
Applied Epidemiology
using R

Tomás Aragón, MD, DrPH, Medical Epidemiologist
Center for Infectious Disease Preparedness

UC Berkeley School of Public Health
Email: aragon@berkeley.edu
URL: http://www.idready.org

Modified February 14, 2004

Applied Epidemiology Using R

Table of Contents
1 Getting started with R...7

1.1 What is R?..7
1.2 Who should learn R?...7
1.3 Why should I learn R?..7
1.4 Where can I get R?..8
1.5 How do I use R?..9
1.6 How should I use these notes?...9
1.7 Just do it!...10
1.8 Is there anything else that I need?...15
1.9 What's ahead?...16

2 Working with R data objects...19
2.1 Data objects in R...19
2.2 A vector is a collection of like elements...24
2.3 A matrix is a 2-dimensional table of like elements.....................................37
2.4 An array is a n-dimensional table of like elements.....................................47
2.5 A list is a collection of like or unlike data objects......................................67
2.6 A data frame is a list in the form of 2-dimensional data table73
2.7 Managing data objects..83
2.8 Managing your workspace...84
2.9 Exercises..86

3 Managing epidemiologic data in R...87
3.1 Entering data...87
3.2 Editing data...95
3.3 Sorting data ...96
3.4 Subsetting data...97
3.5 Transforming data..97
3.6 Merging data...97
3.7 Exporting data...97
3.8 Working with missing values..98
3.9 Working with dates...98
3.10 Exercises...99

4 Analyzing simple epidemiologic data..101
4.1 Overview...101
4.2 Evaluating a single measure of occurrence...101
4.3 Evaluating two or more measures of occurrence......................................104
4.4 Confidence intervals for measures of occurrence.....................................105
4.5 Confidence intervals for measures of association.....................................112

5 Creating simple R functions..113
5.1 Why create functions?...113
5.3 Exercises...113

6 Controlling for confounding using stratification methods.................................115
6.1 Cohort studies with risk or prevalence data..115
6.2 Cohort studies with incidence rate data...115
6.3 Case control studies..116

7 Using regression methods..117
7.1 Introduction..117
7.2 Unconditional logistic regression...117

Page 2 of 130

Applied Epidemiology Using R

7.3 Conditional logistic regression..117
7.4 Cox proportional hazards regression..117

8 Graphing basic epidemiologic data...119
8.1 Graphs..119
8.2 Charts..123
8.3 Miscellaneous..123

Page 3 of 130

Applied Epidemiology Using R

Index of Tables
Table 1 Selected math operators..10
Table 2 Types of evaluable expressions...11
Table 3 Examples of assignment operator (<-)..12
Table 4 Useful R functions..13
Table 5 Concise summary and location of material covered, Modified February 14,
2004...16
Table 6 Summary of types of data objects in R..21
Table 7 Useful functions to assess structure of R data objects..............................22
Table 8 Boolean operations using relational and logical operators.........................25
Table 9 Common ways of creating vectors...28
Table 10 Naming vector elements..31
Table 11 Common ways of indexing vectors..32
Table 12 Common ways of replacing vectors elements..33
Table 13 Simple operations on single vectors...34
Table 14 Simple operations on multiple vectors...35
Table 15 Deaths among subjects who received tolbutamide and placebo in the
Unversity Group Diabetes Program (1970)..38
Table 16 Common ways of creating matrices...40
Table 17 Common ways of naming matrices..42
Table 18 Common ways of indexing matrices...43
Table 19 Common ways of replacing matrix elements...44
Table 20 Common operations on matrices...45
Table 21 Primary and secondary syphilis morbidity by age, race, and sex, United
State, 1989..48
Table 22 Common ways of creating arrays..53
Table 23 Common ways of naming arrays...56
Table 24 Common ways of indexing arrays..58
Table 25 Common ways of replacing array elements...60
Table 26 Common operations on arrays..63
Table 27 Common ways of creating lists...68
Table 28 Common ways of naming lists..69
Table 29 Common ways of indexing lists...70
Table 30 Common ways of replacing list components..71
Table 31 Common operations on lists...72
Table 32 Variable types in epidemiologic data and their representations in R data
frames...77
Table 33 Common ways of creating data frames..78
Table 34 Common ways of naming data frames...79
Table 35 Common ways of indexing data frames..79
Table 36 Common ways of replacing data frame components...............................81
Table 37 Common operations on data frames..82
Table 38 Common ways of managing data objects...83
Table 39 Common ways of managing your workspace...86
Table 40 Deaths among subjects who received tolbutamide and placebo in the
Unversity Group Diabetes Program (1970)..87
Table 41 R function for processing text in character vectors.................................96
Table 42 R functions for transforming variables in data frames.............................97

Page 4 of 130

Applied Epidemiology Using R

Table 43 R functions for handling calendar dates (from the survival package)........98
Table 44 2 x 2 table for risk or prevalence data..112
Table 45 R functions for handling calendar dates (from the survival package).......112

Page 5 of 130

Preface

Acknowledgments

1 Getting started with R

1.1 What is R?
R is a freely available “computational language and environment for data analysis and

graphics.” R is indispensible for anyone that uses and interprets data. As a physician, medical
epidemiologist, and public health practitioner, I use R in the following ways:

• full-function calculator

• extensible statistical package

• high-quality graphics tool

• multi-use programming language

I use R to explore, analyze, and understand epidemiological data. I analyze data straight out of
tables provided in reports or articles as well as analyze usual datasets. The data might be a large,
individual-level dataset imported from another source (e.g., cancer registry); an imported matrix
of group-level data (e.g, population estimates or projection); or some data extracted from a
journal article I am reviewing. The ability to quantitatively express, graphically explore, and
describe epidemiologic data and processes enables one to work and strengthen one's
epidemiologic intuition.

In fact, I only use a very small fraction of the R package. For those who develop an interest or
have a need, R also has many of the statistical modeling tools used by epidemiologists and
statisticians including logistic and Poisson regression, loglinear models, and Cox proportional
hazard models. However, for many of these routine statistical models, almost any package will
suffice (SAS, Stata, SPSS, etc.). The real advantage of R is the ability to easily manipulate,
explore, and graph data. Repetitive data analytic tasks can be automated or streamlined with the
creation of simple functions (programs that execute specific tasks). The learning curve initially is
challenging, but in the long run one is able to conduct analyses that would otherwise require a
tremendous amounts of computer programming and time.

Some epidemiologists may find R difficult to learn. This is because R is most often used by
hard-core statistician-types who feel at home with matrix algebra and using R's statistical
programming capabilities. However, even for those unfamiliar with matrix algebra, there are
many analyses one can accomplish in R without using any advanced mathematics and that would
be very difficult in other programs. The ability to easily manipulate data in R will allow one to
do good descriptive epidemiology, life table methods, graphical displays, and exploration of
epidemiologic concepts. R allows one to work with data in any way it comes.

1.2 Who should learn R?
Anyone that uses a calculator or spreadsheet, or analyzes numerical data at least weekly

should seriously consider learning and using R. This includes epidemiologists, statisticians,
physician researchers, engineers, and faculty and students of math and science courses, to name
just a few. I jokingly tell my epidemiology staff that once they learn R they will never use a
spreadsheet program again (well almost never).

1.3 Why should I learn R?
In order to exercise your intuition you need a computational tool. On one end of the spectrum

8 Applied Epidemiology Using R

are calculators and spreadsheets for simple calculations, and on the end of the spectrum are
specialized computer programs for such things as statistical modeling. However, many numerical
problems are not easily handled by these tools. Calculators, and even spreadsheets, are too
inefficient and cumbersome for numerical calculations whose scope and scale change frequently.
Statistical packages are usually tailored for the statistical analysis of data sets and often lack an
intuitive and extensible programming language for tackling new problems efficiently. R can do
the simplest and the most complex analysis efficiently and effectively.

When you learn and use R regularly you will save significant amounts of time and money. It's
powerful and it's free! It's a complete environment for data analysis and graphics. It's
straightforward programming language facilitates the development of functions to extend and
improve the efficiency of your analyses.
give examples -

1.4 Where can I get R?
R is available for many computer platforms, including Windows, Mac OS, Linux, and others.

R comes as source or binary code. Source code needs to be compiled (which we will not expect);
binary code is ready for installation. I assume most readers will be using R in the Microsoft
Windows environment. Listed here are the useful links for R:

• The R Project home page is at http://www.r-project.org.

• The R download page is at the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org.

• Numerous free tutorials are available at http://cran.r-project.org/other-docs.html.

Example of installation

• On your desktop computer create a directory for download R (e.g.,
C:\downloads\R for Windows)

• Go to http://r-project.org URL.

• To download click on “CRAN” link on the left menu list.

• Click on http://cran.us.r-project.org URL.

• Click on “Windows (95 and later)” link.

• Click on “base” link.

• To download installation program click on “rw1081.exe” and select to save to
your computer (the file is about 20 MB). For example, you can save to
C:\downloads\R for Windows.

• Run the installation program rw1081.exe. That's it!

1 Getting started with R 9

1.5 How do I use R?

Using R on your computer

You use R by typing in commands at the R command prompt (>) and pressing Enter on your
keyboard. This is how to use R interactively. From the R command line, you can also run a list of
R commands that you have saved in a text file.

Using R on the World Wide Web

Although we highly recommend installing R on your computer, for a variety of reasons you
may not be able to do so. This is not a major problem because you can run R commands using
Rweb. Rweb is a Web-based interface to R that takes the submitted code, runs R on the code (in
batch mode), and returns the output (printed and graphical). Until UC Berkeley School of Public
Health implements Rweb, you can try Rweb from the University of Minnesota Statistics
Department at http://rweb.stat.umn.edu/Rweb/Rweb.general.html.

1.6 How should I use these notes?
The best way to learn R is to USE IT! Use it as your calculator! Use it as your spreadsheet!

Finally read these notes sitting at a computer and use R interactively. When I display R code in
these notes it appears as if I am typing the code directly at the R command prompt:

> x <- matrix(1:9,3,3)

> x

 [,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

When the code displayed in these notes exceeds the page width will continue on the next line
but indented. Here's an example:

> agegrps <- c('Age < 1', 'Age 1 to 4', 'Age 5 to 14', 'Age 15 to
24', 'Age 25 to 44', 'Age 45 to 64', 'Age 64+')

Figure 1 R graphical user interface (GUI)

10 Applied Epidemiology Using R

> agegrps

[1] "Age < 1" "Age 1 to 4" "Age 5 to 14" "Age 15 to 24"

[5] "Age 25 to 44" "Age 45 to 64" "Age 64+"

An equivalent way of running the above code is to type out the lines of code in a text editor
(e.g., Notepad). For example, when I display R code in a text editor it will appear like this:

x <- matrix(1:9,3,3)

x

agegrps <- c('Age < 1', 'Age 1 to 4', 'Age 5 to 14', 'Age 15 to 24',
'Age 25 to 44', 'Age 45 to 64', 'Age 64+')

agegrps

It is a good idea to save your code with a convenient file name such as job01.r (notice the .r
extension; although not necessary, it is useful for searching for R command files, and this file
extension is recognized by some text editors [see next section]). The code in your text editor can
be run in the following ways:

• Paste the code directly into R at the command prompt

• Paste the code directly into the Rweb command window

• Run the file in batch mode from the R command prompt using the source command:
source(“c:/myjobs/job01.r”)

1.7 Just do it!

Using R as your calculator

Open R and start using it as your calculator. The most common math operators are displayed
in Table 1. From now on make R your default calculator!

Practice

Study the examples in Table 1 and spend a few minutes experimenting with R as a
calculator. Use parentheses as needed to group operations:
1-exp(-(.5*4+.6*4))

Hint

Use the keyboard Up-arrow to recall what you previously entered at the command
line prompt.

Table 1 Selected math operators

Operator Description Examples in R

+ addition > 5 + 4
[1] 9

- subtraction > 5 - 4
[1] 1

* multiplication > 5 * 4
[1] 20

/ division > 5 / 4
[1] 1.25

^ exponentiation > 5^4
[1] 625

1 Getting started with R 11

Operator Description Examples in R

- unary minus (change current sign) > -5
[1] -5
> -(+5)
[1] -5
> -(-5)
[1] 5

abs absolute value > abs(-23)
[1] 23

exp exponentiation (e to a power) > exp(8)
[1] 2980.958

log logarithm (default is natural log) > log(exp(8))
[1] 8

sqrt square root > sqrt(64)
[1] 8

%/% integer divide > 10 %/% 3
[1] 3

%% modulus > 10 %% 3
[1] 1

%*% matrix multiplication > xx <- matrix(1:4,2,2)
> xx
 [,1] [,2]
[1,] 1 3
[2,] 2 4
> xx %*% c(1,1)
 [,1]
[1,] 4
[2,] 6

Useful R concepts

Types of evaluable expressions

Every expression that is entered at the R command prompt is evaluated by R and returns a
value (for example, R evaluates the expression 4*4 and returns the value 16).
Table 2 Types of evaluable expressions

Expression type Examples in R

character > "hello, my name is Tomas"
[1] "hello, my name is Tomas"

complex > 8+3i
[1] 8+3i

numeric > 3.5
[1] 3.5

logical > TRUE
[1] TRUE
> F
[1] FALSE

function > print(x)
[1] "hello, my name is Tomas"

12 Applied Epidemiology Using R

Expression type Examples in R

math operation > 6*7
[1] 42

comment > # lines preceded with pound sign (#) are not evaluated
>

data object (eg., x) > x <- "hello, my name is Tomás"
> x
[1] "hello, my name is Tomas"

Using the assignment operator

Most calculators have a memory function: the ability to assign a number or numerical result to
a key for recalling that number or result at a later time. The same is true in R but it is much more
flexible. Any evaluable expression can be assigned a name and recalled at a later time. We refer
to these variables as data objects. We use the assignment operator (<-) to name an evaluable
expression and save it as a data object.
Table 3 Examples of assignment operator (<-)

Examples in R

> xx <- "hello, what's your name"
> xx
[1] "hello, what's your name"
> yy <- 5.5^3
> yy
[1] 166.375
> zz <- F
> zz
[1] FALSE
> zz <- T
> zz
[1] TRUE

Practice

Study the examples in Table 3 and spend a few minutes using the assignment
operator to create and call data object.

Hint

Try to use short descriptive names if possible. It is bad practice to use a single letter
as an object name.

Useful R functions

When you start R you have opened a workspace. Every time you create a data object it is
saved in the workspace. If a data object with the same name already exists the old data object
will be erased, so be careful. Data objects can be saved between sessions. You will be prompted
with “Save workspace image?” (You can also use save.image() at the command prompt.) The
workspace image is saved in a file called .RData. Use getwd() to display the file path name to
the to .RData. Table 4 has more useful R functions.

1 Getting started with R 13

Table 4 Useful R functions

Function Description Examples in R

q Quit R > q()

ls
objects

List objects > ls()
[1] "last.warning" "mx" "ss"
[4] "x" "xx" "yy"
> objects() #equivalent to previous
[1] "last.warning" "mx" "ss"
[4] "x" "xx" "yy"

rm
remove

Remove object(s) > ls()
[1] "xx" "yy" "zz"
> rm(yy)
> ls()
[1] "xx" "zz"
> remove(xx) #equivalent to 'rm'
> ls()
[1] "zz"

help open help instructions; or
get help on specific topic.

> help()
> help(plot)
> ?plot #equivalent to previous

help.start start help browser > help.start()

getwd get working directory > getwd()
[1] "C:/Program Files/R/rw1081"

setwd set working directory > setwd("C:/mywork/project1/R/")

apropos displays of all objects in
the search list matching
topic

> apropos(plot)

args display arguments of
function

> args(sample)
function (x, size, replace = FALSE, prob = NULL)
NULL

example runs example of function > example(plot)

data information on available R
data sets; load data set

> data() #displays available data sets
> data(Titanic) #loads Titanic data set
>

save.image saves current workspace > save.image()
>

Practice

Study the examples in Table 3 and spend a few minutes experimenting with these
useful R functions.

What are packages?

R has many available functions. When you open R, several packages are attached by default.
Each package has its own suite of functions. To display the list of attached packages use the
search function.

 > search()

[1] ".GlobalEnv" "package:methods" "package:ctest"
"package:mva"

[5] "package:modreg" "package:nls" "package:ts" "Autoloads"

14 Applied Epidemiology Using R

[9] "package:base"

To display the file paths to the packages use the searchpaths function.
> searchpaths()

[1] ".GlobalEnv"

[2] "C:/PROGRA~1/R/rw1081/library/methods"

[3] "C:/PROGRA~1/R/rw1081/library/ctest"

[4] "C:/PROGRA~1/R/rw1081/library/mva"

[5] "C:/PROGRA~1/R/rw1081/library/modreg"

[6] "C:/PROGRA~1/R/rw1081/library/nls"

[7] "C:/PROGRA~1/R/rw1081/library/ts"

[8] "Autoloads"

[9] "C:/PROGRA~1/R/rw1081/library/base"

To learn more about a specific package enter library(help=package_name).
Alternatively, you can get more detailed information by entering help.start() which opens
the HTML help page. On this page click on the Packages link to see the available packages. If
you need to load a package enter library(package_name). For example, when we cover
survival analysis we will need to load the survival package.

What are function arguments?

We will be using many R functions for data analysis, so we need to know some function
basics. Suppose we are interest in taking a random sample of days from the month of June which
has 30 days. We want to use the sample function but we forgot the syntax. Let's explore:

> sample

function (x, size, replace = FALSE, prob = NULL)

{

 if (length(x) == 1 && x >= 1) {

 if (missing(size))

 size <- x

 .Internal(sample(x, size, replace, prob))

 }

 else {

 if (missing(size))

 size <- length(x)

 x[.Internal(sample(length(x), size, replace, prob))]

 }

}

<environment: namespace:base>

Whoa! This gave more information that I need or want! What happened? Whenever you type
the function name without any parentheses it usually returns the whole function code. This is
useful when you start programming and you need to (1) alter an existing function, (2) borrow
code for your own functions, or (3) study the code for learning how to program. If we are already
familiar with the sample function we may only need to see the syntax of the function arguments.
For this we use the args function.

> args(sample)

function (x, size, replace = FALSE, prob = NULL)

NULL

The terms x, size, replace, and prob are the function arguments. First, notice that
replace and prob have default values; that is, we do not need to specify these arguments unless
we want to override the default values. Second, notice the order of the arguments. If you enter

1 Getting started with R 15

the argument values in the same order as the argument list you do not need to specify the
argument.

> dates <- 1:30

> sample(dates, 20)

 [1] 5 30 8 23 4 16 24 3 29 13 1 15 26 7 10 17 28 25 19 18

Third, if you enter the arguments out of order then you will get either an error message or an
undesired result. Arguments entered out of their default order need to be specified.

> sample(20, dates) #gives undesired results

[1] 14

> #No! We wanted sample of size=20

> sample(size = 20, x = dates) #gives desired result

 [1] 30 14 19 21 12 7 9 25 26 8 18 2 6 17 16 23 13 22 11 5

Fourth, when you specify an argument you only need to type a sufficient number of letters so
that R can uniquely identify it from the other arguments.

> sample(s = 20, x = dates, r = T) #sampling with replacement

 [1] 23 10 23 27 13 14 1 7 23 26 28 3 23 28 9 6 23 5 30 10

Fifth, argument values can be any valid R expression (including functions) that evaluate to an
appropriate value. In the following example we see two sample functions that provide random
values to the sample function arguments.

> sample(s = sample(1:100, 1), x = sample(1:10, 5), r=T)

 [1] 3 4 9 3 3 9 10 3 10 3 10 4 9 3 5 9 4 5

Finally, if you need more guidance on how to use the sample function enter ?sample or
help(sample).

1.8 Is there anything else that I need?
Maybe. (Yes if you are serious about data analysis!) A good text editor will make your

programming and data processing easier and more efficient. A text editor is a program for, you
guessed it, editing text! The functionality I look for in a text editor are the following:

• Toggle between wrapped and unwrapped text

• Block cutting and pasting (also called column editing)

• Easy macro programming

• Search and replace using regular expressions

• Ability to import large datasets for editing

When you are programming you want your text to wrap so you can read all your code. When
you import a dataset that is wider than the screen you do not want the dataset to wrap; you want
it to appear in its table format. Column editing allows you to cut and paste columns of text at
will. A macro is just a way for the program to learn a set of keystrokes (including search and
replace) that can be executed as needed. Searching using regular expressions means searching for
text based on relative attributes. For example, suppose you want to find all words that begin with
"b", end with "g", has any number of letters in between but not "r" and "f". Regular expression
searching makes this a trivial task. All these are powerful features that once you use regularly,
you will wonder how you ever got along without them.

If you do not want to install a text editing program then just use the default text editor that
comes with your computer operating system (for Windows use Notepad). However, if you are

16 Applied Epidemiology Using R

game, I highly recommend installing the freely available, open source XEmacs
(http://www.xemacs.org). The default Windows installations of XEmacs comes with numerous
useful and powerful packages such as “Emacs Speaks Statistics” (ESS) which works with R. I
maintain a web page of XEmacs short cuts at http://www.medepi.org/xemacs. To read tutorials
do a Google search on “emacs tutorial” or “xemacs tutorial.”

1.9 What's ahead?
Table 5 Concise summary and location of material covered, Modified February 14, 2004

Vector

Atomic

Matrix Array List

Recursive

Data Frame Function

Working with R objects

Understanding

Figure 2 XEmacs text editor running Emacs Speaks
Statistics and editing file with R code

1 Getting started with R 17

Vector

Atomic

Matrix Array List

Recursive

Data Frame Function

Creating Table 9 (p 28)
c

:

seq

sequence

rep

paste

as.vector

vector

character

complex

numeric

logical

gl

indexing

Table 16 (p 40)
cbind

rbind

matrix

dim

array

xtabs

ftable

as.matrix

outer

indexing

Table 22 (p 53)
array

table

as.table

dim

as.array

Table 27 (p 68)
list

as.list

vector

data.frame

as.data.frame

read.table

read.csv

read.csv2

read.delim

read.delim2

read.fmf

Table 33 (p 78)
data.frame

as.data.frame

read.table

read.csv

read.csv2

read.delim

read.delim2

read.fmf

Naming Table 10 (p 31)
names

Table 17 (p 42)
dimnames

names

Table 23 (p 56)
dimnames

names

Table 28 (p 69)
names

Table 34 (p 79)
names

row.names

Indexing Table 11 (p 32)
by name

by position

by logical

Table 18 (p 43)
by name

by position

by logical

Table 24 (p 58)
by name

by position

by logical

Table 29 (p 70)
by name

by position

by logical

(Table 35 p 79)
by name

by position

by logical

Replacing Table 12 (p 33)
by name

by position

by logical

Table 19 (p 44)
by name

by position

by logical

Table 25 (p 60)
by name

by position

by logical

Table 30 (p 71)
by name

by position

by logical

Table 36 (p 81)
by name

by position

by logical

Operations Table 13 (p 34)
sum, cumsum

diff

prod, cumprod

mean, median

min, max, range

rev

order, sort

rank

sample

quantile

var, sd

Table 14 (p 35)
c, append

cbind, rbind

table, ftable

outer

<, >

<=, >=

==, !=

!

&, &&

|, ||

xor

Table 20 (p 45)
t

apply

tapply

sweep

margin.table

prop.table

Table 26 (p 63)
aperm

apply

sweep

margin.table

prop.table

Table 31 (p 72)
lapply

sapply

mapply

attach

detach

Table 37 (p 82)
tapply

lapply

sapply

mapply

aggregate

by

attach

detach

Managing objects is.vector is.matrix is.array is.list is.data.frame

18 Applied Epidemiology Using R

Vector

Atomic

Matrix Array List

Recursive

Data Frame Function

Managing workspace

Working with epidemiologic data

Entering

Sorting

Subsetting

Transforming

Merging

Exporting

Importing

Missing values

Calendar dates

Analyzing epidemiologic data

2 Working with R data objects

2.1 Data objects in R

Atomic vs. recursive data objects

Data in R are organized as objects and have been assigned a name. The mode of an object
describes the type of data it contains and is available by using the mode function (e.g., mode
(object)). To see the list of objects available in your workspace type objects().

The analysis of data in R involves creating, naming, manipulating, and operating on data
objects using functions. You have already been introduced to several R data objects. We will
now make some additional distinctions. Data objects can be further categorized into atomic or
recursive objects. An atomic data object can only contain elements from one, and only one, of
the following modes: character, complex, numeric, or logical. Vectors, matrices, arrays, are
atomic data objects.

A vector is a collection of like elements without dimensions. The vector elements are all the
same (either character, complex, numeric, or logical). When R returns a vector the [n]indicates
the position of the element displayed to its right.

> x

[1] 1 2 3 4 5

> x <- c(1, 2, 3, 4, 5)

> x

[1] 1 2 3 4 5

> y <- c("Pedro", "Paulo", "Maria")

> y

[1] "Pedro" "Paulo" "Maria"

> z <- c(T, F, T)

> z

[1] TRUE FALSE TRUE

A matrix is a collection of like elements organized into a 2-dimensional data object. You can
think of a matrix as a vector with a 2-dimensional structure. When R returns a matrix the [n,]
indicates the nth row and [,m] indicates the mth column.

> x <- c("a", "b", "c", "d")

> x

[1] "a" "b" "c" "d"

> y <- matrix(x, 2, 2)

> y

 [,1] [,2]

[1,] "a" "c"

[2,] "b" "d"

An array is a collection of like elements organized into a n-dimensional data object. You can
think of an array as a vector with a n-dimensional structure. When R returns an array the
[n, ,] indicates the nth row and [,m ,] indicates the mth column, and so on.

> x <- 1:8

> x

[1] 1 2 3 4 5 6 7 8

> y <- array(x, dim=c(2, 2, 2))

> y

20 Applied Epidemiology Using R

, , 1

 [,1] [,2]

[1,] 1 3

[2,] 2 4

, , 2

 [,1] [,2]

[1,] 5 7

[2,] 6 8

If one tries to include elements of different modes in an atomic data object, R will coerce the
data object into a single mode based on the following hierarchy: character > complex > numeric
> logical. In other words, if an atomic data object contains any character element, all elements
will be coerced to character.

> c("hello", 5+3i, 4.56, FALSE) #will coerce to character

[1] "hello" "5+3i" "4.56" "FALSE"

> c(5+3i, 4.56, FALSE) #will coerce to complex

[1] 5.00+3i 4.56+0i 0.00+0i

> c(4.56, FALSE) #will coerce to numeric

[1] 4.56 0.00

A recursive data object can contain one or more data objects where each object can be of any
mode. Lists, data frames, and functions are recursive data objects. Lists and data frames are of
mode list, and functions are of mode function (see Table 6, p. 21).

A list is a collection of data objects without any restrictions:
> x <- c(1, 2, 3)

> y <- c("Male", "Female", "Male")

> z <- matrix(1:4, 2, 2)

> mylist <- list(x, y, z)

> mylist

[[1]]

[1] 1 2 3

[[2]]

[1] "Male" "Female" "Male"

[[3]]

 [,1] [,2]

[1,] 1 3

[2,] 2 4

A data frame is a list with a 2-dimensional (table) structure. Epidemiologists are very
experienced working with data frames where each row represents data collected on individual
study subjects and columns represent fields for each type of data collected.

> subjno <- c(1, 2, 3, 4)

> age <- c(34, 56, 45, 23)

> sex <- c("Male", "Male", "Female", "Male")

> case <- c("Yes", "No", "No", "Yes")

> mydat <- data.frame(subjno, age, sex, case)

> mydat

 subjno age sex case

2 Working with R data objects 21

1 1 34 Male Yes

2 2 56 Male No

3 3 45 Female No

4 4 23 Male Yes

> mode(mydat)

[1] "list"

> class(mydat)

[1] "data.frame"

Assessing structure of data objects

Table 6 summary summarizes key attributes of atomic data objects (vectors, matrices, and
arrays) and recursive data objects (lists, data frames, and functions). Data objects can also have
class attributes. Class attributes are just a way of letting R know that an object is “special,”
allowing R to use special methods designed specifically for that class of object (for example,
printing and plotting display). For our purposes, you do not need to know any more about
classes.
Table 6 Summary of types of data objects in R

Data type Data object Possible mode Default class

Atomic vector
matrix
array

character, complex, numeric, logical
character, complex, numeric, logical
character, complex, numeric, logical

NULL
NULL
NULL

Recursive list
data frame
function

list
list
function

NULL
data frame
NULL

Frequently, we will need to assess the structure of data objects. At a minimum, all data
objects have a mode and length attribute. For example, let's explore the infert data set that
comes with R. The infert data comes from a matched case-control study.

> data(infert) #loads data

> mode(infert)

[1] "list"

> length(infert)

[1] 8

At this point we know that the data object named “infert” is a list with length=8. To get more
detailed information about the structure of infert use the str function (str comes from
“str”ucture).

> str(infert)

`data.frame': 248 obs. of 8 variables:

 $ education : Factor w/ 3 levels "0-5yrs","6-11yrs",..: 1 1 1
1 ...

 $ age : num 26 42 39 34 35 36 23 32 21 28 ...

 $ parity : num 6 1 6 4 3 4 1 2 1 2 ...

 $ induced : num 1 1 2 2 1 2 0 0 0 0 ...

 $ case : num 1 1 1 1 1 1 1 1 1 1 ...

 $ spontaneous : num 2 0 0 0 1 1 0 0 1 0 ...

 $ stratum : int 1 2 3 4 5 6 7 8 9 10 ...

Great! We now know that infert is a data frame with 248 observations and 8 variables. The
variable names and data types are displayed along with their first few values. In this case, we
now have sufficient information to start manipulating and analyzing the infert data set.

22 Applied Epidemiology Using R

Additionally, we can extract more detailed structural information that becomes useful when
we want to extract data from an object for further manipulation or analysis (see Table 7). We will
see extensive use of this when we start programming in R.

Practice

At the command prompt, enter data() to display the available data sets in R. Then
enter data(dataset) to load a data set. Study the examples in Table 7 and spend a
few minutes exploring the structure of the data sets you have loaded.

Hint

To display detailed information about a specific data set use ?dataset at the
command prompt (e.g., ?infert).

Table 7 Useful functions to assess structure of R data objects

Function Description Examples in R using infert data frame

Returns summary objects

str displays summary of data
object structure

see text

attributes return list with data object
attributes

> attributes(infert)
$names
[1] "education" "age"
[3] "parity" "induced"
[5] "case" "spontaneous"
[7] "stratum" "pooled.stratum"

$class
[1] "data.frame"

$row.names
 [1] "1" "2" "3" "4" "5" "6" "7"
 [8] "8" "9" "10" "11" "12" "13" "14"
...
[239] "239" "240" "241" "242" "243" "244" "245"
[246] "246" "247" "248"

2 Working with R data objects 23

Function Description Examples in R using infert data frame

attr assign user-defined
attributes

> attr(infert, "design") <- "Case-control"
> attr(infert, "analyst") <- "John Snow"
> attributes(infert)
$names
[1] "education" "age"
[3] "parity" "induced"
[5] "case" "spontaneous"
[7] "stratum" "pooled.stratum"

$class
[1] "data.frame"

$row.names
 [1] "1" "2" "3" "4" "5" "6" "7"
 [8] "8" "9" "10" "11" "12" "13" "14"
...
[239] "239" "240" "241" "242" "243" "244" "245"
[246] "246" "247" "248"

$design
[1] "Case-control"

$analyst
[1] "John Snow"

Returns specific information

mode return mode of object > mode(infert)
[1] "list"

length returns length of object > length(infert)
[1] 8

dim returns vector with object
dimensions, if applicable

> dim(infert)
[1] 248 8

nrow returns number of rows, if
applicable

> nrow(infert)
[1] 248

ncol returns number of
columns, if applicable

> ncol(infert)
[1] 8

dimnames returns list containing
vectors of names for each
dimension, if applicable

> dimnames(infert)
[[1]]
 [1] "1" "2" "3" "4" "5" "6" "7"
 [8] "8" "9" "10" "11" "12" "13" "14"
...
[239] "239" "240" "241" "242" "243" "244" "245"
[246] "246" "247" "248"

[[2]]
[1] "education" "age"
[3] "parity" "induced"
[5] "case" "spontaneous"
[7] "stratum" "pooled.stratum"

24 Applied Epidemiology Using R

Function Description Examples in R using infert data frame

names returns vector of names for
the list, if applicable (for a
data frame it returns the
variable names)

> names(infert)
[1] "education" "age"
[3] "parity" "induced"
[5] "case" "spontaneous"
[7] "stratum" "pooled.stratum"

2.2 A vector is a collection of like elements

Understanding vectors

A vector is a collection of like elements (i.e., the elements all have the same mode). There are
many ways to create vectors (see Table 9). The most common way of creating a vector is using
the c function:

> #numeric

> x <- c(1/2, 2/2, 3/2, 4/2, 5/2)

> x

[1] 0.5 1.0 1.5 2.0 2.5

> #character

> y <- c("Hello", "What's your name?", "Your address?")

> y

[1] "Hello" "What's your name?" "Your address?"

> #logical

> z <- c(T, T, F, T, F)

> z

[1] TRUE TRUE FALSE TRUE FALSE

A single digit is also a vector; that is, a vector of length = 1. Let's confirm this.
> 5

[1] 5

> is.vector(5)

[1] TRUE

Logical vector operations

So what's the deal with logical vectors? Logical vectors are used for boolean operations.
Boolean operations is a methodological workhorse of data analysis. For example, suppose you
have a vector of female movie stars and a corresponding vector of their ages (as of January 16,
2004), and you want to select a subset of actors based on age criteria.

> movie.stars

[1] "Rebecca De Mornay" "Elisabeth Shue" "Amanda Peet"

[4] "Jennifer Lopez" "Winona Ryder" "Catherine Zeta Jones"

[7] "Reese Witherspoon"

> ms.ages

[1] 42 40 32 33 32 34 27

Let's select the actors who are in their 30s. This is done using logical vectors that are created
by using relational operators (<, >, <=, >=, ==, !=). Study the following example:

> #logical vector for stars with ages >=30

> ms.ages >= 30

[1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE

> #logical vector for stars with ages <40

> ms.ages < 40

2 Working with R data objects 25

[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE

> #logical vector for stars with ages >=30 and <40

> (ms.ages >= 30) & (ms.ages < 40)

[1] FALSE FALSE TRUE TRUE TRUE TRUE FALSE

> thirtysomething <- (ms.ages >= 30) & (ms.ages < 40)

> #indexing vector based on logical vector

> movie.stars[thirtysomething]

[1] "Amanda Peet" "Jennifer Lopez" "Winona Ryder"

[4] "Catherine Zeta Jones"

We also saw that we can compare logical vectors using logical operators (&, |, !). For more
examples see Table 8. The expression movie.stars[thirtysomething] is an example of
indexing using a logical vector.

Now, we can use the ! function to select the stars that are not “thirtysomething.” Study the
following:

> thirtysomething

[1] FALSE FALSE TRUE TRUE TRUE TRUE FALSE

> !thirtysomething

[1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE

> movie.stars[!thirtysomething]

[1] "Rebecca De Mornay" "Elisabeth Shue" "Reese Witherspoon"

To summarize:
• logical vectors are created using boolean comparisons,

• boolean comparisons are conducted using relational and logical operators

• logical vectors are most commonly used for the following:

– Indexing (subsetting) another data object

– Determine the control of analytic tasks in the functions we will learn to program

Before moving on, make sure you understand the previous examples, then study the examples
in Table 8. We will be using boolean operations again and again and again!
Table 8 Boolean operations using relational and logical operators

Operator Description Examples in R

Relational Operators

< less than > position <- c("P1", "P2", "P3", "P4", "P5")
> x <- c(1, 2, 3, 4, 5)
> y <- c(5, 4, 3, 2, 1)
> x < y
[1] TRUE TRUE FALSE FALSE FALSE
> position[x < y]
[1] "P1" "P2"

> greater than > x < y
[1] TRUE TRUE FALSE FALSE FALSE
> position[x > y]
[1] "P4" "P5"

<= less than or equal to > x <= y
[1] TRUE TRUE TRUE FALSE FALSE
> position[x <= y]
[1] "P1" "P2" "P3"

26 Applied Epidemiology Using R

Operator Description Examples in R

>= greater than or equal to > x >= y
[1] FALSE FALSE TRUE TRUE TRUE
> position[x >= y]
[1] "P3" "P4" "P5"

== equal to > x == y
[1] FALSE FALSE TRUE FALSE FALSE
> position[x == y]
[1] "P3"

!= not equal to > x != y
[1] TRUE TRUE FALSE TRUE TRUE
> position[x != y]
[1] "P1" "P2" "P4" "P5"

Logical Operators

! NOT > position <- c("P1", "P2", "P3", "P4", "P5")
> x <- c(1, 2, 3, 4, 5)
> x > 2
[1] FALSE FALSE TRUE TRUE TRUE
> !(x > 2)
[1] TRUE TRUE FALSE FALSE FALSE
> position[!(x > 2)]
[1] "P1" "P2"

& element-wise AND > (x > 1) & (x < 5)
[1] FALSE TRUE TRUE TRUE FALSE
> position[(x > 1) & (x < 5)]
[1] "P2" "P3" "P4"

&& similar to & but only
evaluates the first element
of each logical vector and
returns only either TRUE
or FALSE

> if(T && T) {print("Both TRUE")}
[1] "Both TRUE"
> if(T && F) {print("Both TRUE")}
>

| element-wise OR > (x <= 1) | (x > 4)
[1] TRUE FALSE FALSE FALSE TRUE
> position[(x <= 1) | (x > 4)]
[1] "P1" "P5"

|| similar to | but only
evaluates the first element
of each logical vector and
returns only either TRUE
or FALSE

> if(T || F) {print("Either TRUE")}
[1] "Either TRUE"
> if(F || F) {print("Either TRUE")}
>

xor similar to | for comparing
two vectors

> xx <- x <= 1
> yy <- x > 4
> xor(xx, yy)
[1] TRUE FALSE FALSE FALSE TRUE
> xx | yy
[1] TRUE FALSE FALSE FALSE TRUE

Practice

Study the examples in Table 8 and spend a few minutes creating simple numerical
vectors, then (1) generate logical vectors using relational operators, (2) use these
logical vectors to index the original numerical vector or another vector, (3) generate
logical vectors using the combination of relational and logical operators, and (4) use

2 Working with R data objects 27

these logical vectors to index the original numerical vector or another vector.

Hint

“For the things we have to learn before we can do them, we learn by doing them.”

Aristotle

Creating vectors

Here is some “quick and dirty” R code to graphically display the sine and cosine function:
> x <- seq(1, 20, by=.001)

> sinx <- sin(x)

> cosx <- cos(x)

> sincosx <- cbind(sinx, cosx)

> matplot(x, sincosx, type="l", lwd=2, col=2:3)

Let's look at the same code but now highlight the vectors.
> x <- seq(1, 20, by=.001)

> sinx <- sin(x)

> cosx <- cos(x)

> sincosx <- cbind(sinx, cosx)

> matplot(x, sincosx, type="l", lwd=2, col=2:3)

In R, we will be creating, extracting, subsetting, combining, plotting, and operating on vectors
frequently. Let's review these highlighted vectors in more detail:

> x <- seq(1, 20, by=.001)

> x

 [1] 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009
1.010

[12] 1.011 1.012 1.013 1.014 1.015 1.016 1.017 1.018 1.019 1.020
1.021

...

Figure 3 Graphical display of sine and
cosine using R

28 Applied Epidemiology Using R

[18991] 19.990 19.991 19.992 19.993 19.994 19.995 19.996 19.997
19.998

[19000] 19.999 20.000

> sin(x)[1:50]

 [1] 0.8414710 0.8420109 0.8425499 0.8430881 0.8436255 0.8441620

 [7] 0.8446976 0.8452325 0.8457664 0.8462996 0.8468318 0.8473633

...

[18997] 9.113056e-01 9.117169e-01 9.121273e-01 9.125367e-01

[19001] 9.129453e-01

> cos(x)[1:50]

 [1] 0.5403023 0.5394606 0.5386183 0.5377755 0.5369321 0.5360882

 [7] 0.5352438 0.5343988 0.5335533 0.5327073 0.5318607 0.5310136

...

[18997] 4.117306e-01 4.108191e-01 4.099071e-01 4.089948e-01

[19001] 4.080821e-01

> 2:3

[1] 2 3

We created the vector x using the seq function (notice that the length of x is 19,001!). We
created two new vectors by transforming x using the sin and cos functions (also of length =
19,001). We also used the : operator to create a vector to designate the colors in the matplot
function. This is typical of the kind of efficient numerical analysis you can do in R. In fact, this
example of R code could have been reduced to one line of code!1

matplot(x<-seq(1,20,by=.001),cbind(sin(x),cos(x)),
type="l",lwd=2,col=2:3)

The point of this example was to illustrate R's efficiency in creating and using vectors (also
called vectorized operations). As you get more proficient in R you will appreciate the efficiency,
power, and elegance of R's programming language. For now, review Table 9 which summarizes
the most common methods of creating vectors.
Table 9 Common ways of creating vectors

Function Description Examples in R

c create a collection > x <- c(1, 2, 3, 4, 5)
> y <- c(6, 7, 8, 9, 10)
> c(x, y)
 [1] 1 2 3 4 5 6 7 8 9 10
> z <- c(x, y)
> z
 [1] 1 2 3 4 5 6 7 8 9 10

: generates integer
sequence

> 1:10
 [1] 1 2 3 4 5 6 7 8 9 10
> 10:(-4)
 [1] 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4

seq generates sequence of
numbers

> seq(1, 5, by=.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
> seq(1, 5, length=3)
[1] 1 3 5
> zz <- c("a","b","c")
> seq(along=zz)
[1] 1 2 3

1 For the sake of clarity (and debugging), I recommend breaking down the steps.

2 Working with R data objects 29

Function Description Examples in R

sequence concatenates sequences
of numbers by giving
upper bound of each
sequence

> sequence(c(3,2))
[1] 1 2 3 1 2

rep replicates argument > rep("Tomas",3)
[1] "Tomas" "Tomas" "Tomas"
> rep(1:3,4)
 [1] 1 2 3 1 2 3 1 2 3 1 2 3
> rep(1:3,3:1)
[1] 1 1 1 2 2 3

paste pastes elements creating
a character string

> paste(c("A","B","C"), 1:3)
[1] "A 1" "B 2" "C 3"
> paste(c("A","B","C"), 1:3, sep="")
[1] "A1" "B2" "C3"

[row.num,]

or

[,col.num]

indexing a matrix returns a
vector

> xx <- matrix(1:8,nrow=2,ncol=4)
> xx
 [,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
> xx[2,]
[1] 2 4 6 8
> xx[,3]
[1] 5 6

as.vector coerces data objects into a
vector

> mx <- matrix(1:4, nrow=2, ncol=2)
> mx
 [,1] [,2]
[1,] 1 3
[2,] 2 4
> as.vector(mx)
[1] 1 2 3 4

vector creates vector of specified
mode and length

> vector("character",5)
[1] "" "" "" "" ""
> vector("complex",5)
[1] 0+0i 0+0i 0+0i 0+0i 0+0i
> vector("numeric",5)
[1] 0 0 0 0 0
> vector("logical",5)
[1] FALSE FALSE FALSE FALSE FALSE
> vector("list",2)
[[1]]
NULL

[[2]]
NULL

character creates empty character
vector

> character(5)
[1] "" "" "" "" ""

complex creates complex vector
with 0+0i

> complex(5)
[1] 0+0i 0+0i 0+0i 0+0i 0+0i

numeric creates numeric vector
with 0

> numeric(5)
[1] 0 0 0 0 0

30 Applied Epidemiology Using R

Function Description Examples in R

logical creates character vector
with FALSE

> logical(5)
[1] FALSE FALSE FALSE FALSE FALSE

gl generate factors by
specifying the pattern of
their levels

> ## First control, then treatment:
> gl(2, 8, label = c("Male", "Female"))
 [1] Male Male Male Male Male Male
 [7] Male Male Female Female Female Female
[13] Female Female Female Female
Levels: Male Female
> ## 20 alternating 1s and 2s
> gl(2, 1, 20)
 [1] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Levels: 1 2
> ## alternating pairs of 1s and 2s
> gl(2, 2, 20)
 [1] 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
Levels: 1 2

Practice

Study the examples in Table 9 and spend a few minutes creating simple vectors.

Hint

If you need help with a function remember enter ?function_name or
help(function_name).

Naming vectors

The first way of naming the elements of a vector is when the vector is created:
> x <- c(chol=234, sbp=148, dbp=78, age=54)

> x

chol sbp dbp age

 234 148 78 54

The second way is to create a character vector of names and then assigning that vector to the
numeric vector using the names function:

> x <- c(234, 148, 78, 54)

> x

[1] 234 148 78 54

> names(x) <- c("chol", "sbp", "dbp", "age")

> x

chol sbp dbp age

 234 148 78 54

The names function, without a assignment, will return the character vector of element names,
if they exist. This character vector can be used to name elements of other vectors.

> names(x)

[1] "chol" "sbp" "dbp" "age"

> y <- c(250, 184, 90, 45)

> y

[1] 250 184 90 45

> nn <- names(x)

2 Working with R data objects 31

> names(y) <- nn

> y

chol sbp dbp age

 250 184 90 45

Table 10 Naming vector elements

Function Description Examples in R

c name vector elements at
time that vector is created

> z <- c(a=1, b=2, c=3, d=4)
> z
a b c d
1 2 3 4

names name vector elements > x <- 1:5
> x
[1] 1 2 3 4 5
> names(x) <- c("1st","2nd","3rd","4th","5th")
> x
1st 2nd 3rd 4th 5th
 1 2 3 4 5
> #without assignment operator returns vector of
names
> names(x)
[1] "1st" "2nd" "3rd" "4th" "5th"
> names(x) <- NULL
> x
[1] 1 2 3 4 5

Practice

Study the examples in Table 10 and spend a few minutes creating and naming
simple vectors.

32 Applied Epidemiology Using R

Indexing vectors
Table 11 Common ways of indexing vectors

Description Examples in R

Indexing by position > x
chol sbp dbp age
 234 148 78 54
> x[2] #positions to include
sbp
148
> x[c(2, 3)]
sbp dbp
148 78
> x[-c(1, 3, 4)] #positions to exclude
sbp
148
> x[-c(1, 4)]
sbp dbp
148 78

> #double brackets extract single element without name
> x[[2]]
[1] 148
> x[[2:3]] #does not work
Error: attempt to select more than one element

Indexing by name > x["sbp"]
sbp
148
> x[c("sbp", "dbp")]
sbp dbp
148 78

Indexing using a logical vector > x < 100
 chol sbp dbp age
FALSE FALSE TRUE TRUE
> x[x < 100]
dbp age
 78 54
> (x < 150) & (x > 70)
 chol sbp dbp age
FALSE TRUE TRUE FALSE
> bp <- (x < 150) & (x > 70)
> x[bp]
sbp dbp
148 78

Indexing the unique values > samp <- sample(1:5, 50, replace=T)
> samp
 [1] 3 5 3 3 3 3 4 1 5 4 3 5 3 2 4 5 2 2 1 2 3 2
[23] 2 3 2 1 5 1 4 3 3 4 3 3 2 4 5 5 5 1 3 2 1 3
[45] 1 2 1 4 3 1
> unique(samp)
[1] 3 5 4 1 2

2 Working with R data objects 33

Description Examples in R

Indexing the duplicated values
(this is an example of indexing using
a logical vector)

> duplicated(samp)
 [1] FALSE FALSE TRUE TRUE TRUE TRUE FALSE
 [8] FALSE TRUE TRUE TRUE TRUE TRUE FALSE
[15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[22] TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[29] TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[36] TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[43] TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[50] TRUE
> samp[duplicated(samp)]
 [1] 3 3 3 3 5 4 3 5 3 4 5 2 2 1 2 3 2 2 3 2 1 5
[23] 1 4 3 3 4 3 3 2 4 5 5 5 1 3 2 1 3 1 2 1 4 3
[45] 1

Practice

Study the examples in Table 11 and spend a few minutes creating, naming, and
indexing simple vectors.

Hint

Try using the sample function (with and without replacement) to create vectors of
random values, for example try:

> x <- sample(c('Heads', 'Tails'), 1000, replace=T)).

Replacing vector elements (by indexing and assignment)

To replace vector elements we combine indexing and assignment. Any elements of a vector
that can be indexed can also be replaced.

Table 12 Common ways of replacing vectors elements

Description Examples in R

Replacing by position > y
chol sbp dbp age
 234 148 78 54
> y[2] <- 180
> y
chol sbp dbp age
 234 180 78 54

Replacing by element name, if
it exists

> y["dbp"] <- 110
> y
chol sbp dbp age
 234 180 110 54

34 Applied Epidemiology Using R

Description Examples in R

Replacing using a logical
vector

> x
chol sbp dbp age
 234 148 78 54
> bp <- (x < 150) & (x > 70)
> bp
 chol sbp dbp age
FALSE TRUE TRUE FALSE
> x[bp] <- c(180, 110)
> x
chol sbp dbp age
 234 180 110 54

Operations on vectors

Operations on single vectors

Table 13 Simple operations on single vectors

Function Description Examples in R

sum summation > xx <- c(5, 13, 1, 19, 10)
> sum(xx)
[1] 48

cumsum cumulative sum > xx <- c(5, 13, 1, 19, 10)
> cumsum(xx)
[1] 5 18 19 38 48

diff x[i+1]-x[i] > xx <- c(5, 13, 1, 19, 10)
> diff(xx)
[1] 8 -12 18 -9

prod product > xx <- c(5, 13, 1, 19, 10)
> prod(xx)
[1] 12350

cumprod cumulative product > xx <- c(5, 13, 1, 19, 10)
> cumprod(xx)
[1] 5 65 65 1235 12350

mean mean > xx <- c(5, 13, 1, 19, 10)
> mean(xx)
[1] 9.6

median median > xx <- c(5, 13, 1, 19, 10)
> median(xx)
[1] 10

min minimum > xx <- c(5, 13, 1, 19, 10)
> min(xx)
[1] 1

max maximum > xx <- c(5, 13, 1, 19, 10)
> max(xx)
[1] 19

range range > xx <- c(5, 13, 1, 19, 10)
> range(xx)
[1] 1 19

2 Working with R data objects 35

Function Description Examples in R

rev reverse order > yy <- c(1, 2, 3, 4, 5)
> rev(yy)
[1] 5 4 3 2 1

order order > xx <- c(5, 13, 1, 19, 10)
> order(xx)
[1] 3 1 5 2 4

sort sort > xx <- c(5, 13, 1, 19, 10)
> sort(xx)
[1] 1 5 10 13 19
> xx[order(xx)]
[1] 1 5 10 13 19

rank rank > xx <- c(5, 13, 1, 19, 10)
> rank(xx)
[1] 2 4 1 5 3

sample random sample > vv <- 1:5
> sample(vv, 10, replace=TRUE)
 [1] 2 3 1 4 3 4 5 4 5 1

quantile percentile > ss <- sample(1:100, 1000, replace=TRUE)
> quantile(ss)
 0% 25% 50% 75% 100%
 1 24 50 75 100

var variance > ss <- sample(1:100, 1000, replace=TRUE)
> var(ss)
[1] 824.5992

sd standard deviation > ss <- sample(1:100, 1000, replace=TRUE)
> sd(ss)
[1] 28.71584

Operations on multiple vectors

Table 14 Simple operations on multiple vectors

Function Description Examples in R

c concatenates vectors > x <- 1:5
> y <- 6:10
> z <- 11:15
> c(x, y, z)
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[15] 15

append appends a vector to another
vector (default is to append at
the end of the first vector)

> x <- c(10, 9, 2, 1)
> x
[1] 10 9 2 1
> y <- 8:3
> y
[1] 8 7 6 5 4 3
> append(x, y, after=2)
 [1] 10 9 8 7 6 5 4 3 2 1

36 Applied Epidemiology Using R

Function Description Examples in R

cbind column-bind vectors or
matrices

> xyz <- cbind(x, y, z)
> xyz
 x y z
[1,] 1 6 11
[2,] 2 7 12
[3,] 3 8 13
[4,] 4 9 14
[5,] 5 10 15

rbind row-bind vectors or matrices > xyz2 <- rbind(x, y, z)
> xyz2
 [,1] [,2] [,3] [,4] [,5]
x 1 2 3 4 5
y 6 7 8 9 10
z 11 12 13 14 15

table creates contingency table
from any number of vectors

> infert$education
 [1] 0-5yrs 0-5yrs 0-5yrs 0-5yrs 6-11yrs
...
[241] 12+ yrs 12+ yrs 12+ yrs 12+ yrs 12+ yrs
[246] 12+ yrs 12+ yrs 12+ yrs
Levels: 0-5yrs 6-11yrs 12+ yrs
> infert$case
 [1] 1
...
[221] 0
[241] 0 0 0 0 0 0 0 0
> infert$parity
 [1] 6 1 6 4 3 4 1 2 1 2 2 4 1 3 2 2 5 1 3 1
...
[221] 2 2 2 1 2 2 1 1 2 2 1 1 3 3 1 1 1 1 6 2
[241] 1 2 1 1 1 2 1 1
> table(infert$educ, infert$par, infert$case)
, , = 0

 1 2 3 4 5 6
 0-5yrs 2 0 0 2 0 4
 6-11yrs 28 28 14 8 2 0
 12+ yrs 36 26 10 2 2 1

, , = 1

 1 2 3 4 5 6
 0-5yrs 1 0 0 1 0 2
 6-11yrs 14 14 7 4 1 0
 12+ yrs 18 13 5 1 1 1

2 Working with R data objects 37

Function Description Examples in R

ftable creates contingency table
from any number of vectors

> ftable(infert$educ, infert$case, infert$par)
 1 2 3 4 5 6

0-5yrs 0 2 0 0 2 0 4
 1 1 0 0 1 0 2
6-11yrs 0 28 28 14 8 2 0
 1 14 14 7 4 1 0
12+ yrs 0 36 26 10 2 2 1
 1 18 13 5 1 1 1

outer outer product > outer(1:5, 1:5, "*")
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 2 4 6 8 10
[3,] 3 6 9 12 15
[4,] 4 8 12 16 20
[5,] 5 10 15 20 25

mapply applies a function to the
first elements of each
argument, the second
elements, the third elements,
and so on. Arguments are
recycled if necessary.

> mapply("*",1:5, 1:5)
[1] 1 4 9 16 25

<
>
<=
>=
==
!=

Relational operators See Table 8, p 25

!
&
&&
|
||
xor

Logical operators See Table 8, p 25

Practice

Study the examples in Table 13 and Table 14 and spend a few minutes creating and
operating on simple vectors.

2.3 A matrix is a 2-dimensional table of like elements

Understanding matrices

A matrix is a 2-dimensional table of like elements. Contingency tables in epidemiology are
represented in R as matrices or arrays. An array is the generalization of matrices to n-dimensions
(this is equivalent to stratified tables). For now we will focus on 2-dimensional tables. Consider
the following 2x2 table of crude data that is presented in baby Rothman (ref). In this randomized
clinical trial (RCT), diabetic subjects were randomly assigned to received either tolbutamide or
placebo. Because this was a prospective study we can calculate risks, odds, risk ratio, and odds
ratio. We will do this using R as a calculator. Later we will learn to program customized
functions to automate repetitive or frequently used tasks.

38 Applied Epidemiology Using R

Table 15 Deaths among subjects who received
tolbutamide and placebo in the Unversity Group
Diabetes Program (1970)

Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

Risks ? ?

Risk ratio ? Reference

Odds ? ?

Odd ratio ? Reference

> dat <- matrix(c(30, 174, 21, 184), 2, 2)

> dimnames(dat) <- list(c('Deaths', 'Survivors'), c('Tolbutamide',
'Placebo'))

> dat

 Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

> trt.tot <- apply(dat, 2, sum)

> trt.tot

Tolbutamide Placebo

 204 205

> risks <- dat['Deaths',]/trt.tot

> risks

Tolbutamide Placebo

 0.1470588 0.1024390

> risk.ratio <- risks/risks['Placebo']

> risk.ratio

Tolbutamide Placebo

 1.435574 1.000000

> odds <- risks/(1-risks)

> odds

Tolbutamide Placebo

 0.1724138 0.1141304

> odds.ratio <- odds/odds['Placebo']

> odds.ratio

Tolbutamide Placebo

 1.510673 1.000000

> results <- rbind(risks, risk.ratio, odds, odds.ratio)

> #display everything

> dat

 Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

> results

 Tolbutamide Placebo

risks 0.1470588 0.1024390

risk.ratio 1.4355742 1.0000000

odds 0.1724138 0.1141304

odds.ratio 1.5106732 1.0000000

2 Working with R data objects 39

Here is the same analysis without displaying intermediate results:
> dat <- matrix(c(30, 174, 21, 184), 2, 2)

> dimnames(dat) <- list(c('Deaths', 'Survivors'), c('Tolbutamide',
'Placebo'))

> trt.tot <- apply(dat, 2, sum)

> risks <- dat['Deaths',]/trt.tot

> risk.ratio <- risks/risks['Placebo']

> odds <- risks/(1-risks)

> odds.ratio <- odds/odds['Placebo']

> results <- rbind(risks, risk.ratio, odds, odds.ratio)

> #display everything

> dat

 Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

> results

 Tolbutamide Placebo

risks 0.1470588 0.1024390

risk.ratio 1.4355742 1.0000000

odds 0.1724138 0.1141304

odds.ratio 1.5106732 1.0000000

Next is the R code as it would appear in a text editor. The most efficient approach is to build
up your analysis in a text editor and then execute using R's batch mode (more on this later, for
now just cut and paste your code into R or Rweb).

dat <- matrix(c(30, 174, 21, 184), 2, 2)

dimnames(dat) <- list(c('Deaths', 'Survivors'), c('Tolbutamide',
'Placebo'))

trt.tot <- apply(dat, 2, sum)

risks <- dat['Deaths',]/trt.tot

risk.ratio <- risks/risks['Placebo']

odds <- risks/(1-risks)

odds.ratio <- odds/odds['Placebo']

results <- rbind(risks, risk.ratio, odds, odds.ratio)

#display everything

dat

results

Now let's review each line briefly to understand the analysis in more detail.
dat <- matrix(c(30, 174, 21, 184), 2, 2)

In the above line we used the matrix function to take a vector and convert it into a matrix
with 2 rows and 2 columns. Notice the matrix function reads in the vector column-wise. To
read the vector in row-wise we would add the byrow=T option (matrix(vector, nrow,
ncol, byrow=T)). Try creating a matrix reading in a vector column-wise (default) and row-
wise.

dimnames(dat) <- list(c('Deaths', 'Survivors'), c('Tolbutamide',
'Placebo'))

In the above line we used the dimnames function to assign row and column names to the
matrix dat. The row names and the column names are both character vectors, and these vectors
are contained in a list.

trt.tot <- apply(dat, 2, sum)

In the above line we used the apply function to sum the columns. apply is a versatile

40 Applied Epidemiology Using R

function for applying any function to matrices or arrays.
risks <- dat['Deaths',]/trt.tot

In the above line we calculated the risks of death for each treatment group. We got the
numerator by indexing the dat matrix using the row name 'Deaths'. The numerator is a vector
containing the deaths for each group and the denominator is the total number of subjects in each
group.

risk.ratio <- risks/risks['Placebo']

In the above line we calculated the risk ratios using the placebo group as the reference.
odds <- risks/(1-risks)

In the above line we calculated the odds using the vector of risks.
odds.ratio <- odds/odds['Placebo']

In the above line we calculated the odds ratios using the vector of odds.
results <- rbind(risks, risk.ratio, odds, odds.ratio)

In the above line we used the rbind function to row bind the result vectors into a matrix data
object we named results.

#display everything

dat

results

In the above lines we displayed our 2x2 table called dat and our results matrix called
results. Here they are again:

> dat

 Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

> results

 Tolbutamide Placebo

risks 0.1470588 0.1024390

risk.ratio 1.4355742 1.0000000

odds 0.1724138 0.1141304

odds.ratio 1.5106732 1.0000000

In the sections that follow we will cover the necessary concepts to make the previous analysis
routine.

Creating matrices
Table 16 Common ways of creating matrices

Function Description Examples in R

cbind column-bind vectors or
matrices

> x <- 1:3
> y <- 3:1
> z <- cbind(x, y)
> z
 x y
[1,] 1 3
[2,] 2 2
[3,] 3 1

2 Working with R data objects 41

Function Description Examples in R

rbind row-bind vectors or
matrices

> z2 <- rbind(x, y)
> z2
 [,1] [,2] [,3]
x 1 2 3
y 3 2 1

matrix generates matrix > mtx <- matrix(1:4, nrow=2, ncol=2)
> mtx
 [,1] [,2]
[1,] 1 3
[2,] 2 4

dim assign dimensions to a
data object

> mtx2 <- 1:4
> mtx2
[1] 1 2 3 4
> dim(mtx2) <- c(2, 2)
> mtx2
 [,1] [,2]
[1,] 1 3
[2,] 2 4

array generates matrix when
array is 2-dimensional

> mtx <- array(1:4, dim = c(2, 2))
> mtx
 [,1] [,2]
[1,] 1 3
[2,] 2 4

xtabs create a contingency table
from cross-classifying
factors, usually contained
in a data frame, using a
formula interface

> xtabs(~education + case, data = infert)
 case
education 0 1
 0-5yrs 8 4
 6-11yrs 80 40
 12+ yrs 77 39

ftable creates matrix with class
ftable

> ftable(infert$educ, infert$spont, infert$case)
 0 1

0-5yrs 0 6 3
 1 1 0
 2 1 1
6-11yrs 0 56 15
 1 17 16
 2 7 9
12+ yrs 0 51 10
 1 22 15
 2 4 14

as.matrix coerces object into a
matrix

> 1:3
[1] 1 2 3
> as.matrix(1:3)
 [,1]
[1,] 1
[2,] 2
[3,] 3

42 Applied Epidemiology Using R

Function Description Examples in R

outer outer product of two
vectors

> outer(1:5, 1:5, "*")
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 2 4 6 8 10
[3,] 3 6 9 12 15
[4,] 4 8 12 16 20
[5,] 5 10 15 20 25

x[row, ,]

or

x[,col ,]

or

x[, ,dep]

indexing an array can
return a matrix

> x <- array(1:8, c(2, 2, 2))
> x[1, ,]
 [,1] [,2]
[1,] 1 5
[2,] 3 7
> x[,1 ,]
 [,1] [,2]
[1,] 1 5
[2,] 2 6
> x[, ,1]
 [,1] [,2]
[1,] 1 3
[2,] 2 4

Naming matrices
Table 17 Common ways of naming matrices

Function Examples in R

dimnames > x <- matrix(c(1, 5, 3, 86), 2, 2)
> x
 [,1] [,2]
[1,] 1 3
[2,] 5 86
>
> #example 1
> dimnames(x) <- list(Disease=c("Case","Control"), Exposure=c("Yes","No"))
> x
 Exposure
Disease Yes No
 Case 1 3
 Control 5 86

2 Working with R data objects 43

Function Examples in R

names > #example 2
> y
 Yes No
Case 1 3
Control 5 86
>
> #add variable names
> names(dimnames(y)) <- c("Disease","Exposure")
> y
 Exposure
Disease Yes No
 Case 1 3
 Control 5 86

Indexing matrices
Table 18 Common ways of indexing matrices

Description Examples in R

Indexing by position > x <- matrix(1:16, 4, 4)
> x
 [,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
> x[2,]
[1] 2 6 10 14
> x[,3]
[1] 9 10 11 12
> x[2,3]
[1] 10
> x[2, , drop = F] #preserve matrix structure
 [,1] [,2] [,3] [,4]
[1,] 2 6 10 14

44 Applied Epidemiology Using R

Description Examples in R

Indexing by name > y <- matrix(c(34, 67, 23, 89), 2, 2)
> dimnames(y) <- list(c('Exposed', 'Unexposed'),

c('Case','Control'))
> y
 Case Control
Exposed 34 23
Unexposed 67 89
> y['Exposed',]
 Case Control
 34 23
> y['Unexposed',]
 Case Control
 67 89
> y[,'Case']
 Exposed Unexposed
 34 67
> y[,c('Case', 'Control')]
 Case Control
Exposed 34 23
Unexposed 67 89

Indexing using a logical vector > x
 [,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
> z <- x[,1] < 3
> z
[1] TRUE TRUE FALSE FALSE
> x[z,]
 [,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14

Replacing matrix elements
Table 19 Common ways of replacing matrix elements

Description Examples in R

Replacing by position > x[3,] <- c(55, 65, 75, 85)
> x
 [,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 55 65 75 85
[4,] 4 8 12 16
> x[c(2, 3), c(2, 3)] <- matrix(99, 2, 2)
> x
 [,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 99 99 14
[3,] 55 99 99 85
[4,] 4 8 12 16

2 Working with R data objects 45

Description Examples in R

Replacing by element name, if it
exists

> y[, 'Case'] <- NA #insert column of missing values
> y
 Case Control
Exposed NA 23
Unexposed NA 89

Replacing using a logical vector > x
 [,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 99 99 14
[3,] 55 99 99 85
[4,] 4 8 12 16
> x==99
 [,1] [,2] [,3] [,4]
[1,] FALSE FALSE FALSE FALSE
[2,] FALSE TRUE TRUE FALSE
[3,] FALSE TRUE TRUE FALSE
[4,] FALSE FALSE FALSE FALSE
> x[x==99] <- 0
> x
 [,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 0 0 14
[3,] 55 0 0 85
[4,] 4 8 12 16

Operations on matrices
Table 20 Common operations on matrices

Function Description Examples in R

t transpose matrix > x <- matrix(1:4,2,2)
> x
 [,1] [,2]
[1,] 1 3
[2,] 2 4
> t(x)
 [,1] [,2]
[1,] 1 2
[2,] 3 4

46 Applied Epidemiology Using R

Function Description Examples in R

apply apply a function to the
margins of a matrix

> y
 [,1] [,2]
[1,] 1 3
[2,] 2 4
> apply(X = y, MARGIN = 2, FUN = sum)
[1] 3 7
> apply(y, 1, FUN=sum)
[1] 4 6
> apply(y, 1, mean)
[1] 2 3
> apply(y, 2, cumprod)
 [,1] [,2]
[1,] 1 3
[2,] 2 12

tapply apply a function to each
cell of a ragged array

> z <- rep(1:4,1:4)
> z
 [1] 1 2 2 3 3 3 4 4 4 4
> tapply(X = z, INDEX = z, FUN = sum)
 1 2 3 4
 1 4 9 16
> tapply(z, z, cumsum)
$"1"
[1] 1

$"2"
[1] 2 4

$"3"
[1] 3 6 9

$"4"
[1] 4 8 12 16

sweep Return an array obtained
from an input array by
sweeping out a summary
statistic

> y
 [,1] [,2]
[1,] 1 3
[2,] 2 4
> z <- apply(x, 1, mean)
> z
[1] 2 3
> sweep(y, MARGIN=1, STATS = z, FUN="-")
 [,1] [,2]
[1,] -1 1
[2,] -1 1

2 Working with R data objects 47

Function Description Examples in R

margin.table For a contingency table in
array form, compute the
sum of table entries for a
given index

This 'margin.table' function
is really just the 'apply'
function using 'sum'.

> y
 [,1] [,2]
[1,] 1 3
[2,] 2 4
> margin.table(y)
[1] 10
> margin.table(y, 1)
[1] 4 6
> apply(y, 1, sum)
[1] 4 6
> margin.table(y, 2)
[1] 3 7
> apply(y, 2, sum)

prop.table Short cut that uses the
'sweep' and 'apply'
functions to get margin
and joint distributions

> y
 [,1] [,2]
[1,] 1 3
[2,] 2 4
> prop.table(y)
 [,1] [,2]
[1,] 0.1 0.3
[2,] 0.2 0.4
> y/sum(y)
 [,1] [,2]
[1,] 0.1 0.3
[2,] 0.2 0.4
> prop.table(y, 1)
 [,1] [,2]
[1,] 0.2500000 0.7500000
[2,] 0.3333333 0.6666667
> sweep(y, 1, apply(y, 1, sum), "/")
 [,1] [,2]
[1,] 0.2500000 0.7500000
[2,] 0.3333333 0.6666667
> prop.table(y, 2)
 [,1] [,2]
[1,] 0.3333333 0.4285714
[2,] 0.6666667 0.5714286
> sweep(y, 2, apply(y, 2, sum), "/")
 [,1] [,2]
[1,] 0.3333333 0.4285714
[2,] 0.6666667 0.5714286

2.4 An array is a n-dimensional table of like elements
While a matrix is a 2-dimensional table of like elements, an array is the generalization of

matrices to n-dimensions. Stratified contingency tables in epidemiology are represented as array
data objects in R. Table 21 is an example of a 3-dimensional array. The counts of primary and
secondary syphilis in the United States in 1989 are stratified by sex, race and age. The core data
necessary to calculate the margin totals are highlighted in gray. In R, arrays are most often
produced by directed with the array functions or applying the table function to variables of a
data frame. For example, table(syphilis.df$sex, syphilis.df$race,

48 Applied Epidemiology Using R

syphilis.df$age) would produce a sex, race, and age stratified array from the data frame
syphilis.df.

Understanding arrays
Table 21 Primary and secondary syphilis morbidity by age, race, and sex, United State, 1989

Race

Age (years) Sex White Black Other Total

<=14 Male 2 31 7 40

Female 14 165 11 190

Total 16 196 18 230

15-19 Male 88 1412 210 1710

Female 253 2257 158 2668

Total 341 3669 368 4378

20-24 Male 407 4059 654 5120

Female 475 4503 307 5285

Total 882 8562 961 10405

25-29 Male 550 4121 633 5304

Female 433 3590 283 4306

Total 983 7711 916 9610

30-34 Male 564 4453 520 5537

Female 316 2628 167 3111

Total 880 7081 687 8648

35-44 Male 654 3858 492 5004

Female 243 1505 149 1897

Total 897 5363 641 6901

45-54 Male 323 1619 202 2144

Female 55 392 40 487

Total 378 2011 242 2631

>=55 Male 216 823 108 1147

Female 24 92 15 131

Total 240 915 123 1278

Total for all ages Male 2804 20376 2826 26006

Female 1813 15132 1130 18075

Total 4617 35508 3956 44081

Source: CDC Summary of Notifiable Diseases, United States, 1989, MMWR 1989;38(54)

In contrast to the table function, you can use the array function to shape a numeric vector
into a numeric array. The following R code creates the 3-dimensional array displayed in Table
21.

2 Working with R data objects 49

sdat <- c(2, 14, 31, 165, 7, 11,88, 253, 1412, 2257, 210, 158, 407,
475, 4059, 4503, 654, 307, 550, 433, 4121, 3590, 633, 283, 564,
316, 4453, 2628, 520, 167, 654, 243, 3858, 1505, 492, 149, 323,
55, 1619, 392, 202, 40, 216, 24, 823, 92, 108, 15)

sdat <- array(sdat,dim = c(2, 3, 8))

dimnames(sdat) <- list(Sex = c('Male', 'Female'), Race = c('White',
'Black', 'Other'), Age = c('<=14', '15-19', '20-24', '25-29',
'30-34', '35-44', '45-54', '>=55'))

sdat

Now let's run this code in R or Rweb:
> sdat <- c(2, 14, 31, 165, 7, 11,88, 253, 1412, 2257, 210, 158, 407,

475, 4059, 4503, 654, 307, 550, 433, 4121, 3590, 633, 283, 564,
316, 4453, 2628, 520, 167, 654, 243, 3858, 1505, 492, 149, 323,
55, 1619, 392, 202, 40, 216, 24, 823, 92, 108, 15)

> sdat <- array(sdat,dim = c(2, 3, 8))

> dimnames(sdat) <- list(Sex = c('Male', 'Female'), Race = c('White',
'Black', 'Other'), Age = c('<=14', '15-19', '20-24', '25-29',
'30-34', '35-44', '45-54', '>=55'))

> sdat

, , Age = <=14

 Race

Sex White Black Other

 Male 2 31 7

 Female 14 165 11

, , Age = 15-19

 Race

Sex White Black Other

 Male 88 1412 210

 Female 253 2257 158

, , Age = 20-24

 Race

Sex White Black Other

 Male 407 4059 654

 Female 475 4503 307

, , Age = 25-29

 Race

Sex White Black Other

 Male 550 4121 633

 Female 433 3590 283

, , Age = 30-34

 Race

Sex White Black Other

 Male 564 4453 520

 Female 316 2628 167

50 Applied Epidemiology Using R

, , Age = 35-44

 Race

Sex White Black Other

 Male 654 3858 492

 Female 243 1505 149

, , Age = 45-54

 Race

Sex White Black Other

 Male 323 1619 202

 Female 55 392 40

, , Age = >=55

 Race

Sex White Black Other

 Male 216 823 108

 Female 24 92 15

Let now explore the structure of this array data object using the str function:
> str(sdat)

 num [1:2, 1:3, 1:8] 2 14 31 165 7 ...

 - attr(*, "dimnames")=List of 3

 ..$ Sex : chr [1:2] "Male" "Female"

 ..$ Race: chr [1:3] "White" "Black" "Other"

 ..$ Age : chr [1:8] "<=14" "15-19" "20-24" "25-29" ...

To extract the variable values use the dimnames function.
> dnames <- dimnames(sdat)

> dnames

$Sex

[1] "Male" "Female"

$Race

[1] "White" "Black" "Other"

$Age

[1] "<=14" "15-19" "20-24" "25-29" "30-34" "35-44" "45-54" ">=55"

> dnames$Age

[1] "<=14" "15-19" "20-24" "25-29" "30-34" "35-44" "45-54" ">=55"

To extract the variable names use the names function applied to the dimnames object.
> names(dnames)

[1] "Sex" "Race" "Age"

> names(dimnames(sdat)) #also works

[1] "Sex" "Race" "Age"

To extract to numeric vector that specifies the dimensions use the dim function.
> dim(sdat)

[1] 2 3 8

2 Working with R data objects 51

The attributes function applies to the sdat array is equivalent to
list(dim = dim(sdat), dimnames = dimnames(sdat)):

> attributes(sdat)

$dim

[1] 2 3 8

$dimnames

$dimnames$Sex

[1] "Male" "Female"

$dimnames$Race

[1] "White" "Black" "Other"

$dimnames$Age

[1] "<=14" "15-19" "20-24" "25-29" "30-34" "35-44" "45-54" ">=55"

Arrays are convenient for analyzing multi-dimensional contingency tables, however, for
display purposes, use the ftable function to convert an array into a flat (2-dimensional)
contingency table for displaying data in a compact, convenient form.

> ftable(sdat)

 Age <=14 15-19 20-24 25-29 30-34 35-44 45-54 >=55

Sex Race

Male White 2 88 407 550 564 654 323 216

 Black 31 1412 4059 4121 4453 3858 1619 823

 Other 7 210 654 633 520 492 202 108

Female White 14 253 475 433 316 243 55 24

 Black 165 2257 4503 3590 2628 1505 392 92

 Other 11 158 307 283 167 149 40 15

To change the order of displaying variables in arrays or frequency tables, use the aperm
function. aperm(sdat, perm = c(3, 1, 2)) means take the array sdat and move
dimension 3 into the first position, move dimension 1 into the second position, and move
dimension 2 into the third position. Study the example that follows.

> sdat2 <- aperm(sdat, perm = c(3, 1, 2))

> sdat2

, , Race = White

 Sex

Age Male Female

 <=14 2 14

 15-19 88 253

 20-24 407 475

 25-29 550 433

 30-34 564 316

 35-44 654 243

 45-54 323 55

 >=55 216 24

, , Race = Black

 Sex

Age Male Female

52 Applied Epidemiology Using R

 <=14 31 165

 15-19 1412 2257

 20-24 4059 4503

 25-29 4121 3590

 30-34 4453 2628

 35-44 3858 1505

 45-54 1619 392

 >=55 823 92

, , Race = Other

 Sex

Age Male Female

 <=14 7 11

 15-19 210 158

 20-24 654 307

 25-29 633 283

 30-34 520 167

 35-44 492 149

 45-54 202 40

 >=55 108 15

> ftable(sdat2) #looks like Table 21 on page 48

 Race White Black Other

Age Sex

<=14 Male 2 31 7

 Female 14 165 11

15-19 Male 88 1412 210

 Female 253 2257 158

20-24 Male 407 4059 654

 Female 475 4503 307

25-29 Male 550 4121 633

 Female 433 3590 283

30-34 Male 564 4453 520

 Female 316 2628 167

35-44 Male 654 3858 492

 Female 243 1505 149

45-54 Male 323 1619 202

 Female 55 392 40

>=55 Male 216 823 108

 Female 24 92 15

Now study the syntax used in the array (or table) function compared to the ftable
function. In the array (or table) function, the first two arguments determines the adjacent two
dimensions that are displayed “flat.” In contrast, in the ftable function, the last two arguments
determines the adjacent two dimensions that are displayed “flat.”

> AGE <- sample(c("Old", "Young"), 500, replace = T)

> SEX <- sample(c("Male", "Female"), 500, replace = T)

> RACE <- sample(c("White", "Latino", "Black", "Asian", "Other"),
500, replace = T)

> table(AGE, RACE, SEX)

, , SEX = Female

2 Working with R data objects 53

 RACE

AGE Asian Black Latino Other White

 Old 34 25 24 25 26

 Young 25 25 17 29 20

, , SEX = Male

 RACE

AGE Asian Black Latino Other White

 Old 16 37 23 28 20

 Young 28 28 26 25 19

> ftable(SEX, AGE, RACE)

 RACE Asian Black Latino Other White

SEX AGE

Female Old 34 25 24 25 26

 Young 25 25 17 29 20

Male Old 16 37 23 28 20

 Young 28 28 26 25 19

Creating arrays
Table 22 Common ways of creating arrays

Function Description Examples in R

array generates matrix when
array is 2-dimensional

> aa <- array(1:4, dim = c(2, 2, 2))
> aa
, , 1

 [,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

 [,1] [,2]
[1,] 1 3
[2,] 2 4

54 Applied Epidemiology Using R

Function Description Examples in R

table creates n-dimensional
contingency table from n
vectors

> data(infert)
> table(infert$educ, infert$spont, infert$case)
, , = 0

 0 1 2
 0-5yrs 6 1 1
 6-11yrs 56 17 7
 12+ yrs 51 22 4

, , = 1

 0 1 2
 0-5yrs 3 0 1
 6-11yrs 15 16 9
 12+ yrs 10 15 14

as.table creates n-dimensional
contingency table from n-
dimensional ftable

> ft <- ftable(infert$ed, infert$sp, infert$ca)
> ft
 0 1

0-5yrs 0 6 3
 1 1 0
 2 1 1
6-11yrs 0 56 15
 1 17 16
 2 7 9
12+ yrs 0 51 10
 1 22 15
 2 4 14
> as.table(ft)
, , = 0

 0 1 2
 0-5yrs 6 1 1
 6-11yrs 56 17 7
 12+ yrs 51 22 4

, , = 1

 0 1 2
 0-5yrs 3 0 1
 6-11yrs 15 16 9
 12+ yrs 10 15 14

2 Working with R data objects 55

Function Description Examples in R

dim assign dimensions to a
data object

> x <- 1:8
> x
[1] 1 2 3 4 5 6 7 8
> dim(x) <- c(2, 2, 2)
> x
, , 1

 [,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

 [,1] [,2]
[1,] 5 7
[2,] 6 8

56 Applied Epidemiology Using R

Naming arrays
Table 23 Common ways of naming arrays

Function Examples in R

dimnames > x <- array(1:8, c(2, 2, 2))
> x
, , 1

 [,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

 [,1] [,2]
[1,] 5 7
[2,] 6 8

> dimnames(x) <- list(Exposed = c('Yes', 'No'), Disease = c('Yes',
'No'), Confounder = c('Yes', 'No'))

> x
, , Confounder = Yes

 Disease
Exposed Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposed Yes No
 Yes 5 7
 No 6 8

> dimnames(x) #dimnames without an assignment
$Exposed
[1] "Yes" "No"

$Disease
[1] "Yes" "No"

$Confounder
[1] "Yes" "No"

2 Working with R data objects 57

Function Examples in R

names > x <- array(1:8, c(2, 2, 2))
> dimnames(x) <- list(c('Yes', 'No'), c('Yes', 'No'), c('Yes', 'No'))
> x
, , Yes

 Yes No
Yes 1 3
No 2 4

, , No

 Yes No
Yes 5 7
No 6 8

> names(dimnames(x)) <- c("Exposure", "Disease", "Confounder")
> x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> names(dimnames(x)) #without an assignment
[1] "Exposed" "Disease" "Confounder"

58 Applied Epidemiology Using R

Indexing arrays
Table 24 Common ways of indexing arrays

Description Examples in R

Indexing by position > x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> x[1, ,]
 Confounder
Disease Yes No
 Yes 1 5
 No 3 7
> x[,1 ,]
 Confounder
Exposure Yes No
 Yes 1 5
 No 2 6
> x[, ,1]
 Disease
Exposure Yes No
 Yes 1 3
 No 2 4
> x[, ,1 ,drop = F]
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

2 Working with R data objects 59

Description Examples in R

Indexing by name > x["Yes", ,]
 Confounder
Disease Yes No
 Yes 1 5
 No 3 7
> x["Yes", , ,drop = F]
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7

Indexing using a logical vector > x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> x[, 1, 1]
Yes No
 1 2
> x[, 1, 1] < 2
 Yes No
 TRUE FALSE
> x[x[, 1, 1] < 2, ,]
 Confounder
Disease Yes No
 Yes 1 5
 No 3 7

60 Applied Epidemiology Using R

Replacing array elements
Table 25 Common ways of replacing array elements

Description Examples in R

Replacing by position > x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> x[1, ,] <- NA
> x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes NA NA
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes NA NA
 No 6 8

2 Working with R data objects 61

Description Examples in R

Replacing by element name > x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> x['Yes',,]
 Confounder
Disease Yes No
 Yes 1 5
 No 3 7
> x['Yes',,] <- 3*x['Yes',,]
> x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 3 9
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 15 21
 No 6 8

62 Applied Epidemiology Using R

Description Examples in R

Replacing using a logical vector > x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> x >= 7
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes FALSE FALSE
 No FALSE FALSE

, , Confounder = No

 Disease
Exposure Yes No
 Yes FALSE TRUE
 No FALSE TRUE

> x[x >= 7] <- 99
> x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 99
 No 6 99

2 Working with R data objects 63

Operations on arrays
Table 26 Common operations on arrays

Function Description Examples in R

aperm Transpose an array by
permuting its
dimensions and
optionally resizing it.

> x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> aperm(x, c(3, 2, 1))
, , Exposure = Yes

 Disease
Confounder Yes No
 Yes 1 3
 No 5 7

, , Exposure = No

 Disease
Confounder Yes No
 Yes 2 4
 No 6 8

64 Applied Epidemiology Using R

Function Description Examples in R

apply apply a function to the
margins of an array

> x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> apply(x, 1, sum)
Yes No
 16 20
> apply(x, 2, sum)
Yes No
 14 22
> apply(x, c(1, 2), sum)
 Disease
Exposure Yes No
 Yes 6 10
 No 8 12
> apply(x, c(2, 3), sum)
 Confounder
Disease Yes No
 Yes 3 11
 No 7 15

2 Working with R data objects 65

Function Description Examples in R

sweep Return an array
obtained from an input
array by sweeping out a
summary statistic

> x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> sweep(x, c(2, 3), apply(x, c(2, 3), sum), "/")
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 0.3333333 0.4285714
 No 0.6666667 0.5714286

, , Confounder = No

 Disease
Exposure Yes No
 Yes 0.4545455 0.4666667
 No 0.5454545 0.5333333

66 Applied Epidemiology Using R

Function Description Examples in R

margin.table For a contingency table
in array form, compute
the sum of table entries
for a given index

> x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> margin.table(x, c(1, 2))
 Disease
Exposure Yes No
 Yes 6 10
 No 8 12

> apply(x, c(1, 2), sum)
 Disease
Exposure Yes No
 Yes 6 10
 No 8 12

2 Working with R data objects 67

Function Description Examples in R

prop.table > x
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 1 3
 No 2 4

, , Confounder = No

 Disease
Exposure Yes No
 Yes 5 7
 No 6 8

> prop.table(x, c(2, 3))
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 0.3333333 0.4285714
 No 0.6666667 0.5714286

, , Confounder = No

 Disease
Exposure Yes No
 Yes 0.4545455 0.4666667
 No 0.5454545 0.5333333

> sweep(x, c(2, 3), apply(x, c(2, 3), sum), "/")
, , Confounder = Yes

 Disease
Exposure Yes No
 Yes 0.3333333 0.4285714
 No 0.6666667 0.5714286

, , Confounder = No

 Disease
Exposure Yes No
 Yes 0.4545455 0.4666667
 No 0.5454545 0.5333333

2.5 A list is a collection of like or unlike data objects

Understanding lists

Think of list objects as a collection of “bins” that can contain any R object. Lists are very
useful for collecting results of an analysis or a function into one data object where all its contents
are readily accessible by indexing.

68 Applied Epidemiology Using R

Creating lists
Table 27 Common ways of creating lists

Function Description Examples in R

list creates list object > x <- 1:3
> y <- matrix(c("a", "c", "b", "d"), 2, 2)
> z <- c("Pedro", "Paulo", "Maria")
> mm <- list(x, y, z)
> mm
[[1]]
[1] 1 2 3

[[2]]
 [,1] [,2]
[1,] "a" "b"
[2,] "c" "d"

[[3]]
[1] "Pedro" "Paulo" "Maria"

as.list coercion into list object > list(1:2) #compare to as.list
[[1]]
[1] 1 2

> as.list(1:2)
[[1]]
[1] 1

[[2]]
[1] 2

vector creates empty list of
length n

> vector("list", 2)
[[1]]
NULL

[[2]]
NULL

data.frame data frames are of
mode list

> x <- data.frame(id = 1:3, sex = c("M", "F", "T"))
> x
 id sex
1 1 M
2 2 F
3 3 T
> mode(x)
[1] "list"

as.data.frame coerces data object into
a data frame

> x <- matrix(1:6, 2, 3)
> y <- as.data.frame(x)
> y
 V1 V2 V3
1 1 3 5
2 2 4 6

2 Working with R data objects 69

Function Description Examples in R

read.table
read.csv
read.csv2
read.delim
read.delim2
read.fmf

reads in ASCII text data
file into data frame
object

> wcgs <- read.csv(".../data/wcgs.csv", header=T)
> str(wcgs)
`data.frame': 3154 obs. of 14 variables:
 $ id : int 2001 2002 2003 2004 2005 ...
 $ age0 : int 49 42 42 41 59 44 44 40 ...
 $ height0: int 73 70 69 68 70 72 72 71 72 ...
 $ weight0: int 150 160 160 152 150 204 164 ...
 $ sbp0 : int 110 154 110 124 144 150 130 ...
...

Naming lists
Table 28 Common ways of naming lists

Function Examples in R

names > z <- list(1, "c", 1:3)
> z
[[1]]
[1] 1

[[2]]
[1] "c"

[[3]]
[1] 1 2 3

> names(z) <- c('bin1', 'bin2', 'bin3')
> z
$bin1
[1] 1

$bin2
[1] "c"

$bin3
[1] 1 2 3

> z <- list(Bin1 = 1, Bin2 = "c", Bin3 = 1:3) #name at creation of list
> z
$Bin1
[1] 1

$Bin2
[1] "c"

$Bin3
[1] 1 2 3

> names(z) #names without an assignment
[1] "Bin1" "Bin2" "Bin3"

70 Applied Epidemiology Using R

Indexing lists
Table 29 Common ways of indexing lists

Description Examples in R

Indexing by position > z
$Bin1
[1] 1

$Bin2
[1] "c"

$Bin3
[1] 1 2 3

> z[3] #index bin
$Bin3
[1] 1 2 3

> z[[3]] #index bin contents
[1] 1 2 3

Indexing by name > z$Bin3 #indexing by name retrieves bin contents
[1] 1 2 3

Indexing using a logical vector > zz <- c(T, T, F)
> zz
[1] TRUE TRUE FALSE
> z[zz]
$Bin1
[1] 1

$Bin2
[1] "c"

2 Working with R data objects 71

Replacing lists components
Table 30 Common ways of replacing list components

Description Examples in R

Replacing by position > z <- list(bin1 = 1:3, bin2 = "c")
> z
$bin1
[1] 1 2 3

$bin2
[1] "c"

> z[1] <- list(replacement1=c(2, 3, 4)) #replace w/ vector
> z
$bin1
[1] 2 3 4

$bin2
[1] "c"

> z[[1]] <- list(replacement1=c(2, 3, 4)) #replace w/ list
> z
$bin1
$bin1$replacement1
[1] 2 3 4

$bin2
[1] "c"

Replacing by name > z <- list(bin1 = 1:3, bin2 = "c")
> z
$bin1
[1] 1 2 3

$bin2
[1] "c"

> z$bin1 <- list(replacement1=c(2, 3, 4)) #replace w/ list
> z
$bin1
$bin1$replacement1
[1] 2 3 4

$bin2
[1] "c"

72 Applied Epidemiology Using R

Description Examples in R

Replacing using a logical vector > z <- list(bin1 = 1:3, bin2 = "c")
> z
$bin1
[1] 1 2 3

$bin2
[1] "c"

> chars <- lapply(z, is.character)
> chars
$bin1
[1] FALSE

$bin2
[1] TRUE

> z[chars]
Error: invalid subscript type
> unlist(chars) #unlist to create logical vector
 bin1 bin2
FALSE TRUE
> z[unlist(chars)]
$bin2
[1] "c"

Operations on lists
Table 31 Common operations on lists

Function Description Examples in R

lapply applies a function to a
list

> x <- list(1:5, 5:10)
> x
[[1]]
[1] 1 2 3 4 5

[[2]]
[1] 5 6 7 8 9 10

> lapply(x, mean) #applies function, returns list
[[1]]
[1] 3

[[2]]
[1] 7.5

sapply applies a function to a
list and simplifies

> sapply(x, mean) #applies function, returns vector
[1] 3.0 7.5

2 Working with R data objects 73

Function Description Examples in R

mapply Apply a function to the
first elements of each
argument, the second
elements, the third
elements, and so on.
Arguments are recycled
if necessary.

> y <- list(1:3, 1:4)
> mapply(outer, y, y)
[[1]]
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

[[2]]
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 4 6 8
[3,] 3 6 9 12
[4,] 4 8 12 16

attach
detach

Attach or detach list or
data frame to search
path

> z
$bin1
[1] 1 2 3

$bin2
[1] "c"

> search()
[1] ".GlobalEnv" "package:methods"
...
[9] "package:base"
> attach(z)
> search()
 [1] ".GlobalEnv" "z"
 ...
 [9] "Autoloads" "package:base"
> bin1
[1] 1 2 3
> detach(z)
> search()
[1] ".GlobalEnv" "package:methods"
...
[9] "package:base"

2.6 A data frame is a list in the form of 2-dimensional data table

Understanding data frames and factors

Epidemiologists are familiar with data sets that come in the form of tables where each row is
a record and each column is a field. A record can be data collected on individuals or groups. We
usually refer to the field name as a variable (e.g., age, gender, ethnicity). Fields can contain
numeric or character data. In R, these types of data sets are handled by data frames. Each column
of a data frame usually either a factor or numeric vector, although it can have complex, character,
or logical vectors. Data frame have the functionality of matrices and lists. For example, here is
the first 10 rows of the infert data set, a matched case-control study published in 1976:

> data(infert)

> str(infert)

74 Applied Epidemiology Using R

`data.frame': 248 obs. of 8 variables:

 $ education : Factor w/ 3 levels "0-5yrs","6-11yrs",..: 1 1 ...

 $ age : num NA 45 NA 23 35 36 23 32 21 28 ...

 $ parity : num 6 1 6 4 3 4 1 2 1 2 ...

 $ induced : num 1 1 2 2 1 2 0 0 0 0 ...

 $ case : num 1 1 1 1 1 1 1 1 1 1 ...

 $ spontaneous : num 2 0 0 0 1 1 0 0 1 0 ...

 $ stratum : int 1 2 3 4 5 6 7 8 9 10 ...

 $ pooled.stratum: num 3 1 4 2 32 36 6 22 5 19 ...

> infert[1:10, 1:6]

 education age parity induced case spontaneous

1 0-5yrs NA 6 1 1 2

2 0-5yrs 45 1 1 1 0

3 0-5yrs NA 6 2 1 0

4 0-5yrs 23 4 2 1 0

5 6-11yrs 35 3 1 1 1

6 6-11yrs 36 4 2 1 1

7 6-11yrs 23 1 0 1 0

8 6-11yrs 32 2 0 1 0

9 6-11yrs 21 1 0 1 1

10 6-11yrs 28 2 0 1 0

The fields are obviously vectors. Let's explore a few of these vectors to see what we can learn
about their structure in R.

> #age variable

> infert$age

 [1] NA 45 NA 23 35 36 23 32 21 28 29 37 31 29 31

 [16] 27 30 26 25 44 40 35 28 36 27 40 38 34 28 30

 ...

[226] 35 25 34 31 26 32 21 28 37 25 32 25 31 38 26

[241] 31 31 25 31 34 35 29 23

> mode(infert$age)

[1] "numeric"

> class(infert$age)

[1] "numeric"

> #stratum variable

> infert$stratum

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 [16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 ...

[226] 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

[241] 76 77 78 79 80 81 82 83

> mode(infert$stratum)

[1] "numeric"

> class(infert$stratum)

[1] "integer"

> #education variable

> infert$education

 [1] 0-5yrs 0-5yrs 0-5yrs 0-5yrs 6-11yrs

 [6] 6-11yrs 6-11yrs 6-11yrs 6-11yrs 6-11yrs

2 Working with R data objects 75

 ...

[241] 12+ yrs 12+ yrs 12+ yrs 12+ yrs 12+ yrs

[246] 12+ yrs 12+ yrs 12+ yrs

Levels: 0-5yrs 6-11yrs 12+ yrs

> mode(infert$education)

[1] "numeric"

> class(infert$education)

[1] "factor"

What have we learned so far? In the infert data frame, age is a vector of mode “numeric”
and class “numeric,” stratum is a vector of mode “numeric” and class “integer,” and education
is a vector of mode “numeric” and class “factor.” The numeric vectors are straightforward and
easy to understand. However, a factor, R's representation of categorical data, is a bit more
complicated.

Contrary to intuition, a factor is a numeric vector, not a character vector, although it may have
been created from a character vector (shown later). To see the “true” education factor use the
unclass function:

> z <- unclass(infert$education)

> z

 [1] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 [23] 2

 [45] 3

 [67] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 2

 [89] 2

[111] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

[133] 3

[155] 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 2 2 2 2 2 2 2

[177] 2

[199] 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

[221] 3

[243] 3 3 3 3 3 3

attr(,"levels")

[1] "0-5yrs" "6-11yrs" "12+ yrs"

> mode(z)

[1] "numeric"

> class(z)

[1] "integer"

Now let's create a factor from a character vector and then unclass it:
> cointoss <- sample(c("Head","Tail"), 100, replace = T)

> cointoss

 [1] "Head" "Head" "Head" "Tail" "Tail" "Head"

 [7] "Tail" "Head" "Tail" "Tail" "Tail" "Tail"

 ...

 [91] "Head" "Head" "Tail" "Tail" "Tail" "Head"

 [97] "Tail" "Head" "Tail" "Head"

> fct <- factor(cointoss)

> fct

 [1] Head Head Head Tail Tail Head Tail Head Tail

 [10] Tail Tail Tail Tail Head Tail Tail Head Tail

 ...

 [82] Tail Tail Tail Tail Head Head Tail Tail Tail

76 Applied Epidemiology Using R

 [91] Head Head Tail Tail Tail Head Tail Head Tail

[100] Head

Levels: Head Tail

> unclass(fct)

 [1] 1 1 1 2 2 1 2 1 2 2 2 2 2 1 2 2 1 2 2 2 1 2

 [23] 1 1 2 2 1 2 2 1 2 2 2 2 1 1 2 2 2 1 1 1 1 2

 [45] 1 1 1 1 1 1 2 2 2 1 2 2 1 2 1 2 1 1 1 1 1 2

 [67] 2 1 1 1 2 2 1 1 1 1 2 1 1 1 2 2 2 2 2 1 1 2

 [89] 2 2 1 1 2 2 2 1 2 1 2 1

attr(,"levels")

[1] "Head" "Tail"

Notice that we can still recover the original character vector using the as.character
function:

> as.character(cointoss)

 [1] "Head" "Head" "Head" "Tail" "Tail" "Head"

 [7] "Tail" "Head" "Tail" "Tail" "Tail" "Tail"

 ...

 [91] "Head" "Head" "Tail" "Tail" "Tail" "Head"

 [97] "Tail" "Head" "Tail" "Head"

> as.character(fct)

 [1] "Head" "Head" "Head" "Tail" "Tail" "Head"

 [7] "Tail" "Head" "Tail" "Tail" "Tail" "Tail"

 ...

 [91] "Head" "Head" "Tail" "Tail" "Tail" "Head"

 [97] "Tail" "Head" "Tail" "Head"

Okay, let's create an ordered factor; that is, levels of a categorical variable that have natural
ordering. For this we set ordered=TRUE in the factor function:

> samp <- sample(c("Low","Medium","High"), 100, replace=T)

> ofac1 <- factor(samp, ordered=T)

> ofac1

 [1] High High Medium Medium High Low

 [7] Medium High High High Low High

 ...

 [91] Medium Medium High Medium High High

 [97] High Medium Medium Low

Levels: High < Low < Medium

> table(ofac1) #levels and labels not in natural order

ofac1

 High Low Medium

 43 25 32

However, notice that the ordering was done in alphabetical order which is not what we want.
To change this, use the levels options in the factor function:

> ofac2 <- factor(samp, levels=c("Low","Medium","High"), ordered=T)

> ofac2 #yes, much better!

 [1] High High Medium Medium High Low

 [7] Medium High High High Low High

 ...

 [91] Medium Medium High Medium High High

 [97] High Medium Medium Low

Levels: Low < Medium < High

2 Working with R data objects 77

> table(ofac2)

ofac2

 Low Medium High

 25 32 43

Great this is exactly what we want! For review, Table 32 summarizes the variable types in
epidemiology and how they are represented in R. Factors (unordered and ordered) are use to
represent nominal and ordinal categorical variables. The infert data set contains vectors of
class factor, numeric, and integer

> data(infert)

> str(infert)

`data.frame': 248 obs. of 8 variables:

 $ education : Factor w/ 3 levels "0-5yrs","6-11yrs",..: 1 1 1 1
2 2 2 2 2 2 ...

 $ age : num 26 42 39 34 35 36 23 32 21 28 ...

 $ parity : num 6 1 6 4 3 4 1 2 1 2 ...

 $ induced : num 1 1 2 2 1 2 0 0 0 0 ...

 $ case : num 1 1 1 1 1 1 1 1 1 1 ...

 $ spontaneous : num 2 0 0 0 1 1 0 0 1 0 ...

 $ stratum : int 1 2 3 4 5 6 7 8 9 10 ...

 $ pooled.stratum: num 3 1 4 2 32 36 6 22 5 19 ...

Table 32 Variable types in epidemiologic data and their representations in R data frames

Representations in data Representations in R

Variable
type

Examples Mode Class Examples from infert data

Numeric

 Continuous 3.45, 2/3 numeric numeric > infert$age
 [1] 26 42 39 34 35 36 23 32
 [9] 21 28 29 37 31 29 31 27
 ...
[233] 28 37 25 32 25 31 38 26
[241] 31 31 25 31 34 35 29 23

 Discrete 1, 2, 3, 4, ... numeric integer > infert$stratum
 [1] 1 2 3 4 5 6 7 8
 [9] 9 10 11 12 13 14 15 16
 ...
[233] 68 69 70 71 72 73 74 75
[241] 76 77 78 79 80 81 82 83

Categorical

 Nominal male vs. female numeric factor > infert$education
 [1] 0-5yrs 0-5yrs 0-5yrs
 [4] 0-5yrs 6-11yrs 6-11yrs
 ...
[244] 12+ yrs 12+ yrs 12+ yrs
[247] 12+ yrs 12+ yrs
3 Levels: 0-5yrs ... 12+ yrs

 Ordinal low < medium < high numeric factor ordered

Creating data frames

 In the creation of data frames categorical variables are converted to factors (mode numeric,

78 Applied Epidemiology Using R

class factor) and numeric variables are converted to numeric vectors of class numeric or class
integer.

Factors can also be created directly from vectors as described in the previous section.
Table 33 Common ways of creating data frames

Function Description Examples in R

data.frame data frames are of
mode list

> x <- data.frame(id=1:3,sex=c("M","F","T"))
> x
 id sex
1 1 M
2 2 F
3 3 T
> mode(x)
[1] "list"

as.data.frame coerces data object into
a data frame

can combine with
as.table to convert an
array into a data frame

> x <- matrix(1:6,2,3)
> y <- as.data.frame(x)
> y
 V1 V2 V3
1 1 3 5
2 2 4 6

> x <- array(1:8, c(2, 2, 2))
> dimnames(x) <- list(Exp = c("Y", "N"),
 Dis = c("Y", "N"), Conf = c("Y", "N"))
> x
, , Conf = Y

 Dis
Exp Y N
 Y 1 3
 N 2 4

, , Conf = N

 Dis
Exp Y N
 Y 5 7
 N 6 8

> as.data.frame(as.table(x))
 Exp Dis Conf Freq
1 Y Y Y 1
2 N Y Y 2
3 Y N Y 3
4 N N Y 4
5 Y Y N 5
6 N Y N 6
7 Y N N 7
8 N N N 8

2 Working with R data objects 79

Function Description Examples in R

read.table
read.csv
read.csv2
read.delim
read.delim2
read.fmf

reads in ASCII text data
file into data frame
object

> wcgs <- read.csv(".../data/wcgs.csv", header=T)
> str(wcgs)
`data.frame': 3154 obs. of 14 variables:
 $ id : int 2001 2002 2003 2004 2005 ...
 $ age0 : int 49 42 42 41 59 44 44 40 ...
 $ height0: int 73 70 69 68 70 72 72 71 72 ...
 $ weight0: int 150 160 160 152 150 204 164 ...
 $ sbp0 : int 110 154 110 124 144 150 130 ...
...

Naming data frames
Table 34 Common ways of naming data frames

Function Examples in R

names > x <- data.frame(cbind(1:3, c("M","F","F")))
> x
 X1 X2
1 1 M
2 2 F
3 3 F
> names(x) <- c("Subjno","Sex")
> x
 Subjno Sex
1 1 M
2 2 F
3 3 F

row.names > row.names(x) <- c("Subj 1","Subj 2","Subj 3")
> x
 Subjno Sex
Subj 1 1 M
Subj 2 2 F
Subj 3 3 F

Indexing data frames
Table 35 Common ways of indexing data frames

Description Examples in R

Replacing by position > data(infert)
> infert[1:5, 1:3]
 education age parity
1 0-5yrs 26 6
2 0-5yrs 42 1
3 0-5yrs 39 6
4 0-5yrs 34 4
5 6-11yrs 35 3

80 Applied Epidemiology Using R

Description Examples in R

Replacing by name > infert[1:5, c("education", "age", "parity")]
 education age parity
1 0-5yrs 26 6
2 0-5yrs 42 1
3 0-5yrs 39 6
4 0-5yrs 34 4
5 6-11yrs 35 3

Replacing using a logical vector > infert$age<30
 [1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE
 [8] FALSE TRUE TRUE TRUE FALSE FALSE TRUE
...
[239] FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[246] FALSE TRUE TRUE
> infert[infert$age<30, c("education", "induced", "parity")]
 education induced parity
1 0-5yrs 1 6
7 6-11yrs 0 1
9 6-11yrs 0 1
...
243 12+ yrs 0 1
247 12+ yrs 0 1
248 12+ yrs 0 1

> #can also use subset function
> subset(infert, age<30, c("education", "induced",

"parity"))
 education induced parity
1 0-5yrs 1 6
7 6-11yrs 0 1
9 6-11yrs 0 1
...
243 12+ yrs 0 1
247 12+ yrs 0 1
248 12+ yrs 0 1

2 Working with R data objects 81

Replacing data frame components
Table 36 Common ways of replacing data frame components

Description Examples in R

Replacing by position > data(infert)
> infert[1:4, 1:2]
 education age
1 0-5yrs 26
2 0-5yrs 42
3 0-5yrs 39
4 0-5yrs 34
> infert[1:4, 2] <- c(NA, 45, NA, 23)
> infert[1:4, 1:2]
 education age
1 0-5yrs NA
2 0-5yrs 45
3 0-5yrs NA
4 0-5yrs 23

Replacing by name > data(infert)
> names(infert)
[1] "education" "age"
[3] "parity" "induced"
[5] "case" "spontaneous"
[7] "stratum" "pooled.stratum"
> infert[1:4, c("education","age")]
 education age
1 0-5yrs 26
2 0-5yrs 42
3 0-5yrs 39
4 0-5yrs 34
> infert[1:4, c("age")] <- c(NA, 45, NA, 23)
> infert[1:4, c("education","age")]
 education age
1 0-5yrs NA
2 0-5yrs 45
3 0-5yrs NA
4 0-5yrs 23

Replacing using a logical vector > data(infert)
> table(infert$parity)

 1 2 3 4 5 6
99 81 36 18 6 8
> #change values of 5 or 6 to missing (NA)
> infert$parity[infert$parity==5 | infert$parity==6] <- NA
> table(infert$parity)

 1 2 3 4
99 81 36 18
> table(infert$parity, exclude=NULL)

 1 2 3 4 <NA>
 99 81 36 18 14

82 Applied Epidemiology Using R

Operations on data frames
Table 37 Common operations on data frames

Function Description Examples in R

tapply Apply a function to each
cell of a ragged array,
that is to each (non-
empty) group of values
given by a unique
combination of the
levels of certain factors.

> args(tapply)
function (X, INDEX, FUN = NULL, ..., simplify = TRUE)
NULL
> tapply(infert$age, infert$education, mean)
 0-5yrs 6-11yrs 12+ yrs
35.25000 32.85000 29.72414

lapply Apply a function to each
component of the list

> data(infert)
> lapply(infert[,1:3], table)
$education

 0-5yrs 6-11yrs 12+ yrs
 12 120 116

$age

21 23 24 25 26 27 28 29 30 31 32 34 35 36 37 38
 6 6 3 15 15 15 30 12 12 21 15 18 18 15 12 8
39 40 41 42 44
 9 6 3 6 3

$parity

 1 2 3 4 5 6
99 81 36 18 6 8

sapply Apply a function to each
component of the list,
and simplify if possible

> x <- list(1:3, 5:8)
> x
[[1]]
[1] 1 2 3

[[2]]
[1] 5 6 7 8
> sapply(x, mean)
[1] 2.0 6.5
> lapply(x, mean)
[[1]]
[1] 2

[[2]]
[1] 6.5

mapply Apply a function to the
first elements of each
argument, the second
elements, the third
elements, and so on.
Arguments are recycled
if necessary.

> df <- data.frame(var1 = 1:4, var2 = 4:1)
> mapply("*", df$var1, df$var2)
[1] 4 6 6 4
> mapply(c, df$var1, df$var2)
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 4 3 2 1

2 Working with R data objects 83

Function Description Examples in R

aggregate Splits the data into
subsets, computes
summary statistics for
each, and returns the
result in a convenient
form.

> data(infert)
> aggregate(infert[,c("age", "parity")],

by = list(Education = infert$educ,
Induced = infert$induced), mean)

 Education Induced age parity
1 0-5yrs 0 38.00000 2.500000
2 6-11yrs 0 33.23077 1.833333
3 12+ yrs 0 30.04918 1.524590
4 0-5yrs 1 34.00000 3.500000
5 6-11yrs 1 32.51852 2.333333
6 12+ yrs 1 29.46154 1.974359
7 0-5yrs 2 33.83333 5.666667
8 6-11yrs 2 31.46667 3.066667
9 12+ yrs 2 29.12500 2.875000

attach

detach

The database is
attached to the R
search path. This
means that the
database is searched
by R when evaluating a
variable, so objects in
the database can be
accessed by simply
giving their names.

> attach(infert)
> table(induced, education)
 education
induced 0-5yrs 6-11yrs 12+ yrs
 0 4 78 61
 1 2 27 39
 2 6 15 16

> detach(infert)
> table(induced, education)
Error in table(induced, education) : Object

"induced" not found

2.7 Managing data objects
Table 38 Common ways of managing data objects

Function Description Examples in R

ls
objects

List objects > ls()
[1] "last.warning" "mx" "ss"
[4] "x" "xx" "yy"
> objects() #equivalent to previous
[1] "last.warning" "mx" "ss"
[4] "x" "xx" "yy"

rm
remove

Remove object(s) > ls()
[1] "xx" "yy" "zz"
> rm(yy)
> ls()
[1] "xx" "zz"
> remove(xx) #equivalent to 'rm'
> ls()
[1] "zz"

remove (almost) everything working environment.
Don't do this unless you are really sure
> rm(list = ls())

84 Applied Epidemiology Using R

Function Description Examples in R

apropos displays of all objects in
the search list matching
topic

> apropos(plot)
 [1] ".__C__recordedplot" "biplot"
 [3] "screeplot" "lag.plot"
 [5] "monthplot" "plot.spec"
 ...
[43] "preplot" "print.recordedplot"
[45] "qqplot" "sunflowerplot"
[47] "termplot"

save.image saves current workspace > save.image()
>

save
load

writes a external
representation of R objects
to the specified file. The
objects can be read back
from the file at a later date
by using the function 'load'

x <- runif(20)
y <- list(a = 1, b = TRUE, c = "oops")
save(x, y, file = "c:/temp/xy.Rdata")
> rm(x,y)
> x
Error: Object "x" not found
> y
Error: Object "y" not found
> load(file = "c:/temp/xy.Rdata")
> x
 [1] 0.2887683 0.5891149 0.7900659 0.2806621
 [5] 0.2585261 0.2429649 0.6663309 0.8029014
 [9] 0.1938921 0.6188805 0.3239679 0.8038926
[13] 0.9732817 0.1010119 0.5107601 0.8798169
[17] 0.8679555 0.6202131 0.6596147 0.5545634
> y
$a
[1] 1

$b
[1] TRUE

$c
[1] "oops"

2.8 Managing your workspace

Getting and setting your working directory

When you start R, the program sets up a default file path to the working directory that
contains or will contain the .Rdata file. To see the default path to the working directory use the
getwd function.

> getwd()

[1] "C:/Program Files/R/rw1081"

If you are running multiple projects, you can set the file path to a specific project working
directory.

> setwd(“C:/myprojects/R/project01”)

> getwd()

[1] "C:/myprojects/R/project01"

Some epidemiologists like to set up a separate R icon for each major project. You can set a

2 Working with R data objects 85

specific R icon start in a project working directory. First, right click on the R icon to open a
context menu. Select Properties from the menu to open a dialog box (see Figure 4). From the
Shortcut tab, edit the Start in box to contain the file path to your working directory. If your
working directory does not have a .Rdata file, R will create a new file.

Changing R options

To display current options use the options function without arguments (options()). The
default settings of some of these options are the following:
 'prompt' '"> "' 'continue' '"+ "'
 'width' '80' 'digits' '7'
 'expressions' '500' 'keep.source' 'TRUE'
 'show.signif.stars' 'TRUE' 'show.coef.Pvalues' 'TRUE'
 'na.action' 'na.omit' 'ts.eps' '1e-5'
 'error' 'NULL' 'show.error.messags' 'TRUE'
 'warn' '0' 'warning.length' '1000'
 'echo' 'TRUE' 'verbose' 'FALSE'
 'scipen' '0' 'locatorBell' 'TRUE'

Yon can change the prompt symbol:
> options(prompt="cidp> ")

cidp>

You can change the screen display width:
cidp> options(width=50)

cidp> 1:30

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

cidp> options(width=25)

cidp> 1:30

 [1] 1 2 3 4 5 6 7

 [8] 8 9 10 11 12 13 14

[15] 15 16 17 18 19 20 21

[22] 22 23 24 25 26 27 28

[29] 29 30

Figure 4 R icon Properties
dialog box to set the path to
the working directory

86 Applied Epidemiology Using R

Table 39 Common ways of managing your workspace

Function Description Examples in R

getwd get working directory > getwd()
[1] "C:/Program Files/R/rw1081"

setwd set working directory > setwd("C:/mywork/project1/R/")

options display or set options > options(width=50)
> 1:30
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
> options(width=25)
> 1:30
 [1] 1 2 3 4 5 6 7
 [8] 8 9 10 11 12 13 14
[15] 15 16 17 18 19 20 21
[22] 22 23 24 25 26 27 28
[29] 29 30

.First

2.9 Exercises

3 Managing epidemiologic data in R

3.1 Entering data
There are many ways of getting your data into R for analysis. In the section that follow we

will see how to enter the UGDB data in the 2x2 table (Table 40) as well as the original data from
a comma-delimited text file.

Table 40 Deaths among subjects who received
tolbutamide and placebo in the Unversity Group
Diabetes Program (1970)

Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

Entering data at the command prompt

Method 1 (recommended)

For review, the quickest and safest way to enter data at the command prompt is to do it in the
following ways:

> #enter data for a vector
> vec <- c(30, 174, 21, 184)

> vec

[1] 30 174 21 184

> #enter data for a matrix

> vec <- c(30, 174, 21, 184)

> udat <- matrix(vec, 2, 2)

> udat

 [,1] [,2]

[1,] 30 21

[2,] 174 184

> #enter data for an array

> udat3 <- array(vec2, c(2, 2, 2))

> udat3

, , 1

 [,1] [,2]

[1,] 8 5

[2,] 98 115

, , 2

 [,1] [,2]

[1,] 22 16

[2,] 76 69

88 Applied Epidemiology Using R

> #enter a list

> x <- list(crude.data = udat, stratified.data = udat3)

> x

$crude.data

 [,1] [,2]

[1,] 30 21

[2,] 174 184

$stratified.data

, , 1

 [,1] [,2]

[1,] 8 5

[2,] 98 115

, , 2

 [,1] [,2]

[1,] 22 16

[2,] 76 69

> #enter simple data frame

> subjno <- 1:3

> subjname <- c("Pedro", "Paulo", "Maria")

> age <- c(34, 56, 56)

> dat <- data.frame(subjno, subjname, age)

> dat

 subjno subjname age

1 1 Pedro 34

2 2 Paulo 56

3 3 Maria 56

> #enter a simple function

> odds.ratio <- function(a, b, c, d){ a*d / (b*c)}

> odds.ratio(30, 174, 21, 184)

[1] 1.510673

The above method is the safest for entering data at the command prompt. Alternatively, you
can paste in the code from a text editor and get the same result. However, some students are
accustomed to a different method of entering data at the command prompt. I will call this Method
2.

Method 2 (not recommended)

I do not recommend the following method of interactively entering data primarily for these
reasons:

• If you make an error you must start again from the beginning

• You cannot easily paste your R code from a text editor and get reliable results

In spite of this, some students will still like Method 2. Here it is:
To read in a vector at the command prompt use the scan function. It does not matter if you

enter the numbers on different lines, it will still be a vector.

3 Managing epidemiologic data in R 89

> udat <- scan()

1: 30 174

3: 21 184

5:

Read 4 items

> udat

[1] 30 174 21 184

To read in a matrix at the command prompt combine the matrix and scan function. Again, it
does not matter on what lines you enter the data, as long as they are in the correct order because
the matrix function reads data in data column-wise.

> udat <- matrix(scan(), 2, 2)

1: 30 174 21 184

5:

Read 4 items

> udat

 [,1] [,2]

[1,] 30 21

[2,] 174 184

> udat <- matrix(scan(), 2, 2, byrow=T) #read data row-wise

1: 30 21 174 184

5:

Read 4 items

> udat

 [,1] [,2]

[1,] 30 21

[2,] 174 184

To read in an array at the command prompt combine the array and scan function. Again, it
does not matter on what lines you enter the data, as long as they are in the correct order because
the array function reads data in data column-wise. In this example I include the dimnames
argument.

> udat3 <- array(scan(), dim = c(2, 2, 2),
dimnames = list(Vital.Status = c("Dead","Survived"),
Treatment = c("Tolbutamide", "Placebo"),
Age.Group = c("<55", "55+")))

1: 8 98 5 115 22 76 16 69

9:

Read 8 items

> udat3

, , Age.Group = <55

 Treatment

Vital.Status Tolbutamide Placebo

 Dead 8 5

 Survived 98 115

, , Age.Group = 55+

 Treatment

Vital.Status Tolbutamide Placebo

 Dead 22 16

90 Applied Epidemiology Using R

 Survived 76 69

To read in a list of vectors at the command prompt combine the list and scan function.
Notice that you will need to specify the type of data that will go into each bin. In the example
that follow this is done by specifying the what argument.

> dat <- scan("", what = list("", "", 0, 0))

1: John Paul 84 250

2: Jane Doe 34 154

3:

Read 2 records

> dat

[[1]]

[1] "John" "Jane"

[[2]]

[1] "Paul" "Doe"

[[3]]

[1] 84 34

[[4]]

[1] 250 15

> #same example but naming each bin

> dat <- scan("",list(firstname="",lastname="",age=0,chol=0))

1: John Paul 84 250

2: Jane Doe 34 154

3:

Read 2 records

> dat

$firstname

[1] "John" "Jane"

$lastname

[1] "Paul" "Doe"

$age

[1] 84 34

$chol

[1] 250 154

To read in a data frame at the command prompt combine the data.frame, scan, and
list functions. You will need to specify the type of data that will go into each field using the
what argument of the scan function.

> df <- data.frame(scan("", what = list(name="", age=0)))

1: Pedro 34

2: Paulo 56

3: Maria 56

4:

Read 3 records

> df

 name age

3 Managing epidemiologic data in R 91

1 Pedro 34

2 Paulo 56

3 Maria 56

Method 3

Method 3 uses R's spreadsheet editor. Again, this is not a preferred method for me because I
like to have my original data in a text editor. But for those that like Method 2, I think you might
like Method 3 even more. We will be using the edit and data.entry functions.

To enter a vector you need to initialize a vector and then use the data.entry function. Also
try the edit function like this xnew <- edit(numeric(10)) and see what happens.

> x <- numeric(10)

> x

 [1] 0 0 0 0 0 0 0 0 0 0

> data.entry(x) #See Figure 5

> x

 [1] 1 2 3 4 5 6 7 8 9 10

To enter a matrix you need to initialize the matrix and then use the edit function. Notice that
the editor added default column names. However, to add your own column names just click on
the column heading with your mouse pointer (unfortunately you cannot give row names).

> #open spreadsheet in two steps

> xnew <- matrix(numeric(4),2,2)

> xnew <- edit(xnew) #Spreadsheet screen not shown

> #open spreadsheet in one step

> xnew <- edit(matrix(numeric(4),2,2)) #Spreadsheet screen not shown

> xnew

 col1 col2

[1,] 11 33

[2,] 22 44

Figure 5 Spreadsheet editor in R from the data.entry function.
Here we display the numbers that have already been entered.

92 Applied Epidemiology Using R

Arrays and complex lists cannot be entered using a spreadsheet editor. Hence, we begin to see
the limitations of spreadsheet-type approach to data analysis. One type of list, the data frame, can
be entered using the edit function.

To enter a data frame use the edit function. However, you do not need to initialize a data
frame (unlike with a matrx). Again, click on the column headings to enter column names.

> df <- edit(data.frame()) #Spreadsheet screen not shown

> df

 mykids age

1 Tomasito 7

2 Luisito 6

3 Angelita 3

When using the edit function to create a new data frame you must assign it an object name
to save the data frame. Later we will see that when we edit an existing data object we can use the
edit or fix function. The fix function differs in that fix(data_object) saves your edits
directly back to data_object without the need to make an assignment. The equivalent using the
edit functions looks like this: data_object <- edit(data_object).

Entering from a file

Reading an ASCII text data file

For our purposes we will review how to read the following types of text data files:
• Comma-delimited data file (with or without headers and/or row names)

• Fixed width formatted data file (with or without headers and/or row names)

Here is the University Group Diabetes Program randomized clinical trial text data file that is
comma-delimited, and includes row names and a header (ugdp1.csv). The header is the first line
that contains the field variable names. The row names is the first column that starts on the second
line and uniquely identifies each row. A data file can come with either row names or header,
neither, or both. My preference is to work with data files that have a header and data values that
are self-explanatory. Even without a data dictionary one can still make sense out of this data set.

Vital.Status,Treatment,Age.Group

1,Dead,Tolbutamide,<55

2,Dead,Tolbutamide,<55

3,Dead,Tolbutamide,<55

4,Dead,Tolbutamide,<55

...

406,Survived,Placebo,55+

407,Survived,Placebo,55+

408,Survived,Placebo,55+

409,Survived,Placebo,55+

Let's enter this data using the read.table function.
> udat1 <- read.table("c:/.../ugdp1.csv", header=T, sep=",")

> udat1[1:10,]

 Vital.Status Treatment Age.Group

1 Dead Tolbutamide <55

2 Dead Tolbutamide <55

3 Dead Tolbutamide <55

4 Dead Tolbutamide <55

3 Managing epidemiologic data in R 93

5 Dead Tolbutamide <55

6 Dead Tolbutamide <55

7 Dead Tolbutamide <55

8 Dead Tolbutamide <55

9 Dead Tolbutamide 55+

10 Dead Tolbutamide 55+

Here is the same data file as it would appear without row names and without a header
(ugdp2.csv).

Dead,Tolbutamide,<55

Dead,Tolbutamide,<55

Dead,Tolbutamide,<55

Dead,Tolbutamide,<55

Dead,Tolbutamide,<55

...

Survived,Placebo,55+

Survived,Placebo,55+

Survived,Placebo,55+

Survived,Placebo,55+

Let's enter this data using the read.table function.
> cnames <- c("Status", "Treatment", "Age")

> udat2 <- read.table("c:/.../ugdp2.csv", header=F, sep=",",
col.names = cnames)

> udat2[1:10,]

 Status Treatment Age

1 Dead Tolbutamide <55

2 Dead Tolbutamide <55

3 Dead Tolbutamide <55

4 Dead Tolbutamide <55

5 Dead Tolbutamide <55

6 Dead Tolbutamide <55

7 Dead Tolbutamide <55

8 Dead Tolbutamide <55

9 Dead Tolbutamide 55+

10 Dead Tolbutamide 55+

Here is the same data file as it might appear as a fix formatted file. In this file, columns 1 to 8
are for field #1, columns 9 to 19 are for field #2, and columns 20 to 22 are for field #3. This type
of data file is more compact. One needs a data dictionary to know which columns contain which
fields.

1234567890123456789012

Dead Tolbutamide<55

Dead Tolbutamide<55

Dead Tolbutamide<55

Dead Tolbutamide<55

Dead Tolbutamide<55

...

SurvivedPlacebo 55+

SurvivedPlacebo 55+

SurvivedPlacebo 55+

SurvivedPlacebo 55+

SurvivedPlacebo 55+

94 Applied Epidemiology Using R

Finally, here is the same data file as it might appear as a fixed width formatted file but with
numeric codes (ugdp3.fwf). In this file, column 1 is for field #1, column 2 is for field #2, and
column 3 is for field #3. This type of text data file is the most compact, however, one needs a
data dictionary to make sense of all the 1s and 2s.

123

121

121

121

121

121

121

...

212

212

212

212

212

Let's enter this data using the read.fwf function.
> cnames <- c("Status", "Treatment", "Age")

> udat3 <- read.fwf("c:/.../ugdp3.fwf", widths = c(1,1,1),
col.names = cnames)

> udat3[1:10,]

 Status Treatment Age

1 1 2 1

2 1 2 1

3 1 2 1

4 1 2 1

5 1 2 1

6 1 2 1

7 1 2 1

8 1 2 1

9 1 2 2

10 1 2 2

R has other functions for reading text data files (read.csv, read.csv2, read.delim,
read.delim2)

Reading data from a proprietary format (e.g., Stata)

To read data that comes in a proprietary format load the foreign library.
> library(foreign)

> help(package=foreign) #R 1.8.1

Title: Read data stored by Minitab, S, SAS, SPSS, Stata, ...

...

Index:

lookup.xport Lookup information on a SAS XPORT format

 library

S3 read functions Read an S3 Binary File

read.dta Read Stata binary files

read.epiinfo Read Epi Info data files

read.mtp Read a Minitab Portable Worksheet

read.spss Read an SPSS data file

3 Managing epidemiologic data in R 95

read.ssd obtain a data frame from a SAS permanent

 dataset, via read.xport

read.xport Read a SAS XPORT format library

write.dta Write files in Stata binary format

For example, here I read in the infert data which is also available as a Stata data file.
> idat <- read.dta("c:/.../infert.dta")

> names(idat)

[1] "id" "education" "age" "parity"

[5] "induced" "case" "spontaneous" "stratum"

[9] "pooledstratum"

> str(idat)

`data.frame': 248 obs. of 9 variables:

 $ id : int 1 2 3 4 5 6 7 8 9 10 ...

 $ education : int 0 0 0 0 1 1 1 1 1 1 ...

 $ age : int 26 42 39 34 35 36 23 32 21 28 ...

 $ parity : int 6 1 6 4 3 4 1 2 1 2 ...

 $ induced : int 1 1 2 2 1 2 0 0 0 0 ...

 $ case : int 1 1 1 1 1 1 1 1 1 1 ...

 $ spontaneous : int 2 0 0 0 1 1 0 0 1 0 ...

 $ stratum : int 1 2 3 4 5 6 7 8 9 10 ...

 $ pooledstratum: int 3 1 4 2 32 36 6 22 5 19 ...

 ...

Entering using a URL

Text data files can be read directly off a web server into R using the read.table function.
Here I load the Western Collaborative Group Study data directly off a web server.

> wdat <- read.table("http://www.../wcgs.csv", header = T, sep = ",")

> str(wdat)

`data.frame': 3154 obs. of 14 variables:

 $ id : int 2001 2002 2003 2004 2005 2006 2007 2008 2009 ...

 $ age0 : int 49 42 42 41 59 44 44 40 43 42 ...

 $ height0: int 73 70 69 68 70 72 72 71 72 70 ...

 $ weight0: int 150 160 160 152 150 204 164 150 190 175 ...

 $ sbp0 : int 110 154 110 124 144 150 130 138 146 132 ...

 $ dbp0 : int 76 84 78 78 86 90 84 60 76 90 ...

 $ chol0 : int 225 177 181 132 255 182 155 140 149 325 ...

 $ behpat0: int 2 2 3 4 3 4 4 2 3 2 ...

 $ ncigs0 : int 25 20 0 20 20 0 0 0 25 0 ...

 $ dibpat0: int 1 1 0 0 0 0 0 1 0 1 ...

 $ chd69 : int 0 0 0 0 1 0 0 0 0 0 ...

 $ typechd: int 0 0 0 0 1 0 0 0 0 0 ...

 $ time169: int 1664 3071 3071 3064 1885 3102 3074 3071 3064 ...

 $ arcus0 : int 0 1 0 0 1 0 0 0 0 1 ...

3.2 Editing data

Text editor

For small data sets, it may be very convenience to edit the data in your favorite text editor.
Key-recording macros, and search and replace tools can be very useful and efficient.

96 Applied Epidemiology Using R

data.entry, edit, or fix function

For vector and matrices you can use the data.entry function to edit these data object
elements. For data frames and functions use the edit or fix functions. Remember that changes
made with the edit function are not saved unless you assign it to a new or other object name. In
contrast, changes made with the fix function are saved back to the original data object name.
Therefore, be careful when you use the fix function because you made unintentionally loose
data. To play it safe use the edit function.

Vectorized approaches

You can combine relational and logical operators to replace vector components in data
frames.

EXAMPLES PENDING

R also has versatile text processing functions. Study the following related examples.
Table 41 R function for processing text in character vectors

Function Description Examples in R

nchar returns the number of
characters in each element
of a character vector

> x <- c("a", "ab", "abc", "abcd")
> nchar(x)
[1] 1 2 3 4

strsplit Split the elements of a
character vector into
substrings according to the
presence of substring 'split'
within them.

> some.dates <- c("10/02/70", "02/04/67")
> some.dates
[1] "10/02/70" "02/04/67"
> strsplit(some.dates, "/")
[[1]]
[1] "10" "02" "70"

[[2]]
[1] "02" "04" "67"

substr Extract or replace
substrings in a character
vector

> months <- substr(some.dates, 1, 2)
> months
[1] "10" "02"
> days <- substr(some.dates, 4, 5)
> days
[1] "02" "04"
> years <- substr(some.dates, 7, 8)
> years
[1] "70" "67"

paste Concatenate vectors after
converting to character.

> recover.dates <- paste(months, "/", days, "/",
years, sep = "")

> recover.dates
[1] "10/02/70" "02/04/67"

Regular expressions

grep, sub

3.3 Sorting data
order

3 Managing epidemiologic data in R 97

sort

3.4 Subsetting data

Indexing

Subsetting

3.5 Transforming data
Table 42 R functions for transforming variables in data frames

Function Description Examples in R

cut

<- transforming a vector and
assigning it to a new data
frame variable name

> df <- data.frame(v1=1:3, v2=3:1)
> df
 v1 v2
1 1 3
2 2 2
3 3 1
> df$v3 <- log(df$v1) #creates new variable in df
> df$v4 <- exp(df$v2)
> df
 v1 v2 v3 v4
1 1 3 0.0000000 20.085537
2 2 2 0.6931472 7.389056
3 3 1 1.0986123 2.718282

transform transform one or more
variables from a data
frame and add it to the
data frame

> df <- data.frame(v1=1:3, v2=3:1)
> df
 v1 v2
1 1 3
2 2 2
3 3 1
> df2 <- transform(df, v3=log(v1), v4=exp(v2))
> df2
 v1 v2 v3 v4
1 1 3 0.0000000 20.085537
2 2 2 0.6931472 7.389056
3 3 1 1.0986123 2.718282

cut

ifelse

relevel

3.6 Merging data
merge

3.7 Exporting data
write.table

98 Applied Epidemiology Using R

write

3.8 Working with missing values
NA, is.na
NaN, is.nan

3.9 Working with dates
Table 43 R functions for handling calendar dates (from the survival package)

Function Description Examples in R

as.date Converts character
vector of dates into a
vector of Julian dates
(number of days since
January 1, 1960)

> library(survival)
> dd <- c("8/31/56", "8-31-1956", "083156",

"31Aug56", "August 31 1956")
> as.date(dd)
[1] 31Aug56 31Aug56 31Aug56 31Aug56 31Aug56
> as.numeric(as.date(dd))
[1] -1218 -1218 -1218 -1218 -1218

mdy.date converts a vector of
months, a vector of
days, and a vector of
years into a vector of
Julian dates (number of
days since January 1,
1960)

> mons <- sample(1:12, 5, replace=T)
> days <- sample(1:31, 5, replace=T)
> years <- sample(1940:2003, 5, replace=T)
> jd <- mdy.date(mons, days, years)
> jd
[1] 30Sep61 11Oct75 2Jun78 7Mar88 5Jan84
> as.numeric(jd)
[1] 638 5762 6727 10293 8770

date.mdy Convert a vector of
Julian dates to a list of
vectors with the
corresponding values of
month, day and year,
and optionally weekday

> date.mdy(jd)
$month
[1] 9 10 6 3 1
$day
[1] 30 11 2 7 5
$year
[1] 1961 1975 1978 1988 1984

> date.mdy(jd, weekday=T)
$month
[1] 9 10 6 3 1
$day
[1] 30 11 2 7 5
$year
[1] 1961 1975 1978 1988 1984
$weekday
[1] 7 7 6 2 5

date.mmddyy
date.ddmmmyy
date.mmddyyyy

Given a vector of Julian
dates, returns a
character vector of the
form “mm/dd/yy” or
“ddmmmyy”, or
“mm/dd/yyyy”

> date.mmddyy(jd)
[1] "9/30/61" "10/11/75" "6/2/78" "3/7/88" "1/5/84"
> date.ddmmmyy(jd)
[1] "30Sep61" "11Oct75" "2Jun78" "7Mar88" "5Jan84"
> date.mmddyyyy(jd)
[1] "9/30/1961" "10/11/1975" "6/2/1978" "3/7/1988"
[5] "1/5/1984"

3 Managing epidemiologic data in R 99

3.10 Exercises

4 Analyzing simple epidemiologic data 101

4 Analyzing simple epidemiologic data

4.1 Overview
1. Assign input values

2. Do calculations

3. Collect results into one object

4.2 Evaluating a single measure of occurrence

Risk and prevalence data

Approximation methods

Risk and prevalence estimates based on binomial data can be represented by R=x /n ,
where x is the number of events or the number of persons with a condition, and n is the number
of persons at risk at a given time. The following formula provides a normal distribution
approximation for binomial data (ref Dalgaard).

z=
x p0

 p01 p0/n

This formula gives improved results with the Yate's continuity correction which shrinks the
observed value by half a unit toward the expected value when calculating z.

z=
∣x p0∣

1
2

 p01 p0/n
#assign input values

x <- 39

n <- 215

p0 <- .15

do the calculations

z <- (abs(x-n*p0)-.5)/sqrt(n*p0*(1-p0))

p.value <- 2*(1-pnorm(z)) #two-sided test

#collect results into one object

c(x=x, n=n, p1=x/n, p0=p0, z=z, p.value=p.value)

Let's run this code in R.
> #assign input values

> x <- 39

> n <- 215

> p0 <- .15

> # do the calculations

> z <- (abs(x-n*p0)-.5)/sqrt(n*p0*(1-p0))

> p.value <- 2*(1-pnorm(z)) #two-sided test

> #collect results into one object

102 Applied Epidemiology Using R

> c(x=x, n=n, p1=x/n, p0=p0, z=z, p.value=p.value)

 x n p1 p0 z p.value

 39.00000 215.00000 0.1813953 0.1500000 1.1937289 0.2325840

We can improve the output by collecting the results using the cbind function rather than c
function.

> cbind(x=x, n=n, p1=x/n, p0=p0, z=z, p.value=p.value)

 x n p1 p0 z p.value

[1,] 39 215 0.1813953 0.15 1.193729 0.2325840

An additional advantage of using the cbind function is that you can test one or more
proportions against one or more reference proportions, and then collect and display the results as
a matrix. Suppose we want to test the proportions 39/215, 30/225, 50/200 against the value 0.15.
Here's the new code run in R

> #assign input values

> x <- c(39, 30, 50)

> n <- c(215, 225, 200)

> p0 <- .15

> # do the calculations

> z <- (abs(x-n*p0)-.5)/sqrt(n*p0*(1-p0))

> p.value <- 2*(1-pnorm(z)) #two-sided test

> #collect results into one object

> cbind(x=x, n=n, p1=x/n, p0=p0, z=z, p.value=p.value)

 x n p1 p0 z p.value

[1,] 39 215 0.1813953 0.15 1.193729 0.2325840460

[2,] 30 225 0.1333333 0.15 0.606788 0.5439915886

[3,] 50 200 0.2500000 0.15 3.861575 0.0001126582

Now let's review the following line:
> p.value <- 2*(1-pnorm(z)) #two-sided test

The pnorm function takes the argument z and returns the appropriate probability from the
cumulative distribution function; that is, it returns Pr(Z≤z) from the standard normal distribution.
Notice we had to multiply the probability by 2 in order to conduct a two-sided test. Because z2

has an approximate χ2 distribution with 1 degree of freedom, we can also use the pchisq
function and get the same answer:

> p.value <- 1-pchisq(z^2,df=1) #two-sided test

> cbind(x=x, n=n, p1=x/n, p0=p0, z=z, p.value=p.value)

 x n p1 p0 z p.value

[1,] 39 215 0.1813953 0.15 1.193729 0.2325840460

[2,] 30 225 0.1333333 0.15 0.606788 0.5439915886

[3,] 50 200 0.2500000 0.15 3.861575 0.0001126582

Notice that with the χ2 distribution you do not need to multiply the probability by 2 to get a
two-sided test. Now, if you plan on testing one sample proportions often, then it makes sense to
create your own function to automate the calculation and increase your productivity.

prop.approx <- function(x, n, p0=0.5, correction=TRUE){

 # x = vector of numerators (successes)

 # n = vector of denominators (independent trials)

 # p0 = vector reference proportions

 # do the calculations

 if(correction) {

 yates <- .5

 } else {

4 Analyzing simple epidemiologic data 103

 yates <- 0

 }

 z <- (abs(x-n*p0)-yates)/sqrt(n*p0*(1-p0))

 p.value <- 1-pchisq(z^2, df=1) #two-sided test

 #collect results into one object

 cbind(x=x, n=n, p1=x/n, p0=p0, chisq=z^2, p.value=p.value)

}

Let's test this function.
> prop.approx(xx, nn, p0=.15)

 x n p1 p0 chisq p.value

[1,] 39 215 0.1813953 0.15 1.4249886 0.2325840460

[2,] 30 225 0.1333333 0.15 0.3681917 0.5439915886

[3,] 50 200 0.2500000 0.15 14.9117647 0.0001126582

First, notice that in this function we provided a default value for p0; if a value for p0 is not
provided then the function will use the default value 0.5. Second, we also provided for the user
the option to choose not to use the Yate's continuity correction. For this we combined the if and
else functions. It works like this: if(TRUE) {'run this code'} else {'run
alternative code'}. Study the following function, test it, and experiment with it.

f <- function(option=TRUE){

 if(option){

 response <- 'The option is TRUE'

 } else{

 response <- 'The option is FALSE'

 }

 print(response)

}

Let's test this function:
> f(T)

[1] "The option is TRUE"

> f(F)

[1] "The option is FALSE"

Finally, does R have a function for testing a one sample proportion? Yes, but it's much more
informative to learn how to build your own function. Why? Because R or another software
package may not have the function you need, and by learning how to create you own functions
you will be able to exploit many of R capabilities to solve many types of problems effectively
and efficiently. Here is the same analysis using R's prop.test function (which additionally
provides a confidence interval).

> prop.test(x=39, n=215, p=.15)

 1-sample proportions test with continuity correction

data: 39 out of 215, null probability 0.15

X-squared = 1.425, df = 1, p-value = 0.2326

alternative hypothesis: true p is not equal to 0.15

95 percent confidence interval:

 0.1335937 0.2408799

sample estimates:

 p

0.1813953

104 Applied Epidemiology Using R

More specifically, unlike our prop.approx function that test each proportion, prop.test
does an overall test of whether several proportions are equal to each other or equal to specified
null proportion (see section on testing two or more proportions).

Exact method

To assess whether an observed proportion (R) differs from an alternative value (say p0)
you can calculate a p value based on the binomial distribution (binom.test) or a normal
distribution approximation to the binomial distribution (covered in previous section).

The approximation using the normal distribution is satisfactory when the expected number of
“successes” (x) and the “failures” (n-x) are both larger than 5. Here is the same analysis using
binom.test:

> binom.test(x=39, n=215, p=.15)

 Exact binomial test

data: 39 and 215

number of successes = 39, number of trials = 215, p-value = 0.2135

alternative hypothesis: true probability of success is not equal to
0.15

95 percent confidence interval:

 0.1322842 0.2395223

sample estimates:

probability of success

 0.1813953

4.3 Evaluating two or more measures of occurrence
> xx <- c(39, 30, 50)

> nn <- c(215, 225, 200)

> p0 <- rep(.15, 3)

> prop.test(xx, nn, p0) #overall test that 3 proportions = .15

 3-sample test for given proportions without continuity
correction

data: xx out of nn, null probabilities p0

X-squared = 17.8386, df = 3, p-value = 0.0004749

alternative hypothesis: two.sided

null values:

prop 1 prop 2 prop 3

 0.15 0.15 0.15

sample estimates:

 prop 1 prop 2 prop 3

0.1813953 0.1333333 0.2500000

> prop.test(xx, nn) #overall test that 3 proportions are equal

 3-sample test for equality of proportions without continuity

 correction

data: xx out of nn

4 Analyzing simple epidemiologic data 105

X-squared = 9.5653, df = 2, p-value = 0.008374

alternative hypothesis: two.sided

sample estimates:

 prop 1 prop 2 prop 3

0.1813953 0.1333333 0.2500000

4.4 Confidence intervals for measures of occurrence

Risk and prevalence data

R= x
n

Normal approximation to the binomial

RL=RZ⋅SE R
RU=RZ⋅SE R

SE R= x nx
n3

Here is the R code in a text editor:
assign input values

x <- 20

n <- 100

Z <- 1.645 #z value for 90% CI

do calculations

SE.R <- sqrt(x*(n-x)/(n^3))

R.lower <- x/n-Z*SE.R

R.upper <- x/n+Z*SE.R

collect results into one object

c(R = x/n, LCL = R.lower, UCL = R.upper)

Here is the code pasted into R or Rweb:
> # assign input values

> x <- 20

> n <- 100

> Z <- 1.645 #z value for 90% CI

> # do calculations

> SE.R <- sqrt(x*(n-x)/(n^3))

> R.lower <- x/n-Z*SE.R

> R.upper <- x/n+Z*SE.R

> # collect results into one object

> c(R = x/n, LCL = R.lower, UCL = R.upper)

 R LCL UCL

0.2000 0.1342 0.2658

Let's refine our calculation. Recall that for a 95% confidence interval (CI) the z value is
approximately 1.96, and for a 90% CI the z value is approximately 1.645. For this we can use the
qnorm function. The qnorm function returns the quantile value z for a specified “area under the
normal distribution curve” (Pr{Z≤z}). More specifically, for a (1- α)% CI, the Pr{Z≤z} = 1-α/2.
Then, for a given value of (1 – α/2), qnorm returns the value z. For example, for a 95% CI, α =

106 Applied Epidemiology Using R

0.05 and Pr{Z≤z} = 0.975. Therefore, z = qnorm(.975) = 1.959964.
Let's edit the previous R code in our text editor to the following:

assign input values

x <- 20

n <- 100

conf.level <- .90

do calculations

Z <- qnorm(0.5*(1 + conf.level))

SE.R <- sqrt(x * (n - x) / (n^3))

R.lci <- x/n - Z*SE.R

R.uci <- x/n + Z*SE.R

collect results into one object

c(risk=x/n, lower.ci=R.lci, upper.ci=R.uci)

Here is the code pasted into R or Rweb:
> # assign input values

> x <- 20

> n <- 100

> conf.level <- .90

> # do calculations

> Z <- qnorm(0.5*(1 + conf.level))

> SE.R <- sqrt(x * (n - x) / (n^3))

> R.lci <- x/n - Z*SE.R

> R.uci <- x/n + Z*SE.R

> # collect results into one object

> c(risk=x/n, lower.ci=R.lci, upper.ci=R.uci)

 risk lower.ci upper.ci

0.2000000 0.1342059 0.2657941

Now we will create and load a function to automate these three steps (assign input values, do
calculations, and collect results). Notice that I have included a default value for the conf.level
argument and I have provided comments to define the arguments x and n. I can load the function
by pasting the code that follows into R.

binom.approx <- function(x, n, conf.level = .95) {

 # x = number of successes

 # n = number of trials

 # do calculations

 Z <- qnorm(0.5*(1 + conf.level))

 SE.R <- sqrt(x * (n - x) / (n^3))

 R.lci <- x/n - Z*SE.R

 R.uci <- x/n + Z*SE.R

 # collect results into one object

 c(x=x, n=n, risk=x/n, conf.level=conf.level, lower.ci=R.lci,
upper.ci=R.uci)

}

Once the function is loaded we can use it:
> tt <- binom.approx(20, 100, .90)

> round(tt, 4)

 x n risk conf.level lower.ci upper.ci

 20.0000 100.0000 0.2000 0.9000 0.1342 0.2658

Great! However, what simple changes can we make to our binom.approx function to make

4 Analyzing simple epidemiologic data 107

it more versatile? For example, we may want it to handle vector arguments of length>1. By now
we know enough to make these improvements.

binom.approx <- function(x, n, conf.level = .95) {

 # x = number of successes

 # n = number of trials

 # do calculations

 Z <- qnorm(0.5*(1+conf.level))

 SE.R <- sqrt(x * (n - x) / (n^3))

 R.lci <- x/n - Z*SE.R

 R.uci <- x/n + Z*SE.R

 # collect results into one object

 cbind(x=x, n=n, risk=x/n, conf.level=conf.level, lower=R.lci,
upper=R.uci)

}

Once this improved function is loaded we can use it:
> success <- 1:9

> trials <- 10

> rr <- binom.approx(success, trials)

> rr

 x n risk conf.level lower upper

 [1,] 1 10 0.1 0.95 -0.08593851 0.2859385

 [2,] 2 10 0.2 0.95 -0.04791801 0.4479180

 [3,] 3 10 0.3 0.95 0.01597423 0.5840258

 [4,] 4 10 0.4 0.95 0.09636369 0.7036363

 [5,] 5 10 0.5 0.95 0.19010248 0.8098975

 [6,] 6 10 0.6 0.95 0.29636369 0.9036363

 [7,] 7 10 0.7 0.95 0.41597423 0.9840258

 [8,] 8 10 0.8 0.95 0.55208199 1.0479180

 [9,] 9 10 0.9 0.95 0.71406149 1.0859385

From this example we see the limitation of calculating confidence limits using the standard
normal distribution to approximate the binomial distribution. One solution is to use a formula
that more accurately approximates the binomial distribution for small counts or small proportions
(see Wilson's formula).

Exact approximation (using Wilson's formula)

For small counts or small proportions, Wilson's confidence limits for binomial data can be
used (ref baby Rothman, p 132).

RL , RU=
n

nZ 2 [
x
n
 Z 2

2 n
±Z x nx

n3 Z 2

4 n2]

Assuming we plan to use this formula in the future, it makes sense to create a function. The
easiest approach is to edit binom.approx.

binom.wilson <- function(x, n, conf.level = .95) {

 # x = number of successes

 # n = number of trials

 # do calculations

 Z <- qnorm(0.5*(1+conf.level))

 Zinsert <- Z*sqrt(((x*(n-x))/n^3) + Z^2/(4*n^2))

108 Applied Epidemiology Using R

 R.lower <- (n/(n+Z^2))*(x/n + Z^2/(2*n) - Zinsert)

 R.upper <- (n/(n+Z^2))*(x/n + Z^2/(2*n) + Zinsert)

 # collect results into one object

 cbind(x=x, n=n, risk=x/n, conf.level=conf.level, lower.ci=R.lower,
upper.ci=R.upper)

}

Okay, let's test Wilson's formula.
> xx <- 1

> nn <- c(10, 100, 1000, 10000, 100000, 1000000)

> binom.wilson(xx, nn)

 x n risk conf.level lower.ci upper.ci

[1,] 1 1e+01 1e-01 0.95 1.787621e-02 4.041500e-01

[2,] 1 1e+02 1e-02 0.95 1.767432e-03 5.448620e-02

[3,] 1 1e+03 1e-03 0.95 1.765464e-04 5.642559e-03

[4,] 1 1e+04 1e-04 0.95 1.765267e-05 5.662689e-04

[5,] 1 1e+05 1e-05 0.95 1.765248e-06 5.664710e-05

[6,] 1 1e+06 1e-06 0.95 1.765246e-07 5.664912e-06

Great! Looks good for very small proportions (i.e., no negative values). Of course, if you want
an exact binomial confidence limits you can use the binom.test function in R.

Exact method (binom.test function)

To calculate exact binomial confidence limits, use the binom.test function. In addition to
calculating the confidence limits, binom.test also tests the hypothesis that the observed
proportion (x/n) is different from an alternative hypothesis (default p = 0.5) and reports a p value.

> args(binom.test)

function (x, n, p = 0.5, alternative = c("two.sided", "less",

 "greater"), conf.level = 0.95)

NULL

> binom.test(1, 100)

 Exact binomial test

data: 1 and 100

number of successes = 1, number of trials = 100, p-value = < 2.2e-16

alternative hypothesis: true probability of success is not equal to
0.5

95 percent confidence interval:

 0.0002531460 0.0544593854

sample estimates:

probability of success

 0.01

Unfortunately, binom.test cannot handle vector arguments of length > 1, and the results are
more than we need. How can we change this? First, I need to know how to extract the confidence
limits calculated from binom.test. To solve this I explore the data object produced by
binom.test.

> rr <- binom.test(1, 10)

> attributes(rr)

$names

[1] "statistic" "parameter" "p.value" "conf.int"

[5] "estimate" "null.value" "alternative" "method"

4 Analyzing simple epidemiologic data 109

[9] "data.name"

$class

[1] "htest"

We see that rr is a list, so extracting the confidence limits is easy:
> rr$conf.int

[1] 0.002528579 0.445016117

attr(,"conf.level")

[1] 0.95

Now that I know how to extract the confidence limits from binom.test, I can create a new
function that will use the exact binomial confidence limits from binom.test, but be able to
handle vector arguments:

binom.exact <- function(x, n, conf.level=.95) {

 # x = number of successes

 # n = number of trials

 # do calculations

 xnc <- cbind(x,n,conf.level)

 lower <- numeric(nrow(xnc))

 upper <- numeric(nrow(xnc))

 for(i in 1:nrow(xnc)){

 ci <- binom.test(x=xnc[i,1], n=xnc[i,2], conf.level=xnc[i,3])
$conf.int

 lower[i] <- ci[1]

 upper[i] <- ci[2]

 }

 # collect results into one object

 cbind(x=x, n=n, risk=x/n, conf.level=conf.level, lower.ci=lower,
upper.ci=upper)

}

Now let's test binom.exact:
> binom.exact(1,100)

 x n risk conf.level lower.ci upper.ci

[1,] 1 100 0.01 0.95 0.0002531460 0.05445939

> binom.exact(1:5,100)

 x n risk conf.level lower.ci upper.ci

[1,] 1 100 0.01 0.95 0.0002531460 0.05445939

[2,] 2 100 0.02 0.95 0.0024313368 0.07038393

[3,] 3 100 0.03 0.95 0.0062299715 0.08517605

[4,] 4 100 0.04 0.95 0.0110044940 0.09925716

[5,] 5 100 0.05 0.95 0.0164318792 0.11283491

The binom.exact function demonstrates the use of a for loop. In the programming section
we will cover for loops in more detail. For now, study the following example to get a feel how
for loops work.

cumulative.sum <- function(x){

 lx <- length(x)

 for(i in 1:(lx-1)){

 x[i+1] <- x[i] + x[i+1]

 }

 x

110 Applied Epidemiology Using R

}

Let's test the function.
> cumulative.sum(1:10)

 [1] 1 3 6 10 15 21 28 36 45 55

Incidence rate data

The calculation of confidence intervals for incidence rate data is based on the Poisson
distribution.

R= x
PT

Normal approximation

RL , RU=R±Z⋅SE R

SE R= x
PT 2

pois.approx <- function(x, pt=1, conf.level = .95) {

 # x = Poisson count

 # pt = person time

 # do calculations

 Z <- qnorm(0.5*(1+conf.level))

 SE.R <- sqrt(x/pt^2)

 lower <- x/pt - Z*SE.R

 upper <- x/pt + Z*SE.R

 # collect results into one object

 cbind(x=x, pt=pt, rate=x/pt, conf.level=conf.level,
lower.ci=lower, upper.ci=upper)

}

Let's test pois.approx.
> pois.approx(1:5, 2500)

 x pt rate conf.level lower.ci upper.ci

[1,] 1 2500 0.0004 0.95 -3.839856e-04 0.001183986

[2,] 2 2500 0.0008 0.95 -3.087231e-04 0.001908723

[3,] 3 2500 0.0012 0.95 -1.579029e-04 0.002557903

[4,] 4 2500 0.0016 0.95 3.202881e-05 0.003167971

[5,] 5 2500 0.0020 0.95 2.469549e-04 0.003753045

Exact approximation (Byar's formula)

RL , RU=
x ' 1 1

9 x '
± Z

3 1
x '

3

PT
pois.byar <- function(x, pt=1, conf.level = .95) {

 # x = Poisson count

4 Analyzing simple epidemiologic data 111

 # pt = person time

 # do calculations

 Z <- qnorm(0.5*(1+conf.level))

 xprime <- x + 0.05

 Zinsert <- (Z/3)*sqrt(1/xprime)

 lower <- (xprime*(1-1/(9*xprime)-Zinsert)^3)/pt

 upper <- (xprime*(1-1/(9*xprime)+Zinsert)^3)/pt

 # collect results into one object

 cbind(x=x, pt=pt, rate=x/pt, conf.level=conf.level,
lower.ci=lower, upper.ci=upper)

}

Let's test pois.byar.
> pois.byar(1:5, 2500)

 x pt rate conf.level lower.ci upper.ci

[1,] 1 2500 0.0004 0.95 7.096388e-06 0.001509448

[2,] 2 2500 0.0008 0.95 9.617719e-05 0.002260215

[3,] 3 2500 0.0012 0.95 2.498997e-04 0.002920101

[4,] 4 2500 0.0016 0.95 4.406498e-04 0.003536218

[5,] 5 2500 0.0020 0.95 6.557532e-04 0.004125255

Exact method

R does not have a function for calculating exact confidence limits for Poisson counts.
pois.exact <- function(x, pt=1, conf.level=.95){

 # x = Poisson count

 # pt = person time

 xc <- cbind(x,conf.level)

 results <- matrix(NA,nrow(xc),6)

 f1 <- function(x,ans,alpha=alp) {ppois(x,ans)-alpha/2}

 f2 <- function(x,ans,alpha=alp) 1-ppois(x,ans)+dpois(x,ans)-
alpha/2

 for(i in 1:nrow(xc)){

 alp <- 1-xc[i,2]

 interval <- c(0,xc[i,1]*5+4)

 uci <- uniroot(f1,interval=interval,x=xc[i,1])$root/pt

 if(xc[i,1]==0){

 lci <- 0

 } else lci <- uniroot(f2,interval=interval,x=xc[i,1])$root/pt

 results[i,] <- c(xc[i,1],pt,xc[i,1]/pt,xc[i,2],lci,uci)

 }

 colnames <- c("x","pt","rate","conf.level","lower.ci","upper.ci")

 dimnames(results) <- list(NULL,colnames)

 results

}

Let's test pois.exact.
> pois.exact(1:5, 2500)

 x pt rate conf.level lower.ci upper.ci

[1,] 1 2500 0.0004 0.95 1.011583e-05 0.002228657

[2,] 2 2500 0.0008 0.95 9.688146e-05 0.002889877

[3,] 3 2500 0.0012 0.95 2.474685e-04 0.003506911

[4,] 4 2500 0.0016 0.95 4.359557e-04 0.004096636

112 Applied Epidemiology Using R

[5,] 5 2500 0.0020 0.95 6.493943e-04 0.004667329

4.5 Confidence intervals for measures of association

Cohort studies with risk or prevalence data

Table 44 2 x 2 table for risk or prevalence data

Disease No disease Totals

Exposed a b a + b

Not exposed c d c + d

Totals a + c b + d T

Comparing two or more proportions

Table 45 R functions for handling calendar dates (from the survival package)

Function Description Examples in R

prop.test

prop.trend.test

chisq.test

fishers.exact

Risk difference

RD= a
ac

 b
bd

Risk ratio

RR= a /ac
b /bd

Cohort studies with incidence rate data

Normal approximation

Exact approximation

Exact method

Case control studies

Normal approximation

Exact approximation

Exact method

5 Creating simple R functions

5.1 Why create functions?

5.2

5.3 Exercises

6 Controlling for confounding using stratification
methods

6.1 Cohort studies with risk or prevalence data

Risk difference

RDMH=
∑

i

ai N 0 ibi N 1 i

T i

∑
i

N 1 i N 0 i

T i

var RDMH =
∑

i

N 1 i N 0 i

T i

2

[
ai ci

N 1 i
2 N 1 i1

bi d i

N 0 i
2 N 0 i1

]

∑
i

N 1 i N 0 i

T i

2

Risk ratio

RRMH=
∑

i

ai N 0 i

T i

∑
i

bi N 1 i

T i

var log RRMH =
∑

i

M 1 i N 1 i N 0 i

T i
2

ai bi

T i

∑
i

ai N 0 i

T i
∑

i
bi

N 1 i

T i

6.2 Cohort studies with incidence rate data

Incidence rate difference

IDMH=
∑i

ai PT 0 ibi PT 1 i

T i

∑i

PT 1 i PT 0 i

T i

116 Applied Epidemiology Using R

Var IDMH =
∑i

PT 1 i PT 0 i

T i

2

ai

PT 1 i
2

bi

PT 0 i
2

∑i

PT 1 i PT 0 i

T i

2

Incidence rate ratio

IRMH=
∑i

ai PT 0 i

T i

∑i

bi PT 1 i

T i

Var [log ORMH]=
∑i

M 1 i PT 1 i PT 0 i

T i

2

∑i

ai PT 0 i

T i
∑i

bi PT 1 i

T i

6.3 Case control studies

Odds ratio

ORMH=
∑i

ai d i

T i

∑i

bi ci

T i

Var [log IRMH]=
∑i

Gi Pi

2∑i
Gi

2
∑i

Gi QiH i Pi

2∑i
Gi∑i

H i

∑i

H i Qi

2∑i
H i

2

where

Gi=
ai d i

T i
, H i=

bi ci

T i
, Pi=

aid i

T i
,Qi=

bici

T i

7 Using regression methods

7.1 Introduction

7.2 Unconditional logistic regression

7.3 Conditional logistic regression

7.4 Cox proportional hazards regression

8 Graphing basic epidemiologic data

8.1 Graphs

Arithmetic-scale line graphs

year <- 1950:2001

rate per 1000

cases <- c(319000, 530000, 683000, 449000, 683000, 555000, 612000,
487000, 763000, 406000, 442000, 424000, 482000, 385000, 458000,
262000, 204000, 63000, 22000, 26000, 47351, 75290, 32275,
26690, 22094, 24374, 41126, 57345, 26871, 13597, 13506, 3124,
1714, 1497, 2587, 2822, 6282, 3655, 3396, 18193, 27786, 9643,
2237, 312, 963, 309, 508, 138, 100, 100, 86, 116)

plot(year, cases/1000, type='l', xlim=c(1950, 2001), ylim=c(0,1000),

Figure 6 Example of arithmetic-scale line graph

120 Applied Epidemiology Using R

main='Measles (rubeola) by year of report, United States, 1950-
2001', xlab='Year', ylab='Reported Cases (x 1000)', xaxs='i',
yaxs='i', axes=F)

box(bty='l')

axis(1, at=year, labels=F, tick=T)

axis(1, at=seq(1950, 2000, 5), labels=seq(1950, 2000, 5), tick=T,
tcl=-1)

axis(2, at=seq(0, 1000, 100), labels=seq(0, 1000, 100), las=2,
tick=T)

arrows(1963, 660, 1963, 400, length=.15, angle=10)

text(1963, 700, 'Vaccine\nLicensed')

Semi-logarithmic-scale line graphs

Figure 7 Example of semi-logarithmic-scale line graph

8 Graphing basic epidemiologic data 121

year <- 1950:2001

cases <- c(319000, 530000, 683000, 449000, 683000, 555000, 612000,
487000, 763000, 406000, 442000, 424000, 482000, 385000, 458000,
262000, 204000, 63000, 22000, 26000, 47351, 75290, 32275,
26690, 22094, 24374, 41126, 57345, 26871, 13597, 13506, 3124,
1714, 1497, 2587, 2822, 6282, 3655, 3396, 18193, 27786, 9643,
2237, 312, 963, 309, 508, 138, 100, 100, 86, 116)

par(omi=c(0,.5,0,0))

plot(year, cases, type='l', log='y', xlim=c(1950, 2001), ylim=c(1,
1000000), main='Measles (rubeola) by year of report, United
States, 1950-2001', xlab='Year', ylab='', xaxs='i', yaxs='i',
axes = FALSE)

box(bty='l')

axis(1, at=year, labels=FALSE, tick=T)

axis(1, at=seq(1950, 2000, 5), labels=seq(1950, 2000, 5), tick=T,
tcl=-1)

axis(2, at=c(seq(1, 10, 1), seq(10, 100, 10), seq(100, 1000, 100),
seq(1000, 10000, 1000), seq(10000, 100000, 10000), seq(100000,
1000000, 100000)), labels=FALSE, tick=TRUE)

axis(2, at=c(1, 5, 10, 50, 100, 500, 1000, 5000, 10000, 50000,
100000, 500000, 1000000), labels=c('1', '5', '10', '50', '100',
'500', '1,000', '5,000', '10,000', '50,000', '100,000',
'500,000', '1,000,000'), las=2, tick=T, tcl=-.75)

arrows(1963, 700000, 1963, 450000, length=.15, angle=10)

text(1963, 900000, 'Vaccine Licensed (1963)', cex=.75)

mtext(text='Reported Cases', side=2, line=5)

par(op)

Histograms

The hist function

> args(hist.default)

function (x, breaks = "Sturges", freq = NULL, probability = !freq,

 include.lowest = TRUE, right = TRUE, density = NULL, angle = 45,

 col = NULL, border = NULL, main = paste("Histogram of", xname),

 xlim = range(breaks), ylim = NULL, xlab = xname, ylab, axes =
TRUE,

 plot = TRUE, labels = FALSE, nclass = NULL, ...)

NULL

122 Applied Epidemiology Using R

wcgs <- read.table('http://www.ucbcidp.org/data/wcgsdata.csv',
header=TRUE, sep=',')

hist(wcgs$chol)

Figure 8 Example of semi-logarithmic-scale line graph

8 Graphing basic epidemiologic data 123

Frequency polygons

Cumulative frequency and survival curves

Scatter diagrams

8.2 Charts

Bar charts

Groups bar charts

Deviation bar charts

Proportional component bar charts

Pie charts

Dot plots and box plots

Maps

8.3 Miscellaneous
locator
identify

8 Graphing basic epidemiologic data 125

Appendix A Data sets

Data sets in R

Western Collaborative Group Study
http://www.medepi.net/data/wcgsdata.csv

http://www.crcpress.com/e_products/downloads/

8 Graphing basic epidemiologic data 127

Appendix B Regular Expressions as used in R

Description
This help page documents the regular expression patterns supported by grep and related
functions regexpr, sub and gsub, as well as by strsplit.

This is preliminary documentation.

Details
A ‘regular expression’ is a pattern that describes a set of strings. Three types of regular
expressions are used in R, extended regular expressions, used by grep(extended = TRUE) (its
default), basic regular expressions, as used by grep(extended = FALSE), and Perl-like regular
expressions used by grep(perl = TRUE).

Other functions which use regular expressions (often via the use of grep) include apropos,
browseEnv, help.search, list.files, ls and strsplit. These will all use extended regular expressions,
unless strsplit is called with argument extended = FALSE.

Patterns are described here as they would be printed by cat: do remember that backslashes need
to be doubled in entering R character strings from the keyboard.

Extended Regular Expressions
This section covers the regular expressions allowed if extended = TRUE in grep, regexpr, sub,
gsub and strsplit. They use the GNU implementation of the POSIX 1003.2 standard.

Regular expressions are constructed analogously to arithmetic expressions, by using various
operators to combine smaller expressions.

The fundamental building blocks are the regular expressions that match a single character. Most
characters, including all letters and digits, are regular expressions that match themselves. Any
metacharacter with special meaning may be quoted by preceding it with a backslash. The
metacharacters are . \ | () [{ ^ $ * + ?.

A character class is a list of characters enclosed by [and] matches any single character in that
list; if the first character of the list is the caret ^, then it matches any character not in the list. For
example, the regular expression [0123456789] matches any single digit, and [^abc] matches
anything except the characters a, b or c. A range of characters may be specified by giving the
first and last characters, separated by a hyphen. (Character ranges are interpreted in the collation
order of the current locale.)

Certain named classes of characters are predefined. Their interpretation depends on the locale
(see locales); the interpretation below is that of the POSIX locale.

[:alnum:] Alphanumeric characters: [:alpha:] and [:digit:].

[:alpha:] Alphabetic characters: [:lower:] and [:upper:].

[:blank:] Blank characters: space and tab.

128 Applied Epidemiology Using R

[:cntrl:] Control characters. In ASCII, these characters have octal codes 000 through 037, and
177 (DEL). In another character set, these are the equivalent characters, if any.

[:digit:] Digits: 0 1 2 3 4 5 6 7 8 9.

[:graph:] Graphical characters: [:alnum:] and [:punct:].

[:lower:] Lower-case letters in the current locale.

[:print:] Printable characters: [:alnum:], [:punct:] and space.

[:punct:] Punctuation characters: ! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~.

[:space:] Space characters: tab, newline, vertical tab, form feed, carriage return, and space.

[:upper:] Upper-case letters in the current locale.

[:xdigit:] Hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f.

For example, [[:alnum:]] means [0-9A-Za-z], except the latter depends upon the locale and the
character encoding, whereas the former is independent of locale and character set. (Note that the
brackets in these class names are part of the symbolic names, and must be included in addition to
the brackets delimiting the bracket list.) Most metacharacters lose their special meaning inside
lists. To include a literal], place it first in the list. Similarly, to include a literal ^, place it
anywhere but first. Finally, to include a literal -, place it first or last. (Only these and \ remain
special inside character classes.)

The period . matches any single character. The symbol \w is documented to be synonym for
[[:alnum:]] and \W is its negation. However, \w also matches underscore in the GNU grep code
used in R.

The caret ^ and the dollar sign $ are metacharacters that respectively match the empty string at
the beginning and end of a line. The symbols \< and \> respectively match the empty string at the
beginning and end of a word. The symbol \b matches the empty string at the edge of a word, and
\B matches the empty string provided it is not at the edge of a word.

A regular expression may be followed by one of several repetition quantifiers:
? The preceding item is optional and will be matched at most once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

{n} The preceding item is matched exactly n times.

{n,} The preceding item is matched n or more times.

{n,m} The preceding item is matched at least n times, but not more than m times.

Repetition is greedy, so the maximal possible number of repeats is used.

Two regular expressions may be concatenated; the resulting regular expression matches any
string formed by concatenating two substrings that respectively match the concatenated
subexpressions.

Two regular expressions may be joined by the infix operator |; the resulting regular expression
matches any string matching either subexpression. For example, abba|cde matches either the
string abba or the string cde. Note that alternation does not work inside character classes, where |
has its literal meaning.

8 Graphing basic epidemiologic data 129

Repetition takes precedence over concatenation, which in turn takes precedence over alternation.
A whole subexpression may be enclosed in parentheses to override these precedence rules.

The backreference \N, where N is a single digit, matches the substring previously matched by the
Nth parenthesized subexpression of the regular expression.

The current code attempts to support traditional usage by assuming that { is not special if it
would be the start of an invalid interval specification. (POSIX allows this behaviour as an
extension but we advise users not to rely on it.)

Basic Regular Expressions
This section covers the regular expressions allowed if extended = FALSE in grep, regexpr, sub,
gsub and strsplit.

In basic regular expressions the metacharacters ?, +, {, |, (, and) lose their special meaning;
instead use the backslashed versions \?, \+, \ {, \|, \(, and \). Thus the metacharacters are . \ [^ $ *.

Perl Regular Expressions
The perl = TRUE argument to grep, regexpr, sub and gsub switches to the PCRE library that
implements regular expression pattern matching using the same syntax and semantics as Perl 5,
with just a few differences. Character tables created in the C locale at compile time are used in
this version, but locale-specific tables will be used in later versions of R.

For complete details please consult the man pages for PCRE (especially man pcrepattern or if
that does not exist, man pcre) on your system or from the sources at
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/. If PCRE support was compiled from the
sources within R, the PCRE version is 3.9 as described here: PCRE >= 4.0 supports more of the
Perl regular expressions.

All the regular expressions described for extended regular expressions are accepted except \< and
\>: in Perl all backslashed metacharacters are alphanumeric and backslashed symbols always are
interpreted as a literal character. { is not special if it would be the start of an invalid interval
specification. There can be more than 9 backreferences.

The construct (?...) is used for Perl extensions in a variety of ways depending on what
immediately follows the ?.

Perl-like matching can work in several modes, set by the options (?i) (caseless, equivalent to
Perl's /i), (?m) (multiline, equivalent to Perl's /m), (?s) (single line, so a dot matches all
characters, even new lines: equivalent to Perl's /s) and (?x) (extended, whitespace data characters
are ignored unless escaped and comments are allowed: equivalent to Perl's /x). These can be
concatenated, so for example, (?im) sets caseless multiline matching. It is also possible to unset
these options by preceding the letter with a hyphen, and to combine setting and unsetting such as
(?im-sx). These settings can be applied within patterns, and then apply to the remainder of the
pattern. Additional options not in Perl include (?U) to set ‘ungreedy’ mode (so matching is
minimal unless ? is used, when it is greedy). Initially none of these options are set.

The escape sequences \d, \s and \w represent any decimal digit, space character and and ‘word’
character (letter, digit or underscore in the current locale) respectively, and their upper-case
versions represent their negation. In PCRE 3.9 the vertical tab is not regarded as a whitespace
character, but it is in PCRE >= 4.0. (Perl itself changed around version 5.004.)

Escape sequence \a is BEL, \e is ESC, \f is FF, \n is LF, \r is CR and \t is TAB. In addition \cx is

130 Applied Epidemiology Using R

cntrl-x for any x, \ddd is the octal character ddd (for up to three digits unless interpretable as a
backreference), and \xhh specifies a character in hex.

Outside a character class, \b matches a word boundary, \B is its negation, \A matches at start of
subject (even in multiline mode, unlike ^), \Z matches at end of a subject or before newline at
end, \z matches at end of a subject. and \G matches at first matching position in a subject. \C
matches a single byte. including a newline.

The same repetition quantifiers as extended POSIX are supported. However, if a quantifier is
followed by ?, the match is ‘ungreedy’, that is as short as possible rather than as long as possible
(unless the meanings are reversed by the (?U) option.)

The sequence (?# marks the start of a comment which continues up to the next closing
parenthesis. Nested parentheses are not permitted. The characters that make up a comment play
no part at all in the pattern matching.

If the extended option is set, an unescaped # character outside a character class introduces a
comment that continues up to the next newline character in the pattern.

The pattern (?:...) groups characters just as parentheses do but does not make a backreference.

Patterns (?=...) and (?!...) are zero-width positive and negative lookahead assertions: they match
if an attempt to match the ... forward from the current position would succeed (or not), but use up
no characters in the string being processed. Patterns (?<=...) and (?<!...) are the lookbehind
equivalents: they do not allow repetition quantifiers nor \C in

Named subpatterns, atomic grouping, possessive qualifiers and conditional and recursive patterns
are not covered here.

Author(s)
This help page is based on the documentation of GNU grep 2.4.2, from which the C code used by
R has been taken, the pcre man page from PCRE 3.9 and the pcrepattern man page from PCRE
4.4.

See Also
grep, apropos, browseEnv, help.search, list.files, ls and strsplit.

