Between- and within-tributary variation in fish assemblages: the role of macrophytes and water transparency

Yorick Reyjol ${ }^{1}$, Marco A. Rodríguez¹, Pierre Magnan ${ }^{1}$, Nathalie Dubuc ${ }^{2}$, Réjean Fortin ${ }^{2}$

${ }^{1}$ Département de chimie-biologie, Université du Québec à Trois-Rivières
${ }^{2}$ Département des sciences biologiques, Université du Québec à Montréal

Framework

Within individual tributaries, fish assemblages change along environmental gradients (e.g. temperature, water depth and velocity, chemical features) (Schlosser 1982, 1991, Oberdorff et al. 1993, Reyjol et al. 2001, Magalhaes et al. 2002, Li \& Gelwick 2005).

To our knowledge, no study has specifically investigated the between- vs. withintributary variation in fish assemblages within a watershed.

How are fish assemblages organized at the watershed scale?

Study area

Ottawa River watershed

1 - Bélisle

2 - Breckenridge
3 - Gatineau
4 - Blanche à Gatineau
5 - Petite Blanche à Gatineau
6 - Blanche à Thurso
7 - Petite Blanche à Thurso
8 - Petite Nation
9 - Kinonge
10 - Petite Kinonge
11 - Rouge

Methods - Sampling design

D: distance between the confluence with the Ottawa River and the first dam on the tributary.
If $D<1 \mathrm{~km}, 10$ equidistant sampling sites.
If $D \geq 1 \mathrm{~km}, 20$ equidistant sampling sites.

Five tributaries with 10 sampling sites, 6 with 20 sampling sites $\leadsto 170$ sampling sites

Methods - Sampling protocol

Beach seining along the most suitable bank in each site (gentle slope, no obstacles), during summer 1995 and summer 1996.

Nine environmental variables:

- River width (m)
- Bank slope ($\mathrm{m} \cdot 100^{-1} \mathrm{~m}^{-1}$)
- Water transparency (m)
- Water velocity ($\mathrm{m} \cdot \mathrm{s}^{-1}$)
- Dissolved oxygen concentration (ppm)

Counting and identification (field and laboratory)

Methods - Statistical treatment

Redundancy analysis (RDA)

Linear ordination technique - Extension of multiple linear regression

Methods - Statistical treatment

Three matrices of covariates:
T: Tributaries (1 to 11)
S: Sampling sites (1 to 10 or 1 to 20)
T x S: interaction covariates

Two analyses:
RDA 1: tributaries T as covariates \leadsto Within-tributaries variation
RDA 2: sampling sites S and interaction matrix $\mathbf{T} \times \mathbf{S}$ as covariates \Rightarrow Between-tributary variation

- Stepwise selection of environmental variables ($p<0.05$)
- Restricted permutation tests (999 permutations)
- Transformation of environmental variables when necessary (logarithm or squared root)

Variation partitioning between T and $\{\mathrm{S}+\mathrm{S} \times \mathrm{T}\}$, which are orthogonal

Results - Variation partitioning

\square Variation related to environmental variables
\Rightarrow Assemblages are more variable within tributaries (common longitudinal pattern) than between tributaries
\Rightarrow
Environmental variables explained more the between-tributaries variation than the within-tributary variation

Results - RDA 1 (common longitudinal pattern)

\Rightarrow Only two environmental variables were retained by the stepwise selection procedure: width of macrophyte beds and river width

Results - RDA 2 (between-tributary variation)

\Rightarrow Only one environmental variable was retained by the stepwise selection procedure: water transparency

Discussion

Macrophytes

Refuge against predators (Rozas \& Odum 1988, Jacobsen \& Berg 1998, Saas et al. 2006) and food reservoir (Rozas \& Odum 1988, Grenouillet \& Pont 2001, Grenouillet et al. 2002)

Water transparency/turbidity

Refuge for prey against visual piscivorous species (Rodriguez \& Lewis 1997, Ostrand \& Wilde 2002) or increase prey catchability for planktivorous or invertivorous species (Lueke et al. 1990).

Summary

1 - Restricted permutation tests \Rightarrow Selection of limited sets of significant environmental variables (2 and 1)

2 - Variation partitioning \Rightarrow Quantification of the between and within-tributaries variation in fish assemblages (61.3 vs. 38.7\%; 14.4 vs. 88.9\% explained by environmental variables after fitting covariates)

3 - Partial RDAs \Rightarrow Selection of environmental variables which best explained the common longitudinal pattern in fish assemblages (macrophyte cover and river width)
\Rightarrow Selection of environmental variables which best explained the differences among tributaries which were not related to specific longitudinal patterns (water transparency)

These results provide specific insights concerning the between- vs. within tributary organization of fish assemblages. It suggested that environmental variables influencing biotic processes (i.e. feeding behaviour and predator avoidance) may play an important role in fish assemblages organization at the watershed scale.

Acknowledgements

Dr. Yorick Reyjol benefited from a Twenty-four months grant of the Groupe de Recherche Interuniversitaire en Limnologie (G.R.I.L.; Université de Montréal, Mc Gill University, Université du Québec à Trois-Rivières, Université du Québec à Montréal) for a postdoctoral stage at the Université du Québec à Trois-Rivières.

