug 0.18 0.50 0.83
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Žgroups. However, the model refers to 12 marginal probabilities for 2 drug
.treatments � 2 initial severity diagnoses � 3 time points rather than the

4 � 23 s 32 cell probabilities in the product multinomial likelihood function.
The three marginal binomial variates for each group are dependent. ML
estimation requires an iterative routine for maximizing the product multino-
mial likelihood, subject to the constraint that the marginal probabilities
satisfy the model. An algorithm for this is given in Section 11.2.5.

A check of model fit compares the 32 cell counts in Table 11.2 to their ML
fitted values. Since the model describes 12 marginal logits using four parame-
ters, residual df s 8. The deviance G2 s 34.6. The poor fit is not surprising.
The model assumes a common rate of improvement � , but the sample3
shows a higher rate for the new drug.

A more realistic model permits the time effect to differ by drug,

logit P Y s 1 s � q � s q � d q � t q � dt.Ž .t 1 2 3 4

ˆ Ž .Its time effect estimate is � s 0.48 SE s 0.12 for the standard drug3
ˆ ˆŽ . Ž . Ž .d s 0 and � q � s 1.49 SE s 0.14 for the new one d s 1 . For the3 4

ˆ Ž .new drug, the slope is � s 1.01 SE s 0.18 higher than for the standard,4
giving strong evidence of faster improvement. This model fits much better,

2 Ž . 2with G s 4.2 df s 7 . The G decrease of 34.6 y 4.2 s 30.4 compared to
the simpler model is the likelihood-ratio test of H : � s 0, a common time0 4
effect for each drug.

ˆ Ž .The severity of initial diagnosis estimate is � sy1.29 SE s 0.14 ; for1
each drug�time combination, the estimated odds of a normal response when

Ž .the initial diagnosis was severe equal exp y1.29 s 0.27 times the estimated
ˆ Žodds when the initial diagnosis was mild. The estimate � sy0.06 SE s2

. Ž0.22 indicates an insignificant difference between the drugs after 1 week for
.which t s 0 . At time t, the estimated odds of normal response with the new
Ž .drug are exp y0.06 q 1.01 t times the estimated odds for the standard drug,

for each initial diagnosis level. In summary, severity of initial diagnosis, drug
treatment, and time all have substantial effects on the probability of a normal
response.

11.2.2 Modeling a Repeated Multinomial Response

Models for marginal distributions of a repeated binary response generalize to
multicategory responses. At observation t, the marginal response distribution
has I y 1 logits. With nominal responses, baseline-category logit models
describe the odds of each outcome relative to a baseline. For ordinal
responses, one might use cumulative logit models.

For a particular marginal logit, a model has the form

logit t s � q �� x , j s 1, . . . , I y 1, t s 1, . . . .Ž .j j j t
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Ž . w Ž .xFor an ordinal response, perhaps logit t s logit P Y F j . Then, � mayj t j
simplify to �, in which case the model takes the proportional odds form with
the same effects for each logit. Some parameters in � may refer to the

Ž .variable subscripted by t e.g., time that indexes the repeated measurements.
One can then compare marginal distributions at particular settings of x or
evaluate effects of x on the response. In either case, checking for interaction
is crucial. For instance, are the effects of x the same at each t?

11.2.3 Insomnia Example

Table 11.4 shows results of a randomized, double-blind clinical trial compar-
ing an active hypnotic drug with a placebo in patients who have insomnia

Ž .problems. The response is the patient’s reported time in minutes to fall
asleep after going to bed. Patients responded before and following a two-week
treatment period. The two treatments, active and placebo, form a binary
explanatory variable. The subjects receiving the two treatments were inde-
pendent samples.

Table 11.5 displays sample marginal distributions for the four
treatment�occasion combinations. From the initial to follow-up occasion,
time to falling asleep seems to shift downward for both treatments. The
degree of shift seems greater for the active treatment, indicating possible
interaction. The response variable is a discrete version of a continuous
variable, so by the derivation in Section 7.2.3 a cumulative link model is
natural. The proportional odds model

logit P Y F j s � q � t q � x q � tx 11.6Ž . Ž .t j 1 2 3

Ž .permits interaction between t s occasion 0 s initial, 1 s follow-up and

TABLE 11.4 Time to Falling Asleep, by Treatment and Occasion

Time to Falling Asleep

Follow-up

Treatment Initial � 20 20�30 30�60 � 60

Active � 20 7 4 1 0
20�30 11 5 2 2
30�60 13 23 3 1
� 60 9 17 13 8

Placebo � 20 7 4 2 1
20�30 14 5 1 0
30�60 6 9 18 2
� 60 4 11 14 22

Ž .Source: From S. F. Francom, C.Chuang-Stein, and J. R. Landis, Statist. Med. 8: 571�582 1989 .
Reprinted with permission from John Wiley & Sons Ltd.
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TABLE 11.5 Sample Marginal Distributions of Table 11.4

Response

Treatment Occasion � 20 20�30 30�60 � 60

Active Initial 0.101 0.168 0.336 0.395
Follow-up 0.336 0.412 0.160 0.092

Placebo Initial 0.117 0.167 0.292 0.425
Follow-up 0.258 0.242 0.292 0.208

Ž .x s treatment 0 s placebo, 1 s active , but assumes the same effects for
each response cutpoint.

2 Ž .For ML model fitting, G s 8.0 df s 6 for comparing observed to fitted
cell counts in modeling the 12 marginal logits using these six parameters. The

ˆ ˆŽ . Ž .ML estimates are � s 1.074 SE s 0.162 , � s 0.046 SE s 0.236 , and1 2
ˆ Ž .� s 0.662 SE s 0.244 . This shows evidence of interaction. At the initial3
observation, the estimated odds that time to falling asleep for the active

Ž .treatment is below any fixed level equal exp 0.046 s 1.04 times the esti-
mated odds for the placebo treatment; at the follow-up observation, the

Ž .effect is exp 0.046 q 0.662 s 2.03. In other words, initially the two groups
had similar distributions, but at the follow-up those with the active treatment
tended to fall asleep more quickly.

For simpler interpretation, it can be helpful to report sample marginal
� 4means and their differences. With response scores 10, 25, 45, 75 for time to

fall asleep, the initial means were 50.0 for the active group and 50.3 for the
placebo. The difference in means between the initial and follow-up responses
was 22.2 for the active group and 13.0 for the placebo. The difference
between these differences of means equals 9.2, with SE s 3.0, indicating that
the change was significantly greater for the active group.

11.2.4 Comparisons That Control for Initial Response

For data such as Table 11.4, suppose that the marginal distributions for
initial response are identical for the treatment groups. This is true, apart
from sampling error, with random assignment of subjects to the groups.
Suppose also that conditional on the initial response, the follow-up response
distribution is identical for the treatment groups. Then, the follow-up marginal
distributions are also identical.

If the initial marginal distributions are not identical, however, the differ-
ence between follow-up and initial marginal distributions may differ between
treatment groups, even though their conditional distributions for follow-up
response are identical. In such cases, although marginal models can be
useful, they may not tell the entire story. It may be more informative
to construct models that compare the follow-up responses while controlling
for the initial response.



ANALYZING REPEATED CATEGORICAL RESPONSE DATA464

Let Y denote the follow-up response, for treatment x with initial re-2
sponse y . In the model1

logit P Y F j s � q � x q � y , 11.7Ž . Ž .2 j 1 2 1

� compares the follow-up distributions for the treatments, controlling for1
initial observation. This is an analog of an analysis-of-covariance model, with
ordinal rather than continuous response. This cumulative logit model refers

Ž .to a univariate response Y rather than marginal distributions of a multi-2
Ž .variate response Y , Y . It is an example of a transitional model, discussed in1 2

the final section of this chapter.

11.2.5 ML Fitting of Marginal Logit Models*

ML fitting of marginal logit models is awkward. For T observations on an
I-category response, at each setting of predictors the likelihood refers to I T

multinomial joint probabilities, but the model applies to T sets of marginal
� Ž . 4multinomial parameters P Y s k , k s 1, . . . , I . The marginal multinomialt

variates are not independent.
Let � denote the complete set of multinomial joint probabilities for all

settings of predictors. Marginal logit models have the generalized loglinear
model form

C log A� s X� 11.8Ž . Ž .

introduced in Section 8.5.4. In the binary case, the matrix A applied to �
� Ž .4forms the T marginal probabilities P Y s 1 and their complements att

each setting of predictors. The matrix C applied to the log marginal probabil-
ities forms the T marginal logits for each setting; each row of C has 1 in the
position multiplied by the log numerator probability for a given marginal
logit, y1 in the position multiplied by the log denominator probability, and 0
elsewhere.

For instance, for the model of marginal homogeneity in a 2T table with no
Ž .covariates, � is a single parameter, denoted by � in 11.1 . For T s 2, � has

four elements, and this model is

� 111 1 0 0
� 121 y1 0 0 0 0 1 1 1log s � ,

0 0 1 y1 1 0 1 0 � 121
0 1 0 1 � 22

Ž . w Ž .x Ž .which sets both logit � q � s logit P Y s 1 and logit � q � s11 12 1 11 21
w Ž .xlogit P Y s 1 equal to � .2

Ž .The likelihood function ll � for a marginal logit model is the product of
the multinomial mass functions from the various predictor settings. One
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approach for ML fitting views the model as a set of constraints and uses
Ž .methods for maximizing a function subject to constraints. In model 11.8 , let

U denote a full column rank matrix such that the space spanned by the
columns of U is the orthogonal complement of the space spanned by the
columns of X. Then, U� X s 0, and the model has the equivalent constraint
form

U�C log A� s 0.Ž .

Ž .For instance, for marginal homogeneity in a 2 � 2 table with 11.8 as
� Ž . � Ž .expressed above, U s 1, y1 . Then U applied to C log A� sets the differ-

ence between the row and column marginal logits equal to 0.
This method of maximizing the likelihood incorporates these model con-

straints as well as identifiability constraints, which constrain the response
probabilities at each predictor setting to sum to 1. We express this collection

� Ž . Ž .of model constraints U C log A� s 0 and identifiability constraints as f �
s 0. The method introduces Lagrange multipliers corresponding to these
constraints and solves the Lagrangian likelihood equations using a Newton�

Ž .Raphson algorithm Aitchison and Silvey 1958; Haber 1985 . Let � be a
vector having elements � and the Lagrange multipliers � . The Lagrangian

Ž .likelihood equations have form h � s 0, where
��

h � s h � , � s f � , � log ll � r� � q � f � r� � �Ž . Ž . Ž . Ž . Ž .Ž .
is a vector with terms involving the contrasts in marginal logits that the model
specifies as constraints as well as log-likelihood derivatives.

The Newton�Raphson method then is

y1Ž t .� h �Ž .
Ž tq1. Ž t . Ž t .� s � y h � , t s 1, . . . .Ž .

� �

This can be computationally intensive because the derivative matrix inverted
Žhas dimensions larger than the number of elements in �. A refinement Lang

.1996a; Lang and Agresti 1994 uses an asymptotic approximation to a
reparameterized derivative matrix that has a much simpler form, requiring
inverting only a diagonal matrix and a symmetric positive definite matrix.

This ML marginal fitting method is available in specialized software
Ž .Appendix A mentions an S-Plus function . It makes no assumption about the
model that describes the joint distribution �. Thus, when the marginal model

Ž .holds, the ML estimate of � in 11.8 is consistent regardless of the
dependence structure for that distribution. Several alternative fitting ap-

Ž .proaches have been considered. Lang and Agresti 1994 simultaneously
fitted a marginal model and an unsaturated loglinear model for �. The

Ž .complete model can be specified as a special case of 11.8 and fitted using
the constraint approach with Lagrange multipliers just described. In standard
cases, the marginal and joint model parameters are orthogonal. If the
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marginal model holds, the ML estimator of the marginal model parameters is
consistent even if the model for the joint distribution is incorrect.

Ž .Fitzmaurice and Laird 1993 gave a related ML approach. A one-to-one
correspondence holds between � and parameters of the saturated loglinear
model. They used a further one-to-one correspondence between the main
effect and the higher-order parameters of that loglinear model with the
marginal probabilities and those same higher-order loglinear parameters.
Models were then specified separately for the marginal probabilities and the

Ž .higher-order conditional loglinear parameters. The likelihood is then maxi-
mized in terms of the two sets of model parameters. Again, the two sets of
parameters are orthogonal, so the ML estimator of marginal model parame-
ters is consistent when the marginal model holds. This mixed parameter

Žapproach is also available in specialized software Kastner et al. 1997; see
.also Appendix A .

Yet another ML approach uses a one-to-one correspondence between �
and parameters that describe the marginal distributions, the bivariate distri-

Žbutions, the trivariate distributions, and so on e.g., Glonek and McCullagh
.1995; Molenberghs and Lesaffre 1994 . Multivariate logistic models then

apply to the component distributions, although some higher-order effects
Ž .may be assumed to vanish, for simplicity. Glonek 1996 proposed a hybrid of

Ž .this and the Fitzmaurice and Laird 1993 approach.

11.3 MARGINAL MODELING: GENERALIZED ESTIMATING
( )EQUATIONS GEE APPROACH

At each combination of predictor values, ML fitting assumes a multinomial
distribution for the I T cell probabilities for the T observations on an
I-category response. As the number of predictors increases, the number of
multinomial probabilities increases dramatically. Currently, all the ML ap-
proaches described above are not practical when T is large or there are many
predictors, especially when some are continuous. Compared to the con-
tinuous-response case using the multivariate normal, marginal modeling of
multivariate categorical responses is also hindered by the lack of a simple
multivariate distribution for describing correlations among the T responses.
For instance, with T means and a common variance and correlation, the
multivariate normal has only T q 2 parameters, compared to the I T y 1
parameters for the multinomial.

An alternative to ML fitting uses a multivariate generalization of quasi-
Ž .likelihood Section 4.7 . Rather than assuming a particular distribution for Y,

the quasi-likelihood method specifies only the first two moments; it links the
mean to a linear predictor and also specifies how the variance depends on
the mean. The estimates are solutions of estimating equations that are
likelihood equations under the further assumption of a distribution in the

Ž .exponential family with that mean and variance Wedderburn 1974 .
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11.3.1 Generalized Estimating Equation Methodology: Basic Ideas

Ž .Repeated measurement provides a multivariate response Y , Y , . . . , Y ,1 2 T
where T sometimes varies by subject. As in the univariate case, the quasi-

Ž .likelihood method specifies a model for � s E Y and specifies a variance
Ž . Ž .function ® � describing how var Y depends on �. Now, though, that model

applies to the marginal distribution for each Y . The method also requires at
� 4working guess for the correlation structure among Y . The estimates aret

solutions of quasi-likelihood equations called generalized estimating equations.
Ž .The method is often referred to as the GEE method. Liang and Zeger 1986

proposed it for marginal modeling with GLMs. Their work built on related
Žmaterial in the econometrics literature e.g., Gourieroux et al. 1984; Hansen

.1982; White 1982 . We outline concepts here and give more details in Section
11.4.

The GEE approach utilizes an assumed covariance structure for
Ž .Y , Y , . . . , Y , specifying a variance function and a pairwise correlation1 2 T
pattern, without assuming a particular multivariate distribution. The GEE
estimates of model parameters are valid even if one misspecifies the covari-

Žance structure. Consistency i.e., estimates converging in probability to the
.true parameters depends on the first moment but not the second. Specifi-

cally, suppose that the model is correct in the sense that the chosen link
Ž .function and linear predictor truly describe how E Y depend on thet

predictors, t s 1, . . . , T. Then the GEE model parameter estimators are
consistent.

In practice, a chosen model is never exactly correct. This result is useful,
however, for suggesting that the correlation structure need not adversely
affect the quality of estimates for whatever model one uses. Often, no
a priori information is available about this structure, and the correlation is
regarded as a nuisance. A simple implementation of the GEE method naively

� 4treats Y as pairwise independent. Although parameter estimates are usuallyt
fine under this naive assumption, standard errors are not. More appropriate
standard errors result from an adjustment the GEE method makes using the
empirical dependence the data exhibit. The naive standard errors based on
the independence assumption are updated using the information the data
provide about the actual dependence structure to yield more appropriate
Ž .robust standard errors.

� 4As an alternative to estimates that treat Y as pairwise independent, thet
GEE method can use a working guess about the correlation structure but
again empirically adjust the standard error. The exchangeable working corre-

Ž .lation structure treats corr Y , Y as identical for all s and t. This is moret s
flexible and realistic than the naive independence assumption. Even more
realistic is an unstructured working correlation that permits a separate
correlation for each pair. When T is large, however, this approach suffers
some efficiency loss because of the many additional parameters.

In theory, choosing the working correlation wisely can pay benefits of
Ž .improved efficiency of estimation. However, Liang and Zeger 1986 noted
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that estimators based on independence working correlation can have surpris-
ingly good efficiency when the actual correlation is weak to moderate. One
can check the sensitivity to the selection by comparing results for different
working correlation assumptions. In our experience, when the correlations
are modest, all working correlation structures yield similar GEE estimates
and standard errors, as the empirical dependence has a large impact on

Žadjusting the naive standard errors. If they differed substantially, a more
.careful study of the correlation structure would be necessary. Unless one

expects dramatic differences among the correlations, we recommend the
exchangeable working correlation structure. This recognizes the dependence
at the cost of only one extra parameter.

The GEE approach is appealing for categorical data because of its
computational simplicity compared to ML. Advantages include not requiring
a multivariate distribution and the consistency of estimation even with
misspecified correlation structure. However, it has limitations. Since the
GEE approach does not completely specify the joint distribution, it does not
have a likelihood function. Likelihood-based methods are not available for
testing fit, comparing models, and conducting inference about parameters.
Instead, inference uses Wald statistics constructed with the asymptotic nor-
mality of the estimators together with their estimated covariance matrix.
However, unless the sample size is quite large, the empirically based standard

Ž .errors tend to underestimate the true ones e.g., Firth 1993b . As estimators,
those standard errors can also show more variability than parametric estima-

Ž . Ž .tors Kauermann and Carroll 2001 . Boos 1992 and Rotnitzky and Jewell
Ž .1990 proposed analogs of score tests for effects of predictors, using quasi-
log-likelihood, that may be more trustworthy than Wald tests. Some statisti-

Ž .cians e.g., Lindsey 1999 are critical of the GEE approach because of the
lack of likelihood. Others do not find this problematic, as they regard GEE
as an estimation method rather than a model.

11.3.2 Longitudinal Mental Depression Example

For Table 11.2 comparing two treatments for mental depression, ML fitting
of a logit model with drug � time interaction was used in Section 11.2.1. The
GEE analysis provides similar results, regardless of the choice of working
correlation structure. With the exchangeable structure, the GEE estimated

ˆŽ . Ž .slope on the logit scale for the standard drug is � s 0.48 SE s 0.12 . For3
ˆ Ž .the new drug the slope increases by � s 1.02 SE s 0.19 . Table 11.6 shows4

results using the independence working correlations. Estimates are the same
to two decimal places. The initial estimates and standard errors there are
those that apply if the repeated responses are truly independent. They equal
those obtained by using ordinary logistic regression with 3 � 340 s 1020
independent observations rather than treating the data as three dependent
observations for each of 340 subjects. The empirical standard errors incorpo-
rate the sample dependence to adjust the independence-based standard
errors.
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TABLE 11.6 Output from Using GEE to Fit Logit Model to Table 11.2

Initial Parameter Estimates GEE Parameter Estimates
Empirical Std Error Estimates

Parameter Estimate Std Error Parameter Estimate Std Error
Intercept y0.0280 0.1639 Intercept y0.0280 0.1742
diagnose y1.3139 0.1464 diagnose y1.3139 0.1460
drug y0.0596 0.2222 drug y0.0596 0.2285
time 0.4824 0.1148 time 0.4824 0.1199
drug�time 1.0174 0.1888 drug�time 1.0174 0.1877

Working Correlation Matrix
Col1 Col2 Col3

Row1 1.0000 0.0000 0.0000
Row2 0.0000 1.0000 0.0000
Row3 0.0000 0.0000 1.0000

With exchangeable correlation structure, the estimated common correla-
tion between pairs of the three responses is y0.003. The successive observa-
tions apparently have pairwise appearance like independent observations.
This is quite unusual for repeated measurement data. For this reason, similar
results occur from fitting the model assuming the three observations for a

Žsubject actually come from three separate subjects i.e., assuming 1020
.independent observations .

11.3.3 GEE Approach for Multinomial Responses: Insomnia Example

Ž .Liang and Zeger 1986 originally specified the GEE methodology for model-
ing univariate marginal distributions, such as the binomial and Poisson. It

Ž .extends to marginal modeling of multinomial responses. Lipsitz et al. 1994
outlined a GEE approach for cumulative logit models with repeated ordinal
responses. With this approach, for each pair of outcome categories one
selects a working correlation matrix for the pairs of repeated observations.

Ž . Ž .Each multinomial response at a fixed observation uses the I y 1 � I y 1
multinomial covariance matrix. Section 11.4.4 has details.

We illustrate for the insomnia data of Table 11.4. In Section 11.2.3 we
used ML to fit the marginal model

logit P Y F j s � q � t q � x q � txŽ .t j 1 2 3

for Y s time to fall asleep with treatment x at occasion t. With indepen-t
ˆdence working correlation structure, the GEE estimates are � s 1.0381

ˆ ˆŽ . Ž . Ž .SE s 0.168 , � s 0.034 SE s 0.238 , and � s 0.708 SE s 0.244 . The2 3
estimates are similar to the ML estimates, and the substantive conclusions
are the same. Considerable evidence exists that the distribution of time to fall
asleep decreased more for the treatment group than for the placebo group.
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11.4 QUASI-LIKELIHOOD AND ITS GEE MULTIVARIATE
EXTENSION: DETAILS*

A GLM assumes a certain distribution for the response variable. Sometimes
it is unclear how to select it. However, often there is a plausible relationship

Ž .between the mean and variance, such as ® � s �� for count data. Then,i i
Ž .an alternative to ML estimation is quasi-likelihood estimation Section 4.7 .

We next present some details about this method and its GEE extension for
marginal modeling of multivariate responses.

We begin with models for a single response and later discuss marginal
models for a multivariate response. For subject i, i s 1, . . . , n, let y be thei

Ž . Ž .outcome on Y with � s E Y and variance function ® � , and let x be thei i i i j
value of explanatory variable j. For link function g, the linear predictor is

Ž . � Ž .	 s g � sÝ � x s x �. The quasi-likelihood QL parameter estimatesi i j j i j i
�̂ are the solutions of quasi-score equations

�
��i y1u � s ® � y y � s 0, 11.9Ž . Ž . Ž . Ž .Ý i i iž /��i

y1Ž � .where � s g x � . These estimating equations are the same as the likeli-i i
Ž .hood equations 4.22 for GLMs when we substitute

�� �� �	 ��i i i i
s s x .i j�� �	 �� �	j i j i

They are not likelihood equations, however, without the extra assumption
� 4that y has distribution in the natural exponential family. Under thati

Ž .assumption, ® � characterizes the distribution within the natural exponen-i
Ž . Ž .tial family Jorgensen 1987 . Another motivation for equations 11.9 is that�

Ž .with ® � replaced by known variance ® , they result from the weighted leasti i
Ž .2 y1squares problem of minimizing Ý y y � ® .i i i i

Ž .The likelihood equations 4.22 for a GLM depend only on the mean and
� 4variance of y and the link function g, which determines �� r�	 . Thus,i i i
Ž .Wedderburn 1974 suggested using them as estimating equations for any

link and variance function, even if they do not correspond to a particular
member of the natural exponential family.

11.4.1 Properties of Quasi-likelihood Estimators

Ž . Ž . Ž .In the quasi-likelihood QL method, the quasi-score function u � in 11.9j
is called an unbiased estimating function; this term refers to any function
Ž . w Ž .x Ž .h y; � of y and � such that E h Y; � s 0 for all �. The equations 11.9

ˆthat determine � are called estimating equations.
The quasi-likelihood method treats the quasi-score function as the deriva-

tive of a function called the quasi-log likelihood. This function may not be a
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Ž .proper log likelihood function. Nonetheless, McCullagh 1983 showed that
QL estimators have properties similar to those of ML estimators. For

ˆinstance, the QL estimators � are asymptotically normal with covariance
matrix approximated by

� y1
�� ��i iy1V s ® � . 11.10Ž . Ž .Ý iž / ž /�� ��i

This is equivalent to the formula for the large-sample covariance matrix of
w Ž .xthe ML estimator in a GLM which is estimated by 4.28 .

p 6ˆ ˆŽ .A key result is that the QL estimator � is consistent for � i.e., � �
even if the variance function is misspecified, as long as the specification is
correct for the link function and linear predictor. That is, assuming that the

ˆŽ .model form g � sÝ � x is correct, the consistency of � holds even if thei j j i j
Ž .true variance function is not ® � . We now give a heuristic explanation fori

this.
y1Ž . Ž . w Ž .xWhen truly � s g Ý � x , then from 11.9 , E u � s 0 for all j.i j j i j j

Ž . Ž .From 11.9 , u � rn is a vector of sample means. By a law of large numbers,
ˆit converges in probability to its expected value of 0. The solution � of the

quasi-score equations is a continuous function of these sample means, so it
ˆconverges to �, since � is the value of � for which the sum is exactly equal

to 0. The consistency also follows from general results for unbiased estimat-
Ž .ing functions Liang and Zeger 1995 .

11.4.2 Sandwich Covariance Adjustment for Variance Misspecification

Ž . Ž . Ž . Ž .If one assumes that var Y s® � but the true var Y � ® � , then thei i i i
ˆactual asymptotic covariance matrix of the QL estimator � is not V as given

Ž . Ž .in 11.10 . Instead, it is Diggle et al. 2001; White 1982

�
�� ��i iy1 y1V ® � var Y ® � V. 11.11Ž . Ž . Ž . Ž .Ý i i iž / ž /�� ��i

Even though the variances are scalar, we express the matrices in this form to
Ž .motivate the GEE multivariate extension discussed below. Matrix 11.11

Ž . Ž .simplifies to V if var Y s ® � . In practice, the true variance function isi i
Ž .unknown. A consistent estimator of 11.11 is a sample analog, replacing �i

Ž . Ž .2 Ž .by � and var Y by y y � Liang and Zeger 1986 . The estimatedˆ ˆi i i i
covariance matrix is valid regardless of whether the variance specification
Ž .® � is correct. This estimated covariance matrix is called a sandwichi

estimator, because the empirical evidence is sandwiched between the model-
driven covariance matrices.

In summary, even with incorrect specification of the variance function, one
can still consistently estimate � and one can estimate the asymptotic variance
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ˆ Ž .of � by estimating the sandwich adjustment 11.11 . However, some effi-
Ž .ciency loss occurs when the variance chosen, ® � , is wildly inaccurate. Also,i

the number of clusters n may need to be large for the sample version of
Ž .11.11 to work well; otherwise, it can be biased downward. Of course, a
modeling process never gets anything exactly correct. Just as the variance

Ž .function chosen only approximates the true one hopefully, closely , so is the
specification for the mean only approximate.

11.4.3 GEE Methodology: Technical Details

Ž .Now we consider the generalized estimating equations GEE multivariate
Ž .�generalization of QL. For subject i, let y s y , . . . , y and � si i1 iT ii

Ž .� Ž .� , . . . , � , where � s E Y . The number T of responses may vary byi1 iT i t i t ii

cluster. Let x denote a p � 1 vector of explanatory variable values for y .i t i t
The notation allows for cases where explanatory variables also vary for the

Ž .repeated measurements. The linear predictor of the model is 	 s g � si t i t
x� � for link function g. The model refers to the marginal distribution ati t
each t rather than the joint distribution. Let X be the T � p matrix ofi i

Ž . �predictor values for cluster or subject i, for which row t is x .i t
We assume that y has probability mass function of formi t

f y ; 
 , � s exp y 
 y b 
 � q c y , � .Ž . Ž . Ž .½ 5i t i t i t i t i t i t

When � is known, this is the natural exponential family with natural
parameter 
 . From Section 4.4.1,i t

� s E Y s b� 
 , ® � s var Y s b� 
 � .Ž . Ž . Ž . Ž . Ž .i t i t i t i t i t i t

Ž .The GEE method also assumes a working correlation matrix R � for Y ,i
depending on parameters � . The exchangeable working correlation has

Ž . Ž . Ž Ž . Ž ..corr Y , Y s � for each pair in Y . Let b � s b 
 , . . . , b 
 , and leti t i s i i i1 iTi�Ž .B denote a diagonal matrix with main diagonal elements b � . Then thei i
working covariance matrix for Y isi

V s B1r2 R � B1r2� . 11.12Ž . Ž .i i i

Ž .Note that V s cov Y if R is the true correlation matrix for Y .i i i
Now let � be the diagonal matrix with elements �
 r�	 on the maini i t i t

Ž .diagonal for t s 1, . . . , T . For the canonical link, this is the identity matrix.i
Let D s �� r�� s B � X be a T � p matrix with typical element express-i i i i i i

Ž .Ž .Ž . Ž .ing �� r�� in the form �� r�
 �
 r�	 �	 r�� . From 11.9 , fori t j i t i t i t i t i t j
univariate GLMs the quasi-likelihood estimating equations have the form

� y1
�� r�� ® � y y � � s 0,Ž . Ž . Ž .Ý i i i i

i
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Ž . y1Ž � .where � s � � s g x � . The analog of this in the multivariate case isi i i
the set of generalized estimating equations

n
� y1D V y y � � s 0.Ž .Ý i i i i

is1

ˆThe GEE estimator � is the solution of these equations.
Ž .The naive approach, which sets R � s I, treats pairs of responses as

Ž .independent. In that case, 11.12 simplifies to V s B �, and the generalizedi i
estimating equations simplify to

� �y1 y1D V y y � � s X � B V y y � �Ž . Ž .Ý Ýi i i i i i i i i i
i i

�s 1r� X � y y � � s 0,Ž . Ž .Ý i i i i
i

� ˆw Ž .xor Ý X � y y � � s 0. The solution � is then the same as the ordinaryi i i i i
estimator for a GLM with the chosen link function and variance function,

Ž .treating y , . . . , y as independent observations.i1 iTi

Normally, one selects a working correlation matrix permitting dependence,
such as the exchangeable structure. For time-series data, also popular is the

Ž . � tys �autoregressive structure, corr Y , Y s � , which treats observations far-i t i s
Ž .ther apart in time as more weakly correlated. Liang and Zeger 1986

suggested computing the GEE estimates by iterating between a modified
Fisher scoring algorithm for solving the generalized estimating equations for

Ž .� given current estimates of � and � and using residuals for moment
Ž .estimation of � and � based on the current estimates of � . They suggested

Ž .estimates of R � for a variety of correlation structures. Alternative algo-
rithms simultaneously solve estimating equations for � and for association

Ž .parameters e.g., Liang et al. 1992; see also Note 11.8 . GEE algorithms need
Žnot converge, but often one iteration gives adequate results Lipsitz et al.

.1991 .
Ž .Liang and Zeger 1986 showed asymptotic normality and consistency as

the number of clusters n increases. Under certain regularity conditions,

d 6ˆ'n � y � N 0, V .Ž .Ž . G

Ž .Here, generalizing 11.11 , V s lim V withG n™� G , n

y1 y1
� � �y1 y1 y1 y1V s n D V D D V cov Y V D D V D .Ž .Ý Ý ÝG , n i i i i i i i i i i i

i i i

ˆ ˆ ˆ ˆThe estimated covariance matrix V rn of � replaces � with �, � with �,G , n
ˆ ˆ �Ž . w Ž .xw Ž .x� with � , and cov Y by y y � � y y � � . The purpose of theˆ i i i i i
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sandwich estimator is to use the data’s empirical evidence about covariation
to adjust the standard errors in case the true covariance differs substantially
from the working guess.

Ž .When the working correlation structure is the true one and cov Y s V ,i i
Ž � y1 .y1the asymptotic covariance matrix V rn simplifies to Ý D V D . This isG ,n i i i i

the relevant covariance if we put complete faith in our guess about the
correlation structure.

With binary data, the correlation may not be the best way to express the
within-cluster association. The marginal probabilities constrain the possible

Ž . Žcorrelation values, since the range of possible values for E Y Y s P Y s 1,i t i s i t
. Ž . Ž .Y s 1 depends on P Y s 1 and P Y s 1 . An alternative approach usesi s i t i s

the odds ratio, for instance by modeling the log odds ratios for pairs in a
cluster as exchangeable. This has the advantage that the association parame-

Ž .ters are distinct from the means. See Fitzmaurice et al. 1993 and Lipsitz
Ž . Ž .et al. 1991 . Carey et al. 1993 suggested an iterative alternating logistic

regressions algorithm. It alternates between a GEE step for the regression
parameters in the model for the mean and a step for an association model for
the log odds ratio. This is useful when the structure of the association is itself
a major focus rather than a nuisance.

11.4.4 GEE Approach: Multinomial Responses

Ž .We now briefly describe the Lipsitz et al. 1994 GEE approach for marginal
modeling with a multinomial response. This is appropriate, for instance, with

Ž .cumulative logit models. Let y j s 1 if observation t in cluster i hasi t
Ž . Ž .outcome j j s 1, . . . , I y 1 . Let y be the T I y 1 binary indicators fori i

w Ž .x w Ž .xcluster i. Then, one selects a T I y 1 � T I y 1 working covariancei i
Ž Ž . Ž ..matrix V for y , specifying a pattern for corr Y j , Y k for each pair ofi i i t i s

Ž . Ž . Ž . Ž .outcome categories j, k and each pair t, s . The I y 1 � I y 1 block of
Ž Ž . Ž .. Ž .V for y 1 , . . . , y I y 1 is a multinomial covariance matrix with ® j si t i t i t i t

Ž Ž . .w Ž Ž . .x Ž Ž .P Y j s 1 1 y P Y j s 1 on the main diagonal and yP Y j si t i t i t
. Ž Ž . .1 P Y k s 1 off it. The remaining elements of V contain elementsi t i
Ž Ž . Ž ..cov Y j , Y k . For instance, one possibility is the exchangeable structure,i t i s
Ž Ž . Ž ..corr Y j , Y k s � for all t and s.i t i s jk

In this approach the generalized estimating equations for � again have the
form

n
� y1u � s D V y y � s 0,Ž . Ž .Ý i i i i

is1

where � is the vector of probabilities associated with y , D� s ��� r��, andi i i i
the parameters are evaluated at their current estimates. Lipsitz et al. sug-
gested a Fisher scoring algorithm for solving these equations and a method of

� 4moments update for estimating � at each step of the iteration. Anjk
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ˆempirically adjusted sandwich covariance matrix of � is again

y1 y1n n n
� � �y1 y1 y1 y1D V D D V cov Y V D D V D .Ž .Ý Ý Ýi i i i i i i i i i i

is1 is1 is1

Ž .This is estimated by substituting � from the model fit and replacing cov Yˆ i i
by the empirical covariance matrix of y .i

11.4.5 Dealing with Missing Data

Unfortunately, studies with repeated measurement often have cases for
which at least one response in a cluster is missing. In a longitudinal study, for
instance, some subjects may drop out before its conclusion. When data are
missing, analyzing the observed data alone as if no data are missing can result
in biased estimates.

An advantage of the GEE method is that different clusters can have
different numbers of observations. The data input file has a separate line for
each observation, and for longitudinal studies, computations use those times
for which a subject has an observation. However, bias can arise in GEE
estimates unless one can make certain assumptions about why the data are
missing.

Let Y Žo. denote the observed responses, Y Žm. the missing responses, and Y
their union. Let M denote a missing data indicator that equals 1 when an

Ž .observation is missing and 0 otherwise. Little and Rubin 1987 called the
data missing completely at random if M is statistically independent of Y; that
is, the probability that an observation is missing is independent of that
observation’s value, although it may depend on the explanatory variables.
Less restrictively, they called the data missing at random if the distribution of
Ž � . Ž � Žo.. Žo.M Y equals that of M Y ; that is, missingness depends only on Y
and not on the missing values.

When either of these is plausible, with a likelihood-based analysis it is not
necessary to model the missingness mechanism. An analysis using only Y Žo.

is not systematically biased. The same is true with GEE methods when
Žestimating equations can be weighted by response probabilities Robins et al.

.1995 . Otherwise, however, with non-likelihood-based methods such as GEE,
the missingness process can be ignored only when data are missing com-

Ž .pletely at random. Kenward et al. 1994 illustrated the breakdown in GEE
estimates when the data are not missing completely at random.

Often, missingness depends on the missing values. For instance, in a
longitudinal study measuring pain, perhaps a subject dropped out when the
pain got above some threshhold. Then, more complex analyses are needed

Ž . Ž .that model the joint distribution of Y and M Little 1998 . Let f � denote a
generic probability mass function, which also depends on explanatory vari-
ables x and parameters. Selection models factor the joint distribution of Y
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and M as

�f y, M ; x, � , 	 s f y; x, � f M y; x, 	 ,Ž . Ž . Ž .

Ž . Ž � .where f y; x, � is the model in the absence of missing values and f M y; x, 	
is the model for the missing-data mechanism. Pattern mixture models use the
alternative factorization,

�f y, M ; x, � , 
 s f y M , x, 
 f M ; x, � ,Ž . Ž .Ž .

which conditions the distribution of Y on the missing data pattern. The two
specifications are equivalent when M is independent of Y, with � s 
 and
	 s �. For discussion of advantages of each modeling approach and details

Ž .on ways of modeling missingness, see Little 1998 and references in Note
Ž .11.9. See Stokes et al. 2000, p. 524 for an example of building

the missingness pattern into a model to check whether it is associated with
the response or interacts with effects of explanatory variables.

Analyses in the presence of much missingness should be made with
caution. Typically, little is known about the missing data mechanism, and
assumptions about it cannot be checked. Since inferences may not be robust,
a sensitivity study is necessary to check how results depend on specification
of that mechanism. In the absence of a model for the missingness, one should
at least compare results of the analysis using all available cases for all clusters
to the analysis using only clusters having no missing observations. If results
differ substantially, conclusions should be very tentative until the reasons for
missingness can be studied.

11.5 MARKOV CHAINS: TRANSITIONAL MODELING

When Y denotes the response at time t, t s 0, 1, 2, . . . , the indexed family oft
Ž .random variables Y , Y , Y , . . . is a stochastic process. The state space of the0 1 2

process is the set of possible values for Y . The value Y is the initial state.t 0
When the state space is categorical and observations occur at a discrete set of

� 4times, Y has discrete state space and discrete time.t

11.5.1 Transitional Models

The main focus is usually on the dependence of Y on the responsest
� 4y , y , . . . , y observed previously as well as any explanatory variables.0 1 ty1

Ž .Models of this type are called transitional models. Let f y , . . . , y denote0 T
Ž . Žthe joint probability mass function of Y , . . . , Y ignoring, for now, ex-0 T
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.planatory variables . Transitional models use the factorization

� � �f y , . . . , y s f y f y y f y y , y ��� f y y , y , . . . , y .Ž . Ž . Ž . Ž . Ž .0 T 0 1 0 2 0 1 T 0 1 Ty1

Unlike the marginal models in the other sections of this chapter, this
modeling is conditional on previous responses.

In this section we introduce discrete-time Marko® chains, a simple stochas-
tic process having discrete state space. Many transitional models have Markov
chain structure for at least part of the model.

11.5.2 First-Order Markov Chains

A Marko® chain is a stochastic process for which, for all t, the conditional
distribution of Y , given Y , . . . , Y , is identical to the conditional distribu-tq1 0 t
tion of Y given Y alone. That is, given Y , Y is conditionally indepen-tq1 t t tq1
dent of Y , . . . , Y . Knowing the present state of a Markov chain, informa-0 ty1
tion about past states does not help us predict the future. For Markov chains,

� � �f y , . . . , y s f y f y y f y y . . . f y y . 11.13Ž . Ž . Ž .Ž . Ž . Ž .0 T 0 1 0 2 1 T Ty1

A stochastic process is a k th-order Marko® chain if, for all t, the condi-
tional distribution of Y , given Y , . . . , Y , is identical to the conditionaltq1 0 t

Ž .distribution of Y , given Y , . . . , Y . Given the states at the previous ktq1 t tykq1
times, the future behavior of the chain is independent of past behavior before
those k times. Our discussion here focuses mainly on ordinary Markov chains

Ž . Ž .as in 11.13 , which are first order k s 1 .
Ž � . Ž .Denote the conditional probability P Y s j Y s i by � t . Thet ty1 j � i

� Ž .4 Ž .� t , which satisfy Ý � t s 1, are called transition probabilities. Thej � i j j � i
� Ž . 4I � I matrix � t , i s 1, . . . , I, j s 1, . . . , I is a transition probabilityj � i

matrix. It is called one-step, to distinguish it from the matrix of probabilities
for k-step transitions from time t y k to time t.

Ž .From 11.13 , the joint distribution for a Markov chain depends only on
one-step transition probabilities and the marginal distribution for the initial
state. It also follows that the joint distribution satisfies loglinear model

Y Y , Y Y , . . . , Y Y .Ž .0 1 1 2 Ty1 T

For a sample of realizations of a stochastic process, a contingency table
displays counts of the possible sequences. A test of fit of this loglinear model
checks whether the process plausibly satisfies the Markov property.

Statistical inference for Markov chains uses standard methods of categori-
cal data analysis. For example, consider ML estimation of transition probabil-

Ž .ities. Let n t denote the number of transitions from state i at time t y 1 toi j
� Ž .4state j at time t. For fixed t, n t form the two-way marginal table fori j
Tq1 Ž .dimensions t y 1 and t of an I contingency table. For the n t subjectsiq
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� Ž . 4in category i at time t y 1, suppose that n t , j s 1, . . . , I have a multino-i j
� Ž .4 � 4mial distribution with parameters � t . Let n denote the initial counts.j � i i0

Suppose that they also have a multinomial distribution, with parameters
� 4 Ž .� . If subjects behave independently, from 11.13 the likelihood function isi0
proportional to

I T I I
Ž .n tn i ji0� � t . 11.14Ž . Ž .Ł Ł Ł Łi0 j � i½ 5ž /is1 ts1 is1 js1

The transition probabilities are parameters of IT independent multinomial
Ž .distributions. From Anderson and Goodman 1957 , the ML estimates are

� t s n t rn t .Ž . Ž . Ž .ˆ j � i i j iq

11.5.3 Respiratory Illness Example

Table 11.7 refers to a longitudinal study at Harvard of effects of air pollution
on respiratory illness in children. The children were examined annually at
ages 9 through 12 and classified according to the presence or absence of
wheeze.

Ž .Denote the binary response wheeze, no wheeze by Y at age t, t st
Ž .9, 10, 11, 12. The loglinear model Y Y , Y Y , Y Y represents a first-9 10 10 11 11 12

2 Ž .order Markov chain. It fits poorly, with G s 122.9 df s 8 . Given the state
at time t, classification at time t q 1 depends on states at times previous to

Ž .time t. The model Y Y Y , Y Y Y represents a second-order Markov9 10 11 10 11 12
chain, satisfying conditional independence at ages 9 and 12, given states at

2 Ž .ages 10 and 11. This model also fits poorly, with G s 23.9 df s 4 . The
poor fits may partly reflect subject heterogeneity, since these analyses ignore
possibly relevant covariates such as parental smoking behavior.

Ž .The loglinear model Y Y , Y Y , Y Y , Y Y , Y Y , Y Y that per-9 10 9 11 9 12 10 11 10 12 11 12
2 Ž .mits association at each pair of ages fits well, with G s 1.5 df s 5 . Table

TABLE 11.7 Results of Breath Test at Four Agesa

Y Y Y Y Count Y Y Y Y Count9 10 11 12 9 10 11 12

1 1 1 1 94 2 1 1 1 19
1 1 1 2 30 2 1 1 2 15
1 1 2 1 15 2 1 2 1 10
1 1 2 2 28 2 1 2 2 44
1 2 1 1 14 2 2 1 1 17
1 2 1 2 9 2 2 1 2 42
1 2 2 1 12 2 2 2 1 35
1 2 2 2 63 2 2 2 2 572

a 1, wheeze; 2, no wheeze.
Ž .Source: Ware et al. 1988 .
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TABLE 11.8 Estimated Conditional Log Odds
Ratios for Table 11.7

Simpler
Association Estimate Structure

Y Y 1.81 1.759 10
Y Y 1.65 1.7510 11
Y Y 1.85 1.7511 12
Y Y 0.95 1.049 11
Y Y 1.05 1.049 12
Y Y 1.07 1.0410 12

11.8 shows its ML estimates of pairwise conditional log odds ratios. The
association seems similar for pairs of ages 1 year apart, and somewhat weaker
for pairs of ages more than 1 year apart. The simpler model in which

Y9Y10 s Y10 Y11 s Y11Y12 and Y9Y11 s Y9Y12 s Y10 Y12
i j i j i j i j i j i j

2 Ž .fits well, with G s 2.3 df s 9 . The estimated log odds ratios are 1.75 in the
first case, and 1.04 in the second.

11.5.4 Transitional Models with Explanatory Variables

Transitional models usually also include explanatory variables x. The joint
mass function of T sequential responses is then

f y , . . . , y ; xŽ .1 T

� � �s f y ; x f y y ; x f y y , y ; x ��� f y y , y , . . . , y ; x .Ž . Ž . Ž . Ž .1 2 1 3 1 2 T 1 2 Ty1

With binary y, for instance, one might specify a logistic regression model for
each term in this factorization,

�f y y , . . . , y ; xŽ .t 1 ty1 t

�exp y � q � y q ��� q� y q � xŽ .t 1 1 ty1 ty1 t
s , y s 0,1.� t1 q exp � q � y q ��� q� y q � xŽ .1 1 ty1 ty1 t

Here, the predictor x may take different value for each component. The
model treats previous responses as explanatory variables. It is called a

Ž .regressi®e logistic model Bonney 1987 .
ˆThe interpretation and magnitude of � depends on how many previous

observations are in the model. Within-cluster effects may diminish markedly
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by conditioning on previous responses. This is an important difference from
marginal models, for which the interpretation does not depend on the
specification of the dependence structure. In the special case of first-order

� 4Markov structure, the coefficients of y , . . . , y equal 0 in the model for y1 ty2 t
Ž .e.g., Azzalini 1994; Bonney 1987 . It may help to allow interaction between
x and y in their effects on y .t ty1 t

For a given subject, the product of the conditional mass functions deter-
Žmines that subject’s contribution to the likelihood function. One usually

.ignores the contribution of the marginal distribution for the first term. That
is, given the predictor, the model treats repeated transitions by a subject as
independent. Thus, one can fit the model with ordinary GLM software,

Ž .treating each transition as a separate observation Bonney 1986 .

11.5.5 Child’s Respiratory Illness and Maternal Smoking

Table 11.9 is also from the Harvard study of air pollution and health. At ages
7 through 10, children were evaluated annually on the presence of respiratory
illness. A predictor is maternal smoking at the start of the study, where s s 1
for smoking regularly and s s 0 otherwise. Let y denote the response at aget
Ž .t t s 7, 8, 9, 10 . We consider the regressive logistic model

logit P Y s 1 s � q � s q � t q � y , t s 8, 9, 10.Ž .t 1 2 3 ty1

Each subject contributes three observations to the model fitting. The data
Ž .set consists of 12 binomials, for the 2 � 3 � 2 combinations of s, t, y .ty1

Ž .For instance, for the combination 0, 8, 0 , y s 0 for 237 q 10 q 15 q 4 s8

TABLE 11.9 Child’s Respiratory Illness by Age and Maternal Smoking

No Maternal Maternal
Smoking Smoking

Child’s Respiratory Illness Age 10 Age 10

Age 7 Age 8 Age 9 No Yes No Yes

No No No 237 10 118 6
Yes 15 4 8 2

Yes No 16 2 11 1
Yes 7 3 6 4

Yes No No 24 3 7 3
Yes 3 2 3 1

Yes No 6 2 4 2
Yes 5 11 4 7

Source: Data courtesy of James Ware.
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266 subjects and y s 1 for 16 q 2 q 7 q 3 s 28 subjects. The ML fit is8

ˆlogit P Y s 1 sy0.293 q 0.296 s y 0.243t q 2.211 y ,Ž .t ty1

Ž .with SE values 0.846, 0.156, 0.095, 0.158 . Not surprisingly, the previous ob-
servation has a strong effect. Given that and the child’s age, there is slight
evidence of a positive effect of maternal smoking: The likelihood-ratio

Ž .statistic for H : � s 0 is 3.55 df s 1, P s 0.06 . The model itself does not0 1
Ž 2 .show any evidence of lack of fit G s 3.1, df s 8 .

NOTES

Section 11.1: Comparing Marginal Distributions: Multiple Responses

Ž .11.1. Darroch 1981 surveyed thoroughly the relationships among statistics for testing
marginal homogeneity and their connections with generalized CMH analyses. See also

Ž . Ž . Ž .Mantel and Byar 1978 and White et al. 1982 . Croon et al. 2000 studied a variety
of hypotheses for longitudinal data in the context of the generalized loglinear model.

Section 11.2: Marginal Modeling: Maximum Likelihood Approach

Ž .11.2. For other work on ML fitting of marginal models, see Bergsma and Rudas 2002 ,
Ž . Ž . Ž .Ekholm et al. 2000 , Fitzmaurice et al. 1993 , and Lang et al. 1999 .

Section 11.3: Marginal Modeling: Generalized Estimating Equations Approach

Ž . Ž .11.3. Liang et al. 1992 discussed GEE methods for categorical primarily binary re-
Ž .sponses. For multinomial responses, see Heagerty and Zeger 1996 , Lipsitz et al.

Ž . Ž . Ž .1994 , Miller et al. 1993 , and references in Agresti and Natarajan 2001 . More
general models with ordinal responses allow for dispersion parameters that also

Ž .depend on covariates Toledano and Gatsonis 1996 .
Ž .11.4. LaVange et al. 2001 used GEE methods to adjust for clustered sampling in surveys

Ž .and clinical trials. Boos 1992 discussed generalized score tests that incorporate
empirical variance estimates, illustrating with tests for trend and lack of fit in binary
regression.

Ž . Ž .11.5. Koch et al. 1977 used weighted least squares WLS to fit marginal models to Table
11.2. WLS for categorical modeling is described in Section 15.1. It has severe

Ž .limitations e.g., covariates must be categorical and marginal tables cannot be sparse
but led naturally to the GEE approach.

Section 11.4: Quasi-likelihood and Its GEE Multi©ariate Extension: Details

Ž .11.6. Firth 1993b provided a useful overview of quasi-likelihood methods. McCullagh
Ž .1983 showed that under correct specification of the mean and the variance function,
quasi-likelihood estimators are asymptotically efficient among estimators that are

� 4locally linear in y . His result generalizes the Gauss�Markov theorem, although in ani
Ž .asymptotic rather than exact manner. See also Heyde 1997 and Liang and Zeger

Ž .1995 for discussions of unbiased estimating functions and their connections with
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asymptotic consistency and efficiency. Godambe showed in 1960 that ML estimators
are optimal solutions with an unbiased estimating function. When quasi-likelihood

Ž . Ž .estimators are not ML, Cox 1983 and Firth 1987 suggested that they still retain
good efficiency when the departure from the natural exponential family is at most
moderate, such as modest overdispersion relative to such a family.

11.7. The generalized estimating equations are likelihood equations, and hence the GEE
estimates are also ML, in certain cases. Examples are multivariate normal data or

Ž .binary data when the working covariance is correct Fitzmaurice et al. 1993 . Results
about effects of model misspecification arise in a variety of model-building contexts.

Ž . Ž .For general theory, see Gourieroux et al. 1984 , Hansen 1982 , Liang and Zeger
Ž . Ž .1995 , and White 1982 .

Ž11.8. A GEE2 analysis adds estimating equations for the correlation structure Prentice and
.Zhao 1991 . This has the potential to increase efficiency. A disadvantage is that,

ˆunlike with ordinary GEE, � is no longer consistent if this part of the model is
Ž .misspecified. Qu et al. 2000 showed how to increase efficiency by representing the

working correlation matrix by a linear combination of basis matrices.
Ž . Ž11.9. For surveys of ways to handle missing data, see Little 1998 , Little and Rubin 1987,

. Ž . Ž .Chap. 9 , Schafer 1997 , and Verbeke and Molenberghs 2000 . See also Baker and
Ž . Ž . Ž . Ž .Laird 1988 , Fay 1986 , Fitzmaurice et al. 1994 , Forster and Smith 1998 , Fuchs

Ž . Ž . Ž .1982 , Molenberghs and Goetghebeur 1997 , Molenberghs et al. 1997 , Park and
Ž . Ž .Brown 1994 , and Stokes et al. 2000 .

Section 11.5: Marko© Chains: Transitional Modeling

Ž .11.10. For statistical inference with Markov chains, see Andersen 1980, Sec. 7.7 , Anderson
Ž . Ž . Ž .and Goodman 1957 , Billingsley 1961 , Bishop et al. 1975, Chap. 7 , and Kalbfleisch

Ž . Ž . Ž . Ž .and Lawless 1985 . See Conaway 1989 , Stiratelli et al. 1984 , and Ware et al. 1988
for other analyses focusing on the conditional dependence structure.

PROBLEMS

Applications

11.1 Refer to Table 8.3. Viewing the table as matched triplets, construct
the marginal distribution for each substance. Find the sample propor-
tions of students who used marijuana, alcohol, and cigarettes. Test
the hypothesis of marginal homogeneity. Interpret results.

11.2 Refer to Table 9.1. Fit a marginal model to describe main effects of
Ž .race, gender, and substance type marijuana, alcohol, cigarettes on

whether a subject had used that substance. Summarize effects.

11.3 Refer to Problem 11.2. Further study shows evidence of an interac-
tion between gender and substance type. Using GEE with exchange-
able working correlation, the model fit for the probability � of using
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a particular substance is

logit � sy0.57 q 1.93S q 0.86S q 0.38 RŽ .ˆ 1 2

y 0.20G q 0.37G � S q 0.22G � S ,1 2

Ž .where R, G, S , S are dummy variables for race 1 s white , gender1 2
Ž . Ž1 s female , and substance type S s 1, S s 0 for alcohol; S s1 2 1

.0, S s 1 for cigarettes; S s S s 0 for marijuana . Show that:2 1 2

a. The estimated odds a nonwhite male has used marijuana are
Ž .exp y0.57 s 0.57.

b. Given gender, the estimated odds a white subject used a given
substance are 1.46 times the estimated odds for a black subject.

c. Given race, the estimated odds a female has used alcohol are 1.19
times the estimated odds for males; for cigarettes and for mari-
juana, the estimated odds ratios are 1.02 and 0.82.

d. Given race, the estimated odds a female has used alcohol
Ž . Ž .cigarettes are 9.97 2.94 times the estimated odds she has used
marijuana.

Ž .e. Given race, the estimated odds a male has used alcohol cigarettes
Ž .are 6.89 2.36 times the estimated odds he has used marijuana.

Interpret the interaction.

Ž .11.4 Refer to Table 11.2. Analyze the data using the scores 1, 2, 4 for the
week number, using ML or GEE. Interpret estimates and compare

Ž .substantive results to those in the text with scores 0, 1, 2 .

11.5 Analyze Table 11.9 using a marginal logit model with age and
maternal smoking as predictors. Compare interpretations to the
Markov model of Section 11.5.5.

11.6 Table 11.10 refers to a three-period crossover trial to compare placebo
Ž . Ž .treatment A with a low-dose analgesic treatment B and high-dose

Ž .analgesic treatment C for relief of primary dysmenorrhea. Subjects
in the study were divided randomly into six groups, the possible
sequences for administering the treatments. At the end of each

Ž .period, each subject rated the treatment as giving no relief 0 or
Ž .some relief 1 . Let y s 1 denote relief for subject i using treat-iŽk . t

Ž .ment t t s A, B, C , where subject i is nested in treatment sequence
Ž .k k s 1, . . . , 6 . Assuming common treatment effects for each se-

ˆ� 4 Žquence, and setting � s 0, obtain and interpret � using ML orA t
.GEE for the model

logit P Y s 1 s � q � .Ž .iŽk . t k t

How would you order the drugs, taking significance into account?
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TABLE 11.10 Data for Problem 11.6

Ž .Response Pattern for Treatments A, B, CTreatment
Sequence 000 001 010 011 100 101 110 111

A B C 0 2 2 9 0 0 1 1
A C B 2 0 0 9 1 0 0 4
B A C 0 1 1 8 1 3 0 1
B C A 0 1 1 8 1 0 0 1
C A B 3 0 0 7 0 1 2 1
C B A 1 5 0 4 0 3 1 0

Ž .Source: Jones and Kenward 1987 .

11.7 Table 11.11 is from a Kansas State University survey of 262 pig
farmers. For the question ‘‘What are your primary sources of veteri-

Ž .nary information?,’’ the categories were A professional consultant,
Ž . Ž . Ž .B veterinarian, C state or local extension service, D magazines,

Ž .and E feed companies and reps. Farmers sampled were asked to
5 Ž .select all relevant categories. The 2 � 2 � 4 table shows the yes, no

counts for each of these five sources cross-classified with the farmers’
Ž .education whether they had at least some college education and size

Ž .of farm number of pigs marketed annually, in thousands .

TABLE 11.11 Data for Problem 11.7

Response on D

A s yes A s no

B s yes B s no B s yes B s no

C s yes C s no C s yes C s no C s yes C s no C s yes C s no

Educ Pigs E Y N Y N Y N Y N Y N Y N Y N Y N

No � 1 Y 1 0 0 0 0 0 0 0 2 1 1 2 1 1 5 3
N 0 0 0 0 0 0 0 1 1 0 0 5 4 7 7 0

1�2 Y 2 0 0 0 0 0 0 0 4 0 0 4 1 0 0 4
N 0 0 0 0 0 0 0 0 0 0 0 5 0 3 4 0

2�5 Y 3 0 0 0 0 0 0 0 3 0 0 1 2 0 1 1
N 1 0 0 0 0 0 0 3 0 0 0 2 0 1 4 0

� 5 Y 2 0 0 0 0 0 0 0 1 0 1 0 0 1 0 2
N 1 0 0 2 1 0 1 6 0 1 1 1 0 0 6 0

Some � 1 Y 3 0 0 0 0 0 0 0 4 0 1 1 0 0 2 11
N 0 0 0 0 0 0 0 0 4 0 1 2 4 6 14 0

1�2 Y 0 0 0 0 0 0 0 0 2 0 0 1 0 0 1 6
N 0 0 0 0 1 0 0 1 2 1 0 4 2 7 14 0

2�5 Y 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 3
N 1 0 0 0 0 0 0 0 0 0 0 5 0 4 4 0

� 5 Y 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2
N 1 1 0 0 0 1 0 10 0 0 0 4 1 2 4 0

Source: Data courtesy of Tom Loughin, Kansas State University.
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a. Explain why it is not proper to analyze the data by fitting a
multinomial model to the counts in the 2 � 4 � 5 contingency
table cross-classifying education by size of farm by the source of
veterinary information, treating source as the response variable.
ŽThis table contains 453 positive responses of sources from the 262

.farmers.
Ž .b. For a farmer with education i and size of farm s, let � is denotej

the probability of responding ‘‘yes’’ on the jth source. Table 11.12
shows output for using GEE with exchangeable working correla-
tion to estimate parameters in the model lacking an education
effect,

logit � is s � q � s, s s 1, 2, 3, 4.Ž .j j j

Explain how to interpret the working correlation matrix. Explain
why the results suggest a strong positive size of farm effect for
source A and perhaps a weak negative size effect of similar
magnitude for C, D, and E.

c. Constraining � s � s � , the ML estimate of the common slope3 4 5
Ž .is y0.184 SE s 0.063 . Explain why it is advantageous to fit the

marginal model simultaneously for all sources rather than sepa-
w Ž .rately to each. Agresti and Liu 1999 and Loughin and Scherer

Ž . x1998 discussed analyses for data of this form.

TABLE 11.12 Output for Problem 11.7

Working Correlation Matrix
Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.0997 0.0997 0.0997 0.0997
Row2 0.0997 1.0000 0.0997 0.0997 0.0997
Row3 0.0997 0.0997 1.0000 0.0997 0.0997
Row4 0.0997 0.0997 0.0997 1.0000 0.0997
Row5 0.0997 0.0997 0.0997 0.0997 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

� �Parameter Estimate Std Error Z Pr> Z
source 1 y4.4994 0.6457 y6.97 <.0001
source 2 y0.8279 0.2809 y2.95 0.0032
source 3 y0.1526 0.2744 y0.56 0.5780
source 4 0.4875 0.2698 1.81 0.0708
source 5 y0.0808 0.2738 y0.30 0.7680
size*source 1 1.0812 0.1979 5.46 <.0001
size*source 2 0.0792 0.1105 0.72 0.4738
size*source 3 y0.1894 0.1121 y1.69 0.0912
size*source 4 y0.2206 0.1081 y2.04 0.0412
size*source 5 y0.2387 0.1126 y2.12 0.0341
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TABLE 11.13 Output for Problem 11.8

Working Correlation Matrix
Col1 Col2 Col3

Row1 1.0000 0.8173 0.8173
Row2 0.8173 1.0000 0.8173
Row3 0.8173 0.8173 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

� �Parameter Estimate Std Error Z Pr> Z
Intercept y0.1253 0.0676 y1.85 0.0637
question 1 0.1493 0.0297 5.02 <.0001
question 2 0.0520 0.0270 1.92 0.0544
question 3 0.0000 0.0000 . .
female 0.0034 0.0878 0.04 0.9688

11.8 Refer to Table 11.13 on attitudes toward legalized abortion. For the
Ž .response Y 1 s support legalization, 0 s oppose for question tt

Ž . Ž .t s 1, 2, 3 and for gender g 1 s female, 0 s male , consider the
w Ž .xmodel logit P Y s 1 s � q � g q � with � s 0.t t 3

a. A GEE analysis using unstructured working correlation gives cor-
relation estimates 0.826 for questions 1 and 2, 0.797 for 1 and 3,
and 0.832 for 2 and 3. What does this suggest about a reasonable
working correlation structure?

b. Table 11.13 shows a GEE analysis with exchangeable working
correlation. Interpret effects.

c. Treating the three responses for each subject as independent
ˆobservations and performing ordinary logistic regression, � s1

ˆŽ . Ž . Ž0.149 SE s 0.066 , � s 0.052 SE s 0.066 , and � s 0.004 SEˆ2
.s 0.054 . Give a heuristic explanation of why within-subject stan-

dard errors are much larger than with GEE, yet the between-sub-
ject standard error is smaller.

11.9 Refer to the air pollution data in Table 11.7. Using ML or GEE, fit
Ž . Ž .marginal logit models that assume a marginal homogeneity, b a

Ž .linear effect of time, and c no pattern. Interpret and compare.

11.10 Refer to the clinical trials data in Table 12.5, analyzed with random
effects models in Section 12.3.4. Use GEE methods to analyze them,
treating each center as a correlated cluster.

11.11 Refer to Table 10.5. Using GEE methods with cumulative logits,
compare the two marginal distributions. Compare results to those
using ML in Section 10.3.2.

11.12 Refer to the 34 table on government spending in Table 8.19. Analyze
these data with a marginal cumulative logit model. Interpret effects.



PROBLEMS 487

11.13 Refer to Table 11.4.
a. To compare effects while controlling for initial response, fit model

Ž . � 411.7 , using scores 10, 25, 45, 75 for time to falling asleep. Also fit
Žthe interaction model, and describe the lack of fit. Note that for

the first two baseline levels, the active and placebo treatments
have similar sample response distributions at the follow-up; at

.higher baseline levels, the active treatment seems more successful.
b. Fit the interaction model

logit P Y F j s � q � x q � y q � xyŽ .2 j 1 2 1 3 1

� 4that constrains effects � x q � y q � xy to follow the pattern1 2 1 3 1
Ž . Ž .� , � ,  q � ,  for the active group and � , � , � , 0 for the placebo

ˆgroup. Interpret .

11.14 Find a marginal model with another type of logit that fits the
insomnia data of Table 11.4 well. Interpret parameter estimates, and
compare conclusions to those using cumulative logits.

11.15 Refer to Table 11.9. Combine the data for the two levels of maternal
smoking. Does a first-order Markov chain model these data ade-
quately? Find a loglinear model that does fit adequately.

11.16 Analyze Table 11.9 using a transitional model with two previous
responses. Does it fit better than the first-order model of Section
11.5.5? Interpret.

11.17 Analyze Table 11.2 using a first-order transitional model. Compare
interpretations to those in this chapter using marginal models.

11.18 Table 11.14 is from a longitudinal study of coronary risk factors in
Ž .schoolchildren Woolson and Clarke 1984 . A sample of children aged

Ž11�13 in 1977 were classified by gender and by relative weight obese,
.not obese in 1977, 1979, and 1981. Analyze these data.

TABLE 11.14 Data for Problem 11.18
aResponses

Gender NNN NNO NON NOO ONN ONO OON OOO

Male 119 7 8 3 13 4 11 16
Female 129 8 7 9 6 2 7 14
aNNN indicates not obese in 1977, 1979, and 1981; NNO indicates not obese in 1977 and 1979
but obese in 1981; and so on.

ŽSource: Reproduced with permission from the Royal Statistical Society, London Woolson and
.Clarke 1984 .
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Ž .11.19 Refer to the pig farmer survey of Problem 11.7 Table 11.11 . Analyze
these data using marginal models with all the variables.

Ž11.20 Refer to the cereal diet and cholesterol study of Problem 7.18 Table
.7.23 . Analyze these data with marginal models.

Theory and Methods

11.21 Refer to Problem 11.1. Suppose that we expressed the data with a
3 � 2 partial table of drug-by-response for each subject, to use a
generalized CMH procedure to test marginal homogeneity. Explain
why the 911 q 279 subjects who make the same response for every
drug have no effect on the test.

11.22 Let y s 1 or 0 for observation t on subject i, i s 1, . . . , n, t si t
1, . . . , T. Let y sÝ y rn, y sÝ y rT , and y sÝ Ý y rnT.. t i i t i. t i t . . i t i t

� 4a. Regard y as fixed. Suppose that each way to allocate the yiq iq
‘‘successes’’ to y of the observations is equally likely. Show thatiq
Ž . Ž . Ž . Ž . ŽE Y s y , var Y s y 1 y y , and cov Y , Y syy 1 yi t i. i t i. i. i t i k i.
. Ž . wy r T y 1 for t � k. Hint: The covariance is the same for anyi.

Ž . xpair of cells in the same row, and var Ý Y s 0 since y is fixed.t i t iq

Ž .b. Refer to part a . For large n with independent subjects, explain
Ž .why Y , . . . , Y is approximately multivariate normal with pair-.1 .T

Ž .wise correlation � sy1r T y 1 . Conclude that Cochran’s Q
Ž .statistic Cochran 1950

22 Tn T y 1 Ý y y yŽ . Ž .ts1 . t . .
Q s nTÝ y 1 y yŽ .is1 i . i .

Ž . wis approximately chi-squared with df s T y 1 . One way notes
Ž .that if X , . . . , X is multivariate normal with common mean and1 T

2 Ž .common variance � and common correlation � for pairs X , X ,t k
2 2Ž . Ž . Ž .then Ý X y X r� 1 y � is chi-squared with df s T y 1 . Seet

Ž .Bhapkar and Somes 1977 for slightly weaker conditions for a
Ž . xchi-squared limiting distribution for Q than those in part a .

c. Show that Q is unaffected by deleting cases in which y s ��� si1
y .iT

Ž .11.23 Consider the model � s � , i s 1, . . . , n, assuming that ® � s � .i i i
Ž . 2Suppose that actually var Y s � . Using the univariate version ofi i

Ž . Ž .GEE described in Section 11.4, show that u � sÝ y y � r� andi i
ˆ Ž .� s y. Show that V in 11.10 equals �rn, the actual asymptotic

Ž . 2variance 11.11 simplifies to � rn, and its consistent estimate is
2 2Ž .Ý y y y rn .i i
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Ž . 211.24 Repeat Problem 11.23 assuming that ® � s � when actuallyi
Ž .var Y s � .i i

11.25 Consider the model � s � , i s 1, . . . , n, for independent Poissoni
ˆobservations. For � s y, show that the model-based asymptotic vari-

ance estimate is yrn, whereas the robust estimate of the asymptotic
2 2Ž . Ž .variance is Ý y y y rn . Which would you expect to be better a ifi i

Ž .the Poisson model holds, and b if there is severe overdispersion?

Ž .11.26 Show that 11.10 is equivalent to the formula for the large-sample
Ž .covariance of the ML estimator in a GLM, estimated by 4.28 .

Ž .11.27 a. For a univariate response, how is quasi-likelihood QL inference
different from ML inference? When are they equivalent?

b. Explain the sense in which GEE methodology is a multivariate
version of QL.

c. Summarize the advantages and disadvantages of the QL approach.
d. Describe conditions under which GEE parameter estimators are

consistent and conditions under which they are not. For conditions
in which they are consistent, explain why.

11.28 Formulate a model using adjacent-categories logits or continuation-
Ž .ratio logits that is analogous to 11.4 . Interpret parameters.

11.29 Refer to the analysis of mean time to falling asleep at the end of
Section 11.2.3. Explain how to calculate SE for the difference be-

Žtween the difference of means reported there. Note that one differ-
.ence uses paired samples and the other uses independent samples.

11.30 What is wrong with this statement?: ‘‘For a first-order Markov chain,
Y is independent of Y .’’t ty2

Ž .11.31 Suppose that loglinear model Y , Y , . . . , Y holds. Is this a Markov0 1 T
chain?

11.32 Gamblers A and B have a total of I dollars. They play games of pool
repeatedly. Each game they each bet $1, and the winner takes the
other’s dollar. The outcomes of the games are statistically indepen-
dent, and A has probability � and B has probability 1 y � of winning
any game. Play stops when one player has all the money. Let Yt
denote A’s monetary total after t games.

� 4a. Show that Y is a first-order Markov chain.t

Žb. State the transition probability matrix. For this gambler’s ruin
problem, 0 and I are absorbing states. Eventually, the chain enters

.one of these and stays. The other states are transient.
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Ž .11.33 A first-order Markov chain has stationary or time-homogeneous
transition probabilities if the one-step transition probability matrices
are identical, that is, if for all i and j,

� 1 s � 2 s ��� s � T s � .Ž . Ž . Ž .j � i j � i j � i j � i

Let X, Y, and Z denote the classifications for the I � I � T table
� Ž . 4consisting of n t , i s 1, . . . , I, j s 1, . . . , I, t s 1, . . . , T .i j

a. Explain why all transition probabilities are stationary if expected
Ž . wfrequencies for this table satisfy loglinear model XY, XZ . Thus,

the likelihood-ratio statistic for testing stationary transition proba-
2 Ž . xbilities equals G for testing fit of model XY, XZ .
Ž .b. Let n sÝ n t . Under the assumption of stationary transitioni j t i j

Ž .probabilities, show how the likelihood in 11.14 simplifies, and
show that the ML estimators are

� s n rn .ˆ j � i i j iq

c. For a Markov chain with stationary transition probabilities, let yi jk
denote the number of transitions from i to j to k over two

� 4successive steps. For y , argue that the goodness of fit ofi jk
Ž .loglinear model Y Y , Y Y tests that the chain is first order1 2 2 3

Žagainst the alternative that it is second order Anderson and
.Goodman 1957 .



C H A P T E R 1 2

Random Effects: Generalized
Linear Mixed Models for
Categorical Responses

In Chapter 11 we noted that observations often occur in clusters. For
instance, cluster i might consist of repeated measurements on subject i or
observations for all subjects in family i. Observations within a cluster tend to
be more alike than observations from different clusters. Thus, they are
usually positively correlated. Ordinary analyses that ignore the correlation
and treat within-cluster observations the same as between-cluster observa-
tions produce invalid standard errors.

In Chapter 11 we focused on modeling the marginal distributions of
clustered responses, treating the joint dependence structure as a nuisance. In
this chapter we present an alternative approach using cluster-level terms
in the model. These terms take the same value for each observation in
a cluster but different values for different clusters. They are unobserved
and, when treated as varying randomly among clusters, are called random
effects. In Section 10.2.4 we introduced this approach in a model for matched
pairs. The models have conditional interpretations, referred to as subject-
specific when each cluster is a subject. This contrasts with marginal models,
which have population-a®eraged interpretations.

Random effects models for normal responses are well established. By
contrast, only recently have random effects been used much in models for
categorical data. In this chapter we extend generalized linear models to
include random effects. In Section 12.1 we introduce this extension, the
generalized linear mixed model. In Section 12.2 we discuss an important special
case for binary data, the logistic-normal model. Several examples are shown in
Section 12.3. Section 12.4 covers extensions for multinomial responses, and
Section 12.5 covers models with multivariate random effects. In Section 12.6
we discuss model fitting, assuming normality for the random effects. Parts of

Ž .this chapter are from Agresti et al. 2000 .

491
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12.1 RANDOM EFFECTS MODELING OF CLUSTERED
CATEGORICAL DATA

Parameters that describe a factor’s effects in ordinary linear models are
called fixed effects. They apply to all categories of interest, such as genders,
age groupings, or treatments. By contrast, random effects usually apply to a
sample. For a study using a sample of clinics, for example, the model treats
observations from a given clinic as a cluster, and it has a random effect for
each clinic.

GLMs extend ordinary regression by allowing nonnormal responses and a
Ž .link function of the mean. The generalized linear mixed model GLMM is a

further extension that permits random effects as well as fixed effects in the
linear predictor.

12.1.1 Generalized Linear Mixed Model

Let y denote observation t in cluster i, t s 1, . . . , T . As in the GEEi t i
analyses in Chapter 11, the number of observations may vary by cluster. In a
longitudinal study, even if clusters have equal size, many of them may have
missing observations. Let x denote a column vector of values of explanatoryi t
variables, for fixed effect model parameters �. Let u denote the vector ofi
random effect values for cluster i. This is common to all observations in the
cluster. Let z denote a column vector of their explanatory variables. Often,i t
the random effect is univariate.

Conditional on u , a GLMM resembles an ordinary GLM. Let � si i t
Ž � .E Y u . The linear predictor for a GLMM has the formi t i

g � s x� � q z� u 12.1Ž . Ž .i t i t i t i

Ž .for link function g � . The random effect vector u is assumed to have ai
Ž .multivariate normal distribution N 0, � . The covariance matrix � depends

on unknown ®ariance components and possibly also correlation parameters.
Ž � . Ž . Ž .Denote var Y u s � ® � , where the variance function ® � describesi t i i t i t

Ž .how the conditional variance depends on the mean. As in Section 4.4, often
Ž� s 1 or � s �r� , where � is a known weight e.g., number of trialsi t i t i t i t

.for a binomial count and � is an unknown dispersion parameter. Condi-
� 4tional on u , the model treats y as independent over i and t. As discussedi i t

in Section 10.2.2, the variability among u induces a nonnegative associationi
among the responses, for the marginal distribution averaged over the sub-
jects. This is caused by the shared random effect u for each observation in ai
cluster.

Ž .In 12.1 , the random effect enters the model on the same scale as the
predictor terms. This is convenient but also natural for many applications.
For instance, random effects sometimes represent heterogeneity caused by
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omitting certain explanatory variables. Consider the special case with univari-
� 4ate random effect and z s 1. With u replaced by u *� where u * arei t i i i

Ž .N 0, 1 , the GLMM has the form

g � s x� � q u *� .Ž .i t i t i

� 4This has the form of an ordinary GLM with unobserved values u * of ai
particular covariate. Thus, random effects models relate to methods of
dealing with unmeasured predictors and other forms of missing data. The
random effects part of the linear predictor reflects terms that would be in the
fixed effects part if those explanatory variables had been included. Random
effects also sometimes represent random measurement error in the explana-
tory variables. If we replace a particular predictor x by x * q � , with x *i t i t i i t
the true value and � the measurement error, then � times the regressioni i
parameter can be absorbed in the random effects term. Related to these
motivations, random effects also provide a mechanism for explaining overdis-

Ž .persion in basic models not having those effects Breslow and Clayton 1993 .

12.1.2 Logit GLMM for Binary Matched Pairs

Ž .We illustrate the GLMM expression 12.1 using a simple case, that of binary
Žmatched pairs. The data form two dependent binomial samples Section

. Ž .10.1 . Cluster i consists of the responses y , y for matched pair i.i1 i2
Ž . Ž .Observation t in cluster i has y s 1 a success or 0 a failure , t s 1, 2.i t

Ž .In Section 10.2.2 we introduced the model Cox 1958b, Rasch 1961

logit P Y s 1 s � q � x 12.2Ž . Ž .i t i t

where x s 0 and x s 1. For it, � is a cluster-specific log odds ratio. That1 2
section treated � as a fixed effect and eliminated it using conditional ML.i

Ž .An equivalent representation of 12.2 is

� �logit P Y s 1 u s � q u , logit P Y s 1 u s � q � q u ,Ž . Ž .i1 i i i2 i i

12.3Ž .

where u s � y � for some constant � . Now, we treat u as a random effecti i i
� 4 Ž 2 .for cluster i, with u independent from a N 0, � distribution with �i

unknown. Conditionally on u , we assume that y and y are independent.i i1 i2
Ž . Ž . Ž � . Ž .Model 12.3 is the special case of 12.1 in which � s P Y s 1 u , g �i t i t i

� Ž . � Ž . � Ž .is the logit link, � s � , � , x s 1, 0 and x s 1, 1 for all i, and z s 1i1 i2 i t
for all i and t. The univariate random effect adjusts the intercept but does
not modify the fixed effect. A GLMM with random effect of this form is
called a random intercept model. Instead of the usual fixed intercept � , it has
a random intercept � q u .i
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Let Y sÝ y and Y sÝ y . Marginally, Y is binomial with n trials1 i i1 2 i i2 1
� Ž . w Ž .x4and parameter E exp � q U r 1 q exp � q U , and Y is binomial with2

� Ž . w Ž .x4parameter E exp � q � q U r 1 q exp � q � q U . The expectations re-
Ž 2 .fer to U, a N 0, � random variable. The model implies a nonnegative

correlation between Y and Y , with greater association resulting from1 2
Ž .greater heterogeneity i.e., larger � . Clusters with a large positive u have ai

Ž � .relatively large P Y s 1 u for each t, whereas clusters with a largei t i
Ž � .negative u have a relatively small P Y s 1 u for each. For this model, Yi it i 1

and Y are independent only if � s 0.2
Ž .A 2 � 2 population-averaged table with success, failure for both the row

and column categories summarizes the number of observations for which
Ž . Ž . Ž . Ž . Ž . � 4y , y s 1, 1 , 1, 0 , 0, 1 , or 0, 0 . Let n denote these counts. Tablei1 i2 ab

� 412.1, analyzed first in Section 10.1, is an example. Let � denote marginalˆab
Ž .fitted values for model 12.3 . We defer discussion of model fitting until

Ž .Section 12.6. However, model 12.3 is a rare instance in which the fixed
effect in a random effects model has a closed-form ML estimate,

�̂ s log � r� .ˆ ˆŽ .21 12

Ž . � 4When the sample log odds ratio log n n rn n G 0, then � s nˆ11 22 12 21 ab ab
ˆ Ž .and � s log n rn . This is the same as the conditional ML estimate21 12

Ž . Ž .Section 10.2.3 . Neuhaus et al. 1994 showed that this is true for any
Ž .parametric choice of random effects distribution for which the model 12.3

� 4 Ž .can generate n as fitted values. Lindsay et al. 1991 showed that thisab
estimate also results with a nonparametric approach discussed in Section
13.2.4. The model implies that the true log odds ratio for this 2 � 2 table

Ž .is at least 0. When log n n rn n � 0, however, then � s 0 and theˆ11 22 12 21
ˆ� 4fitted values � s n n rn satisfy independence. Then, � is identicalˆab aq qb

Ž .to the estimate for the marginal model 10.6 by which � is the dif-
ˆference between logits for the two marginal distributions, namely � s

wŽ . Ž .xlog n n r n n .2q q1 1q q2

12.1.3 Ratings of Prime Minister Revisited

Ž . � 4For Table 12.1, the ML fit of model 12.3 , treating u as normal, yieldsi
ˆ Ž . Ž .� s log 86r150 sy0.556 SE s 0.135 , with � s 5.16. This is identical toˆ

Ž . wŽ .the conditional ML estimate 10.10 , with standard error 1r86 q
Ž .x1r21r150 . For a given subject, the estimated odds of approval at the second

TABLE 12.1 Rating of Performance of Prime Minister

Second SurveyFirst
Survey Approve Disapprove Total

Approve 794 150 944
Disapprove 86 570 656

Total 880 720 1600
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Ž .survey equal exp y0.556 s 0.57 times those at the first survey. The large �̂
reflects the very strong association between the two responses, with sample
odds ratio 35.1.

12.1.4 Extension: Rasch Model and Item Response Models

Ž .An extension of the logit matched-pairs model 12.3 allows T � 2 observa-
tions in each cluster. The random intercept model then has form

�logit P Y s 1 u s u q � , 12.4Ž .Ž .i t i i t

� 4 Ž 2 .where u are independent N 0, � . Equivalently, the model can add ani
Ž .intercept � or let E u s � , but then identifiability requires a constrainti

such as � s 0.T
Early applications of this GLMM were in psychometrics. The model

describes responses to a battery of T questions on an exam. The probability
Ž � .P Y s 1 u that subject i makes the correct response on question ti t i

depends on the overall ability of subject i, characterized by u , and thei
easiness of question t, characterized by � . Such models are called item-re-t

Ž . Ž .sponse models. The logit form 12.4 is called the Rasch model Rasch 1961 .
� 4 � 4In estimating � , Rasch treated u as fixed effects and used conditionalt i

ML, as outlined in Section 10.2.3 for matched pairs. Later authors used the
normal random effects approach for this model and the model with probit

Ž .link e.g., Bock and Aitkin 1981 .
� 4The � in the Rasch model differ from parameters in correspondingt

Ž .marginal models such as 11.1 , since the effects are subject specific. The
Rasch model refers to a T � 2 � n table of observation by outcome by
subject, whereas the marginal model refers to the T � 2 observation-by-
outcome table of the T marginal distributions, collapsed over subjects. For

Ž .observations s and t for a given subject i with model 12.4 ,

� �� y � s logit P Y s 1 u y logit P Y s 1 u ,Ž . Ž .s t i s i i t i

which is a log odds ratio conditional on the subject. By contrast, the
Ž .corresponding population-averaged effect in marginal model 11.1 is

� y � s logit P Y s 1 y logit P Y s 1 ,Ž . Ž .s t h s i t

with subject h randomly selected for observation s and subject i randomly
Ž .selected for observation t i.e., h and i are independent observations .

12.1.5 Random Effects versus Conditional ML Approaches

� 4 Ž .Suppose that one treated u in model 12.4 as fixed effects instead ofi
� 4 � 4random effects. Then, consider ordinary ML estimation of � and u . As nt i

increases, so does the number of parameters, since each subject has a u .i
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� 4Even though the number of � does not increase as n does, the ordinaryt
ˆ� 4ML estimators � are not consistent. This happens in many models whent

the number of parameters has an order similar to that of the number of
subjects. Asymptotic optimality properties of ML estimators, such as consis-
tency, require the number of parameters to be fixed as n increases. For

Ž . � 4 Ž . Žmodel 12.4 , ML estimators of � have bias of order Tr T y 1 Andersent
ˆ. Ž .1980, pp. 244	245 . For the matched-pairs model 12.2 , for instance, � ™ 2�

Ž .in probability Problem 10.24 .
For this reason, the preferable approach for the fixed effects model is

� 4conditional ML. One eliminates u by conditioning on their sufficienti
� 4statistics S sÝ y , i s 1, . . . , n . In the item response context, these arei t i t

� 4the numbers of correct responses for each subject. Conditional on S , thei
� 4 � 4distribution of y is independent of u . Maximizing the resulting likeli-i t i

� 4hood then yields consistent estimators of � . The analysis generalizes thet
Ž .one in Section 10.2.3 for the subject-specific logistic model 10.8 for matched

Ž .pairs. See Andersen 1980 for details.
Compared with the random effects approach, the conditional ML ap-

proach has certain advantages. One does not need to assume a parametric
� 4distribution for u . It is difficult to check this assumption in the randomi

effects approach. Conditional ML is also appropriate with retrospective
sampling. In that case, bias can occur with a random effects approach

Ž .because the clusters are not randomly sampled Neuhaus and Jewell 1990b .
However, the conditional ML approach has severe disadvantages. It is

Ž .restricted to the canonical link the logit , for which reduced sufficient
� 4statistics exist for u . More important, as discussed in Section 10.2.7, it isi

restricted to inference about within-cluster fixed effects. The conditioning
removes the source of variability needed for estimating between-cluster
effects in models with explanatory variables such as those considered next.

� 4Also, this approach does not provide information about u , such as predic-i
tions of their values and estimates of their variability or of the probabilities
they determine. Finally, in more general models with covariates, conditional
ML can be less efficient than the random effects approach for estimating the

Ž .fixed effects see Note 12.2 .

12.2 BINARY RESPONSES: LOGISTIC-NORMAL MODEL

Ž .The item response model 12.4 with random intercept is a special case of an
important class of random effects models for binary data called logistic-
normal models. With univariate random effect, the model form is

��logit P Y s 1 u s x � q u 12.5Ž .Ž .i t i i t i

� 4 Ž 2 .where u are independent N 0, � variates. This is the special case of thei
Ž . Ž .GLMM 12.1 in which g � is the logit link and the random effects structure
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simplifies to a random intercept. The logistic-normal model has a long
Ž .history, dating at least to Cox 1970, Prob. 20 in that text for the matched-

Ž . Ž .pairs model 12.3 and Pierce and Sands 1975 .
Ž .More generally, the link function in model 12.5 can be an arbitrary

Ž .inverse cdf. For such models, Y and Y are treated conditionally given ui s i t i
as independent but are marginally nonnegatively correlated. Let 
 denote
the cdf that is the inverse link function. Then, for s � t,

� � �cov Y , Y s E cov Y , Y u q cov E Y u , E Y uŽ . Ž . Ž . Ž .i s i t i s i t i i s i i t i

� �s 0 q cov 
 x � q u , 
 x � q u . 12.6Ž . Ž . Ž .i s i i t i

The functions in the last covariance term are both monotone increasing in u ,i
and hence are nonnegatively correlated. For common predictor value x at
each t, the joint distribution for the model is exchangeable. This is often
plausible for clustered data. In longitudinal studies, however, observations
closer together in time may tend to be more highly correlated.

Usually, the main focus in using a GLMM is inference about the fixed
effects. The random effects part of the model is a mechanism for represent-
ing how the positive correlation occurs between observations within a cluster.
Parameters pertaining to the random effects may themselves be of interest,
however. For instance, the estimate � of the standard deviation of a randomˆ
intercept may be a useful summary of the degree of heterogeneity of a
population.

12.2.1 Interpreting Heterogeneity in Logistic-Normal Models

Ž .When � s 0, the logistic-normal model 12.5 simplifies to the ordinary
logistic regression model treating all observations as independent. When
� � 0, how can we interpret the variability in effects this model implies?

Consider observation y at setting x of predictors and observation y ati t i t h s
setting x . Their log odds ratio ish s

�� �logit P Y s 1 u y logit P Y s 1 u s x y x � q u y u .Ž . Ž .Ž . Ž .i t i h s h i t h s i h

Ž . Ž 2 .We cannot observe u y u , which has a N 0, 2� distribution. However,i h
Ž .100 1 y � % of those log odds ratios fall within

� 'x y x � � z 2 � . 12.7Ž . Ž .i t h s �r2

Ž .When � s 0, x y x �� is the usual form of log odds ratio for a modeli t h s
Ž .�without random effects. When � � 0, x y x � is the log odds ratio fori t h s

Ž .two observations in the same cluster h s i or with the same random effect
value. Suppose that x s x for observations from different clusters. Then,i t h s
using z s 0.674, the middle 50% of the log odds ratios fall within0.25
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'�0.674 2 � s �0.95� . Hence, the median odds ratio between the observa-
tion with higher random effect and the observation with lower random effect

Ž .equals exp 0.95� . With a single predictor and x y x s 1, the mediani t h s
Ž . Ž .such odds ratio equals exp � q 0.95� . Larsen et al. 2000 presented

related interpretations.

12.2.2 Connections between Conditional Models and Marginal Models

The fixed effects parameters � in GLMMs have conditional intepretations,
given the random effect. Those fixed effects are of two types. First, consider
an explanatory variable that varies in value among observations in a cluster.
For instance, in a crossover study comparing T drugs, for each subject the
drug taken varies from observation to observation in that subject’s cluster of
T observations. For such an explanatory variable, its coefficient in the model

Ž .refers to the effect on the response of a within-cluster e.g., subject-specific
1-unit increase of that predictor. The random effect as well as other explana-
tory variables in the model are constant while that predictor increases by 1.
The effect of that explanatory variable is a ‘‘within-cluster’’ or ‘‘within-sub-
ject’’ one.

Second, consider an explanatory variable with constant value among
observations in a cluster. An example is gender when each subject forms a
cluster. For such an explanatory variable, its coefficient refers to the effect on
the response of a ‘‘between-cluster’’ 1-unit increase of that predictor. An
example is a comparison of females and males using a dummy variable and
its coefficient. However, this fixed effect in the GLMM applies only when the

Ž .random effect as well as other explanatory variables in the model takes the
same value in both groups: for instance, a male and a female with the same
value for their random effects.

It is in this sense that random effects models are conditional models, as
both within- and between-cluster effects apply conditional on the random
effect value. By contrast, effects in marginal models are averaged over all

Ž .clusters i.e., population averaged , so those effects do not refer to a compari-
son at a fixed value of a random effect. In fact, a fundamental difference
between the two model types is that when the link function is nonlinear, such
as the logit, the population-averaged effects of marginal models often are
smaller than the cluster-specific effects of GLMMs.

Ž .Specifically, the GLMM 12.1 refers to the conditional mean, � si t
Ž � .E Y u . By inverting the link function,i t i

� y1 � �E Y u s g x � q z u .Ž .Ž .i t i i t i t i

Marginally, averaging over the random effects, the mean is

� �y1�E Y s E E Y u s g x � q z u f u ; � du ,Ž . Ž . Ž .Ž . Hi t i t i i t i t i i i
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Ž . Ž .where f u; � is the N 0, � density function for the random effects. For the
identity link,

E Y s x� � q z� u f u ; � du s x� � .Ž . Ž . Ž .Hi t i t i t i i i i t

The marginal model has the same model form and effects �. This is not true
Ž .for other links. For instance, for the logistic-normal model 12.5 ,

�exp x � q uŽ .i t i
E Y s E .Ž . �i t 1 q exp x � q uŽ .i t i

Ž � . w Ž � .xThis expectation does not have form exp x � r 1 q exp x � except wheni t i t
Ž .u has a degenerate distribution � s 0 .i

Approximate relationships exist between estimates from the two model
types. In the logistic-normal case with effect � and small � , Zeger et al.
Ž .1988 showed that

� �E Y f exp cx � r 1 q exp cx � , 12.8Ž . Ž . Ž . Ž .i t i t i t

w 2 xy1r2where c s 1 q 0.6� . Since the effect in the marginal model multiplies
that of the conditional model by about c, it is typically smaller in absolute
value. The discrepancy increases as � increases. For � near 0, Neuhaus et

Ž . Ž .al. 1991 showed that the marginal model effect is approximately � 1 y � ,
Ž .where � s corr Y , Y at � s 0. Again, the discrepancy increases as �i t i s

increases, since � increases with � .
For Table 12.1 on ratings of the prime minister, the ML estimate for

ˆŽ . � 4model 12.3 is � sy0.556, with � s 5.16 for variability of u . Approxima-ˆ i
ˆŽ .tion 12.8 suggests that � sy0.556 with � s 5.16 corresponds to a marginalˆ

w Ž .2 xy1r2 Ž .estimate of about 1 q 0.6 5.16 y0.556 s y0.135. The actual
marginal estimate is the log odds ratio for the sample marginal distributions,
equaling

log 880r720 r 944r656 sy0.163.Ž . Ž .

In fact, the marginal effect is much smaller than the conditional effect, but
this approximation connecting the two estimates works better for smaller � .ˆ
At � s 0, the fit of the model is that of the symmetry model, for which

Ž .� s � s n q n r2. The correlation for that 2 � 2 table equals 0.699,ˆ ˆ12 21 12 21
from which the conditional estimate of y0.556 suggests a marginal estimate

Ž .of y0.556 1 y 0.699 sy0.167, very close to the actual value of y0.163.
Figure 12.1 illustrates why the marginal effect is smaller than the condi-

tional effect. For a single explanatory variable x, the figure shows subject-
Ž � .specific curves for P Y s 1 u for several subjects when considerable het-i t i

erogeneity exists. This corresponds to a relatively large � for random effects.
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Ž .FIGURE 12.1 Logistic random-intercept model, showing the conditional subject-specific
Ž .curves and the marginal population-averaged curve averaging over these.

Ž � .At any fixed value of x, variability occurs in the conditional means, E Y uit i
Ž � . Ž .s P Y s 1 u . The average of these is the marginal mean, E Y . Thesei t i i t

averages for various x values yield the superimposed curve. It has a shal-
lower slope. In fact, it does not exactly follow the logistic formula. Similar
remarks apply to other GLMMs. For the probit link with binary data,
however, the conditional probit model with normal random effect does imply

Ž .a marginal model of probit form Problem 12.29 . With univariate random
intercept, the marginal effect equals the conditional effect multiplied by
w 2 xy1r2 Ž .1 q � Zeger et al. 1988 . In Section 13.5.1 we explore the condi-
tional	marginal connection for loglinear GLMMs.

12.2.3 Comments about Conditional versus Marginal Models

Ž .Random effects models describe conditional subject-specific effects, whereas
marginal models describe population-averaged effects. Some statisticians
prefer one of these types, but most feel that both are useful, depending on
the application.

The conditional modeling approach is preferable if one wants to specify a
mechanism that could generate positive association among clustered observa-
tions, estimate cluster-specific effects, estimate their variability, or model the
joint distribution. Latent variable constructions used to motivate model forms
Že.g., the tolerance motivation for binary models of Section 6.6.1 and the
related threshold motivation in Problem 6.28 and utility motivation in Prob-

.lem 6.29 usually apply more naturally at the cluster level than at the
marginal level. Given a conditional model, one can recover information about
marginal distributions. That is, a conditional model implies a marginal model,
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Žbut a marginal model does not itself imply a conditional model although see
.Note 12.10 for an implicit connection .

In many surveys or epidemiological studies, a goal is to compare the
relative frequency of occurrence of some outcome for different groups in a
population. Then, quantities of primary interest include between-group odds
ratios among marginal probabilities for the different groups. That is, effects
of interest are between-cluster rather than within-cluster. When marginal
effects are the main focus, it is usually simpler and may be preferable to
model the margins directly. One can then parameterize the model so that
regression parameters have a direct marginal interpretation. Developing a
more detailed model of the joint distribution that generates those margins, as
a random effects model does, provides greater opportunity for misspecifica-
tion. For instance, with longitudinal data the assumption that observations
are independent, given the random effect, need not be realistic. With the
marginal model approach, we showed in Chapter 11 that ML is sometimes
possible but that the GEE approach is computationally simpler and more
versatile. A drawback of the GEE approach is that it does not explicitly
model random effects and therefore does not allow these effects to be
estimated. In addition, likelihood-based inferences are not possible because
the joint distribution of the responses is not specified.

In Section 12.2.2 it was noted that conditional effects are usually larger
than marginal effects, and increase as variance components increase. Usually,

Žthough, the significance of an effect e.g., as measured by the ratio of
.estimate to standard error is similar in the two model types. If one effect

seems more important than another in a conditional model, the same is
usually true with a marginal model. So the choice of the model is usually not
crucial to inferential conclusions.

This statement requires a caveat, however, since sizes of effects in marginal
models depend on the degree of heterogeneity in conditional models. In
comparing effects for two groups or two variables that have quite different
variance components, relative sizes of effects will differ for marginal and

Ž .conditional models. From 12.8 , with binary data the attenuation from the
conditional to the marginal effect will tend to be greater for the group having
the larger variance component. For instance, suppose that two groups, one
young in age and the other elderly, both show the same conditional effect in
a crossover study comparing two drugs. If the elderly group has more
heterogeneity on the response, their marginal effect may be smaller than that
for the younger group. The marginal effects differ even though the condi-
tional effects are the same, because of the greater variance component for

Ž .the elderly. In such cases, the conditional effect appropriately modeled may
have more relevance.

Finally, with either marginal or conditional models, missing data are a
common problem with multivariate responses. Unless data are missing at
random, potential bias occurs in ML inference. GEE methods usually require
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Žthe stronger condition that data are missing completely at random Section
.11.4.5 . Thus, modeling missingness or conducting a sensitivity study to

discern its potential effects can be an important component of an analysis.
Regardless of the choice of paradigm, it is a challenge for statisticians

even to explain to practitioners why marginal and conditional effects differ
with a nonlinear link function. Graphics such as Figure 12.1 can help.

Ž . Ž .Neuhaus 1992 and Pendergast et al. 1996 surveyed ways of analyzing
clustered binary data, including conditional and marginal models. Agresti

Ž .and Natarajan 2001 surveyed conditional and marginal modeling of clus-
tered ordinal data.

12.3 EXAMPLES OF RANDOM EFFECTS MODELS FOR
BINARY DATA

In the next three sections we present a variety of examples of random effects
models. In this section we consider binary responses.

12.3.1 Small-Area Estimation of Binomial Proportions

Small-area estimation refers to estimation of parameters for a large number of
geographical areas when each has relatively few observations. For instance,
one might want county-specific estimates of characteristics such as the
unemployment rate or the proportion of families having health insurance
coverage. With a national or statewide survey, some counties may have few
observations. Then, sample proportions in the counties may poorly estimate
the true countywide proportions. Random effects models that treat each
county as a cluster can provide improved estimates. In assuming that the true
proportions vary according to some distribution, the fitting process ‘‘borrows
from the whole’’it uses data from all the counties to estimate the propor-
tion in any given one.

Let � denote the true proportion in area i, i s 1, . . . , n. These areas mayi
� 4be all the ones of interest, or only a sample. Let y denote independenti

Ž . Ti � 4bin T , � variates; that is, y sÝ y , where y , t s 1, . . . , T are inde-i i i ts1 i t i t i
Ž . Ž .pendent with P Y s 1 s � and P Y s 0 s 1 y � . The sample propor-i t i i t i

� 4 � 4tions p s y rT are ML estimates of � for the fixed-effects modeli i i i

logit � s � q � , i s 1, . . . , n.Ž .i i

ŽThis model is saturated, having n nonredundant parameters with a con-
.straint such as Ý � s 0 for the n binomial observations.i i

� 4 � 4 � 4For small T , p have large standard errors. Thus, p may display muchi i i
� 4 � 4more variability than � , especially when � are similar. Then, it is helpfuli i
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� 4to shrink p toward their overall mean. One can accomplish this with thei
random effects model

�logit P Y s 1 u s � q u , 12.9Ž .Ž .i t i i

� 4 Ž 2 .where u are independent N 0, � variates. This model is a logit analog ofi
one-way random effects ANOVA. When � s 0, all � are identical.i

For this model,

� s exp � q u r 1 q exp � q u .ˆ ˆ ˆ ˆ ˆŽ . Ž .i i i

This estimate differs from the sample proportion p . If � s 0, then allˆi
Ž n Ti . Ž .u s 0. Then, the random effects estimate of each � is Ý Ý y r Ý T ,ˆi i is1 ts1 i t i i

the overall sample proportion after pooling all n samples. When truly all � i
are equal, this is a much better estimator of that common value than the
sample proportion from a single sample.

Generally, the random effects model estimators shrink the separate sam-
ple proportions toward the overall sample proportion. The amount of shrink-

� 4age decreases as � increases. The shrinkage also decreases as the T grow;ˆ i
as each sample has more data, we put more trust in the separate sample
proportions. The predicted random effect u is the estimated mean of theˆi

Ž .distribution of u , given the data see Section 12.6.7 . This prediction de-i
pends on all the data, not just data from area i. A benefit is potential
reduction in the mean-squared error of the estimates around the true values.

Ž .We illustrate model 12.9 with a simulated sample of size 2000 to mimic a
poll taken before the 1996 U.S. presidential election. For T observations ini

Ž .state i i s 1, . . . , 51, where i s 51 is DC s District of Columbia , y isi
Ž .bin T , � , where � is the actual proportion of votes in state i for Billi i i

Clinton in the 1996 election, conditional on voting for Clinton or the
Republican candidate, Bob Dole. Here, T is proportional to the state’si

� 4 � 4population size, subject to Ý T s 2000. Table 12.2 shows T , � , andi i i i
� 4p s y rT .i i i

Ž .For the ML fit of model 12.9 , � s 0.163 and � s 0.29. The predictedˆ ˆ
Ž .random effect values obtained using PROC NLMIXED in SAS yield the
� 4 � 4proportion estimates � , also shown in Table 12.2. Since T are mostlyˆ i i

small and since � is relatively small, considerable shrinkage of these esti-ˆ
mates occurs from the sample proportions toward the overall proportion

� 4 Žsupporting Clinton, which was 0.548. The � vary only between 0.468 forˆ i
. Ž .TX s Texas and 0.696 for NY s New York , whereas the sample propor-

Ž . Ž .tions vary between 0.111 for Idaho and 1.0 for DC . Sample proportions
based on fewer observations, such as DC, tended to shrink more. Although
the estimates incorporating random effects are relatively homogeneous, they
tend to be closer than the sample proportions to the true values.
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TABLE 12.2 Estimates of Proportion of Vote for Clinton, Conditional on Voting
afor Clinton or Dole in 1996 U.S. Presidential Election

State T � p � State T � p �ˆ ˆi i i i i i i i

AK 5 0.394 0.200 0.508 MT 7 0.483 0.429 0.526
AL 32 0.463 0.500 0.524 NC 55 0.475 0.455 0.494
AR 19 0.594 0.526 0.537 ND 5 0.461 0.600 0.546
AZ 34 0.512 0.618 0.573 NE 13 0.395 0.462 0.524
CA 240 0.572 0.538 0.538 NH 9 0.567 0.556 0.543
CO 29 0.492 0.586 0.558 NJ 60 0.600 0.667 0.611
CT 25 0.604 0.720 0.602 NM 13 0.540 0.462 0.524
DC 4 0.903 1.000 0.576 NV 12 0.506 0.500 0.533
DE 5 0.586 0.400 0.527 NY 137 0.660 0.752 0.696
FL 108 0.532 0.602 0.583 OH 84 0.536 0.488 0.507
GA 56 0.494 0.554 0.548 OK 23 0.456 0.478 0.520
HI 9 0.643 0.556 0.543 OR 24 0.547 0.625 0.569
IA 22 0.557 0.500 0.528 PA 90 0.552 0.567 0.558
ID 9 0.391 0.111 0.472 RI 7 0.689 0.571 0.545
IL 89 0.596 0.539 0.540 SC 28 0.469 0.571 0.552
IN 44 0.468 0.432 0.488 SD 6 0.479 0.667 0.555
KS 19 0.400 0.316 0.477 TN 40 0.513 0.500 0.522
KY 29 0.506 0.448 0.506 TX 144 0.473 0.444 0.468
LA 33 0.566 0.667 0.592 UT 15 0.380 0.333 0.490
MA 46 0.686 0.739 0.637 VA 51 0.489 0.412 0.473
MD 38 0.586 0.474 0.511 VT 4 0.633 0.500 0.538
ME 9 0.627 0.778 0.578 WA 42 0.572 0.619 0.578
MI 73 0.573 0.589 0.570 WI 39 0.559 0.487 0.517
MN 35 0.594 0.571 0.554 WV 14 0.584 0.571 0.548
MO 41 0.535 0.561 0.550 WY 4 0.426 0.250 0.518
MS 21 0.472 0.333 0.477
a� , True; p , sample; � , estimate using random effects model.ˆi i i

12.3.2 Modeling Repeated Binary Responses

In Section 12.1.4 we introduced a random effects version of the Rasch model
for repeated binary measurement. This model extends to incorporate covari-
ates.

We illustrate using Table 10.13, first analyzed in Section 10.7.2. The
subjects indicated whether they supported legalizing abortion in each of
three situations. Table 10.13 also classified the subjects by gender. Let yit
denote the response for subject i on item t, with y s 1 representingi t
support. Consider the model

�logit P Y s 1 u s u q � q � x , 12.10Ž .Ž .i t i i t i

� 4where x s 1 for females and 0 for males, and where u are independenti i
Ž 2 . Ž � 4N 0, � . Equivalently, one could place a constraint on � and allow ant
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.intercept � . Here, the gender effect � is assumed the same for each item,
� 4and the � refer to the items.t

Ž .Since model 12.10 implies nonnegative association among responses on
the items, one should use items and scales for which this should occur. For

Ž .opinions about legalized abortion with scale yes, no , it would not be
appropriate for one question to ask ‘‘Do you agree that abortion should be
legal when a woman is not married?’’ and another to ask ‘‘Do you agree that
abortion should be illegal during the last three months of pregnancy?’’

ˆ� 4Table 12.3 summarizes ML fitting results. The contrasts of � indicatet
Žgreater support for legalized abortion with item 1 when the family has a low

.income and cannot afford any more children than with the other two. There
Žis slight evidence of greater support with item 2 when the woman is not

. Žmarried and does not want to marry the man than with item 3 when the
.woman wants the abortion for any reason . The fixed effects estimates have

log odds ratio interpretations. For a given subject of either gender, for
instance, the estimated odds of supporting legalized abortion for item 1 equal

Ž .exp 0.83 s 2.3 times the estimated odds for item 3. Since � s 0.01, for eachˆ
item the estimated probability of supporting legalized abortion is similar for
females and males with similar random effect values.

Ž .For these data, subjects are highly heterogeneous � s 8.6 . Thus, strongˆ
associations exist among responses on the three items. This is reflected by
1595 of the 1850 subjects making the same response on all three items: that

Ž . Ž .is, response patterns 0, 0, 0 and 1, 1, 1 . It implies tremendous variability in
Ž .between-subject odds ratios. From 12.7 , for different subjects of a given

gender, the middle 50% of odds ratios comparing items 1 and 3 are estimated
Ž . Ž .to vary between about exp 0.83 y 0.95 � 8.6 and exp 0.83 q 0.95 � 8.6 .

For contingency tables, one can obtain cell fitted values. To do this, one
must integrate over the estimated random effects distribution to obtain
estimated marginal probabilities of any particular sequence of responses. For
the ML parameter estimates, the probability of a particular sequence of

Ž .responses y , . . . , y for a given u is the appropriate product of condi-i1 iT i
Ž � .tional probabilities, Ł P Y s y u , since the responses are independentt i t i t i

given u . Integrating this product probability with respect to u for thei i

( )TABLE 12.3 Summary of ML Estimates for Random Effects Model 12.10
and ML and GEE Estimates for Corresponding Marginal Model

GLMM ML Marginal Model ML Marginal Model GEE

Effect Parameter Estimate SE Estimate SE Estimate SE

Abortion � y � 0.83 0.16 0.148 0.030 0.149 0.0301 3

� y � 0.54 0.16 0.098 0.027 0.097 0.0281 2

� y � 0.29 0.16 0.049 0.027 0.052 0.0272 3

Gender � 0.01 0.48 0.005 0.088 0.003 0.088

Ž .var u � 8.6 0.54' i
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Ž 2 .N 0, � distribution estimates the marginal probability for a given cellˆ
Ž .averaged over subjects . This requires numerical integration methods de-
scribed in Section 12.6. Multiplying this marginal probability of a given
sequence by the sample size for that multinomial gives a fitted value.

Ž . Ž .Not surprisingly, for these data, the response patterns 0, 0, 0 and 1, 1, 1
also have the largest fitted values for the multinomial for each gender. For
instance, for females 440 indicated support under all three circumstances
Ž . Ž .457 under none of the three , and the fitted value was 436.5 459.3 . Overall
chi-squared statistics comparing the 16 observed and fitted counts are G2 s

2 Ž .23.2 and X s 27.8 df s 9 . These are not that large considering the very
Ž .large sample size and the few parameters � , � , � , � , � used to describe1 2 3

Ž .the 14 multinomial cell probabilities 8 y 1 s 7 for each gender in Table
10.13. Here, df s 9 since we are modeling 14 multinomial parameters using
five GLMM parameters.

An extended model allows interaction between gender and item. It has
� 4different � for men and women. However, it does not fit better. Thet

Ž .likelihood-ratio statistic s 1.0 df s 2 for testing that the extra parameters
equal 0.

An alternative analysis of these data focuses on the marginal distributions,
Ž .treating the dependence as a nuisance. A marginal model analog of 12.10 is

logit P Y s 1 s � q � x .Ž .t t

For it, Table 12.3 also shows GEE estimates for the exchangeable working
correlation structure and ML estimates. The marginal model fits well, with
G2 s 1.1; here, df s 2 since the model describes six marginal probabilities
Ž .three for each gender using four parameters. These population-averaged
ˆ ˆ� 4 � 4� are much smaller than the subject-specific � from the GLMM. Thist t

Ž .reflects the very large GLMM heterogeneity � s 8.6 and the correspondingˆ
strong correlations among the three responses. For instance, the GEE
analysis estimates a common correlation of 0.82 between pairs of responses.

ˆ ˆ� 4 � 4Although the GLMM � are about five to six times the marginal model � ,t t
so are the standard errors. The two approaches provide similar substantive
interpretations and conclusions.

12.3.3 Longitudinal Mental Depression Study Revisited

We now revisit Table 11.2 from a longitudinal study to compare a new drug
with a standard for treating subjects suffering mental depression. In Section
11.2.1 we analyzed the data using marginal models. The response y fort
measurement t on mental depression equals 1 for normal and 0 for abnor-

Ž .mal. For severity of initial diagnosis s 1 s severe, 0 s mild , drug treatment
Ž .d 1 s new, 0 s standard , and time of measurement t, we used the model

logit P Y s 1 s � q � s q � d q � t q � dtŽ .t 1 2 3 4

to evaluate the marginal distributions.
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TABLE 12.4 Model Parameter Estimates for Marginal and Conditional Logit
Models Fitted to Table 11.2

ML Marginal Std. GEE Marginal Std. Random Effects Std.
Parameter Estimate Error Estimate Error ML Estimate Error

Diagnosis y1.29 0.14 y1.31 0.15 y1.32 0.15
Drug y0.06 0.22 y0.06 0.23 y0.06 0.22
Time 0.48 0.12 0.48 0.12 0.48 0.12
Drug � Time 1.01 0.18 1.02 0.19 1.02 0.19

Now let y denote observation t for subject i. The modeli t

�logit P Y s 1 u s � q � s q � d q � t q � dt q uŽ .i t i 1 2 3 4 i

has subject-specific rather than population-averaged effects. Table 12.4 shows
ˆthe ML estimates. The time trend estimates are � s 0.48 for the standard3

ˆ ˆdrug and � q � s 1.50 for the new one. These are nearly identical to the3 4
ML and GEE estimates for the corresponding marginal model, also shown in

Ž .the table these are discussed in Sections 11.2.1 and 11.3.2 . The reason is
that the repeated observations do not exhibit much correlation, as the GEE
analysis observed. Here, this is reflected by � s 0.07, showing little hetero-ˆ
geneity among subjects.

Ž 2 .Based on the model fit, integrating over the N 0, 0.07 random effects
distribution yields marginal fitted values of the possible response sequences.
Comparing these to the sample counts in Table 11.2 indicates a relatively

Žgood fit. The model describes the 28 multinomial cell probabilities seven for
.the trivariate response at each of the four severity	drug combinations using

six parameters. The usual fit statistics comparing the observed cell counts to
2 2 Ž .their fitted values are G s 22.0 and X s 20.8 df s 28 y 6 s 22 .

The deviance increases by only 0.001 when one assumes that � s 0. From
results to be discussed in Section 12.6.6, the P-value for comparing models is
half what one gets by treating the deviance as chi-squared with df s 1, or
P s 0.49. This simpler model, which gives nearly identical effect estimates

Žand SE values, is adequate. This is also suggested by AIC values e.g., PROC
NLMIXED in SAS reports 1173.9 for the random effects model and 1171.9

.for the simpler model with � s 0 .

12.3.4 Modeling Heterogeneity among Multicenter Clinical Trials

Many applications compare two groups on a response for data stratified on a
third variable. With binary outcomes, the data form several 2 � 2 contin-
gency tables. The main focus relates to studying the association in the 2 � 2
tables and whether and how it varies among the strata.
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The strata are sometimes themselves a sample, such as schools or medical
clinics. A random effects approach is then natural. With a random sampling
of strata, it enables inferences to extend to the population of strata. The fit of
the random effects model provides a simple summary such as an estimated
mean and standard deviation of log odds ratios for the population of strata.
In each stratum it also provides a predicted log odds ratio that shrinks the
sample value toward the mean. This is especially useful when the sample size
in a stratum is small and the ordinary sample odds ratio has large standard
error. Even when the strata are not a random sample or not even a sample
and a random effects approach is not as natural, the model is beneficial for
these purposes.

We illustrate using Table 12.5, previously analyzed in Section 6.3, showing
the results of a clinical trial at eight centers. The purpose was to compare an
active drug and a control, for curing an infection. For a subject in center i

Ž .using treatment t 1 s active drug; 2 s control , let y s 1 denote success.i t
One possible model is the logistic-normal,

�logit P Y s 1 u s � q �r2 q uŽ .i1 i i

12.11Ž .
�logit P Y s 1 u s � y �r2 q u ,Ž .i2 i i

TABLE 12.5 Clinical Trial Relating Treatment to Response for Eight Centers

Response Sample Fitted
Center Treatment Success Failure Odds Ratio Odds Ratio

1 Drug 11 25 1.19 2.02
Control 10 27

2 Drug 16 4 1.82 2.09
Control 22 10

3 Drug 14 5 4.80 2.19
Control 7 12

4 Drug 2 14 2.29 2.11
Control 1 16

5 Drug 6 11 � 2.18
Control 0 12

6 Drug 1 10 � 2.12
Control 0 10

7 Drug 1 4 2.0 2.11
Control 1 8

8 Drug 4 2 0.33 2.06
Control 6 1

Ž .Source: Beitler and Landis 1985 .
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� 4 Ž 2 .where u are independent N 0, � variates. This model assumes that thei
log odds ratio � between treatment and response is constant over centers.
The parameter � summarizes center heterogeneity in the success probabili-
ties.

A logistic-normal model permitting treatment-by-center interaction is

�logit P Y s 1 u , b s � q � q b r2 q u ,Ž .Ž .i1 i i i i
12.12Ž .

�logit P Y s 1 u , b s � y � q b r2 q u ,Ž .Ž .i2 i i i i

� 4 Ž 2 . � 4 Ž 2 . � 4where u are independent N 0, � , b are independent N 0, � , and ui a i b i
� 4are independent of b . The log odds ratio equals � q b in center i. Thesei i

Ž 2 .vary among centers according to a N � , � distribution. That is, � is theb
expected center-specific log odds ratio between treatment and response, and
� describes variability in those log odds ratios. The model parameters areb
Ž .� , � , � , � .a b

In Table 12.5 the sample success rates vary markedly among centers both
for the control and drug treatments, but in all except the last center that rate
is higher for the drug treatment. In using models with random center and
possibly random treatment effects, it is preferable to have more than eight
centers. It is difficult to get reliable variance component estimates with so
few centers. Keeping this in mind, we use these data to illustrate the models.
With a large number of centers it would also be sensible to allow correlation
between b and u , but we shall not attempt that here. The treatmenti i

ˆ Ž . Ž .estimates are � s 0.739 SE s 0.300 for the model 12.11 of no interaction
ˆ Ž . Ž .and � s 0.746 SE s 0.325 for the model 12.12 permitting interaction.

Considerable evidence of a drug effect occurs. With such a small sample,
however, it is unclear whether that effect is weak or moderate.

The evidence about association is weaker for the model permitting inter-
Ž .2action. The Wald statistics are 0.739r0.300 s 6.0 for the no-interaction

Ž .2model and 0.746r0.325 s 5.3 for the interaction model. The correspond-
Ž .ing likelihood-ratio statistics are 6.3 and 4.6 df s 1 . The extra variance

component in the interaction model pertains to variability in the log odds
ratios. As its estimate � increases, so does the standard error of theˆb

ˆestimated treatment effect � tend to increase. In this example, � s 0.15 isˆb
ˆrelatively small and the standard errors of � are not very different in the two

models. When � s 0, the standard errors and the model fits are the same.ˆb
To show the effect of larger � on the standard error of the meanˆb

ˆtreatment effect estimate � , we alter Table 12.5 slightly. We change three
failures to successes for drug in center 3 and three successes to failures for
drug in center 8. With these changes, the estimated variability of the
treatment effects increases from � s 0.15 to � s 1.4. The ML estimates ofˆ ˆb b

ˆ Ž .the mean treatment effects are then � s 0.722 SE s 0.299 for the no
ˆŽ . Ž .interaction model 12.11 and � s 0.767 SE s 0.623 for the interaction

model. The Wald statistics are 5.8 and 1.5. The evidence of a treatment
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Ž .effect is then dramatically weaker for the interaction model 12.12 . Not
surprisingly, when the treatment effect varies substantially among centers, it
is more difficult to estimate the mean of that effect.

Ž .For the actual data in Table 12.5, because � s 0.15 for model 12.12 isˆb
relatively small, the model shrinks the sample odds ratios considerably. Table
12.5 shows the sample values and the model predicted values. These are

Ž .based on predicting the random effects to be explained in Section 12.6 , and
substituting them and the ML estimates of fixed effects into the model
formula to estimate the two response probabilities for each treatment in each
center. The sample odds ratios vary from 0.33 to �; their random effects

Ž .model counterparts computed with PROC NLMIXED in SAS vary only
between 2.0 and 2.2. The smoothed estimates are much less variable and do
not have the same ordering as the sample values. For instance, the smoothed
estimate of 2.2 for center 3 is greater than the estimate of 2.1 for center 6,
even though the sample value is infinite for the latter. This partly reflects the
greater shrinkage that occurs when sample sizes are smaller. When � s 0,ˆb

Ž . Ž .model 12.12 provides the same fit as model 12.11 , and estimated odds
ratios are identical in each center.

For related analyses permitting heterogeneity in odds ratios with several
Ž . Ž .2 � 2 tables, see Liu and Pierce 1993 and Skene and Wakefield 1990 .

12.3.5 Alternative Formulations of Random Effects Models

There are other ways to express the models. For instance, an equivalent
Ž .expression for interaction model 12.12 is

�logit P Y s 1 u , b s � q � x q b q u ,Ž .i t i i t t i t i

Ž . � 4where x is a treatment dummy variable x s 1, x s 0 , u are indepen-t 1 2 i
Ž 2 . � 4 � 4 Ž 2 .dent N 0,� , and b and b are independent N 0, � . Here, b y ba i1 i2 i1 i2

Ž . 2 2corresponds to b in parameterization 12.12 , and 2� corresponds to � .i b
Formulating a random effects model requires care about implications of

the model expression and the random effects correlation structure. Suppose
Ž .that one expressed the interaction model 12.12 as

�logit P Y s 1 u , b s � q � q b x q u , 12.13Ž . Ž .Ž .i t i i i t i

� 4 Ž 2 .with b from N 0, � . This is inappropriate, since the model then imposesi b
greater variability for the logit with the first treatment than the second, since

� 4 � 4x s 0 and u and b are uncorrelated. Also, the model should not depend2 i i
on the definition of the dummy variable x . Note, however, that if z s x q ct t t

Ž .for some constant c, then model 12.13 is equivalently

�logit P Y s 1 u , bŽ .i t i i

s � q � q b z y c q u s � � q � q b z q® ,Ž . Ž . Ž .i t i i t i
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Ž .where � � s � y c� and ® s u y cb . Thus, ® , b are correlated even ifi i i i i
Ž . Ž .u , b are not. In fact, expression 12.13 is sensible only with correlatedi i

Ž .random effects. It is then equivalent to 12.12 with correlated random
Ž .effects. See Agresti and Hartzel 2000 for further discussion.

12.3.6 Capture–Recapture Modeling to Predict Population Size

Capture	recapture experiments are a method of using a series of samples to
estimate the size of a population. Such methods have traditionally been used
to estimate animal abundance in some habitat. At each sampling occasion,
animals are captured and marked in some manner. The animals captured for
any given sample are freed and all animals are candidates for recapture in a
later sample. With T sampling occasions, a 2T contingency table displays the

Ž .data, with scale captured, not captured at each occasion. The count n22 ��� 2
is missing for the cell corresponding to noncapture at each occasion. If we
knew this cell count, adding it to the others would yield the population size.
Models specified for this 2T table use the 2T y 1 observed counts to fit the
model. The fit refers to those 2T y 1 cells, but extrapolating it yields an
estimated count in the unobserved cell. Adding that to the total of the 2T y 1
observed counts yields an estimate of population size.

To illustrate, suppose that T s 2. We observe n animals at both occa-11
sions, n at the first but not the second occasion, and n at the second but12 21
not the first. We do not know the number n not captured either time. If we22
assumed independence in the 2 � 2 table, the prediction n would be theˆ22

Ž . Ž .value giving an odds ratio of 1.0; but n n r n n s 1 implies thatˆ11 22 12 21
Žn s n n rn . This yields a population size prediction Sekar and Demingˆ22 12 21 11

.1949 of

N̂ s n q n q n q n n rn11 12 21 12 21 11

n n n n$ 1q q1 12 21ˆs n n rn with var N s .Ž .1q q1 11 3n11

The assumption of independence is usually unrealistic, however. With addi-
tional sampling occasions, one can try more complex models.

Ž .Table 12.6, analyzed by Cormack 1989 and others, refers to a study
having T s 6 consecutive trapping days for a population of snowshoe hares.
The study observed 68 hares. For instance, Table 12.6 indicates that 3 hares
were observed on the first day but on none of the other days. For simplicity,
models for studies over a brief time period assume that no deaths, births, or
immigration into the population occurred during the study period. This is
called a closed population.

Most methods for capture	recapture treat the probability of capture at a
Ž .given occasion as identical for each subject e.g., animal . This is usually
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TABLE 12.6 Results of Capture–Recapture of Snowshoe Hares
aCapture 3, Capture 2, Capture 1Capture Capture Capture

6 5 4 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0  3 6 0 5 1 0 0
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .24.0 2.3 5.4 0.9 3.2 0.5 1.2 0.3

0 0 1 3 2 3 0 0 1 0 0
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4.8 0.8 1.8 0.5 1.1 0.3 0.6 0.3

0 1 0 4 2 3 1 0 1 0 0
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .3.9 0.6 1.5 0.4 0.9 0.2 0.5 0.2

0 1 1 1 0 0 0 0 0 0 0
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1.3 0.3 0.8 0.3 0.5 0.2 0.4 0.3

1 0 0 4 1 1 1 2 0 2 0
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .6.8 1.1 2.6 0.6 1.5 0.4 0.9 0.4

1 0 1 4 0 3 0 1 0 2 0
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .2.3 0.6 1.3 0.5 0.8 0.3 0.7 0.4

1 1 0 2 0 1 0 1 0 1 0
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1.9 0.5 1.1 0.4 0.7 0.3 0.6 0.4

1 1 1 1 1 1 0 0 0 1 2
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1.0 0.4 0.9 0.5 0.5 0.3 0.7 0.7

aValues in parentheses represent the fit of the logistic-normal model.
Ž .Source: A. Agresti, Biometrics 50: 494	500 1994 .

unrealistic. One way to allow heterogeneous capture probabilities uses a logit
model having subject random effects. For subject i, i s 1, . . . , N with N

� Ž .unknown, let y s y , . . . , y , where y s 1 denotes capture in sample ti i1 iT i t
and y s 0 denotes noncapture. Lacking explanatory variables, one mighti t
use the Rasch-type model

�logit P Y s 1 u s u q � ,Ž .i t i i t

� 4 Ž 2 .where u are independent N 0, � . The larger the value of � , the greateri t
the capture probability at occasion t. The larger is � , the more heteroge-
neous are the capture probabilities. When � s 0 this logistic-normal model

w Ž .x Tsimplifies to mutual independence i.e., loglinear model 8.6 for the 2
table.

As with other random effects models, integrating the random effect from
Ž � . Žthe probability mass function of y u yields the likelihood function asi i

.discussed in Section 12.6 . One can consider this likelihood function and the
� 4resulting ML estimates of � and � for all possible counts in the unob-t

served cell. A profile likelihood function views the maximized likelihood as a
function of the unobserved cell count. The ML prediction for that unob-
served cell count is the value that maximizes this profile likelihood. Lacking
specialized software, one can fit the random effects model repeatedly with
various counts in the unobserved cell to determine by trial and error the
count that maximizes the likelihood function.
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ML fitting of this model to Table 12.6 yields a prediction of 24 for the
unobserved cell count. Since the study observed 68 hares, the population size

ˆestimate is N s 92. For this fit, � s 1.0.ˆ
Methods for obtaining a confidence interval for N include using the

profile likelihood function or a nonparametric bootstrap method. With the
profile likelihood approach, the interval for the missing cell count consists of
the possible counts for that cell such that the G2 fit statistic increases by less

2Ž .than � � from its value at the ML estimate. Adding the number of subjects1
observed in the samples to the endpoints of this interval gives the corre-
sponding interval for N. For the snowshoe hares, a 95% profile-likelihood

ˆŽ .confidence interval for N is 75, 154 . It is common for N to be nearer the
Ž .low end of the interval. See Coull and Agresti 1999 for details.

ˆThe greater the heterogeneity, as reflected by larger � , N tends to beˆ
larger and the confidence interval tends to be wider. Large � causesˆ
difficulties in estimation, since it results in a relatively flat likelihood surface.
This implies imprecise estimates of N. In particular, the upper limit of the
profile-likelihood confidence interval for N is essentially infinite when the
likelihood function gets sufficiently flat. Also, the ML estimator is then often

ˆunstable, with small changes in the data yielding large changes in N.
Difficulties can also arise when probabilities of capture are small. Evidence
of this occurs when most subjects captured appear in only one sample. When
this happens or when � is large, it is unrealistic to expect narrow confidenceˆ
intervals for N.

Alternative models are discussed in Section 13.1.3. Models that ignore
likely heterogeneity can give unrealistically narrow confidence intervals for
N. Although traditionally used for animal populations, capture	recapture
applications also include estimating population size for human populations,
such as estimating population prevalence of injecting drug use and HIV

Ž .infection. Darroch et al. 1993 considered census population estimation, and
Ž .Chao et al. 2001 estimated the number of people infected during a hepatitis

Ž .outbreak Problem 12.21 . An interesting application is estimating the num-
ber of files on the World Wide Web relating to some subject by taking

Ž .samples using several search engines Fienberg et al. 1999 .

12.4 RANDOM EFFECTS MODELS FOR MULTINOMIAL DATA

Random effects models for binary responses extend to multicategory re-
sponses. For the multicategory models of Chapter 7, a multinomial observa-
tion with I categories is a vector of I y 1 indicators, the jth of which is 1
when the observation falls in category j and 0 otherwise. In Section 7.1.5 we
defined a multivariate GLM by applying a vector of link functions to this
multivariate response. Adding random effects extends this multivariate GLM

Ž . Žand the GLMM 12.1 to a multivariate GLMM Hartzel et al. 2001b; Tutz
.and Hennevogl 1996 . This class includes models for nominal and ordinal

responses.
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12.4.1 Cumulative Logit Model with Random Intercept

Modeling is simpler with ordinal than nominal responses, since often the
same random effect and the same fixed effect can apply to each logit. With

Ž .cumulative logits, this is the proportional odds structure Section 7.2.2 .
Denote the possible outcomes for y , observation t in cluster i, by 1, 2, . . . , I.i t
A GLMM for the cumulative logits has the form

� ��logit P Y F j u s � q x � q z u , j s 1, . . . , I y 1. 12.14Ž .Ž .i t i j i t i t i

Ž .Hedeker and Gibbons 1994 discussed model fitting, primarily with u asi
multivariate normal.

For cumulative logit and probit random intercept models, the same
relationship exists between their effects and those in marginal models as
presented in Section 12.2.2 for binary-response models. Marginal effects tend
to be smaller, increasingly so as � increases. Also, the same predictor

Ž .structure as in 12.14 holds with other links for which a common effect for
Ž .each logit is plausible. For instance, Hartzel et al. 2001a, b used it with

adjacent-categories logits.

12.4.2 Insomnia Study Revisited

Table 11.4 showed results of a clinical trial at two occasions comparing a
drug with placebo in treating insomnia patients. In Sections 11.2.3 and 11.3.3
the data were analyzed with marginal models. For y s time to fall asleep att
occasion t, the marginal model

logit P Y F j s � q � t q � x q � txŽ .t j 1 2 3

Ž .permitted interaction between t s occasion 0 s initial, 1 s follow-up and
Ž .x s treatment 1 s active, 0 s placebo . Table 12.7 shows the ML and GEE

estimates.
Now, let y denote the response for subject i at occasion t. Table 12.7 alsoi t

shows results of fitting the random-intercept model

�logit P Y F j u s u q � q � t q � x q � tx .Ž .i t i i j 1 2 3

TABLE 12.7 Fits of Cumulative Logit Models to Table 11.4 a

Marginal Marginal Random Effects
Ž .Effect ML GEE GLMM ML

Ž . Ž . Ž .Treatment 0.046 0.236 0.034 0.238 0.058 0.366
Ž . Ž . Ž .Occasion 1.074 0.162 1.038 0.168 1.602 0.283
Ž . Ž . Ž .Treatment � occasion 0.662 0.244 0.708 0.244 1.081 0.380

aValues in parentheses represent standard errors.
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Results are substantively similar to the marginal model, but estimates and
standard errors are about 50% larger. This reflects the relatively large

Ž .heterogeneity � s 1.90 and the resultant strong association between theˆ
responses at the two occasions.

12.4.3 Cluster Sampling

With surveys that use cluster sampling, standard methods based on simple
Ž .random sampling e.g., for a single multinomial sample require adjustment.

Ordinary standard errors are too small. The usual chi-squared test statistics
no longer have chi-squared null distributions, but rather, weighted sums of

Ž .chi-squared. Rao and Thomas 1988 surveyed ways of adjusting standard
inferences to take into account complex sampling methods in the analysis and
modeling of categorical data.

When the sampling scheme randomly samples clusters, one can account
for the clustering using cluster random effects. We illustrate using data from

Ž . ŽBrier 1980 , who reported 96 observations taken from 20 neighborhoods the
.clusters on Y s satisfaction with home and X s satisfaction with neighbor-

Žhood as a whole. Each variable was measured with the ordinal scale unsatis-
.fied, satisfied, very satisfied . Brier’s analysis adjusted for clustering by

reducing the Pearson statistic for testing independence in the 3 � 3 contin-
Ž .gency table relating X and Y from 17.9 to 15.7 df s 4 .

Consider the model for y , observation t in cluster i,i t

�logit P Y F j u s u q � q x � , 12.15Ž .Ž .i t i i j i t

Ž . Ž 2 .with scores 1, 2, 3 for the satisfaction levels of x . With a N 0, � distribu-i t
ˆ Ž .tion assumed for u , the ML effect estimate is � sy1.201 SE s 0.407 ,i

with � s 0.92. By contrast, treating the 96 observations as a random sampleˆ
ˆ Ž .corresponds to fitting this model with � s 0. It has � sy1.226 SE s 0.370 .

A slight reduction in significance results from adjusting for clustering.

12.4.4 Baseline-Category Logit Models with Random Effects

For nominal response variables, one can formulate a binary model that pairs
each category with a baseline and fit these models simultaneously while
allowing separate effects. This requires using a vector of cluster-specific
random effects u , one for each logit. The general form of the baseline-cate-i j
gory logit model with random effects is

P Y s jŽ .i t � �log s � q x � q z u , j s 1, . . . , I y 1.j i t j i t i jP Y s IŽ .i t

The fixed effects � and the random effects u depend on j, since thej i j
baseline category is arbitrary. With nominal responses there is no reason to
expect effects to be similar for different j.
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� Ž � � .Cluster i has a vector u s u , . . . , u of random effects. The usuali i1 i, Iy1
� 4approach treats u as independent multivariate normal variates. We recom-i

mend an unspecified covariance matrix � for u . For instance, it is sensiblei
to allow different variances for random effects that apply to different logits.
With a common variance, that variance would not be the same as that for
the implied random effect for a logit for an arbitrary pair of categories,

w Ž . Ž .xlog P Y s j rP Y s k . With unspecified covariance the model is struc-i t i t
turally the same regardless of the choice of baseline category. See Hartzel

Ž .et al. 2001b for an example.

12.5 MULTIVARIATE RANDOM EFFECTS MODELS FOR
BINARY DATA

In practice, random effects are often univariate, taking the form of random
intercepts. However, we’ve seen that nominal responses require multivariate
random effects and that bivariate random effects are helpful for describing
heterogeneity in multicenter clinical trials. In this section we present other
examples in which multivariate random effects are natural.

12.5.1 Matched Pairs with a Bivariate Binary Response

Ž .Leo Goodman analyzed Table 12.8 in several articles e.g., Goodman 1974 .
A sample of schoolboys were interviewed twice, several months apart, and
asked about their self-perceived membership in the ‘‘leading crowd’’ and
about whether they sometimes needed to go against their principles to belong
to that group. Thus, there are two binary response variables, which we refer
to as membership and attitude, measured at two interview times for each

Ž .subject. Table 12.8 labels the categories for attitude as positive, negative ,
where ‘‘positive’’ refers to disagreeing with the statement that one must go
against his principles.

TABLE 12.8 Membership and Attitude Toward the ‘‘Leading Crowd’’
aŽ .M, A for Second InterviewŽ .M, A for

Ž . Ž . Ž . Ž .First Interview Yes, Positive Yes, Negative No, Positive No, Negative

Yes, positive 458 140 110 49
Yes, negative 171 182 56 87
No, positive 184 75 531 281
No, negative 85 97 338 554
aM, membership; A, attitude.

ŽSource: J. S. Coleman, Introduction to Mathematical Sociology London: Free Press of Glencoe,
.1964 , p. 170.
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For subject i, let y be the response at interview time t on variable ®,i t ®
where ®s M for membership and ®s A for attitude. The logit model

�logit P Y s 1 u s � q u 12.16Ž .Ž .i t ® i® t ® i®

Ž .is a multivariate form of the Rasch-type model 12.4 . It has additive item
Ž .and subject effects for each variable ®. Here, u , u is a bivariate randomi M i A

Ž .effect that describes subject heterogeneity for membership, attitude . We
�Ž .4assume that the u , u are independent from a bivariate normal distri-i M i A

Ž .bution, N 0, � , with possibly different variances and nonzero correlation.
ˆ ˆ ˆ ˆŽ .The ML fit yields � y � s 0.379 SE s 0.075 and � y � s2 M 1 M 2 A 1 A

Ž .0.176 SE s 0.058 . For both variables, the probability of the first outcome
category is higher at the second interview. For instance, for a given subject
the odds of self-perceived membership in the leading crowd at interview 2

Ž .are estimated to be exp 0.379 s 1.46 times the odds at interview 1.
The estimated correlation between the random effects is 0.30. Their

� 4 � 4estimated standard deviations are � s 3.1 for u and � s 1.5 for u .ˆ ˆ1 i M 2 i A
Since these are quite different, the relative sizes of membership and attitude

Žeffects differ for marginal and conditional models recall the caveat in
.Section 12.2.3 . The marginal effect is attenuated more for membership. For

this conditional model, the ratio of estimated odds ratios is
Ž . Ž .exp 0.379 rexp 0.176 s 1.46r1.19 s 1.22. For the marginal model, the esti-

mated odds ratios use the marginal distributions of each variable at each time
w Ž . Ž . xe.g., this is 1392r2006 r 1253r2145 s 1.188 for membership , and the
ratio of estimated odds ratios is 1.188r1.133 s 1.05.

Integrating over the estimated random effects distribution yields fitted
values for the 16 possible sequences of responses in Table 12.8. The deviance

2 Ž .of G s 5.5 df s 8 compares the 16 observed counts to their fitted values.
The model, which describes 15 multinomial probabilities with seven parame-
ters, fits well. The model constraining the random effects to be uncorrelated

Ž 2 .fits poorly G s 97.5, df s 9 . The model constraining the random effects to
be perfectly correlated is equivalent to having a single random effect u fori
each subject. The model is then a Rasch-type model with four items that are
the combinations of interviews and variables. That model fits very poorly
Ž 2 . Ž .G s 655.5, df s 10 . Agresti et al. 2000 gave further details.

12.5.2 Continuation-Ratio Logits for Clustered Ordinal
Outcomes: Toxicity Study

For continuation-ratio logit models with ordinal responses, the logits refer to
Ž .independent binomial variates Section 7.4.3 . Thus, binary logit random

effects models apply to clustered ordinal responses using continuation-ratio
Ž .logits Ten Have and Uttal 1994 . For observation t in cluster i, let � si j

Ž � . ŽP Y s j Y G j, u . More generally, this probability could also depend oni t i t i j
.t, but this generality is not needed for the example below. The

� Ž . 4continuation-ratio logits are logit � , j s 1, . . . , I y 1 .i j
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Let n be the number of subjects in cluster i making response j. Leti j
n sÝI n . For a given cluster in a continuation-ratio logit model, treatingi js1 i j
Ž .n , . . . , n as multinomial is equivalent to treating them as a sequentiali1 i, Iy1

Ž .set of independent binomial variates, where n is bin n yÝ n , � ,i j i h� j ih i j
j s 1, . . . , I y 1.

We illustrate with a developmental toxicity study conducted under the
U.S. National Toxicology Program. This study examined the developmental

Ž .effects of ethylene glycol EG by administering one of four dosages
Ž .0, 0.75, 1.50, 3.00 grkg to pregnant rodents. The four dose groups had
Ž .25, 24, 22, 23 pregnant rodents. The clusters are litters of mice. The three

Ž .possible outcomes deadrresorption, malformation, normal for each fetus
are ordered, normal being the most desirable result. Table 12.9 shows the
data. The continuation-ratio logit is natural here since categories are hierar-
chically related; an animal must survive before a malformation can take

Ž .place. The following analyses are from Coull and Agresti 2000 .
Ž .For litter i in dose group d, let logit � be the continuation-ratio logitiŽd.1

Ž .for the probability of death and logit � the continuation-ratio logit foriŽd.2
w Ž .the conditional probability of malformation, given survival. The notation i d

xrepresents litter i nested within dose d. Let x be the dosage for group d.d
We account for the litter effect using litter-specific random effects u siŽd.
Ž . Ž .u , u sampled from N 0, � . This bivariate random effect allows foriŽd.1 iŽd.2 d
differing amounts of overdispersion for the probability of death and for the
probability of malformation, given survival. A model also permitting different
fixed effects for each is

logit � s u q � q � x . 12.17Ž . Ž .iŽd. j iŽd. j j j d

(TABLE 12.9 Response Counts for 94 Litters of Mice on Number Dead,
)Number Malformed, Number Normal

Dose s 0.00 grkg Dose s 0.75 grkg Dose s 1.50 grkg Dose s 3.00 grkg

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1, 0, 7 , 0, 0, 14 0, 3, 7 , 1, 3, 11 0, 8, 2 , 0, 6, 5 0, 4, 3 , 1, 9, 1
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .0, 0, 13 , 0, 0, 10 0, 2, 9 , 0, 0, 12 0, 5, 7 , 0, 11, 2 0, 4, 8 , 1, 11, 0
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .0, 1, 15 , 1, 0, 14 0, 1, 11 , 0, 3, 10 1, 6, 3 , 0, 7, 6 0, 7, 3 , 0, 9, 1
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1, 0, 10 , 0, 0, 12 0, 0, 15 , 0, 0, 11 0, 0, 1 , 0, 3, 8 0, 3, 1 , 0, 7, 0
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .0, 0, 11 , 0, 0, 8 2, 0, 8 , 0, 1, 10 0, 8, 3 , 0, 2, 12 0, 1, 3 , 0, 12, 0
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1, 0, 6 , 0, 0, 15 0, 0, 10 , 0, 1, 13 0, 1, 12 , 0, 10, 5 2, 12, 0 , 0, 11, 3
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .0, 0, 12 , 0, 0, 12 0, 1, 9 , 0, 0, 14 0, 5, 6 , 0, 1, 11 0, 5, 6 , 0, 4, 8
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .0, 0, 13 , 0, 0, 10 1, 1, 11 , 0, 1, 9 0, 3, 10 , 0, 0, 13 0, 5, 7 , 2, 3, 9
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .0, 0, 10 , 1, 0, 11 0, 1, 10 , 0, 0, 15 0, 6, 1 , 0, 2, 6 0, 9, 1 , 0, 0, 9
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .0, 0, 12 , 0, 0, 13 0, 0, 15 , 0, 3, 10 0, 1, 2 , 0, 0, 7 0, 5, 4 , 0, 2, 5
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1, 0, 14 , 0, 0, 13 0, 2, 5 , 0, 1, 11 0, 4, 6 , 0, 0, 12 1, 3, 9 , 0, 2, 5
Ž . Ž . Ž . Ž . Ž .0, 0, 13 , 1, 0, 14 0, 1, 6 , 1, 1, 8 0, 1, 11
Ž .0, 0, 14

Source: Study described by C. J. Price, C. A. Kimmel, R. W. Tyl, and M. C. Marr, Toxicol. Appl.
Ž .Pharmacol. 81: 113	127 1985 .
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TABLE 12.10 Comparisons of Log Likelihoods for Multivariate Random
Effects Models for Developmental Toxicity Study

Number of Change in Change in
Model Parameters Parameters Log Likelihood

Dose-specific � 16  i
� , Common � , � 14 2 28.4i
Common � 7 9 7.4
Common �, � s 0 6 10 7.4

2Univariate � 5 11 16.7

Table 12.10 reports the change in the maximized log likelihood from fitting
four special cases of this model:

1. Common intercept and slope for the two logits: � s � and � s �1 2 1 2

2. Common covariance matrix for the four doses: � s � s � s �1 2 3 4

3. Common covariance matrix and uncorrelated random effects
4. Univariate common variance component across dose: u s u andiŽd.1 iŽd.2

� s �d

Ž .Tests of the first three special cases against the general model 12.17 can
use ordinary likelihood-ratio tests. Little seems to be lost by using the simpler
model having uncorrelated random effects with homogeneous covariance

Ž .structure i.e., the fourth model listed in Table 12.10 , as the likelihood-ratio
Ž . Ž . Ž .statistic comparing this to model 12.17 equals 2 7.4 s 14.8 df s 10 . The

model provides a separate univariate logistic-normal model for each condi-
tional binomial outcome, specifying that the proportion of dead pups and the

Ž .proportion of malformed pups given survival are independent, both within
litter and marginally.

The univariate model in Table 12.10 is the special case of the third model
listed in which the variances are common for the two logits and the random
effects are perfectly correlated. Hence, it reduces to a univariate random
effects model. Comparing the univariate model to a multivariate counterpart
involves testing that correlation parameters fall on the boundary. Ordinary
chi-squared asymptotic theory for likelihood-ratio tests applies only when the
parameter falls in the interior of the parameter space. Tests when a null
model has a correlation of 1 or a variance component of 0 are complex and

Ž .beyond our scope here see Section 12.6.6 . However, an informal analysis of
change in log likelihoods suggests that the univariate model is inadequate.

The ML estimated effects for the separate univariate logistic-normal
ˆ Ž .model for each conditional binomial outcome are � s 0.08 SE s 0.21 ,1

ˆ Ž .� s 1.79 SE s 0.22 . For a given cluster, there is no evidence of a dose2
effect on the death rate, but the estimated odds of malformation, given

Ž .survival, multiply by exp 1.79 s 6.0 for every additional grkg of ethylene
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glycol. The variance component estimates suggest a stronger litter effect for
Ž . Ž .the malformation outcome given survival � s 1.6 than for death � s 0.5 .ˆ ˆ2 1

( )12.5.3 Hierarchical Multilevel Modeling

Hierarchical data structures, with units grouped at different levels, are
common in education. A statewide study of factors that affect student
performance might measure students’ scores on a battery of exams but use a
model that takes into account the student, the school or school district, and
the county. Just as two observations on the same student might tend to be
more alike than observations on different students, so might two students in
the same school tend to be more alike than students from different schools.
Student, school, and county terms might be treated as random effects,
with different ones referring to different le®els of the model. For instance,
a model might have students at level 1, schools at level 2, and counties at
level 3. GLMMs for data having a hierarchical grouping of this sort are called
multile®el models. Random effects enter the model at each level of the
hierarchy.

We illustrate with a two-level model. Let � denote the probability thatiŽ j. t
student i in school j passes test t in a battery of tests. A multilevel model
with random effects for student and school and fixed effects for explanatory
variables has the form

w x �logit � s x � q u q® .iŽ j. t iŽ j. t j iŽ j.

Here, the explanatory variables x might include one that identifies the test in
the battery. The random effects u for schools and ® for students withinj iŽ j.
schools are independent with different variance components. The level 1

� 4random effects ® account for variability among students in ability oriŽ j.
parents’ socioeconomic status or other characteristics not measured by x.
When they have a relatively large variance component, there is a strong
correlation among the test results for students. The level 2 random effects
� 4u account for variability among schools due to possibly unmeasured factorsj
such as per-capita expenditure in the school’s budget.

For examples of the use of multivariate random effects in multilevel
Ž . Ž .modeling, see Aitkin et al. 1981 , Anderson and Aitkin 1985 , Gibbons and

Ž . Ž . Ž .Hedeker 1997 , Goldstein 1995 , Goldstein and Rasbash 1996 , and Long-
Ž .ford 1993 .

12.6 GLMM FITTING, INFERENCE, AND PREDICTION

Model fitting is rather complex for GLMMs. The main difficulty is that the
likelihood function does not have a closed form. Numerical methods for
approximating it can be computationally intensive for models with multivari-
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ate random effects. In this section we outline the basic ideas of ML fitting of
ŽGLMMs. Some ML methods are available in software e.g., PROC

.NLMIXED in SAS .

12.6.1 Marginal Likelihood and Maximum Likelihood Fitting

The GLMM is a two-stage model. At the first stage, conditional on the
random effects, observations are assumed to follow a GLM. That is, observa-
tion y in cluster i has distribution in the exponential family with expectedi t
value � linked to a linear predictor,i t

g � s x� � q z� u .Ž .i t i t i t i

Then, z� u is a known offset and observations in a cluster are independent.i t i
� 4At the second stage, the random effects u are assumed independent from ai

Ž .N 0, � distribution.
For a discrete variable, denote the vector of all the observations by y and

Ž � .the vector of all the random effects by u. Let f y u; � denote the condi-
Ž .tional mass function of y, given u. Let f u; � denote the normal density
Ž .function for u. The likelihood function ll �, �; y for a GLMM is the

Ž .probability mass function f y; �, � of y, viewed as a function of � and �.
This mass function refers to the marginal distribution of y after integrating
out the random effects,

�ll � , � ; y s f y; � , � s f y u; � f u; � du. 12.18Ž . Ž . Ž . Ž .Ž .H

It is often called a marginal likelihood. For example, the likelihood function
Ž 2 . Ž . Ž .ll �, � ; y for the logistic-normal model 12.5 absorbing � into � is

y 1yy� i t i t� Ž .exp x � q u 1it i 2f u ; � du .Ž .Ł ŁH � � i iž /Ž . Ž .1 q exp x � q u 1 q exp x � q uy�i t it i it i

The likelihood function is evaluated numerically and maximized as a function
of � and �. Many methods have been developed to do this. We next discuss
a few of the most popular.

12.6.2 Gauss–Hermite Quadrature Methods

The integral determining the likelihood function has dimension that depends
on the random effects structure. When the dimension is small, as in the

Ž .one-dimensional integral above for the logistic-normal model 12.5 , standard
numerical integration methods can approximate the likelihood function.
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Gauss	Hermite quadrature is a method for approximating the integral of
Ž .a function f � multiplied by another function having the shape of a normal

density. The approximation is a finite weighted sum that evaluates the
function at certain points. In the univariate normal random effects case,
the approximation has the form

q
�

2f u exp yu du f c f s ,Ž . Ž . Ž .ÝH k k
y� ks1

� 4 � 4with weights c and quadrature points s that are tabulated. The approxi-k k
mation improves as q, the number of quadrature points, increases.

The approximated likelihood can be maximized with standard algorithms
ˆ ˆsuch as Newton	Raphson, yielding ML estimates � and �. Inverting an

approximation for the observed information matrix provides standard errors
for the ML estimates. For complex models, second partial derivatives for the
Hessian may be computed numerically rather than analytically. Adequate

ˆapproximation usually requires larger q for standard errors than for �. We
recommend sequentially increasing q until the changes are negligible in both
the estimates and standard errors.

ŽAn adaptive version of Gauss	Hermite quadrature e.g., Liu and Pierce
.1994 centers the quadrature points with respect to the mode of the function

being integrated and scales them according to the estimated curvature at the
mode. This improves efficiency, dramatically reducing the number of quadra-
ture points needed to approximate the integrals effectively. Lesaffre and

Ž .Spiessens 2001 showed comparisons and warned against using too few
points.

12.6.3 Monte Carlo Methods

Multivariate forms of Gauss	Hermite quadrature handle multivariate, corre-
lated random effects. Adequate approximation becomes more difficult, how-
ever, when the dimension of the integral exceeds roughly 5. Then, Monte
Carlo methods are more feasible computationally than numerical integration.

Ž .Various Monte Carlo approaches have been studied e.g., McCulloch 1997 ,
including Monte Carlo in combination with Newton	Raphson, Monte Carlo
in combination with the EM algorithm, and simulating the likelihood directly.

Ž .Here, we briefly describe a Monte Carlo EM MCEM algorithm.
The EM algorithm is a popular iterative method of finding ML estimates

when data are missing or when filling in some ‘‘missing’’ data simplifies a
Ž . w Ž . xlikelihood Dempster et al. 1977 see Laird 1998 for a useful review . In

each cycle an E-step takes an expectation over the missing data to approxi-
mate the likelihood function and an M-step maximizes the likelihood given
the working values of the parameter estimates. In GLMMs, one regards the

Ž . Ž � . Ž .random effects u as missing data. Then, h y, u; �, � s f y u; � f u; �
specifies the joint distribution of the complete data. The E-step in iteration r
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of the EM algorithm calculates

� Ž r . Ž r .E log h y, u; � , � y; � , � .� 4Ž .

Ž � .The expectation is with respect to the distribution of u y with parameter
values equal to �Ž r . and �Ž r ., the working estimates for iteration r. The

Ž � . Ž � .distribution of u y follows from those of y u and u in the GLMM via
Bayes’ theorem. The M-step then maximizes the result with respect to � and
� to obtain �Ž rq1. and �Ž rq1. .

The MCEM algorithm approximates the expectation in the E-step using
Monte Carlo methods. Possible ways of doing this include using independent

Ž � .simulations from the distribution of u y , at the current estimate of parame-
Ž .ters, or using Markov chain Monte Carlo MCMC . For details, including the

issue of choosing an appropriate Monte Carlo sample size, see Booth and
Ž . Ž . Ž .Hobert 1999 , Chan and Kuk 1997 , and McCulloch 1994, 1997 .

12.6.4 Penalized Quasi-likelihood Approximation

The Gauss	Hermite and Monte Carlo integration methods provide likeli-
hood approximations such that resulting parameter estimates converge to the

ŽML estimates as they are applied more finely i.e., as the number of
quadrature points increases for numerical integration and as the Monte

.Carlo sample size increases in the MCEM method . This contrasts with other
approximate methods that are simpler but need not yield estimates near the
ML estimates. These methods maximize an analytical approximation of the
likelihood function.

Ž .Recall that the likelihood function 12.18 results from integrating out the
random effects u from the joint distribution of y and u. Using the exponential
family representation of each component of that joint distribution, the

Ž .integrand of 12.18 is an exponential function of u. One approach approxi-
mates that function using a second-order Taylor series expansion of its

wexponent around a point u at which the first-order term equals 0. That point˜
Ž � . xu f E u y . The approximating function for the integrand is then exponen-˜

Ž .tial with quadratic exponent in u y u and has the form of a constant˜
multiple of a multivariate normal density. Thus, its integral has closed form.
This type of integral approximation is called a Laplace approximation. The

Ž .approximation for integral 12.18 is then treated as a likelihood and maxi-
mized with respect to � and �.

Ž .For one such method Breslow and Clayton 1993 , the integral approxima-
tion yields a function approximating the log likelihood that has the form

q � , y y 1r2 u� �y1 u,Ž . Ž .˜ ˜
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Ž .where q �, y resembles a quasi-log-likelihood function for the GLM condi-
tional on u s u. Thus, the approximation results in a penalty for the quasi-˜
log likelihood, with the penalty increasing as elements of u increase in˜

Ž .absolute value. This approach is called penalized quasi-likelihood PQL . The
calculations for maximizing the penalized quasi-likelihood use methods
for linear mixed models with a normal response. This treats a linearization of
the logit as a working response and entails iterative solution of sets of
likelihood-like equations in � and u. PQL methods do not require numerical
or Monte Carlo integration and so are simpler than ML methods. They are
computationally feasible for large data sets and models with complex random
effects structure.

ŽUnfortunately, PQL methods can perform poorly relative to ML McCul-
.loch 1997 . For instance, for the abortion example in Section 12.3.2, the PQL

Žapproximations to the ML estimates obtained using the GLIMMIX macro in
. � 4SAS are decent for � , but the standard errors and the estimate of � aret

Žonly about half what they should be e.g., PQL gives � s 4.3, compared toˆ
.the ML estimate of 8.6 . When true variance components are large, ordinar-

ily PQL tends to produce variance component estimates with substantial
Ž .negative bias Breslow and Lin 1995 . The PQL estimators also behave poorly

Ž .when the response distribution is far from normal e.g., binary . Adjustments
Žhave been developed for some cases to lessen the bias e.g., Goldstein and

.Rasbash 1996 , but where possible we recommend using ML rather than
PQL.

12.6.5 Bayesian Approaches

Another approach to fitting of GLMMs is Bayesian. With it, the distinction
between fixed and random effects no longer occurs, as every effect has a
probability distribution. Use of a flat prior distribution yields a posterior that
is a constant multiple of the likelihood function. Then, Markov chain Monte

Ž .Carlo MCMC methods for approximating intractable posterior distributions
Ž .can approximate the likelihood function Zeger and Karim 1991 . For in-

stance, an approximation for the mode of the posterior distribution approxi-
mates the ML estimate.

A danger is that improper prior distributions have improper posteriors for
Ž .many models for categorical data Natarajan and McCulloch 1995 . In using

MCMC, one may fail to realize that the posterior is improper. It is safer to
use a proper but relatively diffuse prior. However, the posterior mode need
not be close to the ML estimate, and Markov chains may converge slowly
Ž .Natarajan and McCulloch 1998 . This is currently an active area of research,
not just as a way of approximating ML results but also as an approach
preferred over ML by those who adopt the Bayesian paradigm. See, for

Ž .instance, Daniels and Gatsonis 1999 for multilevel modeling of geographic
and temporal trends with clustered longitudinal binary data, which built on

Ž .earlier hierarchical modeling by Wong and Mason 1985 .
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12.6.6 Inference for Model Parameters

After fitting the model, inference about fixed effects proceeds in the usual
way. For instance, likelihood-ratio tests can compare nested models. Asymp-
totics for GLMMs apply as the number of clusters increases, rather than as
the numbers of observations within the clusters increase. Similarly, resam-
pling methods such as the bootstrap using a large number of clusters should
sample clusters rather than individual observations within clusters, to pre-
serve the within-cluster dependence.

Ž .Inference about random effects e.g., their variance components is more
complex. For instance, sometimes one model is a special case of another in
which a variance component equals 0. The simpler model then falls on the
boundary of the parameter space relative to the more complex model, so
ordinary likelihood-based inference does not apply. The asymptotic distribu-
tion of the likelihood-ratio statistic is known for the most common situation,
testing H : � 2 s 0 against H : � 2 � 0 for a model containing a single0 a

2 Žvariance component. The null distribution is an equal mixture of � i.e.,0
. 2 Ž .degenerate at 0 and � random variables Self and Liang 1987 . The value1

of 0 occurs when � s 0, in which case the maximized likelihoods areˆ
identical under H and H . When � � 0 and the observed test statisticˆ0 a

1 2Ž .equals t, the P-value for this large-sample test is P � � t , half the12

P-value that applies for � 2 asymptotic tests. For testing more than one1
variance component, the mixture distribution becomes more complex, and it

Ž .is simpler to use a score test Lin 1997 .

12.6.7 Prediction Using Random Effects

The use of random effects in a model implies heterogeneity of certain effects
of interest, such as odds ratios. Estimated effects of interest are often then
linear combinations of fixed and random effects. For example, in the clinical

Žtrial comparing two treatments with random effects for centers Section
.12.3.4 , one can predict the probability of success for each treatment in each

center and odds ratios in those centers.
Ž � .Given the data, the conditional distribution of u y contains the informa-

Ž � .tion about the random effects u. A prediction for u is E u y , its posterior
Ž � .mean given the data. Calculation of E u y itself requires numerical integra-

tion or Monte Carlo approximation. The expectation depends on � and �,
ˆ ˆso in practice one substitutes � and � in the approximation. The standard

error of the predictor of the random effect u is the standard deviation of thei
ˆ ˆŽ � . Ž � .distribution of u y . When one substitutes � and � in E u y , however,i

the standard error does not account for the sampling variability in those
Žestimates. Hence, the true standard error tends to be underestimated Booth

.and Hobert 1998 .
This approach to prediction using posterior means of random effects

provides effect estimates that exhibit shrinkage relative to estimates using
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only data in the specific cluster. In this sense the results are similar to those
Ž .using an empirical Bayes approach Ten Have and Localio 1999 . This adapts

an ordinary Bayesian analysis by using the sample data to estimate parame-
ters of the prior distribution. For a vector of mean parameters, this approach
yields an estimate of a particular mean that is a weighted average of the
sample mean and the overall mean of the sample means. Thus, it shrinks the
sample mean toward the overall mean. Shrinkage estimators can be far
superior to sample values when the sample size for estimating each parame-
ter is small, when there are many parameters to estimate, or when the true
parameter values are roughly equal. The empirical Bayes paradigm has been
in use for some time: for instance, for estimating a vector of means or

Ž .binomial proportions Efron and Morris 1975 .
Although random effects models are natural in many applications, further

work is needed. Work continues on the development of methodology for
model-fitting and inference with complex GLMMs. In addition, research is
needed on model checking and diagnostics. Nonetheless, we believe that
GLMMs provide a very useful extension of ordinary GLMs.

NOTES

Section 12.1: Random Effects Modeling of Clustered Categorical Data

12.1. For further discussion of the Rasch model and ways of estimating its parameters, see
Ž . Ž . Ž .Andersen 1980, Sec. 6.4 and Fischer and Molenaar 1995 . Haberman 1977b

showed ML estimators can achieve consistency when both n and T grow at suitable
Ž .rates. For multinomial Rasch extensions, see Andersen 1980, pp. 272	284; 1995 and

Ž .Conaway 1989 . Early work on random effects models for a categorical response
Ž . Ž . Ž .includes Anderson and Aitkin 1985 , Bartholomew 1980 , Bock and Aitkin 1981 ,

Ž . Ž . Ž .Chamberlain 1980 , Gilmour et al. 1985 , Pierce and Sands 1975 , and Stiratelli et
Ž .al. 1984 .

Ž .12.2. In models with covariates, Neuhaus and Lesperance 1996 noted that conditional ML
may lose considerable efficiency compared to the random effects approach when
cluster sizes are small and covariates have strong positive within-cluster correlation.
As that correlation approaches q1, the covariate effect resembles a between-cluster
one, which the conditional ML approach cannot estimate. The matched-pairs case
referred to in Section 12.1.2 in which the conditional ML estimate equals the random
effects estimate has within-cluster covariate correlation s y1, as depending on the
order of viewing the observations, x changes from 0 to 1 or from 1 to 0; then, not
efficiency loss occurs.

Section 12.3: Examples of Random Effects Models for Binary Data

Ž12.3. For further discussion of modeling capture	recapture data, see Bishop et al. 1975,
. Ž . Ž . Ž .Chap. 6 , Chao et al. 2001 , Cormack 1989 , Coull and Agresti 1999 , Darroch et al.

Ž . Ž . Ž .1993 , Fienberg et al. 1999 , and Hook and Regal 1995 . Similarities exist between
this problem and the related problem of estimating the binomial index n when

Ž .observing independent bin n, � counts with unknown n and � ; see Aitkin and
Ž .Stasinopoulos 1989 and references therein. Relatively flat log likelihoods also occur

Ž .with other models that permit capture heterogeneity Burnham and Overton 1978 ,
such as a beta-binomial model.
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Ž .12.4. King 1997 used random effects models as part of a solution for analyzing aggregated
Ž .categorical data, the problem of ecological inference. Chambers and Steel 2001

discussed early work by Leo Goodman on this problem and proposed a simpler
semiparametric approach.

Section 12.4: Random Effects Models for Multinomial Data

12.5. With the complementary log-log link, the likelihood function has closed form with a
Žlog gamma random effects distribution Crouchley 1995, Farewell 1982, Ten Have

.1996 .
Ž .12.6. Chen and Kuo 2001 discussed nominal responses, including discrete choice models

Ž . Ž .Sec. 7.6 with random effects. See also Brownstone and Train 1999 for discrete
choice GLMMs.

Section 12.5: Multi©ariate Random Effects Models for Binary Data

Ž .12.7. Rabe-Hesketh and Skrondal 2001 showed that careful attention must be paid to
parameter identification in models with multivariate random effects. Their factor
model contains many multivariate random effects models as special cases.

Ž .12.8. For longitudinal bivariate binary responses, Ten Have and Morabia 1999 simultane-
ously modeled bivariate log odds ratios and univariate logits. Multivariate responses
sometimes have both continuous and categorical components. For random effects

Ž .modeling of such data, see Catalano and Ryan 1992 and Gueorguieva and Agresti
Ž .2001 .

Section 12.6: GLMM Fitting, Inference, and Prediction

Ž . Ž .12.9. See Fahrmeir and Tutz 2001, Chap. 7 and McCulloch and Searle 2001 for more
details on the fitting of GLMMs. Just as the likelihood function for a GLMM is an

Žintegral, so do likelihood equations have the form of integral equations McCulloch
. Ž .and Searle 2001, p. 227 . Wolfinger and O’Connell 1993 described a fitting method

related to PQL, also motivated by a Laplace approximation.
Ž .12.10. A GLMM determines the marginal relationship averaged over random effects

Ž .between the mean response and explanatory variables. Conversely, Heagerty 1999
noted that a marginal model for the mean implicitly determines the form of the fixed

Ž .portion of the linear predictor in a conditional model. The conditional GLMM 12.1
has linear predictor, x� � q z� u . A more general form � q z� u implies a particu-i t i t i i t i t i
lar marginal model. Here, � is a function of the marginal linear predictor and thei t
random effects distribution. It is implicitly defined by the integral equation that links
the marginal and conditional means.

PROBLEMS

Applications

12.1 Refer to the matched-pairs data of Table 10.14 and Problem 10.1.
ˆŽ .a. Fit model 12.3 . Interpret �. If your software uses numerical

ˆintegration, report � , � , and their standard errors for 5, 10, 25,ˆ
100, and 200 quadrature points, and comment on convergence.
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ˆb. Compare � and its SE for this approach to the conditional ML
approach.

12.2 Refer to Table 4.8 on the free-throw shooting of Shaq O� Neal. In
game i, suppose that y s number made out of n attempts is ai i

Ž . � 4bin n ,� variate and y are independent.i i i

Ž .a. Fit the model, logit � s � . Find and interpret � . Does theˆi i
model appear to fit adequately?

Ž . � 4b. Fit the model, logit � s � q u , where u are independenti i i
Ž 2 . �N 0,� . Use � and � to summarize O Neal’s free-throw shoot-ˆ ˆ

ing.
Ž .c. Explain how the model in part a is a special case of that in part

Ž . Ž .b . Is there evidence that the one in part b fits better?

12.3 For Table 8.3, let y s 1 when subject i used substance t. Tablei t
12.11 shows output for the logistic-normal model

�logit P Y s 1 u s u q � .Ž .i t i i t

Interpret. Illustrate by comparing use of cigarettes and marijuana.

TABLE 12.11 Output for Problem 12.3

Description Value Std
Subjects 2276 Parameter Estimate Error t Value
Max Obs Per Subject 3 beta1 4.2227 0.1824 23.15
Parameters 4 beta2 1.6209 0.1207 13.43
Quadrature Points 200 beta3 y0.7751 0.1061 y7.31
Log Likelihood y3311 sigma 3.5496 0.1627 21.82

12.4 How is the focus different for the model in Problem 12.3 than for the
Ž .loglinear model AC, AM, CM used in Section 8.2.4? If � s 0,ˆ

which loglinear model has the same fit as the GLMM?

Ž .12.5 For the student survey in Table 9.1, a analyze using GLMMs, and
Ž .b compare results and interpretations to those with marginal models
in Problem 11.2.

Ž .12.6 Fit model 12.10 to the responses on abortion. If your software uses
Gauss	Hermite quadrature, report the approximate number of
quadrature points needed for parameter estimates to converge and

Žthe number needed for standard error estimates to converge. This
.example has large � and requires many points.ˆ
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Ž .12.7 For the crossover study in Table 11.10 Problem 11.6 , fit the model

�logit P Y s 1 u s � q � q u , 12.19Ž .Ž .iŽk . t iŽk . k t iŽk .

2 ˆ� 4 Ž . � 4where u are independent N 0, � . Interpret � and � .ˆiŽk . t

12.8 For Problem 12.7, compare estimates of � y � and � y � andB A C A
Ž . Ž . Ž .SE values to those using a a marginal model Problem 11.6 , and b

Ž .conditional logistic regression Section 10.2 , treating subject terms in
Ž .model 12.19 as fixed effects.

12.9 For Problem 12.7, fit the more general GLMM having treatment
� 4effects � that vary by sequence. Test whether the fit is better. Onetk

could also consider period or carryover effects. Add two period
Ž . Žeffects to model 12.19 e.g., the first-period-effect parameter adds to

the model when t s A and k s 1, 2, t s B and k s 3, 4, and t s C
.and k s 5, 6 . Check whether the fit improves. Interpret.

Ž .12.10 Consider the logistic-normal model 12.10 for the abortion opinion
data, under the constraint � s 0.
a. Explain why the fit is the same as an ordinary logit model treating

the three responses for each subject as if they were independent
responses for three separate subjects.

b. Explain why the model fit is the same as an ordinary loglinear
Ž .model GI , GI , GI of mutual independence of responses on the1 2 3

Ž .three items I , I , I , given G s gender.1 2 3
ˆ ˆ� 4c. Fit the model. Interpret, and explain why � y � are quitet u

different from those in Section 12.3.2 allowing � � 0.

12.11 For Table 6.7 on admissions decisions for graduate school applicants,
Žlet y s 1 denote a subject in department i of gender g 1 s females,i g

.0 s males being admitted.
w Ž .x Da. For the fixed effects model, logit P Y s 1 s � q � g q � ,i g i

ˆ Ž .� s 0.173 SE s 0.112 . Interpret.
Ž .b. The corresponding model 12.12 in which departments are a

ˆ Ž .normal random effect has � s 0.163 SE s 0.111 . Interpret.
Ž .c. The model of form 12.12 allowing the gender effect to vary by

ˆ Ž .department has � s 0.176 SE s 0.132 , with � s 0.20. Inter-ˆb
ˆpret. Explain why the standard error of � is slightly larger than

with the other analyses.
d. The marginal sample log odds ratio between gender and whether

ˆadmitted equals y0.07. How could this take different sign from �
in these models?
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e. The sample conditional odds ratios between gender and whether
admitted vary between 0 and �. By contrast, predicted odds ratios
for the interaction random effects model do not vary much. Ex-
plain why results can be so different.

Ž � .12.12 For the clinical trial in Table 9.16, let � s P Y s 1 u denote thei t i t i
probability of success for treatment t in center i.

ˆŽ . Ž .a. The random intercept model 12.11 has � s 1.52 SE s 0.70 and
� s 1.9. Interpret.ˆ

Žb. From Section 9.8.3, the fixed effects analog of this model replac-
.ing � q u by � has � s � sy�, corresponding to � s �ˆ ˆ ˆ ˆi i 1 3 1 t 3 t

s 0 for each treatment. By contrast, the random effects model has
Ž .� q u sy3.78 using NLMIXED in SAS and � s 0.047 andˆ ˆ ˆ1 11

� s 0.011 in center 1. Explain how this model can have � � 0ˆ ˆ12 i t
in centers having no successes.

12.13 Refer to the subject-specific model in Section 12.3.3. Verify that the
estimated difference in time effect slopes between the new and

Ž . Ž .standard drugs for treating depression are a 1.018 SE s 0.192 with
Ž . Ž .the GLMM approach, and b 1.156 SE s 0.222 with conditional

ML.

Ž .12.14 For marginal model 10.14 for Table 10.5 on premarital and extra-
marital sex, Table 12.12 shows results of fitting a corresponding

ˆrandom intercept model. Interpret �. Compare estimates of and
inferences about � to those in Section 10.3.2 for the marginal model.

TABLE 12.12 Output for Problem 12.14

Std
Subjects 475 Parameter Estimate Error t Value
Max Obs Per Subject 2 inter1 y1.5422 0.1826 y8.45
Parameters 5 inter2 y0.6682 0.1578 y4.24
Quadrature Points 100 inter3 0.9273 0.1673 5.54
Log Likelihood y890.1 beta 4.1342 0.3296 12.54

sigma 2.0757 0.2487 8.35

12.15 A data set from the 1994 General Social Survey on subjects’ opinions
Ž .on four items the environment, health, law enforcement, education

related to whether they believed government spending on each item
should increase, stay the same, or decrease. Subjects were also
classified by their gender and race. For subject i, let G s 1 fori
females and 0 for males, let R s 1 for whites and 0 otherwise,1 i
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R s 1 for blacks and 0 otherwise, and R s R s 0 for the other2 i 1 i 2 i
category of race. Let y denote the response for subject i oni t

Ž . Žspending item t, where outcomes 1, 2, 3 represent increase, stay the
.same, decrease .

a. With constraint � s 0, the random-intercept model4

�logit P Y F j uŽ .i t i

s � q � q � G q � R q � R q u , j s 1, 2,j t g i r1 i1 r 2 2 i i

ˆ ˆ ˆhas � sy0.55, � sy0.60, � sy0.49, with � s 1.03. Theseˆ1 2 3
estimates are greater than five standard errors in absolute value.
Interpret.

b. Table 12.13 shows results with a race-by-item interaction. Inter-
pret.

TABLE 12.13 Results for Problem 12.15 a

Variable Estimate SE

Intercept-1 1.065 0.391
Intercept-2 1.919 0.051
Gender 0.409 0.088
Race1-w y0.055 0.397
Race2-b 0.434 0.452
Item1-envir y0.357 0.539
Item2-health y0.319 0.493
Item3-crime y0.585 0.480
Race1�Item1 y0.170 0.549
Race1�Item2 y0.387 0.503
Race1�Item3 0.197 0.491
Race2�Item1 y0.452 0.606
Race2�Item2 0.454 0.598
Race2�Item3 y0.518 0.560
a Ž . Ž .Coding 0 for item 4 education and race 3 other .

12.16 Refer to Problem 11.12 for Table 8.19 on government spending.
Analyze these data using a cumulative logit model with random
effects. Interpret. Compare results to those with a marginal model
Ž .Problem 11.12 .

12.17 For the insomnia example in Section 12.4.2, according to SAS the
maximized log likelihood equals y593.0, compared to y621.0 for the
simpler model forcing � s 0. Compare models, using either a likeli-
hood-ratio test or AIC. What do you conclude?
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TABLE 12.14 Results for Problem 12.18

Observer Random
Effect GEE Effects

Ž . Ž .A y0.451 0.108 y1.201 0.300
Ž . Ž .B y0.391 0.093 y0.919 0.299
Ž . Ž .C 0.319 0.118 0.558 0.301
Ž . Ž .D 0.632 0.105 1.545 0.313
Ž . Ž .E y0.491 0.098 y1.379 0.300
Ž . Ž .F 1.252 0.161 2.907 0.344

Ž .12.18 Landis and Koch 1977 showed ratings by seven pathologists who
separately classified 118 slides regarding the presence and extent of
carcinoma of the uterine cervix, using a five-point ordinal scale.
ŽTable 13.1 is a collapsing of their table that combines the first two

.categories and the last three categories. For slide i with rater t,
Table 12.14 shows results of fitting model

�logit P Y F j u s u q � q �Ž .i t i i j t

ˆŽ . � 4to the ordinal table with � s 0 , assuming that the u are inde-G i
Ž 2 .pendent N 0, � . It also shows GEE estimates, using independence

working equations, for the corresponding marginal model. Interpret
�̂ for each model. Explain why estimates using the random effectsF
model, for which � s 3.8, tend to be much larger in absolute value.ˆ
Discuss the differences in assumptions and interpretations for the two
models.

12.19 Refer to Section 12.5.1 on boys’ attitudes toward the leading crowd.
Table 12.15 shows results for a sample of schoolgirls. Fit model
Ž .12.16 and interpret. Summarize the estimated variability and corre-
lation of random effects.

TABLE 12.15 Data for Problem 12.19
aŽ .M, A for Second InterviewŽ .M, A for

Ž . Ž . Ž . Ž .First Interview Yes, Positive Yes, Negative No, Positive No, Negative

Yes, positive 484 93 107 32
Yes, negative 112 110 30 46
No, positive 129 40 768 321
No, negative 74 75 303 536
aM, membership; A, attitude.

ŽSource: J. S. Coleman, Introduction to Mathematical Sociology London: Free Press of Glencoe,
.1964 , p. 168.
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Ž .12.20 Generalize model 12.16 to apply simultaneously to Tables 12.8 and
12.15, using a gender main effect but the same membership effect
and the same attitude effect for each gender. Fit the model. Use the
maximized log likelihood to compare with a more general model
having different membership effects and different attitude effects for
each gender. Interpret.

12.21 Table 12.16 reports results from a study to estimate the number N of
people infected during a 1995 hepatitis A outbreak in Taiwan. The
271 observed cases were reported from records based on a serum test

Ž .taken by the Institute of Preventive Medicine of Taiwan P , records
Ž .reported by the National Quarantine Service Q , and records based

Ž .on questionnaires administered by epidemiologists E . Estimating N
is difficult, because many subjects had only one capture.

ˆ Ž . Ž . Ž .a. Find N if you observed only i P and Q, ii P and E, iii Q and
E.

ˆb. Find N using the model of mutual independence with P, Q, and E.
c. Find a 95% profile likelihood interval for N using the model in

Ž .part b .
d. The random effects model of Section 12.3.6 has fit shown in Table

12.16, for which � s 2.9. The log-likelihood is relatively flat, andˆ
ˆ Ž . ŽN s 4551 with a 95% profile likelihood interval of 758, � Coull

.and Agresti 1999 . Explain why this model may provide imprecise
Ž .estimates of N. Since the interval in part c is much narrower, is it

necessarily more reliable?

TABLE 12.16 Data for Problem 12.21

Observed Logistic-Normal
P Q E Count ML Fit

Ž .0 0 0  487, �
0 0 1 63 61.0
0 1 0 55 58.0
0 1 1 18 17.0
1 0 0 69 68.0
1 0 1 17 20.0
1 1 0 21 19.0
1 1 1 28 28.0

Ž .Source: Data from Chao et al. 2001 .

12.22 Analyze the crossover data of Table 11.1 using a random effects
approach. Interpret, and compare results to those in Section 11.1.2.



RANDOM EFFECTS: GENERALIZED LINEAR MIXED MODELS534

12.23 The analyses in Section 12.3.2 comparing opinions on some topic
extend to ordinal responses. Using an ordinal random effects model,

3 Ž .analyze the 4 table in Agresti 1993 , found also at the book’s Web
site, www. stat.ufl.edur� aarcdarcda.html.

12.24 The analyses in Section 12.3.4 describing heterogeneity in multicenter
clinical trials extend to ordinal responses. Using random effects

Ž .models, analyze the 2 � 3 � 8 table in Hartzel et al. 2001a .

12.25 You are a statistical consultant asked to analyze Table 4 in B. Efron,
Ž .Statistical Science 13: 95	122 1998 , which shows 2 � 2 tables from a

clinical trial in 41 cities. Analyze, and write a report summarizing
your analysis.

12.26 Analyze Table 11.9 with age and maternal smoking as predictors
Ž . Ž . Ž .using a a logistic-normal model, b marginal model, and c transi-

tional model. Explain how the interpretation of the maternal smoking
effect differs for the three approaches.

Theory and Methods

12.27 Refer to Section 12.3.1. Using supplementary information improves
predictions. Let q denote the true proportion of votes for Clinton ini
state i in the 1992 election, conditional on voting for him or Bush.
Consider the model

�logit P Y s 1 u s logit q q � q u ,Ž .Ž .i t i i i

� 4 � 4 Ž 2 .where q are known and u are independent N 0,� . Wheni i
Ž . w Ž .x � 4� s 0, show � s q exp � r 1 y q q q exp � . Compared to q ,ˆ ˆ ˆ ˆi i i i i

explain how � then shifts up or down depending on how the overallˆ i
Democratic vote compares in the current poll to the previous election
Ž .i.e., depending on � . When also � s 0, show � s q .ˆ ˆ ˆ i i

12.28 For a binary response, consider the random effects model

�logit P Y s 1 u s � q � q u , t s 1, . . . , T ,Ž .i t i t i

� 4 Ž 2 .where u are independent N 0, � , and the marginal modeli

logit P Y s 1 s � q � * , t s 1, . . . , T .Ž .t t

For identifiability, � s � * s 0. Explain why all � s 0 implies thatT T t
all � * s 0. Is the converse true?t
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12.29 The GLMM for binary data using probit link function is

� �y1 �
 P Y s 1 u s x � q z u ,Ž .i t i i t i t i

Ž . Ž . Ž .where 
 is the N 0, 1 cdf and u has N 0, � pdf, f u ; � .i i

a. Show that the marginal mean is

P Y s 1 s P Z y z� u F x� � f u ; � du ,Ž . Ž . Ž .Ht i t i i t i i

where Z is a standard normal variate that is independent of u .i
� Ž � .b. Since Z y z u has a N 0, 1 q z �z distribution, deduce thati t i i t i t

y1r2� �y1 w x
 P Y s 1 s x � 1 q z �z .Ž .t i t i t i t

Hence, the marginal model is a probit model with attenuated
effect. In the univariate random intercept case, show the marginal

2'effect equals that from the GLMM divided by 1 q � .

w Ž .x12.30 In the Rasch model, logit P Y s 1 s � q � , � is a fixed effect.i t i t i

a. Assuming independence of responses for different subjects and for
different observations on the same subject, show that the log
likelihood is

� y q � y y log 1 q exp � q � .Ž .Ý Ý Ý Ý ÝÝi i t t i t i t
i t i t i t

Ž .b. Show that the likelihood equations are y sÝ P Y s 1 andqt i i t
Ž .y sÝ P Y s 1 for all i and t. Explain why conditioning oniq t i t

� 4 � 4y yields a distribution that does not depend on � .iq i

c. Discuss advantages and disadvantages of, instead, treating � asi
random.

Ž .12.31 Consider the matched-pairs random effects model 12.3 . For given
� , let � be such that � s n q � and � s n y � satisfiesˆ ˆ0 0 12 12 0 21 21 0

Ž . � 4log � r� s � . Suppose � has nonnegative log odds ratio.ˆ ˆ ˆ21 12 0 i j
Explain why:
a. This is the fit of the model assuming � s � .0

b. The likelihood-ratio statistic for testing H : � s � in this model0 0
equals

n n12 21
2 n log q n log .12 21ž /n q � n y �12 0 21 0

c. The likelihood-ratio test of H : � s 0 is the test of symmetry.0
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12.32 Explain why the logistic-normal model is not helpful for capture	
recapture experiments with only two captures.

12.33 Refer to the crossover study in Problem 12.7. Kenward and Jones
Ž . Ž1991 reported results using the ordinal response scale none, moder-

.ate, complete for relief. Explain how to formulate an ordinal logit
Ž .random effects model for these data analogous to model 12.19 .

12.34 Formulate a model using adjacent-categories logits that is analogous
Ž .to model 12.14 for cumulative logits. Interpret parameters.

� 4 Ž .12.35 For ordinal square I � I tables of counts n , model 12.3 forab
Ž .binary matched-pairs responses Y , Y for subject i extends toi1 i2

�logit P Y F j u s � q � x q uŽ .i t i j t i

� 4 Ž 2 .with u independent N 0, � variates and x s 0 and x s 1.i 1 2

a. Explain how to interpret � , and compare to the interpretation of
Ž .� in the corresponding marginal model 10.14 .

Ž .b. This model implies model 12.3 for each 2 � 2 collapsing that
combines categories 1 through j for one outcome and categories
j q 1 through I for the other. Use the form of the conditional ML
Ž .or random effects ML estimator for binary matched pairs to
explain why

log n nÝ Ý Ý Ýab abž / ž /
a�j b�j a�j b�j

is a consistent estimator of �.
Ž .c. Treat these I y 1 collapsed 2 � 2 tables naively as if they are

independent samples. Show that adding the numerators and adding
the denominators of the separate estimates of e � motivates the
summary estimator of � ,

�̃ s log a y b n b y a n .Ž . Ž .Ý Ýab ab½ 5
a�b b�a

˜Explain why � is consistent for � even recognizing the actual
dependence.

˜ Ž .d. A standard error for � that treats the collapsed tables in part c
� 4as independent is inappropriate. Treating n as a multinomialab

˜ Žsample, show that an estimated asymptotic variance of � is Agresti



PROBLEMS 537

.and Lang 1993a

2
2b y a n b y a nŽ . Ž .Ý Ýab ab½ 5

b�a b�a

2
2q a y b n a y b n .Ž . Ž .Ý Ýab ab½ 5

a�b a�b

12.36 Summarize advantages and disadvantages of using a GLMM ap-
proach compared to a marginal model approach. Describe conditions

Ž .under which parameter estimators are consistent for a marginal
Ž . Ž .models using GEE, b marginal models using ML, c GLMM using

Ž .PQL, and d GLMM using ML.



C H A P T E R 1 3

Other Mixture Models for
Categorical Data*

In Chapters 10 through 12 we introduced ways of handling correlated
observations due to repeated measurement and other forms of clustering.

Ž .The generalized linear mixed models GLMMs of Chapter 12 assume
normal random effects. They describe heterogeneity by replacing the linear
predictor by a normally distributed mixture of linear predictors. In this
chapter we present additional models having connections with GLMMs.
Except for one case, these models use nonnormal mixture distributions.

In Section 13.1 we present latent class models. These treat a contingency
table as a mixture of unobserved tables at categories of a qualitative latent
Ž .unobserved variable. In Section 13.2 we discuss a related nonparametric
approach to fitting GLMMs that uses an unspecified discrete quantitative
distribution for the random effects distribution.

In Section 13.3 we model clustered binomial responses using the beta
distribution to describe heterogeneity of binomial parameters. The resulting
beta-binomial distribution has variance function for which quasi-likelihood
methods are also available. In Section 13.4 we model count responses using
the gamma distribution to describe heterogeneity of Poisson parameters. The
resulting negative binomial regression model corresponds to a Poisson GLMM
having a log-gamma distributed random effect. It is an alternative to the
GLMM for Poisson responses with normal random effects, a model discussed
in Section 13.5.

13.1 LATENT CLASS MODELS

GLMMs create a mixture of linear predictor values using a latent variable,
the unobserved random effect vector, having a normal distribution. By
contrast, latent class models use a mixture distribution that is qualitative
rather than quantitative. The basic model assumes existence of a latent

538
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FIGURE 13.1 Association graph for latent class model.

categorical variable such that the observed response variables are condition-
ally independent, given that variable.

Ž .For categorical response variables Y , Y , . . . , Y , the latent class model1 2 T
assumes a latent categorical variable Z such that for each possible sequence

Ž .of response outcomes y , . . . , y and each category z of Z,1 T

� � �P Y s y , . . . , Y s y Z s z s P Y s y Z s z ��� P Y s y Z s z .Ž . Ž . Ž .1 1 T T 1 1 T T

Figure 13.1 shows the association graph for the model. A latent class model
Ž .summarizes probabilities of classification P Z s z in the latent classes as

Ž � .well as conditional probabilities P Y s y Z s z of outcomes for each Yt t t
within each latent class. These are the model parameters. More generally,
the latent variable Z can be multivariate. The model is an analog for
categorical responses and latent variables of the factor analysis model for
multivariate normal responses.

The latent class model is sometimes plausible when the observed variables
are several indicators of some concept, such as prejudice, religiosity, or
opinion about an issue. An example is Table 10.13, in which subjects gave
their opinions about whether abortion should be legal in various situations.
Perhaps an underlying latent variable describes one’s basic attitude toward
legalized abortion, such that given the value of that latent variable, responses
on the observed variables are conditionally independent. For instance, the
latent variable may be a qualitative variable with three categories: One class
for those who always oppose legalized abortion regardless of the situation,
one for those who always favor it, and one for those whose response depends
on the situation.

Ž .The T-dimensional contingency table cross classifying Y , . . . , Y is ob-1 T
Ž .served. The T q 1 -dimensional table that cross-classifies it with the latent

variable is an unobserved table. Denote the number of categories of each Yt
by I and the number of latent classes of Z by q. For the observed table, let

Ž .� s P Y s y , . . . , Y s y . The model assumes a multinomial distri-y , . . . , y 1 1 T T1 T

bution over its I T cells. For a given cell,

q

�� s P Y s y , . . . , Y s y Z s z P Z s z .Ž .Ž .Ýy , . . . , y 1 1 T T1 T
zs1
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The conditional independence factorization for the latent class model states
that

q T

�� s P Y s y Z s z P Z s z . 13.1Ž . Ž .Ž .Ý Ły , . . . , y t t1 T
ts1zs1

This is a nonlinear model for the I T multinomial probabilities.

13.1.1 Fitting Latent Class Models

� 4 TDenote the counts in the observed table by n . Summing over the Iy , . . . , y1 T

cells in that table, the kernel of the multinomial log likelihood is

n log � . 13.2Ž .Ý y , . . . , y y , . . . , y1 T 1 T

Ž . Ž .Substituting parameters from 13.1 , one can maximize 13.2 with respect to
Ž .those parameters using Newton�Raphson Haberman 1979, Chap. 10 or the

Ž .EM algorithm Goodman 1974 . It is helpful to note that the latent class
Ž .model states that the loglinear model symbolized by Y Z, Y Z, . . . , Y Z1 2 T

holds for the unobserved table. The model makes no assumption about the
� 4 � 4Y Z associations but assumes that the Y are mutually independent withint t
each category of Z.

Ž .The EM algorithm has two steps in each iteration. The E expectation
� Ž s. 4step in iteration s calculates pseudo-counts n for the unob-y , . . . , y , z1 T

� 4served table using n and a working conditional distribution fory , . . . , y1 T
Ž � . Ž .Z Y , . . . , Y described shortly. The M maximization step treats1 T
� Ž s. 4n as data and applies an algorithm such as iterative reweightedy , . . . , y , z1 T

Žleast squares or IPF for fitting the model i.e., the loglinear model
Ž .. � Ž s. 4Y Z, Y Z, . . . , Y Z . The fit � of that model in the unob-1 2 T y , . . . , . . . , y , z1 T

served table then determines the new working conditional distribution of
Ž � . � 4Z Y , . . . , Y to apply to n for the E-step of the next iteration.1 T y , . . . , y1 T

This allocates the observed data to pseudo-counts in the unobserved cells in
proportion to this fit, using

�Ž s.
y , . . . , y , z1 TŽ sq1.n s n .qy , . . . , y , z y , . . . , y1 T 1 T

Ž s.�Ý y , . . . , y , k1 T
ks1

Ž .These are entries in the unobserved table for iteration s q 1 . They are used
Ž .as pseudo-data for the M-step of iteration s q 1 .

Eventually, the algorithm converges to fitted values for the unobserved
table that provide fitted probabilities that satisfy mutual independence within
each latent class, and such that the corresponding fitted probabilities in the

Ž .observed table i.e., added over the latent categories maximize the likelihood
Ž .13.2 . The fitted probabilities in the unobserved table are an estimated joint
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Ž .distribution for Y , . . . , Y , Z . One can use them to calculate the ML1 T
� Ž � .4estimates of the latent class model parameters P Y s y Z s z andt t

� Ž .4P Z s z .
The EM algorithm is computationally simple and relatively stable. Each

iteration increases the likelihood. However, its convergence can be slow. See
Ž .Laird 1998 for a review. The log likelihood for a latent class model may

have local maxima. Thus, with either the Newton�Raphson or EM algorithm,
it is advisable to perform the fitting process a few times with different
starting guesses for the parameter values. The EM algorithm tends to be less
sensitive to the choice of starting values. Thus, some software begins with the
EM algorithm and then switches to the Newton�Raphson algorithm as it
approaches the ML estimates to speed the process. As q increases, multiple
local maxima are more likely and the danger increases of a lack of identifia-
bility.

Standard errors for model parameter estimates result from inverting the
model’s estimated information matrix. This is a by-product of the
Newton�Raphson algorithm but not the EM algorithm. One way to obtain

Ž .standard errors with it applies a useful formula of Louis 1982 for the
observed information when using the EM algorithm. It equals the expected
value of the observed information for the loglinear model for the unobserved
table minus the expected value of the information for the conditional

Ž . Ž .distribution of Z given the observed data. Baker 1992 and Lang 1992 gave
related results.

Chi-squared statistics comparing observed cell counts to fitted values test
T Ž .the model fit. The residual df s I y qT I y 1 y q. This follows since

Ž . Tmultinomial model 13.1 describes I y 1 multinomial probabilities using
Ž . � Ž � . 4I y 1 parameters P Y s y Z s z , y s 1, . . . , I y 1 at each of qT com-t t t

� Ž .4binations of z and t, and q y 1 parameters P Z s z . Often, the nature of
Ž .the variables suggests a value for q, usually quite small 2 to 4 . Otherwise,

the usual procedure starts with q s 2; if the fit is inadequate, it increases by
steps of 1 as long as the fit shows substantive improvement. Specialized

Ž .software exists for such models Appendix A .

13.1.2 Latent Class Model for Rater Agreement

Table 13.1 is an expanded data set of the example in Section 10.5. Seven
pathologists classified each of 118 slides on the presence or absence of
carcinoma in the uterine cervix. For modeling interobserver agreement, the
conditional independence assumption of the latent class model is often
plausible. With a blind rating scheme, ratings of a given subject or unit by
different pathologists are independent. If subjects having true rating in a
given category are relatively homogeneous, then ratings by different patholo-
gists may be nearly independent within a given true rating class. Thus, one
might posit a latent class model with q s 2 classes, one for subjects whose
true rating is positive and one for subjects whose true rating is negative. This
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TABLE 13.1 Diagnoses of Carcinoma and Fits of Latent Class Modelsa

Pathologist Fit

A B C D E F G Count q s 1 q s 2 q s 3

0 0 0 0 0 0 0 34 1.1 23.0 33.8
0 0 0 0 1 0 0 2 1.6 6.6 2.0
0 1 0 0 0 0 0 6 2.2 12.7 6.3
0 1 0 0 0 0 1 1 2.8 1.7 1.5
0 1 0 0 1 0 0 4 3.3 3.6 3.0
0 1 0 0 1 0 1 5 4.2 0.5 4.7
1 0 0 0 0 0 0 2 1.4 3.0 2.1
1 0 1 0 1 0 1 1 1.6 0.2 0.2
1 1 0 0 0 0 0 2 2.8 1.7 1.3
1 1 0 0 0 0 1 1 3.5 0.3 1.6
1 1 0 0 1 0 0 2 4.2 0.5 2.9
1 1 0 0 1 0 1 7 5.3 3.7 6.5
1 1 0 0 1 1 1 1 1.4 2.6 1.4
1 1 0 1 0 0 1 1 1.3 0.1 0.1
1 1 0 1 1 0 1 2 2.0 4.3 2.6
1 1 0 1 1 1 1 3 0.5 3.1 2.0
1 1 1 0 1 0 1 13 3.3 11.5 9.6
1 1 1 0 1 1 1 5 0.9 8.4 8.7
1 1 1 1 1 0 1 10 1.2 13.5 13.6
1 1 1 1 1 1 1 16 0.3 9.9 12.3

a Ž .Fits obtained with Latent Gold Statistical Innovations, Belmont MA . 1, yes; 0, no.
Ž .Source: Based on data in Landis and Koch 1977 , not showing empty cells.

model expresses the 27 joint distribution of the seven ratings as a mixture of
two 27 distributions, one for each true rating class.

ŽTable 13.2 shows results of fitting some latent class models including a
.mixture model studied in Section 13.2.4 . Because the observed table is

sparse, the deviance is mainly useful for comparing models. This is an
informal comparison, though, since the chi-squared distribution does not
apply for comparing deviances of models with different numbers of latent
classes. A model with q classes is a special case of a model with q* � q

Ž .classes in which P Z s z s 0 for z � q and hence falls on the boundary of
the parameter space. Ordinary chi-squared likelihood-ratio tests require

Ž Ž .parameters to fall in the interior of the parameter space i.e., 0 � P Z s z
.� 1 for z s 1, . . . , q* .

Table 13.1 also shows the fitted values for latent class models with
Žq s 1, 2, 3, for the cells having positive counts. Each empty cell also has a

.fitted value, not shown here . The model with q s 1 latent class is the model
of mutual independence of the seven ratings. Equivalently, it is the loglinear

Ž .model Y , Y , . . . , Y . It fits poorly, as one would expect. With q s 2,1 2 7
considerable evidence remains of lack of fit. For instance, the fitted count for
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TABLE 13.2 Likelihood-Ratio Statistics for Latent Class Models
aFitted to Table 13.1

2Ž .Number of Deviance G
Latent Classes Model Statistic df

1 Mutual independence 476.8 120
2 Latent class 62.4 112

Rasch mixture 67.6 118
3 Latent class 15.3 104

Rasch mixture 27.5 116
4 Latent class 6.4 96

Ž .Rasch mixture quasi-symmetry 23.7 114
a Ž .Models fitted with Latent Gold Statistical Innovations, Belmont, MA .

a negative rating by each pathologist is 23.0, compared to an observed count
Ž 2of 34. The small G that Table 13.2 reports for this model does not imply a

good fit; in Section 9.8.4 we noted that G2 tends to be highly conservative
.when most fitted values are very close to 0. The model with q s 3 seems to

fit adequately.
Ž � .Studying the estimated probability P Y s 1 Z s z of a carcinoma diag-t

nosis for each pathologist, conditional on a given latent class z, helps
illuminate the nature of these classes. Table 13.3 reports these for the

Ž .three-class model. They suggest that 1 the first latent class refers to cases
Ž . Ž .that all pathologists except occasionally B agree show no carcinoma; 2 the

third latent class refers to cases in which A, B, E, and G agree show
Ž .carcinoma and C and D usually agree; and 3 the second latent class refers

to cases of strong disagreement, whereby C, D, and F rarely diagnose
carcinoma but B, E, and G usually do. The estimated proportions in the

ˆ ˆ ˆŽ . Ž . Ž .three latent classes are P Z s 1 s 0.37, P Z s 2 s 0.18, and P Z s 3 s
0.45. The model estimates that 18% of the cases fall in the problematic class.

TABLE 13.3 Estimated Probabilities of Diagnosing Carcinoma, for
aLatent Class Model and Rasch Mixture Model with Three Classes

PathologistLatent
Model Class A B C D E F G

Latent 1 0.057 0.138 0.000 0.000 0.055 0.000 0.000
Class 2 0.513 1.00 0.000 0.058 0.751 0.000 0.631

3 1.000 0.981 0.858 0.586 1.000 0.476 1.000

Rasch 1 0.022 0.150 0.001 0.000 0.047 0.000 0.022
Mixture 2 0.611 0.923 0.052 0.015 0.774 0.009 0.611

3 0.994 0.999 0.853 0.617 0.997 0.483 0.994
a Ž .Results obtained with Latent Gold Statistical Innovations, Belmont, MA .
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A danger with latent variable models, shared by factor analysis for contin-
uous responses, is the temptation to interpret latent variables too literally. In

Ž .this example it is tempting to treat latent class 1 latent class 3 as cases truly
Ž .without carcinoma with carcinoma . Thus, it is tempting to treat a rating of

Ž .no carcinoma a rating of carcinoma given that the subject falls in latent
Ž .class 1 latent level 3 as necessarily being a correct judgment. One should

realize the tentative nature of the latent variable. Be careful not to make the
error of reification�treating an abstract construction as if it has actual

Ž .existence Gould 1981 .
Using model parameter estimates and Bayes’ theorem, one can also

Ž � . Ž � .estimate P Z s z Y s y and P Z s z Y s y , . . . , Y s y . If a patholo-t t 1 1 T T
gist makes a ‘‘yes’’ rating, for instance, what is the estimated probability that
the subject is in the latent class for which agreement on a positive rating
usually occurs? We perform further analysis in Section 13.2.5 after studying a
simpler model.

Ž . Ž .Espeland and Handelman 1989 , Uebersax 1993 , Uebersax and Grove
Ž . Ž .1990, 1993 , and Yang and Becker 1997 presented various latent variable
models for rater agreement and diagnostic accuracy. One could also use
methods of Chapters 11 and 12, such as a model with a continuous rather
than qualitative latent variable. A logistic-normal random intercept model,

Ž .for instance, yields subject-specific comparisons of P Y s 1 for various t.t

13.1.3 Latent Class Models for Capture–Recapture

We next apply latent class models to capture�recapture modeling for esti-
mating population size. In Section 12.3.6 a logistic-normal GLMM was used
for this. With T sampling occasions, a 2T contingency table displays the data,

Ž .with scale captured, not captured at each occasion. A prediction of the
population size equals the prediction for the missing cell count, representing
subjects not captured at every occasion, added to the counts in other cells.

With two classes, the latent class model treats the population as a mixture
of two types, perhaps determined by genetic or environmental factors.
Homogeneity of capture probabilities occurs for subjects within each type,
but the type of any given subject is unknown. This model represents
a compromise between the mutual independence model, which assumes a
single latent class and complete homogeneity, and the logistic-normal GLMM,
which assumes a continuous mixture of capture probabilities rather than two
classes.

We illustrate with the T s 6-capture data set on snowshoe hares in Table
ˆ12.6. The model of mutual independence predicts that N s 75. Its 95%

Ž .profile-likelihood confidence interval for N is 70, 83 . The latent class model
ˆwith two classes has N s 85 and a profile-likelihood confidence interval of

Ž .74, 106 . The latent class model with three classes gives similar results. Since
Ž .the logistic-normal GLMM in Section 12.3.6 gave the interval 75, 154 , these

seem too short to be trusted. This simple latent class model may not capture
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all the existing heterogeneity. It is more plausible to assume a continuous
latent variable than a discrete one with a couple of classes. We’ll analyze
these data further with related models in the next section.

13.2 NONPARAMETRIC RANDOM EFFECTS MODELS

In spite of its popularity and attractive features, the normality assumption for
random effects in ordinary GLMMs can rarely be closely checked. For

Ž .instance, in studying normal GLMMs, Verbeke and Lesaffre 1996 noted
that under a normality assumption for random effects, their predicted values
often appear normally distributed even when the true values are generated
from a highly nonnormal distribution. An obvious concern of this or any
parametric assumption for the random effects is possibly harmful effects of
misspecification. To check sensitivity to this assumption, one can fit GLMMs
using alternative or more general random effects assumptions.

13.2.1 Logit Models with Unspecified Random Effects Distribution

Ž .A nonparametric approach e.g., Aitkin 1999 guards against possibly harmful
misspecification effects. This uses an unspecified random effects distribution
on a finite set of mass points. The location of the mass points and their
probabilities are parameters. The number of mass points can be fixed. When
this number is itself unknown, one treats it as fixed in the estimation process
but increases it sequentially until the likelihood is maximized. The maximiza-
tion usually requires relatively few mass points. Even allowing a continuous
mixture distribution, the nonparametric estimate of that distribution takes a

Ž .finite number of points e.g., Lindsay et al. 1991 . In fact, fitting a model
having only two mass points often results in fixed effects estimates quite
similar to those with the full maximization. This approach is useful primarily
when the random effects distribution is not itself of direct interest, since the
nonparametric estimate of that distribution tends to be poor even for very
large samples.

Model fitting is actually simpler than for models with normal random
effects, since the integral that determines the likelihood function simplifies to
a finite sum. In Section 13.2.4 we discuss this point with a Rasch-type model.

Ž .Specialized software can fit nonparametric mixture models Appendix A .
However, this approach also has disadvantages. For instance, with multivari-
ate random effects it cannot provide simple correlation structure as the
normal can. Standard inference does not apply for comparing models
with different numbers of mass points, since one model is on the boundary of
the parameter space compared to the other. Also, the ML estimate of the
random effects distribution often places some weight at ��. Although
this can be useful with binary data for identifying a subsample for which the
estimated response probability equals 1 or equals 0 for all observations in a
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cluster, it is not then possible to describe heterogeneity with an estimated
variance component.

To illustrate this approach, we reanalyze Table 10.13 on attitudes about
legalized abortion. In Section 12.3.2 we fitted the logistic-normal model
Ž .12.10 ,

�logit P Y s 1 u s u q � q � x , 13.3Ž .Ž .i t i i t

� 4with x s gender and parameters � representing three conditions undert
which abortion might be legal. Treating u instead nonparametrically, thei
likelihood maximizes with a two-point mixture distribution. Estimated abor-

ˆ ˆ ˆ ˆŽ . Žtion item effects are � y � s 0.83 SE s 0.16 , � y � s 0.30 SE s1 3 2 3
ˆ ˆ. Ž .0.16 , and � y � s 0.52 SE s 0.16 . Results are similar to those that1 2

Ž .Table 12.3 shows for the normal random effects approach Section 12.3.2 .

13.2.2 Nonparametric Mixing of Logistic Regression

Ž .Follman and Lambert 1989 presented an example with a prespecified
number of mass points. They analyzed the effect of the dosage of a poison on
the probability of death of a protozoan of a particular genus. Table 13.4
shows the data. They assumed two unobserved types of that genus.

Ž .Let � x denote the probability of death at log dose level x for genusi
type i, i s 1, 2. Let 	 denote the probability a protozoan belongs to genus
type 1. Their model specifies

� x s 	� x q 1 y 	 � x , where logit � x s 
 q � x ,Ž . Ž . Ž . Ž . Ž .1 2 i i

Ž .with unknown 	. The curve for � x is a weighted average of two curves
having the same shapes but different intercepts.

The ordinary logistic regression model is the special case 	 s 1. Its fit,
ˆw Ž .x Ž .logit � x sy68.4 q 42.1 x with SE s 3.8 for � s 42.1 , is poor, withˆ

2 Ž .deviance G s 24.7 df s 6 . The fit of the mixture model is

� x s 0.34� x q 0.66� x ,Ž . Ž . Ž .ˆ ˆ ˆ1 2

with

logit � x sy196.2 q 124.8 x , logit � x sy205.7 q 124.8 x ,Ž . Ž .ˆ ˆ1 2

TABLE 13.4 Number of Protozoa Exposed to Poison Dose and Number That Died

Poison Poison
Dose Exposed Dead Dose Exposed Dead

4.7 55 0 5.1 53 22
4.8 49 8 5.2 53 37
4.9 60 18 5.3 51 47
5.0 55 18 5.4 50 50

Ž .Source: Follman and Lambert 1989 . Reprinted with permission from the Journal of the
American Statistical Association.
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wFIGURE 13.2 Fit of binary mixture of logistic regressions to Table 13.4 model fitted using
Ž .xLatent Gold Statistical Innovations, Belmont, MA .

ˆand SE s 25.2 for � s 124.8. Figure 13.2 shows the fit. This is much better,
2 Ž .with G s 3.4 df s 4 ; that is, double the maximized log-likelihood in-

creases by 24.7 y 3.4 s 21.3 by adding two parameters: an additional inter-
cept and the probability for the mixture. Follman and Lambert noted that
with eight dose levels, at most two mixture points are identifiable for this
model.

The ordinary GLMM assumes a normal mixture of logistic curves. It gives
a deviance reduction of only 1.7 compared to the ordinary logistic model with
	 s 1.

13.2.3 Is Misspecification a Serious Problem?

Is it worth the trouble to consider alternatives to the normality assumption
for random effects in GLMMs, whether they be parametric or nonparamet-
ric? Not much work exists on investigating misspecification effects. For
logistic random intercept models, different assumptions for the random
effects distribution often provide similar results for estimating the regression
effects. Choosing an incorrect random effects distribution does not tend to
bias estimators of those effects. The true distribution for the random effects
being skewed can result in some bias for the normal intercept estimator
Ž .Neuhaus et al. 1992 . The choice of random effects distribution also usually
has little impact on efficiency of estimation.

When the true random effects distribution is dramatically far from normal,
there can be some efficiency loss for the logistic-normal estimator. This can
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happen when the true distribution is a two-point mixture with large variance
component. B. Caffo and I studied this with various models, such as a simple
one-way random effects model. In cluster i, let y be a Bernoulli variatei t
satisfying

�logit P Y s 1 u s 
 q u , i s 1, . . . , n , t s 1, . . . , T , 13.4Ž .Ž .i t i i

Ž . 2where var u s � . Simulated samples from this model used various n, T ,i

 , and � , and various true distributions for u including normal, uniform,i
exponential, and binary. Usually, assuming normality does not hurt when the
true distribution is nonnormal. Also, using a nonparametric approach when
the true distribution is normal does not result in much efficiency loss
w Ž . xNeuhaus and Lesperance 1996 noted this for a related model. However,
when the true distribution is a two-point mixture, the normal approach loses

� Ž � .4efficiency in estimating � s P Y s 1 u as � and T increase. Fori i t i
example, when n s T s 30, 
 s 0, and the mixture has probability 0.5 at

Ž .each point, the expected value of � y � is 0.06, 0.05 for theˆ i i
Ž . Ž .normal, nonparametric approach when � s 0.5, 0.06, 0.02 when � s 1.0,

Ž .and 0.04, 0.01 when � s 2.0. Differences for estimating 
 are less dra-
matic.

Ž .The example from Follman and Lambert 1989 discussed in Section
13.2.2, which has a covariate but T s 1, illustrates the potential efficiency
loss with the logistic-normal GLMM. The two-point mixture model has
ˆ ˆ� s 124.8 with SE s 25.2, for which �rSE s 4.9. The normal mixture model

ˆ ˆhas � s 65.5 with SE s 19.5, for which �rSE s 3.4.
Our study suggested that the random effects distribution has to be rather

extremely nonnormal for the normal GLMM to suffer in bias or efficiency.
Ž . Ž .However, Heagerty and Zeger 2000 see also McCulloch 1997 noted that

other types of misspecification can be more crucial. Regarding bias, they
argued that sensitivity to the random effects assumption is greater for
estimating regression parameters in random effects models than estimating
their counterparts in corresponding marginal models. They illustrated this
with a model violation by which the variance of the random effects depends
on values of covariates. They concluded that between-cluster effects may be
more sensitive to correct specification of the random effects distribution than
within-cluster effects. This is an advantage of using marginal models for
between-cluster effects.

13.2.4 Rasch Mixture Model

From Section 12.1.4, for subject i with item t the Rasch model for a binary
response is

�logit P Y s 1 u s u q � , t s 1, . . . , T . 13.5Ž .Ž .i t i i t
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� 4 Ž .The GLMM treats u as normal random effects. Lindsay et al. 1991i
studied this model when u instead can assume only a finite number q ofi
values. Denote the distribution of the latent variable u , which is the same fori
all i, by

P U s a s 	 , k s 1, . . . , q ,Ž .k k

� 4 � 4for unknown a and 	 . For identifiability one can either place a con-k k
� 4straint on this distribution, such as Ý 	 a s 0, or on � . This model isk k k t

called a Rasch mixture model.
Like other random effects models, the Rasch mixture model is a latent

variable model. The random effect u is unobserved, and the T responses arei
assumed conditionally independent at each fixed u value. It differs from thei
ordinary latent class model for binary responses having q latent classes
Ž . Ž . Ž � .Section 13.1 , since it assumes structure 13.5 for P Y s 1 u whereasi t i

Ž . Ž � .latent class model 13.1 assumes no structure for P Y s y Z s z .t t
This model is simpler to fit than GLMMs with normal random effects

because the GLMM’s intractable integral that determines the likelihood
function is replaced by a finite sum. The marginal probability of a sequence

Ž .of responses y , . . . , y is1 T

q T exp y a q �Ž .t k t
� s 	 .Ý Ły , . . . , y k1 T 1 q exp a q �Ž .ts1 k tks1

Ž .Substituting this in the multinomial log likelihood 13.2 , ML estimation of
� 4 � 4a , 	 and � can proceed using Newton�Raphson or EM algorithms. Ask k t
q increases, the maximized likelihood increases and the fit improves. How-

Ž .ever, Lindsay et al. 1991 showed that with T items, the likelihood no longer
Ž . Tchanges once q s T q 1 r2. Then, the model gives the same fit to the 2

Ž .observed table as the quasi-symmetry model 10.33 . Thus, this simpler latent
class model has a symmetric conditional association structure among the

Ž .observed variables. Arminger et al. 2000 extended the Rasch mixture model
to incorporate covariates.

13.2.5 Modeling Rater Agreement

Ž .For the ratings of carcinoma by seven pathologists Table 13.1 , Table 13.2
Ž � .also summarizes the fit of Rasch mixture models. Here, P Y s 1 u ini t i

Ž .13.5 denotes the probability of a carcinoma diagnosis for pathologist t
Ž .evaluating slide i. With q s 3 i.e., u can take 3 values , it does not fiti

significantly more poorly than the latent class model. With T s 7 raters, the
Ž .discrete mixture can take at most T q 1 r2 s 4 points. The model with

q s 4 is equivalently the quasi-symmetry model. It does not seem to fit better
than with q s 3.
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FIGURE 13.3 Pathologist estimates for Rasch mixture model and results of 90% Bonferroni
simultaneous comparison.

ˆ� 4Figure 13.3 shows � for the Rasch mixture model with q s 3, settingt
ˆÝ � s 0. These describe variation among the pathologists’ response distribu-t t

tions at each latent level. For a given latent class, for instance, the estimated
Ž .odds of a carcinoma diagnosis for pathologist B are exp 3.52 y 1.48 s 7.7

times the estimated odds for pathologist A. Pathologist B tends to make a
carcinoma diagnosis most often, and D and F the least. The figure also shows
results of a 90% Bonferroni comparison of the 21 pairs of pathologists, based

ˆ ˆon standard errors of pairwise differences � y � .t s
For pathologist t, conditional on latent level k for a slide,

ˆ ˆexp a q � 1 q exp a q �ˆ ˆŽ . Ž .k t k t

estimates the probability of a carcinoma diagnosis. Table 13.3 reports these,
which use a sy5.25, a sy1.02, and a s 3.63. They are similar to theˆ ˆ ˆ1 2 3
estimates for the ordinary latent class model but a bit smoother, with fewer
estimates at the boundary. Again, at latent level 1 pathologists tend not to
diagnose carcinoma, at level 2 many disagreements occur, and at level 3
pathologists tend to diagnose carcinoma. The estimated latent class propor-
tions are 	 s 0.37, 	 s 0.19, and 	 s 0.43, with 19% of cases falling inˆ ˆ ˆ1 2 3
the problematic class.

Ž .Model 13.5 implies that the association between each Y and U has logt
Ž .odds ratio a y a for levels k and ll of U. For instance, in the third latentk ll

class the estimated odds that a pathologist diagnoses carcinoma are
w Ž .xexp 3.63 y y5.25 � 7000 times those in the first latent class. In terms of

the estimated probabilities in Table 13.3, using pathologist A this is
wŽ . Ž .x � 4exp 0.994r0.006 r 0.022r0.978 . The large a y a suggest strong associa-ˆ ˆk ll

tion between each pathologist’s rating and the latent variable. This induces
Žstrong association between pairs of pathologist ratings. The model-fitted

.odds ratios between pairs of raters vary between about 7 and 400. However,
ˆ� 4the quite varied � suggest that substantial marginal heterogeneity existst

among the seven ratings. This causes heterogeneity in pairwise levels of
agreement.

The mutual independence model is the special case of the Rasch mixture
model with q s 1; that is, 	 s 1. For Table 13.1 the Rasch mixture model1
with q s 3 has only four more parameters than the mutual independence
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Ž .model i.e., 	 and a , k s 1,2 . Yet it fits well and has simple interpreta-k k
Ž .tions. See Agresti and Lang 1993b for further details and a simpler model

that sets a y a s a y a .1 2 2 3

13.2.6 Other Models for Capture–Recapture

In Section 13.1.3 latent-class models were used for capture�recapture experi-
Ž .ments. Alternatively, one could use the Rasch mixture model. Model 13.5

ˆwith two classes gives N s 77 and a 95% profile-likelihood confidence
Ž .interval of 71, 87 . This seems too short to trust. It is more realistic to allow

Ž .a continuous distribution for capture probabilities. Model 13.5 treating ui
as normal rather than binary does this, and in Section 12.3.6 we used it for
these data.

So, which models might be used other than a parametric random effects
Ž .model? One possibility is a loglinear model Cormack 1989 . This is a

marginal model, applying to probabilities averaged over subjects. Let Yt
denote the binary capture variable for a randomly selected subject at occa-

Ž .sion t, with categories captured, not captured . The simplest model, denoted
Ž .by Y , Y , . . . , Y , assumes that capture events are mutually independent.1 2 T

Ž .This is equivalent to the logistic-normal model 13.5 with � s 0 and latent
Ž .class model 13.1 with q s 1. A more plausible model allows an association

between pairs of capture variables. This is equivalently the loglinear model
Ž .denoted Y Y , Y Y , . . . , Y Y . Alternatively, a model with Markov struc-1 2 1 3 Ty1 T

Ž .ture such as Y Y , Y Y , . . . , Y Y may be useful. Usually, insufficient1 2 2 3 Ty1 T
data exists to warrant using very complex loglinear models. For any such
model, its fit for the 2T y 1 observed cells projects to the remaining cell to
predict the number unobserved at every occasion.

A connection exists between nonparametric random effects and loglinear
Ž .approaches. In Section 13.2.7 we show that assuming model 13.5 but using a

nonparametric treatment of u implies a loglinear model of quasi-symmetrici
Ž .form for the marginal model. The quasi-symmetry model 10.33 itself is not

useful for this problem, because any count in the missing cell is consistent
with it. The model has an interaction parameter pertaining to that cell alone,
which results in a likelihood equation equating that cell count to its fitted
value. So, information in other cells does not help in the estimation of the
expected frequency in that cell. However, special cases of quasi-symmetry

Ž .are useful Darroch et al. 1993 . An example is the loglinear model with the
same association for each pair of occasions. Like the logistic-normal model,
this model of exchangeable association has only one more parameter than the
mutual independence model.

For the snowshoe hare data of Table 12.6, the model with exchangeable
ˆ Ž .two-factor association has N s 90.5 and a confidence interval of 75, 125 .
Ž .This interval and the one of 71, 87 for the Rasch mixture model with q s 2

Ž .are substantially narrower than the interval 75, 154 for the logistic-normal
ˆŽ .model Section 12.3.6 . In capture�recapture experiments, N and the confi-
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dence interval for N depend strongly on the choice of model. The problem is
inherently one of prediction. Estimating N requires extrapolating from the
observed numbers of subjects having 1, 2, . . . , T captures to the number of
subjects with 0 captures. Standard goodness-of-fit criteria are of limited help.
Two models can fit the data well, yet yield quite different estimates for the
unobserved count. For instance, for the snowshoe hare data, the loglinear
models of mutual independence and of two-factor association both fit the

Ž 2observed cells relatively well G s 58.3, df s 56 for mutual independence
2 ˆ.and G s 32.4, df s 41 for the two-factor model ; however, their N values

are 75 and 105.
Simpler models usually give narrower confidence intervals for N, through

the usual benefits of model parsimony. This is not necessarily good. A narrow
confidence interval for N is desirable, but not at the expense of severe
sacrifice in the actual confidence level. Intervals based on a possibly unrealis-
tic assumption of subject homogeneity may be overly optimistic. Simulations
suggest that actual coverage probabilities are often well below nominal levels
when even slight model misspecification occurs. Allowance for heterogeneity
among subjects results in wider intervals. Severe population heterogeneity
makes reaching useful conclusions difficult, as intervals can be very wide
Ž .Burnham and Overton 1978, Coull and Agresti 1999 .

13.2.7 Nonparametric Mixtures and Quasi-symmetry

Ž .A distribution-free approach for u with the Rasch form of model 13.5i
Žimplies the quasi-symmetry loglinear model marginally Darroch 1981; Tjur

.1982 . We now show this result, to which we alluded in Section 10.4.2.
Let Y denote the sequence of T responses for subject i. For possiblei

Ž .outcomes y s y , . . . , y , where each y s 1 or 0,1 T t

y 1yyt texp u q � 1Ž .i t
�P Y s y u sŽ . Łi i 1 q exp u q � 1 q exp u q �Ž . Ž .t i t i t

exp u Ý y qÝ y �Ž .i t t t t t
s .

Ł 1 q exp u q �Ž .t i t

Let F denote the cdf of u . The marginal probability of sequence y for ai
Ž .randomly selected subject is suppressing the subject label

exp u Ý yŽ .t t
�� s E P Y s y U s exp y � dF u .Ž .Ž . Ý Hy , . . . , y U t tž /1 T Ł 1 q exp u q �Ž .t tt

Ž .This probability contributes to the log likelihood, which is 13.2 for a
multinomial distribution over the 2T cells for possible y. Regardless of the
choice for F, the integral is complex. However, it depends on the data only
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through Ý y . A more general model replaces this integral by a separatet t
parameter for each value of Ý y . This model has formt t

log� s y � q � . 13.6Ž .Ýy , . . . , y t t y q ��� qy1 T 1 t
t

The final term represents a separate parameter at each value of Ý y .t t
Ž .The implied marginal model 13.6 has interaction term that is invariant to

a permutation of the response outcomes y, since each such permutation
yields the same sum, Ý y . Thus, it is the loglinear model of quasi-symmetryt t
Ž .10.33 . No matter what form F takes, the marginal model has the same main
effect structure, and it has an interaction term that is a special case of the

Ž . � 4one in 13.6 . Thus, one can consistently estimate � using the ordinary MLt
Ž .estimates for the loglinear model. In fact, Tjur 1982 showed that these

� 4estimates are also the conditional ML estimates, treating u as fixed effectsi
and conditioning on their sufficient statistics. The interaction parameters in

Ž .model 13.6 result from the dependence in responses among variables, due
� 4to heterogeneity in u .i

We illustrate for the opinions about legalized abortion analyzed in
Sections 10.7.2 and 12.3.2 and with a nonparametric random effects approach

Ž .in Section 13.2.1. For model 13.3 , estimated within-subject comparisons
� y � of items result from fitting a quasi-symmetric loglinear model. Lett s

Ž .� y , y , y denote the expected frequency for gender g making response yg 1 2 3 t
to item t, t s 1, 2, 3, where for item t, y s 1 for approval of legalizedt
abortion and 0 for disapproval. The loglinear model is

log � y , y , y s � y q � y q � y q � g q � . 13.7Ž . Ž .g 1 2 3 1 1 2 2 3 3 y qy qy1 2 3

For y q y q y s k, � refers to all cells in which subjects voiced1 2 3 k
approval for k of the three items, k s 0, 1, 2, 3. The ML fit, which has

2 ˆ ˆ ˆ ˆŽ .G s 10.2 with df s 9, yields � y � s 0.521 SE s 0.154 , � y � s 0.8281 2 1 3
ˆ ˆŽ . Ž .SE s 0.160 , and � y � s 0.307 SE s 0.161 . These are similar to the2 3

Ž .normal random effects estimates Table 12.3 and nonparametric random
effects estimates in Section 13.2.1. They also are the conditional ML esti-

Ž . � 4mates for model 13.3 , treating u as fixed. With this approach or condi-i
tional ML, however, one cannot estimate between-groups effects, such as the

Ž . w Ž .gender effect in model 13.7 . The � parameter in model 13.7 refers to
relative sample sizes of males and females and is not the same as the gender

Ž . xeffect in 13.3 .

13.3 BETA-BINOMIAL MODELS

The beta-binomial model is a parametric mixture model that is another
alternative to binary GLMMs with normal random effects. As with other
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mixture models that assume a binomial distribution at a fixed parameter
value, the marginal distribution permits more variation than the binomial.
Thus, a model using the beta-binomial is a way to handle overdispersion
occurring with ordinary binomial models.

13.3.1 Beta-Binomial Distribution

The beta-binomial distribution results from a beta distribution mixture of
Ž . Ž .binomials. Suppose that a given � , Y has a binomial distribution, bin n, � ,

Ž .and b � has a beta distribution.
The beta probability density function is

 
 q �Ž . �y1
y1f � ; 
 , � s � 1 y � , 0 F � F 1, 13.8Ž . Ž . Ž .
 
  �Ž . Ž .

Ž .with parameters 
 � 0 and � � 0, for the gamma function  � . Let



� s , � s 1r 
 q � .Ž .


 q �

The beta distribution for � has mean and variance

E � s � , var � s � 1 y � �r 1 q � .Ž . Ž . Ž . Ž .

When 
 and � exceed 1.0, the distribution is unimodal, with skew to the
right when 
 � � , skew to the left with 
 � � , and symmetry when 
 s �.
It simplifies to the uniform distribution when 
 s � s 1.

Marginally, averaging with respect to the beta distribution for � , Y has
the beta-binomial distribution. Its mass function is

B 
 q y , n q � y yŽ .n
p y ; 
 , � s , y s 0, 1, . . . , n.Ž . ž /y B 
, �Ž .

In terms of � and � , the beta-binomial mass function is

yy1 nyyy1Ł � q k� Ł 1 y � q k�Ž . Ž .n ks0 ks0
p y ; � , � s . 13.9Ž . Ž .ny1ž /y Ł 1 q k�Ž .ks0

It is easier to understand the nature of this distribution from its moments
than from its mass function. The first two moments are

E Y s n� , var Y s n� 1 y � 1 q n y 1 �r 1 q � .Ž . Ž . Ž . Ž . Ž .
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Ž .As � ™ 0 in the beta distribution, var � ™ 0 and that distribution converges
Ž . Ž .to a degenerate distribution at �. Then var Y ™ n� 1 y � and the beta-

Ž .binomial distribution converges to the bin n, � .

13.3.2 Models Using the Beta-Binomial Distribution

w Ž .xModels using the beta-binomial distribution permit � and hence E Y to
depend on explanatory variables. The simplest models let � be the same

w Ž .unknown constant for all observations. Prentice 1986 considered extensions
xwhere it could also depend on covariates. Like GLMs, models can use

various link functions, but the logit is most common. For observation i with
n trials, assuming that y has a beta-binomial distribution with index n andi i i

Ž .parameters � , � , the model links � to predictors byi i

logit � s 
 q �� x .Ž .i i

The beta-binomial is not in the natural exponential family, even for known
� . Articles using beta-binomial models have employed a variety of fitting

Ž . Ž .methods Note 13.4 . Crowder 1978 discussed the likelihood behavior for an
Ž .ANOVA-type model. Hinde and Demetrio 1998 obtained the ML fit by´

iterating between solving the likelihood equations for the regression parame-
ters �, for fixed � , and solving the likelihood equation for � for fixed �.

Ž .Each part can use Newton�Raphson. McCulloch and Searle 2001, p. 61
ˆ ˆŽ . Ž .showed the asymptotic covariance matrix of �, � and of 
, � forˆ ˆ

independent observations from a single beta-binomial distribution.
A related but simpler approach for overdispersed binary counts uses

quasi-likelihood with similar variance function as the beta-binomial. The
quasi-likelihood variance function is

® � s n � 1 y � 1 q n y 1 	 13.10Ž . Ž . Ž . Ž .i i i i i

� �with 	 F 1. Although motivated by the beta-binomial model, this variance
function results merely from assuming that � has a distribution withi

Ž . Ž .var � s 	� 1 y � . It also results from assuming a common correlation 	i i i
between each pair of the n individual binary random variables that sum to yi i
Ž .Altham 1978 . The ordinary binomial variance results when 	 s 0. Overdis-
persion occurs when 	 � 0.

Ž .For this quasi-likelihood approach, Williams 1982 gave an iterative
routine for estimating � and the overdispersion parameter 	. He let 	 beˆ
such that the resulting Pearson X 2 that sums the squared Pearson residuals
for this variance function equals the residual df for the model. This requires

Ž .an iterative two-step process of 1 solving the quasi-likelihood equations for
ˆŽ .� for a given 	, and then 2 using the updated �, solving for 	 in theˆ ˆ

2 ˆŽ .equation that equates X which depends on � and 	 to its df.ˆ
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An alternative quasi-likelihood approach uses the simpler variance func-
tion

® � s �n � 1 y � 13.11Ž . Ž . Ž .i i i i

introduced in Section 4.7.3. The ordinary binomial variance has � s 1.0 and
ˆoverdispersion has � � 1. With this approach, � is the same as its ML

ˆ 2 2estimate for the ordinary binomial model. Commonly, � s X rdf, where X
Ž .is the Pearson fit statistic for the binomial model Finney 1947 . The standard

errors for the overdispersion approach multiply those for the binomial model
ˆ1r2by � .

Ž .Liang and McCullagh 1993 showed several examples using these two
variance functions. A plot of the standardized residuals for the ordinary

� 4binomial model against the indices n can provide insight about which isi
more appropriate. When the residuals show an increasing trend in their
spread as n increases, the beta-binomial-type variance function may be morei
appropriate. This is because when the beta-binomial variance holds,
the residuals from an ordinary binomial model have denominator that is
progressively too small as n increases. The two quasi-likelihood approachesi

� 4are equivalent when n are identical. Only when the indices vary consider-i
Ž .ably might results differ much. Because the variance function ® � si

Ž . Ž .�n � 1 y � has a structural problem when n s 1 Problem 13.33 and hasi i i i
less direct motivation, we prefer quasi-likelihood with the beta-binomial
variance function.

13.3.3 Teratology Overdispersion Example Revisited

Refer back to Table 4.5 on results of a teratology experiment analyzed by
Ž . Ž .Liang and McCullagh 1993 and Moore and Tsiatis 1991 . Female rats on

iron-deficient diets were assigned to four groups. Group 1 was given only
placebo injections. The other groups were given injections of an iron supple-
ment according to various schedules. The rats were made pregnant and then
sacrificed after 3 weeks. For each fetus in each rat’s litter, the response was
whether the fetus was dead. Because of unmeasured covariates, it is natural
to permit the probability of death to vary from litter to litter within a
particular treatment group.

Let y denote the number dead out of the n fetuses in litter i. Let �i i i t
denote the probability of death for fetus t in litter i. First, suppose that y isi

Ž .a bin n ,� variate, withi i t

logit � s 
 q � z q � z q � z ,Ž .i t 2 2 i 3 3 i 4 4 i

where z s 1 if litter i is in group g and 0 otherwise. This model treats allg i
Ž .litters in a group g as having the same probability of death, exp 
 q � rg

w Ž .x1 q exp 
 q � , where � s 0. However, it has evidence of overdispersion,g 1
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TABLE 13.5 Estimates for Several Logit Models Fitted to Table 4.5
aType of Logit Model

Ž . Ž .Parameter Binomial ML QL 1 QL 2 GEE GLMM

Ž . Ž . Ž . Ž . Ž .Intercept 1.144 0.129 1.212 0.223 1.144 0.219 1.144 0.276 1.802 0.362
Ž . Ž . Ž . Ž . Ž .Group 2 y3.322 0.331 y3.370 0.563 y3.322 0.560 y3.322 0.440 y4.515 0.736
Ž . Ž . Ž . Ž . Ž .Group 3 y4.476 0.731 y4.585 1.303 y4.476 1.238 y4.476 0.610 y5.855 1.190
Ž . Ž . Ž . Ž . Ž .Group 4 y4.130 0.476 y4.250 0.848 y4.130 0.806 y4.130 0.576 y5.594 0.919

ˆOverdispersion None 	 s 0.192 � s 2.86 	 s 0.185 � s 1.53ˆ ˆ ˆ
a Ž .Binomial ML assumes no overdispersion, QL 1 is quasi-likelihood with beta-binomial-type

Ž . Ž . Žvariance, QL 2 is quasi-likelihood with inflated binomial variance; QL 2 and GEE indepen-
.dence working equations estimates are the same as binomial ML estimates. Values in parenthe-

ses are standard errors.

2 2 Ž .with X s 154.7 and G s 173.5 df s 54 . Table 13.5 shows ML estimates
and standard errors.

Table 13.5 also shows results for the two quasi-likelihood approaches.
Estimates and standard errors are qualitatively similar for each. For variance

Ž . Ž .function ® � s �n � 1 y � , the estimates equal the binomial MLi i i i
ˆ1r2 2 1r2Ž .estimates but standard errors are multiplied by � s X rdf s

'154.7r54 s 1.69. For the beta-binomial-type variance function, 	 s 0.192.ˆ
This fit treats the variance of Y asi

n � 1 y � 1 q 0.192 n y 1 .Ž . Ž .i i i i

This corresponds roughly to a doubling of the variance relative to the
binomial with a litter size of 6 and a tripling with n s 11. Even with thesei
adjustments for overdispersion, Table 13.5 shows that strong evidence re-
mains that the probability of death is substantially lower for each treatment
group than the placebo group.

Figure 13.4 plots the standardized Pearson residuals against litter size for
the binomial logit model. The apparent increase in their variability as litter
size increases suggests that the beta-binomial variance function is plausible.

Ž .The term 	 in that variance function corresponds to �r 1 q � in the
variance of the beta-binomial distribution. For that distribution or more
generally, 	 s 0.192 means that the probabilities of death for litters of aˆ
particular group have estimated standard deviation 0.192� 1 y � . This' Ž .i i
equals 0.22 when the mean is 0.5 and 0.13 when the mean is 0.1 or 0.9, which
is considerable heterogeneity. More generally, a model could let 	 vary by
treatment group or be different for the placebo group than the others. We
leave this to the reader.

For comparison, Table 13.5 also shows results with the GEE approach to
fitting the logit model, assuming an independence working correlation struc-
ture for observations within a litter. The estimates are the same as the ML
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FIGURE 13.4 Standardized Pearson residuals for binomial logit model fitted to Table 4.5.

estimates for the binomial logit model, but the empirical adjustment in-
creases the standard errors. Similar results occur with an exchangeable
working correlation structure. For it, the estimated within-litter correlation
between the binary responses is 0.185. This is comparable to the value of
0.192 that yields the quasi-likelihood results with beta-binomial variance
function. The GEE standard errors are somewhat different from those with
the quasi-likelihood approach. It may be that the sample size is insufficient
for the GEE sandwich adjustment, which tends to underestimate standard
errors unless the number of clusters is quite large. Or, this may simply reflect
the different variance function for the GEE approach.

Finally, Table 13.5 also shows results for the GLMM that adds a normal
random intercept u for litter i to the binomial logit model. Results are alsoi
similar in terms of significance of the treatment groups relative to placebo.
Estimated effects are larger for this logistic-normal model, since they are

Ž .subject-specific i.e., litter-specific rather than population-averaged.

13.3.4 Conjugate Mixture Models

The beta-binomial model is an example of a conjugate mixture model. These
are models for which the marginal distribution has closed form. The data
have a particular distribution, conditional on a parameter, and then the
parameter has its own distribution such that the marginal distribution has
closed form.
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Similarly, in Bayesian methods the conjugate prior distribution is a distri-
bution that when combined with the likelihood, gives a closed form for the
posterior distribution. For instance, for observations from a binomial distri-
bution with beta prior distribution for the binomial parameter, the posterior
distribution of that parameter is also beta. Conjugate models were the
primary method of conducting Bayesian analysis before the development of
computationally intensive methods, such as Markov chain Monte Carlo, for
evaluating the integral that determines the posterior distribution.

The beta-binomial conjugate mixture model applies with totals from
binary trials. In the next section we study a conjugate mixture model for
count data. It uses a gamma distribution to mix the Poisson parameter. A
disadvantage of the conjugate mixture approach is the lack of generality and
flexibility, requiring a different mixture distribution for each type of problem.
In addition, the extra variability need not enter on the same scale as the
ordinary predictors, and it can be difficult to have multivariate random

Ž .effects structure. Lee and Nelder 1996 discussed this approach and consid-
ered a variety of hierarchical models of GLMM form in which the random
effect need not be normal.

13.4 NEGATIVE BINOMIAL REGRESSION

The negative binomial is a conjugate mixture distribution for count data. It is
useful when overdispersion occurs with Poisson GLMs.

13.4.1 Negative Binomial as Gamma Mixture of Poisson Distributions

In Section 4.3.3 we noted that a severe limitation of Poisson models is that
the variance of Y must equal the mean. Hence, at a fixed mean the variance
cannot decrease as additional predictors enter the model. Count data often
show overdispersion, with the variance exceeding the mean. This might
happen, for instance, because some relevant explanatory variables are not in
the model. A mixture model is a flexible way to account for overdispersion.
At a fixed setting of the predictors used, given the mean the distribution of Y
is Poisson, but the mean itself varies according to some distribution.

Ž .Suppose that 1 given �, Y has a Poisson distribution with mean �, and
Ž . Ž .2 � has a gamma distribution, G k, � . The gamma probability density
function for � is

kkr�Ž .
ky1f �; k , � s exp yk�r� � , � G 0. 13.12Ž . Ž . Ž .

 kŽ .

This gamma distribution has

E � s � , var � s �2rk .Ž . Ž .
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The parameter k � 0 describes the shape. The density is skewed to the right,
but the degree of skewness decreases as k increases.

Marginally, the gamma mixture of the Poisson distributions yields the
negative binomial distribution for Y. Its probability mass function is

yk
 y q k k kŽ .

p y ; k , � s 1 y , y s 0, 1, 2, . . . .Ž . ž / ž / k  y q 1 � q k � q kŽ . Ž .
13.13Ž .

This negative binomial distribution has

E Y s � , var Y s � q �2rk .Ž . Ž .

The index ky1 is called the dispersion parameter. As ky1 ™ 0, the gamma
Ž .distribution has var � ™ 0 and it converges to a degenerate distribution at

Ž .�; similarly, the negative binomial distribution then has var Y ™ � and it
converges to the Poisson distribution with mean �.

For given ky1, the negative binomial is in the natural exponential family.
w Ž .xThe natural parameter is log �r � q k . Usually, though, the dispersion

parameter ky1 is itself unknown. Estimating it helps to summarize the extent
of overdispersion. The greater ky1, the greater the overdispersion compared
to the ordinary Poisson GLM. For independent observations, the ML esti-
mate of � is the sample mean, but ML estimation for ky1 requires iterative

Žmethods R. A. Fisher showed this in an appendix of a 1953 Biometrics article
.by C. Bliss . Problem 13.40 shows an alternative gamma parameterization

that implies a linear rather than quadratic variance function for the negative
binomial.

13.4.2 Negative Binomial Regression Modeling

Negative binomial models for counts permit � to depend on explanatory
Ž . y1variables Lawless 1987 . Such models normally take k to be the same for

all observations. This corresponds to a constant coefficient of variation in the
'Ž .'gamma mixing distribution, var � rE � s 1r k . with the standard devi-Ž .

ation increasing as the mean does. Most common is the log link, as in Poisson
loglinear models. Sometimes the identity link is adequate. One such case is
with a single predictor that is a factor.

For k fixed, a negative binomial model is a GLM. Thus, the likelihood
wequations for the regression parameters � are special cases of those see

Ž .x Ž . 24.22 for an ordinary GLM with variance function ® � s � q � rk. The
usual iterative reweighted least squares algorithm applies for ML model
fitting. When k is unknown, ML fitting can use a Newton�Raphson routine
on all the parameters simultaneously. Or, one can evaluate the profile

Ž .likelihood for various fixed k Lawless 1987 . Another approach alternates
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Ž .between 1 using iterative reweighted least squares to solve the equations for
ˆŽ .�, for fixed k, and 2 for fixed �, using Newton�Raphson to estimate k,

iterating between them until convergence.
Ž .The full log likelihood L �, k; y for a negative binomial model satisfies

� 2L y y �i i
s x .Ý i t2 ��� � k k q � g �Ž . Ž .j i i i

Ž 2 .Thus, E � Lr�� � k s 0 for each j. Similarly, the inverse of the expectedj
information matrix has 0 elements connecting k with each � . Since this isj

ˆ ˆthe asymptotic covariance matrix, � and k are asymptotically independent.
ˆ Ž .It follows that standard errors for � obtained from part 1 of the iterative

Ž .scheme above are correct. Cameron and Trivedi 1998, p. 72 showed the
w Ž .xasymptotic covariance matrix. They and Lawless 1987 considered a

moment estimator for ky1 and studied robustness properties of estimators.
ˆThey noted that � from this model is consistent if the model for the mean is

correctly specified, even if the true distribution is not negative binomial.

13.4.3 Frequency of Knowing Homicide Victims Example

Table 13.6 summarizes responses of 1308 subjects to the question: Within the
past 12 months, how many people have you known personally that were
victims of homicide? The table shows responses by race, for those who
identified their race as white or as black. The sample mean for the 159 blacks
was 0.522, with a variance of 1.150. The sample mean for the 1149 whites was
0.092, with a variance of 0.155.

A natural first choice for modeling count data is a Poisson GLM, such as a
loglinear model with a dummy predictor for race. Let y denote the responsei t

Ž .for subject t of race i. For � s E Y , this model isi t i t

log � s 
 q � x ,i t i t

TABLE 13.6 Number of Victims of Murder Known in Past Year, by Race,
with Fit of Poisson and Negative Binomial Models

Data Poisson GLM Neg. Bin. GLM Poisson GLMM

Response Black White Black White Black White Black White

0 119 1070 94.3 1047.7 122.8 1064.9 116.7 1068.3
1 16 60 49.2 96.7 17.9 67.5 24.5 65.3
2 12 14 12.9 4.5 7.8 12.7 8.1 10.1
3 7 4 2.2 0.1 4.1 2.9 3.6 2.8
4 3 0 0.3 0.0 2.4 0.7 1.9 1.1
5 2 0 0.0 0.0 1.4 0.2 1.1 0.5
6 0 1 0.0 0.0 0.9 0.1 0.7 0.3

Source: 1990 General Social Survey, National Opinion Research Center.
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Ž . Ž .with x s 1 blacks and x s 0 whites . This model has fit log � sy2.38ˆ1 t 2 t i t
Ž .q 1.733 x . The estimated expected responses are exp y2.38 q 1.733 si t

Ž .0.522 for blacks and exp y2.38 s 0.092 for whites, the sample means. For
any link function for this model, the likelihood equations imply that the fitted

ˆ Ž .means equal the sample means. Since � s 1.733 SE s 0.147 is the differ-
ence between the log means for blacks and whites, the ratio of sample means

Ž .is exp 1.733 s 5.7 s 0.522r0.092. However, for each race the sample vari-
ance is roughly double the mean. Table 13.6 also shows the fit of this model.
The evidence of overdispersion is reflected by the higher observed counts at
y s 0 and at large y values than the Poisson GLM predicts.

An alternative is the same model form but assuming a negative binomial
response. A mixture model does seem plausible. Due to various demographic
factors, heterogeneity probably occurs among subjects of a given race in the
distribution of Y. For ML fitting, the deviance decreases by 122.2 compared
to the ordinary Poisson GLM that is the special case with ky1 s 0. Table
13.6 also shows this model fit. It is dramatically better at y s 0 and 1.

Table 13.7 shows parameter estimates for the negative binomial and
ˆPoisson GLMs. For both, � s 1.733 since both models provide fitted means

ˆequal to the sample means. However the estimated standard error of �
increases from 0.147 for the Poisson GLM to 0.238 for the negative binomial
model. The Wald 95% confidence interval for the ratio of means for blacks

w Ž .x Ž .and whites goes from exp 1.733 � 1.96 0.147 s 4.2, 7.5 for the Poisson
w Ž .x Ž .GLM to exp 1.733 � 1.96 0.238 s 3.5, 9.0 for the negative binomial. In

accounting for the overdispersion, we obtain results that are not as precise as
the more naive model suggests.

ˆy1 Ž .The negative binomial model has k s 4.94 SE s 1.00 . This shows
strong evidence that ky1 � 0, indicating that the negative binomial model is
more appropriate than the Poisson GLM. The estimated variance of Y is

2 ˆ 2� q � rk s � q 4.94� , which is 0.13 for whites and 1.87 for blacks, muchˆ ˆ ˆ ˆ
closer to the sample values than the Poisson model provides.

Table 13.7 also shows results for negative binomial and Poisson models
using the identity link. The fits � s 0.092 q 0.430 x reproduce the sampleˆ i t i t

ˆmeans. Now � refers to the difference in means rather than their log ratio.
ˆThe estimated difference � s 0.430 has SE s 0.058 for the Poisson model

and SE s 0.109 for the negative binomial. Results are more imprecise but

TABLE 13.7 Parameter Estimates for Models Fitted to Homicide Data

Models with Log Link Models with Identity Link

Neg. Binom. Poisson Poisson Neg. Binom. Poisson
Term GLM GLM GLMM GLM GLM


 y2.38 y2.38 y3.69 0.092 0.092
� 1.733 1.733 1.897 0.430 0.430

ˆŽ .SE � 0.238 0.147 0.246 0.109 0.058
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more realistic with the negative binomial model. For this link also the
ˆy1estimated dispersion parameter is k s 4.94.

13.5 POISSON REGRESSION WITH RANDOM EFFECTS

The GLMMs introduced in Chapter 12 referred to categorical responses.
GLMMs are also useful for other types of discrete responses, such as counts.
This section illustrates with Poisson regression modeling of count data.

We’ve seen that a flexible way to account for overdispersion is with a
mixture model. In Section 13.4 we mixed the Poisson using the gamma

Ž .distribution, yielding the negative binomial marginally. Breslow 1984 and
Ž . Ž .Hinde 1982 suggested the GLMM structure 12.1 with the log link and

normal random intercept. The model for the mean for observation t in
cluster i is

��log E Y u s x � q u , 13.14Ž .Ž .i t i i t i

� 4 Ž 2 .where u are independent N 0, � . Conditional on u , y has a Poissoni i i t
distribution. Marginally, the distribution has variance greater than the mean
whenever � � 0.

Applications of Poisson GLMMs include the analysis of maps of cancer
Ž .rates in epidemiology Breslow and Clayton 1993 and modeling variability in

Ž .bacteria counts Aitchison and Ho 1989 . Although links other than the log
Žare possible, the identity link and any other link having range only the

.positive real line has a structural problem. With a normal random effect
with � � 0, a positive probability exists that the linear predictor is negative,
but the Poisson mean must be nonnegative.

Ž .The negative binomial model for fixed k is a GLMM with nonnormal
random effect. With the log link, it results from a loglinear model of form
Ž . Ž .13.14 with random intercept, where exp u has a gamma distribution withi
mean 1 and variance ky1. With identity link, negative binomial models
usually work better than Poisson GLMMs. Regardless of the gamma mixture
distribution, the resulting marginal mean is nonnegative for the negative
binomial.

13.5.1 Marginal Model Implied by Poisson GLMM

Ž .The Poisson GLMM 13.14 implies a relatively simple marginal model,
averaging out the random effect. The mean of the marginal distribution is

� � 2x �qu x �q� r2i t i i t� w xE Y s E E Y u s E e s e .Ž . Ž .i t i t i

w Ž .x Ž 2 . Ž 2 .Here E exp u s exp � r2 because a N 0, � variate u has momenti i
w Ž .x Ž 2 2 .generating function E exp tu s exp t � r2 . So, for the Poisson GLMMi
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the log of the mean conditionally equals x� � q u and marginally equalsi t i
x� � q � 2r2. A loglinear model still applies. The marginal effects of thei t
explanatory variables are the same as the cluster-specific effects. Thus, the
ratio of means at two different settings of x� is the same conditionallyi t

Žand marginally. However, marginally the intercept is offset. Note that
.Jensen’s inequality applies, since the link is not linear.

The variance of the marginal distribution is

� �x �qu 2x � uit i i t i� � w xvar Y s E var Y u q var E Y u s E e q e var eŽ . Ž .Ž . Ž .i t i t i i t i

� �2 2 2 22x �q� r2 2x � 2 � � �i t i ts e q e e y e s E Y q E Y e y 1 .Ž . Ž .Ž . Ž .i t i t

Ž ui. Ž 2 ui. w Ž ui.x2 2 � 2 � 2
Here, var e s E e y E e s e y e by evaluating the moment
generating function at t s 2 and t s 1. As in the negative binomial model,
the marginal variance is a quadratic function of the marginal mean. It
exceeds the marginal mean when � � 0. The ordinary Poisson model results
when � s 0. When � � 0 the marginal distribution is not Poisson, and the
extent to which the variance exceeds the mean increases as � increases.

As in binary GLMMs, Y and Y are independent given u but arei t i s i
marginally nonnegatively correlated. For t � s,

� � �cov Y , Y s E cov Y , Y u q cov E Y u , E Y uŽ . Ž . Ž . Ž .i t i s i t i s i i t i i s i

� �s 0 q cov exp x � q u , exp x � q u . 13.15Ž . Ž . Ž .i t i i s i

The functions in the last covariance term are both monotone increasing
Ž .functions of u , and hence are nonnegatively correlated Problem 13.44 .i

13.5.2 Frequency of Knowing Homicide Victims Example

We now return to Table 13.6 on responses, classified by race, of the number
of victims of homicide within the past 12 months that subjects knew person-
ally. Models permitting subject heterogeneity are sensible. For the response
y for subject t of race i, the Poisson GLMM isi t

�log E Y u s 
 q � x q u ,Ž .i t i t i t i t

� 4 Ž 2 .where u are independent N 0, � . The log means vary according to ai t
Ž 2 . Ž 2 .N 
, � distribution for whites and a N 
 q � , � distribution for blacks.

Given u , y has a Poisson distribution.i t i t
Table 13.6 also shows this model fit, and Table 13.7 shows estimates. The

Ž .random effects have � s 1.63 SE s 0.15 . The deviance decreases by 116.6ˆ
compared to the Poisson GLM, indicating a better fit by allowing heterogene-

Ž .ity. For subjects at the means of the random effects distributions u s 0 thei t
Ž .estimated expected responses are exp y3.69 q 1.90 s 0.167 for blacks and
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ˆŽ . Žexp y3.69 s 0.025 for whites. The fitted marginal mean is exp 
 q � x qˆ i t
2 .� r2 , or 0.63 for blacks and 0.09 for whites. The fitted marginal variancesˆ

are 0.21 for blacks and 5.78 for whites. These are somewhat larger than the
sample means and variances, perhaps because the fitted distribution has
nonnegligible mass above the largest observed response of 6.

13.5.3 Negative Binomial Models versus Poisson GLMMs

The Poisson GLMM with normal random effects has the advantage, relative
to the negative binomial GLM, of easily permitting multivariate random
effects and multilevel models. However, the negative binomial has properties
that can make interpretation simpler. We’ve seen that the identity link is
valid for it, which is useful for simple examples such as the preceding one
with a factor predictor. With any link and a factor predictor, its ML fitted
means equal the sample means. This is not the case for the Poisson GLMM.

Besides the Poisson GLMM and the negative binomial model, an alterna-
tive way of accounting for overdispersion with count data is quasi-likelihood
with variance function

® � s �� ,Ž .i i

for some constant �. This is often adequate for exploratory analyses.

NOTES

Section 13.1: Latent Class Models

Ž . Ž . Ž .13.1. Aitkin et al. 1981 , Bartholomew and Knott 1999 , Clogg 1995 , Clogg and Goodman
Ž . Ž . Ž . Ž .1984 , Goodman 1974 , Haberman 1979, Chap. 10 , Hagenaars 1998 , Heinen
Ž . Ž .1996 , and Lazarsfeld and Henry 1968 discussed fitting and intrepretation of latent
class and related latent variable models.

Ž .13.2. Rudas et al. 1994 proposed a clever mixture method for summarizing goodness of fit.
For a model M for a contingency table with true probabilities �, they used the mixture

Ž .� s 1 y 	 � q 	 � , with � the model-based probabilities and � unconstrained.1 2 1 2
Their index of lack of fit is the smallest such 	 possible for which this holds. It is the
fraction of the population that cannot be described by the model. This recognizes that
any given model does not truly hold but is useful if 	 is close to 0. The mixture
contrasts with the latent class model in which both � and � correspond to1 2
independence.

Section 13.2: Nonparametric Random Effects Models

13.3. For connections between Rasch-type models and quasi-symmetry models, see Agresti
Ž . Ž . Ž . Ž . Ž .1993 , Conaway 1989 , Darroch 1981 , Darroch et al. 1993 , Hatzinger 1989 , and

Ž . Ž .Kelderman 1984 . For the matched-pairs random effects model 12.16 , a nonparamet-
Ž .ric or conditional ML treatment of u , u implies a multivariate quasi-symmetryi1 i2

Ž . Ž .model Agresti 1997 . Model 12.16 with correlated normal random effects is a
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Ž .continuous analog to discrete latent class models that Goodman 1974 proposed, based
on two associated binary latent variables.

Section 13.3: Beta-Binomial Models

Ž .13.4. Skellam 1948 introduced the beta-binomial distribution and discussed parameter
estimation. For modeling using this distribution or related quasi-likelihood approaches,

Ž . Ž . Ž . Ž .see Brooks et al. 1997 , Crowder 1978 , Hinde 1996 , Lee and Nelder 1996 , Liang
Ž . Ž . Ž .and Hanfelt 1994 , Liang and McCullagh 1993 , Lindsey and Altham 1998 , Moore

Ž . Ž . Ž . Ž .1986a , Moore and Tsiatis 1991 , Nelder and Pregibon 1987 , Prentice 1986 , Rosner
Ž . w Ž .x Ž .1984, 1989 with critique by Neuhaus and Jewell 1990a , Slaton et al. 2000 , and

Ž . Ž .Williams 1975, 1982 . For beta-binomial type variance, Ryan 1995 and Williams
Ž .1988 showed advantages of the quasi-likelihood approach over ML. Often, it helps to

Žpermit the quasi-likelihood scale parameter 	 or the related parameter � in the
.beta-binomial to vary among groups.

The beta-binomial generalizes to a Dirichlet-multinomial. Conditional on the prob-
abilities, the distribution is multinomial. The probabilities themselves have a Dirichlet
distribution, which is a generalization of the beta defined on vectors of probabilities

Ž . Ž .that sum to 1. See Mosimann 1962 and Paul et al. 1989 .
Ž . Ž .13.5. Kupper et al. 1986 and Ryan 1992 discussed modeling overdispersion caused by

Ž .litter effects in developmental toxicity studies. See Follman and Lambert 1989 ,
Ž . Ž .Kupper and Haseman 1978 , and Lefkopoulou et al. 1989 for related material.

Section 13.4: Negati©e Binomial Regression

Ž .13.6. Greenwood and Yule 1920 derived the negative binomial as a gamma mixture of
Ž . Ž .Poissons. Johnson et al. 1992 summarized its properties. Biggeri 1998 , Cameron and

Ž . Ž . Ž .Trivedi 1998 , Hinde and Demetrio 1998 , and Lawless 1987 discussed modeling´
using it.

PROBLEMS

Applications

3 Ž .13.1 For the 2 table of opinions about legalized abortion Table 10.13
collapsed over gender, fit a latent class model with two classes. Show
that it is saturated. For each latent class, report the estimated
probability of supporting legalized abortion in each of the three
situations. Give a tentative interpretation for the classes.

13.2 Analyze Table 8.3 using a latent class model with q s 2.
a. For a subject in the first latent class, estimate the probability of

Ž . Ž . Ž . Ž .having used i marijuana, ii alcohol, iii cigarettes, iv all three,
Ž .and v none of them.

b. Estimate the probability a subject is in the first latent class, given
Ž . Ž . Ž . Ž .they have used i marijuana, ii alcohol, iii cigarettes, iv all

Ž .three, and v none of them.
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13.3 Analyze Table 8.19 on government spending using latent class mod-
els.

Ž .13.4 For capture�recapture experiments, Coull and Agresti 1999 used a
loglinear model with exchangeable association and no higher-order
terms. Explain why the model expected frequencies satisfy

log � y , . . . , y s � q � y q ��� q� yŽ .1 T 1 1 T T

q � y y q y y q ��� qy y .Ž .1 2 1 3 Ty1 T

ˆShow that the fit of this model to Table 12.6 yields N s 90.5 and a
Ž .95% profile-likelihood confidence interval for N of 75, 125 .

13.5 Use or write software to replicate the analyses of the opinions about
Ž .abortion data in Section 13.2 using a nonparametric random effects

Ž . Ž .fitting of logit model 13.3 , and b the quasi-symmetry model.

13.6 A data set on pregnancy rates among girls under 18 years of age in 13
north central Florida counties has information on a 3-year total for
each county i on n s number of births and y s number of those fori i

Žwhich mother had age under 18 see J. Booth, in Statistical Modelling:
.Lecture Notes in Statistics, 104, Springer, 43�52, 1995 .

� 4 � 4a. A beta-binomial model states that given � , Y are independenti i
� Ž .4 � 4 Ž .bin n , � variates, and � are independent from a beta 
, �i i i

ˆdistribution. The ML estimated parameters are 
 s 9.9 and � sˆ
Ž .240.8 thanks to J. Booth for this analysis . Use the mean and

variance to describe the estimated beta distribution and the esti-
Ž .mated marginal distribution of Y as a function of n .i i

Ž .b. Quasi-likelihood using variance function 13.10 for the model
Ž .logit � s 
 has 
 sy3.18 and 	 s 0.005. Describe the esti-ˆ ˆi

mated mean and variance of Y .i
Ž . Ž .c. Quasi-likelihood using variance 13.11 for the model logit � s 
i

ˆhas 
 sy3.35 and � s 8.3. Describe the estimated mean andˆ
variance of Y .i

Ž .d. The logistic-normal GLMM, logit � s 
 q u , yields 
 sy3.24ˆi i
w Ž .xand � s 0.33. Describe the estimated mean of Y Recall 12.8 .ˆ i

13.7 In Problem 12.2 about Shaq O� Neal’s free-throw shooting, the simple
binomial model, � s 
 , has lack of fit. Fit the beta-binomial model,i
or use the quasi-likelihood approach with that variance structure. Use
the fit to summarize his free-throw shooting, by giving an estimated
mean and standard deviation for � .i
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13.8 For the toxicity study of Table 12.9, collapsing to a binary response,
consider linear logit models for the probability a fetus is normal.
a. Does the ordinary binomial model show evidence of overdisper-

sion?
b. Fit the linear logit model using the quasi-likelihood approach with

inflated binomial variance. How do the standard errors change?
c. Fit the linear logit model using quasi-likelihood with beta-binomial

variance. Interpret and compare with previous results.
d. Fit the linear logit model using a GEE approach with exchange-

able working correlation among fetuses in the same litter. Inter-
pret and compare with previous results, including comparing the

Ž .estimated GEE correlation with the estimate 	 from part c .ˆ
e. Fit the linear logit GLMM after adding a litter-specific normal

random effect. Interpret and compare with previous results.

Ž .13.9 Extend the various analyses of the teratology data Table 4.5 in
Section 13.3.3 as follows:

Ž .a. Include a predictor for litter size as well as group . Interpret, and
compare results to those without this predictor.

Ž .b. Fit a model with beta-binomial variance 13.10 in which 	 varies
by treatment group. Use results to motivate a model that allows
overdispersion only in the placebo group. Interpret and compare
results to those with common 	 for each group.

13.10 Table 13.8 reports the results of a study of fish hatching under three
environments. Eggs from seven clutches were randomly assigned to
three treatments, and the response was whether an egg hatched by

Ž .day 10. The three treatments were 1 carbon dioxide and oxygen
Ž . Ž .removed, 2 carbon dioxide only removed, and 3 neither removed.

TABLE 13.8 Data for Problem 13.10

Treatment 1 Treatment 2 Treatment 3

Number Number Number
Clutch Hatched Total Hatched Total Hatched Total

1 0 6 3 6 0 6
2 0 13 0 13 0 13
3 0 10 8 10 6 9
4 0 16 10 16 9 16
5 0 32 25 28 23 30
6 0 7 7 7 5 7
7 0 21 10 20 4 20

Source: Data courtesy of Becca Hale, Zoology Department, University of Florida.
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a. Let � denote the probability of hatching for an egg from clutch ii t
in treatment t. Assuming independent binomial observations, fit
the model

logit � s � z q � z q � z ,Ž .i t 1 1 2 2 3 3

where z s 1 for treatment t and 0 otherwise. What does yourt
ˆ Žsoftware report for � , and what should it be? Hint: Note that1

.treatment 1 has no successes.
b. Analyze these data using an approach that allows overdispersion.

Interpret. Indicate whether evidence of overdispersion occurs for
treatments 2 and 3.

13.11 For the train accidents in Problem 9.19, a negative binomial model
assuming constant log rate over the 14-year period has estimate

Ž .y4.177 SE s 0.153 and estimated dispersion parameter 0.012. In-
terpret.

13.12 One question in the 1990 General Social Survey asked subjects how
many times they had sexual intercourse in the preceding month.
Table 13.9 shows responses, classified by gender.
a. The sample means were 5.9 for males and 4.3 for females; the

sample variances were 54.8 and 34.4. The mode for each gender
was 0. Does an ordinary Poisson GLM seem appropriate? Explain.

b. The Poisson GLM with log link and a dummy variable for gender
Ž . Ž .1 s males, 0 s females has gender estimate 0.308 SE s 0.038 .

ŽExplain why this implies a ratio of 1.36 for the fitted means. This
is also the ratio of sample means, since this model has fitted means

.equal to sample means. Show that the Wald 95% confidence
Ž .interval for the ratio of means for males and females is 1.26, 1.47 .

TABLE 13.9 Data for Problem 13.12

Response Male Female Response Male Female Response Male Female

0 65 128 9 2 2 20 7 6
1 11 17 10 24 13 22 0 1
2 13 23 12 6 10 23 0 1
3 14 16 13 3 3 24 1 0
4 26 19 14 0 1 25 1 3
5 13 17 15 3 10 27 0 1
6 15 17 16 3 1 30 3 1
7 7 3 17 0 1 50 1 0
8 21 15 18 0 1 60 1 0

Source:1990 General Social Survey, National Opinion Research Center.
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c. For the negative binomial model, the log likelihood increases by
Ž .248.7 deviance decreases by 497.3 . The estimated difference

between the log means is also 0.308, but now SE s 0.127. Show
Žthat the 95% confidence interval for the ratio of means is 1.06,

.1.75 . Compare to the Poisson GLM, and interpret.
d. The mode for the Poisson distribution is the integer part of the

mean, rather than 0. Argue that a possibly more realistic mixture
model assumes for gender i a proportion 	 that has a Poissoni
distribution with mean 0 and a proportion 1 y 	 that has distribu-i
tion that is a gamma mixture of Poissons. Explain why the corre-
sponding marginal distribution for each gender is a mixture of a
degenerate distribution at 0 and a negative binomial distribution.

13.13 Refer to Problem 13.12. Fit the Poisson and negative binomial GLMs
using identity link. Show that the estimated differences in means
between males and females are identical for the two GLMs but the
SE values are very different. Explain why. Use the more appropriate
one to form a confidence interval for the true difference in means.

13.14 For the counts of horseshoe-crab satellites in Table 4.3, Table 13.10
shows the results of ML fitting of the negative binomial model using
width as the predictor, with the identity link.
a. State and interpret the prediction equation.
b. Show that at a predicted �, the estimated variance is roughlyˆ

� q �2.ˆ ˆ
c. The corresponding Poisson GLM has fit � sy11.53 q 0.55 xˆ

Ž .SE s 0.06 . Compare 95% confidence intervals for the slopes for
the two models. Interpret, and indicate whether overdispersion
seems to exist relative to the Poisson GLM.

TABLE 13.10 Results for Problem 13.14

Standard Wald 95% Confidence Chi-
Parameter Estimate Error Limits Square
Intercept y11.1471 2.8275 y16.6890 y5.6052 15.54
width 0.5308 0.1132 0.3089 0.7528 21.97
Dispersion 0.9843 0.1822 0.6847 1.4149

13.15 Refer to Problem 13.14.
a. Fit a negative binomial model with log link. Interpret. Plot the

counts against width and indicate which link seems more appropri-
ate.

b. Fit a Poisson GLMM with log link, using width predictor. Inter-
pret.
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c. Compare results for the various models, including those in Section
4.3.2 for a Poisson GLM. Indicate your preferred model. Justify.

13.16 Refer to Problems 13.14 and 13.15. Using width and qualitative color
Ž . Ž .as predictors, fit a a negative binomial GLM, and b Poisson

GLMM, checking for interaction and interpreting the final model.

13.17 Refer to Table 13.6. For those with race classified as ‘‘other,’’ the
Ž . Ž .sample counts for 0, 1, 2, 3, 4, 5, 6 homicides were 55, 5, 1, 0, 1, 0, 0 .

Fit an appropriate model simultaneously to these data and those for
white and black race categories. Interpret by making pairwise com-
parisons of the three pairs of means.

13.18 Use a quasi-likelihood approach to analyze Table 13.6 on counts of
murder victims.

13.19 Conduct the analyses of Problem 4.6 on defects in the fabrication of
computer chips, but use a negative binomial GLM. Compare results
to those for the Poisson GLM. Indicate why results are similar.

Ž13.20 With data at the book’s Web site www. stat.ufl.edur�aarcdar
.cda.html , use methods of this chapter to analyze how the countywide

vote for the Reform Party candidate Pat Buchanan in the 2000
presidential election related to the vote for Reform Party candidate
Ross Perot in the 1996 presidential election. Note that Palm Beach

ŽCounty is an enormous outlier apparently mainly reflecting votes
intended for Al Gore but cast for Buchanan because of a confusing

.ballot . Model with and without that observation and compare results.

13.21 Conduct a latent class analysis of the data in Espeland and Handel-
Ž .man 1989 .

Ž .13.22 Refer to the teratology study in Liang and Hanfelt 1994 . Analyze
these data using at least two different approaches for overdispersed
binary data. Compare results and interpret.

13.23 Refer to Problem 13.14. Using an appropriate subset of width, weight,
color, and spine condition as predictors, find and interpret a reason-
able model for predicting the number of satellites.

Theory and Methods

13.24 Derive residual df for a latent class model with q latent classes. When
I s 2, for q G 2 show one needs T G 4 for the model to be unsatu-
rated. Then, find the maximum value for q when T s 4, 5. For an I 2

2 Ž .table, show one needs q � I r 2 I y 1 .
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Ž .13.25 Express the log likelihood for latent class model 13.1 in terms of the
Žmodel parameters. Derive likelihood equations Goodman 1974,

.Haberman 1979 .

13.26 Let � denote an I � J matrix of cell probabilities for the joint
distribution of X and Y. Suppose that there exist I � 1 column
vectors � and J � 1 column vectors � of probabilities, k s1k 2 k

� 41, . . . , q, and a set of probabilities 	 such thatk

q
�� s 	 � � .Ý k 1k 2 k

ks1

Explain why this implies that there is a latent variable Z such that X
and Y are conditionally independent, given Z.

13.27 In Section 13.2.2, under the null that the ordinary logistic regression
model holds, explain why it is inappropriate to treat the difference
between the deviances for that model and the mixture of two logistic
regressions as a chi-squared statistic.

Ž .13.28 Refer to Problem 12.7. Let � a, b, c denote the expected frequencyk
Ž . Ž .of outcomes a, b, c for treatments A, B, C under treatment se-

quence k, where outcome 1 s relief and 0 s nonrelief. With a non-
parametric random effects approach, show that one can estimate

Ž .treatment effects in model 12.19 by fitting the quasi-symmetry
model

log � a, b , c s a� q b� q c� q � a, b , c ,Ž . Ž .k A B C k

Ž . Ž . Ž . Ž .where � a, b, c s � a, c, b s � b, a, c s � b, c, a sk k k k
ˆ ˆŽ . Ž .� c, a, b s � c, b, a . Fit the model, and show that � y � s 1.64k k B A

ˆ ˆ ˆ ˆŽ . Ž . ŽSE s 0.34 , � y � s 2.23 SE s 0.39 , � y � s 0.59 SE sC A C B
. Ž .0.39 . Interpret. Compare results with Problem 12.7 for model 12.19 .

Ž .13.29 Show that the beta-binomial distribution 13.9 simplifies to the
binomial when � s 0.

13.30 Express the numerator of the beta density in terms of � and � . Using
Ž . Ž . Ž .this, show that it is a unimodal when � � min �, 1 y � , and b the

1uniform density when � s � s .2

Ž . Ž .13.31 Suppose that � s P Y s 1 s 1 y P Y s 0 , for t s 1, . . . , n , andi i t i t i
Ž . Ž . Ž .corr Y , Y s 	 for t � s. Show that var Y s � 1 y � ,i t i s i t i i
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Ž . Ž .cov Y , Y s 	� 1 y � , andi t i s i i

var Y s n � 1 y � 1 q 	 n y 1 .Ž . Ž .Ý i t i i i iž /
t

13.32 When n s 1, show that the beta-binomial distribution is no different
Ž .from the binomial i.e., Bernoulli . Explain why overdispersion cannot

occur when n s 1.

13.33 When y is the sum of n binary responses each having mean � , referi i i
Ž . Ž .to the quasi-likelihood approach with ® � s �n � 1 y � . Explaini i i i

why this variance function has a structural problem, with only � s 1
making sense when n s 1.i

Ž .13.34 Liang and Hanfelt 1994 described a teratology study comparing
control and treatment groups in which the ML estimate of the
treatment effect in a beta-binomial model differs by a factor of 2
depending on whether one assumes the same overdispersion parame-

Ž .ter for each group. By contrast, with variance function 13.11 , the
quasi-likelihood estimate of the treatment effect is the same whether
one assumes the same or different � for the two groups. Explain why,
and discuss whether this is an advantage or disadvantage of that
method.

Ž . �13.35 Consider the logistic-normal model, logit � s 
 q x � q u . Fori i i
small � , show that it corresponds approximately to a mixture model

Ž . w Ž .x2 2for which the mixture distribution has var � s � 1 y � � .i i i
Ž .Hint: See Problem 6.33.

Ž .13.36 Altham 1978 introduced the discrete distribution

n nyyyf y ; � , � s c � , � � 1 y � exp � y n y y ,Ž . Ž . Ž . Ž .ž /y

y s 0,1, . . . , n ,

Ž .where c � , � is a normalizing constant. Show that this is in the
exponential family. Show that the binomial occurs when � s 0.
wAltham noted that overdispersion occurs when � � 0. Corcoran

Ž . Ž .et al. 2001 and Lindsey and Altham 1998 used this as the basis of
xan alternative model to the beta-binomial.

13.37 When y , . . . , y are independent from the negative binomial distri-1 N
Ž .bution 13.13 with k fixed, show that � s y.ˆ
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Ž . w Ž � .x Ž . w Ž � .x13.38 Using E Y s E E Y X and var Y s E var Y X q
w Ž � .x Ž .var E Y X , derive the mean and variance of the a beta-binomial

distribution,
Ž .and b negative binomial distribution.

Ž � .13.39 Suppose that given u, Y is Poisson with E Y u s u�, where � may
depend on predictors. Suppose that u is a positive random variable

Ž . Ž . Ž . Ž .with E u s 1 and var u s � . Show that E Y s � and var Y s
� q ��2. Explain how negative binomial GLMs and Poisson GLMMs
with log link can follow as special cases.

13.40 An alternative negative binomial parameterization results from the
gamma density formula,

k�kŽ .
k�y1f �; k , � s exp yk� � , � G 0,Ž . Ž .

 k�Ž .

Ž . Ž .for which E � s �, var � s �rk. Show that this gamma mixture of
Poissons yields a negative binomial with

E Y s � , var Y s � 1 q k rk .Ž . Ž . Ž .

wFor what limiting value of k does this reduce to the Poisson? See
Ž .Nelder and Lee 1996 for ML model fitting. Cameron and Trivedi

Ž .1998, p. 75 pointed out that, unlike with quadratic variance, consis-
tency does not occur for parameter estimators when the model for the

xmean holds but the true distribution is not negative binomial.

13.41 The negative binomial distribution is unimodal with a mode at the
Ž . Ž .integer part of � k y 1 rk Johnson et al. 1992, pp. 208�209 . Show

that the mode is 0 when � F 1, and that when � � 1 the mode is still
Ž . Ž0 if k � �r � y 1 . This gives greater scope than the Poisson, since

.its mode equals the integer part of the mean.

13.42 Consider the loglinear random effects model

� ��log E Y u s x � q z u ,Ž .i t i i t i t i

� 4 Ž .where u are independent N 0, � . Show that this implies thei
marginal loglinear model

1
� �log E Y y z �z s x � ,Ž .i t i t i t i t2
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with the same fixed effects but with offset term. For the random-in-
tercept case, indicate the role of � on the size of the offset. Explain
what happens when � s 0.

13.43 In Section 13.5.1 and Problem 13.42 we saw that for Poisson GLMMs,
the marginal effects are the same as the cluster-specific effects. This
does not imply that ML estimates of effects are the same for a

ŽPoisson GLMM and a Poisson GLM. Explain why. Hint: For the
.GLMM, is the marginal distribution Poisson?

Ž .13.44 For the Poisson GLMM 13.14 , use the normal mgf to show that for
t � s,

� � 2 2cov Y , Y s exp x q x � exp � exp � y 1Ž . Ž . Ž . Ž .Ž .i t i s i t i s

Ž .Hence, find corr Y , Y .i t i s

13.45 Consider a Poisson GLMM using the identity link. Relate the marginal
mean and variance to the conditional mean and variance. Explain the
structural problem that this model has.
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Asymptotic Theory for
Parametric Models

This chapter has a more theoretical flavor than others. It presents asymptotic
theory for parametric models for categorical data, with emphasis on multino-
mial models for contingency tables. In Section 14.1 we review and extend the
delta method. This is used to derive large-sample normal distributions for
many statistics. In Section 14.2 we apply the delta method to ML estimation
of parameters in models for contingency tables, later illustrated in Section
14.4 for logit and loglinear models. In Section 14.3 we derive asymptotic
distributions of cell residuals and the X 2 and G2 goodness-of-fit statistics.

Ž .The results in this chapter have a long history. Pearson 1900 derived the
asymptotic chi-squared distribution of X 2 for testing a specified multinomial

Ž .distribution. Fisher 1922, 1924 showed the adjustment in degrees of free-
dom when multinomial probabilities are functions of unknown parameters.

Ž .Cramer 1946, pp. 424�434 formally proved this result, under the assump-´
Ž .tion that ML estimators of the parameters are consistent. Rao 1957 proved

consistency of the ML estimators under general conditions. He also gave the
asymptotic distribution of the ML estimators, although the primary emphasis

Ž .of his articles was on proving consistency. Birch 1964a proved these results
Ž . Ž . Ž .under weaker conditions. Andersen 1980 , Bishop et al. 1975 , Cox 1984 ,

Ž . Ž .Haberman 1974a , and Watson 1959 provided other proofs or considered
related cases.

As in Cramer’s and Rao’s proofs, our derivation regards the ML estimator´
as a point in the parameter space where the derivative of the log likelihood
function is zero. Birch regarded it as a point at which the likelihood takes
value arbitrarily near its supremum. Although his approach is more powerful,
the proofs are more complex. We avoid a formal ‘‘theorem�proof’’ style of
exposition. Instead, we show that powerful results follow from simple mathe-
matical ideas, such as Taylor series expansions.

576
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14.1 DELTA METHOD

Suppose that a statistic used as an estimator of a parameter has a large-sam-
ple normal distribution. Then, in this section we show that many functions of
that statistic are also asymptotically normal.

14.1.1 O, o Rates of Convergence

Big O and little o notation is useful for describing limiting behavior of
� 4 Ž .sequences. For real numbers z , the little o notation o z represents an n

Ž .term that has smaller order than z as n ™ �, in the sense that o z rz ™ 0n n n' 'Ž .as n ™ �. For instance, n is o n as n ™ �, since n rn ™ 0 as n ™ �.
Ž . Ž . Ž . y1r2A sequence that is o 1 satisfies o 1 r1 s o 1 ™ 0; for instance, n is

Ž .o 1 as n ™ �.
Ž .The big O notation O z represents terms that have the same order ofn

magnitude as z , in the sense that O z rz is bounded as n ™ �. ForŽ .n n n
Ž . Ž 2 . Ž y1 . y1instance, 3rn q 8rn is O n as n ™ �; dividing it by n gives a ratio

that takes value close to 3 as n increases.
Similar notation applies to sequences of random variables. This notation

uses a subscript p to indicate that the sequence has probabilistic rather than
Ž .deterministic behavior. The symbol o z denotes a random variable ofp n

Ž .smaller order than z for large n, in the sense that o z rz con®ergesn p n n
Ž .in probability to 0; that is, for any fixed � � 0, P o z rz F � ™ 1 asŽ .p n n

Ž .n ™ �. The notation O z represents a random variable such that for everyp n
w x� � 0, there is a constant K and an integer n such that P O z rz � KŽ .0 p n n

� 1 y � for all n � n .0
To illustrate, let Y denote the sample mean of n independent observa-n

Ž . Ž .tions Y , . . . , Y from a distribution having E Y s �. Then Y y � s1 n i n
Ž . Ž .o 1 , since Y y � r1 converges in probability to zero as n ™ � by the lawp n

of large numbers. By Tchebychev’s inequality, the difference between a
random variable and its expected value has the same order of magnitude as
the standard deviation of that random variable. Since Y y � has standardn

y1r2' Ž . Ž .deviation �r n , Y y � s O n .n p
y1r2Ž . Ž . Ž .A random variable that is O n is also o 1 . An example is Y y � .p p n

ŽMultiplication affects the order in the way one expects intuitively Problem
1r2 y1r2 1r2 y1r2'. Ž . Ž . Ž . Ž .14.1 . For instance, n Y y � s n O n s O n n s O 1 .n p p p

Ž .If the difference between two random variables is o 1 as n ™ �, Slutzky’sp
theorem states that those random variables have the same limiting distribu-
tion.

14.1.2 Delta Method for Function of Random Variable

Let T denote a statistic, the subscript expressing its dependence on then
sample size n. For large samples, suppose that T is approximately normallyn
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'distributed about � , with approximate standard error �r n . More precisely,
2' Ž . Ž .as n ™ �, suppose that the cdf of n T y � converges to a N 0, � cdf.n

This limiting behavior is an example of con®ergence in distribution, denoted

d 26'n T y � N 0, � . 14.1Ž . Ž . Ž .n

Ž .For a function g, we now derive the limiting distribution of g T .n
Suppose that g is at least twice differentiable at � . We use the Taylor series

Ž .expansion for g t in a neighborhood of � . For some � * between t and � ,

2� �g t s g � q t y � g � q t y � g � * r2Ž . Ž . Ž . Ž . Ž . Ž .
2�s g � q t y � g � q O t y � .Ž . Ž . Ž . Ž .

Substituting the random variable T for t, we haven

2�' ' 'n g T y g � s n T y � g � q n O T y �Ž . Ž . Ž . Ž . Ž .n n n

� y1r2's n T y � g � q O n 14.2Ž . Ž . Ž . Ž .n p

since

2 y1 y1r2' 'n O T y � s n O O n s O n .Ž . Ž .Ž .n p p

y1r2 'Ž . w Ž . Ž .xSince the O n term is asymptotically negligible, n g T y g � hasp n
�' Ž . Ž . Ž . Ž .the same limiting distribution as n T y � g � ; that is, g T y g �n n

�Ž . Ž . Ž .behaves like the constant multiple g � of T y � . Now, T y � isn n
2 Ž . Ž .approximately normal with variance � rn. Thus, g T y g � is approxi-n

2w �Ž .x2mately normal with variance � g � rn. More precisely,

d 2�26'n g T y g � N 0, � g � . 14.3Ž . Ž . Ž . Ž .Ž .n

Figure 3.1 illustrated this result, and in Section 3.1.6 it was applied to the
sample logit.

Ž .Result 14.3 is called the delta method for obtaining asymptotic distribu-
2 2Ž . �Ž .tions. Since � s � � and g � usually depends on � , the asymptotic

2Ž . �Ž .variance is unknown. Let � T and g T denote these terms evaluated atn n
�Ž . Ž .the sample estimator T of � . When g � and � s � � are continuous at � ,n

Ž . �Ž . Ž . �Ž .� T g T is a consistent estimator of � � g � . Thus, confidence inter-n n
�' w Ž . Ž .x Ž .vals and tests use the result that n g T y g � r� T g T is asymp-Ž .n n n

totically standard normal. For instance,

� 'g T � z � T g T r nŽ . Ž . Ž .n 	r2 n n

Ž . Ž .is a large-sample 100 1 y 	 % confidence interval for g � .
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�Ž . Ž .When g � s 0, 14.3 is uninformative because the limiting variance
' w Ž . Ž .x Ž .equals 0. In that case, n g T y g � s o 1 , and higher-order terms inn p

Ž .the Taylor series expansion yield the asymptotic distribution see Note 14.1 .

14.1.3 Delta Method for Function of Random Vector

The delta method generalizes to functions of random ®ectors. Suppose that
Ž .�T s T , . . . , T is asymptotically multivariate normal with mean � sn n1 n N

Ž .� Ž .� , . . . , � and covariance matrix �rn. Suppose that g t , . . . , t has a1 N 1 N
Ž .�nonzero differential � s 
 , . . . , 
 at �, where1 N

� g

 s .i � ti ts�

Then,
d �6'n g T y g � N 0, � �� . 14.4Ž . Ž . Ž . Ž .n

Ž . Ž .For large n, g T has distribution similar to the normal with mean g � andn
variance �� ��rn.

Ž .The proof of 14.4 follows from the expansion

�
g T y g � s T y � � q o T y � ,Ž . Ž . Ž . Ž .n n n

2 1r2Ž . Ž . Ž .where z s Ý z denotes the length of vector z. For large n, g T y g �i n
behaves like a linear function of the approximately normal random vector
Ž .T y � . Thus, it itself is approximately normal.n

14.1.4 Asymptotic Normality of Functions of Multinomial Counts

The delta method for random vectors implies asymptotic normality of many
functions of cell counts in contingency tables. Suppose that cell counts
Ž .n , . . . , n have a multinomial distribution with cell probabilities � s1 N
Ž .� Ž .�� , . . . , � . Let n s n q ��� qn , and let p s p , . . . , p denote the1 N 1 N 1 N
sample proportions, where p s n rn.i i

Denote observation i of the n cross-classified in the contingency table by
Ž .Y s Y , . . . , Y , where Y s 1 if it falls in cell j, and Y s 0 otherwise,i i1 i N i j i j

Ž .i s 1, . . . , n. For instance, Y s 0, 0, 1, 0,0, . . . , 0 means that observation 6 is6
in the third cell of the table. Now, since each observation falls in just one cell,
Ý Y s 1 and Y Y s 0 when j � k. Also, p sÝ Y rn, andj i j i j i k j i i j

E Y s P Y s 1 s � s E Y 2 , E Y Y s 0 if j � k .Ž . Ž . Ž .Ž .i j i j j i j i j i k

It follows that

E Y s � and cov Y s � , i s 1, . . . , n ,Ž . Ž .i i
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Ž .where � s � withjk

22� s var Y s E Y y E Y s � 1 y � ,Ž . Ž . Ž .Ž .j j i j i j i j j j

� s cov Y , Y s E Y Y y E Y E Y sy� � for j � k .Ž .Ž . Ž . Ž .jk i j i k i j i k i j i k j k

The matrix � has form

� s diag � y � ��Ž .

Ž .where diag � is the diagonal matrix with the elements of � on the main
diagonal.

Since p is a sample mean of n independent observations, namely

Ýn Yis1 i
p s ,

n
�cov p s diag � y � � rn. 14.5Ž . Ž . Ž .

This covariance matrix is singular, because of the linear dependence Ý p s 1.i
Ž .The multivariate central limit theorem Rao 1973, p. 128 implies

d �6'n p y � N 0, diag � y � � . 14.6Ž . Ž . Ž .

By the delta method, functions of p having nonzero differential at � are
Ž .also asymptotically normal. Let g t , . . . , t be a differentiable function, and1 N

let


 s � gr�� , i s 1, . . . , N ,i i

Ž .denote � gr� t evaluated at t s �. By the delta method 14.4 ,i

d � �6'n g p y g � N 0, � diag � y � � � . 14.7Ž . Ž . Ž . Ž .Ž .

The asymptotic variance equals

22� � 2� diag � � y � � s � 
 y � 
 .Ž . Ž . Ž .Ý Ýi i i i

In Section 3.1.7 we used this formula to derive the large-sample variance of
the sample log odds ratio.

14.1.5 Delta Method for Vector Function of Random Vector

The delta method generalizes further to a ®ector of functions of an asymptot-
Ž . Ž Ž . Ž ..� Ž .ically normal random vector. Let g t s g t , . . . , g t and let � gr� �1 q

denote the q � N Jacobian matrix for which the entry in row i and column j
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Ž .is � g t r� t evaluated at t s �. Then,i j

�d 6'n g T y g � N 0, � gr� � � � gr� � . 14.8Ž . Ž . Ž . Ž . Ž .n

The rank of the limiting normal distribution equals the rank of the asymp-
totic covariance matrix.

Ž .Expression 14.8 is useful for finding large-sample joint distributions. For
Ž . Ž . Ž .instance, from 14.6 , 14.7 , and 14.8 , the asymptotic distribution of several

functions of multinomial proportions has covariance matrix of the form

� �'asymp. cov n g p y g � s � diag � y � � � ,Ž . Ž . Ž .� 4
Ž .where � is the Jacobian � gr� � .

14.1.6 Joint Asymptotic Normality of Log Odds Ratios

Ž .We illustrate formula 14.8 by finding the joint asymptotic distribution of a
set of log odds ratios in a contingency table. We use the log scale because
convergence to normality is more rapid for it.

Ž . Ž .Let g � s log � denote the vector of natural logs of cell probabilities,
for which

y1
� gr� � s diag � .Ž .

' w Ž . Ž .xThe covariance of the asymptotic distribution of n log p y log � is

y1 y1 y1� �diag � diag � y � � diag � s diag � y 11Ž . Ž . Ž . Ž .

where 1 is an N � 1 vector of 1 elements.
For a q � N matrix of constants C, it follows that

d y1 � � �6'n C log p y log � N 0, C diag � C y C11 C . 14.9Ž . Ž . Ž . Ž .

Ž .Now, suppose C log p is a set of sample log odds ratios. Then, each row of C
contains zeros except for two q1 elements and two y1 elements in the

Ž .positions multiplied by the relevant elements of log p to form the given log
Ž .odds ratio. The second term in the covariance matrix in 14.9 is then zero. If

a particular odds ratio uses the cells numbered h, i, j, and k, the variance of
the asymptotic distribution is

y1 y1 y1 y1'asymp. var n sample log odds ratio s � q � q � q � .Ž . h i j k

When two log odds ratios have no cells in common, their asymptotic covari-
ance in the limiting normal distribution equals zero.
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14.2 ASYMPTOTIC DISTRIBUTIONS OF ESTIMATORS OF
MODEL PARAMETERS AND CELL PROBABILITIES

We now derive basic results of large-sample model-based inference for
contingency tables. The delta method is the key tool. The derivations apply to
a single multinomial distribution. They extend directly to products of multi-
nomials, when the parameter space stays fixed as the sample size increases.

Ž .�The observations are counts n s n , . . . , n in N cells of a contingency1 N
table. The asymptotics regard N as fixed and let n sÝn ™ �. We assumei
that n s np has a multinomial distribution with probabilities � s
Ž .�� , . . . , � . The model is1 N

� s � � ,Ž .

Ž .where � � denotes a function that relates � to a smaller number of
Ž .�parameters � s � , . . . , � .1 q

Ž .As � ranges over its parameter space, � � ranges over a subset of the
space of � for N probabilities. Adding components to �, the model becomes
more complex and the space of � that satisfy the model is larger. We use �
and � to denote generic parameter and probability values, and � s0
Ž .� Ž .� Ž .� , . . . , � and � s � , . . . , � s � � to denote true values for a10 q0 0 10 N 0 0
particular application. When the model does not hold, no � exists for which0
Ž .� � s � ; that is, � falls outside the subset of � values that is the range0 0 0

Ž .of � � for the space of possible �. We consider this case in Section 14.3.5.
ˆWe first derive the asymptotic distribution of the ML estimator � of �.

We use that to derive the asymptotic distribution of the model-based ML
ˆŽ . Ž .estimator � s � � of �. The approach follows Rao 1973, Sec. 5e andˆ

Ž .Bishop et al. 1975, Secs. 14.7 and 14.8 . The assumed regularity conditions
are:

1. � is not on the boundary of the parameter space.0

2. All � � 0.i0

Ž .3. � � has continuous first-order partial derivatives in a neighborhood
of � .0

Ž .4. The Jacobian matrix � �r� � has full rank q at � .0

Ž .These conditions ensure that � � is locally smooth and one-to-one at �0
and Taylor series expansions exist in neighborhoods around � and � .0 0
When the Jacobian does not have full rank, often it does with reformulation
of the model using fewer parameters.

14.2.1 Distribution of Model Parameter Estimator

ˆ ˆThe key to deriving the asymptotic distribution of � is to express � as a
linearized function of p. Then the delta method applies, using the asymptotic
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normality of p. The linearization has two steps, first relating p to �, and thenˆ
ˆ� to �.ˆ

The kernel of the multinomial log likelihood is

N N
niL � s log � � s n p log� � .Ž . Ž . Ž .Ł Ýi i i

is1 is1

The likelihood equations are

� L � p �� �Ž . Ž .i i
s n s 0, j s 1, . . . , q. 14.10Ž .Ý

�� � � ��Ž .j i ji

Ž .These depend on the functional form � � used in the model. Note that

�� � � �Ž .i
s � � s 1 s 0. 14.11Ž . Ž . Ž .Ý Ý i�� �� ��j j ji i

ˆ ˆŽ .Let �� r�� represent �� � r�� evaluated at �. Subtracting a commoni j i j
Ž .term from both sides of the jth likelihood equation 14.10 ,

n p y � �� n � y � ��Ž . Ž .ˆi i0 i i i0 i
s , 14.12Ž .Ý Ýˆ ˆ� �ˆ ˆ�� ��i ii ij j

Ž .since the first sum on the right-hand side equals zero from 14.11 .
ˆNext we express � in terms of � usingˆ

�� iˆ� y � s � y �ˆ Ž .Ýi i0 k k 0
��kk

where �� r�� represents �� r�� evaluated at some point � falling be-i k i k
ˆ Ž .tween � and � . Substitution of this into the right-hand side of 14.12 and0 'division of both sides by n yields, for each j,

'n p y � �� 1 �� ��Ž .i i0 i i iˆ's n � y � . 14.13Ž .Ž .Ý Ý Ýk k 0 ž /ˆ ˆ� � ��ˆ ˆ�� ��i i ki k ij j

ˆSome notation lets us express more simply the dependence of � on p. Let
A denote the N � q matrix having elements

�� �Ž .iy1r2a s � .i j i0 �� j0
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The matrix expression for A is

y1r2A s diag � � �r� � , 14.14Ž . Ž . Ž .0 0

ˆŽ . Ž .where � �r� � denotes the Jacobian � �r� � evaluated at � . As �0 0
Ž .converges to � , the term in brackets on the right-hand side of 14.130

� ˆconverges to the element in row j and column k of AA. As � ™ � , the set of0
Ž .equations 14.13 has the form

y1r2� � ˆ' 'A diag � n p y � s AA n � y � q o 1 .Ž . Ž . Ž . Ž .Ž .0 0 0 p

Since the Jacobian has full rank at � , A�A is nonsingular. Thus,0

y1 y1r2� �ˆ' 'n � y � s AA A diag � n p y � q o 1 . 14.15Ž . Ž . Ž . Ž . Ž .Ž .0 0 0 p

ˆ Ž .Now, the asymptotic distribution of p determines that of �. From 14.6 ,
' Ž . w Ž .n p y � is asymptotically normal, with covariance matrix diag � y0 0

� ˆ'x Ž .� � . By the delta method, n � y � is also asymptotically normal, with0 0 0
asymptotic covariance matrix

y1 y1r2 y1r2 y1� � � �AA A diag � � diag � y � � � diag � A AA .Ž . Ž . Ž . Ž . Ž .0 0 0 0 0

Ž . Ž .Using 14.11 and 14.14 , the term subtracted in this expression disappears
because

y1r2 y1r2 y1r2� �� diag � A s � diag � diag � � �r� �Ž . Ž . Ž . Ž .0 0 0 0 0 0

�
� �s 1 � �r� � s �� r� � s 0 .Ž . Ý0 i 0ž /

i

ˆ' Ž .Thus, this asymptotic covariance expression for n � y � simplifies to0
Ž � .y1AA .

In summary, this argument establishes the general result

d y1�6ˆ'n � y � N 0, AA . 14.16Ž . Ž .Ž .0

ˆ Ž .The asymptotic covariance matrix of � depends on � �r� � and hence on0
ˆthe function for modeling � in terms of �. Let A denote A evaluated at the

ˆML estimate �. The estimated covariance matrix is

$ y1
�ˆ ˆˆcov � s AA rn.Ž . Ž .

ˆThe asymptotic normality and covariance of � follows more simply from
general results for ML estimators. However, those results require stronger
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Ž .regularity conditions Rao 1973, p. 364 than the ones assumed here. Suppose
Ž .that observations are independent from f y; � , some probability mass func-

ˆtion. The ML estimator � is efficient, in the sense that

d y16ˆ'n � y � N 0, IIIII ,Ž .Ž .

Ž .where IIIII is the information matrix for a single observation. The j, k
element of IIIII is

2� log f y, � � log f y, � � log f y, �Ž . Ž . Ž .
yE s E � .ž /�� �� �� ��j k j k

When f is the probability of a single observation having multinomial proba-
� Ž . Ž .4bilities � � , . . . , � � , this element of IIIII equals1 N

N N� log � � � log � � �� � �� � 1Ž . Ž . Ž . Ž .Ž . Ž .i i i i
� � s .Ž .Ý Ýi�� �� �� �� � �Ž .j k j k iis1 is1

Ž . � y1This is the j, k element of AA. Thus the asymptotic covariance is IIIII s
Ž � .y1AA .

For results of this section to apply, a ML estimator of � must exist and be
a solution of the likelihood equations. This requires the following strong
identifiability condition: For every � � 0, there exists a  � 0 such that if

� y � � � , then � � y � �  . This condition implies a weaker oneŽ .0 0
that two � values cannot have the same � value. When strong identifiability
and the other regularity conditions hold, the probability an ML estimator is a
root of the likelihood equations converges to 1 as n ™ �. That estimator has
the asymptotic properties given above of a solution of the likelihood equa-

Ž . Ž .tions. For proofs, see Birch 1964a and Rao 1973, pp. 360�362 .

14.2.2 Asymptotic Distribution of Cell Probability Estimators

The asymptotic distribution of the model-based estimator � follows from theˆ
Taylor-series expansion

� �
y1r2ˆ ˆ� s � � s � � q � y � q o n . 14.17Ž . Ž . Ž .Ž .ˆ Ž .0 0 p� �0

ˆ y1r2Ž . Ž .The size of the remainder term follows from � y � s O n . Now0 p
ˆ'Ž . Ž .� � s � , and n � y � is asymptotically normal with asymptotic co-0 0 0
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Ž � .y1variance AA . By the delta method,

�� � � �d y1�6'n � y � N 0, AA . 14.18Ž . Ž .Ž .ˆ 0 � � � �0 0

ˆŽ .When the model holds with � having q � N y 1 elements, � s � � isˆ
more efficient than the sample proportion p for estimating �. More gener-

Ž . Ž .ally, for estimating a smooth function g � of �, g � has smaller asymp-ˆ
Ž .totic variance than g p . We next derive this result, discussed in Section

6.4.5. The derivation deletes the Nth component from p and �, so theirˆ
Ž .covariance matrices are positive definite Problem 14.16 . The Nth propor-

tion is linearly dependent on the first N y 1 since they sum to 1. Let � s
� 'Ž . Ž . Ž .diag � y � � denote the N y 1 � N y 1 covariance matrix of n p.

The inverse of � is

y1 �y1� s diag � q 11� , 14.19Ž . Ž .N

which can be verified by evaluating ��y1 and showing that it equals the
identity matrix.

Ž . Ž .�Let � gr� � s � gr�� , . . . , � gr�� , evaluated at � s � . By the0 1 Ny1 0
delta method,

� �
� g � g � g � g' 'asymp. var n g p s cov n p s �Ž . Ž .ž / ž /� � � � � � � �0 0 0 0

and

�
� g � g' 'Asymp. var n g � s Asymp. cov n �Ž .ˆ ˆŽ .ž /� � � �0 0

� �
� g � � � � � gˆ's Asymp. cov n � .Ž .ž / ž /� � � � � � � �0 0 0 0

Ž . Ž .Using 14.11 and 14.19 yields

y1�y1 y1�ˆ'Asymp. cov n � s AA s � �r� � diag � � �r� �Ž . Ž . Ž . Ž .Ž . 0 0 0

y1� y1s � �r� � � � �r� � .Ž . Ž .0 0

Ž . y1Since � is positive definite and � �r� � has rank q, � and0
wŽ .� y1Ž .xy1� �r� � � � �r� � are also positive definite.0 0
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' 'w Ž .x w Ž .xTo show that asymp. var n g p G asymp. var n g � , we show thatˆ
� � �y1

� g � � � � � � � � � g
y1� y � G 0.½ 5ž / ž / ž /� � � � � � � � � � � �0 0 0 0 0 0

But this quadratic form is identical to
� y1Y y B� � Y y B�Ž . Ž .

Ž . Ž . Ž � y1 .y1 � y1where Y s � � gr� � , B s � �r� � , and � s B � B B � Y. The0 0
result then follows from the positive definiteness of �y1.

Ž .This proof is based on one given by Altham 1984 . Her proof uses
standard properties of ML estimators. It applies whenever regularity condi-
tions hold that guarantee those properties. The proof applies not only to
categorical data but to any situation in which a model describes the depen-
dence of a set of parameters � on some smaller set �.

14.3 ASYMPTOTIC DISTRIBUTIONS OF RESIDUALS AND
GOODNESS-OF-FIT STATISTICS

We next study the distribution of Pearson X 2 and likelihood-ratio G2

Ž .goodness-of-fit statistics for the multinomial model � s � � . We first
derive the asymptotic joint distribution of the sample proportions p and
model-based estimator �. This distribution determines large-sample distribu-ˆ
tions of statistics that depend on both p and �. For instance, it determinesˆ
the asymptotic joint distribution of the Pearson residuals, which compare p
with �. Deriving the large-sample chi-squared distribution for X 2, which isˆ
the sum of squared Pearson residuals, is then straightforward. We also show
that X 2 and G2 are asymptotically equivalent, when the model holds. Our

Ž . Ž .presentation borrows from Bishop et al. 1975, Chap 14 , Cox 1984 , Cramer´
Ž . Ž .1946, pp. 432�433 , and Rao 1973, Sect. 6b .

14.3.1 Joint Asymptotic Normality of p and �̂

We first express the joint dependence of p and � on p, in order to show theˆ
joint asymptotic normality of p and �. Letˆ

1r2 y1 y1r2� �D s diag � A AA A diag � .Ž . Ž . Ž .0 0

Ž . Ž .From 14.15 and 14.17 ,

� �
y1r2ˆ� y � s � y � q o nŽ .ˆ Ž .0 0 p� �0

s D p y � q o ny1r2 .Ž . Ž .0 p
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Therefore,

p y �0 I' 'n s n p y � q o 1 ,Ž . Ž .0 pž /ž / D� y �ˆ 0

where I is a N � N identity matrix. By the delta method,

p y�0 d 6'n N 0, �* 14.20Ž . Ž .ž /� y �ˆ 0

where

� � �diag � y � � diag � y � � DŽ . Ž .0 0 0 0 0 0
�* s . 14.21Ž .� � �ž /D diag � y � � D diag � y � � DŽ . Ž .0 0 0 0 0 0

'Ž .The two matrix blocks on the main diagonal of �* are cov n p and asymp.
'Ž .cov n � , derived previously. The new information here is that asymp.ˆ

� �' 'Ž . w Ž . xcov n p, n � s diag � y � � D .ˆ 0 0 0

14.3.2 Asymptotic Distribution of Pearson and Standardized Residuals

� 4 2 2For cell counts n the Pearson statistic is X sÝe , wherei i

'n y � n p y �Ž .ˆ ˆi i i i
e s s .i 1r2 1r2� �ˆ ˆi i

Ž .�We next derive the asymptotic distribution of e s e , . . . , e , which is a1 N
diagnostic measure of lack of fit. For Poisson models it is the Pearson
residual. Dividing it by its standard error gives the standardized residual. The
distribution of e is also helpful in deriving the distribution of X 2.

The residuals e are functions of p and �, which are jointly asymptoticallyˆ
Ž .normal from 14.20 . To use the delta method, we calculate

y1r2 y3r2' '� e r� p s n � , � e r�� sy n p q � r2�Ž .ˆ ˆ ˆ ˆi i i i i i i i

� e r� p s � e r�� s 0 for i � j.ˆi j i j

That is,

� e y1r2's n diag � andŽ .ˆ
� p

� e y3r21 'sy n diag p q diag � diag � . 14.22Ž . Ž . Ž . Ž .ˆ ˆŽ .2� �̂

y1r2' Ž .Evaluated at p s � and � s � , these matrices equal n diag � andˆ0 0 0
�y1r2 1r2' Ž . Ž . Ž . wy n diag � . Using 14.21 , 14.22 , and A � s 0 which follows0 0
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Ž .xfrom 14.11 , the delta method implies that

d y1� � �1r2 1r26e N 0, I y � � y A AA A . 14.23Ž . Ž .Ž .0 0

Ž .The limiting distribution has form N 0, I y Hat , where Hat is the hat
Ž .matrix Section 4.5.5 . Although asymptotically normal, e behaves less vari-

ably than standard normal random variables. The standardized Pearson
Ž .residual Haberman 1973a divides e by its estimated standard error. This

statistic, which is asymptotically standard normal, equals

ei
r s , 14.24Ž .i 1r2

jkˆ ˆ1 y � yÝ Ý 1r� �� r�� �� r�� ®Ž .ˆ ˆ ˆŽ .ž /i j k i i j i k

jk �̂ˆ y1Ž .where ® denotes the element in row j and column k of AA . Theˆ
ˆ ˆ'denominator of r is 1 y h , where the leverage h for observation ii i i

Ž .estimates the ith diagonal element of the hat matrix. This simplifies to 3.13
for testing independence in two-way tables.

14.3.3 Asymptotic Distribution of Pearson Statistic

The proof that the Pearson X 2 statistic has an asymptotic chi-squared
distribution uses the following relationship between normal and chi-squared

Ž .distributions Rao 1973, p. 188 :

Let X be multivariate normal with mean � and covariance matrix B.
Ž .� Ž .A necessary and sufficient condition for X y � C X y � to have a chi-squared

distribution is BCBCB s BCB. The degrees of freedom equal the rank of CB.

When B is nonsingular, the condition simplifies to CBC s C.
The Pearson statistic relates to e by X 2 s e�e, so we apply this result by

1r2 1r2 � Ž � .y1 �4identifying X with e, � s 0, C s I, and B s I y � � y A AA A .0 0
Ž �. Ž . � � 4 2Since C s I, the condition for X y � C X y � s e e s X to have a

chi-squared distribution simplifies to BBB s BB. A direct computation using
A� �1r2 s 0 shows that B is idempotent, so the condition holds. Since e is0
asymptotically multivariate normal, X 2 is asymptotically chi-squared.

For symmetric idempotent matrices, the rank equals the trace. The trace
of I is N; the trace of �1r2 �1r2 � equals the trace of �1r2 � �1r2 sÝ� s 1,0 0 0 0 i0

Ž � .y1 � Ž � .y1Ž � .which is 1; the trace of A AA A equals the trace of AA AA s identity
matrix of size q � q, which is q. Thus, the rank of B s CB is N y q y 1, and
the asymptotic chi-squared distribution has df s N y q y1.

Ž .This result, due to Fisher 1922 , is remarkably simple. When the sample
size is large, the distribution of X 2 does not depend on � or the model0
form. It depends only on the difference between the dimension of �, which
is N y 1, and the dimension of �. With q s 0 parameters, X 2 is Pearson’s
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Ž . Ž .1900 statistic 1.15 for testing that multinomial probabilities equal certain
Ž .specified values, and df s N y 1 as Pearson claimed. Watson 1959 showed

that the same result holds for the asymptotic conditional distribution, given a
sufficient statistic for nuisance parameters.

14.3.4 Asymptotic Distribution of Likelihood-Ratio Statistic

When the model holds, the likelihood-ratio statistic G2 is asymptotically
equivalent to X 2 as n ™ �. To show this, we express

n p y �̂i i i2G s 2 n log s 2n p log 1 qÝ Ýi i ž /� �ˆ ˆi ii i

and apply the expansion

2 3log 1 q x s x y x r2 q x r3 y ��� for x � 1.Ž .
Ž .We identify x with p y � r� , which converges in probability to 0 whenˆ ˆi i i

the model holds. For large n,

2p y � 1 p y �Ž .ˆ ˆi i i i2G s 2n � q p y � y q ���Ž .ˆ ˆÝ i i i 2ž /� 2 �ˆ ˆi ii

2 21 p y � p y �Ž . Ž .ˆ ˆi i i i 3
s 2n p y � y q q O p y �Ž . Ž .ˆ ˆÝ i i p i iž /2 � �ˆ ˆi ii

2p y �Ž .ˆi i y3r2 2 y1r2 2s n q 2nO n s X q O n s X q o 1 ,Ž . Ž . Ž .Ý p p p�̂ ii

Ž . Ž . Ž . Ž .since Ý p y � s 0 and p y � s p y � y � y � , both of whichˆ ˆ ˆi i i i i i i i
Ž y1r2 . 2are O n . Thus, when the model holds, the difference between X andp

G2 converges in probability to 0. As a consequence, G2, like X 2, has an
asymptotic chi-squared distribution with df s N y q y 1.

The parameter value that maximizes the likelihood is the one that mini-
mizes G2. To show this, we let

G2 � ; p s 2n p log pr� .Ž . Ž .Ý i i i

The kernel of the multinomial log likelihood is

L � s n p log� �Ž . Ž .Ý i i

pi
syn p log q n p log pÝ Ýi i i� �Ž .i

1
2sy G � � ; p q n p log p .Ž .Ž . Ý i iž /2
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The second term in the last expression does not depend on �, so maximizing
Ž . 2L � is equivalent to minimizing G with respect to �.

A fundamental result for G2 concerns comparisons of nested models.
Suppose that model M is a special case of model M . Let q and q denote0 1 0 1

� 4 � 4the numbers of parameters in the two models. Let � and � denote MLˆ ˆ0 i 1 i
estimators of cell probabilities for the two models. Then

G2 M y G2 M s 2n p log � r�Ž . Ž . ˆ ˆŽ .Ý0 1 i 1 i 0 i

Ž .has the form of y2 log likelihood ratio for testing that M holds against the0
alternative that M holds. Theory for likelihood-ratio tests suggests that1

2Ž .when the simpler model holds, the asymptotic distribution of G M y0
2Ž .G M is chi-squared with q y q degrees of freedom. For details, see1 1 2

Ž . Ž . ŽBishop et al. 1975, pp. 525�526 , Haberman 1974a, p. 108 , and Rao 1973,
. 2Ž � . Ž .pp. 418�419 . The statistic X M M defined in 9.4 is a quadratic0 1

2 Ž .approximation for the G difference. Haberman 1977a noted that these
tests can perform well even for large, sparse tables, as long as q y q is1 0
small compared to the sample size and no expected frequency has larger
order of magnitude than the others.

14.3.5 Asymptotic Noncentral Distributions

Results in this chapter assume that a certain parametric model holds. In
practice, any unsaturated model almost surely does not hold perfectly, so one
might question the scope of these results. This is not problematic if we regard
models merely as convenient approximations for reality. For instance, the

ˆML estimator � converges to a value � that describes the best fit of the0
chosen model to reality. In this sense, inferences for � give us information
about a useful approximation for reality. Similarly, model-based inferences
about cell probabilities are inconsistent for the true probabilities when the
model does not hold; nevertheless, those inferences are consistent for de-
scribing a useful smoothing of reality.

For goodness-of-fit statistics, a relevant distinction exists between limiting
behavior when the model holds and when it does not hold. When the model
holds, we’ve seen X 2 and G2 have a limiting chi-squared distribution, and
the difference between them disappears as n increases. When the model
does not hold, X 2 and G2 tend to grow unboundedly as n increases, and

2 2X y G need not go to zero. One method for obtaining proper limiting
distributions considers a sequence of situations � for which the lack of fitn

Ž .diminishes as n increases. Specifically, the model is � s f � , but in reality

'� s f � q �r n . 14.25Ž . Ž .n

Ž .The best fit of the model to the population has ith probability equal to f � ,i'but the true value differs from that by  r n .i
Ž . 2For this representation, Mitra 1958 showed that the Pearson X has a

limiting noncentral chi-squared distribution, with df s N y q y 1 and non-
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centrality parameter

2n � y f �Ž .ni i
� s n .Ý f �Ž .iis1

This has the form of X 2, with the sample values p and � replaced byˆi i
Ž .population values � and f � . Similarly, the noncentrality of theni i

likelihood-ratio statistic has the form of G2, with the same substitution.
Ž . 2Haberman 1974a, pp. 109�112 showed that under certain conditions G

and X 2 have the same limiting distribution; that is, their noncentrality values
converge to a common value as n ™ �.

Ž .Representation 14.25 means that for large n, the noncentral chi-squared
approximation is valid when the model is just barely incorrect. In practice, it

Ž .is often reasonable to adopt 14.25 for fixed, finite n to approximate the
2 Ž .distribution of X , even though 14.25 would not be plausible as we obtain

more data. The alternative representation

� s f � q � 14.26Ž . Ž .

Ž .in which � differs from f � by a fixed amount as n ™ � may seem more
Ž .natural. In fact, this is more appropriate than 14.25 for proving the test to

Žbe consistent i.e., for convergence to 1 of the probability of rejecting the
. Ž .hypothesis that the model holds . For 14.26 , however, the noncentrality

parameter � grows unboundedly as n ™ �, and a proper limiting distribution
does not result for X 2 and G2.

Ž . Ž .When the model holds, � s 0 in either representation 14.25 or 14.26 .
Ž . Ž .That is, f � s � � , � s 0, and the results in Sections 14.3.3 and 14.3.4

apply.

14.4 ASYMPTOTIC DISTRIBUTIONS FOR
LOGIT rrrrr LOGLINEAR MODELS

For loglinear models, formulas in Section 8.6 for the asymptotic covariance
ˆmatrices of � and � are special cases of ones derived in Section 14.2. Weˆ

present these for the multinomial form of the models, which relates directly
to that section. Then we discuss the connection to Poisson loglinear models.

To constrain probabilities to sum to 1, we express loglinear models for
multinomial sampling as

�� s exp X� r 1 exp X� 14.27Ž . Ž . Ž .
� Ž .where X is a model matrix and 1 s 1, . . . , 1 . Letting x denote row i of X,i

exp x �Ž .i
� s � � s .Ž .i i Ý exp x �Ž .k k
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14.4.1 Asymptotic Covariance Matrices

A model affects covariance matrices through the Jacobian. Since

�� Ý exp x � exp x � x y exp x � Ý x exp x �Ž . Ž . Ž . Ž .i k k i i j i k k j k
s 2�� Ý exp x �Ž .j k k

s � x y � x � ,Ýi i j i k j k
k

the matrix of these elements has the form

�� �r� � s diag � y � � X.Ž .

Ž . Ž .Using this with 14.14 and 14.16 , the information matrix at � is0

� y1�AA s � �r� � diag � � �r� �Ž . Ž . Ž .0 0 0

� y1� � �s X diag � y � � diag � diag � y � � XŽ . Ž . Ž .0 0 0 0 0 0 0

� �s X diag � y � � X.Ž .0 0 0

ˆThus, for multinomial loglinear models, � is asymptotically normally
distributed with estimated covariance matrix

$ y1� �ˆcov � s X diag � y � � X rn. 14.28Ž . Ž .Ž . � 4ˆ ˆ ˆ

Ž .Similarly, from 14.23 the estimated asymptotic covariance matrix of � isˆ
$ y1� � �cov � s diag � y � � X X diag � y � � XŽ . Ž . Ž .� 4ˆ ˆ ˆ ˆ ˆ ˆ ˆ

� � �X diag � y � � n.Ž .ˆ ˆ ˆ

Ž .From 14.23 , the Pearson residuals e are asymptotically normal with

� y1� �1r2 1r2asymp. cov e s I y � � y A AA AŽ . Ž .Ž .0 0

� y1r2 �1r2 1r2s I y � � y diag � diag � y � � XŽ . Ž .Ž .0 0 0 0 0 0

�
y1� � �X diag � y � � X X� 4Ž .0 0 0

�
y1r2�diag � y � � diag � .Ž . Ž .0 0 0 0

14.4.2 Connection with Poisson Loglinear Models

This book expressed loglinear models in terms of Poisson expected cell
Ž .�frequencies 	 s � , . . . , � , using formulas of the form1 N

log 	 s X � . 14.29Ž .a a
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The model matrix X and parameter vector � in this formula are slightlya a
Ž .different from X and � in multinomial model 14.27 . The Poisson expression

Ž . Ž .14.29 does not have constraints on 	. For multinomial model 14.27 ,
Ý � s n is fixed, and � s 	rn satisfiesi i

�log 	 s log n� s X� q log n y log 1 exp X� 1Ž .Ž .
s X� q 1�

Ž � Ž ..x Ž .where � s log n y log 1 exp X� . In other words, multinomial model 14.27
Ž .implies Poisson model 14.29 with

��w xX s 1: X and � s �, � .Ž .a a

The columns of X in the multinomial representation must be linearly
independent of 1; that is, the parameter �, which relates to the total sample
size, does not appear in �. The dimension of � is 1 less than the number of
parameters reported in this text for Poisson loglinear models. For instance,
for the saturated model, � has N y 1 elements for the multinomial represen-
tation, reflecting the sole constraint on � of Ý� s 1.i

NOTES

Section 14.1: Delta Method

14.1. For detailed discussion of large-sample theory including the delta method, see Bishop
Ž . Ž .et al. 1975, Chap. 14 and Sen and Singer 1993 .

14.2. In applying the delta method to a function g of an asymptotically normal random
Ž .vector T , suppose that the first-order, . . . , a y 1 st-order differentials of the functionn

are zero at �, but the ath-order differential is nonzero. A generalization of the delta
ar2 w Ž . Ž .xmethod implies that n g T y g � has limiting distribution involving products ofn

order a of components of a normal random vector. When a s 2, the limiting distribu-
tion is a quadratic form in a multivariate normal vector, which often relates to a

2Ž �Ž .. 2chi-squared distribution; in the univariate case, it is � g � r2 times a � variable1
Ž .Casella and Berger 2001, p. 244 .

Resampling methods such as the jackknife and the bootstrap are alternative tools
for estimating standard errors and obtaining confidence intervals. They can be helpful
when use of the delta method is questionable�for instance, for small samples, highly

Ž .sparse data, or complex sampling designs. For details, see Davison and Hinkley 1997 ,
Ž . Ž . Ž .Fay 1985 , Parr and Tolley 1982 , and Simonoff 1986 .

Section 14.3: Asymptotic Distributions of Residuals and Goodness-of-Fit Statistics

Ž . 1r214.3. If Y is Poisson with E Y s �, then for large � the delta method implies Y is
1approximately normal with standard deviation . This motivates an alternative good-2

2Ž .ness-of-fit statistic, the Freeman�Tukey statistic, FT s 4Ý y y � . When the' 'ˆ ii
2 Ž . Ž .model holds, FT y X is also o 1 as n ™ �. See Bishop et al. 1975, p. 514 forp

details.
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Results of this chapter do not apply when the number of cells N grows as n ™ �, or
Ž .when different expected frequencies grow at different rates. Haberman 1988 showed

the consistency of X 2 breaks down with non-standard asymptotics.
Ž .14.4. Drost et al. 1989 showed noncentral approximations using other sequences of alterna-

Ž . Ž .tives than the local and fixed ones 14.25 and 14.26 .

PROBLEMS

14.1 Explain why:
yc Ž .a. If c � 0, n s o 1 as n ™ �.

Ž .b. If c � 0, cz has the same order as z ; that is, o cz is equivalentn n n
Ž . Ž . Ž .to o z and O cz is equivalent to O z .n n n

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .c. o y o z s o y z , O y O z s O y z , o y O z sn n n n n n n n n n
Ž .o y z .n n

14.2 If X 2 has an asymptotic chi-squared distribution with fixed df as
2 Ž .n ™ �, then explain why X rn s o 1 .p

Ž .14.3 a. Use Tchebychev’s inequality to show that if E X s � andn n
Ž . 2 Ž . Ž .var X s � � �, then X y � s O � .n n n n p n

Ž .b. Suppose that Y , . . . , Y are independent with E Y s � and1 n i
2Ž . Ž . Ž .var Y s � for i s 1, . . . , n. Let Y s Ý Y rn. Apply part ai n i i

y1r2Ž .to show that Y y � s O n .n p

14.4 Let Y be a Poisson random variable with mean �.
a. For a constant c � 0, show that

1 y2E log Y q c s log � q c y r� q O �Ž . Ž .Ž .2

Ž Ž . w Ž . x .Hint: Note that log Y q c s log � q log 1 q Y q c y � r� .
b. Cell counts in a 2 � 2 table are independent Poisson random

Ž .variables. Use part a to argue that to reduce bias in estimating
the log odds ratio, a sensible estimator is the sample log odds ratio

1after adding to each cell.2

14.5 Let p denote the sample proportion for n independent Bernoulli
w Ž .x1r2trials. Find the asymptotic distribution of the estimator p 1 y p

of the standard deviation. What happens when � s 0.5?

14.6 Suppose that T has a Poisson distribution with mean � s n�, forn
fixed � � 0. For large n, show that the distribution of log T isn

Ž . y1 wapproximately normal with mean log � and variance � . Hint: By
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Ž .the central limit theorem, T rn is approximately N �, �rn forn
xlarge n.

14.7 a. Refer to Problem 14.6. If T is Poisson, show T has asymptotic'n n
1variance .4

b. For a binomial sample with n trials and sample proportion p,
y1Ž . w'show the asymptotic variance of sin p is 1r4n. This transfor-

Ž .mation and the one in part a are ®ariance stabilizing, producing
variates with asymptotic variances that are the same for all values
of the parameter. Traditionally, these transformations were em-
ployed to make ordinary least squares applicable to count data.

xSee Cochran 1940 for discussion and ML analyses.

Ž � 4.14.8 For a multinomial n, � distribution, show the correlation betweeni
w Ž .Ž .x1r2p and p is y � � r 1 y � 1 y � . What does this equal wheni j i j i j

� s 1 y � and � s 0 for k � i, j?i j k

14.9 An animal population has N species, with population proportion � i
Ž .of species i. Simpson’s index of ecological di®ersity Simpson 1949 is

Ž . 2 w Ž . xI � s 1 yÝ� . Rao 1982 surveyed diversity measures.i

a. Two animals are randomly chosen from the population, with
Ž .replacement. Show I � is the probability they are different

species.
b. For proportions p for a random sample, show that the estimated

Ž .asymptotic standard error of I p is
1r2

2
3 22 p y p n .Ý Ýi iž /½ 5

i i

� 414.10 Let Y be independent Poisson random variables. Show by the deltai
Ž . 2method that the estimated asymptotic variance of Ýa log Y is Ýa ry .i i i i

wThis formula applies to ML estimators of parameters for the satu-
� Ž .4 Ž .rated loglinear model, which are contrasts of log y . Formula 14.9i

yields the asymptotic covariance structure of such estimators; see Lee
Ž . x1977 .

14.11 Assuming two independent binomial samples, derive the asymptotic
Ž .standard error of the log relative risk Section 3.1.4 .

14.12 Refer to Problem 3.27. The sample size may need to be quite large
for the sampling distribution of � to be approximately normal,ˆ

1ˆ� � wŽ .especially if � is large. The Fisher-type transform � s log 1 q � rˆ2
Ž .x Ž1 y � Agresti 1984, pp. 166�167, 177; O’Gorman and Woolsonˆ

.1988 converges more quickly to normality.
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ˆa. Show that the asymptotic variance of � equals the asymptotic
Ž 2 .y2variance of � multiplied by 1 y � .ˆ

b. Explain how to construct a confidence interval for � and use it to
obtain one for � .

1ˆ Ž .c. Show that � s log CrD . For 2 � 2 tables, show that this is half2

the log odds ratio.

2Ž . Ž .2 2Ž . 2 214.13 Let 
 T sÝ T y � r� . Then 
 p s X rn, where X isi i i0 i0
Ž .the Pearson statistic 1.15 for testing H : � s � , i s 1, . . . , N, and0 i i0

2Ž .n
 � is the noncentrality for that test when � is the true value.
Under H , why does the delta method not yield an asymptotic normal0

2Ž . Ž .distribution for 
 p ? See Note 14.2.

Ž .14.14 In an I � J contingency table, let � denote local odds ratio 2.10 ,i j
ˆand let � denote its sample value.i j

y1ˆ ˆ' 'Ž . wa. Show that asymp. cov n log � , n log � s y � qi j iq1, j iq1, j
y1 x� .iq1, jq1

y1ˆ ˆ' 'Ž .b. Show that asymp. cov n log � , n log � s � .i j iq1, jq1 iq1, jq1
ˆ ˆc. When � and � use mutually exclusive sets of cells, show thati j hk

ˆ ˆ' 'Ž .asymp. cov n log � , n log � s 0.i j hk

ˆd. State the asymptotic distribution of log � .i j

Ž . � 414.15 For loglinear model XY, XZ, YZ , ML estimates of � and hencei jk
the X 2 and G2 statistics are not direct. Alternative approaches may
yield direct analyses. For 2 � 2 � 2 tables, find a statistic for testing
the hypothesis of no three-factor interaction, using the delta method

ˆwith the asymptotic normality of log� , where111

p p rp p111 221 121 211
�̂ s .111 p p rp p112 222 122 212

Ž . �14.16 Refer to Section 14.2.2, with � s diag � y � � the covariance
�' Ž .matrix of n p , . . . , p . Let1 Ny1

c with probability � , i s 1, . . . , N y 1i iZ s ½ 0 with probability �N

Ž .�and let c s c , . . . , c .1 Ny1

Ž . � Ž 2 . � Ž . Ž . �a. Show that E Z s c �, E Z s c diag � c, and var Z s c �c.
Ž .b. Suppose that at least one c � 0, and all � � 0. Show var Z � 0,i i

and deduce that � is positive definite.
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Ž .�c. If � s � , . . . , � , so � is N � N, prove that � is not positive1 N
definite.

14.17 Consider the model for a 2 � 2 table, � s � 2, � s � s11 12 21
Ž . Ž .2 Ž� 1 y � , � s 1 y � , where � is unknown Problems 3.31 and22

.10.34 .
Ž .a. Find the matrix A in 14.14 for this model.

ˆ Žb. Use A to obtain the asymptotic variance of � . As a check, it is
simple to find it directly using the inverse of yE� 2Lr�� 2, where

.L is the log likelihood. For which � value is the variance maxi-
ˆmized? What is the distribution of � if � s 0 or � s 1?

'c. Find the asymptotic covariance matrix of n �.ˆ
d. Find df for testing fit using X 2.

14.18 Refer to the model for the calf data in Section 1.5.6. Obtain the
asymptotic variance of � .ˆ

14.19 Justify the use of estimated asymptotic covariance matrices. For
ˆ ˆinstance, for large samples, why is A�A close to A�A?

� 414.20 Cell counts Y are independent Poisson random variables, withi
Ž .� s E Y . Consider the Poisson loglinear modeli i

log 	 s X � , where 	 s � , . . . , � .Ž .a a 1 N

Using arguments similar to those in Section 14.2, show that the
ˆlarge-sample covariance matrix of � can be estimated bya

w � Ž . xy1X diag 	 X , where 	 is the ML estimator of 	.ˆ ˆa a

14.21 For a given set of parameter constraints, show that weak identifiabil-
ity conditions hold for the independence loglinear model for a two-way
table; that is, when two values for � give the same �, those parame-
ter vectors must be identical.

Ž .14.22 Use the delta method, with derivatives 14.22 , to derive the asymp-
Ž .totic covariance matrix in 14.23 for residuals. Show that this matrix

is idempotent.

14.23 In some situations, X 2 and G2 take very similar values. Explain the
Ž . Ž .joint influence on this event of a whether the model holds, b

Ž .whether the sample size n is large, and c whether the number of
cells N is large.
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Ž .14.24 Show X and � in multinomial representation 14.27 for the indepen-
dence model for an I � J table. By contrast, show X for thea

Ž .corresponding Poisson loglinear model 14.29 .

$
Ž . Ž . Ž .14.25 Using 14.18 and 14.28 , derive the asymptotic cov � for a multino-ˆ

mial loglinear model.

14.26 Consider the ML estimator � s p p of � for the independenceˆ i j iq qj i j
Ž .model, when that model does not hold. Show that E p p siq qj

Ž .� � n y 1 rn q � rn. To what does � converge as n in-ˆiq qj i j i j
creases?

14.27 Let � denote a generic measure of association. For K independent
ˆ� 4 Ž .multinomial samples of sizes n , suppose that n � y �'k k k k

d 26 Ž .N 0, � as n ™ �. A summary measure isk k

2 ˆÝ n r� �ˆŽ .k k k k
� s .2Ý n r�̂Ž .k k k

2 2 2w Ž .xa. Show that Ý z s V q � r� � , whereˆk k

2
y11r2ˆ ˆn � y � n � nž /k k k k k2V s , z s , � � s .ˆ Ž .Ý Ýk2 2ž /�� �ˆˆ ˆkk kk k

b. Suppose that n ™ � with n rn ™ � � 0, k s 1, . . . , K. State thek k
asymptotic chi-squared distribution for each component in the

Ž .partitioning in part a . Indicate the hypothesis that each tests.
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Alternative Estimation Theory
for Parametric Models

Ž .In this book we have used the maximum likelihood ML approach to
inference. This is by far the most common approach for categorical data
analysis. Other paradigms have been used, however. In this chapter we
discuss some of them. These methods have similar asymptotic properties as
maximum likelihood, so the large-sample theory of Chapter 14 applies also to
them.

In Section 15.1 we discuss weighted least squares for fitting models for
categorical data. This and related quasi-likelihood methods introduced in
Sections 4.7 and 11.4 are sometimes simpler to apply than ML.

The Bayesian paradigm is increasingly popular as computations become
easier to implement. A full discussion of modern developments with this
approach is beyond our scope, but in Section 15.2 we present Bayesian
methods of estimating cell probabilities in a contingency table. Four other
methods of estimation for categorical data are described in the final section.

15.1 WEIGHTED LEAST SQUARES FOR CATEGORICAL DATA

Ž .Weighted least squares WLS is an extension of ordinary least squares that
permits responses to be correlated and to have nonconstant variance. Famil-
iarity with the WLS method is useful because:

1. WLS computations have a standard form that is simple to apply for a
wide variety of models.

2. Algorithms for calculating ML estimates often consist of iterative use of
WLS. An example is the Fisher scoring method for generalized linear

Ž .models Section 4.6.3 .
3. When the model holds, WLS and ML estimators are asymptotically

Ž .equivalent, both falling in the class of best asymptotically normal BAN

600
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estimators. For large samples, the estimators are approximately nor-
mally distributed around the parameter value, and the ratio of their
variances converges to 1.

Ž .Grizzle, Starmer, and Koch 1969 popularized WLS for categorical data
analyses. In honor of them, WLS for such analyses is often called the GSK
method. This section summarizes the ingredients of this approach.

15.1.1 Notation and Preliminaries for WLS Approach

For a response variable Y with J categories, consider multinomial samples of
sizes n , . . . , n at I levels of an explanatory variable or combinations of1 I

Ž � � .�levels of several explanatory variables. Let � s � , . . . , � , where1 I

�
� s � , � , . . . , � with � s 1Ž . Ýi 1 � i 2 � i J � i j � i

j

denotes the conditional distribution of Y at level i. Let p denote correspond-
ing sample proportions, with V their IJ � IJ covariance matrix. When the I
samples are independent,

V 01

V2
.V s . .

0 VI

From Section 14.1.4, the covariance matrix of n p is' i i

� 1 y � y� � ��� y� �Ž .1 � i 1 � i 1 � i 2 � i 1 � i J � i

y� � � 1 y � ��� y� �Ž .2 � i 1 � i 2 � i 2 � i 2 � i J � i
. . .n V s .i i . . .. . .

y� � y� � ��� � 1 y �Ž .J � i 1 � i J � i 2 � i J � i J � i

Ž .Each set of proportions has J y 1 linearly independent elements.
Ž .Let F be a vector of u F I J y 1 response functions

�
F � s F � , . . . , F � .Ž . Ž . Ž .1 u

The WLS approach applies to linear models for F of form

F � s X� , 15.1Ž . Ž .
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where � is a q � 1 vector of parameters and X is a u � q model matrix of
known constants having rank q. From Section 8.5.4, loglinear and logit

Ž . Ž .response functions are special cases of F � s C log A� for certain matri-
ces C and A.

Ž .Let F p denote the sample response functions. We assume that F has
continuous second-order partial derivatives in an open region containing �.
This assumption enables the delta method to determine the large-sample

Ž . Ž .normal distribution for F p . The asymptotic covariance matrix of F p
depends on the u � IJ matrix

� F �Ž .k
Q s

�� j � i

Ž .for k s 1, . . . , u and all IJ combinations i, j . Linear response models have
Ž .response functions of form F � s A� for a matrix of known constants A, in

Ž . Ž .which case Q s A. For the generalized loglinear model F � s C log A�
Ž . w Ž .xy1 wrecall Sections 8.5.4 and 11.2.5 , Q s C diag A� A. See Magnus and

xNeudecker 1988 for matrix differential calculus. By the multivariate delta
Ž . Ž .method Section 14.1.5 , the asymptotic covariance matrix of F p is

V s QVQ� .F

ˆLet V denote the sample version of V , substituting sample proportions in QF F
and V. For subsequent formulas, this matrix must be nonsingular.

15.1.2 Inference Using the WLS Approach to Model Fitting

Ž .For the general model 15.1 , the WLS estimate of � is

y1� �y1 y1ˆ ˆb s X V X X V F p .Ž .Ž .F F

This is the � value that minimizes the quadratic form

� y1ˆF p y X� V F p y X� .Ž . Ž .F

The ordinary least squares estimate, for uncorrelated responses with constant
ˆvariance, results when V is a constant multiple of the identity matrix.F

The WLS estimator has an asymptotic multivariate normal distribution,
with estimated covariance matrix

$ y1� y1ˆcov b s X V X .Ž . Ž .F

Ž .The normal distribution improves as the sample size increases and F p is
more nearly normally distributed.
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ˆThe estimate b yields predicted values F s Xb for the response functions.
Since they satisfy the model, these predicted values are smoother than the

ˆŽ .sample response functions F p . When the model holds, F is asymptotically
Ž . Ž . Ž .better than F p as an estimator of F � Section 14.2.2 . The estimated

covariance matrix of the predicted values is

y1� �y1ˆ ˆV s X X V X X .Ž .F̂ F

The test of model goodness of fit uses the residual term

� � � �y1 y1 y1ˆ ˆ ˆW s F p y Xb V F p y Xb s F p V F p y b X V X b,Ž . Ž . Ž . Ž . Ž .F F F

which compares the sample response functions with their model predicted
Ž .values. Under H : F � y X� s 0 that the model holds, W is asymptotically0

chi-squared with df s u y q, the difference between the number of response
functions and the number of model parameters.

One can more closely check the model fit by studying the residuals,
ˆ ˆŽ .F p y F. They are orthogonal to the fit F, so

ˆ ˆ ˆ ˆcov F p s cov F p y F q F s cov F p y F q cov F .Ž . Ž . Ž . Ž .½ 5
Thus, the estimated covariance matrix of the residuals equals

y1� �y1ˆ ˆ ˆ ˆ ˆcov F p y cov F s V y V s V y X X V X X .Ž . Ž . Ž .ˆF F F F

Dividing the residuals by their standard errors yields standardized residuals
having large-sample standard normal distributions.

Hypotheses about contrasts and other effects of explanatory variables have
form H : C� s 0, where C is a known c � q matrix with c F q, having rank0
c. The estimator Cb of C� is asymptotically normal with mean 0 under H0

� ˆy1 y1 �Ž .and with covariance matrix estimated by C X V X C . The Wald statisticF

y1� � � �y1ˆW s b C C X V X C Cb 15.2Ž .Ž .C F

has an approximate chi-squared null distribution with df s c. This statistic
also equals the difference between residual chi-squared statistics for the
reduced model implied by H and the full model. For the special case H :0 0

2 Ž .� s 0, W s b rvar b has df s 1.i C i i

15.1.3 Scope of WLS versus ML Estimation

The WLS approach requires estimating the multinomial covariance matrix of
sample responses at each setting of the explanatory variables. It is inapplica-
ble when explanatory variables are continuous, since there may be only one
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observation at each such setting. WLS also becomes less appropriate as the
number of explanatory variables increases, since few observations may occur
at each of the many combinations of settings. By contrast, in principle,
continuous explanatory variables or many explanatory settings are not prob-
lematic to ML.

When a certain model holds, with large cell expected frequencies ML and
WLS give similar results. Both estimators are in the class of best asymptoti-
cally normal estimators. However, practical considerations often favor ML
estimation. For example, zero cell counts often adversely affect the WLS
approach. The sample response functions may then be ill-defined or have a
singular estimated covariance matrix.

WLS shares with quasi-likelihood the feature that inferential results
depend only on specifying a model for the mean responses and specifying a

Ž .variance function and covariance structure here, based on the multinomial .
It does not use the likelihood function for the complete distribution. Thus,
inference uses Wald methods.

Historically, an advantage of the WLS approach was computational sim-
plicity. This is not relevant now that software is available for ML analyses

Ž .and for extensions of WLS e.g., quasi-likelihood methods such as GEE that
do not have some of its disadvantages. Thus, WLS is now used much less
frequently than it was about 25 years ago. Nonetheless, it has close connec-
tions with more sophisticated methods. Some algorithms for calculating ML

Ž .estimates iteratively use WLS. Also, Miller et al. 1993 showed that under
certain conditions the solution of the first iteration in the GEE fitting process
gives the WLS estimate. This equivalence uses initial estimates based directly
on sample values and assumes a saturated association structure that allows a
separate correlation parameter for each pair of response categories and each
pair of observations in a cluster. In this sense, GEE is an iterated form of
WLS. Moreover, in this case, the covariance matrix for the estimates is the
same in both approaches.

15.2 BAYESIAN INFERENCE FOR CATEGORICAL DATA

Methodology using the Bayesian paradigm has advanced tremendously in the
past decade. New computational methods make it easier to evaluate poste-
rior distributions for model parameters. Nonetheless, Bayesian inference is
not as fully developed or commonly used for categorical data analysis as in
many other areas of statistics. For multiway contingency table analysis, partly
this is because of the plethora of parameters for multinomial models, often
necessitating substantial prior specification. Bayesian theory and methods are
beyond the scope of this book. We present only relatively elementary prob-
lems in which the Bayesian approach applies quite naturally and is sometimes
more appealing than ML. We then briefly summarize more complex develop-
ments.
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The first applications of Bayesian methods to contingency tables involved
Žsmoothing cell counts to improve estimation of cell probabilities e.g., Good

.1965 . The sample proportions are ordinary ML estimators for the saturated
model. When data are sparse, these can have undesirable features. Large
sparse tables often contain many sampling zeros, for which 0.0 is unappealing
as a probability estimate. In addition, Stein’s results for estimating multivari-
ate normal means suggest that lower total mean-squared error occurs with
Bayes estimators that shrink the sample proportions toward some average

Ž .value Efron and Morris 1975 .
In considering Bayesian estimators, we cannot hope to find one that is

uniformly better than ML. For instance, suppose that a true cell probability
� s 0. Then the sample proportion p s 0 with probability 1, and thei i
sample proportion is better than any other estimator. Because parameter
values exist for which the sample proportion is optimal, no other estimator is
uniformly better over the entire parameter space. Here the criterion of
comparison is the expected value of a loss function that measures distance
between the estimator and the parameter, such as squared error. In
decision-theoretic terms the sample proportion is an admissible estimator,

Ž .for standard loss functions Johnson 1971 . In this sense, the sample mean for
the multinomial or multivariate binomial differs from the sample mean for

Žthe multivariate normal, which is inadmissible dominated by Bayes estima-
. Žtors when the dimension of the mean vector is at least three Ferguson 1967,
. Ž .p. 170 . Meeden et al. 1998 gave related results for decomposable loglinear

models.
Another approach for estimating cell probabilities fits an unsaturated

model. Often, though, there is no particular model expected to describe the
table well. For I � J cross-classifications of nominal variables, for instance,
the independence model rarely fits well. When unsaturated models approxi-
mate the true relationship poorly, model-based estimators also have undesir-
able properties. Although they smooth the data, the smoothing is too severe
for large samples. The model-based estimators are inconsistent, converging
to values that may be far from the true cell probabilities as n increases.

A Bayesian approach to estimating cell probabilities compromises between
sample proportions and model-based estimators. A model still provides part
of the smoothing mechanism, with the Bayes estimators shrinking the sample
proportions toward a set of proportions satisfying the model.

15.2.1 Bayesian Estimation of Binomial Parameter

We illustrate basic ideas with Bayesian inference for a binomial parameter.
Ž .Let y denote a bin n, � variate. Since � falls between 0 and 1, a natural

wŽ . xprior density for � is the beta 13.8 in Section 13.3.1 for some choice of
Ž . Ž .� � 0 and � � 0. This satisfies E � s �r � q � .

In Bayesian inference the posterior density of a parameter, given the data,
is proportional to the product of the prior density with the likelihood
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�y1Ž . �y1function. Here, the beta prior depends on � through � 1 y � , and
yŽ .nyythe binomial likelihood has kernel depending on � through � 1 y � .

Ž � .Thus, the posterior density h � y of � is proportional to

nyy �y1 nyyq�y1y �y1 yq�y1�h � y A � 1 y � � 1 y � s � 1 y � ,Ž . Ž . Ž .Ž .

for 0 F � F 1. The beta is the conjugate prior distribution. The posterior
density is also beta, with parameters �* s y q � and � * s n y y q �.

The mean of the posterior distribution is a Bayesian estimator of a
Ž .2parameter. This is optimal when a squared-error loss function T y �
Ždescribes the consequence of estimating � by an estimator T Ferguson

.1967, p. 46 . The mean of the beta posterior distribution for � is

�E � y s �*r �* q � * s y q � r n q � q �Ž . Ž . Ž .Ž .

s w yrn q 1 y w �r � q � ,Ž . Ž . Ž .

Ž .where w s nr n q � q � . This is a weighted average of the sample propor-
Ž .tion p s yrn and the mean of the prior distribution. For fixed �, � , the

weight given the sample increases as n increases. The standard deviation of
the posterior distribution describes the accuracy of this estimator. This equals
the square root of

2�var � y s �*� *r �* q � * �* q � * q 1 .Ž . Ž .Ž .

'For large n the standard deviation is roughly p 1 y p rn , the ordinaryŽ .
standard error for the ML estimator � s p.ˆ

Ž .The Bayes estimator requires selecting parameters �, � for the prior
distribution. Complete ignorance about � might suggest a uniform prior
distribution. This is the beta distribution with � s � s 1. The posterior
distribution then has the same shape as the binomial likelihood function. The
Bayes estimator is then

�E � y s y q 1 r n q 2 .Ž . Ž .Ž .

1This shrinks the sample proportion slightly toward .2

Alternatively, a popular prior with Bayesians is the Jeffreys prior. This is
proportional to the square root of the determinant of the Fisher information
matrix for the parameters of interest, for a single observation. With a single

w Ž 2 Ž � . 2 .x1r2parameter � , this is E � log f y � r�� . In the binomial case with
w Ž .xy1r2� s � and n s 1, this equals � 1 y � and the prior is beta with

Ž .� s � s .5. Brown et al. 2001 showed that the posterior generated by this
prior yields a confidence interval for � with good performance. It approxi-

Žmates the Clopper�Pearson interval with the mid-P adjustment Sections
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1 1.1.4.4 and 1.4.5 . For a test of H : � G against H : � � , a Bayesian0 a2 2
1 Ž .P-value is the posterior probability that � G . Routledge 1994 showed that2

with the Jeffreys prior, this posterior probability approximately equals the
one-sided mid-P-value for the ordinary binomial test.

15.2.2 Dirichlet Prior and Posterior for Multinomial Parameters

Ž .These ideas generalize from the binomial to the multinomial Good 1965 .
Ž .Suppose that cell counts n , . . . , n have a multinomial distribution with1 N

Ž .�n sÝn and parameters � s � , . . . , � . The multinomial likelihood isi 1 N
proportional to

N
ni� .Ł i

is1

For a prior distribution over potential � values, the multivariate generaliza-
tion of the beta is the Dirichlet density

N� Ý�Ž .i � y1ig � s � for 0 F � F 1 all i , � s 1,Ž . Ł Ýi i iŁ � �Ž . is1i i i

� 4 Ž . Ž .where � � 0 . For it, E � s � r Ý � .i i i j j
� 4The posterior density is also Dirichlet, with parameters n q � . Thei i

Bayes estimator of � isi

�E � n , . . . , n s n q � n q � . 15.3Ž . Ž .Ž . Ýi 1 N i i jž /
j

Ž . � 4Let K sÝ� and 	 s E � s � rK. The 	 are prior guesses for the cellj i i i i
Ž .probabilities. Bayes estimator 15.3 equals the weighted average

nr n q K p q Kr n q K 	 . 15.4Ž . Ž . Ž .i i

Ž .From 15.3 the Bayes estimator is a sample proportion when the prior
information corresponds to Ý � trials with � outcomes of type i, i s 1, . . . ,j j i

� 4N. This interpretation may provide guidance for choosing � . The Jeffreysi
prior sets all � s 0.5. Good referred to K as a flattening constant, since withi

� 4 Ž .identical � 15.4 shrinks each sample proportion toward the uniform valuei
	 s 1rN. Greater flattening occurs as K increases, for fixed n. Hierarchicali

� 4 Žmodels treat � as unknown and specify a second-stage prior for them e.g.,i
.Albert and Gupta 1982 .

Bayes estimators combine good characteristics of sample proportions and
model-based estimators. Like sample proportions and unlike model-based
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estimators, they are consistent even when the model does not hold. Unless
the model holds, the weight given the sample proportion increases to 1.0 as
the sample size increases. Like model-based estimators and unlike sample
proportions, the Bayes estimators smooth the data. The resulting estimates,
although slightly biased, usually have smaller total mean-squared error than
the sample proportions.

15.2.3 Development of Bayesian Methods for Categorical Data

We now summarize the development of Bayesian methods for categorical
Ž .data since Good’s 1965 work on smoothing multinomial proportions.

Ž .Leonard and Hsu 1994 provided a more detailed review. We begin with
methods for two-way contingency tables.

Ž .For 2 � 2 tables, Altham 1969 gave a Bayesian analysis comparing
parameters for two independent binomial samples. She tested H :� F �0 1 2

Ž .against � � � using independent beta � , � priors for � and � .1 2 i i 1 2
Altham showed that the P-value that is the posterior probability that � F �1 2
can equal the one-sided P-value for Fisher’s exact test. This happens when

Ž . Ž . Ž . Ž .one uses improper prior distributions � , � s 1, 0 and � , � s 0, 1 .1 1 2 2
These represent prior belief favoring the null hypothesis, in effect penalizing
against concluding that � � � . That is, Fisher’s exact test corresponds to a1 2
conservative prior distribution.

If � s � s 	 , i s 1, 2, with 0 F 	 F 1, Altham showed that the Bayesiani i
P-value is smaller than the Fisher P-value. The difference between the two is
no greater than the null probability of the observed data. Use of Jeffreys
priors with � s � s 0.5 provides a type of continuity correction to Fisher’si i
exact test in much the way the mid-P-value does for the frequentist approach.

Ž .Howard 1998 showed that with these priors the posterior probability that
� F � approximates the one-sided P-value for the large-sample z test1 2

Žusing pooled variance i.e., the signed square root of the Pearson statistic; see
.Problem 3.30 for testing H : � s � against H : � � � . Howard also0 1 2 a 1 2

discussed other priors for 2 � 2 tables, including ones that treat � and �1 2
as dependent.

Ž .Altham 1971 showed Bayesian analyses for binomial proportions from
matched-pairs data. For a simple model in which the probability of success is
the same for each subject at a given occasion, she again showed that the

Ž .classical exact P-value Section 10.1.4, using the binomial distribution is a
Bayesian P-value for a prior distribution favoring H . For a model similar to0
Ž .10.8 in which the probability varies by subject but the occasion effect is
constant, she showed that the Bayesian evidence against the null is weaker
as the number of pairs giving the same response at both occasions increases,
for fixed values of the numbers of pairs giving different responses at the two
occasions. This differs from the conditional ML result, which does not
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Ž . Ž .depend on such pairs Section 10.2.3 . Ghosh et al. 2000 showed related
results.

The Bayesian approaches presented so far focused directly on cell proba-
Ž .bilities by using a prior distribution for them. Lindley 1964 did this with

I � J contingency tables. He considered the posterior distribution of con-
trasts of log probabilities, such as the log odds ratio. An alternative approach
Ž .Laird 1978; Leonard 1975 focused on parameters of the saturated loglinear
model, using normal priors. This is not a conjugate prior, but normal
distributions can approximate the posterior. Using independent normal
Ž 2 .N 0, 
 distributions for the association parameters is a way of inducing

Ž .shrinkage toward the independence model Laird 1978 . A hierarchical
approach puts second-stage priors on the parameters of the prior distribution
Ž .Leonard 1975 .

Historically, a barrier for the Bayesian approach has been the difficulty of
calculating the posterior distribution when the prior is not conjugate. This is
less problematic with modern ways of approximating posterior distributions
by simulating samples from them. These include the importance sampling

Ž .generalization of Monte Carlo simulation Zellner and Rossi 1984 and
ŽMarkov chain Monte Carlo methods such as Gibbs sampling Gelfand and

.Smith 1990 . Zellner and Rossi used Bayesian methods for logistic regression
and Gelfand and Smith considered a class of multinomial models with

Ž .Dirichlet prior. Zeger and Karim 1991 fitted generalized linear mixed
Ž .models GLMMs essentially using a Bayesian framework with priors for

fixed and random effects.
The focus on distributions for random effects in GLMMs in articles such

Ž .as Zeger and Karim 1991 led to the treatment of parameters in GLMs as
Ž .random variables with a fully Bayesian approach. Dey et al. 2000 edited a

collection of articles that provided Bayesian analyses for GLMs. For instance,
in that volume Gelfand and Ghosh surveyed the subject, Albert and Ghosh
reviewed item response modeling, Chib modeled correlated binary data, and
Chen and Dey modeled correlated ordinal data.

Bayesian methods are used increasingly in applications. For instance,
Ž .Skene and Wakefield 1990 modeled multicenter binary response studies

with a logit model that allows the treatment�response log odds ratio to vary
among centers. This gives a Bayesian alternative to the GLMM analysis

Ž .presented in Section 12.3.4. Daniels and Gatsonis 1999 used multi-level
GLMs to analyze geographic and temporal trends with clustered longitudinal
binary data. This built on hierarchical modeling ideas introduced by Wong

Ž . Ž .and Mason 1985 . An article by Landrum and Normand in Dey et al. 2000
gave a case study using Bayesian ordinal probit and logit models. Chaloner

Ž .and Larntz 1989 used a Bayesian approach to determining optimal design
for experiments using logistic regression. J. Albert has suggested Bayesian

Ž .models for a variety of categorical data analyses. For instance, Albert 1997
Ž .modeled associations in two-way tables and Albert and Chib 1993 studied



ALTERNATIVE ESTIMATION THEORY FOR PARAMETRIC MODELS610

binary regression modeling, focusing on the probit case with extensions to
ordered multinomial responses.

15.2.4 Data-Dependent Choice of Prior Distribution

With Bayesian analyses, careful prior specification is necessary. The use of an
improper prior, such as the uniform prior over the entire or positive real line,
sometimes results in improper posteriors. One may not realize this from the
output of software for Bayesian fitting. In addition, with simulation methods
it may not be obvious when convergence has occurred. Be suspicious if
results are dramatically different from ordinary ML frequentist results.

Some dislike the subjectivity of the Bayesian approach inherent in select-
ing a prior distribution. Instead of choosing particular parameters for a prior
distribution, it is increasingly popular to use a hierarchical approach in which
those parameters themselves have a second-stage prior distribution. Alterna-
tively, the empirical Bayes approach lets the data suggest parameter values

Ž .for use in the prior distribution e.g., Efron and Morris 1975 . This approach
uses the prior that maximizes the marginal probability of the observed data,

Ž .integrating out with respect to the prior. Laird 1978 did this for the
loglinear model, estimating 
 2 in normal priors for association parameters
by finding the value that maximizes an approximation for the marginal
distribution of the cell counts, evaluated at the observed data. A disadvan-
tage of empirical Bayes compared to the hierarchical approach is that it does
not take into account the source of variability due to substituting estimates
for prior parameters.

Ž .Fienberg and Holland 1973 proposed analyses for contingency tables
� 4with data-dependent priors. For a particular choice of Dirichlet means 	 i

Ž .for the Bayes estimator 15.4 , they showed that the minimum total mean-
squared error occurs when

22K s 1 y � 	 y � . 15.5Ž . Ž .Ž .Ý Ýi i i

Ž . Ž .The optimal K s K � , � depends on �, so they used the estimate K � , p
of K in which the sample proportion p replaces �. As p falls closer to the

Ž .prior guess � , K � , p increases and the prior guess receives more weight in
� 4the posterior estimate. They selected the prior pattern 	 for the celli

probabilities based on the fit of a simple model. For two-way tables, they
� 4used the independence fit 	 s p p . The Bayes estimator then shrinksi j iq qj

sample proportions toward that fit.
As in other inference, Bayesian modeling should normally account for any

ordering in the response categories. For instance, in the method just men-
tioned for smoothing contingency tables, one could shrink toward an ordinal
model.
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15.3 OTHER METHODS OF ESTIMATION

In this final section we describe some alternative estimation methods for
Ž .categorical data. Consider estimation of � or �, assuming a model � s � � .

˜ ˜Ž .Let � denote a generic estimator of �, for which � s � � estimates �.˜
ˆThe ML estimator � maximizes the likelihood. It also minimizes the deviance

2 Ž .statistic G comparing observed and fitted proportions Section 14.3.4 .

15.3.2 Minimum Chi-Squared Estimators

Ž .Other estimators minimize other measures of distance between � � and p.
˜The value � that minimizes the Pearson statistic

2p y � �Ž .i i2X � � , p s nŽ . Ý
� �Ž .i

is called the minimum chi-squared estimate. It is simpler to calculate the
estimate that minimizes the modified statistic

2p y � �Ž .i i2X � � , p s n 15.6Ž . Ž .Ýmod pi

that replaces the denominator by the sample proportion. This is called the
minimum modified chi-squared estimate. It is the solution for � to the
equations

� � �� �Ž . Ž .i i
s 0, j s 1, . . . , q.Ý ž /p ��i ji

Ž .Neyman 1949 introduced minimum modified chi-squared estimators. He
showed that they and minimum chi-squared estimators are best asymptoti-

Ž .cally normal BAN estimators. When the model holds, they are asymptoti-
Ž .cally as n ™ � equivalent to ML estimators. Under the model, different

Ž .estimation methods ML, WLS, minimum chi-squared, etc. yield nearly
identical estimates of parameters when n is large. This happens partly
because the estimators are consistent, converging in probability to � as n
increases. When the model does not hold, estimates for different methods
can be quite different, even when n is large. The estimators converge to
values for which the model gives the best approximation to reality, and this
approximation is different when best is defined in terms of minimizing G2

rather than minimizing X 2 or some other measure.
For any n, minimum modified chi-squared estimates are sometimes identi-

cal to WLS estimates. The connection refers to an alternative way of
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specifying a model, using a set of constraint equations for � ,

g � , . . . , � s 0 .Ž .� 4j 1 N

Ž .Ž .For instance, for an I � J table, the I y 1 J y 1 constraint equations

log � y log � y log � q log � s 0i j i , jq1 iq1 , j iq1 , jq1

specify the model of independence. The number of constraint equations
equals the residual df for the model.

Ž .Neyman 1949 noted that minimum modified chi-squared estimates result
from minimizing

2 NyqN p y �Ž .i i
q � g � , . . . , �Ž .Ý Ý j j 1 Npiis1 js1

� 4with respect to �, where the � are Lagrange multipliers. When thej
constraint equations are linear in �, the resulting estimating equations are

Ž .linear. Then Bhapkar 1966 showed that these estimators are identical to
Ž .WLS estimators. The statistic 15.6 then equals the WLS residual statistic

Ž .Section 15.1.2 for testing model fit.
Usually, however, constraint equations are nonlinear in �, such as for the

independence model. The WLS estimator is then the minimum modified
chi-squared estimator based on a linearized version of the constraints,

g p q � y p � g � r� � s 0,Ž . Ž . Ž .j j

with differential vector evaluated at p.
Ž .Berkson 1944, 1955, 1980 was a strong advocate of minimum chi-squared

methods. For logistic regression, his minimum logit chi-squared estimators
minimized a weighted sum of squares between sample logits and linear

Ž .predictions. Mantel 1985 criticized such methods, noting that their consis-
Žtency requires group sizes to grow large, whereas ML or conditional ML,

.when there are many nuisance parameters is consistent however information
Ž .goes to the limit see also Problem 15.14 .

15.3.2 Minimum Discrimination Information

Ž .Kullback 1959 formulated estimation by minimum discrimination informa-
Ž .tion MDI . The discrimination information for two probability vectors � and

� is

N

I � ; � s � log � r	 . 15.7Ž . Ž . Ž .Ý i i i
is1
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This directed measure of distance between � and � is nonnegative, equaling
Ž .0 only when � s �. Gokhale and Kullback 1978 studied MDI estimates

Ž .that minimize I �; � , subject to model constraints, using � s p for some
Ž .problems and � with 	 s 	 s ��� s 	 s 1rN for others. Good 19631 2 N

conducted related work in the area of maximum entropy.
� 4In some cases with 	 s 1rN , the MDI estimator is identical to the MLi

Ž .estimator Simon 1973 . With � s p it is not ML, but it has similar asymp-
Ž .totic properties, being best asymptotically normal BAN . Then Gokhale and

Kullback recommended testing goodness of fit using twice the minimized
Ž . 2value of I �; p . This statistic reverses the roles of p and � relative to G ,

2 Ž . 2much as X in 15.6 reverses their roles relative to X . Both statistics fallmod
Žin the class of power divergence statistics Cressie and Read 1984; see also

.Problem 3.34 and have similar asymptotic properties. More generally, one
could choose any member of the power divergence statistics and define
estimates to be the values minimizing it. Under regularity conditions, they
are all BAN.

15.3.3 Kernel Smoothing

Kernel estimation is a smoothing method that estimates a probability density
or mass function without assuming a parametric distribution. Let K denote a
matrix containing nonnegative elements and having column sums equal to 1.
Kernel estimates of cell probabilities in a contingency table have form

� s Kp. 15.8Ž .˜

For unordered multinomials with N categories, Aitchison and Aitken
Ž .1976 used

k s �, i s ji j

s 1 y � r N y 1 , i � jŽ . Ž .

Ž .for 1rN F � F 1. The resulting kernel estimator of � has form

1 y � p q � 1rN , 15.9Ž . Ž . Ž .

Ž . Ž .where � s N 1 y � r N y 1 . This estimator shrinks the sample proportion
Ž .toward 1rN, . . . , 1rN . As � decreases from 1 to 1rN, the smoothing

Ž .parameter � increases from 0 to 1. Brown and Rundell 1985 proved that
when no � s 1, � � 1 exists such that the total mean squared error isi
smaller for this kernel estimator than for the sample proportions. Results for
other shrinkage estimators applied to multivariate means suggest that the
improvement for the kernel estimator can be large when n is small and the
true cell probabilities are roughly equal.

Brown and Rundell generalized kernel smoothing for multiway contin-
gency tables that may contain both nominal and ordinal variables. For a
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ŽT-way table, let L be a stochastic matrix i.e., row and column sums equal tok
.1 with elements

� , i s jk
ll sk , i j ½ d i , j 1 y � , i � j,Ž . Ž .k k

Ž .k s 1, . . . , T. They let K in 15.8 be the Kronecker product

K s L m ��� m L .1 T

When variable k is ordinal, shrinkage alone is not enough, and it helps to
Ž .borrow information from nearby cells. Then d i, j is chosen to be smallerk

for greater distances between categories i and j. If variable k is nominal, the
Ž . Ž .natural choice is d i, j s 1r I y 1 , where I is the number of categoriesk k k

� 4for variable k. For fixed � , collapsing the smoothed table gives the samek
result as smoothing the corresponding collapsing of the original table. With
� 4� s �, k s 1, . . . , T , Brown and Rundell described ways of finding � tok
minimize an unbiased estimate of the total mean squared error.

Ž . Ž .Dong and Simonoff 1995 and Simonoff 1986 described other ap-
proaches for ordered categories. Most such kernels yield probability esti-
mates of the form

� s 1 y � p q � � smoother ,Ž .˜ i i i

where the smoothing is designed to work well when true probabilities in
nearby cells are similar.

15.3.4 Penalized Likelihood

Ž .Good and Gaskins 1971 introduced the penalized likelihood method for
Ž .density estimation. For log likelihood L � , the estimator maximizes

L* � s L � y � �Ž . Ž . Ž .

Ž . Ž .where � � is a function that provides a roughness penalty. That is, � �
decreases as elements of � are smoother, in some sense. The penalized
likelihood estimator has a Bayesian interpretation. With prior density pro-

w Ž .xportional to exp y� � , the posterior density is proportional to the penal-
ized likelihood function. Hence, the mode of the posterior distribution equals
the penalized likelihood estimator.

Ž .Simonoff 1983 applied penalized likelihood to estimating cell probabili-
ties �. Like Bayesian and kernel methods, it provides estimates that are
smoother than the sample proportions. For a single multinomial with ordered

Ž . Ž . Ny1 Žcategories, Simonoff 1983 used penalty function � � s �Ý log � yis1 i
.2log � , which encourages adjacent category estimates to be similar. Foriq1
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Ž . Ž .2two-way contingency tables, Simonoff suggested using � � s �Ý Ý log �i j i j
with the local odds ratios. This provides shrinkage toward the independence
estimator. One chooses the smoothing parameter � to minimize an approxi-
mation for the mean-squared error of the estimator.

In evaluating smoothing methods such as kernel smoothing and penalized
likelihood, it is useful to distinguish between large-sample asymptotics with a
fixed number of cells N and sparse-data asymptotics for which N grows with

Ž .n recall Section 6.3.4 . For the former, these smoothing methods and
ŽBayesian inference behave asymptotically like ordinary ML i.e., the sample

.proportions . They have the same rate of convergence to true probabilities.
These methods then improve over ML primarily for small samples, where the
benefit of ‘‘borrowing from the whole’’ occurs. For sparse-data asymptotics,
however, smoothing is particularly beneficial. As the dimensions of a table
increase, the number of cells grows exponentially and the ‘‘curse of dimen-
sionality’’ occurs. Accurate estimation becomes more difficult, with estima-
tors converging more slowly to true values. The table then has an increasing
proportion of empty cells. Smoothing can be better than ML even asymptoti-

Ž .cally. For such results, see Fienberg and Holland 1973 for the Dirichlet-
Ž .based Bayes multinomial estimator and Simonoff 1983 for penalized likeli-

hood with the multinomial. Simonoff showed that consistency can occur with
p 6the latter estimator in the sense that sup � r� y 1 0 as n and N growˆi i i

and the probabilities themselves approach 0.
Ž .For surveys of smoothing methods, see Fahrmeir and Tutz 2001, Chap. 5 ,

Ž . Ž .Lloyd 1999, Chap. 5 , and Simonoff 1996, Chap. 6; 1998 . As Simonoff
noted, all smoothing methods attempt to balance the low bias of under-
smoothing with the low variability of oversmoothing. The methods require
input from the user about the degree of smoothness, whether it be deter-
mined by a prior distribution or some type of smoothing parameter.

In summary, many methods exist for smoothing categorical data. Besides
those discussed in this section, there are traditional model-building methods.

Ž .Some of these, such as generalized additive models Section 4.8 , are also
specifically directed toward smoothing. A particular type of smoothing method
may seem most natural for a given application. An advantage of the Bayesian
approach is that its entire formulation seems less ad hoc than some others.

NOTES

Section 15.1: Weighted Least Squares for Categorical Data

Ž .15.1. Applications of WLS include fitting mean response models Grizzle et al. 1969 and
Ž .models for marginal distributions Koch et al. 1977 . For general discussion, see

Ž . Ž . Ž .Bhapkar and Koch 1968 , Imrey et al. 1981 , and Koch et al. 1985 .
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Section 15.2: Bayesian Inference for Categorical Data

15.2. Other literature on Bayesian analyses of categorical responses includes Fienberg et al.
Ž . Ž . Ž . Ž .1999 , Forster and Smith 1998 , Good 1976 , Knuiman and Speed 1988 , Spiegelhal-

Ž . Ž .ter and Smith 1982 , and Walley 1996 .

Section 15.3: Other Methods of Estimation

Ž .15.3. For further discussion of minimum chi-squared methods, see Bhapkar 1966 , Koch et
Ž . Ž . Ž .al. 1985 , Neyman 1949 , and Rao 1963 .

Ž .15.4. For the use of minimum discrimination information, see Gokhale and Kullback 1978 ,
Ž . Ž . Ž .Ireland and Kullback 1968a, b , Ireland et al. 1969 , and Ku et al. 1971 .
Ž .15.5. Hall and Titterington 1987 studied rates of convergence for multinomial kernel

estimators. They defined one that achieves the optimal rate. Ordinary kernel estimators
Ž .tend to be biased toward zero at the boundary of a table. Dong and Simonoff 1994

dealt with improving kernel estimates on the boundary of large sparse tables. Kernel
methods are also useful for discrete regression modeling. For binary response data,

Ž .Copas 1983 used one to display in a nonparametric manner the dependence of
Ž .P Y s 1 on x.

PROBLEMS

Applications

15.1 Consider the mean response model fitted in Section 7.4.6. Show how
to use WLS for this analysis. Identify the number of multinomial
samples I, the number of response categories J, the response func-
tions F, the model matrix X, the parameter vector �, and the

ˆestimated covariance matrix V .F

15.2 Use WLS to conduct the longitudinal analysis of depression in Sec-
Ž .tion 11.2.1. Using software e.g., SAS: PROC CATMOD , obtain

WLS estimates and standard errors and compare to the ML results.

15.3 Refer to Problem 15.2. Using these data, describe the differences
Ž . Ž .between a WLS and ML, and b WLS and GEE methods for

marginal models with multivariate categorical response data.

15.4 Using data from Section 1.4.3, obtain a Bayesian estimate of the
proportion of vegetarians. Explain how you chose the prior distribu-
tion. Compare results to those with ML.

15.5 Refer to Table 9.8. Consider the model that simultaneously assumes
Ž .9.12 as well as linear logit relationships for the marginal effects of
age on breathlessness and on wheeze.
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a. Specify C, A, and X for which this model has form C log A� s X�.
b. Using software, fit the model and interpret estimates.

Theory and Methods

15.6 Consider marginal homogeneity for an I � I table.
Ž . Ž . Ž .a. Letting F � s A�, explain how i F � s 0, where A has I y 1
Ž . Ž . Ž .rows, and ii F � s X�, where A has 2 I y 1 rows and � has

Ž .I y 1 elements. In part ii , show A, �, X, � when I s 3.
wb. Explain how to use WLS to test marginal homogeneity. This is

Ž . xBhapkar’s test 10.16 .

Ž . w Ž .x w Ž .xy115.7 For WLS with F � s C log A� , show that Q s C diag A� A.

ˆy1w Ž . x w Ž . x15.8 With WLS, show that F p y X� V F p y X� is minimized byF
ˆy1 y1 ˆy1Ž . Ž .� s XV X XV F p .F F

Ž .15.9 The response functions F p have asymptotic covariance matrix V .F
Derive the asymptotic covariance matrix of the WLS model parame-

ˆter estimator b and the predicted values F s Xb.

15.10 Consider the Bayes estimator of a binomial parameter � using a beta
prior distribution.
a. Does any beta prior distribution produce a Bayes estimator that

coincides with the ML estimator?
b. Show that the ML estimator is a limit of Bayes estimators, for a

certain sequence of beta prior parameter values.
Žc. Find an improper prior density one for which its integral is not

.finite such that the Bayes estimator coincides with the ML estima-
Žtor. In this sense, the ML estimator is a generalized Bayes estima-
.tor.

Ž .Ž .2d. For Bayesian inference using loss function w � T y � , the
Ž .Bayes estimator of � is the posterior expected value of � w �

Ž . Ždivided by the posterior expected value of w � Ferguson 1967,
. Ž .2 w Ž .xp. 47 . With loss function T y � r � 1 y � , show the ML

estimator of � is a Bayes estimator for the uniform prior distribu-
tion.

e. The risk function is the expected loss, treated as a function of � .
Ž .For the loss function in part d , show the risk function is constant.

ŽBayes’ estimators with constant risk are minimax; their maximum
.risk is no greater than the maximum risk for any other estimator.

f. Show that the Jeffreys prior for � equals the beta density with
� s � s .5.
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15.11 For the Dirichlet prior for multinomial probabilities, show the poste-
Ž .rior expected value of � is 15.3 . Derive the expression for thisi

Ž .Bayes estimator as a weighted average of p and E � .i i

Ž .15.12 For Bayes estimator 15.4 , show that the total mean squared error is

2 22 2Kr n q K � y 	 q nr n q K 1 y � .Ž . Ž . Ž . Ž .Ý Ýi i i

Ž .Show that 15.5 is the value of K that minimizes this.

15.13 Refer to Problem 15.6. For marginal homogeneity, explain why the
minimum modified chi-squared estimates are identical to WLS esti-
mates.

Ž . � 415.14 Let y be a bin n , � variate for group i, i s 1, . . . , N, with yi i i i
independent. Consider the model that � s ��� s � . Denote that1 N
common value by � .

Ž . Ž .a. Show that the ML estimator of � is p s Ý y r Ý n .i i i i

b. The minimum chi-squared estimator � is the value of � minimiz-˜
ing

2 2N Ny rn y � y rn y �Ž . Ž .i i i i
q .Ý Ý

� 1 y �is1 is1

Ž . Ž .The second term results from comparing 1 y y rn to 1 y � ,i i
the proportions in the second category. If n s ��� s n s 1,1 N

Ž . Ž . Ž .show that � minimizes Np 1 y � r� q N 1 y p �r 1 y � .˜
Hence show

1r21r2 1r2� s p r p q 1 y p .Ž .˜

1Note the bias toward in this estimator.2

c. Argue that as N ™ � with all n s 1, the ML estimator is consis-i
Ž .tent but the minimum chi-squared estimator is not Mantel 1985 .

15.15 Refer to Problem 15.14. For N s 2 groups with n and n indepen-1 2
dent observations, find the minimum modified chi-squared estimator
of � . Compare it to the ML estimator.

Ž .15.16 Show that the kernel estimator 15.9 is the same as the Bayes
Ž . � Ž . 4estimator 15.3 for the Dirichlet prior with � s � nr 1 y � N .i

Using this result, suggest a way of letting the data determine the
value of � in the kernel estimator.
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Historical Tour of Categorical
Data Analysis*

This book concludes with an informal historical overview of the evolution of
Ž .methods for categorical data analysis CDA . We have seen that categorical

scales are pervasive in the social sciences and the biomedical sciences. Not
surprisingly, the development of GLMs for categorical responses was fos-
tered by statisticians having ties to the social sciences or to the biomedical
sciences.

Only in the last quarter of the twentieth century did these models receive
the attention given early in the century to models for continuous data.
Regression models for continuous variables evolved out of Francis Galton’s
breakthroughs in the 1880s. The strong influence of R. A. Fisher, G. Udny
Yule, and other statisticians on experimentation in agriculture and biological
sciences ensured widespread adoption of regression and ANOVA modeling
by the mid-twentieth century. On the other hand, despite influential articles
around 1900 by Karl Pearson and Yule on association between categorical
variables, models for categorical responses received scant attention until the
1960s.

The beginnings of CDA were often shrouded in controversy. Key figures
in the development of statistical science made groundbreaking contributions,
but these statisticians were often in heated disagreement with one another.

16.1 PEARSON–YULE ASSOCIATION CONTROVERSY

Much of the early development of methods for CDA took place in England,
and it is fitting that we begin our historical tour in London at the beginning
of the twentieth century. The year 1900 is an apt starting point, since in that

Ž 2 .year Karl Pearson introduced his chi-squared statistic X and G. Udny
Yule presented the odds ratio and related measures of association. Before

619
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then most work focused on descriptive aspects for relatively simple measures.
Ž .For instance, Goodman and Kruskal 1959 noted that the Belgian social

statistician Adolphe Quetelet used the relative risk in 1849.
Ž .By 1900, Karl Pearson 1857�1936 was already well known in the statistics

community. He was head of a statistical laboratory at University College in
London. His work the previous decade included developing a family of

Ž .skewed probability distributions called Pearson cur®es , obtaining the prod-
uct-moment estimate of the correlation coefficient and finding its standard
error, and extending Galton’s work on linear regression. In fact, Pearson was
a true renaissance man, writing on a wide variety of topics that included art,
religion, philosophy, law, socialism, women’s rights, physics, genetics, eugen-
ics, and evolution. Pearson’s motivation for developing the chi-squared test
included testing whether outcomes on a roulette wheel in Monte Carlo varied
randomly, checking the fit to various data sets of normal distributions and
Pearson curves, and testing statistical independence in two-way contingency
tables.

Much of the literature on CDA early in the twentieth century consisted of
vocal debates about appropriate ways to summarize association. Pearson’s
approach assumed that continuous bivariate distributions underlie two-way

Ž .contingency tables Pearson 1904, 1913 . He argued in favor of approximating
a measure, such as the correlation, for the underlying continuum. In 1904,
Pearson introduced the term contingency as a ‘‘measure of the total
deviation of the classification from independent probability,’’ and he intro-
duced measures to describe its extent. The tetrachoric correlation is a ML
estimate of the correlation for a bivariate normal distribution assumed to
underlie counts in 2 � 2 tables. It is the correlation value � in the bivariate
normal density that would produce cell probabilities equal to the sample cell
proportions when that density is collapsed to a 2 � 2 table having the same
marginal proportions as the observed table. The mean-square contingency and

2 Ž .the contingency coefficient are normalizations of X to the 0, 1 scale.
Ž .Pearson’s contingency coefficient Problem 3.33 for I � J tables standard-

ized X 2 to approximate an underlying correlation.
Ž .George Udny Yule 1871�1951 , a British contemporary of Pearson’s, took

a different approach. Having completed pioneering work developing multiple
regression models and multiple and partial correlation coefficients, Yule
turned his attention between 1900 and 1912 to association in contingency

Žtables. He believed that many categorical variables, such as vaccinated, un-
. Ž .vaccinated and died, survived , are inherently discrete. Yule defined indices

directly using cell counts without assuming an underlying continuum. He
w Ž .popularized the odds ratio � which Goodman 2000 noted may first have

xbeen proposed by a Hungarian statistician, J. Korosy and a transformation of˝ ¨
w x Ž . Ž . Žit to the y1, q1 scale, Q s � y 1 r � q 1 , now called Yule’s Q Problem

.2.36 . Discussing one of Pearson’s measures that assumes underlying normal-
Ž .ity, Yule argued 1912, p. 612 that ‘‘at best the normal coefficient can only

be said to give us in cases like these a hypothetical correlation between
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supposititious variables. The introduction of needless and unverifiable hy-
potheses does not appear to me a desirable proceeding in scientific work.’’

Ž .Yule 1903 also showed the potential discrepancy between marginal and
conditional associations in contingency tables, later studied by E. H. Simpson
Ž .1951 and now called Simpson’s paradox.

In the first quarter of the twentieth century, Karl Pearson was the rarely
challenged leader of statistical science in Britain. Pearson’s strong personality
did not take kindly to criticism, and he reacted negatively to Yule’s ideas. He
argued that Yule’s own coefficients were unsuitable. For instance, Pearson
claimed that their values were unstable, since different collapsings of I � J
tables to 2 � 2 tables could produce quite different values of the measures.

Ž .Pearson and D. Heron 1913 filled more than 150 pages of Biometrika, a
journal he co-founded and edited, with a scathing reply to Yule’s criticism. In
a passage critical also of Yule’s well-received book An Introduction to the
Theory of Statistics, they stated ‘‘If Mr. Yule’s views are accepted, irreparable

wdamage will be done to the growth of modern statistical theory. . . . Yule’s
xQ has never been and never will be used in any work done under his

w xPearson’s supervision. . . . We regret having to draw attention to the man-
ner in which Mr. Yule has gone astray at every stage in his treatment of
association, but criticism of his methods has been thrust on us not only by
Mr. Yule’s recent attack, but also by the unthinking praise which has been
bestowed on a text-book which at many points can only lead statistical
students hopelessly astray.’’ Pearson and Heron attacked Yule’s ‘‘half-baked
notions’’ and ‘‘specious reasoning’’ and argued that Yule would have to
withdraw his ideas ‘‘if he wishes to maintain any reputation as a statistician.’’

In retrospect, Pearson and Yule both had valid points. Some classifica-
tions, such as most nominal variables, have no apparent underlying continu-
ous distribution. On the other hand, many applications relate naturally to an

Žunderlying continuum, and that fact can motivate models and inference e.g.,
. Ž .Section 7.2.3 . Goodman 1981a, b noted that the ordinal models presented

in Sections 9.4.1 and 9.6.1 provide a sort of reconciliation between Yule and
Pearson, since Yule’s odds ratio characterizes models that fit well when
underlying distributions are approximately normal.

Half a century after the Pearson�Yule controversy, Leo Goodman and
William Kruskal surveyed the development of association measures for
contingency tables and made many contributions of their own. Their 1979
book reprinted four influential articles of theirs from the Journal of the
American Statistical Association on this topic. Initial development of many
measures occurred in the nineteenth century. Their 1959 article contains the
following quote from M. H. Doolittle in 1887, which illustrates the lack of
precision in early attempts to quantify the meaning of association even in
2 � 2 tables: ‘‘Having given the number of instances respectively in which
things are both thus and so, in which they are thus but not so, in which they
are so but not thus, and in which they are neither thus nor so, it is required
to eliminate the general quantitative relativity inhering in the mere thingness
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of the things, and to determine the special quantitative relativity subsisting
Ž .between the thusness and the soness of the things.’’ Goodman 2000 added

to the historical survey and proposed a new measure.

16.2 R. A. FISHER’S CONTRIBUTIONS

Pearson’s disagreements with Yule were minor compared to his later ones
Ž .with Ronald A. Fisher 1890�1962 . Using a geometric representation, Fisher

Ž .1922 introduced degrees of freedom to characterize the family of chi-squared
distributions. Fisher claimed that for tests of independence in I � J tables,

2 Ž .Ž . Ž .X has df s I y 1 J y 1 . By contrast, Pearson 1900, 1904 had argued
that for any application of X 2, the index that Fisher later identified as df
equals the number of cells minus 1, or IJ y 1 for two-way tables. Fisher
pointed out, however, that estimating hypothesized cell probabilities using

Ž .estimated row and column probabilities resulted in an additional I y 1 q
Ž . 2J y 1 constraints on the fitted values, thus affecting the distribution of X .

Ž .Not surprisingly, Pearson 1922 reacted critically to Fisher’s suggestion
that his df formula was incorrect. He stated: ‘‘I hold that such a view
w xFisher’s is entirely erroneous, and that the writer has done no service to the
science of statistics by giving it broad-cast circulation in the pages of the
Journal of the Royal Statistical Society. . . . I trust my critic will pardon me for
comparing him with Don Quixote tilting at the windmill; he must either
destroy himself, or the whole theory of probable errors, for they are invari-
ably based on using sample values for those of the sampled population
unknown to us.’’ Pearson claimed that using row and column sample propor-
tions to estimate unknown probabilities had negligible effect on large-sample

Ž .distributions, although he had realized Pearson 1917 that df must be
adjusted when the cell counts have linear constraints. Fisher was unable to
get his rebuttal published by the Royal Statistical Society, and he ultimately
resigned his membership.

Statisticians soon realized that Fisher was correct, but he maintained
much bitterness over this and other dealings with Pearson. In the preface to a
later volume of his collected works, he remarked that his 1922 article ‘‘had to
find its way to publication past critics who, in the first place, could not
believe that Pearson’s work stood in need of correction, and who, if this had
to be admitted, were sure that they themselves had corrected it.’’ Writing
about Pearson: he stated: ‘‘If peevish intolerance of free opinion in others is
a sign of senility, it is one which he had developed at an early age.’’ In Fisher
Ž .1926 , he was able to dig the knife a bit deeper into the Pearson family using
11,688 2 � 2 tables randomly generated assuming independence by Karl
Pearson’s son, E. S. Pearson. Fisher showed that the sample mean of X 2 for
these tables was 1.00001, much closer to the 1.0 predicted by his formula for
Ž 2 . Ž .Ž .E X of df s I y 1 J y 1 s 1 than Pearson’s IJ y 1 s 3. His daughter,
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Ž .Joan Fisher Box 1978 , discussed this and other conflicts between Fisher and
Ž . Ž . ŽPearson. Hald 1998, pp. 652�663 , Plackett 1983 , and Stigler 1999,

.Chap. 19 summarized the chi-squared controversy.
Fisher’s preeminent reputation among statisticians today accrues mainly

Žfrom his theoretical work introducing concepts such as sufficiency, informa-
.tion, and optimal properties of ML estimators and his methodological

contributions to the design of experiments and the analysis of variance.
Although not so well known for work in CDA, he made other interesting
contributions. Moreover, he made good use of the methods in his applied
work. For instance, Fisher was also a famed geneticist. In one article, he used
Pearson’s goodness-of-fit test to check Mendel’s theories of natural inheri-

Ž .tance and showed that the fit was too good Section 1.5.3 .
Fisher realized the limitations of large-sample methods for laboratory

work, and he was at the forefront of advocating specialized small-sample
methods. Writing about large-sample methods in the preface to the first
edition of his classic text Statistical Methods for Research Workers, he stated:
w x‘‘ T he traditional machinery of statistical processes is wholly unsuited to the

needs of practical research. Not only does it take a cannon to shoot a
sparrow, but it misses the sparrow! The elaborate mechanism built on the
theory of infinitely large samples is not accurate enough for simple laboratory
data. Only by systematically tackling small sample problems on their merits
does it seem possible to apply accurate tests to practical data.’’ Fisher was

Ž .among the first to promote the work by W. S. Gosset pseudonym ‘‘Student’’
on the t distribution. The fifth edition of Statistical Methods for Research

Ž .Workers 1934 introduced Fisher’s exact test for 2 � 2 contingency tables. In
his 1935 book The Design of Experiments, Fisher described the tea-tasting

Ž .experiment Section 3.5.2 motivated by his experience at an afternoon tea
break while employed at Rothamsted Experiment Station.

The mid-1930s finally saw some model building for categorical responses.
Ž .Chester Bliss 1934, 1935 , following up a 1933 report on quantal response

methods by J. H. Gaddum, popularized the probit model for applications in
toxicology with a binary response. Bliss introduced the term probit but used

Žthe inverse normal cdf with mean 5 rather than 0, in order to avoid negative
. Ž .values and standard deviation 1. In the appendix of Bliss 1935 , Fisher

Ž .1935b outlined an algorithm for finding ML estimates of model parameters.
That algorithm was a Newton�Raphson type of method using expected

Ž .information, today commonly called Fisher scoring Section 4.6.2 . Stigler
Ž . Ž .1986, p. 246 and Finney 1971 attributed the first use of inverse normal cdf
transformations of proportions to the German physicist Gustav Fechner in

Ž .his 1860 book Elemente der Psychophysik. See Finney 1971 and McCulloch
Ž .2000 for other history of the probit method.

Ž .The definition for homogeneous association no interaction in contin-
gency tables originated in an article by the British statistician Maurice

Ž .Bartlett 1935 about 2 � 2 � 2 tables. Bartlett showed how to find ML
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estimates of cell probabilities satisfying the property of equality of odds ratios
between two variables at each level of the third. He attributed the idea to
Fisher.

In 1940, Fisher developed canonical correlation methods for contingency
tables. He showed how to assign scores to rows and columns of a contingency
table to maximize the correlation. His work relates to the later development,

Žparticularly in France, of correspondence analysis methods e.g., Benzecri´
.1973 .

R. A. Fisher has had the greatest influence on the practice of modern
Ž .statistical science. The biography by his daughter Box 1978 gives a fascinat-

ing account of his impressive contributions to statistics and genetics. Fienberg
Ž .1980 summarized his contributions to CDA.

16.3 LOGISTIC REGRESSION

Ž . w Ž .xBartlett 1937 used log yr 1 y y in regression and ANOVA to transform
Ž .observations y that are continuous proportions Problem 6.33 . In a book of

statistical tables published in 1938, R. A. Fisher and Frank Yates suggested it
as a possible transformation of a binomial parameter for analyzing binary
data. In 1944, the physician and statistician Joseph Berkson introduced the
term logit for this transformation. Berkson showed that the model using the
logit fitted similarly to the probit model, and his subsequent work did much
to popularize logistic regression. In 1951, Jerome Cornfield, another statisti-
cian with strong medical ties, used the odds ratio to approximate relative

Ž .risks in case�control studies. Dyke and Patterson 1952 apparently first used
the logit in models with qualitative predictors.

Sir David R. Cox introduced many statisticians to logistic regression,
through his 1958 article and 1970 book, The Analysis of Binary Data. About
the same time, an article by the Danish statistician and mathematician Georg
Rasch sparked an enormous literature on item response models. The most
important of these is the logit model with subject and item parameters, now

Ž .called the Rasch model Section 12.1.4 . This work was highly influential in
Žthe psychometric community of northern Europe especially in Denmark, the

.Netherlands, and Germany and spurred many generalizations in the educa-
tional testing community in the United States.

The extension of logistic regression to multicategory responses received
Ž .occasional attention before 1970 e.g., Mantel 1966 but substantial work

after about that date. For nominal responses, early work was mainly in
Ž . Ž .the econometrics literature. See Bock 1970 , McFadden 1974 , Nerlove

Ž . Ž .and Press 1973 , and Theil 1969, 1970 . In 2000, Daniel McFadden won the
Nobel Prize in Economics for his work in the 1970s and 1980s on the

Ž .discrete-choice model Section 7.6 . For cumulative logit models for ordinal
Ž . Ž . Ž .responses, see Bock and Jones 1968 , Simon 1974 , Snell 1964 , Walker and

Ž . Ž .Duncan 1967 , and Williams and Grizzle 1972 . The cumulative probit case,
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based on an underlying normal response, has a longer history; see, for
Ž . Ž .instance, Aitchison and Silvey 1957 and Bock and Jones 1968, Chap. 8 .

Cumulative logit and probit models received much more attention following
Ž .publication of McCullagh 1980 , which provided a Fisher scoring algorithm

for ML fitting of all cumulative link models.
The next major advances with logistic regression dealt with its application

Žto case�control studies e.g., Breslow 1996; Mantel 1973; Prentice 1976a;
.Prentice and Pyke 1979; see also Section 5.1.4 and the conditional ML

approach to model fitting for those studies and others with numerous
Žnuisance parameters Breslow et al. 1978, with related work in Breslow 1976,

1982; Breslow and Day 1980; Breslow and Powers 1978; Cox 1970; Farewell
1979; Prentice 1976a; Prentice and Breslow 1978; Zelen 1971; see also

.Sections 6.7 and 10.2 . The conditional approach was later exploited in
Žsmall-sample exact inference Hirji et al. 1987; Mehta and Patel 1995; see

.also Section 6.7 .
Nathan Mantel, whose name appears in the preceding two paragraphs,

made a variety of interesting contributions to CDA. Although best known for
the 1959 Mantel�Haenszel test and related odds ratio estimator, he also

Ž . Ž .discussed trend tests 1963 , multinomial logit and loglinear modeling 1966 ,
Ž .logistic regression for case�control data 1973 , the number of contingency

Ž .tables having fixed margins Gail and Mantel 1977 , the analysis of square
Ž .contingency tables Mantel and Byar 1978 , and problems with minimum

Ž .chi-squared and Wald tests 1985, 1987a .
More recently, attention has focused on fitting logistic models to corre-

lated responses for clustered data. One strand of this is marginal modeling of
Žlongitudinal data Diggle et al. 2002; Liang and Zeger 1986; Liang et al.

.1992 . Much of this literature focuses on quasi-likelihood methods such as
Ž .generalized estimating equations GEE . Another strand is generalized linear

Ž .mixed models e.g., Breslow and Clayton 1993 .
Perhaps the most far-reaching contribution of the past half century has

been the introduction by British statisticians John Nelder and R. W. M.
Wedderburn in 1972 of the concept of generalized linear models. This unifies
the logistic and probit regression models for binomial data with loglinear
models for Poisson data and with long-established regression and ANOVA
models for normal-response data. Interestingly, the algorithm they used to fit
GLMs is Fisher scoring, which R. A. Fisher introduced in 1935 for ML fitting

Ž .of probit models. McCulloch 2000 reviewed the journey from probit models
to GLMs and their further generalizations such as quasi-likelihood.

16.4 MULTIWAY CONTINGENCY TABLES AND
LOGLINEAR MODELS

The quarter century following the end of World War II saw the development
of a theoretical underpinning for models for contingency tables. H. Cramer´
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Ž .1946 derived general expressions for large-sample distributions of parame-
Ž .ter estimators. C. R. Rao 1957, 1963 conducted related work.

In 1949, the Berkeley-based statistician Jerzy Neyman, who had already
performed fundamental work on hypothesis testing and interval estimation
methods with E. S. Pearson, introduced the family of best asymptotically

Ž .normal BAN estimators. These have the same optimal large-sample proper-
ties as ML estimators. The BAN family includes estimators obtained by
minimizing chi-squared-type measures comparing observed proportions to

Ž .proportions predicted by the model Section 15.3.1 . This type of estimator
Ž .itself includes some weighted least squares WLS estimators. The simplicity of

their computation, compared to ML estimators, was an important considera-
Ž .tion before the advent of modern computing. Neyman’s 1949 only mention

of Fisher was the suggestion that Fisher did not realize that estimators other
than ML could be BAN, stating that ‘‘the results . . . contradict the assertion
of R. A. Fisher, not a very clear one, that ‘the maximum likelihood equation
may indeed be derived from the conditions that it shall be linear in frequen-
cies, and efficient for all values of � ’.’’ Fisher, of course, returned the

Ž .compliment: for instance, writing 1956 about proposals for an unconditional
test for 2 � 2 tables, ‘‘the Principles of Neyman and Pearson’s ‘Theory of
Testing Hypotheses’ are liable to mislead those who follow them into much
wasted effort.’’

In the early 1950s, William Cochran published work dealing with a variety
of important topics in CDA. Scottish-born, Cochran spent most of his career
at American universities: Iowa State, North Carolina State, Johns Hopkins,

Ž .and Harvard. He 1940 modeled Poisson and binomial responses with
Ž .variance-stabilizing transformations. He 1943 recognized and discussed
Ž .ways of dealing with overdispersion. He 1950 introduced a generalization

Ž .Cochran’s Q of McNemar’s test for comparing proportions in several
matched samples. His classic 1954 article is a mixture of new methodology
and advice for applied statisticians. It gave sample-size guidelines for chi-
squared approximations to work well for the X 2 statistic. It also stressed the

Žimportance of directing inferences toward narrow e.g., single-degree-of-
.freedom alternatives and partitioning chi-squared statistics into components.

One instance of this was Cochran’s proposed test of conditional indepen-
dence in several 2 � 2 tables, which was closely related to the Mantel and

Ž . Ž .Haenszel 1959 test Section 6.3.2 . Another was a test for a linear trend in
Žproportions across quantitatively defined rows of an I � 2 table Section

. Ž . Ž .5.3.5 . See also Cochran 1955 . Fienberg 1984 reviewed Cochran’s contribu-
tions to CDA.

Bartlett’s work on interaction structure in 2 � 2 � 2 contingency tables
had relatively little impact for 20 years. Indeed, in presenting methods for

2 Ž .partitioning X in 2 � 2 � 2 tables, Lancaster 1951 noted that ‘‘Doubtless
little use will ever be made of more than a three-dimensional classification.’’
However, in the mid-1950s and early 1960s, Bartlett’s work was extended in

Ž .many ways to multiway tables. See, for instance, Darroch 1962 , Good
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Ž . Ž . Ž . Ž .1963 , Goodman 1964b , Plackett 1962 , Roy and Kastenbaum 1956 , and
Ž .Roy and Mitra 1956 . These articles as well as influential articles by Martin

Ž .W. Birch 1963, 1964a, b, 1965 were the genesis of research work on
loglinear models between about 1965 and 1975. Birch’s work was part of a
never-submitted Ph.D. thesis at the University of Glasgow. He showed how
to obtain ML estimates of cell probabilities in three-way tables, under various
conditions. He showed the equivalence of those ML estimates for Poisson

Ž .and multinomial sampling. He and Watson 1959 extended theoretical
results of Cramer and Rao on large-sample distributions for contingency´

Ž .table models. Mantel 1966 discussed early results and made the loglinear
model formula explicit. A survey article by the French statistician Henri

Ž .Caussinus 1966 , based partly on his Ph.D. thesis, provides a good glimpse of
the state-of-the-art of CDA just before this decade of advances. There,
Caussinus introduced the quasi-symmetry model for square tables.

Much of the work in the next decades on loglinear and related logit
modeling took place at three American universities: the University of Chicago,
Harvard University, and the University of North Carolina. At Chicago, Leo
Goodman wrote a series of groundbreaking articles, dealing with such topics

Žas partitionings of chi-squared, models for square tables e.g., quasi-indepen-
.dence , stepwise logit and loglinear model-building procedures, deriving

asymptotic variances of ML estimates of loglinear parameters, latent class
models, association models, correlation models, and correspondence analysis.

ŽFor surveys of his early work, see Goodman 1968, an R. A. Fisher memorial
. Ž .lecture, 1970 . For later work, see Goodman 1985, 1996, 2000 . Goodman

also wrote a stream of articles for social science journals that had a substan-
Žtial impact on popularizing loglinear and logit methods for applications e.g.,

.Goodman 1969b .
Over the past 50 years, Goodman has been the most prolific contributor to

the advancement of CDA methodology. The field owes tremendous gratitude
to his steady and impressive body of work. In addition, some of Goodman’s
students at Chicago also made fundamental contributions. In 1970, Shelby

ŽHaberman completed a Ph.D. dissertation the basis of his 1974a mono-
.graph making substantial theoretical contributions to loglinear modeling.

Among topics he considered were residual analyses, existence of ML esti-
mates, loglinear models for ordinal variables, and theoretical results for

Ž .models such as the Rasch model for which the number of parameters grows
with the sample size. Clifford Clogg followed in Goodman’s steps by having
influence in the social sciences and in statistics with his work on association
models, demography, models for rates, the census, and various other topics.

Simultaneously with Goodman’s work, related research on ML methods
for loglinear-logit models occurred at Harvard by students of Frederick

Ž .Mosteller such as Stephen Fienberg and William Cochran. Much of this
research was inspired by problems arising in analyzing large, multivariate

Ždata sets in the National Halothane Study Bishop and Mosteller 1969; see
.also p. 345 of an interview with Lincoln Moses in Statist. Sci. 14, 1999 . That
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FIGURE 16.1 Four leading figures in the development of categorical data analysis.
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study investigated whether halothane was more likely than other anesthetics
to cause death due to liver damage. A presidential address by Mosteller
Ž .1968 to the American Statistical Association described early uses of loglin-
ear models for smoothing multidimensional discrete data sets. Fienberg and
his own students advanced this work further. A landmark book in 1975 by
him with Yvonne Bishop and Paul Holland, Discrete Multi®ariate Analysis, was
largely responsible for introducing loglinear models to the general statistical
community and remains an excellent reference.

Research at North Carolina by Gary Koch and several students and
co-workers has been highly influential in the biomedical sciences. Their

Ž .research developed WLS methods for categorical data models Section 15.1 .
The 1969 article by Koch with J. Grizzle and F. Starmer popularized this
approach. Koch and colleagues extended it in later articles to an impressive
variety of problems, including problems for which ML methods are awkward

Žto use, such as the analysis of repeated categorical measurement data Koch
.et al. 1977 . In 1966, Vasant Bhapkar showed that the WLS estimator is often

identical to Neyman’s minimum modified chi-squared estimator.
The early literature on loglinear models treated all classifications as

Ž . Ž .nominal. Haberman 1974b and Simon 1974 showed how to exploit ordinal-
ity of classifications in loglinear models. This work was extended in several

Ž .articles by Leo Goodman 1979a, 1981a, b, 1983, 1985, 1986 . The extensions
included association models, which replace ordered scores in loglinear mod-

Ž . Ž .els by parameters Section 9.5 . Goodman 1985, 1986, 1996 also discussed
related correlation models and provided a model-based perspective for the
closely related correspondence analysis methods.

Certain loglinear models with conditional independence structure provide
graphical models for contingency tables. These relate to the association

Ž .graphs used in Section 9.1. Darroch et al. 1980 was the genesis of much of
this work.

( )16.5 RECENT AND FUTURE? DEVELOPMENTS

The most active area of new research in CDA in the past decade has been
the modeling of clustered data, such as occur in longitudinal studies and
other forms of repeated measurement. A variety of ways now exist of
modeling while accounting for the correlation among responses in the same
cluster.

As discussed in Chapters 11 and 12, ML estimation is difficult for such
models. For complex forms of generalized linear mixed models, for instance,
it is a challenge to estimate well regression parameters and variance compo-
nents. Integrating out the random effect to obtain the likelihood function
requires an approximation such as numerical integration. Not surprisingly,
various Monte Carlo approaches are applied increasingly here. A promising
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approach is a Monte Carlo EM algorithm that uses a Monte Carlo approxi-
Ž .mation for the E step Booth and Hobert 1999 . The Monte Carlo error can

be assessed at each iteration, and one can accurately reproduce the ML
estimates with sufficiently many iterations.

The modeling of clustered correlated data is likely to be an active area of
research in coming years. The class of generalized linear mixed models is
certain to see substantial work and further generalization. One extension
is generalized additi®e mixed models. Time-series models for categorical
responses have so far received relatively little attention. For all such models
with correlated responses, model diagnostics are of vital importance and
need development. For longitudinal data, missing data are a common prob-
lem. This area currently has much activity.

Another important recent advance is the development of efficient algo-
rithms for exact small-sample methods. With such methods, one can guaran-
tee that the size of a test is no greater than some prespecified level and that
the coverage probability for a confidence interval is at least the nominal level.
The ‘‘exactness’’ refers only to inference being based on probability distribu-
tions that do not depend on unknown parameters. There is no unique way to
do this, and certain methods can be highly conservative because of discrete-
ness. Most literature deals with the conditional approach, which eliminates
nuisance parameters by conditioning on their sufficient statistics. Hence, the
basic idea builds on Fisher’s exact test. Conditional methods are versatile,
applying to exponential family linear models that use the canonical link
function, such as loglinear models for Poisson responses and logit models for
binomial responses. Many of the computational advances with the exact
conditional approach occurred in a series of articles by Cyrus Mehta, Nitin

Ž .Patel, and colleagues at Harvard e.g., Mehta and Patel 1983 , using the
Ž . Ž .network algorithm. See surveys by Agresti 1992 , Mehta 1994 , Mehta and

Ž . ŽPatel 1995 , and the StatXact and LogXact manuals Cytel Software, Cam-
.bridge, MA, founded by Mehta and Patel .

Although the development of ‘‘exact’’ methods has seen considerable
progress, certain analyses are still infeasible and likely to be so for some time
because of the exponential increase in computing time as the table size or
sample size increases. There are an ever-increasing variety of methods for
accurate approximation of exact methods. These include simple Monte Carlo
Ž . Že.g., Agresti et al. 1979 , Monte Carlo with importance sampling e.g., Booth

. Žand Butler 1999; Mehta et al. 1988 , Markov chain Monte Carlo MCMC;
. ŽForster et al. 1996 , saddlepoint approximations Pierce and Peters 1992,

.Strawderman and Wells 1998 , and related work on an approximate condi-
Ž .tioning approach Pierce and Peters 1999 in which discreteness is not so

problematic.
Finally, the development of Bayesian approaches to CDA is an increas-

ingly active area. The multiplicity of parameters complicates Bayesian model-
Ž .ing. For early use of Bayesian estimation of probabilities, see Good 1965

Ž . Ž .and Lindley 1964 . Good’s 1965 article apparently evolved from his work
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during World War II with Alan Turing at Bletchley Park, England, on
breaking Nazi codes. The development of the Bayesian approach for CDA is
discussed in Section 15.2.3.

Predicting the future is always dangerous. However, it is likely that much
future research will focus on computationally intensive methods such as
generalized linear mixed models. Another hot topic, largely outside the realm
of traditional modeling, is the development of algorithmic methods for huge
data sets with large numbers of variables. Such methods, often referred to as
data mining, deal with the handling of complex data structures, with a
premium on predictive power at the sacrifice of simplicity and interpretability
of structure. Important areas of application include genetics, such as the
analysis of discrete DNA sequences in the form of very high-dimensional
contingency tables, and business applications such as credit scoring and
tree-structured methods for predicting future behavior of customers.

Ž .Sources for the historical tour in this chapter include Stigler 1986 ,
Studies in the History of Probability and Statistics, edited by E. S. Pearson and

Ž .M. G. Kendall London: Griffin, 1970 , and personal conversations over the
years with several statisticians, including Erling Andersen, R. L. Anderson,
Henri Caussinus, William Cochran, Sir David Cox, John Darroch, Leo
Goodman, Gary Koch, Frederick Mosteller, John Nelder, C. R. Rao, Stephen
Stigler, Geoffrey Watson, and Marvin Zelen. To readers who have made it
this far, I congratulate your perseverance! To develop a more complete
understanding of the historical development of CDA, you may want to study
the following chronological list of 25 sources. These convey a sense of how
methodology has evolved. Alternatively, look at some early books on this

Žtopic, such as A. E. Maxwell’s Analysing Qualitati®e Data New York:
. ŽMethuen, 1961 , R. L. Plackett’s The Analysis of Categorical Data London:

.Griffin, 1974 , and the Bishop, Fienberg, and Holland Discrete Multi®ariate
Ž .Analysis Cambridge, MA: MIT Press 1975 .

Ž . Ž .Pearson 1900 Caussinus 1966
Ž . Ž .Yule 1912 Goodman 1968
Ž . Ž .Fisher 1922 Mosteller 1968
Ž . Ž .Bartlett 1935 Grizzle et al. 1969
Ž . Ž .Berkson 1944 Goodman 1970
Ž . Ž .Neyman 1949 Haberman 1974a
Ž . Ž .Cochran 1954 Nelder and Wedderburn 1972

Ž . Ž .Goodman and Kruskal 1954 McFadden 1974
Ž . Ž .Roy and Mitra 1956 Goodman 1979a

Ž . Ž .Cox 1958a McCullagh 1980
Ž . Ž .Mantel and Haenszel 1959 Liang and Zeger 1986

Ž . Ž .Birch 1963 Breslow and Clayton 1993
Ž .Birch 1964b
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Using Computer Software to
Analyze Categorical Data

In this appendix we discuss statistical software for categorical data analysis,
with emphasis on SAS. We begin by mentioning major software that can
perform the analyses discussed in this book. Then we illustrate, by chapter,

ŽSAS code for the analyses. Information about other packages such as S-Plus,
.R, SPSS, and Stata , as well as updated information about SAS, is at the Web

Ž .site www. stat.ufl.edur�aarcdarcda.html. Section A.2 on SAS also lists
other software for analyses not currently available in SAS.

A.1 SOFTWARE FOR CATEGORICAL DATA ANALYSIS

A.1.1 SAS

SAS is general-purpose software for a wide variety of statistical analyses. The
Ž .main procedures PROCs for categorical data analyses are FREQ, GEN-

MOD, LOGISTIC, NLMIXED, and CATMOD.
PROC FREQ computes measures of association and their estimated

standard errors. It also performs generalized Cochran�Mantel�Haenszel
tests of conditional independence, and exact tests of independence in I � J
tables.

PROC GENMOD fits generalized linear models. It fits cumulative link
models for ordinal responses. It can perform GEE analyses for marginal
models. One can form one’s own variance function and allow scale parame-
ters, making it suitable for quasi-likelihood analyses.

PROC LOGISTIC gives ML fitting of binary response models, cumulative
link models for ordinal responses, and baseline-category logit models for
nominal responses. It incorporates model selection procedures, regression
diagnostic options, and exact conditional inference. PROC PROBIT also
conducts ML fitting of binary and cumulative link models as well as quantal

632
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response models that permit a strictly positive probability as the linear
predictor decreases to y�.

PROC CATMOD fits baseline-category logit models. It is also useful for
WLS fitting of a wide variety of models for categorical data.

Ž .PROC NLMIXED fits generalized linear mixed models GLMMs . It
approximates the likelihood using adaptive Gauss�Hermite quadrature.

Other programs run on SAS that are not specifically supported by the SAS
Institute. For further details about SAS for categorical data analyses, see the

Ž .very helpful guide by Stokes et al. 2000 . Also useful are SAS publications on
Ž . Ž .logistic regression Allison 1999 and graphics Friendly 2000 .

A.1.2 Other Software Packages

Most major statistical software has procedures for categorical data analyses.
ŽFor instance, see SPSS SPSS Regression Models 10.0 by M. J. Norusis, SPSS

. ŽInc., 1999 , Stata A Handbook of Statistical Analyses Using Stata, 2nd ed., by
.S. Rabe-Hesketh and B. Everitt, CRC Press, Boca Raton, FL, 2000 , S-Plus

ŽModern Applied Statistics with S-Plus, 3rd ed., by W. N. Venables and B. D.
.Ripley, Springer-Verlag, New York, 1999 , and the related free package, R,

Ž .and GLIM Aitkin et al. 1989 . Most major software now follows the lead of
GLIM and includes a generalized linear models routine. Examples are
PROC GENMOD in SAS and the glm function in R and S-Plus.

For certain analyses, specialized software is better than the major pack-
Ž .ages. A good example is StatXact Cytel Software, Cambridge, Massachusetts ,

which provides exact analysis for categorical data methods and some non-
parametric methods. Among its procedures are small-sample confidence
intervals for differences and ratios of proportions and for odds ratios, and
Fisher’s exact test and its generalizations for I � J tables. It can also conduct
exact tests of conditional independence and of equality of odds ratios in
2 � 2 � K tables, and exact confidence intervals for the common odds ratio
in several 2 � 2 tables. StatXact uses Monte Carlo methods to approximate
exact P-values and confidence intervals when a data set is too large for exact
inference to be computationally feasible. Its companion, LogXact, performs
exact conditional logistic regression.

Other examples of specialized software are SUDAAN for GEE-type
Žanalyses that handle clustering in survey data Research Triangle Institute,

.Research Triangle Park, North Carolina , Latent GOLD for latent class
Ž . Žmodeling Statistical Innovations, Belmont, Massachusetts , MLn Institute

. Ž .of Education, London and HLM Scientific Software, Chicago for multi-
Žlevel models, and PASS for power analyses NCSS Statistical Software,

.Kaysville, Utah . S-Plus and R functions are also available from individuals
or from published work for particular analyses. For instance, Statistical

ŽModels in S by J. M. Chambers and T. J. Hastie Wadsworth, Belmont,
.California, 1993, p. 227 showed the use of S-Plus in quasi-likelihood analyses

using the quasi and make.family functions.
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TABLE A.1 SAS Code for Chi-Squared, Measures of Association,
and Residuals for Education–Religion Data in Table 3.2

data table;
input degree religion $ count @@;

datalines;
1 fund 178 1 mod 138 1 lib 108
2 fund 570 2 mod 648 2 lib 442
3 fund 138 3 mod 252 3 lib 252

;
proc freq order= data; weight count;
tables degree*religion/ chisq expected measures cmh1;

proc genmod order= data; class degree religion;
model count= degree religion/ dist= poi link= log residuals;

A.2 EXAMPLES OF SAS CODE BY CHAPTER

Ž .The examples below show SAS code Version 8.1 . We focus on basic model
fitting rather than the great variety of options. The material is organized by
chapter of presentation. For convenience, data for examples are entered in
the form of the contingency table displayed in the text. In practice, one
would usually enter data at the subject level. These tables and the full data
sets are available at www. stat.ufl.edur�aarcdarcda.html.

Chapters 1–3: Introduction, Two-Way Contingency Tables

Table A.1 uses SAS to analyze Table 3.2. The @@ symbol indicates that
each line of data contains more than one observation. Input of a variable as
characters rather than numbers requires an accompanying $ label in the
INPUT statement. PROC FREQ forms the table with the TABLES state-
ment, ordering row and column categories alphanumerically. To use instead

Žthe order in which the categories appear in the data set e.g., to treat the
.variable properly in an ordinal analysis , use the ORDER s DATA option in

the PROC statement. The WEIGHT statement is needed when one enters
the cell counts instead of subject-level data. PROC FREQ can conduct

Ž .chi-squared tests of independence CHISQ option , show its estimated ex-
Ž .pected frequencies EXPECTED , provide a wide assortment of measures of

Ž .association and their standard errors MEASURES , and provide ordinal
Ž . Ž .statistic 3.15 with a ‘‘nonzero correlation’’ test CMH1 . One can also

Žperform chi-squared tests using PROC GENMOD using loglinear models
.discussed in the Chapters 8�9 section of this appendix , as shown. Its

RESIDUALS option provides cell residuals. The output labeled ‘‘StReschi’’
Ž .is the standardized Pearson residual 3.13 .

Table A.2 analyzes Table 3.8. With PROC FREQ, for 2 � 2 tables the
MEASURES option in the TABLES statement provides confidence intervals
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TABLE A.2 SAS Code for Fisher’s Exact Test and Confidence Intervals
for Odds Ratio for Tea-Tasting Data in Table 3.8

data fisher;
input poured guess count @@;
datalines;
1 1 3 1 2 1 2 1 1 2 2 3
;
proc freq; weight count;
tables poured*guess/ measures riskdiff;
exact fisher or / alpha= .05;

proc logistic descending; freq count;
model guess= poured/ clodds= pl;

Ž .for the odds ratio labeled ‘‘case-control’’ on output and the relative risk,
and the RISKDIFF option provides intervals for the proportions and their
difference. For tables having small cell counts, the EXACT statement can
provide various exact analyses. These include Fisher’s exact test and its
generalization for I � J tables, treating variables as nominal, with keyword
FISHER. The OR keyword gives the odds ratio and its large-sample confi-

Ž . Ž .dence interval 3.2 and the small-sample interval based on 3.20 . Other
ŽEXACT statement keywords include binomial tests for 1 � 2 tables keyword

. Ž .BINOMIAL , exact trend tests for I � 2 tables TREND , and exact chi-
Ž . Ž .squared tests CHISQ and exact correlation tests for I � J tables MHCHI .

Ž .One can use Monte Carlo simulation option MC to estimate exact P-values
when the exact calculation is too time consuming. Table A.2 also uses PROC
LOGISTIC to get a profile-likelihood confidence interval for the

Ž .odds ratio CLODDS s PL . LOGISTIC uses FREQ to serve the same
purpose as PROC FREQ uses WEIGHT.

Other
StatXact provides small-sample confidence intervals for a binomial parame-

Ž .ter, the difference of proportions, relative risk, and odds ratio. Blaker 2000
gave S-Plus functions that provide his confidence interval for a binomial
parameter.

Chapter 4: Models for Binary Response Variables

PROC GENMOD fits GLMs. It specifies the response distribution in the
ŽDIST option ‘‘poi’’ for Poisson, ‘‘bin’’ for binomial, ‘‘mult’’ for multinomial,

.‘‘negbin’’ for negative binomial and specifies the link in the LINK option.
Table A.3 illustrates for Table 4.2. For binomial models with grouped data,
the response in the model statements takes the form of the number of
‘‘successes’’ divided by the number of cases.
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TABLE A.3 SAS Code for Binary GLMs for Snoring Data in Table 4.2

data glm;
input snoring disease total @@;
datalines;
0 24 1379 2 35 638 4 21 213 5 30 254
;
proc genmod; model disease/ total= snoring/ dist= bin link= identity;
proc genmod; model disease/ total= snoring/ dist = bin link= logit;
proc genmod; model disease/ total= snoring/ dist= bin link= probit;

TABLE A.4 SAS Code for Poisson and Negative Binomial GLMs for Horseshoe
Crab Data in Table 4.3

data crab;
input color spine width satell weight;
datalines;
3 3 28.3 8 3.05
4 3 22.5 0 1.55
���

3 2 24.5 0 2.00
;
proc genmod;
model satell= width/ dist= poi link= log;

proc genmod;
model satell= width/ dist= poi link = identity;

proc genmod;
model satell= width/ dist= negbin link= identity;

Table A.4 uses GENMOD for count modeling of Table 4.3. Each observa-
tion refers to a single crab. Using width as the predictor, the first two models
use Poisson regression. The third model uses the identity link assuming a
negative binomial distribution.

Table A.5 uses GENMOD for the overdispersed data of Table 4.5.
A CLASS statement requests dummy variables for the groups. With no

Ž .intercept in the model option NOINT for the identity link, the estimated
parameters are the four group probabilities. The ESTIMATE state-
ment provides an estimate, confidence interval, and test for a contrast of
model parameters, in this case the difference in probabilities for the first
and second groups. The second analysis uses the Pearson statistic to scale
standard errors to adjust for overdispersion. PROC LOGISTIC can also
provide overdispersion modeling of binary responses; see Table A.27 in the
Chapter 13 part of this appendix.

Ž .PROC GAM starting in Version 8.2 fits generalized additive models.
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TABLE A.5 SAS Code for Overdispersion Modeling of Teratology Data in Table 4.5

data moore;
input litter group n y @@;

datalines;
1 1 10 1 2 1 11 4 3 1 12 9 4 1 4 4 5 1 10 10

���

55 4 14 1 56 4 8 0 58 4 17 0
;
proc genmod; class group;
model y/n = group/ dist= bin link= identity noint;

estimate ‘pi1- pi2 ’ group 1 -1 0 0;
proc genmod; class group;
model y/n = group/ dist= bin link= identity noint scale= pearson;

Chapters 5 and 6: Logistic Regression

One can fit logistic regression models using either software for GLMs or
specialized software for logistic regression. PROC GENMOD uses Newton-
Raphson, whereas PROC LOGISTIC uses Fisher scoring. Both yield ML
estimates, but SE values use observed information in GENMOD and ex-
pected information in LOGISTIC. These are the same for the logit link.

Table A.6 applies GENMOD and LOGISTIC to Table 5.2, when ‘‘y’’ out
of ‘‘n’’ crabs had satellites at a given width level. In GENMOD, the LRCI
option provides profile likelihood confidence intervals. The ALPHA s option
can specify an error probability other than the default of 0.05. The TYPE3

Žoption provides likelihood-ratio tests for each parameter. In the Chapter
.8�9 section we discuss the second GENMOD analysis.

TABLE A.6 SAS Code for Modeling Grouped Crab Data in Table 5.2

data crab;
input width y n satell; logcases= log(n);
datalines;
22.69 5 14 14
���

30.41 14 14 72
;
proc genmod;
model y/n = width/ dist= bin link= logit 1rci alpha= .01 type3;

proc logistic;
model y/n = width/ influence stb;
output out = predict p = pi hat lower= LCL upper= UCL;�

proc print data= predict;
proc genmod;
model satell= width/ dist= poi link= log offset= logcases residuals;
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TABLE A.7 SAS Code for Logit Modeling of AIDS Data in Table 5.5

data aids;
input race $ azt $ y n @@;
datalines;
White Yes 14 107 White No 32 113 Black Yes 11 63 Black No 12 55

;
proc genmod; class race azt;
model y/n = azt race/ dist= bin type3 lrci residuals obstats;

proc logistic; class race azt / param= reference;
model y/n = azt race/ aggregate scale= none clparm= both clodds= both;
output out = predict p = pi hat lower= lower upper= upper;�

proc print data= predict;
proc logistic; class race azt (ref= first)/ param= ref;
model y/n = azt / aggregate= (azt race) scale= none;

With PROC LOGISTIC, logistic regression is the default for binary data.
LOGISTIC has a built-in check of whether logistic regression ML estimates
exist. It can detect a complete separation of data points with 0 and 1
outcomes. LOGISTIC can also apply other links, such as the probit. Its
INFLUENCE option provides Pearson and deviance residuals and diagnostic

Ž .measures Pregibon 1981 . The STB option provides standardized estimates
' Ž .by multiplying by s 3r� Section 5.4.7 and Note 5.9 . Following the modelx j

statement, Table A.6 requests predicted probabilities and lower and upper
95% confidence limits for the probabilities.

Table A.7 uses GENMOD and LOGISTIC to fit a logit model with
qualitative predictors to Table 5.5. In GENMOD, the OBSTATS option
provides various ‘‘observation statistics,’’ including predicted values and their
confidence limits. The RESIDUALS option requests residuals such as the

ŽPearson and standardized Pearson residuals labeled ‘‘Reschi’’ and
.‘‘StReschi’’ . A CLASS statement requests dummy variables for the factor. By

default, in GENMOD the parameter estimate for the last level of each factor
equals 0. In LOGISTIC, estimates sum to zero. That is, dummies take the

Ž .effect coding 1, y1 of 1 when in the category and y1 when not, for which
parameters sum to 0. In the CLASS statement in LOGISTIC, the option

Ž .PARAMs REF requests 1, 0 dummy variables with the last category as the
reference level. Also putting REF s FIRST next to a variable name requests
its first category as the reference level. The CLPARM s BOTH and
CLODDS s BOTH options provide Wald and profile likelihood confidence
intervals for parameters and odds ratio effects of explanatory variables. With
AGGREGATE SCALE s NONE in the model statement, LOGISTIC re-
ports Pearson and deviance tests of fit; it forms groups by aggregating data
into the possible combinations of explanatory variable values, without
overdispersion adjustments. Adding variables in parentheses after AGGRE-

Ž .GATE as in the second use of LOGISTIC in Table A.7 specifies the
predictors used for forming the table on which to test fit, even when some
predictors may have no effect in the model.



EXAMPLES OF SAS CODE BY CHAPTER 639

TABLE A.8 SAS Code for Logistic Regression Models with Horseshoe
Crab Data in Table 4.3

data crab;
input color spine width satell weight;
if satell>0 then y = 1; if satell = 0 then y = 0;
if color= 4 then light= 0; if color<4 then light= 1;
datalines;
2 3 28.3 8 3.05
���

2 2 24.5 0 2.00
;
proc genmod descending; class color;
model y = width color/ dist= bin link= logit lrci type3 obstats;
contrast ’a- d’ color 1 0 0 -1;

proc genmod descending;
model y = width color/ dist= bin link= logit;

proc genmod descending;
model y = width light/ dist= bin link= logit;

proc genmod descending; class color spine;
model y = width weight color spine/ dist= bin link= logit type3;

proc logistic descending; class color spine/ param= ref;
model y = width weight color spine/ selection= backward lackfit

outroc= classif1;
proc plot data= classif1; plot sensit * lmspec ;� � � �

Table A.8 shows logistic regression analyses for Table 4.3. The models
refer to a constructed binary variable Y that equals 1 when a horseshoe crab
has satellites and 0 otherwise. With binary data entry, GENMOD and

Ž .LOGISTIC order the levels alphanumerically, forming the logit with 1, 0
w Ž . Ž .xresponses as log P Y s 0 rP Y s 1 . Invoking the procedure with DE-

SCENDING following the PROC name reverses the order. The first two
GENMOD statements use both color and width as predictors; color is

Ž .qualitative in the first model by the CLASS statement and quantitative in
the second. A CONTRAST statement tests contrasts of parameters, such as
whether parameters for two levels of a factor are identical. The statement
shown contrasts the first and fourth color levels. The third GENMOD
statement uses a dummy variable for color, indicating whether a crab is light

Ž .or dark color s 4 . The fourth GENMOD statement fits the main effects
model using all the predictors from Table 4.3. LOGISTIC has options for
stepwise selection of variables, as the final model statement shows. The
LACKFIT option yields the Hosmer�Lemeshow statistic. Using the OUT-
ROC option, LOGISTIC can output a data set for plotting a ROC curve.

Table A.9 analyzes Table 6.9. The CMH option in PROC FREQ specifies
the CMH statistic, the Mantel�Haenszel estimate of a common odds ratio
and its confidence interval, and the Breslow�Day statistic. FREQ uses the
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TABLE A.9 SAS Code for CMH Analysis of Clinical Trial Data in Table 6.9

data crab;
input center $ treat response count @@ ;
datalines;
a 1 1 11 a 1 2 25 a 2 1 10 a 2 2 27
���

h 1 1 4 h 1 2 2 h 2 1 6 h 2 2 1
;
proc freq; weight count;
tables center*treat*response/ cmh chisq;

two rightmost variables in the TABLES statement as the rows and columns
for each partial table; the CHISQ option yields chi-square tests of indepen-
dence for each partial table. For I � 2 tables the TREND keyword in the
TABLES statement provides the Cochran�Armitage trend test.

Exact conditional logistic regression is available in PROC LOGISTIC with
the EXACT statement. It provides ordinary and mid-P-values as well as
confidence limits for each model parameter and the corresponding odds ratio
with the ESTIMATE s BOTH option. One can also conduct the exact
conditional version of the Cochran�Armitage test using the TREND option
in the EXACT statement with PROC FREQ. Version 9 of SAS will include
asymptotic conditional logistic regression, using a STRATA statement to
indicate the stratification parameters to be conditioned out. One can also use

Ž .PROC PHREG to do this Stokes et al. 2000 .
Ž .Models with probit and complementary log-log CLOGLOG links are

available with PROC GENMOD, PROC LOGISTIC, or PROC PROBIT.
Ž .O’Brien 1986 gave a SAS macro for computing powers using the noncentral

chi-squared distribution.

Other
LogXact provides exact conditional logistic regression and StatXact provides

Žexact inference about the odds ratio in 2 � 2 � K tables. PASS NCSS
.Statistical Software provides power analyses.

Chapter 7: Multinomial Response Models

Ž .PROC LOGISTIC fits baseline-category logit models as of Version 8.2
using the LINK s GLOGIT option. The final response category is the
default baseline for the logits. Exact inference is also available using the
conditional distribution to eliminate nuisance parameters. PROC CATMOD
also fits baseline-category logit models, as Table A.10 shows. CATMOD
codes estimates for a factor so that they sum to zero. The PRED s PROB
and PRED s FREQ options provide predicted probabilities and fitted val-
ues and their standard errors. The POPULATION statement provides the
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TABLE A.10 SAS Code for Baseline-Category Logit Models with Alligator Data
in Table 7.1

data gator;
input lake gender size food count @@;
datalines;
1 1 1 1 7 1 1 1 2 1 1 1 1 3 0 1 1 1 4 0 1 1 1 5 5
���

4 2 2 1 8 4 2 2 2 1 4 2 2 3 0 4 2 2 4 0 4 2 2 5 1
;
proc logistic; freq count; class lake size/ param= ref;
model food(ref= ’1’) = lake size / link= glogit

aggregate scale= none;
proc catmod; weight count;
population lake size gender;
model food= lake size / pred= freq pred= prob;

variables that define the predictor settings. For instance, with ‘‘gender’’ in
that statement, the model with lake and size effects is fitted to the full table
also classified by gender.

PROC GENMOD can fit the proportional odds version of cumulative
logit models using the DIST s MULTINOMIAL and LINK s CLOGIT
options. Table A.11 fits it to Table 7.5. When the number of response
categories exceeds 2, by default PROC LOGISTIC fits this model. It also
gives a score test of the proportional odds assumption of identical effect
parameters for each cutpoint. Both procedures use the � q � x form of thej

Ž . Ž .model. Cox 1995 used PROC NLIN for the more general model 7.8 having
a scale parameter.

Both GENMOD and LOGISTIC can use other links in cumulative link
models. GENMOD uses LINK s CPROBIT for the cumulative probit model
and LINK s CCLL for the cumulative complementary log-log model. Table
A.11 uses LINK s PROBIT in LOGISTIC to fit a cumulative probit model.

TABLE A.11 SAS Code for Cumulative Logit and Probit Models with Mental
Impairment Data in Table 7.5

data impair;
input mental ses life;
datalines;
1 1 1
���

4 0 9
;
proc genmod ;
model mental= life ses / dist= multinomial link= clogit lrci type3;

proc logistic;
model mental= life ses / link= probit;
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TABLE A.12 SAS Code for Adjacent-Categories Logit and Mean Response Models
and CMH Analysis of Job Satisfaction Data in Table 7.8

data jobsat;
input gender income satisf count @@;
count2= count+ .01;
datalines;
1 1 1 1 1 1 2 3 1 1 3 11 1 1 4 2
...
0 4 1 0 0 4 2 1 0 4 3 9 0 4 4 6
;
proc catmod order= data; * ML analysis of adj-cat logit (ACL) model;

weight count;
population gender income;
model satisf=

(1 0 0 3 3, 0 1 0 2 2, 0 0 1 1 1,
1 0 0 6 3, 0 1 0 4 2, 0 0 1 2 1,
1 0 0 9 3, 0 1 0 6 2, 0 0 1 3 1,
1 0 0 12 3, 0 1 0 8 2, 0 0 1 4 1,
1 0 0 3 0, 0 1 0 2 0, 0 0 1 1 0,
1 0 0 6 0, 0 1 0 4 0, 0 0 1 2 0,
1 0 0 9 0, 0 1 0 6 0, 0 0 1 3 0,
1 0 0 12 0, 0 1 0 8 0, 0 0 1 4 0)
/ml pred= freq;

proc catmod order= data; weight count2; * WLS analysis of ACL model;
response alogits; population gender income; direct gender income;
model satisf= response gender income;� �

proc catmod; weight count; * mean response model;
population gender income; response mean; direct gender income;
model satisf= gender income/ covb;

proc freq; weight count;
tables gender*income*satisf/ cmh scores= table;

One can fit adjacent-categories logit models in CATMOD by fitting
equivalent baseline-category logit models. Table A.12 uses it for Table 7.8,
where each line of code in the model statement specifies the predictor values
Ž .for the three intercepts, income, and gender for the three logits. The
income and gender predictor values are multiplied by 3 for the first logit, 2
for the second, and 1 for the third, to make effects comparable in the two

Ž .models. PROC CATMOD has options CLOGITS and ALOGITS for fitting
cumulative logit and adjacent-categories logit models to ordinal responses;

Ž .however, those options provide weighted least squares WLS rather than
ML fits. A constant must be added to empty cells for WLS to run. CATMOD
treats zero counts as structural zeros, so they must be replaced by small
constants when they are actually sampling zeros. The DIRECT statements
identify predictors treated as quantitative. The second analysis in Table A.12
uses the ALOGITS option. CATMOD can also fit mean response models
using WLS, as the third analysis in Table A.12 shows.

With the CMH option, PROC FREQ provides the generalized CMH tests
of conditional independence. The statistic for the ‘‘general association’’
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w Ž .xalternative treats X and Y as nominal statistic 7.20 , the statistic for the
‘‘row mean scores differ’’ alternative treats X as nominal and Y as ordinal,
and the statistic for the ‘‘nonzero correlation’’ alternative treats X and Y as

w Ž .x Ž .ordinal statistic 7.21 . Table A.12 analyzes Table 7.8, using scores 1, 2, 3, 4
for each variable.

PROC MDC fits multinomial discrete choice models, with logit and probit
links. One can also use PROC PHREG, which is designed for the Cox
proportional hazards model for survival analysis, because the partial likeli-
hood for that analysis has the same form as the likelihood for the multino-

Ž .mial model Allison 1999, Chap. 7; Chen and Kuo 2001 .

Other
LogXact provides exact conditional analyses for baseline-category logit mod-

Ž .els. Joseph Lang jblang@stat.uiowa.edu has an R function that can fit
mean response models by ML.

Chapters 8 and 9: Loglinear Models

Ž .Table A.13 uses GENMOD to fit model AC, AM, CM to Table 8.3. Table
A.14 uses GENMOD for table raking of Table 8.15. Table A.15 uses

Ž .GENMOD to fit the linear-by-linear association model 9.6 and the row
Ž . Ž .effects model 9.8 to Table 9.3 with column scores 1, 2, 4, 5 . The defined

TABLE A.13 SAS Code for Fitting Loglinear Models to Drug Survey
Data in Table 8.3

data drugs;
input a c m count @@;
datalines;
1 1 1 911 1 1 2 538 1 2 1 44 1 2 2 456
2 1 1 3 2 1 2 43 2 2 1 2 2 2 2 279
;
proc genmod; class a c m;
model count= a c m a*m a*c c*m / dist= poi link= log lrci type3 obstats;

TABLE A.14 SAS Code for Raking Table 8.15

data rake;
input school atti count @@;
log c = log(count); pseudo= 100 / 3;�
data lines;
1 1 209 1 2 101 1 3 237
���

;
proc genmod; class school atti;
model pseudo= school atti/ dist= poi link= log offset= log c obstats;�
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TABLE A.15 SAS Code for Fitting Association Models to GSS Data in Table 9.3

data sex;
input premar birth u v count @@; assoc= u*v ;
datalines;
1 1 1 1 38 1 2 1 2 60 1 3 1 4 68 1 4 1 5 81
���

;
proc genmod; class premar birth;
model count= premar birth assoc/ dist= poi link= log;

proc genmod; class premar birth;
model count= premar birth premar*v/ dist= poi link= log;

variable ‘‘assoc’’ represents the cross-product of row and column scores,
Ž .which has � parameter as coefficient in model 9.6 . Table A.6 uses

GENMOD to fit the Poisson regression model with log link for the grouped
data of Table 5.2. It models the total number of satellites at each width level
Ž .variable ‘‘satell’’ , using the log of the number of cases as offset.

Correspondence analysis is available with PROC CORRESP.

Other
Ž .Prof. Joseph Lang jblang@stat.uiowa.edu has R and S-Plus functions for

Ž . Ž .ML fitting of the generalized loglinear model 8.18 . Becker 1990 gave a
Ž .FORTRAN program that fits the RC M model.

Chapter 10: Models for Matched Pairs

Table A.16 analyzes Table 10.1. For square tables, the AGREE option in
PROC FREQ provides the McNemar chi-squared statistic for binary matched

2 Ž .pairs, the X test of fit of the symmetry model also called Bowker ’s test ,

TABLE A.16 SAS Code for McNemar’s Test and Comparing Proportions
for Matched Samples in Table 10.1

data matched;
input first second count @@;
datalines;
1 1 794 1 2 150 2 1 86 2 2 570
;
proc freq; weight count;
tables first*second/ agree; exact mcnem;

proc catmod; weight count;
response marginals;
model first*second= (1 0 ,

1 1 ;
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TABLE A.17 SAS Code for Testing Marginal Homogeneity with Migration
Data in Table 10.6

data migrate;

input then $ now $ count m11 m12 m13 m21 m22 m23 m31 m32 m33 m44 m1 m2 m3;

datalines;

ne ne 11607 1 0 0 0 0 0 0 0 0 0 0 0 0

ne mw 100 0 1 0 0 0 0 0 0 0 0 0 0 0

ne s 366 0 0 1 0 0 0 0 0 0 0 0 0 0

ne w 124 -1 -1 -1 0 0 0 0 0 0 0 1 0 0

mw ne 87 0 0 0 1 0 0 0 0 0 0 0 0 0

mw mw 13677 0 0 0 0 1 0 0 0 0 0 0 0 0

mw s 515 0 0 0 0 0 1 0 0 0 0 0 0 0

mw w 302 0 0 0 -1 -1 -1 0 0 0 0 0 1 0

s ne 172 0 0 0 0 0 0 1 0 0 0 0 0 0

s mw 225 0 0 0 0 0 0 0 1 0 0 0 0 0

s s 17819 0 0 0 0 0 0 0 0 1 0 0 0 0

s w 270 0 0 0 0 0 0 -1 -1 -1 0 0 0 1

w ne 63 -1 0 0 -1 0 0 -1 0 0 0 1 0 0

w mw 176 0 -1 0 0 -1 0 0 -1 0 0 0 1 0

w s 286 0 0 -1 0 0 -1 0 0 -1 0 0 0 1

w w 10192 0 0 0 0 0 0 0 0 0 1 0 0 0

;

proc genmod;

model count = m11 m12 m13 m21 m22 m23 m31 m32 m33 m44 m1 m2 m3

/ dist = poi link = identity;

proc catmod; weight count; response marginals;

model then*now = response /freq;� �

repeated time 2;

and Cohen’s kappa and weighted kappa with SE values. The MCNEM
keyword in the EXACT statement provides a small-sample binomial version
of McNemar’s test. PROC CATMOD can provide the confidence interval for
the difference of proportions. The code forms a model for the marginal
proportions in the first row and the first column, specifying a model matrix in

Ž .the model statement that has an intercept parameter the first column that
applies to both proportions and a slope parameter that applies only to the
second; hence the second parameter is the difference between the second
and first marginal proportions.

PROC LOGISTIC can conduct conditional logistic regression.
Table A.17 shows ways of testing marginal homogeneity for Table 10.6.

Ž .The GENMOD code shows the Lipsitz et al. 1990 approach, expressing the
2 Ž .2I expected frequencies in terms of parameters for the I y 1 cells in the

first I y 1 rows and I y 1 columns, the cell in the last row and last column,
Ž .and I y 1 marginal totals which are the same for rows and columns . Here,

m11 denotes expected frequency � , m1 denotes � s � , and so on. This11 1q q1
parameterization uses formulas such as � s � y � y � y � for14 1q 11 12 13
terms in the last column or last row. CATMOD provides the Bhapkar test
Ž .10.16 of marginal homogeneity, as shown.
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TABLE A.18 SAS Code Showing Square-Table Analysis of Table 10.5

data sex;
input premar extramar symm qi count @@;
unif= premar*extramar;
datalines;
1 1 1 1 144 1 2 2 5 2 1 3 3 5 0 1 4 4 5 0
2 1 2 5 33 2 2 5 2 4 2 3 6 5 2 2 4 7 5 0
3 1 3 5 84 3 2 6 5 14 3 3 8 3 6 3 4 9 5 1
4 1 4 5 126 4 2 7 5 29 4 3 9 5 25 4 4 10 4 5
;
proc genmod; class symm;
model count= symm/ dist= poi link = log; * symmetry;

proc genmod; class extramar premar symm;
model count= symm extramar premar/ dist= poi link= log; *QS;

proc genmod; class symm;
model count= symm extramar premar/ dist= poi link= log; * ordinal QS;

proc genmod; class extramar premar qi;
model count= extramar premar qi / dist= poi link= log; * quasi indep;

proc genmod; class extramar premar;
model count= extramar premar unif/ dist= poi link= log;

data sex2;
input score below above @@; trials= below+ above;
datalines;
1 33 2 1 14 2 1 25 1 2 84 0 2 29 0 3 126 0
;
proc genmod data= sex2;
model above/ trials= score/ dist= bin link= logit noint;
proc genmod data= sex2;
model above/ trials= /dist= bin link= logit noint;

proc genmod data= sex2;
model above/ trials= /dist= bin link= logit;

Table A.18 shows various square-table analyses of Table 10.5. The ‘‘symm’’
factor indexes the pairs of cells that have the same association terms in the
symmetry and quasi-symmetry models. For instance, ‘‘symm’’ takes the same

Ž . Ž .value for cells 1, 2 and 2, 1 . Including this term as a factor in a model
invokes a parameter � satisfying � s � . The first model fits this factori j i j ji
alone, providing the symmetry model. The second model looks like the third

Žexcept that it identifies ‘‘premar’’ and ‘‘extramar’’ as class variables for
. Žquasi-symmetry , whereas the third model statement does not for ordinal
.quasi-symmetry . The fourth model fits quasi-independence. The ‘‘qi’’ factor

invokes the 	 parameters. It takes a separate level for each cell on the maini
diagonal and a common value for all other cells. The fifth model fits the

Ž .quasi-uniform association model 10.29 .
The bottom of Table A.18 fits square-table models as logit models. The

Ž .pairs of cell counts n , n , labeled as ‘‘above’’ and ‘‘below’’ with referencei j ji
to the main diagonal, are six sets of binomial counts. The variable defined as

Ž .‘‘score’’ is the distance u y u s j y i. The first two cases are symmetryj i
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TABLE A.19 SAS Code for Fitting Bradley–Terry Model to Table 10.10

data baseball;
input wins games milw detr toro newy bost clev balt;
datalines;
7 13 1 -1 0 0 0 0 0
���

6 13 0 0 0 0 0 1 -1
;
proc genmod;
model wins/ games= milw detr toro newy bost clev balt /
dist= bin link= logit noint covb;

Ž .and ordinal quasi-symmetry. Neither model contains an intercept NOINT ,
and the ordinal model uses ‘‘score’’ as the predictor. The third model allows

Ž .an intercept and is the conditional symmetry model 10.28 .
Table A.19 uses GENMOD for logit fitting of the Bradley�Terry model to

Table 10.10 by forming an artificial explanatory variable for each team. For a
given observation, the variable for team i is 1 if it wins, y1 if it loses, and 0 if
it is not one of the teams for that match. Each observation lists the number

Ž .of wins ‘‘wins’’ for the team with variate-level equal to 1 out of the number
Ž .of games ‘‘games’’ against the team with variate-level equal to y1. The

model has these artificial variates, one of which is redundant, as explanatory
variables with no intercept term. The COVB option provides the estimated
covariance matrix of parameter estimators.

Chapter 11: Analyzing Repeated Categorical Response Data

Table A.20 uses GENMOD for the likelihood-ratio test of marginal homo-
geneity for Table 11.1, where for instance m11p denotes � . The marginal11q
homogeneity model expresses the eight cell expected frequencies in terms of

TABLE A.20 SAS Code for Testing Marginal Homogeneity with Crossover
Study of Table 11.1

data crossover;

input a b c count m111 m11p m1p1 mp11 m1pp m222 @@;

datalines;

1 1 1 6 1 0 0 0 0 0 1 1 2 16 -1 1 0 0 0 0

1 2 1 2 -1 0 1 0 0 0 1 2 2 4 1 -1 -1 0 1 0

2 1 1 2 -1 0 0 1 0 0 2 1 2 4 1 -1 0 -1 1 0

2 2 1 6 1 0 -1 -1 1 0 2 2 2 6 0 0 0 0 0 1

;

proc genmod;

model count = m111 m11p m1p1 mp11 m1pp m222 / dist = poi link = identity;

proc catmod; weight count; response marginals;

model a*b*c = response /freq;� �

repeated drug 3;
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TABLE A.21 SAS Code for Marginal Modeling of Depression Data in Table 11.2

data depress;

input case diagnose drug time outcome @@; * outcome = 1 is normal;

datalines;

1 0 0 0 1 1 0 0 1 1 1 0 0 2 1

���

340 1 1 0 0 340 1 1 1 0 340 1 1 2 0

;

proc genmod descending; class case;

model; outcome = diagnose drug time drug*time / dist = bin link = logit type3;

repeated subject = case / type = exch corrw;

proc n1mixed qpoints = 200;

parms alpha = -.03 beta1 = -1.3 beta2 = -.06 beta3 = .48 beta4 = 1.02 sigma = .066;

eta = alpha + beta1*diagnose + beta2*drug + beta3*time + beta4*drug*time + u;

p = exp(eta) / (1 + exp(eta));

model outcome � binary(p);

random u � normal(0, sigma*sigma) subject = case;

TABLE A.22 SAS Code for GEE and Random Intercept Cumulative Logit Analysis
of Insomnia Data in Table 11.4

data francom;
input case treat time outcome @@;

datalines;
1 1 0 1 1 1 1 1

���

239 0 0 4 239 0 1 4
;
proc genmod; class case;
model outcome= treat time treat*time/ dist= multinomial

link= clogit;
repeated subject= case/ type= indep corrw;

proc n1mixed qpoints= 40;
bounds i2>0; bounds i3>0;
eta1= i1 + treat*beta1+ time*beta2+ treat*time*beta3+ u;
eta2= i1 + i2 + treat*beta1+ time*beta2+ treat*time*beta3+ u;
eta3= i1 + i2 + i3 + treat*beta1+ time*beta2+ treat*time*beta3+ u;
p1 = exp(eta)/ (1 + exp(eta1));
p2 = exp(eta2)/ (1 + exp(eta2))-exp(eta1)/ (1 + exp(eta1));
p3 = exp(eta3)/ (1 + exp(eta3))-exp(eta2)/ (1 + exp(eta2));
p4 = 1- exp(eta3)/ (1 + exp(eta3));
11 = y1*log(p1)+ y2*log(p2)+ y3*log(p3)+ y4*log(p4);
model y1� general(11);
estimate ’interc2 ’ i1 + i2; * this is alpha 2 in model, and�

i1 is alpha 1;�
estimate ’interc3 ’ i1 + i2 + i3; * this is alpha 3 in model;�
random u� normal(0, sigma*sigma) subject= case;
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Ž .� , � , � , � , � , and � since � s � s � . Note,111 11q 1q1 q11 1qq 222 q1q qq1 1qq

for instance, that � s � y � and � s � q � y � y � .112 11q 111 122 111 1qq 11q 1q1
Ž .CATMOD provides the generalized Bhapkar test 11.5 of marginal homo-

geneity.
Table A.21 uses GENMOD to analyze Table 11.2 using GEE. Possible

working correlation structures are TYPE s EXCH for exchangeable, TYPE
s AR for autoregressive, TYPE s INDEP for independence, and TYPE s
UNSTR for unstructured. Output shows estimates and standard errors under
the naive working correlation and based on the sandwich matrix incorporat-
ing the empirical dependence. Alternatively, the working association struc-

Žture in the binary case can use the log odds ratio e.g., using LOGOR s
.EXCH for exchangeability . The type 3 option in GEE provides score tests

Ž .about effects. See Stokes et al. 2000, Sec. 15.11 for the use of GEE with
missing data.

Table A.22 uses GENMOD to implement GEE for a cumulative logit
model for Table 11.4. For multinomial responses, independence is currently
the only working correlation structure.

Other
Ž .Joseph Lang jblang@stat.uiowa.edu has R and S-Plus functions for ML

Ž .fitting of marginal models through the generalized loglinear model 11.8 ,
using the constraint approach with Lagrange multipliers. The program

Ž .MAREG Kastner et al. 1997 provides GEE fitting and ML fitting of
Ž .marginal models with the Fitzmaurice and Laird 1993 approach, allowing

multicategory responses. See www. stat.uni-muenchen.der�andreasrmaregr
winmareg.html.

Chapter 12: Random Effects: Generalized Linear Mixed Models

PROC NLMIXED extends GLMs to GLMMs by including random effects.
Ž .Table A.23 analyzes the matched pairs model 12.3 . Table A.24 analyzes the

election data in Table 12.2.

( )TABLE A.23 SAS Code for Fitting Model 12.3 for Matched Pairs to Table 12.1

data matched;
input case occasion response count @@;
datalines;
2 0 1 794 1 1 1 794 2 0 1 150 2 1 0 150
3 0 0 86 3 1 1 86 4 0 0 570 4 1 0 570
;
proc n1mixed;
eta = alpha+ beta*occasion+ u; p = exp(eta)/ (1 + exp(eta));
model response� binary(p);
random u� normal(0, sigma*sigma) subject= case;
replicate count;
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TABLE A.24 SAS Code for GLMM Analysis of Election Data in Table 12.2

data vote;
input y n;
case= n ;� �
datalines;
1 5
16 32
���

1 4
;
proc n1mixed;
eta = alpha+ u; p = exp(eta)/ (1 + exp(eta));
model y� binomial(n,p);
random u� normal (0, sigma*sigma) subject= case;
predict p out = new;

proc print data= new;

TABLE A.25 SAS Code for GLMM Modeling of Opinions in Table 10.13

data new;
input sex poor single any count;
datalines;
1 1 1 1 342
���

2 0 0 0 457
;
data new; set new;
sex = sex-1; case= n ;� �
q1 = 1; q2 = 0; resp= poor; output;
q1 = 0, q2 = 1; resp= single; output;
q1 = 0; q2 = 0; resp = any; output;

drop poor single any;
proc n1mixed qpoints= 50;
parms alpha= 0 beta1= .8 beta2= .3 gamma= 0 sigma= 8.6;
eta = alpha+ beta1*q1+ beta2*q2+ gamma*sex+ u;
p = exp(eta)/ (1 + exp(eta));
model resp� binary(p);
random u� normal(0, sigma*sigma) subject= case;
replicate count;
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TABLE A.26 SAS Code for GLMM for Leading Crowd Data in Table 12.8

data crowd;
input mem1 att1 mem2 att2 count;
datalines;
1 1 1 1 458

���

0 0 0 0 554
;
data new; set crowd;
case= n ;� �
x1m = 1; x1a = 0; x2m = 0; x2a = 0; var = 1; resp= mem1; output;
x1m = 0; x1a = 1; x2m = 0; x2a = 0; var = 0; resp= att1; output;
x1m = 0; x1a = 0; x2m = 1; x2a = 0; var = 1; resp= mem2; output;
x1m = 0; x1a = 0; x2m = 0; x2a = 1; var = 0; resp= att2; output;
drop mem1 att1 mem2 att2;

proc n1mixed data= new;
eta = beta1m*x1m+ beta1a*x1a+ beta2m*x2m+ beta2a*x2a+ um*var+

ua*(1-var);
p = exp(eta)/ (1 + exp(eta));
model resp� binary(p);
random um ua� normal([0,0],[s1*s1, cov12, s2*s2]) subject= case;
replicate count;
estimate ’mem change’ beta2m-beta1m; estimate ’att change’

beta2a-beta1a;

Ž .Table A.25 fits model 12.10 to Table 10.13. This shows how to set initial
values and set the number of quadrature points for Gauss�Hermite quadra-

Ž .ture e.g., QPOINTS s . One could let SAS fit without initial values but
then take that fit as initial values in further runs, increasing QPOINTS until
estimates and standard errors converge to the necessary precision.

Table A.21 uses NLMIXED for Table 11.2. Table A.22 uses NLMIXED
for ordinal modeling of Table 11.4, defining a general multinomial log
likelihood. Table A.26 shows a correlated bivariate random effect analysis of

Ž .Table 12.8. Agresti et al. 2000 showed NLMIXED examples for clustered
Ž .data, Agresti and Hartzel 2000 showed code for multicenter trials such as

Ž .Table 12.5, and Hartzel et al. 2001a showed code for multicenter trials with
an ordinal response. The Web site for the journal Statistical Modelling shows
NLMIXED code for an adjacent-categories logit model and a nominal model

Ž . Ž .at the data archive for Hartzel et al. 2001b . Chen and Kuo 2001 discussed
fitting multinomial logit models, including discrete-choice models, with ran-
dom effects.

Other
Ž . ŽMLn Institute of Education, London and HLM Scientific Software,
.Chicago fit multilevel models. MIXOR is a FORTRAN program for ML
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TABLE A.27 SAS Code for Overdispersion Analysis of Table 4.5

data moore;
input litter group n y @@;
z2 = 0; z3 = 0; z4 = 0;
if group= 2 then z2 = 1; if group= 3 then z3 = 1; if group= 4

then z4 = 1;
datalines;
1 1 10 1 2 1 11 4 3 1 12 9 4 1 4 4

���

55 4 14 1 56 4 8 0 57 4 6 0 58 4 17 0
;
proc logistic;
model y / n = z2 z3 z4 / scale= williams;

proc logistic;
model y / n = z2 z3 z4 / scale= pearson;

proc n1mixed qpoints= 200;
eta = alpha+ beta2*z2+ beta3*z3+ beta4*z4+ u;
p = exp(eta)/ (1 + exp(eta));
model y� binomial(n,p);
random u� normal(0, sigma*sigma) subject= litter;

TABLE A.28 SAS Code for Fitting Models to Murder Data in Table 13.6

data new;
input white black other response;
datalines;
1070 119 55 0
60 16 5 1

���

1 0 0 6
;
data new; set new; count= white; race= 0; output;
count= black; race= 1; output; drop white black other;

data new2; set new; do i = 1 to count; output; end; drop i;
proc genmod data= new2;
model response= race/ dist= negbin link= log;

proc genmod data= new2;
model response= race/ dist= poi link= log scale= pearson;

data new; set new; case= n ;� �
proc n1mixed data= new qpoints= 400;
parms alpha= -3.7 beta= 1.90 sigma= 1.6;
eta = alpha+ beta*race+ u; mu = exp(eta);
model response� poisson(mu);
random u� normal(0, sigma*sigma) subject= case;
replicate count;



EXAMPLES OF SAS CODE BY CHAPTER 653

fitting of binary and ordinal random effects models available from Don
Ž .Hedeker www.uic.edur�hedekerrmix.html .

Chapter 13: Other Mixture Models for Categorical Data

PROC LOGISTIC provides two overdispersion approaches for binary data.
The SCALE s WILLIAMS option uses variance function of the beta-bi-

Ž .nomial form 13.10 , and SCALE s PEARSON uses the scaled binomial
Ž .variance 13.11 . Table A.27 illustrates for Table 4.5. That table also uses

NLMIXED for adding litter random intercepts.
For Table 13.6, Table A.28 uses GENMOD to fit a negative binomial

model and a quasi-likelihood model with scaled Poisson variance using the
Pearson statistic, and NLMIXED to fit a Poisson GLMM. PROC NLMIXED
can also fit negative binomial models.

Other
ŽLatent GOLD developed by J. Vermunt and J. Magidson for Statistical

.Innovations, Belmont, Massachusetts can fit a wide variety of mixture
models, including latent class models, nonparametric mixtures of logistic
regression, and some Rasch mixture models.



A P P E N D I X B

Chi-Squared Distribution Values

Right-Tailed Probability

df 0.250 0.100 0.050 0.025 0.010 0.005 0.001

1 1.32 2.71 3.84 5.02 6.63 7.88 10.83
2 2.77 4.61 5.99 7.38 9.21 10.60 13.82
3 4.11 6.25 7.81 9.35 11.34 12.84 16.27
4 5.39 7.78 9.49 11.14 13.28 14.86 18.47
5 6.63 9.24 11.07 12.83 15.09 16.75 20.52
6 7.84 10.64 12.59 14.45 16.81 18.55 22.46
7 9.04 12.02 14.07 16.01 18.48 20.28 24.32
8 10.22 13.36 15.51 17.53 20.09 21.96 26.12
9 11.39 14.68 16.92 19.02 21.67 23.59 27.88

10 12.55 15.99 18.31 20.48 23.21 25.19 29.59
11 13.70 17.28 19.68 21.92 24.72 26.76 31.26
12 14.85 18.55 21.03 23.34 26.22 28.30 32.91
13 15.98 19.81 22.36 24.74 27.69 29.82 34.53
14 17.12 21.06 23.68 26.12 29.14 31.32 36.12
15 18.25 22.31 25.00 27.49 30.58 32.80 37.70
16 19.37 23.54 26.30 28.85 32.00 34.27 39.25
17 20.49 24.77 27.59 30.19 33.41 35.72 40.79
18 21.60 25.99 28.87 31.53 34.81 37.16 42.31
19 22.72 27.20 30.14 32.85 36.19 38.58 43.82
20 23.83 28.41 31.41 34.17 37.57 40.00 45.32
25 29.34 34.38 37.65 40.65 44.31 46.93 52.62
30 34.80 40.26 43.77 46.98 50.89 53.67 59.70
40 45.62 51.80 55.76 59.34 63.69 66.77 73.40
50 56.33 63.17 67.50 71.42 76.15 79.49 86.66
60 66.98 74.40 79.08 83.30 88.38 91.95 99.61
70 77.58 85.53 90.53 95.02 100.4 104.2 112.3
80 88.13 96.58 101.8 106.6 112.3 116.3 124.8
90 98.65 107.6 113.1 118.1 124.1 128.3 137.2

100 109.1 118.5 124.3 129.6 135.8 140.2 149.5

Source: Calculated using StaTable, Cytel Software, Cambridge, MA.
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overdispersion, 8, 30
tests for proportion, 14�15
variance stabilizing, 596

Binomial models
deviance, 140
GLMs, 120�125
likelihood equations, 137, 265
overdispersion, 151�153, 291, 573, 653

Birch’s results, 336
Bootstrap, 75, 156, 525, 531, 594
Bradley�Terry model, 436�439, 443, 647
Breslow�Day test, 258

Calibration, 207
Canonical correlation, 382, 399, 408, 624
Canonical link, 117, 148�149, 193, 257, 472,

496
Capture�recapture, 511�513, 526, 544�545,

551�552
CART, 257
Case-control study, 42�43, 46�47, 59, 233,

and logistic regression, 170�171, 418�420,
625

several controls per case, 233, 442
Categorical data analysis, 1�688
Causal diagram, 217�218
Censoring, 386, 400
Centering, 167, 175
Chi-squared distribution

df, 12, 79, 175, 589
701
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Ž .Chi-squared distribution Continued
mgf, 35
moments, 27
noncentral, 237, 258, 408, 591�592, 595, 597
reproductive property, 82
table of percentage points, 654

Chi-squared statistics
likelihood-ratio, see Likelihood-ratio

statistic
partitioning, see Partitioning
Pearson, see Pearson chi-squared statistic

Classification methods, 196, 257, 228�230, 258
Clinical trials, 42, 230�236, 507�510
Clopper�Pearson confidence interval, 18�20,

33, 606
Cluster sampling, 103, 481, 515
Clustered data, 455, 491�527, 556�558
Cochran, W. G., 626
Cochran�Armitage trend test, 181�182, 197,

237, 253, 640
Cochran�Mantel�Haenszel test, 231�234, 639

exact test, 254, 298
and marginal homogeneity, 413, 458�459,

481
and McNemar test, 413�414
matched pairs, 413
nominal and ordinal cases, 295�298, 302,

379, 642�643
score test for logit model, 232, 297�298

Cochran’s Q, 459, 488
Collapsibility, 358�360, 398
Complementary log�log model

binary response, 248�250, 640
ordinal response, 283�284, 301, 313, 527,

641
Computer software, see Software
Concentration coefficient, 69
Concordance index, 229
Concordant pair, 57�59
Conditional distribution, 37, 48
Conditional independence, 52

I � J � K tables, 293�298, 302, 318�319,
325

logit models, 183�184, 230�234, 263,
293�295, 359�360

versus marginal independence, 53, 365�366
power and sample size, 244�245
small-sample test, 254, 298

Conditional inference, 91�101, 250�257,
416�420, 495�496, 630

Conditional logistic regression, 250�258,
414�420, 495�496, 526, 625, 640, 645

Conditional logit, 299
Conditional ML, 100, 417, 494�496, 526

Conditional symmetry, 431, 452
Confidence intervals

likelihood-based, 13, 77�78
tail method, 18, 99
Wald, 13
score, 15�16, 77

Confounding, 47�51, 230
Conjugate mixture model, 558�559
Constraint equations, 612
Constraints, parameter, 178�179, 317, 352�353
Contingency coefficient, 112, 620
Contingency table, 36, 47�54
Continuation-ratio logit, 289�291, 301,

517�520
Continuity correction, 27,
Continuous proportions, 265�266, 624
Contrasts, 82, 317, 340, 344, 603, 636, 639
Correlation, 87, 226, 296, 634
Correlation models, 381�384, 399, 408
Correspondence analysis, 382�384, 399, 624,

644
Cramer’s V 2, 112´
Credit scoring, 165, 263, 631
Cross-classification table, see Contingency

table
Crossover study, 444, 457, 483, 498, 501, 572
Cross-product ratio, 44
Cross validation, 266
Cumulant function, 155
Cumulative link models, 282�286, 313
Cumulative logit models, 274�282, 301, 624,

641
dispersion effects, 285�286
marginal models, 420�421, 462�463, 469
proportional odds property, 275�276, 282
random effects, 514�515, 536
score test and ranks, 301

Cumulative odds ratio, 67, 276
Cumulative probit model, 278, 283, 301, 312,

624�625, 641

Data mining, 219, 631
Decomposable model, 346, 360
Degrees of freedom, 12, 79, 175, 589, 622
Delta method, 73�77, 577�581, 594
Dependent proportions, 410�412
Design, 196, 609
Design matrix, see Model matrix
Deviance, 118�119, 139�142

grouped vs. ungrouped binary data, 208
likelihood-ratio tests, 141�142, 186�187,

363�365
residual, 142, 220, 638
R-squared measures, 228
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Diagnostics, 142�143, 219�230, 257�258,
366�367

Diagonals-parameter symmetry, 443
Difference of proportions, 43

collapsibility, 398
dependent, 410�412, 645
homogeneity, 258
large-sample confidence interval, 72, 77, 102,

110, 410�411
sample size determination, 240�242, 258
small-sample confidence interval, 101
z test and Pearson statistic, 111

Directed alternatives, 88�90, 236�239, 373
Dirichlet distribution, 607, 610
Discordant pair, 57�59
Discrete choice models, 298�300, 302, 527,

624
Discreteness and conservatism, 18�20, 93�94,

257
Discriminant analysis, 196
Dispersion parameters, 131, 133, 285�286, 560
Dissimilarity index, 329�330
Diversity index, 596
Dummy variables, 178�179

Ecological inference, 527
Effect modifier, 54
EM algorithm, 522�523, 540�541
Empirical Bayes, 526, 610
Empirical logit, 168
Empty cells, 392
Entropy, 57, 613
Estimated expected frequencies, 25, 78, 315
Estimating equations, 470, 481�482
Exact confidence intervals, 18�20, 99�101, 255
Exact tests

binomial parameter, 18, 412
conditional independence, 254, 298
Fisher, 91�97, 253
I � J tables, 97�98, 104
logistic regression, 251�257
matched pairs, 412
ordinal variables, 114
StatXact and LogXact, 633, 635, 640, 643
trend in proportions, 98
unconditional test, 94�96, 104, 114

Expected frequencies, 22, 25,
Exponential dispersion family, 133, 310
Exponential distribution, 313, 388
Exponential family, 116, 133
Extreme-value distribution, 249�250, 264

Fisher, R. A., 22�23, 622�624, 626, 628
df argument with Pearson, 622�623

variance test, 163
Fisher scoring, 145�149, 156, 247, 623, 625

Fisher’s exact test, 91�97, 99, 253, 623
and Bayes approach, 608
conservativism, 93�94
controversy, 95�96, 104
software, 635
UMPU, 104
versus unconditional test, 95�96, 104, 114

Fitted values, 121
asymptotic distribution, 194, 341, 585�586,

593
Freeman�Tukey chi-squared, 112, 594

G2 statistic, see Likelihood-ratio statistic
2Ž � .G M M , 187, 3630 1

Gamma, 58�59, 88, 110, 596�597
Gamma distribution, 559�560, 574
Gauss�Hermite quadrature, 521�522, 651

Ž .Generalized estimating equations GEE ,
466�475, 481�482, 501, 557�558, 649

Generalized additive models, 153�155, 156,
301, 630, 636

Ž .Generalized linear mixed model GLMM ,
417, 492

Bayesian approach, 524, 609
binary data, 492�527
correlation nonnegative, 497, 564
count data, 563�565
heterogeneity, interpretation, 497�498
marginal effects, comparison, 498�502, 535,

563�564
marginal model, corresponding, 527,

563�564, 574�575
misspecification, 547�548
model fitting, 520�526, 527
multinomial data, 513�516
software, 649�653

Ž .Generalized linear model GLM , 116�119,
625

canonical link, 117, 148�149, 193, 257, 472,
496

covariance matrix, 137�138
exponential dispersion family, 133
inference using, 139�143
likelihood equations, 135�136, 148
model fitting, 143�149
moments, 132�134
multivariate, 274
variance function, 136

Generalized loglinear model, 332�333, 464,
481, 602

Gini concentration index, 68
Goodman, L. A., 627�629
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Goodman and Kruskal tau and lambda, 68�69
Goodness-of-fit statistics

continuous explanatory variables, 176�177,
197

deviance for GLMs, 118�119, 139�142
likelihood-ratio test, 141�142, 186�187,

363�365
logistic regression, 174�177, 186�187, 208
loglinear models, 324
mixture summary, 565
Pearson chi-squared, 22�26
uninformative for ungrouped data, 162

Graphical models, 357�360, 398, 629
Grouped versus ungrouped data, 140�141, 162,

174�177, 208, 228
GSK method, 601
Gumbel distribution, 249

Hat matrix, 143, 225, 589
Hazard function, 301, 388, 399�400
Heterogeneity, 130, 235�236, 291, 377,

492�493, 497, 499�500, 507�510, 538
Hierarchical models, 316, 520, 609
History, 619�631
Homogeneity of odds ratios, 54, 183, 234�236,

255, 258
Homogeneous association, 54, 320, 377, 407,

623
Hosmer�Lemeshow statistic, 177, 639
Hypergeometric distribution, 91

and binomial, 113
moments, 103, 232
multiple hypergeometric, 97
noncentral, 99

Identity link, 117, 120, 124, 128, 385, 387, 562,
565

Incomplete table, 392
Independence

conditional, see Conditional independence
estimated expected frequencies, 78
exact test, see Fisher’s exact test
from irrelevant alternatives, 299, 302
joint, 318, 319
likelihood-ratio test, 79
loglinear model, 132, 314�315, 336, 352
mutual, 318�319, 353, 354
Pearson test, 78�79
quasi, 426�428, 432�433, 443
residuals, 81, 111�112
smoothing using, 85�86
two-way table, 38�39, 78�79, 111
variance of proportion estimator, 113

Independent multinomial sampling, 40, 67,
339�340

Influence diagnostics, 224�226, 638
Information matrix, 9

GLM, 138, 145�146
logistic regression, 193
loglinear model, 339
observed versus expected, 145�146, 247

Interaction, 210
and odds ratios, 54
three-factor, 320
uniform, 407

Isotropy, 406
Item response models, 495
Iterative proportional fitting, 343�345, 347
Iterative reweighted least squares, 147, 156,

195, 343

Joint independence, 318, 319

Kappa, 434�435, 443, 453, 645
Kendall’s tau and tau-b, 60, 68
Kernel smoothing, 613�615, 616

Ž .Lambda measure of association , 69
Laplace approximation, 523
Latent class models, 538�545, 565, 571�572,

653
Latent variable, 277�278, 399
LD 50, 167
Leverage, 143, 589
Likelihood function, 9

generalized linear model, 133, 135
marginal likelihood, 521

Likelihood-ratio statistic, 11�12, 24
asymptotic chi-squared distribution,

590�591
and confidence intervals, 13, 16, 17, 78, 638
difference of deviances, 141�142, 187,

363�364
independence, 79
minimized by ML estimate, 590�591
monotone property, 141
nested models, 363�365
noncentrality, 243
nonnegative, 34, 141
partitioning, 82�84, 363�365, 399, 405
Pearson statistic, comparison, 24, 80, 364
as power divergence statistic, 112
sparse data, 80, 395�397

Linear-by-linear association, 369�373,
643�644

and bivariate normal, 370, 399
and correlation model, 408
heterogeneous, 377
homogeneous, 377�379, 407
score statistic, 406
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Linear logit model, 180�182
directed inference, 236�237
efficiency, 197
exact test, 253
likelihood equations, 209
and trend test, 197, 237�239

Linear predictor, 116
Linear probability model, 120�121, 291

and trend test, 181�182
Link function, 116, 135

canonical, 117, 148�149, 193, 257, 472, 496
cumulative, 282�286, 301
goodness of link, 257�258, 301
inverse cdf, 124�125, 163, 282

Litter effects, 151�153, 291, 556�558, 566
Local odds ratio, 55, 312, 369�370

asymptotic covariances, 597
conditional, 321�322, 377
exponential family for multinomial,

310�311
Logistic distribution, 125, 162, 197, 246
Logistic-normal distribution, 265
Logistic-normal model, 496�513, 516�527
Logistic regression, 121�125, 165�196

case-control studies, 170�171, 418�420, 625
categorical predictors, 177�186
conditional, 250�258, 414�420, 495�496,

526, 625, 640, 645
conditional independence, 183�184, 231
covariance matrix, 193�194
design, 196, 609
diagnostics, 219�230, 257�258
existence of ML estimates, 195�196,

394�395
fitting model, 192�196
generalized linear model, 117, 121�125
goodness-of-fit, 174�177, 186�187, 197
inference, 172�177
interpretation, 166�171, 191
likelihood equations, 192�193
linear logit model, see Linear logit model
loglinear models, connection, 315, 330�332,

367, 593�594
marginal models, 414, 456�476
matched pairs, 414�420, 493�496
model-building, 211�225
multiple predictors, 182�195
nonparametric mixture, 546�547, 653
normal distribution connection, 171,

207�208
and odds ratio, 124, 166
perfect discrimination, 195�196
probability estimators, 166�167, 191, 194
random effects, 496�513, 516�527
regressive logistic model, 479�481

repeated binary response, 414�420,
456�476, 496�513, 516�527

repeated multinomial response, 461�464,
469, 474�475, 513�516

residuals, 219�223
sample size determination, 242�243
sample size and number of predictors, 212
software, 637�643, 645, 649�651

Logit transform, 75, 117, 624
bias, 196
confidence interval, 109
in logistic regression, 123
standard error, 74�75
Wald test of proportion, 208�209

Loglinear models, 117�118, 314�347,
627�629

covariance matrix, 138�139, 338, 341, 593,
598

existence of estimates, 341, 392�395
fitting, 342�344
four dimensions, 326�330, 355
generalized loglinear model, 332�333, 464,

481
generalized linear model, 117�118, 125�132
goodness of fit, 337�338
homogeneous association, 320, 377
independence, 232, 314�315, 318�319, 336,

352, 365�366
likelihood equations, 334�336
linear-by-linear association, 369�373,

377�379
logit models, connection, 315, 330�332, 367,

593�594
ordinal variables, 367�377
parameter definition, 316�317, 352�353
Poisson-multinomial connection, 317�318,

339�340
probability estimates, 340�341
rates, 385�391
saturated, 316, 380
selection, 360�366
software, 643�644
square-tables, 424�431
three-factor interaction, 320
Ž .X, Y, Z type symbols, 320�321

Log link, 118, 124, 125, 132, 138, 140, 314, 560,
563

Log-log models, 248�250, 283
Longitudinal studies, see Repeated response
Lowess, 154

Mann�Whitney statistic, 90, 301, 452�453
Mantel, N., 625
Mantel�Haenszel estimator, 234�235, 417,

639
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Mantel�Haenszel test, see
Cochran�Mantel�Haenszel test

Mantel score test, 87, 88, 89, 379
Marginal distribution, 37. See also Marginal

models
Marginal likelihood, 521
Marginal homogeneity

binary matched pairs, 410�413
and independence, 111
nominal tests, 422�423, 457�459
ordinal tests, 421, 452�453, 458
multi-way table, 439�442, 456�459,

647�649
Marginal models, 414, 420�423, 439�442,

456�476
conditional models, comparison,

498�502
GEE approach, 466�475
ML fitting, 464�466, 481
odds ratio, 451, 494
software, 644�649

Marginal symmetry, 442
Marginal table, 48

same association as partial table, 358�360,
398

Markov chains, 477�481, 482, 489�490
Matched pairs, 409�454

Cochran�Mantel�Haenszel approach, 413
dependent proportions, 410�412
logistic models, 414�420, 493�496, 516�517
McNemar test, 411�413, 424, 442, 644�645
odds ratio estimates, 417, 451, 494
ordinal data, 420�421, 429�431, 439, 443,

452�453, 462�464, 536
random effects, 417�418, 493�494, 535

Maximum likelihood, 9
conditional, 100, 417, 494�496, 526
inconsistent estimator, 450
iterative reweighted least squares, 147, 156,

195, 343
likelihood function, see Likelihood function
versus other methods, 468, 603�605, 612

McNemar test, 411�413, 424, 442, 644�645
Mean response model, 291�294
Measurement error, 347, 493
Measures of association, 43�47, 54�60, 68�69,

620�622
asymptotic normality, 110
comparing several values, 599

Mendel, 22�23, 623
Mid-distribution function, 34
Mid-P-value, 20, 27, 33, 104
Midranks, 89, 90, 302
Minimum chi-squared, 112, 611�612, 616, 618,

629

Minimum discrimination information, 112,
612�613, 616

Misclassification error, 347
Missing data, 103, 347, 463, 475�476, 482
Mixture models, 538�566. See also

Generalized linear mixed models
ML, see Maximum likelihood
Model-based inference

improved precision of estimation, 85, 112,
174, 239�240, 264

model-based tests, 141�142, 172, 363�365,
396, 399

Model matrix, 135
Monotone trends, 88. See also Trend tests
Monte Carlo methods, 114, 522�525, 609,

629�630, 635
Multicollinearity, 212
Multilevel models, 520, 609, 651
Multinomial distribution, 6�7

binomial factorization, 289
exponential family, 310�311
inference, 21�26, 35
mean, correlation, covariance, 7, 31,

579�580, 596
and Poisson, 8�9, 40
sampling models, 40�41, 67

Multinomial logit models, 267�291, 298�300,
302, 624, 640�643, 651�653

Multinomial loglinear model, 317�318,
339�341

Multinomial response models, 267�300,
640�643

Mutual independence, 318�319, 353, 354

National Halothane Study, 627, 629
Natural exponential family, 116, 133, 155
Natural parameter, 133
Negative binomial

distribution, 31, 161, 163, 560, 566, 574
regression model, 131, 560�563, 565, 566,

653
Nested models

likelihood-ratio comparison, 141�142, 187,
363�364

simultaneous tests, 263
using X 2, 364

Newton�Raphson, 143�146, 163�164
and Fisher scoring, 145, 247
IPF, comparison, 344�345
logistic regression, 194�195
loglinear models, 342�345

Neyman, J., 626
Nominal variable, 2�3

baseline-category logit models, 267�274,
300, 310�311, 426, 515, 640�643
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Ž .Nominal variable Continued
matched pairs, 422�423
measures of association, 55�57, 68�69
square table models, 425�433, 439�442

Noncentral chi-squared distribution, 237,
258

asymptotic representation, 591�592, 595
noncentrality parameter, 237, 243�245,

408, 597
power and df, 237�239

Nonparametric random effects, 545�553,
565�566, 653

Normal distribution
asymptotic normality, see Delta method
and chi-squared, 82
and logistic regression, 171, 207�208
underlying categorical data, 112, 264, 370,

620

O, o rates of convergence, 577, 595
Observational study, 43
Odds, 44
Odds ratio, 44, 620

bias, 70, 595
case-control studies, 46�47
conditional, 51�54, 255, 321, 417, 451
conditional ML estimate, 255, 417
confidence interval, 71, 77�78, 99�102, 255,

256
cumulative, 67
exact inference, 99�101, 253, 255
homogeneity, in 2 � 2 � K tables, 54, 183,

234�236, 255
I � J tables, 55�56, 581, 597
invariance properties, 45�46, 59
local, see Local odds ratio
Mantel�Haenszel estimator, 234�235
marginal, 451, 494
matched pairs, 415�418, 451
logistic regression parameters, 124, 166, 171,

179, 183, 331, 415, 497�500
loglinear model parameters, 315, 316, 321,

331, 369
ordinal variables, see Local odds ratio
relation to relative risk, 47, 124, 624
standard error, 71, 75�77, 581, 597

Offset, 385
Ordinal variables, 2�3

cumulative link models, 282�286
cumulative logit models, 274�282, 301,

420�421
efficiency, 197, 301
exact tests, 98, 253
improved power, 88�90, 236�239, 373
loglinear models, 367�377, 399

marginal models, 420�421, 429�430,
440�441, 462�464

matched pairs, 420�421, 429�431, 439, 443,
452�454, 462�464

mean response model, 291�294
measures of association, 57�59, 67, 68
multinomial response models, 274�295
ordinal quasi symmetry, 429�430, 440�441,

647
repeated response, 461�464, 469, 474�475,

514�515, 517�520
scores, choice of, 88�90, 383�384
testing independence, 86�91, 373

Overdispersion, 493
binomial, 8, 30, 151�153, 291, 555�558, 573,

653
litter effects, 151�153, 291, 556�558, 566
Poisson, 7�8, 130�131, 636
quasi-likelihood, 151�153, 291, 555�558, 653

Paired comparisons, see Bradley�Terry model
Parallel odds models, 374�375
Partial tables, 48
Partitioning

chi-squared statistic, 82�84, 112�113, 365,
399, 405

and combining rows, 112
I � J tables, 82�83
nested models, 365
trend test, 181, 373

Pattern mixture model, 476
Pearson, Karl, 619�623, 628

arguments with Fisher, Yule, 79, 619�623
goodness of fit, 22�24, 79

Pearson chi-squared statistic, 22�26, 79,
111�112

asymptotic chi-squared distribution,
589�590

asymptotic conditional distribution, 103
continuity correction, 103
degrees of freedom, 25, 79, 622
and z for difference of proportions, 111
goodness of fit, 22�26
independence, 78�79, 111�112, 622
and likelihood-ratio, comparison, 24, 80, 364
minimizing, 112, 611�612, 616, 618, 629
moments, 103
multinomial parameters, 22�26
nested models, 364
noncentral chi-squared distribution, see

Noncentral chi-squared distribution
score statistic, 24
sparse data, 80, 395�397
with ungrouped data, 162
upper bound, 112
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Pearson residual, 81, 142, 588�589, 593
binomial GLM, 220, 555, 638
Poisson GLM, 142, 366, 588

Penalized likelihood, 614�615
Ž .Penalized quasi likelihood PQL , 523�524

Perfect contingency tables, 398
Perfect discrimination, 195�196
Phi-squared, 112
Poisson distribution, 7

comparing means, 31
exponential family, 117, 134
moments, 7, 31
and multinomial, 8�9, 40,
and negative binomial, 131, 559�560, 566,

574
overdispersion, 7�8, 130�131, 636
Poisson sampling, 39
variance test, 163

Poisson models
counts, 125�132, 155, 563�565
deviance, 140
loglinear model, 117�118, 125�132,

138�139, 232, 314�347
overdispersion, 130�131, 150�151, 636
random effects, 563�565
rates, 385�391, 399�400

Polytomous logit models, 267�291
Population-averaged effects, 414, 495, 499�501
Positive likelihood-ratio dependence, 406
Power

calculating, 240�245, 640
increased, for directed alternatives, 88�90,

236�239, 373
and noncentrality, 237�239, 243�245
and number of ordinal categories, 301

Power-divergence statistic, 112, 613
Prediction, 525�526
Probit model, 124�125, 246�247, 258, 623, 640

discrete choice, 302
likelihood equations, 265
normal parameters, 163, 246, 264
ordinal data, 278, 283, 301, 312, 641
random effects, 535
threshold and utility motivations, 264

Profile likelihood confidence interval, 78, 512,
638

Propensity score, 196
Proportional hazards model, 283�284, 301,

389, 643
Proportional odds, see Cumulative logit

models
Proportional reduction in variation, 56�57,

67�68
Proportions

admissible estimator, 605

asymptotic distribution, 585�588, 593
Bayesian inference, 605�607
confidence interval, 15�17, 32�33, 635
dependent, 410�412
difference, see Difference of proportions
ratio, see Relative risk
standard error, 11, 340�341

P-value
mid-P-value, 20, 27, 33, 104
randomized, 27, 32
UMVU estimator, 162

Qualitative variable, 3�4
Quantitative variable, 3�4
Quasi-association, 431, 453�454
Quasi-independence, 426�428, 432�433, 443
Quasi-likelihood

binary models, 151�153, 291, 555�558
count models, 150�151
GLM, 149�153, 156

Ž .multivariate GEE , 466�475, 481�482, 625
overdispersion, 150�153, 291, 555�558

Quasi-symmetry, 425�431, 433�434, 451, 454,
646�647

and Bradley�Terry model, 438�439
and marginal homogeneity, 428�430
multiway tables, 440�441
and Rasch model, 552�553, 565

Raking a table, 345�346, 347, 643
Random component of GLM, 116, 133
Random effects, 417, 492�527
Random intercept, 493
Ranks, 89, 90, 298, 301, 302
Rasch mixture model, 548�551, 653
Rasch model, 495�496, 517, 526, 535, 565, 624
Rates, 385�391, 399�400
RC model, 379�381, 399�400
Regressive logistic model, 479�481
Relative risk, 43�44

asymptotic standard error, 73
collapsibility, 398
confidence interval, 73, 77
homogeneity, 258
in model, 124
and odds ratio, 47, 624

Repeated response, 409�517. See also
Generalized linear mixed models;
Marginal models; Matched pairs

Residuals, 142�143, 156
asymptotic distribution, 587�589
binomial GLMs, 219�223
deviance, see Deviance residual
Pearson, see Pearson residual
Poisson GLMs, 143, 366�367
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standardized Pearson, see Standardized
Pearson residual

Retrospective study, 42�43. See also Case-
control study

logistic regression, 170�171
odds ratio, 46�47

Ridits, 111, 406
ROC curve, 228�230, 258
Row and column effects model, see RC

model
Row effects model, 374�376, 643�644
R-squared type measure

logistic regression, 226�228, 258
nominal association, 56�57, 67�68

Sample size determination, 240�245
Sampling methods, 39�43
Sampling zero, 392
Sandwich estimator, 471�474
SAS, 632�643
Saturated model, 119, 139, 382

logit models, 178,
loglinear models, 316, 380

Scaled deviance, 140
Scores

choice of, 88�90, 383�384
efficiency, 197, 301
in loglinear models, 369�379, 407
in trend test, 88�89, 181�182, 406

Score statistic, 12, 26�27
confidence intervals, 15�16, 77
logistic regression, 232, 297�298
Pearson statistic, 24
and standardized residuals, 156
trend test, 182

Selection model, 475�476
Sensitivity, 38, 60, 228�230
Simpson diversity index, 596
Simpson’s paradox, 51, 59�60, 224, 354, 621
Small-area estimation, 502�504
Small samples

adding constants to cells, 397�398
alternative asymptotics, 233, 396�397
exact inference, 18�20, 91�101, 104,

251�257
existence of estimates, 195�196, 341,

392�395
model-based tests, 187, 251�257
X 2 and G2, 24, 80, 364, 395�397
zeros, 392�398

Smoothing
Bayes, 606�610
generalized additive model, 153�155
improved estimation with model, 85, 112,
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Variance
asymptotic, see Delta method
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test for Poisson, 163
variance function, 136, 149�150
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Wald confidence intervals, 13
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