
http://www.cambridge.org/9780521866736


Principles of Statistical Inference

In this important book, D. R. Cox develops the key concepts of the theory of statistical
inference, in particular describing and comparing the main ideas and controversies
over foundational issues that have rumbled on for more than 200 years. Continuing a
60-year career of contribution to statistical thought, Professor Cox is ideally placed to
give the comprehensive, balanced account of the field that is now needed.

The careful comparison of frequentist and Bayesian approaches to inference allows
readers to form their own opinion of the advantages and disadvantages. Two
appendices give a brief historical overview and the author’s more personal assessment
of the merits of different ideas.

The content ranges from the traditional to the contemporary. While specific
applications are not treated, the book is strongly motivated by applications across the
sciences and associated technologies. The underlying mathematics is kept as
elementary as feasible, though some previous knowledge of statistics is assumed. This
book is for every serious user or student of statistics – in particular, for anyone wanting
to understand the uncertainty inherent in conclusions from statistical analyses.





Principles of Statistical Inference

D.R. COX

Nuffield College, Oxford



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-86673-6

ISBN-13 978-0-511-34950-8

© D. R. Cox 2006

2006

Information on this title: www.cambridge.org/9780521866736

This publication is in copyright. Subject to statutory exception and to the provision of 
relevant collective licensing agreements, no reproduction of any part may take place 
without the written permission of Cambridge University Press.

ISBN-10    0-511-34950-5

ISBN-10    0-521-86673-1

Cambridge University Press has no responsibility for the persistence or accuracy of urls 
for external or third-party internet websites referred to in this publication, and does not 
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521866736


Contents

List of examples ix
Preface xiii

1 Preliminaries 1
Summary 1
1.1 Starting point 1
1.2 Role of formal theory of inference 3
1.3 Some simple models 3
1.4 Formulation of objectives 7
1.5 Two broad approaches to statistical inference 7
1.6 Some further discussion 10
1.7 Parameters 13
Notes 1 14

2 Some concepts and simple applications 17
Summary 17
2.1 Likelihood 17
2.2 Sufficiency 18
2.3 Exponential family 20
2.4 Choice of priors for exponential family problems 23
2.5 Simple frequentist discussion 24
2.6 Pivots 25
Notes 2 27

3 Significance tests 30
Summary 30
3.1 General remarks 30
3.2 Simple significance test 31
3.3 One- and two-sided tests 35



vi Contents

3.4 Relation with acceptance and rejection 36
3.5 Formulation of alternatives and test statistics 36
3.6 Relation with interval estimation 40
3.7 Interpretation of significance tests 41
3.8 Bayesian testing 42
Notes 3 43

4 More complicated situations 45
Summary 45
4.1 General remarks 45
4.2 General Bayesian formulation 45
4.3 Frequentist analysis 47
4.4 Some more general frequentist developments 50
4.5 Some further Bayesian examples 59
Notes 4 62

5 Interpretations of uncertainty 64
Summary 64
5.1 General remarks 64
5.2 Broad roles of probability 65
5.3 Frequentist interpretation of upper limits 66
5.4 Neyman–Pearson operational criteria 68
5.5 Some general aspects of the frequentist approach 68
5.6 Yet more on the frequentist approach 69
5.7 Personalistic probability 71
5.8 Impersonal degree of belief 73
5.9 Reference priors 76
5.10 Temporal coherency 78
5.11 Degree of belief and frequency 79
5.12 Statistical implementation of Bayesian analysis 79
5.13 Model uncertainty 84
5.14 Consistency of data and prior 85
5.15 Relevance of frequentist assessment 85
5.16 Sequential stopping 88
5.17 A simple classification problem 91
Notes 5 93

6 Asymptotic theory 96
Summary 96
6.1 General remarks 96
6.2 Scalar parameter 97



Contents vii

6.3 Multidimensional parameter 107
6.4 Nuisance parameters 109
6.5 Tests and model reduction 114
6.6 Comparative discussion 117
6.7 Profile likelihood as an information summarizer 119
6.8 Constrained estimation 120
6.9 Semi-asymptotic arguments 124
6.10 Numerical-analytic aspects 125
6.11 Higher-order asymptotics 128
Notes 6 130

7 Further aspects of maximum likelihood 133
Summary 133
7.1 Multimodal likelihoods 133
7.2 Irregular form 135
7.3 Singular information matrix 139
7.4 Failure of model 141
7.5 Unusual parameter space 142
7.6 Modified likelihoods 144
Notes 7 159

8 Additional objectives 161
Summary 161
8.1 Prediction 161
8.2 Decision analysis 162
8.3 Point estimation 163
8.4 Non-likelihood-based methods 169
Notes 8 175

9 Randomization-based analysis 178
Summary 178
9.1 General remarks 178
9.2 Sampling a finite population 179
9.3 Design of experiments 184
Notes 9 192

Appendix A: A brief history 194

Appendix B: A personal view 197

References 201

Author index 209

Subject index 213





List of examples

Example 1.1 The normal mean 3
Example 1.2 Linear regression 4
Example 1.3 Linear regression in semiparametric form 4
Example 1.4 Linear model 4
Example 1.5 Normal theory nonlinear regression 4
Example 1.6 Exponential distribution 5
Example 1.7 Comparison of binomial probabilities 5
Example 1.8 Location and related problems 5
Example 1.9 A component of variance model 11
Example 1.10 Markov models 12

Example 2.1 Exponential distribution (ctd) 19
Example 2.2 Linear model (ctd) 19
Example 2.3 Uniform distribution 20
Example 2.4 Binary fission 20
Example 2.5 Binomial distribution 21
Example 2.6 Fisher’s hyperbola 22
Example 2.7 Binary fission (ctd) 23
Example 2.8 Binomial distribution (ctd) 23
Example 2.9 Mean of a multivariate normal distribution 27

Example 3.1 Test of a Poisson mean 32
Example 3.2 Adequacy of Poisson model 33
Example 3.3 More on the Poisson distribution 34
Example 3.4 Test of symmetry 38
Example 3.5 Nonparametric two-sample test 39
Example 3.6 Ratio of normal means 40
Example 3.7 Poisson-distributed signal with additive noise 41

ix



x List of examples

Example 4.1 Uniform distribution of known range 47
Example 4.2 Two measuring instruments 48
Example 4.3 Linear model 49
Example 4.4 Two-by-two contingency table 51
Example 4.5 Mantel–Haenszel procedure 54
Example 4.6 Simple regression for binary data 55
Example 4.7 Normal mean, variance unknown 56
Example 4.8 Comparison of gamma distributions 56
Example 4.9 Unacceptable conditioning 56
Example 4.10 Location model 57
Example 4.11 Normal mean, variance unknown (ctd) 59
Example 4.12 Normal variance 59
Example 4.13 Normal mean, variance unknown (ctd ) 60
Example 4.14 Components of variance 61

Example 5.1 Exchange paradox 67
Example 5.2 Two measuring instruments (ctd) 68
Example 5.3 Rainy days in Gothenburg 70
Example 5.4 The normal mean (ctd) 71
Example 5.5 The noncentral chi-squared distribution 74
Example 5.6 A set of binomial probabilities 74
Example 5.7 Exponential regression 75
Example 5.8 Components of variance (ctd) 80
Example 5.9 Bias assessment 82
Example 5.10 Selective reporting 86
Example 5.11 Precision-based choice of sample size 89
Example 5.12 Sampling the Poisson process 90
Example 5.13 Multivariate normal distributions 92

Example 6.1 Location model (ctd) 98
Example 6.2 Exponential family 98
Example 6.3 Transformation to near location form 99
Example 6.4 Mixed parameterization of the exponential family 112
Example 6.5 Proportional hazards Weibull model 113
Example 6.6 A right-censored normal distribution 118
Example 6.7 Random walk with an absorbing barrier 119
Example 6.8 Curved exponential family model 121
Example 6.9 Covariance selection model 123
Example 6.10 Poisson-distributed signal with estimated background 124

Example 7.1 An unbounded likelihood 134
Example 7.2 Uniform distribution 135
Example 7.3 Densities with power-law contact 136
Example 7.4 Model of hidden periodicity 138



List of examples xi

Example 7.5 A special nonlinear regression 139
Example 7.6 Informative nonresponse 140
Example 7.7 Integer normal mean 143
Example 7.8 Mixture of two normal distributions 144
Example 7.9 Normal-theory linear model with many parameters 145
Example 7.10 A non-normal illustration 146
Example 7.11 Parametric model for right-censored failure data 149
Example 7.12 A fairly general stochastic process 151
Example 7.13 Semiparametric model for censored failure data 151
Example 7.14 Lag one correlation of a stationary Gaussian time series 153
Example 7.15 A long binary sequence 153
Example 7.16 Case-control study 154

Example 8.1 A new observation from a normal distribution 162
Example 8.2 Exponential family 165
Example 8.3 Correlation between different estimates 165
Example 8.4 The sign test 166
Example 8.5 Unbiased estimate of standard deviation 167
Example 8.6 Summarization of binary risk comparisons 171
Example 8.7 Brownian motion 174

Example 9.1 Two-by-two contingency table 190





Preface

Most statistical work is concerned directly with the provision and implementa-
tion of methods for study design and for the analysis and interpretation of data.
The theory of statistics deals in principle with the general concepts underlying
all aspects of such work and from this perspective the formal theory of statistical
inference is but a part of that full theory. Indeed, from the viewpoint of indi-
vidual applications, it may seem rather a small part. Concern is likely to be more
concentrated on whether models have been reasonably formulated to address
the most fruitful questions, on whether the data are subject to unappreciated
errors or contamination and, especially, on the subject-matter interpretation of
the analysis and its relation with other knowledge of the field.

Yet the formal theory is important for a number of reasons. Without some
systematic structure statistical methods for the analysis of data become a col-
lection of tricks that are hard to assimilate and interrelate to one another, or
for that matter to teach. The development of new methods appropriate for new
problems would become entirely a matter of ad hoc ingenuity. Of course such
ingenuity is not to be undervalued and indeed one role of theory is to assimilate,
generalize and perhaps modify and improve the fruits of such ingenuity.

Much of the theory is concerned with indicating the uncertainty involved in
the conclusions of statistical analyses, and with assessing the relative merits of
different methods of analysis, and it is important even at a very applied level to
have some understanding of the strengths and limitations of such discussions.
This is connected with somewhat more philosophical issues connected with
the nature of probability. A final reason, and a very good one, for study of the
theory is that it is interesting.

The object of the present book is to set out as compactly as possible the
key ideas of the subject, in particular aiming to describe and compare the main
ideas and controversies over more foundational issues that have rumbled on at
varying levels of intensity for more than 200 years. I have tried to describe the

xiii



xiv Preface

various approaches in a dispassionate way but have added an appendix with a
more personal assessment of the merits of different ideas.

Some previous knowledge of statistics is assumed and preferably some
understanding of the role of statistical methods in applications; the latter
understanding is important because many of the considerations involved are
essentially conceptual rather than mathematical and relevant experience is
necessary to appreciate what is involved.

The mathematical level has been kept as elementary as is feasible and is
mostly that, for example, of a university undergraduate education in mathem-
atics or, for example, physics or engineering or one of the more quantitative
biological sciences. Further, as I think is appropriate for an introductory discus-
sion of an essentially applied field, the mathematical style used here eschews
specification of regularity conditions and theorem–proof style developments.
Readers primarily interested in the qualitative concepts rather than their devel-
opment should not spend too long on the more mathematical parts of the
book.

The discussion is implicitly strongly motivated by the demands of applic-
ations, and indeed it can be claimed that virtually everything in the book has
fruitful application somewhere across the many fields of study to which stat-
istical ideas are applied. Nevertheless I have not included specific illustrations.
This is partly to keep the book reasonably short, but, more importantly, to focus
the discussion on general concepts without the distracting detail of specific
applications, details which, however, are likely to be crucial for any kind of
realism.

The subject has an enormous literature and to avoid overburdening the reader
I have given, by notes at the end of each chapter, only a limited number of key
references based on an admittedly selective judgement. Some of the references
are intended to give an introduction to recent work whereas others point towards
the history of a theme; sometimes early papers remain a useful introduction to
a topic, especially to those that have become suffocated with detail. A brief
historical perspective is given as an appendix.

The book is a much expanded version of lectures given to doctoral students of
the Institute of Mathematics, Chalmers/Gothenburg University, and I am very
grateful to Peter Jagers and Nanny Wermuth for their invitation and encourage-
ment. It is a pleasure to thank Ruth Keogh, Nancy Reid and Rolf Sundberg for
their very thoughtful detailed and constructive comments and advice on a pre-
liminary version. It is a pleasure to thank also Anthony Edwards and Deborah
Mayo for advice on more specific points. I am solely responsible for errors of
fact and judgement that remain.



Preface xv

The book is in broadly three parts. The first three chapters are largely intro-
ductory, setting out the formulation of problems, outlining in a simple case
the nature of frequentist and Bayesian analyses, and describing some special
models of theoretical and practical importance. The discussion continues with
the key ideas of likelihood, sufficiency and exponential families.

Chapter 4 develops some slightly more complicated applications. The long
Chapter 5 is more conceptual, dealing, in particular, with the various meanings
of probability as it is used in discussions of statistical inference. Most of the key
concepts are in these chapters; the remaining chapters, especially Chapters 7
and 8, are more specialized.

Especially in the frequentist approach, many problems of realistic complexity
require approximate methods based on asymptotic theory for their resolution
and Chapter 6 sets out the main ideas. Chapters 7 and 8 discuss various com-
plications and developments that are needed from time to time in applications.
Chapter 9 deals with something almost completely different, the possibil-
ity of inference based not on a probability model for the data but rather on
randomization used in the design of the experiment or sampling procedure.

I have written and talked about these issues for more years than it is com-
fortable to recall and am grateful to all with whom I have discussed the topics,
especially, perhaps, to those with whom I disagree. I am grateful particularly
to David Hinkley with whom I wrote an account of the subject 30 years ago.
The emphasis in the present book is less on detail and more on concepts but the
eclectic position of the earlier book has been kept.

I appreciate greatly the care devoted to this book by Diana Gillooly, Com-
missioning Editor, and Emma Pearce, Production Editor, Cambridge University
Press.
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Preliminaries

Summary. Key ideas about probability models and the objectives of statist-
ical analysis are introduced. The differences between frequentist and Bayesian
analyses are illustrated in a very special case. Some slightly more complicated
models are introduced as reference points for the following discussion.

1.1 Starting point

We typically start with a subject-matter question. Data are or become available
to address this question. After preliminary screening, checks of data quality and
simple tabulations and graphs, more formal analysis starts with a provisional
model. The data are typically split in two parts (y : z), where y is regarded as the
observed value of a vector random variable Y and z is treated as fixed. Sometimes
the components of y are direct measurements of relevant properties on study
individuals and sometimes they are themselves the outcome of some preliminary
analysis, such as means, measures of variability, regression coefficients and so
on. The set of variables z typically specifies aspects of the system under study
that are best treated as purely explanatory and whose observed values are not
usefully represented by random variables. That is, we are interested solely in the
distribution of outcome or response variables conditionally on the variables z; a
particular example is where z represents treatments in a randomized experiment.

We use throughout the notation that observable random variables are rep-
resented by capital letters and observations by the corresponding lower case
letters.

A model, or strictly a family of models, specifies the density of Y to be

fY (y : z; θ), (1.1)

1



2 Preliminaries

where θ ⊂ �θ is unknown. The distribution may depend also on design fea-
tures of the study that generated the data. We typically simplify the notation to
fY (y; θ), although the explanatory variables z are frequently essential in specific
applications.

To choose the model appropriately is crucial to fruitful application.
We follow the very convenient, although deplorable, practice of using the term

density both for continuous random variables and for the probability function
of discrete random variables. The deplorability comes from the functions being
dimensionally different, probabilities per unit of measurement in continuous
problems and pure numbers in discrete problems. In line with this convention
in what follows integrals are to be interpreted as sums where necessary. Thus
we write

E(Y) = E(Y ; θ) =
∫

y fY (y; θ)dy (1.2)

for the expectation of Y , showing the dependence on θ only when relevant. The
integral is interpreted as a sum over the points of support in a purely discrete case.
Next, for each aspect of the research question we partition θ as (ψ , λ), whereψ
is called the parameter of interest and λ is included to complete the specification
and commonly called a nuisance parameter. Usually, but not necessarily,ψ and
λ are variation independent in that�θ is the Cartesian product�ψ ×�λ. That
is, any value of ψ may occur in connection with any value of λ. The choice of
ψ is a subject-matter question. In many applications it is best to arrange that ψ
is a scalar parameter, i.e., to break the research question of interest into simple
components corresponding to strongly focused and incisive research questions,
but this is not necessary for the theoretical discussion.

It is often helpful to distinguish between the primary features of a model
and the secondary features. If the former are changed the research questions of
interest have either been changed or at least formulated in an importantly differ-
ent way, whereas if the secondary features are changed the research questions
are essentially unaltered. This does not mean that the secondary features are
unimportant but rather that their influence is typically on the method of estima-
tion to be used and on the assessment of precision, whereas misformulation of
the primary features leads to the wrong question being addressed.

We concentrate on problems where �θ is a subset of Rd , i.e., d-dimensional
real space. These are so-called fully parametric problems. Other possibilities
are to have semiparametric problems or fully nonparametric problems. These
typically involve fewer assumptions of structure and distributional form but
usually contain strong assumptions about independencies. To an appreciable
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extent the formal theory of semiparametric models aims to parallel that of
parametric models.

The probability model and the choice ofψ serve to translate a subject-matter
question into a mathematical and statistical one and clearly the faithfulness of
the translation is crucial. To check on the appropriateness of a new type of model
to represent a data-generating process it is sometimes helpful to consider how
the model could be used to generate synthetic data. This is especially the case
for stochastic process models. Understanding of new or unfamiliar models can
be obtained both by mathematical analysis and by simulation, exploiting the
power of modern computational techniques to assess the kind of data generated
by a specific kind of model.

1.2 Role of formal theory of inference

The formal theory of inference initially takes the family of models as given and
the objective as being to answer questions about the model in the light of the
data. Choice of the family of models is, as already remarked, obviously crucial
but outside the scope of the present discussion. More than one choice may be
needed to answer different questions.

A second and complementary phase of the theory concerns what is sometimes
called model criticism, addressing whether the data suggest minor or major
modification of the model or in extreme cases whether the whole focus of
the analysis should be changed. While model criticism is often done rather
informally in practice, it is important for any formal theory of inference that it
embraces the issues involved in such checking.

1.3 Some simple models

General notation is often not best suited to special cases and so we use more
conventional notation where appropriate.

Example 1.1. The normal mean. Whenever it is required to illustrate some
point in simplest form it is almost inevitable to return to the most hackneyed
of examples, which is therefore given first. Suppose that Y1, . . . , Yn are inde-
pendently normally distributed with unknown mean µ and known variance σ 2

0 .
Here µ plays the role of the unknown parameter θ in the general formulation.
In one of many possible generalizations, the variance σ 2 also is unknown. The
parameter vector is then (µ, σ 2). The component of interestψ would often beµ
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but could be, for example, σ 2 orµ/σ , depending on the focus of subject-matter
interest.

Example 1.2. Linear regression. Here the data are n pairs (y1, z1), . . . , (yn, zn)

and the model is that Y1, . . . , Yn are independently normally distributed with
variance σ 2 and with

E(Yk) = α + βzk . (1.3)

Here typically, but not necessarily, the parameter of interest is ψ = β and the
nuisance parameter isλ = (α, σ 2). Other possible parameters of interest include
the intercept at z = 0, namely α, and −α/β, the intercept of the regression line
on the z-axis.

Example 1.3. Linear regression in semiparametric form. In Example 1.2
replace the assumption of normality by an assumption that the Yk are uncorrel-
ated with constant variance. This is semiparametric in that the systematic part
of the variation, the linear dependence on zk , is specified parametrically and the
random part is specified only via its covariance matrix, leaving the functional
form of its distribution open. A complementary form would leave the system-
atic part of the variation a largely arbitrary function and specify the distribution
of error parametrically, possibly of the same normal form as in Example 1.2.
This would lead to a discussion of smoothing techniques.

Example 1.4. Linear model. We have an n × 1 vector Y and an n × q matrix z
of fixed constants such that

E(Y) = zβ, cov(Y) = σ 2I , (1.4)

where β is a q × 1 vector of unknown parameters, I is the n × n identity
matrix and with, in the analogue of Example 1.2, the components independently
normally distributed. Here z is, in initial discussion at least, assumed of full
rank q < n. A relatively simple but important generalization has cov(Y) =
σ 2V , where V is a given positive definite matrix. There is a corresponding
semiparametric version generalizing Example 1.3.

Both Examples 1.1 and 1.2 are special cases, in the former the matrix z
consisting of a column of 1s.

Example 1.5. Normal-theory nonlinear regression. Of the many generaliza-
tions of Examples 1.2 and 1.4, one important possibility is that the dependence
on the parameters specifying the systematic part of the structure is nonlinear.
For example, instead of the linear regression of Example 1.2 we might wish to
consider

E(Yk) = α + β exp(γ zk), (1.5)
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where from the viewpoint of statistical theory the important nonlinearity is not
in the dependence on the variable z but rather that on the parameter γ .

More generally the equation E(Y) = zβ in (1.4) may be replaced by

E(Y) = µ(β), (1.6)

where the n × 1 vector µ(β) is in general a nonlinear function of the unknown
parameter β and also of the explanatory variables.

Example 1.6. Exponential distribution. Here the data are (y1, . . . , yn) and the
model takes Y1, . . . , Yn to be independently exponentially distributed with dens-
ity ρe−ρy, for y > 0, where ρ > 0 is an unknown rate parameter. Note that
possible parameters of interest are ρ, log ρ and 1/ρ and the issue will arise of
possible invariance or equivariance of the inference under reparameterization,
i.e., shifts from, say, ρ to 1/ρ. The observations might be intervals between
successive points in a Poisson process of rate ρ. The interpretation of 1/ρ is
then as a mean interval between successive points in the Poisson process. The
use of log ρ would be natural were ρ to be decomposed into a product of effects
of different explanatory variables and in particular if the ratio of two rates were
of interest.

Example 1.7. Comparison of binomial probabilities. Suppose that the data are
(r0, n0) and (r1, n1), where rk denotes the number of successes in nk binary trials
under condition k. The simplest model is that the trials are mutually independent
with probabilities of success π0 and π1. Then the random variables R0 and R1

have independent binomial distributions. We want to compare the probabilities
and for this may take various forms for the parameter of interest, for example

ψ = log{π1/(1 − π1)} − log{π0/(1 − π0)}, or ψ = π1 − π0, (1.7)

and so on. For many purposes it is immaterial how we define the complementary
parameter λ. Interest in the nonlinear function log{π/(1 − π)} of a probability
π stems partly from the interpretation as a log odds, partly because it maps the
parameter space (0, 1) onto the real line and partly from the simplicity of some
resulting mathematical models of more complicated dependences, for example
on a number of explanatory variables.

Example 1.8. Location and related problems. A different generalization of
Example 1.1 is to suppose that Y1, . . . , Yn are independently distributed all with
the density g(y − µ), where g(y) is a given probability density. We call µ
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a location parameter; often it may by convention be taken to be the mean or
median of the density.

A further generalization is to densities of the form τ−1g{(y−µ)/τ }, where τ
is a positive parameter called a scale parameter and the family of distributions
is called a location and scale family.

Central to the general discussion of such models is the notion of a family of
transformations of the underlying random variable and the parameters. In the
location and scale family if Yk is transformed to aYk +b, where a > 0 and b are
arbitrary, then the new random variable has a distribution of the original form
with transformed parameter values

aµ+ b, aτ . (1.8)

The implication for most purposes is that any method of analysis should obey
the same transformation properties. That is, if the limits of uncertainty for say
µ, based on the original data, are centred on ỹ, then the limits of uncertainty for
the corresponding parameter after transformation are centred on aỹ + b.

Typically this represents, in particular, the notion that conclusions should not
depend on the units of measurement. Of course, some care is needed with this
idea. If the observations are temperatures, for some purposes arbitrary changes
of scale and location, i.e., of the nominal zero of temperature, are allowable,
whereas for others recognition of the absolute zero of temperature is essential.
In the latter case only transformations from kelvins to some multiple of kelvins
would be acceptable.

It is sometimes important to distinguish invariance that springs from some
subject-matter convention, such as the choice of units of measurement from
invariance arising out of some mathematical formalism.

The idea underlying the above example can be expressed in much more gen-
eral form involving two groups of transformations, one on the sample space
and one on the parameter space. Data recorded as directions of vectors on a
circle or sphere provide one example. Another example is that some of the
techniques of normal-theory multivariate analysis are invariant under arbitrary
nonsingular linear transformations of the observed vector, whereas other meth-
ods, notably principal component analysis, are invariant only under orthogonal
transformations.

The object of the study of a theory of statistical inference is to provide a
set of ideas that deal systematically with the above relatively simple situations
and, more importantly still, enable us to deal with new models that arise in new
applications.
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1.4 Formulation of objectives

We can, as already noted, formulate possible objectives in two parts as follows.
Part I takes the family of models as given and aims to:

• give intervals or in general sets of values within which ψ is in some sense
likely to lie;

• assess the consistency of the data with a particular parameter value ψ0;
• predict as yet unobserved random variables from the same random system

that generated the data;
• use the data to choose one of a given set of decisions D, requiring the

specification of the consequences of various decisions.

Part II uses the data to examine the family of models via a process of model
criticism. We return to this issue in Section 3.2.

We shall concentrate in this book largely but not entirely on the first two
of the objectives in Part I, interval estimation and measuring consistency with
specified values of ψ .

To an appreciable extent the theory of inference is concerned with general-
izing to a wide class of models two approaches to these issues which will be
outlined in the next section and with a critical assessment of these approaches.

1.5 Two broad approaches to statistical inference

1.5.1 General remarks

Consider the first objective above, that of providing intervals or sets of values
likely in some sense to contain the parameter of interest, ψ .

There are two broad approaches, called frequentist and Bayesian, respect-
ively, both with variants. Alternatively the former approach may be said to be
based on sampling theory and an older term for the latter is that it uses inverse
probability. Much of the rest of the book is concerned with the similarities
and differences between these two approaches. As a prelude to the general
development we show a very simple example of the arguments involved.

We take for illustration Example 1.1, which concerns a normal distribution
with unknown mean µ and known variance. In the formulation probability is
used to model variability as experienced in the phenomenon under study and
its meaning is as a long-run frequency in repetitions, possibly, or indeed often,
hypothetical, of that phenomenon.

What can reasonably be said about µ on the basis of observations y1, . . . , yn

and the assumptions about the model?
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1.5.2 Frequentist discussion

In the first approach we make no further probabilistic assumptions. In partic-
ular we treat µ as an unknown constant. Strong arguments can be produced
for reducing the data to their mean ȳ = �yk/n, which is the observed value
of the corresponding random variable Ȳ . This random variable has under the
assumptions of the model a normal distribution of mean µ and variance σ 2

0 /n,
so that in particular

P(Ȳ > µ− k∗
cσ0/

√
n) = 1 − c, (1.9)

where, with (.) denoting the standard normal integral, (k∗
c ) = 1 − c. For

example with c = 0.025, k∗
c = 1.96. For a sketch of the proof, see Note 1.5.

Thus the statement equivalent to (1.9) that

P(µ < Ȳ + k∗
cσ0/

√
n) = 1 − c, (1.10)

can be interpreted as specifying a hypothetical long run of statements about µ
a proportion 1 − c of which are correct. We have observed the value ȳ of the
random variable Ȳ and the statement

µ < ȳ + k∗
cσ0/

√
n (1.11)

is thus one of this long run of statements, a specified proportion of which are
correct. In the most direct formulation of this µ is fixed and the statements vary
and this distinguishes the statement from a probability distribution forµ. In fact
a similar interpretation holds if the repetitions concern an arbitrary sequence of
fixed values of the mean.

There are a large number of generalizations of this result, many underpinning
standard elementary statistical techniques. For instance, if the variance σ 2 is
unknown and estimated by �(yk − ȳ)2/(n − 1) in (1.9), then k∗

c is replaced
by the corresponding point in the Student t distribution with n − 1 degrees of
freedom.

There is no need to restrict the analysis to a single level c and provided
concordant procedures are used at the different c a formal distribution is built up.

Arguments involving probability only via its (hypothetical) long-run fre-
quency interpretation are called frequentist. That is, we define procedures for
assessing evidence that are calibrated by how they would perform were they
used repeatedly. In that sense they do not differ from other measuring instru-
ments. We intend, of course, that this long-run behaviour is some assurance that
with our particular data currently under analysis sound conclusions are drawn.
This raises important issues of ensuring, as far as is feasible, the relevance of
the long run to the specific instance.
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1.5.3 Bayesian discussion

In the second approach to the problem we treat µ as having a probability dis-
tribution both with and without the data. This raises two questions: what is the
meaning of probability in such a context, some extended or modified notion of
probability usually being involved, and how do we obtain numerical values for
the relevant probabilities? This is discussed further later, especially in Chapter 5.
For the moment we assume some such notion of probability concerned with
measuring uncertainty is available.

If indeed we can treat µ as the realized but unobserved value of a random
variable M, all is in principle straightforward. By Bayes’ theorem, i.e., by simple
laws of probability,

fM|Y (µ | y) = fY |M(y | µ) fM(µ)
/ ∫

fY |M(y | φ) fM(φ)dφ. (1.12)

The left-hand side is called the posterior density of M and of the two terms in the
numerator the first is determined by the model and the other, fM(µ), forms the
prior distribution summarizing information about M not arising from y. Any
method of inference treating the unknown parameter as having a probability
distribution is called Bayesian or, in an older terminology, an argument of
inverse probability. The latter name arises from the inversion of the order of
target and conditioning events as between the model and the posterior density.

The intuitive idea is that in such cases all relevant information about µ is
then contained in the conditional distribution of the parameter given the data,
that this is determined by the elementary formulae of probability theory and
that remaining problems are solely computational.

In our example suppose that the prior for µ is normal with known mean m
and variance v. Then the posterior density for µ is proportional to

exp{−�(yk − µ)2/(2σ 2
0 )− (µ− m)2/(2v)} (1.13)

considered as a function of µ. On completing the square as a function of µ,
there results a normal distribution of mean and variance respectively

ȳ/(σ 2
0 /n)+ m/v

1/(σ 2
0 /n)+ 1/v

, (1.14)

1

1/(σ 2
0 /n)+ 1/v

; (1.15)

for more details of the argument, see Note 1.5. Thus an upper limit forµ satisfied
with posterior probability 1 − c is

ȳ/(σ 2
0 /n)+ m/v

1/(σ 2
0 /n)+ 1/v

+ k∗
c
√ 1

1/(σ 2
0 /n)+ 1/v

. (1.16)
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If v is large compared with σ 2
0 /n and m is not very different from ȳ these

limits agree closely with those obtained by the frequentist method. If there is a
serious discrepancy between ȳ and m this indicates either a flaw in the data or
a misspecification of the prior distribution.

This broad parallel between the two types of analysis is in no way specific
to the normal distribution.

1.6 Some further discussion

We now give some more detailed discussion especially of Example 1.4 and
outline a number of special models that illustrate important issues.

The linear model of Example 1.4 and methods of analysis of it stemming
from the method of least squares are of much direct importance and also are the
base of many generalizations. The central results can be expressed in matrix
form centring on the least squares estimating equations

zT zβ̂ = zT Y , (1.17)

the vector of fitted values

Ŷ = zβ̂, (1.18)

and the residual sum of squares

RSS = (Y − Ŷ)T (Y − Ŷ) = YT Y − β̂T (zT z)β̂. (1.19)

Insight into the form of these results is obtained by noting that were it not
for random error the vector Y would lie in the space spanned by the columns
of z, that Ŷ is the orthogonal projection of Y onto that space, defined thus by

zT (Y − Ŷ) = zT (Y − zβ̂) = 0 (1.20)

and that the residual sum of squares is the squared norm of the component of
Y orthogonal to the columns of z. See Figure 1.1.

There is a fairly direct generalization of these results to the nonlinear regres-
sion model of Example 1.5. Here if there were no error the observations would
lie on the surface defined by the vectorµ(β) as β varies. Orthogonal projection
involves finding the point µ(β̂) closest to Y in the least squares sense, i.e., min-
imizing the sum of squares of deviations {Y −µ(β)}T {Y −µ(β)}. The resulting
equations defining β̂ are best expressed by defining

zT (β) = ∇µT (β), (1.21)

where ∇ is the q × 1 gradient operator with respect to β, i.e., ∇T =
(∂/∂β1, . . . , ∂/∂βq). Thus z(β) is an n × q matrix, reducing to the previous z
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Y

Y − zβ

z2

z1

zβ

Figure 1.1. Linear model. Without random error the vector Y would lie in the
shaded space spanned by the columns z1, z2, . . . of the matrix z. The least squares
estimate β̂ is defined by orthogonal projection of Y onto the space determined by z.
For orthogonality the vector Y − zβ̂ must be orthogonal to the vectors z1, z2, . . ..
Further a Pythogorean identity holds for the squared length YT Y decomposing it
into the residual sum of squares, RSS, and the squared length of the vector of fitted
values.

in the linear case. Just as the columns of z define the linear model, the columns
of z(β) define the tangent space to the model surface evaluated at β. The least
squares estimating equation is thus

zT (β̂){Y − µ(β̂)} = 0. (1.22)

The local linearization implicit in this is valuable for numerical iteration.
One of the simplest special cases arises when E(Yk) = β0 exp(−β1zk) and the
geometry underlying the nonlinear least squares equations is summarized in
Figure 1.2.

The simple examples used here in illustration have one component random
variable attached to each observation and all random variables are mutually
independent. In many situations random variation comes from several sources
and random components attached to different component observations may not
be independent, showing for example temporal or spatial dependence.

Example 1.9. A component of variance model. The simplest model with two
sources of random variability is the normal-theory component of variance for-
mulation, which for random variables Yks; k = 1, . . . , m; s = 1, . . . , t has
the form

Yks = µ+ ηk + εks. (1.23)

Here µ is an unknown mean and the η and the ε are mutually independent nor-
mally distributed random variables with zero mean and variances respectively
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β

Y
y2

y1

Figure 1.2. Nonlinear least squares estimation. Without random error the obser-
vations would lie on the curved surface shown here for just two observations. The
least squares estimates are obtained by projection such that the residual vector is
orthogonal to the tangent plane to the surface at the fitted point.

τη, τε , called components of variance. This model represents the simplest form
for the resolution of random variability into two components. The model could
be specified by the simple block-diagonal form of the covariance matrix of Y
considered as a single column vector.

Models of this broad type with several layers of variation are sometimes
called Bayesian, a misleading terminology that will not be used here.

Example 1.10. Markov models. For any sequence of random variables
Y1, . . . , Yn the joint density can be factorized recursively in the form

fY1(y1) fY2|Y1(y2; y1) . . . fYn|Y1,...,Yn−1(yn; y1, . . . , yn−1). (1.24)

If the process is a Markov process in which very often the sequence is in time,
there is the major simplification that in each term the conditioning is only on
the preceding term, so that the density is

fY1(y1)�fYk |Yk−1(yk ; yk−1). (1.25)

That is, to produce a parametric Markov process we have to specify only the
one-step transition probabilities in parametric form.

Another commonly occurring more complicated form of variation arises with
time series, spatial and spatial-temporal data. The simplest time series model
is the Gaussian first-order autoregression, a Markov process defined by the
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equation

Yt − µ = β(Yt−1 − µ)+ εt . (1.26)

Here the forcing terms, εt , are called innovations. They are assumed to be
independent and identically distributed random variables of zero mean and
variance σ 2

ε . The specification is completed once the value or distribution of
the initial condition Y1 is set out.

Extensions of this idea to spatial and spatial-temporal data are important; see
Note 1.6.

1.7 Parameters

A central role is played throughout the book by the notion of a parameter
vector, θ . Initially this serves to index the different probability distributions
making up the full model. If interest were exclusively in these probability distri-
butions as such, any (1, 1) transformation of θ would serve equally well and the
choice of a particular version would be essentially one of convenience. For most
of the applications in mind here, however, the interpretation is via specific para-
meters and this raises the need both to separate parameters of interest, ψ , from
nuisance parameters, λ, and to choose specific representations. In relatively
complicated problems where several different research questions are under
study different parameterizations may be needed for different purposes.

There are a number of criteria that may be used to define the individual
component parameters. These include the following:

• the components should have clear subject-matter interpretations, for
example as differences, rates of change or as properties such as in a
physical context mass, energy and so on. If not dimensionless they should
be measured on a scale unlikely to produce very large or very small values;

• it is desirable that this interpretation is retained under reasonable
perturbations of the model;

• different components should not have highly correlated errors of estimation;
• statistical theory for estimation should be simple;
• if iterative methods of computation are needed then speedy and assured

convergence is desirable.

The first criterion is of primary importance for parameters of interest, at
least in the presentation of conclusions, but for nuisance parameters the other
criteria are of main interest. There are considerable advantages in formulations
leading to simple methods of analysis and judicious simplicity is a powerful aid
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to understanding, but for parameters of interest subject-matter meaning must
have priority.

Notes 1

General. There are quite a number of books setting out in some detail the
mathematical details for this chapter and for much of the subsequent material.
Davison (2003) provides an extended and wide-ranging account of statistical
methods and their theory. Good introductory accounts from a more theoretical
stance are Rice (1988) and, at a somewhat more advanced level, Casella and
Berger (1990). For an introduction to Bayesian methods, see Box and Tiao
(1973). Rao (1973) gives a wide-ranging account of statistical theory together
with some of the necessary mathematical background. Azzalini (1996), Pawitan
(2000) and Severini (2001) emphasize the role of likelihood, as forms the basis
of the present book. Silvey (1970) gives a compact and elegant account of
statistical theory taking a different viewpoint from that adopted here. Young
and Smith (2005) give a broad introduction to the theory of statistical infer-
ence. The account of the theory of statistics by Cox and Hinkley (1974) is
more detailed than that in the present book. Barnett and Barnett (1999) give a
broad comparative view. Williams (2001) provides an original and wide-ranging
introduction to probability and to statistical theory.

Section 1.1. The sequence question–data–analysis is emphasized here. In data
mining the sequence may be closer to data–analysis–question. Virtually the
same statistical methods may turn out to be useful, but the probabilistic
interpretation needs considerable additional caution in the latter case.

More formally (1.2) can be written

E(Y) =
∫

y fY (y; θ)ν(dy),

where ν(.) is a dominating measure, typically to be thought of as dy in regions
of continuity and having atoms of unit size where Y has a positive probability.
The support of a distribution is loosely the set of points with nonzero density;
more formally every open set containing a point of support should have positive
probability. In most but not all problems the support does not depend on θ .

A great deal can be achieved from the properties of E and the associated
notions of variance and covariance, i.e., from first and second moment calcula-
tions. In particular, subject only to existence the expected value of a sum is the
sum of the expected values and for independent random variables the expect-
ation of a product is the product of the expectations. There is also a valuable
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property of conditional expectations summarized in E(Y) = EXE(Y | X).
An important extension obtained by applying this last property also to Y2 is
that var(Y) = EX{var(Y | X)} + varX{E(Y | X)}. That is, an unconditional
variance is the expectation of a conditional variance plus the variance of a
conditional mean.

The random variables considered all take values in some finite-dimensional
real space. It is possible to consider more general possibilities, such as
complex-valued random variables or random variables in some space of infin-
ite dimension, such as Hilbert space, but this will not be necessary here. The
so-called singular continuous distributions of probability theory arise only as
absolutely continuous distributions on some manifold of lower dimension than
the space originally considered. In general discussions of probability, the density
for absolutely continuous random variables is not uniquely defined, only integ-
rals over sets being meaningful. This nonuniqueness is of no concern here, partly
because all real distributions are discrete and partly because there is nothing to
be gained by considering versions of the density other than those well behaved
for all members of the family of distributions under study.

Section 1.3. The examples in this section are mostly those arising in accounts
of elementary statistical methods. All of them can be generalized in various
ways. The assumptions of Example 1.3 form the basis of the discussion of least
squares theory by Gauss leading to the notion of linear unbiased estimates of
minimum variance.

Section 1.4. It may seem odd to exclude point estimation from the list of topics
but it is most naturally regarded either as a decision problem, involving therefore
no explicit statement of uncertainty, or as an intermediate stage of analysis of
relatively complex data.

Section 1.5. The moment generating function MY (p) for a random variable Y ,
equivalent except for sign to a Laplace transform of the density, is E(epY ) or
in the vector case E(epT Y ). For a normal distribution of mean µ and variance
σ 2 it is exp(pµ+ p2σ 2/2). For the sum of independent random variables, S =
�Yk the product law of expectations gives MS(p) = exp(�µkp + �σ 2

k p2/2).
A uniqueness theorem then proves that S and hence Ȳ has a normal distribution.

Equation (1.12) is the version for densities of the immediate consequence of
the definition of conditional probability. For events A and B this takes the form

P(B | A) = P(A ∩ B)/P(A) = P(A | B)P(B)/P(A).
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The details of the calculation for (1.13), (1.14) and (1.15) have been omitted.
Note that �(yk − µ)2 = n( ȳ − µ)2 + �(yk − ȳ)2, in which the second term
can be ignored because it does not involve µ, and that finally as a function of
µ we can write Aµ2 + 2Bµ+ C as A(µ+ B/A)2 plus a constant independent
of µ.

Section 1.6. Most of the general books mentioned above discuss the normal-
theory linear model as do the numerous textbooks on regression analysis. For a
systematic study of components of variance, see, for instance, Cox and Solomon
(2002) and for time series analysis Brockwell and Davis (1991, 1998). For
spatial processes, see Besag (1974) and Besag and Mondal (2005).

Section 1.7. For a discussion of choice of parameterization especially in
nonlinear models, see Ross (1990).
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Some concepts and simple applications

Summary. An introduction is given to the notions of likelihood and sufficiency
and the exponential family of distributions is defined and exemplified.

2.1 Likelihood

The likelihood for the vector of observations y is defined as

lik(θ ; y) = fY (y; θ), (2.1)

considered in the first place as a function of θ for given y. Mostly we work
with its logarithm l(θ ; y), often abbreviated to l(θ). Sometimes this is treated
as a function of the random vector Y rather than of y. The log form is con-
venient, in particular because f will often be a product of component terms.
Occasionally we work directly with the likelihood function itself. For nearly
all purposes multiplying the likelihood formally by an arbitrary function of y,
or equivalently adding an arbitrary such function to the log likelihood, would
leave unchanged that part of the analysis hinging on direct calculations with the
likelihood.

Any calculation of a posterior density, whatever the prior distribution, uses
the data only via the likelihood. Beyond that, there is some intuitive appeal in
the idea that differences in l(θ) measure the relative effectiveness of different
parameter values θ in explaining the data. This is sometimes elevated into a
principle called the law of the likelihood.

A key issue concerns the additional arguments needed to extract useful
information from the likelihood, especially in relatively complicated problems
possibly with many nuisance parameters. Likelihood will play a central role in
almost all the arguments that follow.

17
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2.2 Sufficiency

2.2.1 Definition

The term statistic is often used (rather oddly) to mean any function of the
observed random variable Y or its observed counterpart. A statistic S = S(Y)
is called sufficient under the model if the conditional distribution of Y given
S = s is independent of θ for all s, θ . Equivalently

l(θ ; y) = log h(s, θ)+ log m(y), (2.2)

for suitable functions h and m. The equivalence forms what is called the Neyman
factorization theorem. The proof in the discrete case follows most explicitly by
defining any new variable W , a function of Y , such that Y is in (1,1) correspond-
ence with (S, W), i.e., such that (S, W) determines Y . The individual atoms of
probability are unchanged by transformation. That is,

fY (y; θ) = fS,W (s, w; θ) = fS(s; θ) fW |S(w; s), (2.3)

where the last term is independent of θ by definition. In the continuous case
there is the minor modification that a Jacobian, not involving θ , is needed when
transforming from Y to (S, W). See Note 2.2.

We use the minimal form of S; i.e., extra components could always be added
to any given S and the sufficiency property retained. Such addition is undesirable
and is excluded by the requirement of minimality. The minimal form always
exists and is essentially unique.

Any Bayesian inference uses the data only via the minimal sufficient statistic.
This is because the calculation of the posterior distribution involves multiplying
the likelihood by the prior and normalizing. Any factor of the likelihood that is
a function of y alone will disappear after normalization.

In a broader context the importance of sufficiency can be considered to arise
as follows. Suppose that instead of observing Y = y we were equivalently to
be given the data in two stages:

• first we observe S = s, an observation from the density fS(s; θ);
• then we are given the remaining data, in effect an observation from the

density fY |S(y; s).

Now, so long as the model holds, the second stage is an observation on a
fixed and known distribution which could as well have been obtained from a
random number generator. Therefore S = s contains all the information about
θ given the model, whereas the conditional distribution of Y given S = s allows
assessment of the model.
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There are thus two implications of sufficiency. One is that given the model and
disregarding considerations of robustness or computational simplicity the data
should be used only via s. The second is that the known distribution fY |S(y | s)
is available to examine the adequacy of the model. Illustrations will be given in
Chapter 3.

Sufficiency may reduce the dimensionality of a problem but we still have to
determine what to do with the sufficient statistic once found.

2.2.2 Simple examples

Example 2.1. Exponential distribution (ctd). The likelihood for Example 1.6 is

ρn exp(−ρ�yk), (2.4)

so that the log likelihood is

n log ρ − ρ�yk , (2.5)

and, assuming n to be fixed, involves the data only via �yk or equivalently
via ȳ = �yk/n. By the factorization theorem the sum (or mean) is therefore
sufficient. Note that had the sample size also been random the sufficient statistic
would have been (n,�yk); see Example 2.4 for further discussion.

In this example the density of S = �Yk is ρ(ρs)n−1e−ρs/(n − 1)!, a gamma
distribution. It follows that ρS has a fixed distribution. It follows also that the
joint conditional density of the Yk given S = s is uniform over the simplex
0 ≤ yk ≤ s;�yk = s. This can be used to test the adequacy of the model.

Example 2.2. Linear model (ctd). A minimal sufficient statistic for the linear
model, Example 1.4, consists of the least squares estimates and the residual
sum of squares. This strong justification of the use of least squares estimates
depends on writing the log likelihood in the form

−n log σ − (y − zβ)T (y − zβ)/(2σ 2) (2.6)

and then noting that

(y − zβ)T (y − zβ) = (y − zβ̂)T (y − zβ̂)+ (β̂ − β)T (zT z)(β̂ − β), (2.7)

in virtue of the equations defining the least squares estimates. This last identity
has a direct geometrical interpretation. The squared norm of the vector defined
by the difference between Y and its expected value zβ is decomposed into a
component defined by the difference between Y and the estimated mean zβ̂ and
an orthogonal component defined via β̂ − β. See Figure 1.1.

It follows that the log likelihood involves the data only via the least squares
estimates and the residual sum of squares. Moreover, if the variance σ 2 were
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known, the residual sum of squares would be a constant term in the log likelihood
and hence the sufficient statistic would be reduced to β̂ alone.

This argument fails for a regression model nonlinear in the parameters, such
as the exponential regression (1.5). In the absence of error the n × 1 vector of
observations then lies on a curved surface and while the least squares estimates
are still given by orthogonal projection they satisfy nonlinear equations and
the decomposition of the log likelihood which is the basis of the argument
for sufficiency holds only as an approximation obtained by treating the curved
surface as locally flat.

Example 2.3. Uniform distribution. Suppose that Y1, . . . , Yn are independ-
ent and identically distributed in a uniform distribution on (θ1, θ2). Let
Y(1), Y(n) be the smallest and largest order statistics, i.e., the random variables
min(Y1, . . . , Yn) and max(Y1, . . . , Yn) respectively. Then the likelihood involves
the data only via (y(1), y(n)), being zero unless the interval (y(1), y(n)) is within
(θ1, θ2). Therefore the two order statistics are minimal sufficient. Similar results
hold when one terminus is known or when the range of the distribution, i.e.,
θ2 − θ1, is known.

In general, care is needed in writing down the likelihood and in evaluating the
resulting procedures whenever the form of the likelihood has discontinuities,
in particular, as here, where the support of the probability distribution depends
on the unknown parameter.

Example 2.4. Binary fission. Suppose that in a system of particles each particle
has in small time period (t, t + �) a probability ρ� + o(�) of splitting into
two particles with identical properties and a probability 1 − ρ� + o(�) of
remaining unchanged, events for different particles being independent. Suppose
that the system is observed for a time period (0, t0). Then by dividing the whole
exposure history into small intervals separately for each individual we have that
the likelihood is

ρne−ρte . (2.8)

Here n is the number of new particles born and te is the total exposure time,
i.e., the sum of all life-times of individuals in the system, and both are random
variables, so that the sufficient statistic is S = (N , Te).

2.3 Exponential family

We now consider a family of models that are important both because they have
relatively simple properties and because they capture in one discussion many,
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although by no means all, of the inferential properties connected with important
standard distributions, the binomial, Poisson and geometric distributions and
the normal and gamma distributions, and others too.

Suppose that θ takes values in a well-behaved region in Rd , and not of
lower dimension, and that we can find a (d × 1)-dimensional statistic s and
a parameterization φ, i.e., a (1,1) transformation of θ , such that the model has
the form

m(y) exp{sTφ − k(φ)}, (2.9)

where s = s(y) is a function of the data. Then S is sufficient; subject to some
important regularity conditions this is called a regular or full (d, d) exponential
family of distributions. The statistic S is called the canonical statistic and φ the
canonical parameter. The parameter η = E(S;φ) is called the mean parameter.
Because the stated function defines a distribution, it follows that∫

m(y) exp{sTφ − k(φ)}dy = 1, (2.10)

∫
m(y) exp{sT (φ + p)− k(φ + p)}dy = 1. (2.11)

Hence, noting that sT p = pT s, we have from (2.11) that the moment
generating function of S is

E{exp(pT S)} = exp{k(φ + p)− k(φ)}. (2.12)

Therefore the cumulant generating function of S, defined as the log of the
moment generating function, is

k(φ + p)− k(φ), (2.13)

providing a fairly direct interpretation of the function k(.). Because the mean
is given by the first derivatives of that generating function, we have that η =
∇k(φ), where ∇ is the gradient operator (∂/∂φ1, . . . , ∂/∂φd)

T . See Note 2.3
for a brief account of both cumulant generating functions and the ∇ notation.

Example 2.5. Binomial distribution. If R denotes the number of successes in
n independent binary trials each with probability of success π , its density can
be written

n!/{r!(n − r)!}πr(1 − π)n−r = m(r) exp{rφ − n log(1 + eφ)}, (2.14)

say, where φ = log{π/(1 − π)}, often called the log odds, is the canonical
parameter and r the canonical statistic. Note that the mean parameter is E(R) =
nπ and can be recovered also by differentiating k(φ).
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In general for continuous distributions a fixed smooth (1,1) transformation of
the random variable preserves the exponential family form; the Jacobian of the
transformation changes only the function m(y). Thus if Y has the exponential
distribution ρe−ρy, or in exponential family form exp(−ρy + log ρ), then X =√

Y has the Rayleigh distribution 2ρx exp(−ρx2), or in exponential family form
2x exp(−ρx2 + log ρ). The effect of the transformation from Y to

√
Y is thus to

change the initializing function m(.) but otherwise leave the canonical statistic
taking the same value and leaving the canonical parameter and the function k(.)
unchanged.

In general the likelihood as a function of φ is maximized by solving the
equation in φ̂

s = ∇k(φ)
φ=φ̂ = η̂, (2.15)

where it can be shown that for a regular exponential family the solution is
unique and indeed corresponds to a maximum, unless possibly if s lies on the
boundary of its support. We call φ̂ and η̂ the maximum likelihood estimates of φ
and η respectively. In (2.15) we equate the canonical statistic to its expectation
to form an estimating equation which has a direct appeal, quite apart from more
formal issues connected with likelihood. The important role of the maximum
likelihood estimate will appear later.

A further notion is that of a curved exponential family. Suppose that we start
with a full exponential family in which the canonical parameter φ and canonical
statistic s are both of dimension k. Now suppose that φ is restricted to lie in
a curved space of dimension d, where d < k. Then the exponential family
form will still hold but now the k × 1 vector φ is a function of d originating
parameters defining position in the curved space. This is called a (k, d) curved
exponential family. The statistical properties of curved exponential families are
much less simple than those of full exponential families. The normal-theory
nonlinear regression already discussed is an important example. The following
are simpler instances.

Example 2.6. Fisher’s hyperbola. Suppose that the model is that the pairs
(Yk1, Yk2) are independently normally distributed with unit variance and with
means (θ , c/θ), where c is a known constant. The log likelihood for a single
observation is

yk1θ + cyk2/θ − θ2/2 − c2θ−2/2. (2.16)

Note that the squared terms in the normal density may be omitted because
they are not functions of the unknown parameter. It follows that for the full
set of observations the sample totals or means form the minimal sufficient
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statistic. Thus what in the full family would be the two-dimensional parameter
(φ1,φ2) is confined to the hyperbola (θ , c/θ) forming a (2, 1) family with a
two-dimensional sufficient statistic and a one-dimensional parameter.

Example 2.7. Binary fission (ctd). As shown in Example 2.4 the likelihood is
a function of n, the number of births, and te, the total exposure time. This forms
in general a (2, 1) exponential family. Note, however, that if we observed until
either one of n and te took a preassigned value, then it would reduce to a full,
i.e., (1, 1), family.

2.4 Choice of priors for exponential family problems

While in Bayesian theory choice of prior is in principle not an issue of achieving
mathematical simplicity, nevertheless there are gains in using reasonably simple
and flexible forms. In particular, if the likelihood has the full exponential family
form

m(y) exp{sTφ − k(φ)}, (2.17)

a prior for φ proportional to

exp{sT
0 φ − a0k(φ)} (2.18)

leads to a posterior proportional to

exp{(s + s0)
Tφ − (1 + a0)k(φ)}. (2.19)

Such a prior is called conjugate to the likelihood, or sometimes closed under
sampling. The posterior distribution has the same form as the prior with s0

replaced by s + s0 and a0 replaced by 1 + a0.

Example 2.8. Binomial distribution (ctd). This continues the discussion of
Example 2.5. If the prior for π is proportional to

π r0(1 − π)n0−r0 , (2.20)

i.e., is a beta distribution, then the posterior is another beta distribution corres-
ponding to r + r0 successes in n + n0 trials. Thus both prior and posterior are
beta distributions. It may help to think of (r0, n0) as fictitious data! If the prior
information corresponds to fairly small values of n0 its effect on the conclusions
will be small if the amount of real data is appreciable.
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2.5 Simple frequentist discussion

In Bayesian approaches sufficiency arises as a convenient simplification of the
likelihood; whatever the prior the posterior is formed from the likelihood and
hence depends on the data only via the sufficient statistic.

In frequentist approaches the issue is more complicated. Faced with a new
model as the basis for analysis, we look for a Fisherian reduction, defined as
follows:

• find the likelihood function;
• reduce to a sufficient statistic S of the same dimension as θ ;
• find a function of S that has a distribution depending only on ψ ;
• invert that distribution to obtain limits for ψ at an arbitrary set of

probability levels;
• use the conditional distribution of the data given S = s informally or

formally to assess the adequacy of the formulation.

Immediate application is largely confined to regular exponential family models.
While most of our discussion will centre on inference about the parameter

of interest, ψ , the complementary role of sufficiency of providing an explicit
base for model checking is in principle very important. It recognizes that our
formulations are always to some extent provisional, and usually capable to some
extent of empirical check; the universe of discussion is not closed. In general
there is no specification of what to do if the initial formulation is inadequate but,
while that might sometimes be clear in broad outline, it seems both in practice
and in principle unwise to expect such a specification to be set out in detail in
each application.

The next phase of the analysis is to determine how to use s to answer more
focused questions, for example about the parameter of interest ψ . The simplest
possibility is that there are no nuisance parameters, just a single parameter ψ
of interest, and reduction to a single component s occurs. We then have one
observation on a known density fS(s;ψ) and distribution function FS(s;ψ).
Subject to some monotonicity conditions which, in applications, are typically
satisfied, the probability statement

P(S ≤ ac(ψ)) = FS(ac(ψ);ψ) = 1 − c (2.21)

can be inverted for continuous random variables into

P{ψ ≤ bc(S)} = 1 − c. (2.22)

Thus the statement on the basis of data y, yielding sufficient statistic s, that

ψ ≤ bc(s) (2.23)
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provides an upper bound for ψ , that is a single member of a hypothetical long
run of statements a proportion 1 − c of which are true, generating a set of
statements in principle at all values of c in (0, 1).

This extends the discussion in Section 1.5, where S is the mean Ȳ of n
independent and identically normally distributed random variables of known
variance and the parameter is the unknown mean.

For discrete distributions there is the complication that the distribution func-
tion is a step function so that the inversion operation involved is nonunique.
This is an embarrassment typically only when very small amounts of data are
involved. We return in Section 3.2 to discuss how best to handle this issue.

An alternative avenue, following the important and influential work of
J. Neyman and E. S. Pearson, in a sense proceeds in the reverse direction.
Optimality criteria are set up for a formulation of a specific issue, expressing
some notion of achieving the most sensitive analysis possible with the available
data. The optimality problem is then solved (typically by appeal to a reservoir
of relevant theorems) and a procedure produced which, in the contexts under
discussion, is then found to involve the data only via s. The two avenues to s
nearly, but not quite always, lead to the same destination. This second route
will not be followed in the present book.

In the Neyman–Pearson theory of tests, the sensitivity of a test is assessed
by the notion of power, defined as the probability of reaching a preset level
of significance considered for various alternative hypotheses. In the approach
adopted here the assessment is via the distribution of the random variable P,
again considered for various alternatives. The main applications of power are
in the comparison of alternative procedures and in preliminary calculation of
appropriate sample size in the design of studies. The latter application, which
is inevitably very approximate, is almost always better done by considering the
width of confidence intervals.

2.6 Pivots

The following definition is often helpful in dealing with individual applications
including those with nuisance parameters.

Suppose that ψ is one-dimensional. Suppose that there is a statistic t, in the
present context a function of s but possibly of more general form, and a function
p(t,ψ) such that for all θ ⊂ �θ the random variable p(T ,ψ) has a fixed and
known continuous distribution and that for all t the function p(t,ψ) is strictly
increasing in ψ . Then p is called a pivot for inference about ψ and the fixed
distribution is called the pivotal distribution.
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We have that for all ψ and all c, 0 < c < 1, we can find p∗
c such that

P{p(T ,ψ) ≤ p∗
c}, (2.24)

implying that

P{ψ ≤ q(T , c)} = 1 − c. (2.25)

We call q(t, c) a 1 − c level upper limit for ψ with obvious changes for
lower limits and intervals. The collection of limits for all c encapsulates our
information about ψ and the associated uncertainty. In many applications it
is convenient to summarize this by giving an upper 1 − c limit and a lower
1 − c limit forming a 1 − 2c equi-tailed confidence interval, usually specifying
this for one or two conventionally chosen values of c. The use of equal tails is
essentially a presentational simplification. Clearly other than equal tails could
be used if there were good reason for doing so.

In the special discussion of Section 1.5 the pivot is (µ − Ȳ)/(σ0/
√

n) and
the pivotal distribution is the standard normal distribution.

Note that the frequentist limits of Section 1.5.2 correspond to the upper c
point of the posterior distribution of µ on taking the limit in (1.14) and (1.15)
as nv/σ 2

0 increases. Later, in Examples 5.5 and 5.6, the dangers of apparently
innocuous priors will be discussed.

The use of pivots is primarily a presentational device. A key notion in the
frequentist approach is that of sets of confidence intervals at various levels
and the corresponding notion in Bayesian discussions is that of a posterior
distribution. At least in relatively simple cases, these are most compactly sum-
marized by a pivot and its distribution. In particular, it may be possible to obtain
statistics mψ and sψ such that in the frequentist approach (ψ − mψ)/sψ has
exactly, or to an adequate approximation, a standard normal distribution, or pos-
sibly a Student t distribution. Then confidence intervals at all levels are easily
recovered from just the two summarizing statistics. Note that from this per-
spective these statistics are just a convenient convention for summarization; in
particular, it is best not to regard mψ as a point estimate ofψ to be considered in
isolation.

Example 1.1 can be generalized in many ways. If the standard deviation is
unknown and σ0 is replaced by its standard estimate derived from the residual
sum of squares, the pivotal distribution becomes the Student t distribution with
n − 1 degrees of freedom. Further if we consider other than sufficient statistics,
the mean could be replaced by the median or by any other location estimate
with a corresponding modification of the pivotal distribution. The argument
applies directly to the estimation of any linear parameter in the linear model
of Example 1.4. In the second-order linear model generalizing Example 1.3,
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the pivotal distribution is asymptotically standard normal by the Central Limit
Theorem and, if the variance is estimated, also by appeal to the Weak Law of
Large Numbers.

In the previous examples the parameter of interest has been a scalar. The
ideas extend to vector parameters of interest ψ , although in most applica-
tions it is often preferable to work with single interpretable components, often
representing contrasts or measures of dependence interpreted one at a time.

Example 2.9. Mean of a multivariate normal distribution. The most important
example of a vector parameter of interest concerns the vector mean µ of a
multivariate normal distribution. Suppose that Y1, . . . , Yn are independent and
identically distributed p × 1 vectors having a multivariate normal distribution
of mean µ and known nonsingular covariance matrix �0.

Evaluation of the likelihood shows that the sample mean is a minimal suffi-
cient statistic and that it has the same dimension as the unknown parameter. It
can be shown by linear transformation to a set of independent random compon-
ents that the quadratic form n(Ȳ−µ)T�−1

0 (Ȳ−µ) has a chi-squared distribution
with p degrees of freedom and so forms a pivot. There is thus a set of concentric
similar ellipsoids defined by �0 such that Ȳ lies within each with specified
probability. Inversion of this yields confidence ellipsoids for µ centred on ȳ.

These regions are likelihood-based in the sense that any value of µ excluded
from a confidence region has lower likelihood than all parameter values µ
included in that region. This distinguishes these regions from those of other
shapes, for example from rectangular boxes with edges parallel to the coordinate
axes. The elliptical regions are also invariant under arbitrary nonsingular linear
transformation of the vectors Y .

Quadratic forms associated in this way with the inverse of a covariance mat-
rix occur frequently, especially in Chapter 6, and we note their geometrical
interpretation. See Note 2.6.

Notes 2

Section 2.1. In some contexts the likelihood is better defined as the equivalence
class of all functions obtained by multiplying by an arbitrary positive function
of y. This would formalize the notion that it is really only the ratio of the
likelihoods at two different parameter values that is inferentially meaningful.

The importance of likelihood was emphasized quite often by R. A. Fisher,
who also suggested that for some types of application it alone was appropri-
ate; see Fisher (1956). For accounts of statistics putting primary emphasis on
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likelihood as such, see Edwards (1992) and Royall (1997) and, in a particular
time series context, Barnard et al. (1962). The expression law of the likelihood
was introduced by Hacking (1965). In Bayesian theory the likelihood captures
the information directly in the data.

Section 2.2. The Jacobian is the matrix of partial derivatives involved in any
change of variables in a multiple integral and so, in particular, in any change of
variables in a probability density; see any textbook on calculus.

Sufficiency was introduced by Fisher (1922). A very mathematical treatment
is due to Halmos and Savage (1949). The property arises in all approaches to
statistical inference although its conceptual importance, heavily emphasized in
the present book, depends greatly on the viewpoint taken.

Section 2.3. The exponential family was first studied systematically in the
1930s by G. Darmois, B. O. Koopmans and E. J. G. Pitman after some com-
bination of whom it is sometimes named. Barndorff-Nielsen (1978) gives a
systematic account stressing the links with convex analysis. Essentially all
well-behaved models with sufficient statistic having the same dimension as
the parameter space are of this simple exponential family form. The general
books listed in Notes 1 all give some account of the exponential family.

The cumulant (or semi-invariant) generating function is the log of the moment
generating function, i.e., log E(epY ). If it can be expanded in a power series
�κrpr/r!, the κr are cumulants. The first cumulant is the mean, the higher cumu-
lants are functions of moments about the mean with κ2 = var(Y). For a normal
distribution the cumulants of order 3 and higher are zero and for the multivari-
ate version κ11 = cov(Y1, Y2). The cumulant generating function of the sum of
independent random variables is the sum of the separate cumulant generating
functions with the corresponding property holding also for the cumulants.

The notation ∇ is used for the gradient operator, forming a column vector of
partial derivatives. It is intended here and especially in Chapter 6 to show multi-
parameter arguments as closely parallel to the corresponding single-parameter
versions. It is necessary only to see that ∇∇T forms a square matrix of second
partial derivatives and later that Taylor’s theorem up to second-degree terms
can be written

g(x + h) = g(x)+ ∇T g(x)h + hT ∇∇T g(x)h/2,

where g is a real-valued function of the multidimensional argument x.
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Section 2.5. Definitive accounts of the Neyman–Pearson theory are given in
two books by E. L. Lehmann which have acquired coauthors as successive revi-
sions have been produced (Lehmann and Casella, 2001; Lehmann and Romano,
2004). The original papers are available in collected form (Neyman and Pearson,
1967).

Section 2.6. The notion of a pivot was given a central role in influential but
largely unpublished work by G. A. Barnard. The basis of Example 2.9 and its
further development is set out in books on multivariate analysis; see especially
Anderson (2004). The starting point is that the vector mean Ȳ has a multivariate
normal distribution of mean µ and covariance matrix �0/n, a result proved by
generalizing the argument in Note 1.5.

The Weak Law of Large Numbers is essentially that the average of a large
number of independent (or not too strongly dependent) random variables is,
under rather general conditions, with high probability close to the average of
the expected values. It uses a particular definition of convergence, convergence
in probability. The Strong Law, which forms a pinnacle of classical probability
theory, uses a different notion of convergence which is, however, not relevant
in the statistical problems treated here. See also Note 6.2.

For the result of Example 2.9 and for many other developments the follow-
ing is needed. If Z is a p × 1 vector of zero mean its covariance matrix is
�Z = E(ZZT ). If c is an arbitrary p × p nonsingular matrix, �cZ = c�Z cT

and �−1
cZ = (cT )−1�−1

Z c−1. A direct calculation now shows that ZT�−1
Z Z =

(cZ)T�−1
cZ (cZ), so that if we define ‖Z‖2

�Z
= ZT�−1

Z Z its value is invariant
under nonsingular linear transformations. If, in particular, we choose c so that
�cZ = I , the identity matrix, the quadratic form reduces to the sum of squares
of the components, i.e., the Euclidean squared length of the vector. If the com-
ponents are normally distributed the distribution of the sum of squares is the
chi-squared distribution with p degrees of freedom.

We may thus reasonably call ‖Z‖�Z the norm of the vector Z in the metric
defined by its covariance matrix. It is in a sense the natural measure of length
attached to the ellipsoid defined by the covariance matrix.
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Significance tests

Summary. First a number of distinct situations are given in which significance
tests may be relevant. The nature of a simple significance test is set out and
its implications explored. The relation with interval estimation is emphasized.
While most of the discussion is from a frequentist perspective, relations with
Bayesian theory are outlined in the final section.

3.1 General remarks

So far, in our frequentist discussion we have summarized information about the
unknown parameter ψ by finding procedures that would give in hypothetical
repeated applications upper (or lower) bounds for ψ a specified proportion of
times in a long run of repeated applications. This is close to but not the same
as specifying a probability distribution for ψ ; it avoids having to treat ψ as a
random variable, and moreover as one with a known distribution in the absence
of the data.

Suppose now there is specified a particular value ψ0 of the parameter of
interest and we wish to assess the relation of the data to that value. Often
the hypothesis that ψ = ψ0 is called the null hypothesis and conventionally
denoted by H0. It may, for example, assert that some effect is zero or takes on
a value given by a theory or by previous studies, although ψ0 does not have to
be restricted in that way.

There are at least six different situations in which this may arise, namely the
following.

• There may be some special reason for thinking that the null hypothesis
may be exactly or approximately true or strong subject-matter interest may
focus on establishing that it is likely to be false.

30
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• There may be no special reason for thinking that the null hypothesis is true
but it is important because it divides the parameter space into two (or more)
regions with very different interpretations. We are then interested in
whether the data establish reasonably clearly which region is correct,
for example it may establish the value of sgn(ψ − ψ0).

• Testing may be a technical device used in the process of generating
confidence intervals.

• Consistency with ψ = ψ0 may provide a reasoned justification for
simplifying an otherwise rather complicated model into one that is more
transparent and which, initially at least, may be a reasonable basis for
interpretation.

• Only the model when ψ = ψ0 is under consideration as a possible model
for interpreting the data and it has been embedded in a richer family just to
provide a qualitative basis for assessing departure from the model.

• Only a single model is defined, but there is a qualitative idea of the kinds of
departure that are of potential subject-matter interest.

The last two formulations are appropriate in particular for examining model
adequacy.

From time to time in the discussion it is useful to use the short-hand descrip-
tion of H0 as being possibly true. Now in statistical terms H0 refers to a
probability model and the very word ‘model’ implies idealization. With a very
few possible exceptions it would be absurd to think that a mathematical model
is an exact representation of a real system and in that sense all H0 are defined
within a system which is untrue. We use the term to mean that in the current state
of knowledge it is reasonable to proceed as if the hypothesis is true. Note that
an underlying subject-matter hypothesis such as that a certain environmental
exposure has absolutely no effect on a particular disease outcome might indeed
be true.

3.2 Simple significance test

In the formulation of a simple significance test, we suppose available data y and
a null hypothesis H0 that specifies the distribution of the corresponding random
variable Y . In the first place, no other probabilistic specification is involved,
although some notion of the type of departure from H0 that is of subject-matter
concern is essential.

The first step in testing H0 is to find a distribution for observed random
variables that has a form which, under H0, is free of nuisance parameters, i.e., is
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completely known. This is trivial when there is a single unknown parameter
whose value is precisely specified by the null hypothesis. Next find or determine
a test statistic T , large (or extreme) values of which indicate a departure from
the null hypothesis of subject-matter interest. Then if tobs is the observed value
of T we define

pobs = P(T ≥ tobs), (3.1)

the probability being evaluated under H0, to be the (observed) p-value of
the test.

It is conventional in many fields to report only very approximate values of
pobs, for example that the departure from H0 is significant just past the 1 per cent
level, etc.

The hypothetical frequency interpretation of such reported significance levels
is as follows. If we were to accept the available data as just decisive evidence
against H0, then we would reject the hypothesis when true a long-run proportion
pobs of times.

Put more qualitatively, we examine consistency with H0 by finding the con-
sequences of H0, in this case a random variable with a known distribution,
and seeing whether the prediction about its observed value is reasonably well
fulfilled.

We deal first with a very special case involving testing a null hypothesis that
might be true to a close approximation.

Example 3.1. Test of a Poisson mean. Suppose that Y has a Poisson distribution
of unknown mean µ and that it is required to test the null hypothesis µ = µ0,
where µ0 is a value specified either by theory or a large amount of previous
experience. Suppose also that only departures in the direction of larger values
of µ are of interest. Here there is no ambiguity about the choice of test statistic;
it has to be Y or a monotone function of Y and given that Y = y the p-value is

pobs = �∞
v=ye−µ0µv

0/v!. (3.2)

Now suppose that instead of a single observation we have n independent
replicate observations so that the model is that Y1, . . . , Yn have independent
Poisson distributions all with mean µ. With the same null hypothesis as before,
there are now many possible test statistics that might be used, for example
max(Yk). A preference for sufficient statistics leads, however, to the use of
�Yk , which under the null hypothesis has a Poisson distribution of mean nµ0.
Then the p-value is again given by (3.2), now withµ0 replaced by nµ0 and with
y replaced by the observed value of �Yk .

We return to this illustration in Example 3.3. The testing of a null hypothesis
about the mean µ of a normal distribution when the standard deviation σ0 is
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known follows the same route. The distribution of the sample mean Ȳ under
the null hypothesis µ = µ0 is now given by an integral rather than by a sum
and (3.2) is replaced by

pobs = 1 −

(
ȳ − µ0

σ0/
√

n

)
. (3.3)

We now turn to a complementary use of these ideas, namely to test the
adequacy of a given model, what is also sometimes called model criticism.
We illustrate this by testing the adequacy of the Poisson model. It is necessary
if we are to parallel the previous argument to find a statistic whose distribution is
exactly or very nearly independent of the unknown parameter µ. An important
way of doing this is by appeal to the second property of sufficient statistics,
namely that after conditioning on their observed value the remaining data have
a fixed distribution.

Example 3.2. Adequacy of Poisson model. Let Y1, . . . , Yn be independent
Poisson variables with unknown mean µ. The null hypothesis H0 for testing
model adequacy is that this model applies for some unknown µ. Initially no
alternative is explicitly formulated. The sufficient statistic is �Yk , so that to
assess consistency with the model we examine the conditional distribution of
the data given �Yk = s. This density is zero if �yk 
= s and is otherwise

s!
�yk !

1

ns
, (3.4)

i.e., is a multinomial distribution with s trials each giving a response equally
likely to fall in one of n cells. Because this distribution is completely specified
numerically, we are essentially in the same situation as if testing consistency
with a null hypothesis that completely specified the distribution of the observa-
tions free of unknown parameters. There remains, except when n = 2, the need
to choose a test statistic. This is usually taken to be either the dispersion index
�(Yk − Ȳ)2/Ȳ or the number of zeros.

The former is equivalent to the ratio of the sample estimate of variance to the
mean. In this conditional specification, because the sample total is fixed, the
statistic is equivalent also to �Y2

k . Note that if, for example, the dispersion test
is used, no explicit family of alternative models has been specified, only an
indication of the kind of discrepancy that it is especially important to detect.
A more formal and fully parametric procedure might have considered the neg-
ative binomial distribution as representing such departures and then used the
apparatus of the Neyman–Pearson theory of testing hypotheses to develop a test
especially sensitive to such departures.

A quite high proportion of the more elementary tests used in applications were
developed by the relatively informal route just outlined. When a full family of
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distributions is specified, covering both the null hypothesis and one or more
alternatives representing important departures from H0, it is natural to base the
test on the optimal statistic for inference aboutψ within that family. This typic-
ally has sensitivity properties in making the random variable P corresponding
to pobs stochastically small under alternative hypotheses.

For continuously distributed test statistics, pobs typically may take any real
value in (0, 1). In the discrete case, however, only a discrete set of values of p
are achievable in any particular case. Because preassigned values such as 0.05
play no special role, the only difficulty in interpretation is the theoretical one
of comparing alternative procedures with different sets of achievable values.

Example 3.3. More on the Poisson distribution. For continuous observations
the random variable P can, as already noted, in principle take any value in (0, 1).
Suppose, however, we return to the special case that Y has a Poisson distribution
with mean µ and that the null hypothesis µ = µ0 is to be tested checking for
departures in which µ > µ0, or more generally in which the observed random
variable Y is stochastically larger than a Poisson-distributed random variable
of mean µ0. Then for a given observation y the p-value is

p+
obs = �∞

v=ye−µ0µv
0/v!, (3.5)

whereas for detecting departures in the direction of small values the corres-
ponding p-value is

p−
obs = �

y
v=0e−µ0µv

0/v!. (3.6)

Table 3.1 shows some values for the special case µ0 = 2. So far as use
for a one-sided significance test is concerned, the restriction to a particular
set of values is unimportant unless that set is in some sense embarrassingly
small. Thus the conclusion from Table 3.1(b) that in testing µ = 2 looking for
departures µ < 2 even the most extreme observation possible, namely zero,
does not have a particularly small p-value is hardly surprising. We return to the
implications for two-sided testing in the next section.

In forming upper confidence limits for µ based on an observed y there is no
difficulty in finding critical values of µ such that the relevant lower tail area is
some assigned value. Thus with y = 0 the upper 0.95 point for µ is such that
e−µ∗ = 0.05, i.e.,µ∗ = log 20 � 3. A similar calculation for a lower confidence
limit is not possible for y = 0, but is possible for all other y. The discreteness
of the set of achievable p-values is in this context largely unimportant.
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Table 3.1. Achievable significance levels
for testing that a Poisson-distributed random
variable with observed value y has mean 2:
(a) test against alternatives larger than 2;
(b) test against alternatives less than 2

(a) y 2 3 4 5 6
p 0.594 0.323 0.143 0.053 0.017

(b) y 0 1 2
p 0.135 0.406 0.677

3.3 One- and two-sided tests

In many situations observed values of the test statistic in either tail of its distri-
bution represent interpretable, although typically different, departures from H0.
The simplest procedure is then often to contemplate two tests, one for each tail,
in effect taking the more significant, i.e., the smaller tail, as the basis for pos-
sible interpretation. Operational interpretation of the result as a hypothetical
error rate is achieved by doubling the corresponding p, with a slightly more
complicated argument in the discrete case.

More explicitly we argue as follows. With test statistic T , consider two
p-values, namely

p+
obs = P(T ≥ t; H0), p−

obs = P(T ≤ t; H0). (3.7)

In general the sum of these values is 1 + P(T = t). In the two-sided case it is
then reasonable to define a new test statistic

Q = min(P+
obs, P−

obs). (3.8)

The level of significance is

P(Q ≤ qobs; H0). (3.9)

In the continuous case this is 2qobs because two disjoint events are involved.
In a discrete problem it is qobs plus the achievable p-value from the other tail
of the distribution nearest to but not exceeding qobs. As has been stressed the
precise calculation of levels of significance is rarely if ever critical, so that
the careful definition is more one of principle than of pressing applied import-
ance. A more important point is that the definition is unaffected by a monotone
transformation of T .

In one sense very many applications of tests are essentially two-sided in
that, even though initial interest may be in departures in one direction, it will
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rarely be wise to disregard totally departures in the other direction, even if ini-
tially they are unexpected. The interpretation of differences in the two directions
may well be very different. Thus in the broad class of procedures associated
with the linear model of Example 1.4 tests are sometimes based on the ratio
of an estimated variance, expected to be large if real systematic effects are
present, to an estimate essentially of error. A large ratio indicates the presence of
systematic effects whereas a suspiciously small ratio suggests an inadequately
specified model structure.

3.4 Relation with acceptance and rejection

There is a conceptual difference, but essentially no mathematical difference,
between the discussion here and the treatment of testing as a two-decision prob-
lem, with control over the formal error probabilities. In this we fix in principle
the probability of rejecting H0 when it is true, usually denoted by α, aiming to
maximize the probability of rejecting H0 when false. This approach demands
the explicit formulation of alternative possibilities. Essentially it amounts to
setting in advance a threshold for pobs. It is, of course, potentially appropriate
when clear decisions are to be made, as for example in some classification prob-
lems. The previous discussion seems to match more closely scientific practice
in these matters, at least for those situations where analysis and interpretation
rather than decision-making are the focus.

That is, there is a distinction between the Neyman–Pearson formulation of
testing regarded as clarifying the meaning of statistical significance via hypo-
thetical repetitions and that same theory regarded as in effect an instruction on
how to implement the ideas by choosing a suitable α in advance and reaching
different decisions accordingly. The interpretation to be attached to accepting
or rejecting a hypothesis is strongly context-dependent; the point at stake here,
however, is more a question of the distinction between assessing evidence, as
contrasted with deciding by a formal rule which of two directions to take.

3.5 Formulation of alternatives and test statistics

As set out above, the simplest version of a significance test involves formula-
tion of a null hypothesis H0 and a test statistic T , large, or possibly extreme,
values of which point against H0. Choice of T is crucial in specifying the kinds
of departure from H0 of concern. In this first formulation no alternative prob-
ability models are explicitly formulated; an implicit family of possibilities is
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specified via T . In fact many quite widely used statistical tests were developed in
this way.

A second possibility is that the null hypothesis corresponds to a particular
parameter value, sayψ = ψ0, in a family of models and the departures of main
interest correspond either, in the one-dimensional case, to one-sided alternatives
ψ > ψ0 or, more generally, to alternatives ψ 
= ψ0. This formulation will
suggest the most sensitive test statistic, essentially equivalent to the best estimate
of ψ , and in the Neyman–Pearson formulation such an explicit formulation of
alternatives is essential.

The approaches are, however, not quite as disparate as they may seem.
Let f0(y) denote the density of the observations under H0. Then we may
associate with a proposed test statistic T the exponential family

f0(y) exp{tθ − k(θ)}, (3.10)

where k(θ) is a normalizing constant. Then the test of θ = 0 most sensitive to
these departures is based on T . Not all useful tests appear natural when viewed
in this way, however; see, for instance, Example 3.5.

Many of the test procedures for examining model adequacy that are provided
in standard software are best regarded as defined directly by the test statistic
used rather than by a family of alternatives. In principle, as emphasized above,
the null hypothesis is the conditional distribution of the data given the sufficient
statistic for the parameters in the model. Then, within that null distribution,
interesting directions of departure are identified.

The important distinction is between situations in which a whole family of
distributions arises naturally as a base for analysis versus those where analysis
is at a stage where only the null hypothesis is of explicit interest.

Tests where the null hypotheses itself is formulated in terms of arbitrary dis-
tributions, so-called nonparametric or distribution-free tests, illustrate the use of
test statistics that are formulated largely or wholly informally, without specific
probabilistically formulated alternatives in mind. To illustrate the arguments
involved, consider initially a single homogenous set of observations.

That is, let Y1, . . . , Yn be independent and identically distributed random
variables with arbitrary cumulative distribution function F(y) = P(Yk ≤ y).
To avoid minor complications we suppose throughout the following discussion
that the distribution is continuous so that, in particular, the possibility of ties,
i.e., exactly equal pairs of observations, can be ignored. A formal likelihood
can be obtained by dividing the real line into a very large number of very small
intervals each having an arbitrary probability attached to it. The likelihood for
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data y can then be specified in a number of ways, namely by

• a list of data values actually observed,
• the sample cumulative distribution function, defined as

Fn(y) = n−1�I(yk ≤ y), (3.11)

where the indicator function I(yk ≤ y) is one if yk ≤ y and zero otherwise,
• the set of order statistics y(1) ≤ y(2) ≤ · · · ≤ y(n), i.e., the observed values

arranged in increasing order.

The second and third of these are reductions of the first, suppressing the
information about the order in which the observations are obtained. In general
no further reduction is possible and so either of the last two forms the suf-
ficient statistic. Thus if we apply the general prescription, conclusions about
the function F(y) are to be based on one of the above, for example on the
sample distribution function, whereas consistency with the model is examined
via the conditional distribution given the order statistics. This conditional dis-
tribution specifies that starting from the original data, all n! permutations of the
data are equally likely. This leads to tests in general termed permutation tests.
This idea is now applied to slightly more complicated situations.

Example 3.4. Test of symmetry. Suppose that the null hypothesis is that the
distribution is symmetric about a known point, which we may take to be zero.
That is, under the null hypothesis F(−y) + F(y) = 1. Under this hypothesis,
all points y and −y have equal probability, so that the sufficient statistic is
determined by the order statistics or sample distribution function of the |yk|.
Further, conditionally on the sufficient statistic, all 2n sample points ±yk have
equal probability 2−n. Thus the distribution under the null hypothesis of any
test statistic is in principle exactly known.

Simple one-sided test statistics for symmetry can be based on the number
of positive observations, leading to the sign test, whose null distribution is
binomial with parameter 1

2 and index n, or on the mean of all observations.
The distribution of the latter can be found by enumeration or approximated by
finding its first few moments and using a normal or other approximation to the
distribution.

This formulation is relevant, for example, when the observations analyzed are
differences between primary observations after and before some intervention, or
are differences obtained from the same individual under two different regimes.

A strength of such procedures is that they involve no specification of the
functional form of F(y). They do, however, involve strong independence
assumptions, which may often be more critical. Moreover, they do not extend
easily to relatively complicated models.
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Example 3.5. Nonparametric two-sample test. Let (Y11, . . . , Y1n1 ; Y21, . . . ,
Y2n2)be two sets of mutually independent random variables with cumulative dis-
tribution functions respectively F1(y) and F2(y). Consider the null hypothesis
F1(y) = F2(y) for all y.

When this hypothesis is true the sufficient statistic is the set of order statistics
of the combined set of observations and under this hypothesis all (n1 + n2)!
permutations of the data are equally likely and, in particular, the first set of n1

observations is in effect a random sample drawn without replacement from the
full set, allowing the null distribution of any test statistic to be found.

Sometimes it may be considered that while the ordering of possible obser-
vational points is meaningful the labelling by numerical values is not. Then
we look for procedures invariant under arbitrary strictly monotone increasing
transformations of the measurement scale. This is achieved by replacing the
individual observations y by their rank order in the full set of order statistics of
the combined sample. If the test statistic, TW , is the sum of the ranks of, say,
the first sample, the resulting test is called the Wilcoxon rank sum test and the
parallel test for the single-sample symmetry problem is the Wilcoxon signed
rank test.

The distribution of the test statistic under the null hypothesis, and hence the
level of significance, is in principle found by enumeration. The moments of TW

under the null hypothesis can be found by the arguments to be developed in
a rather different context in Section 9.2 and in fact the mean and variance are
respectively n1(n1 + n2 + 1)/2 and n1n2(n1 + n2 + 1)/12. A normal approx-
imation, with continuity correction, based on this mean and variance will often
be adequate.

Throughout this discussion the full set of values of y is regarded as fixed.

The choice of test statistic in these arguments is based on informal consider-
ations or broad analogy. Sometimes, however, the choice can be sharpened
by requiring good sensitivity of the test were the data produced by some
unknown monotonic transformation of data following a specific parametric
model.

For the two-sample problem, the most obvious possibilities are that the data
are transformed from underlying normal or underlying exponential distribu-
tions, a test of equality of the relevant means being required in each case. The
exponential model is potentially relevant for the analysis of survival data. Up to
a scale and location change in the normal case and up to a scale change in
the exponential case, the originating data can then be reconstructed approx-
imately under the null hypothesis by replacing the rth largest order statistic
out of n in the data by the expected value of that order statistic in samples



40 Significance tests

from the standard normal or unit exponential distribution respectively. Then
the standard parametric test statistics are used, relying in principle on their
permutation distribution to preserve the nonparametric propriety of the test.

It can be shown that, purely as a test procedure, the loss of sensitivity of
the resulting nonparametric analysis as compared with the fully parametric
analysis, were it available, is usually small. In the normal case the expected order
statistics, called Fisher and Yates scores, are tabulated, or can be approximated
by −1{(r − 3/8)/(n + 1/4)}. For the exponential distribution the scores can
be given in explicit form or approximated by log{(n + 1)/(n + 1 − r − 1/2)}.

3.6 Relation with interval estimation

While conceptually it may seem simplest to regard estimation with uncertainty
as a simpler and more direct mode of analysis than significance testing there are
some important advantages, especially in dealing with relatively complicated
problems, in arguing in the other direction. Essentially confidence intervals, or
more generally confidence sets, can be produced by testing consistency with
every possible value in �ψ and taking all those values not ‘rejected’ at level c,
say, to produce a 1 − c level interval or region. This procedure has the property
that in repeated applications any true value of ψ will be included in the region
except in a proportion 1− c of cases. This can be done at various levels c, using
the same form of test throughout.

Example 3.6. Ratio of normal means. Given two independent sets of random
variables from normal distributions of unknown means µ0, µ1 and with known
variance σ 2

0 , we first reduce by sufficiency to the sample means ȳ0, ȳ1. Suppose
that the parameter of interest is ψ = µ1/µ0. Consider the null hypothesis
ψ = ψ0. Then we look for a statistic with a distribution under the null hypothesis
that does not depend on the nuisance parameter. Such a statistic is

Ȳ1 − ψ0Ȳ0

σ0
√
(1/n1 + ψ2

0 /n0)
; (3.12)

this has a standard normal distribution under the null hypothesis. This with
ψ0 replaced by ψ could be treated as a pivot provided that we can treat Ȳ0 as
positive.

Note that provided the two distributions have the same variance a similar
result with the Student t distribution replacing the standard normal would apply
if the variance were unknown and had to be estimated. To treat the probably
more realistic situation where the two distributions have different and unknown
variances requires the approximate techniques of Chapter 6.
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We now form a 1− c level confidence region by taking all those values ofψ0

that would not be ‘rejected’ at level c in this test. That is, we take the set{
ψ :

(Ȳ1 − ψ Ȳ0)
2

σ 2
0 (1/n1 + ψ2/n0)

≤ k∗
1; c

}
, (3.13)

where k∗
1; c is the upper c point of the chi-squared distribution with one degree

of freedom.
Thus we find the limits for ψ as the roots of a quadratic equation. If there

are no real roots, all values of ψ are consistent with the data at the level in
question. If the numerator and especially the denominator are poorly determ-
ined, a confidence interval consisting of the whole line may be the only rational
conclusion to be drawn and is entirely reasonable from a testing point of view,
even though regarded from a confidence interval perspective it may, wrongly,
seem like a vacuous statement.

Depending on the context, emphasis may lie on the possible explanations
of the data that are reasonably consistent with the data or on those possible
explanations that have been reasonably firmly refuted.

Example 3.7. Poisson-distributed signal with additive noise. Suppose that Y
has a Poisson distribution with mean µ + a, where a > 0 is a known con-
stant representing a background process of noise whose rate of occurrence has
been estimated with high precision in a separate study. The parameterµ corres-
ponds to a signal of interest. Now if, for example, y = 0 and a is appreciable,
for example, a ≥ 4, when we test consistency with each possible value of µ
all values of the parameter are inconsistent with the data until we use very small
values of c. For example, the 95 per cent confidence interval will be empty. Now
in terms of the initial formulation of confidence intervals, in which, in partic-
ular, the model is taken as a firm basis for analysis, this amounts to making
a statement that is certainly wrong; there is by supposition some value of the
parameter that generated the data. On the other hand, regarded as a statement of
which values ofµ are consistent with the data at such-and-such a level the state-
ment is perfectly reasonable and indeed is arguably the only sensible frequentist
conclusion possible at that level of c.

3.7 Interpretation of significance tests

There is a large and ever-increasing literature on the use and misuse of
significance tests. This centres on such points as:

1. Often the null hypothesis is almost certainly false, inviting the question
why is it worth testing it?
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2. Estimation of ψ is usually more enlightening than testing hypotheses
about ψ .

3. Failure to ‘reject’ H0 does not mean that we necessarily consider H0 to be
exactly or even nearly true.

4. If tests show that data are consistent with H0 and inconsistent with the
minimal departures from H0 considered as of subject-matter importance,
then this may be taken as positive support for H0, i.e., as more than mere
consistency with H0.

5. With large amounts of data small departures from H0 of no subject-matter
importance may be highly significant.

6. When there are several or many somewhat similar sets of data from
different sources bearing on the same issue, separate significance
tests for each data source on its own are usually best avoided. They
address individual questions in isolation and this is often
inappropriate.

7. pobs is not the probability that H0 is true.

Discussion of these points would take us too far afield. Point 7 addresses
a clear misconception. The other points are largely concerned with how in
applications such tests are most fruitfully applied and with the close connection
between tests and interval estimation. The latter theme is emphasized below.
The essential point is that significance tests in the first place address the ques-
tion of whether the data are reasonably consistent with a null hypothesis in
the respect tested. This is in many contexts an interesting but limited ques-
tion. The much fuller specification needed to develop confidence limits by this
route leads to much more informative summaries of what the data plus model
assumptions imply.

3.8 Bayesian testing

A Bayesian discussion of significance testing is available only when a full family
of models is available. We work with the posterior distribution of ψ . When the
null hypothesis is quite possibly exactly or nearly correct we specify a prior
probability π0 that H0 is true; we need also to specify the conditional prior
distribution of ψ when H0 is false, as well as aspects of the prior distribution
concerning nuisance parameters λ. Some care is needed here because the issue
of testing is not likely to arise when massive easily detected differences are
present. Thus when, say, ψ can be estimated with a standard error of σ0/

√
n
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the conditional prior should have standard deviation bσ0/
√

n, for some not too
large value of b.

When the role of H0 is to divide the parameter space into qualitatively
different parts the discussion essentially is equivalent to checking whether
the posterior interval at some suitable level overlaps the null hypothesis value
of ψ . If and only if there is no overlap the region containing ψ is reason-
ably firmly established. In simple situations, such as that of Example 1.1,
posterior and confidence intervals are in exact or approximate agreement
when flat priors are used, providing in such problems some formal justifica-
tion for the use of flat priors or, from a different perspective, for confidence
intervals.

We defer to Section 5.12 the general principles that apply to the choice of
prior distributions, in particular as they affect both types of testing problems
mentioned here.

Notes 3

Section 3.1. The explicit classification of types of null hypothesis is developed
from Cox (1977).

Section 3.2. The use of the conditional distribution to test conformity with
a Poisson distribution follows Fisher (1950). Another route for dealing with
discrete distributions is to define (Stone, 1969) the p-value for test statistic T
by P(T > tobs)+ P(T = tobs)/2. This produces a statistic having more nearly
a uniform distribution under the null hypothesis but the motivating operational
meaning has been sacrificed.

Section 3.3. There are a number of ways of defining two-sided p-values for
discrete distributions; see, for example, Cox and Hinkley (1974, p.79).

Section 3.4. The contrast made here between the calculation of p-values as
measures of evidence of consistency and the more decision-focused emphasis
on accepting and rejecting hypotheses might be taken as one characteristic
difference between the Fisherian and the Neyman–Pearson formulations of
statistical theory. While this is in some respects the case, the actual practice in
specific applications as between Fisher and Neyman was almost the reverse.
Neyman often in effect reported p-values whereas some of Fisher’s use of tests
in applications was much more dichotomous. For a discussion of the notion



44 Significance tests

of severity of tests, and the circumstances when consistency with H0 might be
taken as positive support for H0, see Mayo (1996).

Section 3.5. For a thorough account of nonparametric tests, see Lehmann
(1998).

Section 3.6. The argument for the ratio of normal means is due to E. C. Fieller,
after whom it is commonly named. The result applies immediately to the ratio
of least squares regression coefficients and hence in particular to estimating
the intercept of a regression line on the z-coordinate axis. A substantial dispute
developed over how this problem should be handled from the point of view of
Fisher’s fiducial theory, which mathematically but not conceptually amounts
to putting flat priors on the two means (Creasy, 1954). There are important
extensions of the situation, for example to inverse regression or (controlled)
calibration, where on the basis of a fitted regression equation it is desired to
estimate the value of an explanatory variable that generated a new value of the
response variable.

Section 3.8. For more on Bayesian tests, see Jeffreys (1961) and also
Section 6.2.6 and Notes 6.2.
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More complicated situations

Summary. This chapter continues the comparative discussion of frequentist
and Bayesian arguments by examining rather more complicated situations. In
particular several versions of the two-by-two contingency table are compared
and further developments indicated. More complicated Bayesian problems are
discussed.

4.1 General remarks

The previous frequentist discussion in especially Chapter 3 yields a theoretical
approach which is limited in two senses. It is restricted to problems with no
nuisance parameters or ones in which elimination of nuisance parameters is
straightforward. An important step in generalizing the discussion is to extend
the notion of a Fisherian reduction. Then we turn to a more systematic discussion
of the role of nuisance parameters.

By comparison, as noted previously in Section 1.5, a great formal advant-
age of the Bayesian formulation is that, once the formulation is accepted, all
subsequent problems are computational and the simplifications consequent on
sufficiency serve only to ease calculations.

4.2 General Bayesian formulation

The argument outlined in Section 1.5 for inference about the mean of a normal
distribution can be generalized as follows. Consider the model fY |�(y | θ),
where, because we are going to treat the unknown parameter as a random vari-
able, we now regard the model for the data-generating process as a conditional
density. Suppose that � has the prior density f�(θ), specifying the marginal

45
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distribution of the parameter, i.e., in effect the distribution � has when the
observations y are not available.

Given the data and the above formulation it is reasonable to assume that
all information about θ is contained in the conditional distribution of � given
Y = y. We call this the posterior distribution of � and calculate it by the
standard laws of probability theory, as given in (1.12), by

f�|Y (θ | y) = fY |�(y | θ) f�(θ)∫
�θ

fY |�(y | φ) f�(φ)dφ
. (4.1)

The main problem in computing this lies in evaluating the normalizing constant
in the denominator, especially if the dimension of the parameter space is high.

Finally, to isolate the information about the parameter of interest ψ , we
marginalize the posterior distribution over the nuisance parameter λ. That is,
writing θ = (ψ , λ), we consider

f�|Y (ψ | y) =
∫

f�|Y (ψ , λ | y)dλ. (4.2)

The models and parameters for which this leads to simple explicit solutions are
broadly those for which frequentist inference yields simple solutions.

Because in the formula for the posterior density the prior density enters both
in the numerator and the denominator, formal multiplication of the prior density
by a constant would leave the answer unchanged. That is, there is no need for
the prior measure to be normalized to 1 so that, formally at least, improper, i.e.
divergent, prior densities may be used, always provided proper posterior dens-
ities result. A simple example in the context of the normal mean, Section 1.5,
is to take as prior density element fM(µ)dµ just dµ. This could be regarded
as the limit of the proper normal prior with variance v taken as v → ∞. Such
limits raise few problems in simple cases, but in complicated multiparameter
problems considerable care would be needed were such limiting notions con-
templated. There results here a posterior distribution for the mean that is normal
with mean ȳ and variance σ 2

0 /n, leading to posterior limits numerically identical
to confidence limits.

In fact, with a scalar parameter it is possible in some generality to find a prior
giving very close agreement with corresponding confidence intervals. With
multidimensional parameters this is not in general possible and naive use of
flat priors can lead to procedures that are very poor from all perspectives; see
Example 5.5.

An immediate consequence of the Bayesian formulation is that for a given
prior distribution and model the data enter only via the likelihood. More spe-
cifically for a given prior and model if y and y′ are two sets of values with
proportional likelihoods the induced posterior distributions are the same. This



4.3 Frequentist analysis 47

forms what may be called the weak likelihood principle. Less immediately,
if two different models but with parameters having the same interpretation,
but possibly even referring to different observational systems, lead to data y
and y′ with proportional likelihoods, then again the posterior distributions are
identical. This forms the less compelling strong likelihood principle. Most fre-
quentist methods do not obey this latter principle, although the departure is
usually relatively minor. If the models refer to different random systems, the
implicit prior knowledge may, in any case, be different.

4.3 Frequentist analysis

4.3.1 Extended Fisherian reduction

One approach to simple problems is essentially that of Section 2.5 and can be
summarized, as before, in the Fisherian reduction:

• find the likelihood function;
• reduce to a sufficient statistic S of the same dimension as θ ;
• find a function of S that has a distribution depending only on ψ ;
• place it in pivotal form or alternatively use it to derive p-values for null

hypotheses;
• invert to obtain limits for ψ at an arbitrary set of probability levels.

There is sometimes an extension of the method that works when the model
is of the (k, d) curved exponential family form. Then the sufficient statistic is
of dimension k greater than d, the dimension of the parameter space. We then
proceed as follows:

• if possible, rewrite the k-dimensional sufficient statistic, when k > d, in the
form (S, A) such that S is of dimension d and A has a distribution not
depending on θ ;

• consider the distribution of S given A = a and proceed as before. The
statistic A is called ancillary.

There are limitations to these methods. In particular a suitable A may not
exist, and then one is driven to asymptotic, i.e., approximate, arguments for
problems of reasonable complexity and sometimes even for simple problems.

We give some examples, the first of which is not of exponential family form.

Example 4.1. Uniform distribution of known range. Suppose that (Y1, . . . , Yn)

are independently and identically distributed in the uniform distribution over
(θ−1, θ+1). The likelihood takes the constant value 2−n provided the smallest
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and largest values (y(1), y(n)) lie within the range (θ − 1, θ + 1) and is zero
otherwise. The minimal sufficient statistic is of dimension 2, even though the
parameter is only of dimension 1. The model is a special case of a location family
and it follows from the invariance properties of such models that A = Y(n)−Y(1)
has a distribution independent of θ .

This example shows the imperative of explicit or implicit conditioning on
the observed value a of A in quite compelling form. If a is approximately 2,
only values of θ very close to y∗ = (y(1) + y(n))/2 are consistent with the data.
If, on the other hand, a is very small, all values in the range of the common
observed value y∗ plus and minus 1 are consistent with the data. In general, the
conditional distribution of Y∗ given A = a is found as follows.

The joint density of (Y(1), Y(n)) is

n(n − 1)(y(n) − y(1))
n−2/2n (4.3)

and the transformation to new variables (Y∗, A = Y(n)−Y(1)) has unit Jacobian.
Therefore the new variables (Y∗, A) have density n(n−1)a(n−2)/2n defined over
the triangular region (0 ≤ a ≤ 2; θ−1+a/2 ≤ y∗ ≤ θ+1−a/2) and density
zero elsewhere. This implies that the conditional density of Y∗ given A = a is
uniform over the allowable interval θ − 1 + a/2 ≤ y∗ ≤ θ + 1 − a/2.

Conditional confidence interval statements can now be constructed although
they add little to the statement just made, in effect that every value of θ in the
relevant interval is in some sense equally consistent with the data. The key point
is that an interval statement assessed by its unconditional distribution could be
formed that would give the correct marginal frequency of coverage but that
would hide the fact that for some samples very precise statements are possible
whereas for others only low precision is achievable.

Example 4.2. Two measuring instruments. A closely related point is made
by the following idealized example. Suppose that a single observation Y is
made on a normally distributed random variable of unknown mean µ. There
are available two measuring instruments, one with known small variance, say
σ 2

0 = 10−4, and one with known large variance, say σ 2
1 = 104. A randomizing

device chooses an instrument with probability 1/2 for each possibility and the
full data consist of the observation y and an identifier d = 0, 1 to show which
variance is involved. The log likelihood is

− log σd − exp{−(y − µ)2/(2σ 2
d )}, (4.4)

so that (y, d) forms the sufficient statistic and d is ancillary, suggesting again that
the formation of confidence intervals or the evaluation of a p-value should use
the variance belonging to the apparatus actually used. If the sensitive apparatus,
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d = 0, is in fact used, why should the interpretation be affected by the possibility
that one might have used some other instrument?

There is a distinction between this and the previous example in that in the
former the conditioning arose out of the mathematical structure of the problem,
whereas in the present example the ancillary statistic arises from a physical
distinction between two measuring devices.

There is a further important point suggested by this example. The fact that the
randomizing probability is assumed known does not seem material. The argu-
ment for conditioning is equally compelling if the choice between the two sets
of apparatus is made at random with some unknown probability, provided only
that the value of the probability, and of course the outcome of the randomization,
is unconnected with µ.

More formally, suppose that we have factorization in which the distribution
of S given A = a depends only on θ , whereas the distribution of A depends on
an additional parameter γ such that the parameter space becomes �θ × �γ ,
so that θ and γ are variation-independent in the sense introduced in Section
1.1. Then A is ancillary in the extended sense for inference about θ . The term
S-ancillarity is often used for this idea.

Example 4.3. Linear model. The previous examples are in a sense a prelim-
inary to the following widely occurring situation. Consider the linear model of
Examples 1.4 and 2.2 in which the n × 1 vector Y has expectation E(Y) = zβ,
where z is an n × q matrix of full rank q < n and where the components are
independently normally distributed with variance σ 2. Suppose that, instead of
the assumption of the previous discussion that z is a matrix of fixed constants,
we suppose that z is the realized value of a random matrix Z with a known
probability distribution.

The log likelihood is by (2.17)

− n log σ − {(y − zβ̂)T (y − zβ̂)+ (β̂ − β)T (zT z)(β̂ − β)}/(2σ 2) (4.5)

plus in general functions of z arising from the known distribution of Z . Thus
the minimal sufficient statistic includes the residual sum of squares and the
least squares estimates as before but also functions of z, in particular zT z. Thus
conditioning on z, or especially on zT z, is indicated. This matrix, which specifies
the precision of the least squares estimates, plays the role of the distinction
between the two measuring instruments in the preceding example.

As noted in the previous discussion and using the extended definition
of ancillarity, the argument for conditioning is unaltered if Z has a prob-
ability distribution fZ(z; γ ), where γ and the parameter of interest are
variation-independent.
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In many experimental studies the explanatory variables would be chosen
by the investigator systematically and treating z as a fixed matrix is totally
appropriate. In observational studies in which study individuals are chosen in a
random way all variables are random and so modelling z as a random variable
might seem natural. The discussion of extended ancillarity shows when that is
unnecessary and the standard practice of treating the explanatory variables as
fixed is then justified. This does not mean that the distribution of the explanatory
variables is totally uninformative about what is taken as the primary focus
of concern, namely the dependence of Y on z. In addition to specifying via
the matrix (zT z)−1 the precision of the least squares estimates, comparison of
the distribution of the components of z with their distribution in some target
population may provide evidence of the reliability of the sampling procedure
used and of the security of any extrapolation of the conclusions. In a comparable
Bayesian analysis the corresponding assumption would be the stronger one that
the prior densities of θ and γ are independent.

4.4 Some more general frequentist developments

4.4.1 Exponential family problems

Some limited but important classes of problems have a formally exact solution
within the frequentist approach. We begin with two situations involving expo-
nential family distributions. For simplicity we suppose that the parameter ψ of
interest is one-dimensional.

We start with a full exponential family model in which ψ is a linear combin-
ation of components of the canonical parameter. After linear transformation of
the parameter and canonical statistic we can write the density of the observations
in the form

m(y) exp{sψψ + sT
λ λ− k(ψ , λ)}, (4.6)

where (sψ , sλ) is a partitioning of the sufficient statistic corresponding to the
partitioning of the parameter. For inference about ψ we prefer a pivotal distri-
bution not depending on λ. It can be shown via the mathematical property of
completeness, essentially that the parameter space is rich enough, that separa-
tion from λ can be achieved only by working with the conditional distribution
of the data given Sλ = sλ. That is, we evaluate the conditional distribution of
Sψ given Sλ = sλ and use the resulting distribution to find which values of ψ
are consistent with the data at various levels.

Many of the standard procedures dealing with simple problems about
Poisson, binomial, gamma and normal distributions can be found by this route.
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We illustrate the arguments sketched above by a number of problems con-
nected with binomial distributions, noting that the canonical parameter of a
binomial distribution with probability π is φ = log{π/(1 −π)}. This has some
advantages in interpretation and also disadvantages. When π is small, the para-
meter is essentially equivalent to logπ meaning that differences in canonical
parameter are equivalent to ratios of probabilities.

Example 4.4. Two-by-two contingency table. Here there are data on n indi-
viduals for each of which two binary features are available, for example blue or
nonblue eyes, dead or survived, and so on. Throughout random variables refer-
ring to different individuals are assumed to be mutually independent. While
this is in some respects a very simple form of data, there are in fact at least four
distinct models for this situation. Three are discussed in the present section and
one, based on randomization used in design, is deferred to Chapter 9.

These models lead, to some extent, to the same statistical procedures, at least
for examining the presence of a relation between the binary features, although
derived by slightly different arguments. From an interpretational point of view,
however, the models are different. The data are in the form of four frequencies,
summing to n, and arranged in a 2 × 2 array.

In the first place all the Rkl in Table 4.1 are random variables with observed
values rkl. In some of the later developments one or more marginal frequencies
are regarded as fixed and we shall adapt the notation to reflect that.

It helps to motivate the following discussion to consider some ways in which
such data might arise. First, suppose that Rkl represents the number of occur-
rences of randomly occurring events in a population over a specified period
and that k = 0, 1 specifies the gender of the individual and l = 0, 1 specifies
presence or absence of a risk factor for the event. Then a reasonable model
is that the Rkl are independent random variables with Poisson distributions. It
follows that also the total frequency R.. has a Poisson distribution.

Next, suppose that the rows and columns correspond to two separate features
of individuals to be treated on an equal footing, say eye colour and hair colour,

Table 4.1. General notation
for 2 × 2 contingency table

R00 R01 R0.
R10 R11 R1.

R.0 R.1 R.. = n
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both regarded as binary for simplicity. Suppose that n independent individuals
are chosen and the two features recorded for each. Then the frequencies in
Table 4.1 have a multinomial distribution with four cells.

Finally, suppose that the rows of the table correspond to two treatments and
that nk. individuals are allocated to treatment k for k = 0, 1 and a binary outcome
variable, failure or success, say, recorded. Then Rkl is the number of responses
l among the individuals allocated to treatment k.

In the first situation the objective is to compare the Poisson means, in the
second to examine possible association between the features and in the third to
compare two probabilities of success. The essential equivalence of the analytical
procedures in these situations arises out of successive processes of conditioning;
the interpretations, concerning as they do different specifications, are different.

In the first model the Rkl are independent random variables with Poisson
distributions of means µkl and canonical parameters φkl = logµkl. A possible
hypothesis of interest is that the Poisson means have multiplicative form, i.e.,
the canonical parameter is a row effect plus a column effect. To test departures
from this model involves the parameter

ψ = logµ11 − logµ10 − logµ01 + logµ00 (4.7)

which is zero in the multiplicative case. The log likelihood may be written in
exponential family form and the canonical parameters, logµ, may be replaced
by ψ and three nuisance parameters. For inference about ψ via a distribution
not depending on the nuisance parameters, it is necessary to condition on the
marginal totals (R0., R1., R.0, R.1), implying also conditioning on the total num-
ber of observations R... The full conditional distribution will be given later in
this discussion.

Note first, however, that the marginal distribution of R.. is a Poisson distri-
bution of mean �µkl. Therefore the conditional distribution of the Rkl given
R.. = n is

� exp(−µkl)µ
rkl
kl /rkl!

exp(−�µkl)(�µkl)n/n! , (4.8)

so that the conditional distribution has the multinomial form
n!
�rkl!�π

rkl
kl , (4.9)

for r.. = �rkl = n, say, and is zero otherwise. Here

πkl = µkl/�µst . (4.10)

Further the standard cross-product ratio measure of association (π11π00)/

(π10π01) is equal to eψ . The parameter space is now three-dimensional in the
light of the constraint �πkl = 1.
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Now suppose as a second possibility that a sample of preassigned size n is
taken and interest focuses on the joint distribution of two binary features treated
on an equal footing. The multinomial distribution just calculated would now be
the initial model for analysis andψ would be a suitable measure of association.
Examination of the likelihood again shows that a distribution depending only
on ψ is obtained by conditioning on the row and column totals.

Further, if we condition first on the row totals the resulting distribution
corresponds to two independent binomial distributions with effective sample
sizes n0. = r0. and n1. = r1.. The corresponding binomial probabilities are
πk. = πk1/(πk0+πk1) for k = 0, 1. The corresponding canonical parameters are

log{πk./(1 − πk.)} = log(πk1/πk0). (4.11)

Thus the difference of canonical parameters is ψ .
In the preceding formulation there is a sample of size n in which two binary

features are recorded and treated on an equal footing. Now suppose that instead
the rows of the table represent an explanatory feature, such as alternative treat-
ments and that samples of size n0. = r0. and n1. = r1., say, are taken from
the relevant binomial distributions, which have corresponding probabilities of
outcome 1 equal to π0. and π1.. The likelihood is the product of two binomial
terms ∏ nk.!

rk0!rk1!π
rk0
k. (1 − πk.)

rk1 . (4.12)

On writing this in exponential family form and noting, as above, that ψ is
a difference of canonical parameters, we have that a distribution for inference
aboutψ is obtained by conditioning further on the column totals R.0 and R.1, so
that the distribution is that of, say, R11 given the column totals, the row totals
already being fixed by design. That is, conditioning is now on the full set M
of margins, namely R.0, R.1, R0., R1..

This conditional distribution can be written

P(R11 = r11 | M) = Cr0.
r01Cr1.

r11er11ψ

�Cr0.
r.1−wCr1.

w ewψ
. (4.13)

Here Ct
s denotes the number of combinations of t items taken s at a time, namely

t!/{s!(t − s)!}. The distribution is a generalized hypergeometric distribution,
reducing to an ordinary hypergeometric distribution in the special case ψ = 0,
when the sum in the denominator becomes Cr0.+r1.

r.1 . The significance test based
on this is called Fisher’s exact test. The mean and variance of the hypergeometric
distribution are respectively

r1.r.1

n
,

r0.r1.r.0r.1

n2(n − 1)
. (4.14)
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We thus have three different models respectively concerning Poisson distribu-
tions, concerning association in a multinomial distribution and concerning the
comparison of binomial parameters that lead after conditioning to the same stat-
istical procedure. It is helpful to distinguish conditioning by model formulation
from technical conditioning. Thus in the comparison of two binomial para-
meters the conditioning on row totals (sample sizes) is by model formulation,
whereas the conditioning on column totals is technical to derive a distribution
not depending on a nuisance parameter.

A practical consequence of the above results is that computerized procedures
for any of the models can be used interchangeably in this and related more
general situations. Due care in interpretation is of course crucial. In particular
methods for log Poisson regression, i.e., the analysis of multiplicative models
for Poisson means, can be used much more widely than might seem at first
sight.

Later, in Example 9.1, we shall have a version in which all the conditioning
is introduced by model formulation.

Example 4.5. Mantel–Haenszel procedure. Suppose that there are m inde-
pendent sets of binary data comparing the same two treatments and thus each
producing a two-by-two table of the kind analyzed in Example 4.4 in the final
formulation. If we constrain the probabilities in the tables only by requiring
that all have the same logistic difference ψ , then the canonical parameters in
the kth table can be written

φk0 = αk , φk1 = αk + ψ . (4.15)

That is, the relevant probabilities of a response 1 in the two rows of the kth table
are, respectively,

eαk/(1 + eαk ), eαk+ψ/(1 + eαk+ψ). (4.16)

It follows from the discussion for a single table that for inference aboutψ treat-
ing the αk as arbitrary nuisance parameters, technical conditioning is needed on
the column totals of each table separately as well as on the separate row totals
which were fixed by design. Note that if further information were available
to constrain the αk in some way, in particular to destroy variation independ-
ence, the conditioning requirement would, in principle at least, be changed. The
component of the canonical statistic attached to ψ is �Rk,11.

It follows that the distribution for inference about ψ is the convolution of
m generalized hypergeometric distributions (4.13). To test the null hypothesis
ψ = 0 the test statistic �Rk,11 can be used and has a distribution formed by
convoluting the separate hypergeometric distributions. In fact unless both m and
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the individual tables are in some sense small, a normal approximation based on
adding separate means and variances (4.14) will be satisfactory.

The conditional analysis would be identical if starting from a model in which
all cell frequencies had independent Poisson distributions with means specified
by a suitable product model.

Example 4.6. Simple regression for binary data. Suppose that Y1, . . . , Yn are
independent binary random variables such that

P(Yk = 1) = eα+βzk/(1 + eα+βzk ),

P(Yk = 0) = 1/(1 + eα+βzk ),
(4.17)

where the notation of Example 1.2 has been used to emphasize the connection
with simple normal-theory linear regression. The log likelihood can be written
in the form

α�yk + β�ykzk −� log(1 + eα+βzk ), (4.18)

so that the sufficient statistic is r = �yk , the total number of 1s, and s = �ykzk ,
the sum of the zk over the individuals with outcome 1. The latter is conditionally
equivalent to the least squares regression coefficient of Y on z.

For inference aboutβwe consider the conditional density of S given�Yk = r,
namely

cr(s)e
βs/�cr(v)e

βv, (4.19)

where the combinatorial coefficient cr(s) can be interpreted as the number (or
proportion) of distinct possible samples of size r drawn without replacement
from the finite population {z1, . . . , zn} and having total s.

In the particular case of testing the null hypothesis that β = 0 an exact
test of significance is obtained by enumeration of the possible samples or via
some approximation. This is a generalization of Fisher’s exact test for a 2 × 2
contingency table, the special case where the zk are themselves binary.

The above examples have concerned inference about a linear combination
of the canonical parameters, which can thus be taken as a single component of
that parameter. A rather less elegant procedure deals with the ratio of canonical
parameters. For this suppose without essential loss of generality that the para-
meter of interest is ψ = φ1/φ2, the ratio of the first two canonical parameters.
Under a null hypothesis ψ = ψ0 the log likelihood is thus

exp{(s1ψ0 + s2)φ2 + s[3]Tφ[3] − k(φ)}, (4.20)

where, for example, φ[3] = (φ3,φ4, . . .). It follows that in order to achieve
a distribution independent of the nuisance parameters technical conditioning
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is required on (s1ψ0 + s2, s[3]). That is, to test for departures from the null
hypothesis leading to, say, large values of S1, we consider the upper tail of its
conditional distribution.

Example 4.7. Normal mean, variance unknown. The canonical parameters for
a normal distribution of unknown mean µ and unknown variance σ 2 are µ/σ 2

and 1/σ 2. Thus inference about µ is concerned with the ratio of canonical
parameters. Under the null hypothesis µ = µ0, the sufficient statistic for σ 2

is �(Yk − µ0)
2. Under the null hypothesis the conditional distribution of the

vector Y is uniform on the sphere defined by the conditioning statistic and for
the observed value ȳ the required p-value is the proportion of the surface area
of the sphere corresponding to a cap defined by ȳ and centred on the unit line
through ψ0. Some calculation, which will not be reproduced here, shows this
argument to be a rather tortuous route to the standard Student t statistic and its
distribution.

A similar but slightly more complicated argument yields a significance test
for a regression parameter in a normal-theory linear model.

Example 4.8. Comparison of gamma distributions. Suppose that Y1, Y2 are
independently distributed with densities

ρk(ρkyk)
mk−1 exp(−ρkyk)/�(mk) (4.21)

for k = 1, 2 and that interest lies in ψ = ρ2/ρ1. This might arise in comparing
the rates of two Poisson processes or alternatively in considering the ratio of two
normal-theory estimates of variance having respectively (2m1, 2m2) degrees of
freedom.

The general argument leads to consideration of the null hypothesisρ2 = ψ0ρ1

and thence to study of the conditional distribution of Y1 given Y1 +ψ0Y2. This
can be shown to be equivalent to using the pivot

(ρ2Y2/m2)/(ρ1Y1/m1) (4.22)

having pivotal distribution the standard variance-ratio or F distribution with
(2m1, 2m2) degrees of freedom.

The reason that in the last two examples a rather round-about route is involved
in reaching an apparently simple conclusion is that the exponential family takes
no account of simplifications emerging from the transformational structure of
scale and/or location intrinsic to these two problems.

Example 4.9. Unacceptable conditioning. Suppose that (Y1, Y2) have inde-
pendent Poisson distribution of means (µ1,µ2) and hence canonical parameters
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(logµ1, logµ2). A null hypothesis about the ratio of canonical parameters,
namely logµ2 = ψ0 logµ1, is

µ2 = µ
ψ0
1 . (4.23)

The previous argument requires conditioning the distribution of Y2 on the
value of y2 +ψ0y1. Now especially if ψ0 is irrational, or even if it is rational of
the form a/b, where a and b are large coprime integers, there may be very few
points of support in the conditional distribution in question. In an extreme case
the observed point may be unique. The argument via technical conditioning
may thus collapse; moreover small changes in ψ0 induce dramatic changes
in the conditional distribution. Yet the statistical problem, even if somewhat
artificial, is not meaningless and is clearly capable of some approximate answer.
If the observed values are not too small the value of ψ cannot be too far from
log y2/ log y1 and the arguments of asymptotic theory to be developed later in
the book can be deployed to produce approximate tests and confidence intervals.

The important implication of this example is that the use of technical con-
ditioning to produce procedures whose properties do not depend on nuisance
parameters is powerful and appealing, but that insistence on exact separation
from the nuisance parameter may be achieved at too high a price.

4.4.2 Transformation models

A different kind of reduction is possible for models such as the location model
which preserve a special structure under a family of transformations.

Example 4.10. Location model. We return to Example 1.8, the location model.
The likelihood is �g(yk − µ) which can be rearranged in terms of the order
statistics y(l), i.e., the observed values arranged in increasing order of magnitude.
These in general form the sufficient statistic for the model, minimal except
for the normal distribution. Now the random variables corresponding to the
differences between order statistics, specified, for example, as

a = (y(2) − y(1), . . . , y(n) − y(1)) = (a2, . . . , an), (4.24)

have a distribution not depending on µ and hence are ancillary; inference about
µ is thus based on the conditional distribution of, say, y(1) given A = a. The
choice of y(1) is arbitrary because any estimate of location, for example the
mean, is y(1) plus a function of a, and the latter is not random after conditioning.
Now the marginal density of A is∫

g(y(1) − µ)g(y(1) + a2 − µ) · · · g(y(1) + an − µ)dy(1). (4.25)
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The integral with respect to y(1) is equivalent to one integrated with respect
to µ so that, on reexpressing the integrand in terms of the likelihood for the
unordered variables, the density of A is the function necessary to normalize the
likelihood to integrate to one with respect to µ. That is, the conditional density
of Y(1), or of any other measure of location, is determined by normalizing the
likelihood function and regarding it as a function of y(1) for given a. This implies
that p-values and confidence limits forµ result from normalizing the likelihood
and treating it like a distribution of µ.

This is an exceptional situation in frequentist theory. In general, likelihood is
a point function of its argument and integrating it over sets of parameter values
is not statistically meaningful. In a Bayesian formulation it would correspond
to combination with a uniform prior but no notion of a prior distribution is
involved in the present argument.

The ancillary statistics allow testing conformity with the model. For example,
to check on the functional form of g(.) it would be best to work with the
differences of the ordered values from the mean, (y(l) − ȳ) for l = 1, . . . , n.
These are functions of a as previously defined. A test statistic could be set up
informally sensitive to departures in distributional form from those implied by
g(.). Or (y(l) − ȳ) could be plotted against G−1{(l − 1/2)/(n + 1)}, where G(.)
is the cumulative distribution function corresponding to the density g(.).

From a more formal point of view, there is defined a set, in fact a group, of
transformations on the sample space, namely the set of location shifts. Associ-
ated with that is a group on the parameter space. The sample space is thereby
partitioned into orbits defined by constant values of a, invariant under the
group operation, and position on the orbit conditional on the orbit in question
provides the information about µ. This suggests more general formulations of
which the next most complicated is the scale and location model in which the
density is τ−1g{(y−µ)/τ)}. Here the family of implied transformations is two-
dimensional, corresponding to changes of scale and location and the ancillary
statistics are standardized differences of order statistics, i.e.,

{(y(3) − y(1))/(y(2) − y(1)), . . . , (y(n) − y(1))/(y(2) − y(1))} = (a∗
3, . . . , a∗

n).

(4.26)

There are many essentially equivalent ways of specifying the ancillary
statistic.

We can thus write estimates of µ and τ as linear combinations of y(1) and
y(2) with coefficients depending on the fixed values of the ancillary statist-
ics. Further, the Jacobian of the transformation from the y(k) to the variables
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(y(1), y(2), a∗) is (y(2) − y(1))n−2, so that all required distributions are directly
derivable from the likelihood function.

A different and in some ways more widely useful role of transformation
models is to suggest reduction of a sufficient statistic to focus on a particular
parameter of interest.

Example 4.11. Normal mean, variance unknown (ctd). To test the null hypo-
thesis µ = µ0 when the variance σ 2 is unknown using the statistics (Ȳ , s2) we
need a function that is unaltered by the transformations of origin and units of
measurement encapsulated in

(Ȳ , s2) to (a + bȲ , b2s2) (4.27)

and

µ to a + bµ. (4.28)

This is necessarily a function of the standard Student t statistic.

4.5 Some further Bayesian examples

In principle the prior density in a Bayesian analysis is an insertion of additional
information and the form of the prior should be dictated by the nature of that
evidence. It is useful, at least for theoretical discussion, to look at priors which
lead to mathematically tractable answers. One such form, useful usually only
for nuisance parameters, is to take a distribution with finite support, in particular
a two-point prior. This has in one dimension three adjustable parameters, the
position of two points and a probability, and for some limited purposes this
may be adequate. Because the posterior distribution remains concentrated on
the same two points computational aspects are much simplified.

We shall not develop that idea further and turn instead to other examples
of parametric conjugate priors which exploit the consequences of exponential
family structure as exemplified in Section 2.4.

Example 4.12. Normal variance. Suppose that Y1, . . . , Yn are independently
normally distributed with known mean, taken without loss of generality to be
zero, and unknown variance σ 2. The likelihood is, except for a constant factor,

1

σ n
exp

{ −�y2
k/(2σ

2)
}
. (4.29)

The canonical parameter is φ = 1/σ 2 and simplicity of structure suggests
takingφ to have a prior gamma density which it is convenient to write in the form

π(φ; g, nπ ) = g(gφ)nπ /2−1e−gφ/�(nπ/2), (4.30)
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defined by two quantities assumed known. One is nπ , which plays the role of an
effective sample size attached to the prior density, by analogy with the form of
the chi-squared density with n degrees of freedom. The second defining quantity
is g. Transformed into a distribution for σ 2 it is often called the inverse gamma
distribution. Also Eπ () = nπ/(2g).

On multiplying the likelihood by the prior density, the posterior density of
 is proportional to

φ(n+nπ )/2−1 exp
[ −{(

�y2
k + nπ/Eπ ()

)}
φ/2

]
. (4.31)

The posterior distribution is in effect found by treating{
�y2

k + nπ/Eπ ()
}
 (4.32)

as having a chi-squared distribution with n + nπ degrees of freedom.
Formally, frequentist inference is based on the pivot �Y2

k /σ
2, the pivotal

distribution being the chi-squared distribution with n degrees of freedom. There
is formal, although of course not conceptual, equivalence between the two
methods when nπ = 0. This arises from the improper prior dφ/φ, equivalent
to dσ/σ or to a uniform improper prior for log σ . That is, while there is never
in this setting exact agreement between Bayesian and frequentist solutions, the
latter can be approached as a limit as nπ → 0.

Example 4.13. Normal mean, variance unknown (ctd). In Section 1.5 and
Example 4.12 we have given simple Bayesian posterior distributions for the
mean of a normal distribution with variance known and for the variance when
the mean is known.

Suppose now that both parameters are unknown and that the mean is the
parameter of interest. The likelihood is proportional to

1

σ n
exp[−{n( ȳ − µ)2 +�(yk − ȳ)2}/(2σ 2)]. (4.33)

In many ways the most natural approach may seem to be to take the prior dis-
tributions for mean and variance to correspond to independence with the forms
used in the single-parameter analyses. That is, an inverse gamma distribution
for σ 2 is combined with a normal distribution of mean m and variance v for µ.
We do not give the details.

A second possibility is to modify the above assessment by replacing v by
bσ 2, where b is a known constant. Mathematical simplification that results from
this stems from µ/σ 2 rather than µ itself being a component of the canonical
parameter. A statistical justification might sometimes be that σ establishes the
natural scale for measuring random variability and that the amount of prior
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information is best assessed relative to that. Prior independence of mean and
variance has been abandoned.

The product of the likelihood and the prior is then proportional to

φn/2+nπ /2−1e−wφ , (4.34)

where

w = µ2{n/2 + 1/(2b)} − µ(nȳ + m/b)+ g

+ nȳ2/2 +�(yk − ȳ)2/2 + m2/(2b). (4.35)

To obtain the marginal posterior distribution of µ we integrate with respect to
φ and then normalize the resulting function of µ. The result is proportional to
w−n/2−nπ /2. Now note that the standard Student t distribution with d degrees
of freedom has density proportional to (1 + t2/d)−d(d+1)/2. Comparison with
w shows without detailed calculation that the posterior density of µ involves
the Student t distribution with degrees of freedom n + nπ − 1. More detailed
calculation shows that (µ− µ̃π )/s̃π has a posterior t distribution, where

µ̃π = (nȳ + m/b)/(n + 1/b) (4.36)

is the usual weighted mean and s̃π is a composite estimate of precision obtained
from �(yk − ȳ)2, the prior estimate of variance and the contrast (m − ȳ)2.

Again the frequentist solution based on the pivot

(µ− Ȳ)
√

n

{�(Yk − Ȳ)2/(n − 1)}1/2
, (4.37)

the standard Student t statistic with degrees of freedom n − 1, is recovered but
only as a limiting case.

Example 4.14. Components of variance. We now consider an illustration of a
wide class of problems introduced as Example 1.9, in which the structure of
unexplained variation in the data is built up from more than one component
random variable. We suppose that the observed random variable Yks for k =
1, . . . , m; s = 1, . . . , t has the form

Yks = µ+ ηk + εks, (4.38)

whereµ is an unknown mean and the η and the ε are mutually independent nor-
mally distributed random variables with zero mean and variances, respectively
τη, τε , called components of variance.

Suppose that interest focuses on the components of variance. To simplify
some details suppose that µ is known. In the balanced case studied here, and
only then, there is a reduction to a (2, 2) exponential family with canonical
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parameters (1/τε , 1/(τε + tτη)) so that a simple analytical form would emerge
from giving these two parameters independent gamma prior distributions,

While this gives an elegant result, the dependence on the subgroup size t is for
most purposes likely to be unreasonable. The restriction to balanced problems,
i.e., those in which the subgroup size t is the same for all k is also limiting, at
least so far as exact analytic results are concerned.

A second possibility is to assign the separate variance components independ-
ent inverse gamma priors and a third is to give one variance component, say τε ,
an inverse gamma prior and to give the ratio τη/τε an independent prior distri-
bution. There is no difficulty in principle in evaluating the posterior distribution
of the unknown parameters and any function of them of interest.

An important more practical point is that the relative precision for estimating
the upper variance component τη is less, and often much less, than that for
estimating a variance from a group of m observations and having m−1 degrees of
freedom in the standard terminology. Thus the inference will be more sensitive
to the form of the prior density than is typically the case in simpler examples.
The same remark applies even more strongly to complex multilevel models; it
is doubtful whether such models should be used for a source of variation for
which the effective replication is less than 10–20.

Notes 4

Section 4.2. For a general discussion of nonpersonalistic Bayesian theory and
of a range of statistical procedures developed from this perspective, see Box
and Tiao (1973). Box (1980) proposes the use of Bayesian arguments for para-
metric inference and frequentist arguments for model checking. Bernardo and
Smith (1994) give an encyclopedic account of Bayesian theory largely from the
personalistic perspective. See also Lindley (1990). For a brief historical review,
see Appendix A.

Bayesian approaches are based on formal requirements for the concept of
probability. Birnbaum (1962) aimed to develop a concept of statistical evidence
on the basis of a number of conditions that the concept should satisfy and it
was argued for a period that this approach also led to essentially Bayesian
methods. There were difficulties, however, probably in part at least because
of confusions between the weak and strong likelihood principles and in his
final paper Birnbaum (1969) considers sensible confidence intervals to be the
primary mode of inference. Fisher (1956), by contrast, maintains that different
contexts require different modes of inference, in effect arguing against any
single unifying theory.
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Section 4.3. The discussion of the uniform distribution follows Welch (1939),
who, however, drew and maintained the conclusion that the unconditional
distribution is appropriate for inference. The problem of the two measure-
ment instruments was introduced by Cox (1958c) in an attempt to clarify the
issues involved. Most treatments of regression and the linear model adopt the
conditional formulation of Example 4.3, probably wisely without comment.

Section 4.4. The relation between the Poisson distribution and the multino-
mial distribution was used as a mathematical device by R. A. Fisher in an early
discussion of degrees of freedom in the testing of, for example, contingency
tables. It is widely used in the context of log Poisson regression in the analysis
of epidemiological data. The discussion of the Mantel–Haenszel and related
problems follows Cox (1958a, 1958b) and Cox and Snell (1988). The discus-
sion of transformation models stems from Fisher (1934) and is substantially
developed by Fraser (1979) and forms the basis of much of his subsequent
work (Fraser, 2004), notably in approximating other models by models locally
with transformation structure.

Completeness of a family of distributions means essentially that there is no
nontrivial function of the random variable whose expectation is zero for all
members of the family. The notion is discussed in the more mathematical of
the books listed in Notes 1.

In the Neyman–Pearson development the elimination of nuisance parameters
is formalized in the notions of similar tests and regions of Neyman structure
(Lehmann and Romano, 2004).

The distinction between the various formulations of 2×2 contingency tables
is set out with great clarity by Pearson (1947). Fisher (1935b) introduces the gen-
eralized hypergeometric distribution with the somewhat enigmatic words: ‘If it
be admitted that these marginal frequencies by themselves supply no informa-
tion on the point at issue . . .’. Barnard introduced an unconditional procedure
that from a Neyman–Pearson perspective achieved a test of preassigned prob-
ability under H0 and improved properties under alternatives, but withdrew the
procedure, after seeing a comment by Fisher. The controversy continues. From
the perspective taken here achieving a preassigned significance level is not an
objective and the issue is more whether some form of approximate conditioning
might be preferable.
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Interpretations of uncertainty

Summary. This chapter discusses the nature of probability as it is used to rep-
resent both variability and uncertainty in the various approaches to statistical
inference. After some preliminary remarks, the way in which a frequency notion
of probability can be used to assess uncertainty is reviewed. Then two contrast-
ing notions of probability as representing degree of belief in an uncertain event
or hypothesis are examined.

5.1 General remarks

We can now consider some issues involved in formulating and comparing the
different approaches.

In some respects the Bayesian formulation is the simpler and in other respects
the more difficult. Once a likelihood and a prior are specified to a reasonable
approximation all problems are, in principle at least, straightforward. The res-
ulting posterior distribution can be manipulated in accordance with the ordinary
laws of probability. The difficulties centre on the concepts underlying the defin-
ition of the probabilities involved and then on the numerical specification of the
prior to sufficient accuracy.

Sometimes, as in certain genetical problems, it is reasonable to think of θ as
generated by a stochastic mechanism. There is no dispute that the Bayesian
approach is at least part of a reasonable formulation and solution in such
situations. In other cases to use the formulation in a literal way we have to
regard probability as measuring uncertainty in a sense not necessarily directly
linked to frequencies. We return to this issue later. Another possible justifica-
tion of some Bayesian methods is that they provide an algorithm for extracting
from the likelihood some procedures whose fundamental strength comes from
frequentist considerations. This can be regarded, in particular, as supporting

64
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a broad class of procedures, known as shrinkage methods, including ridge
regression.

The emphasis in this book is quite often on the close relation between
answers possible from different approaches. This does not imply that the differ-
ent views never conflict. Also the differences of interpretation between different
numerically similar answers may be conceptually important.

5.2 Broad roles of probability

A recurring theme in the discussion so far has concerned the broad distinction
between the frequentist and the Bayesian formalization and meaning of probab-
ility. Kolmogorov’s axiomatic formulation of the theory of probability largely
decoupled the issue of meaning from the mathematical aspects; his axioms were,
however, firmly rooted in a frequentist view, although towards the end of his
life he became concerned with a different interpretation based on complexity.
But in the present context meaning is crucial.

There are two ways in which probability may be used in statistical discus-
sions. The first is phenomenological, to describe in mathematical form the
empirical regularities that characterize systems containing haphazard variation.
This typically underlies the formulation of a probability model for the data, in
particular leading to the unknown parameters which are regarded as a focus
of interest. The probability of an event E is an idealized limiting proportion of
times in which E occurs in a large number of repeat observations on the system
under the same conditions. In some situations the notion of a large number of
repetitions can be reasonably closely realized; in others, as for example with eco-
nomic time series, the notion is a more abstract construction. In both cases the
working assumption is that the parameters describe features of the underlying
data-generating process divorced from special essentially accidental features of
the data under analysis.

That first phenomenological notion is concerned with describing variability.
The second role of probability is in connection with uncertainty and is thus epi-
stemological. In the frequentist theory we adapt the frequency-based view of
probability, using it only indirectly to calibrate the notions of confidence inter-
vals and significance tests. In most applications of the Bayesian view we need
an extended notion of probability as measuring the uncertainty of E given F ,
where now E , for example, is not necessarily the outcome of a random system,
but may be a hypothesis or indeed any feature which is unknown to the investig-
ator. In statistical applications E is typically some statement about the unknown
parameter θ or more specifically about the parameter of interestψ . The present
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discussion is largely confined to such situations. The issue of whether a single
number could usefully encapsulate uncertainty about the correctness of, say,
the Fundamental Theory underlying particle physics is far outside the scope of
the present discussion. It could, perhaps, be applied to a more specific question
such as a prediction of the Fundamental Theory: will the Higgs boson have
been discovered by 2010?

One extended notion of probability aims, in particular, to address the point
that in interpretation of data there are often sources of uncertainty additional
to those arising from narrow-sense statistical variability. In the frequentist
approach these aspects, such as possible systematic errors of measurement,
are addressed qualitatively, usually by formal or informal sensitivity analysis,
rather than incorporated into a probability assessment.

5.3 Frequentist interpretation of upper limits

First we consider the frequentist interpretation of upper limits obtained, for
example, from a suitable pivot. We take the simplest example, Example 1.1,
namely the normal mean when the variance is known, but the considerations
are fairly general. The upper limit

ȳ + k∗
cσ0/

√
n, (5.1)

derived here from the probability statement

P(µ < Ȳ + k∗
cσ0/

√
n) = 1 − c, (5.2)

is a particular instance of a hypothetical long run of statements a proportion
1−c of which will be true, always, of course, assuming our model is sound. We
can, at least in principle, make such a statement for each c and thereby generate
a collection of statements, sometimes called a confidence distribution. There is
no restriction to a single c, so long as some compatibility requirements hold.

Because this has the formal properties of a distribution for µ it was called
by R. A. Fisher the fiducial distribution and sometimes the fiducial probability
distribution. A crucial question is whether this distribution can be interpreted
and manipulated like an ordinary probability distribution. The position is:

• a single set of limits for µ from some data can in some respects be
considered just like a probability statement for µ;

• such probability statements cannot in general be combined or manipulated
by the laws of probability to evaluate, for example, the chance that µ
exceeds some given constant, for example zero. This is clearly illegitimate
in the present context.
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That is, as a single statement a 1 − c upper limit has the evidential force of
a statement of a unique event within a probability system. But the rules for
manipulating probabilities in general do not apply. The limits are, of course,
directly based on probability calculations.

Nevertheless the treatment of the confidence interval statement about the
parameter as if it is in some respects like a probability statement contains the
important insights that, in inference for the normal mean, the unknown para-
meter is more likely to be near the centre of the interval than near the end-points
and that, provided the model is reasonably appropriate, if the mean is outside
the interval it is not likely to be far outside.

A more emphatic demonstration that the sets of upper limits defined in this
way do not determine a probability distribution is to show that in general there
is an inconsistency if such a formal distribution determined in one stage of
analysis is used as input into a second stage of probability calculation. We shall
not give details; see Note 5.2.

The following example illustrates in very simple form the care needed in
passing from assumptions about the data, given the model, to inference about
the model, given the data, and in particular the false conclusions that can follow
from treating such statements as probability statements.

Example 5.1. Exchange paradox. There are two envelopes, one with φ euros
and the other with 2φ euros. One is chosen at random and given to you and
when opened it is found to contain 103 euros. You now have a choice. You
may keep the 103 euros or you may open the other envelope in which case you
keep its contents. You argue that the other envelope is equally likely to contain
500 euros or 2 × 103 euros and that, provided utility is linear in money, the
expected utility of the new envelope is 1.25 × 103 euros. Therefore you take
the new envelope. This decision does not depend on the particular value 103 so
that there was no need to open the first envelope.

The conclusion is clearly wrong. The error stems from attaching a probability
in a non-Bayesian context to the content of the new and as yet unobserved
envelope, given the observation; the only probability initially defined is that of
the possible observation, given the parameter, i.e., given the content of both
envelopes. Both possible values for the content of the new envelope assign
the same likelihood to the data and are in a sense equally consistent with the
data. In a non-Bayesian setting, this is not the same as the data implying equal
probabilities to the two possible values. In a Bayesian discussion with a proper
prior distribution, the relative prior probabilities attached to 500 euros and 2000
euros would be crucial. The improper prior that attaches equal prior probability
to all values of φ is trapped by the same paradox as that first formulated.
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5.4 Neyman–Pearson operational criteria

We now outline a rather different approach to frequentist intervals not via an
initial assumption that the dependence on the data is dictated by consideration of
sufficiency. Suppose that we wish to find, for example, upper limits for ψ with
the appropriate frequency interpretation, i.e., derived from a property such as

P(µ < Ȳ + k∗
cσ0/

√
n) = 1 − c. (5.3)

Initially we may require that exactly (or to an adequate approximation) for all θ

P{ψ < T(Y ; c)} = 1 − c, (5.4)

where T(Y ; c) is a function of the observed random variable Y . This ensures
that the right coverage probability is achieved. There are often many ways of
achieving this, some in a sense more efficient than others. It is appealing to
define optimality, i.e., sensitivity of the analysis, by requiring

P{ψ ′ < T(Y ; c)} (5.5)

to be minimal for all ψ ′ > ψ subject to correct coverage. This expresses the
notion that the upper bound should be as small as possible and does so in a
way that is essentially unchanged by monotonic increasing transformations of
ψ and T .

Essentially this strong optimality requirement is satisfied only when a simple
Fisherian reduction is possible. In the Neyman–Pearson approach dependence
on the sufficient statistic, in the specific example Ȳ , emerges out of the optimality
requirements, rather than being taken as a starting point justified by the defining
property of sufficient statistics.

5.5 Some general aspects of the frequentist approach

The approach via direct study of hypothetical long-run frequency properties has
the considerable advantage that it provides a way of comparing procedures that
may have compensating properties of robustness, simplicity and directness and
of considering the behaviour of procedures when the underlying assumptions
are not satisfied.

There remains an important issue, however. Is it clear in each case what is the
relevant long run of repetitions appropriate for the interpretation of the specific
data under analysis?

Example 5.2. Two measuring instruments (ctd). The observed random vari-
ables are (Y , D), where Y represents the measurement and D is an indicator
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of which instrument is used, i.e., we know which variance applies to our
observation.

The minimal sufficient statistic is (Y , D) with an obvious generalization if
repeat observations are made on the same apparatus. We have a (2, 1) exponen-
tial family in which, however, one component of the statistic, the indicator D,
has only two points of support. By the Fisherian reduction we condition on the
observed and exactly known variance, i.e., we use the normal distribution we
know was determined by the instrument actually used and we take no account
of the fact that in repetitions we might have obtained a quite different precision.

Unfortunately the Neyman–Pearson approach does not yield this result auto-
matically; it conflicts, superficially at least, with the sensitivity requirement for
optimality. That is, if we require a set of sample values leading to the long-run
inclusion of the true value with a specified probability and having maximum
probability of exclusion of (nearly all) false values, the conditional procedure
is not obtained.

We need a supplementary principle to define the appropriate ensemble of
repetitions that determines the statistical procedure. Note that this is necessary
even if the repetitive process were realized physically, for example if the above
measuring procedure took place every day over a long period.

This example can be regarded as a pared-down version of Example 4.3,
concerning regression analysis. The use of D to define a conditional distribution
is at first sight conceptually different from that used to obtain inference free of
a nuisance parameter.

5.6 Yet more on the frequentist approach

There are two somewhat different ways of considering frequentist procedures.
The one in some sense closest to the measurement of strength of evidence is the
calculation of p-values as a measuring instrument. This is to be assessed, as are
other measuring devices, by calibration against its performance when used. The
calibration is the somewhat hypothetical one that a given p has the interpretation
given previously in Section 3.2. That is, were we to regard a particular p as just
decisive against the null hypothesis, then in only a long-run proportion p of
cases in which the null hypothesis is true would it be wrongly rejected. In this
view such an interpretation serves only to explain the meaning of a particular p.

A more direct view is to regard a significance test at some preassigned
level, for example 0.05, as defining a procedure which, if used as a basis for
interpretation, controls a certain long-run error rate. Then, in principle at least, a
critical threshold value of p should be chosen in the context of each application
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and used as indicated. This would specify what is sometimes called a rule of
inductive behaviour. If taken very literally no particular statement of a probab-
ilistic nature is possible about any specific case. In its extreme form, we report
a departure from the null hypothesis if and only if p is less than or equal to the
preassigned level. While procedures are rarely used in quite such a mechanical
form, such a procedure is at least a crude model of reporting practice in some
areas of science and, while subject to obvious criticisms and improvement,
does give some protection against the overemphasizing of results of transit-
ory interest. The procedure is also a model of the operation of some kinds of
regulatory agency.

We shall not emphasize that approach here but concentrate on the reporting
of p-values as an analytical and interpretational device. In particular, this means
that any probabilities that are calculated are to be relevant to what are sometimes
referred to as the unique set of data under analysis.

Example 5.3. Rainy days in Gothenburg. Consider daily rainfall measured at
some defined point in Gothenburg, say in April. To be specific let W be the
event that on a given day the rainfall exceeds 5 mm. Ignore climate change and
any other secular changes and suppose we have a large amount of historical data
recording the occurrence and nonoccurrence of W on April days. For simplicity,
ignore possible dependence between nearby days. The relative frequency of W
when we aggregate will tend to stabilize and we idealize this to a limiting value
πW , the probability of a wet day. This is frequency-based, a physical measure
of the weather-system and what is sometimes called a chance to distinguish it
from probability as assessing uncertainty.

Now consider the question: will it be wet in Gothenburg tomorrow, a very
specific day in April?

Suppose we are interested in this unique day, not in a sequence of predictions.
If probability is a degree of belief, then there are arguments that in the absence
of other evidence the value πW should apply or if there are other considerations,
then they have to be combined with πW .

But supposing that we stick to a frequentist approach. There are then two
lines of argument. The first, essentially that of a rule of inductive behaviour, is
that probability is inapplicable (at least until tomorrow midnight by when the
probability will be either 0 or 1). We may follow the rule of saying that ‘It will
rain tomorrow’. If we follow such a rule repeatedly we will be right a proportion
πW of times but no further statement about tomorrow is possible.

Another approach is to say that the probability for tomorrow is πW but
only if two conditions are satisfied. The first is that tomorrow is a member
of an ensemble of repetitions in a proportion πW of which the event occurs.
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The second is that one cannot establish tomorrow as a member of a sub-ensemble
with a different proportion, that tomorrow is not a member of a recognizable sub-
set. That is, the statement must be adequately conditional. There are substantial
difficulties in implementing this notion precisely in a mathematical formaliz-
ation and these correspond to serious difficulties in statistical analysis. If we
condition too far, every event is unique. Nevertheless the notion of appropriate
conditioning captures an essential aspect of frequency-based inference.

Example 5.4. The normal mean (ctd). We now return to the study of limits for
the mean µ of a normal distribution with known variance; this case is taken
purely for simplicity and the argument is really very general. In the Bayesian
discussion we derive a distribution for µ which is, when the prior is "flat",
normal with mean ȳ and variance σ 2

0 /n. In the frequentist approach we start
from the statement

P(µ < Ȳ + k∗
cσ0/

√
n) = 1 − c. (5.6)

Then we take our data with mean ȳ and substitute into the previous equation
to obtain a limit for µ, namely ȳ + pcσ0/

√
n. Following the discussion of

Example 5.3 we have two interpretations. The first is that probability does not
apply, only the properties of the rule of inductive behaviour. The second is that
probability does apply, provided there is no further conditioning set available
that would lead to a (substantially) different probability. Unfortunately, while
at some intuitive level it is clear that, in the absence of further information, no
useful further conditioning set is available, careful mathematical discussion of
the point is delicate and the conclusions less clear than one might have hoped;
see Note 5.6.

5.7 Personalistic probability

We now turn to approaches that attempt to measure uncertainty directly by
probability and which therefore potentially form a basis for a general Bayesian
discussion.

A view of probability that has been strongly advocated as a systematic base
for statistical theory and analysis is that P(E | F) represents the degree of belief
in E , given F , held by a particular individual, commonly referred to as You.
It is sometimes convenient to omit the conditioning information F although in
applications it is always important and relevant and includes assumptions, for
example, about the data-generating process which You consider sensible.
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While many treatments of this topic regard the frequency interpretation of
probability merely as the limiting case of Your degree of belief when there
is a large amount of appropriate data, it is in some ways simpler in defining
P(E) to suppose available in principle for any p such that 0 < p < 1 an agreed
system of generating events with long-run frequency of occurrence p, or at least
generally agreed to have probability p. These might, for example, be based on
a well-tested random number generator.

You then consider a set of hypothetical situations in which You must choose
between

• a valuable prize if E is true and zero otherwise, or
• that same prize if one outcome of the random system with probability p

occurs and zero otherwise.

The value of p at which You are indifferent between these choices is defined
to be P(E); such a p exists under weak conditions. The argument implies the
existence of P(E) in principle for all possible events E . The definition is not
restricted to events in replicated random systems.

In statistical arguments the idea is in principle applied for each value of θ∗
of the parameter to evaluate the probability that the parameter �, considered
now as random, is less than θ∗, i.e., in principle to build the prior distribution
of �.

To show that probability as so defined has the usual mathematical properties
of probability, arguments can be produced to show that behaviour in different
but related situations that was inconsistent with the standard laws of probability
would be equivalent to making loss-making choices in the kind of situation
outlined above. Thus the discussion is not necessarily about the behaviour of
real people but rather is about the internal consistency of Your probability
assessments, so-called coherency. In fact experiments show that coherency is
often not achieved, even in quite simple experimental settings.

Because Your assessments of uncertainty obey the laws of probability, they
satisfy Bayes’ theorem. Hence it is argued that the only coherent route to stat-
istical assessment of Your uncertainty given the data y must be consistent with
the application of Bayes’ theorem to calculate the posterior distribution of the
parameter of interest from the prior distribution and the likelihood given by the
model.

In this approach, it is required that participation in the choices outlined above
is compulsory; there is no concept of being ignorant about E and of refusing to
take part in the assessment.

Many treatments of this type of probability tie it strongly to the decisions
You have to make on the basis of the evidence under consideration.
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5.8 Impersonal degree of belief

It is explicit in the treatment of the previous section that the probabilities con-
cerned belong to a particular person, You, and there is no suggestion that even
given the same information F different people will have the same probability.
Any agreement between individuals is presumed to come from the availability
of a large body of data with an agreed probability model, when the contribu-
tion of the prior will often be minor, as indeed we have seen in a number of
examples.

A conceptually quite different approach is to define P(E | F) as the degree
of belief in E that a reasonable person would hold given F . The presumption
then is that differences between reasonable individuals are to be considered
as arising from their differing information bases. The term objective degree of
belief may be used for such a notion.

The probability scale can be calibrated against a standard set of frequency-
based chances. Arguments can again be produced as to why this form of
probability obeys the usual rules of probability theory.

To be useful in individual applications, specific values have to be assigned to
the probabilities and in many applications this is done by using a flat prior which
is intended to represent an initial state of ignorance, leaving the final analysis to
be essentially a summary of information provided by the data. Example 1.1, the
normal mean, provides an instance where a very dispersed prior in the form of
a normal distribution with very large variance v provides in the limit a Bayesian
solution identical with the confidence interval form.

There are, however, some difficulties with this.

• Even for a scalar parameter θ the flat prior is not invariant under
reparameterization. Thus if θ is uniform eθ has an improper exponential
distribution, which is far from flat.

• In a specific instance it may be hard to justify a distribution putting much
more weight outside any finite interval than it does inside as a
representation of ignorance or indifference.

• In multidimensional parameters the difficulties of specifying a suitable prior
are much more acute.

For a scalar parameter the first point can be addressed by finding a form of the
parameter closest to being a location parameter. One way of doing this will be
discussed in Example 6.3.

The difficulty with multiparameter priors can be seen from the following
example.
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Example 5.5. The noncentral chi-squared distribution. Let (Y1, . . . , Yn) be
independently normally distributed with unit variance and means µ1, . . . ,µn

referring to independent situations and therefore with independent priors,
assumed flat. Each µ2

k has posterior expectation y2
k +1. Then if interest focuses

on �2 = �µ2
k , it has posterior expectation D2 + n. In fact its posterior

distribution is noncentral chi-squared with n degrees of freedom and noncent-
rality D2 = �Y2

k . This implies that, for large n, �2 is with high probability
D2 + n + Op(

√
n). But this is absurd in that whatever the true value of �2,

the statistic D2 is with high probability �2 + n + Op(
√

n). A very flat prior in
one dimension gives good results from almost all viewpoints, whereas a very
flat prior and independence in many dimensions do not. This is called Stein’s
paradox or more accurately one of Stein’s paradoxes.

If it were agreed that only the statistic D2 and the parameter �2 are relevant
the problem could be collapsed into a one-dimensional one. Such a reduction
is, in general, not available in multiparameter problems and even in this one a
general Bayesian solution is not of this reduced form.

Quite generally a prior that gives results that are reasonable from various
viewpoints for a single parameter will have unappealing features if applied
independently to many parameters. The following example could be phrased
more generally, for example for exponential family distributions, but is given
now for binomial probabilities.

Example 5.6. A set of binomial probabilities. Let π1, . . . ,πn be separate bino-
mial probabilities of success, referring, for example, to properties of distinct
parts of some random system. For example, success and failure may refer
respectively to the functioning or failure of a component. Suppose that to estim-
ate each probability m independent trials are made with rk successes, trials for
different events being independent. If each πk is assumed to have a uniform
prior on (0, 1), then the posterior distribution of πk is the beta distribution

π
rk
k (1 − πk)

m−rk

B(rk + 1, m − rk + 1)
, (5.7)

where the beta function in the denominator is a normalizing constant. It follows
that the posterior mean of πk is (rk + 1)/(m + 2). Now suppose that interest
lies in some function of the πk , such as in the reliability context ψn = �πk .

Because of the assumed independencies, the posterior distribution of ψn is
derived from a product of beta-distributed random variables and hence is, for
large m, close to a log normal distribution. Further, the mean of the posterior
distribution is, by independence,

�(rk + 1)/(m + 2)n (5.8)



5.8 Impersonal degree of belief 75

and as n → ∞ this, normalized by ψn, is

∏ 1 + 1/(πkm)

1 + 2/m
. (5.9)

Now especially if n is large compared with m this ratio is, in general, very
different from 1. Indeed if all the πk are small the ratio is greater than 1 and if
all the πk are near 1 the ratio is less than 1. This is clear on general grounds
in that the probabilities encountered are systematically discrepant from the
implications of the prior distribution.

This use of prior distributions to insert information additional to and distinct
from that supplied by the data has to be sharply contrasted with an empirical
Bayes approach in which the prior density is chosen to match the data and
hence in effect to smooth the empirical distributions encountered. For this a
simple approach is to assume a conjugate prior, in this case a beta density
proportional to πλ1−1(1 − π)λ2−1 and having two unknown parameters. The
marginal likelihood of the data, i.e., that obtained by integrating out π , can
thus be obtained and the λs estimated by frequentist methods, such as those of
Chapter 6. If errors in estimating the λs are ignored the application of Bayes’
theorem to find the posterior distribution of any function of the πk , such as ψ ,
raises no special problems. To make this into a fully Bayesian solution, it is
necessary only to adopt a prior distribution on the λs; its form is unlikely to be
critical.

The difficulties with flat and supposedly innocuous priors are most striking
when the number of component parameters is large but are not confined to this
situation.

Example 5.7. Exponential regression. Suppose that the exponential regression
of Example 1.5 is rewritten in the form

E(Yk) = α + βρzk , (5.10)

i.e., by writing ρ = eγ , and suppose that it is known that 0 < ρ < 1. Suppose
further that α,β, ρ are given independent uniform prior densities, the last over
(0, 1) and that the unknown standard deviation σ has a prior proportional to
1/σ ; thus three of the parameters have improper priors to be regarded as limiting
forms.

Suppose further that n independent observations are taken at values zk =
z0 + ak, where z0, a > 0. Then it can be shown that the posterior density of ρ
tends to concentrate near 0 or 1, corresponding in effect to a model in which
E(Y) is constant.
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5.9 Reference priors

While a notion of probability as measuring objective degree of belief has much
intuitive appeal, it is unclear how to supply even approximate numerical values
representing belief about sources of knowledge external to the data under ana-
lysis. More specifically to achieve goals similar to those addressed in frequentist
theory it is required that the prior represents in some sense indifference or lack
of information about relevant parameters. There are, however, considerable dif-
ficulties centring around the issue of defining a prior distribution representing
a state of initial ignorance about a parameter. Even in the simplest situation of
there being only two possible true distributions, it is not clear that saying that
each has prior probability 1/2 is really a statement of no knowledge and the
situation gets more severe when one contemplates infinite parameter spaces.

An alternative approach is to define a reference prior as a standard in which
the contribution of the data to the resulting posterior is maximized without
attempting to interpret the reference prior as such as a probability distribution.

A sketch of the steps needed to do this is as follows. First for any random
variable W with known density p(w) the entropy H(W) of a single observation
on W is defined by

H(W) = −E{log p(W)} = −
∫

p(w) log p(w)dw. (5.11)

This is best considered initially at least in the discrete form

−�pk log pk , (5.12)

where the sum is over the points of support of W . The general idea is that
observing a random variable whose value is essentially known is uninformative
or unsurprising; the entropy is zero if there is unit probability at a single point,
whereas if the distribution is widely dispersed over a large number of individu-
ally small probabilities the entropy is high. In the case of random variables, all
discrete, representing Y and � we may compare the entropies of posterior and
prior by

EY {H(� | Y)} − H(�), (5.13)

where the second term is the entropy of the prior distribution. In principle, the
least informative prior is the one that maximizes this difference, i.e., which
emphasizes the contribution of the data as contrasted with the prior.

Now suppose that the whole vector Y is independently replicated n times to
produce a new random variable Y∗n. With the discrete parameter case contem-
plated, under mild conditions, and in particular if the parameter space is finite,
the posterior distribution will become concentrated on a single point and the
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first term of (5.13) will tend to zero and so the required prior has maximum
entropy. That is, the prior maximizes (5.12) and for finite parameter spaces this
attaches equal prior probability to all points.

There are two difficulties with this as a general argument. One is that if the
parameter space is infinite H(θ) can be made arbitrarily large. Also for con-
tinuous random variables the definition (5.11) is not invariant under monotonic
transformations. To encapsulate the general idea of maximizing the contribution
of the data in this more general setting requires a more elaborate formulation
involving a careful specification of limiting operations which will not be given
here. The argument does depend on limiting replication from Y to Y∗n as n
increases; this is not the same as increasing the dimension of the observed
random variable but rather is one of replication of the whole data.

Two explicit conclusions from this development are firstly that for a scale and
location model, with location parameter µ and scale parameter σ , the reference
prior has the improper form dµdσ/σ , i.e., it treats µ and log σ as having inde-
pendent highly dispersed and effectively uniform priors. Secondly, for a single
parameter θ the reference prior is essentially uniform for a transformation of the
parameter that makes the model close to a location parameter. The calculation
of this forms Example 6.3.

There are, however, difficulties with this approach, in particular in that the
prior distribution for a particular parameter may well depend on which is the
parameter of primary interest or even on the order in which a set of nuisance
parameters is considered. Further, the simple dependence of the posterior on
the data only via the likelihood regardless of the probability model is lost. If
the prior is only a formal device and not to be interpreted as a probability,
what interpretation is justified for the posterior as an adequate summary of
information? In simple cases the reference prior may produce posterior distri-
butions with especially good frequency properties but that is to show its use as
a device for producing methods judged effective on other grounds, rather than
as a conceptual tool.

Examples 5.5 and 5.6 show that flat priors in many dimensions may yield
totally unsatisfactory posterior distributions. There is in any case a sharp con-
trast between such a use of relatively uninformative priors and the view that the
objective of introducing the prior distribution is to inject additional informa-
tion into the analysis. Many empirical applications of Bayesian techniques use
proper prior distributions that appear flat relative to the information supplied
by the data. If the parameter space to which the prior is attached is of relat-
ively high dimension the results must to some extent be suspect. It is unclear at
what point relatively flat priors that give good results from several viewpoints
become unsatisfactory as the dimensionality of the parameter space increases.



78 Interpretations of uncertainty

5.10 Temporal coherency

The word prior can be taken in two rather different senses, one referring to time
ordering and the other, in the present context, to information preceding, or at
least initially distinct from, the data under immediate analysis. Essentially it is
the second meaning that is the more appropriate here and the distinction bears
on the possibility of data-dependent priors and of consistency across time.

Suppose that a hypothesis H is of interest and that it is proposed to obtain
data to address H but that the data, to be denoted eventually by y, are not yet
available. Then we may consider Bayes’ theorem in the form

P∗(H | y) ∝ P(H)P∗(y | H). (5.14)

Here P∗ refers to a probability of a hypothesized situation; we do not yet know y.
Later y becomes available and now

P(H | y) ∝ P∗(H)P(y | H). (5.15)

Now the roles of P and P∗ have switched. The prior P∗(H) is the prior
that we would have if we did not know y, even though, in fact, we do know
y. Temporal coherency is the assumption that, for example, P(H) = P∗(H).
In many situations this assumption is entirely reasonable. On the other hand
it is not inevitable and there is nothing intrinsically inconsistent in changing
prior assessments, in particular in the light of experience obtained either in the
process of data collection or from the data themselves.

For example, a prior assessment is made in the design stage of a study, perhaps
on the basis of previous similar studies or on the basis of well-established theory,
say that a parameterψ will lie in a certain range. Such assessments are a crucial
part of study design, even if not formalized quantitatively in a prior distribution.
The data are obtained and are in clear conflict with the prior assessment; for
example ψ , expected to be negative, is pretty clearly positive.

There are essentially three possible explanations. The play of chance may
have been unkind. The data may be contaminated. The prior may be based
on a misconception. Suppose that reexamination of the theoretical arguments
leading to the initial prior shows that there was a mistake either of formulation
or even of calculation and that correction of that mistake leads to conformity
with the data. Then it is virtually obligatory to allow the prior to change, the
change having been driven by the data. There are, of course, dangers in such
retrospective adjustment of priors. In many fields even initially very surprising
effects can post hoc be made to seem plausible. There is a broadly analogous
difficulty in frequentist theory. This is the selection of effects for significance
testing after seeing the data.
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Temporal coherency is a concern especially, although by no means only, in
the context of studies continuing over a substantial period of time.

5.11 Degree of belief and frequency

In approaches to probability in which personalistic degree of belief is taken as
the primary concept it is customary to relate that to frequency via a very long
(infinite) sequence of exchangeable events. These can then be connected to a
sequence of independent and identically distributed trials, each with the same
probability p, and in which p itself has a probability distribution.

Suppose instead thatE1, . . . , En are n events, all judged by You to have approx-
imately the same probability p and not to be strongly dependent. In fact they
need not, in general, be related substantively. It follows from the Weak Law of
Large Numbers obeyed by personalistic probability that Your belief that about
a proportion p of the events are true has probability close to 1. You believe
strongly that Your probabilities have a frequency interpretation.

This suggests that in order to elicit Your probability of an event E instead
of contemplating hypothetical betting games You should try to find events
E1, . . . , En judged for good reason to have about the same probability as E and
then find what proportion of this set is true. That would then indicate appropriate
betting behaviour.

Of course, it is not suggested that this will be easily implemented. The argu-
ment is more one of fundamental principle concerning the primacy, even in a
personalistically focused approach, of relating to the real world as contrasted
with total concentration on internal consistency.

5.12 Statistical implementation of Bayesian analysis

To implement a Bayesian analysis, a prior distribution must be specified expli-
citly, i.e., in effect numerically. Of course, as with other aspects of formulation
formal or informal sensitivity analysis will often be desirable.

There are at least four ways in which a prior may be obtained.
First there is the possibility of an implicitly empirical Bayes approach,

where the word ‘empirical’ in this context implies some kind of frequency
interpretation. Suppose that there is an unknown parameter referring to the
outcome of a measuring process that is likely to be repeated in different cir-
cumstances and quite possibly by different investigators. Thus it might be a
mean length in metres, or a mean duration in years. These parameters are likely
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to vary widely in different circumstances, even within one broad context, and
hence to have a widely dispersed distribution. The use of a very dispersed prior
distribution might then lead to a posterior distribution with a frequency inter-
pretation over this ensemble of repetitions. While this interpretation has some
appeal for simple parameters such as means or simple measures of dispersion,
it is less appropriate for measures of dependence such as regression coefficients
and contrasts of means. Also the independence assumptions involved in apply-
ing this to multiparameter problems are both implausible and potentially very
misleading; see, for instance, Example 5.5.

The second approach is a well-specified empirical Bayes one. Suppose that
a parameter with the same interpretation, for example as a difference between
two treatments, is investigated in a large number of independent studies under
somewhat different conditions. Then even for the parameter in, say, the first
study there is some information in the other studies, how much depending on a
ratio of components of variance.

Example 5.8. Components of variance (ctd). We start with a collapsed version
of the model of Example 1.9 in which now there are random variables Yk

assumed to have the form

Yk = µ+ ηk + ε̃k . (5.16)

Here Yk is the estimate of say the treatment contrast of interest obtained
from the kth study and ε̃k is the internal estimate of error in that study.
That is, indefinite replication of the kth study would have produced the
value µ + ηk . The variation between studies is represented by the ran-
dom variables ηk . We suppose that the ε and η are independently normally
distributed with zero means and variances σ 2

ε̃
and σ 2

η . Note that in this ver-
sion ε̃k will depend on the internal replication within the study. While this
formulation is an idealized version of a situation that arises frequently in applic-
ations, there are many aspects of it that would need critical appraisal in an
application.

Now suppose that the number of studies is so large thatµ and the components
of variance may be regarded as known. If the mean of, say, the first group is
the parameter of interest it has Y1 as its direct estimate and also has the prior
frequency distribution specified by a normal distribution of meanµ and variance
σ 2
η so that the posterior distribution has mean

Y1/σ
2
ε̃

+ µ/σ 2
η

1/σ 2
ε̃

+ 1/σ 2
η

. (5.17)
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Thus the direct estimate Y1 is shrunk towards the general mean µ; this general
effect does depend on the assumption that the relevant error distributions are
not very long-tailed.

If now errors of estimation of µ and the variance components are to be
included in the analysis there are two possibilities. The first possibility is
to treat the estimation of µ and the variance components from a frequent-
ist perspective. The other analysis, which may be called fully Bayesian, is
to determine a prior density for µ and the variance components and to
determine the posterior density of µ + η1 from first principles. In such
a context the parameters µ and the variance components may be called
hyperparameters and their prior distribution a hyperprior. Even so, within
formal Bayesian theory they are simply unknowns to be treated like other
unknowns.

Now in many contexts empirical replication of similar parameters is not avail-
able. The third approach follows the personalistic prescription. You elicit Your
prior probabilities, for example via the kind of hypothetical betting games out-
lined in Section 5.7. For parameters taking continuous values a more realistic
notion is to elicit the values of some parameters encapsulating Your prior distri-
bution in some reasonably simple but realistic parametric form. Note that this
distribution will typically be multidimensional and any specification of prior
independence of component parameters may be critical.

In many, if not almost all, applications of statistical analysis the objective is
to clarify what can reasonably be learned from data, at least in part as a base
for public discussion within an organization or within a scientific field. For the
approach to be applicable in such situations there needs both to be a self-denying
ordinance that any prior probabilities are in some sense evidence-based, that
base to be reported, and also for some approximate consensus on their values
to be achieved.

What form might such evidence take? One possibility is that there are pre-
vious data which can reasonably be represented by a model in which some,
at least, of the parameters, and preferably some of the parameters of interest,
are in common with the current data. In this case, however, provided a consist-
ent formulation is adopted, the same results would be achieved by a combined
analysis of all data or, for that matter, by taking the current data as prior to
the historical data. This is a consequence of the self-consistency of the laws of
probability. Note that estimation of hyperparameters will be needed either by
frequentist methods or via a specification of a prior for them. In this context the
issue is essentially one of combining statistical evidence from different sources.
One of the principles of such combination is that the mutual consistency of the
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information should be checked before merging. We return to this issue in the
next section.

A second possibility is that the prior distribution is based on relatively inform-
ally recalled experience of a field, for example on data that have been seen
only informally, or which are partly anecdotal, and which have not been care-
fully and explicitly analysed. An alternative is that it is based on provisional
not-well-tested theory, which has not been introduced into the formulation of
the probability model for the data. In the former case addition of an allow-
ance for errors, biases and random errors in assessing the evidence would be
sensible.

There is a broad distinction between two uses of such prior distributions.
One is to deal with aspects intrinsic to the data under analysis and the other
is to introduce external information. For example, in extreme cases the dir-
ect interpretation of the data may depend on aspects about which there is no
information in the data. This covers such aspects as some kinds of systematic
error, measurement errors in explanatory variables, the effect of unobserved
explanatory variables, and so on. The choices are between considering such
aspects solely qualitatively, or by formal sensitivity analysis, or via a prior
distribution over parameters describing the unknown features. In the second
situation there may be relevant partially formed theory or expert opinion
external to the data. Dealing with expert opinion may raise delicate issues.
Some research is designed to replace somewhat vaguely based expert opin-
ion by explicit data-based conclusions and in that context it may be unwise to
include expert opinion in the analysis, unless it is done in a way in which
its impact can be disentangled from the contribution of the data. In some
areas at least such expert opinion, even if vigorously expressed, may be
fragile.

The next example discusses some aspects of dealing with systematic error.

Example 5.9. Bias assessment. An idealized version of the assessment of bias,
or systematic error, is that Ȳ is normally distributed with mean µ and known
variance σ 2

0 /n and that the parameter of interest ψ is µ + γ , where γ is an
unknown bias or systematic error that cannot be directly estimated from the
data under analysis, so that assessment of its effect has to come from external
sources.

The most satisfactory approach in many ways is a sensitivity analysis in
which γ is assigned a grid of values in the plausible range and confidence
intervals for ψ plotted against γ . Of course, in this case the intervals are a
simple translation of those for µ but in more complex cases the relation might
not be so straightforward and if there are several sources of bias a response
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surface would have to be described showing the dependence of the conclusions
on components in question. It would then be necessary to establish the region
in which the conclusions from Ȳ would be seriously changed by the biases.

An alternative approach, formally possibly more attractive but probably in the
end less insightful, is to elicit a prior distribution for γ , for example a normal
distribution of mean ν and variance τ 2, based for instance on experience of
similar studies for which the true outcome and hence the possible bias could
be estimated. Then the posterior distribution is normal with mean a weighted
average of Ȳ and ν.

The emphasis on the second and third approaches to the choice of prior is
on the refinement of analysis by inserting useful information, in the latter case
information that is not directly assessable as a statistical frequency.

The final approach returns to the notion of a prior that will be generally
accepted as a basis for assessing evidence from the data, i.e., which explicitly
aims to insert as little new information as possible. For relatively simple prob-
lems we have already seen examples where limiting forms of prior reproduce
approximately or exactly posterior intervals equivalent to confidence intervals.
In complex problems with many parameters direct generalization of the simple
priors produces analyses with manifestly unsatisfactory results; the notion of a
flat or indifferent prior in a many-dimensional problem is untenable. The notion
of a reference prior has been developed to achieve strong dependence on the
data but can be complicated in implementation and the interpretation of the
resulting posterior intervals, other than as approximate confidence intervals, is
hard to fathom.

There is a conceptual conflict underlying this discussion. Conclusions
expressed in terms of probability are on the face of it more powerful than
those expressed indirectly via confidence intervals and p-values. Further, in
principle at least, they allow the inclusion of a richer pool of information. But
this latter information is typically more fragile or even nebulous as compared
with that typically derived more directly from the data under analysis. The
implication seems to be that conclusions derived from the frequentist approach
are more immediately secure than those derived from most Bayesian analyses,
except from those of a directly empirical Bayes kind. Any counter-advantages
of Bayesian analyses come not from a tighter and more logically compelling
theoretical underpinning but rather from the ability to quantify additional kinds
of information.

Throughout the discussion so far it has been assumed that the model for the
data, and which thus determines the likelihood, is securely based. The following
section deals briefly with model uncertainty.
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5.13 Model uncertainty

The very word model implies idealization of the real system and, except just
possibly in the more esoteric parts of modern physics, as already noted in
Section 3.1, it hardly makes sense to talk of a model being true.

One relatively simple approach is to test, formally or informally, for inconsist-
encies between the model and the data. Inconsistencies if found and statistically
significant may nevertheless occasionally be judged unimportant for the inter-
pretation of the data. More commonly inconsistencies if detected will require
minor or major modification of the model. If no inconsistencies are uncovered
it may be sufficient to regard the analysis, whether Bayesian or frequentist, as
totally within the framework of the model.

Preferably, provisional conclusions having been drawn from an apparently
well-fitting model, the question should be considered: have assumptions been
made that might invalidate the conclusions? The answer will depend on how
clear-cut the conclusions are and in many cases informal consideration of the
question will suffice. In many cases analyses based on different models may be
required; the new models may change the specification of secondary features of
the model, for example by making different assumptions about the form of error
distributions or dependence structures among errors. Often more seriously, the
formulation of the primary questions may be changed, affecting the definition
and interpretation of the parameter of interest ψ .

In frequentist discussions this process is informal; it may, for example,
involve showing graphically or in tabular form the consequences of those dif-
ferent assumptions, combined with arguments about the general plausibility of
different assumptions. In Bayesian discussions there is the possibility of the pro-
cess of Bayesian model averaging. Ideally essentially the same subject-matter
conclusions follow from the different models. Provided prior probabilities are
specified for the different models and for the defining parameters within each
model, then in principle a posterior probability for each model can be found
and if appropriate a posterior distribution for a target variable found averaged
across models, giving each its appropriate weight. The prior distributions for
the parameters in each model must be proper.

Unfortunately for many interpretative purposes this procedure in inappro-
priate, quite apart from difficulties in specifying the priors. An exception is
when empirical prediction of a new outcome variable, commonly defined for
all models, is required; the notion of averaging several different predictions
has some general appeal. The difficulty with interpretation is that seemingly
similar parameters in different models rarely represent quite the same thing.
Thus a regression coefficient of a response variable on a particular explanatory
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variable changes its interpretation if the outcome variable is transformed and
more critically may depend drastically on which other explanatory variables are
used. Further, if different reasonably well-fitting models give rather different
conclusions it is important to know and report this.

5.14 Consistency of data and prior

Especially when a prior distribution represents potentially new important
information, it is in principle desirable to examine the mutual consistency of
information provided by the data and the prior. This will not be possible for
aspects of the model for which there is little or no information in the data, but
in general some comparison will be possible.

A serious discrepancy may mean that the prior is wrong, i.e., does not cor-
respond to subject-matter reality, that the data are seriously biased or that the
play of chance has been extreme.

Often comparison of the two sources of information can be informal but for a
more formal approach it is necessary to find a distribution of observable quant-
ities that is exactly or largely free of unknown parameters. Such a distribution
is the marginal distribution of a statistic implied by likelihood and prior.

For example in the discussion of Example 1.1 about the normal mean, the
marginal distribution implied by the likelihood and the normal prior is that

Ȳ − m√
(σ 2

0 /n + v)
(5.18)

has a standard normal distribution. That is, discrepancy is indicated whenever
Ȳ and the prior mean m are sufficiently far apart. Note that a very flat prior, i.e.,
one with extremely large v, will not be found discrepant.

A similar argument applies to other exponential family situations. Thus a
binomial model with a beta conjugate prior implies a beta-binomial distribution
for the number of successes, this distribution having known parameters and
thus in principle allowing exact evaluation of the statistical significance of any
departure.

5.15 Relevance of frequentist assessment

A key issue concerns the circumstances under which the frequentist interpret-
ation of a p-value or confidence interval is relevant for a particular situation
under study. In some rather general sense, following procedures that are in
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error relatively infrequently in the long run is some assurance for the particular
case but one would like to go beyond that and be more specific.

Appropriate conditioning is one aspect already discussed. Another is the
following. As with other measuring devices a p-value is calibrated in terms of
the consequences of using it; also there is an implicit protocol for application
that hinges on ensuring the relevance of the calibration procedure.

This protocol is essentially as follows. There is a question. A model is for-
mulated. To help answer the question it may be that the hypothesis ψ = ψ0

is considered. A test statistic is chosen. Data become available. The test stat-
istic is calculated. In fact it will be relatively rare that this protocol is followed
precisely in the form just set out.

It would be unusual and indeed unwise to start such an analysis without some
preliminary checks of data completeness and quality. Corrections to the data
would typically not affect the relevance of the protocol, but the preliminary
study might suggest some modification of the proposed analysis. For example:

• some subsidiary aspects of the model might need amendment, for example
it might be desirable to allow systematic changes in variance in a regression
model;

• it might be desirable to change the precise formulation of the research
question, for example by changing a specification of how E(Y) depends on
explanatory variables to one in which E(log Y) is considered instead;

• a large number of tests of distinct hypotheses might be done, all showing
insignificant departures discarded, while reporting only those showing
significant departure from the relevant null hypotheses;

• occasionally the whole focus of the investigation might change to the study
of some unexpected aspect which nullified the original intention.

The third of these represents poor reporting practice but does correspond
roughly to what sometimes happens in less blatant form.

It is difficult to specify criteria under which the departure from the protocol
is so severe that the corresponding procedure is useless or misleading. Of the
above instances, in the first two a standard analysis of the new model is likely
to be reasonably satisfactory. In a qualitative way they correspond to fitting a
broader model than the one originally contemplated and provided the fitting
criterion is not, for example, chosen to maximize statistical significance, the
results will be reasonably appropriate. That is not the case, however, for the last
two possibilities.

Example 5.10. Selective reporting. Suppose that m independent sets of data are
available each with its appropriate null hypothesis. Each is tested and p′ is the
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smallest p-value achieved and H ′ the corresponding null hypothesis. Suppose
that only H ′ and p′ are reported. If say m = 100 it would be no surprise to find
a p′ as small as 0.01.

In this particular case the procedure followed is sufficiently clearly specified
that a new and totally relevant protocol can be formulated. The test is based on
the smallest of m independently distributed random variables, all with a uniform
distribution under the overall null hypothesis of no effects. If the corresponding
random variable is P′, then

P(P′ > x) = (1 − x)m, (5.19)

because in order that P′ > x it is necessary and sufficient that all individual ps
exceed x. Thus the significance level to be attached to p′ under this scheme of
investigation is

1 − (1 − p′)m (5.20)

and if p′ is small and m not too large this will be close to mp′.

This procedure, named after Bonferroni, gives a quite widely useful way of
adjusting simple p-values.

There is an extensive set of procedures, of which this is the simplest and most
important, known under the name of multiple comparison methods. The name
is, however, somewhat of a misnomer. Many investigations set out to answer
several questions via one set of data and difficulties arise not so much from
dealing with several questions, each answer with its measure of uncertainty, but
rather from selecting one or a small number of questions on the basis of the
apparent answer.

The corresponding Bayesian analysis requires a much more detailed spe-
cification and this point indeed illustrates one difference between the broad
approaches. It would be naive to think that all problems deserve very detailed
specification, even in those cases where it is possible in principle to set out such
a formulation with any realism. Here for a Bayesian treatment it is necessary
to specify both the prior probability that any particular set of null hypotheses
is false and the prior distributions holding under the relevant alternative. Form-
ally there may be no particular problem in doing this but for the prior to reflect
genuine knowledge considerable detail would be involved. Given this formula-
tion, the posterior distribution over the set of m hypotheses and corresponding
alternatives is in principle determined. In particular the posterior probability of
any particular hypothesis can be found.

Suppose now that only the set of data with largest apparent effect is con-
sidered. It would seem that if the prior distributions involve strong assumptions
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of independence among the sets of data, and of course that is not essential,
then the information that the chosen set has the largest effect is irrelevant, the
posterior distribution is unchanged, i.e., no direct allowance for selection is
required.

A resolution of the apparent conflict with the frequentist discussion is, how-
ever, obtained if it is reasonable to argue that such a strategy of analysis is
most likely to be used, if at all, when most of the individual null hypotheses
are essentially correct. That is, with m hypotheses under examination the prior
probability of any one being false may be approximately ν0/m, where ν0 may
be treated as constant as m varies. Indeed ν0 might be approximately 1, so that
the prior expectation is that one of the null hypotheses is false. The dependence
on m is thereby restored.

An important issue here is that to the extent that the statistical analysis is
concerned with the relation between data and a hypothesis about that data,
it might seem that the relation should be unaffected by how the hypothesis
came to be considered. Indeed a different investigator who had focused on
the particular hypothesis H ′ from the start would be entitled to use p′. But if
simple significance tests are to be used as an aid to interpretation and discov-
ery in somewhat exploratory situations, it is clear that some such precaution
as the use of (5.20) is essential to ensure relevance to the analysis as imple-
mented and to avoid the occurrence of systematically wrong answers. In fact,
more broadly, ingenious investigators often have little difficulty in producing
convincing after-the-event explanations of surprising conclusions that were
unanticipated beforehand but which retrospectively may even have high prior
probability; see Section 5.10. Such ingenuity is certainly important but explan-
ations produced by that route have, in the short term at least, different status
from those put forward beforehand.

5.16 Sequential stopping

We have in much of the discussion set out a model in which the number n of
primary observations is a constant not a random variable. While there are many
contexts where this is appropriate, there are others where in some sense n could
reasonably be represented as a random variable. Thus in many observational
studies, even if there is a target number of observations, the number achieved
may depart from this for a variety of reasons.

If we can reasonably add to the log likelihood a term for the probability
density of the associated random variable N that is either known or, more
realistically, depends on an unknown parameter γ , we may justify conditioning
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on the observed sample size in the Bayesian formulation if the prior densities
of γ and of θ are independent, or in the frequentist version if the parameters
are variation-independent. This covers many applications and corresponds to
current practice.

The situation is more difficult if the random variables are observed in
sequence in such a way that, at least in a very formalized setting, when the
first m observations, denoted collectively by y(m), are available, the probability
that the (m + 1)th observation is obtained is pm+1(y(m)) and that otherwise no
more observations are obtained and N = m. In a formalized stopping rule the
ps are typically 0 or 1, in that a decision about stopping is based solely on the
current data. That is, it is assumed that in any discussion about whether to stop
no additional information bearing on the parameter is used. The likelihood is
essentially unchanged by the inclusion of such a purely data-dependent factor,
so that, in particular, any Fisherian reduction of the data to sufficient statistics
is unaffected after the inclusion of the realized sample size in the statistic; the
values of intermediate data are then irrelevant.

In a Bayesian analysis, provided temporal coherency holds, i.e., that the
prior does not change during the investigation, the stopping rule is irrelevant
for analysis and the posterior density is computed from the likelihood achieved
as if n were fixed. In a frequentist approach, however, this is not usually the
case. In the simplest situation with a scalar parameter θ and a fixed-sample-size
one-dimensional sufficient statistic s, the sufficient reduction is now only to the
(2, 1) family (s, n) and it is not in general clear how to proceed.

In some circumstances it can be shown, or more often plausibly assumed as
an approximation, that n is an ancillary statistic. That is to say, knowledge of n
on its own would give little or no information about the parameter of interest.
Then it will be reasonable to condition on the value of sample size and to
consider the conditional distribution of S for fixed sample size, i.e., to ignore
the particular procedure used to determine the sample size.

Example 5.11. Precision-based choice of sample size. Suppose that the mean
of a normal distribution, or more generally a contrast of several means, is being
estimated and that at each stage of the analysis the standard error of the mean
or contrast is found by the usual procedure. Suppose that the decision to stop
collecting data is based on these indicators of precision, not of the estimates of
primary concern, the mean or contrast of means. Then treating sample size as
fixed defines a reasonable calibration of the p-value and confidence limits.

The most extreme departure from treating sample size as fixed arises when
the statistic s, typically a sum or mean value is fixed. Then it is the inverse
distribution, i.e., of N given S = s, that is relevant. It can be shown in at least
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some cases the difference from the analysis treating sample size as fixed is
small.

Example 5.12. Sampling the Poisson process. In any inference about the
Poisson process of rate ρ the sufficient statistic is (N , S), the number of points
observed and the total time of observation. If S is fixed, N has a Poisson dis-
tribution of mean ρs, whereas if N is fixed S has the gamma density of mean
n/ρ, namely

ρ(ρs)(n−1)e−ρs/(n − 1)!. (5.21)

To test the null hypothesis ρ = ρ0 looking for one-sided departures in the
direction ρ > ρ0 there are two p-values corresponding to the two modes of
sampling, namely

�∞
r=ne−ρ0s(ρ0s)r/r! (5.22)

and ∫ s

0
{e−ρ0x(ρ0x)n−1ρ0/(n − 1)!}dx. (5.23)

Repeated integration by parts shows that the integral is equal to (5.22) as is
clear from a direct probabilistic argument.

Very similar results hold for the binomial and normal distributions, the latter
involving the inverse Gaussian distribution.

The primary situations where there is an appreciable effect of the stopping
rule on the analysis are those where the emphasis is strongly on the testing of a
particular null hypothesis, with attention focused strongly or even exclusively
on the resulting p-value. This is seen most strongly by the procedure that
stops when and only when a preassigned level of significance is reached in
formal testing of a given null hypothesis. There is an extensive literature on the
sequential analysis of such situations.

It is here that one of the strongest contrasts arises between Bayesian and
frequentist formulations. In the Bayesian approach, provided that the prior and
model remain fixed throughout the investigation, the final inference, in partic-
ular the posterior probability of the null hypothesis, can depend on the data
only through the likelihood function at the terminal stage. In the frequentist
approach, the final interpretation involves the data directly not only via that
same likelihood function but also on the stopping criterion used, and so in par-
ticular on the information that stopping did not take place earlier. It should
involve the specific earlier data only if issues of model adequacy are involved;
for example it might be suspected that the effect of an explanatory variable had
been changing in time.
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5.17 A simple classification problem

A very idealized problem that illuminates some aspects of the different
approaches concerns a classification problem involving the allocation of a new
individual to one of two groups, G0 and G1. Suppose that this is to be done on
the basis of an observational vector y, which for group Gk has known density
fk(y) for k = 0, 1.

For a Bayesian analysis suppose that the prior probabilities are πk , with
π0 + π1 = 1. Then the posterior probabilities satisfy

P(G1 | Y = y)

P(G0 | Y = y)
= π1

π0

f1(y)

f0(y)
. (5.24)

One possibility is to classify an individual into the group with the higher pos-
terior probability, another is to record the posterior probability, or more simply
the posterior odds, as a succinct measure of evidence corresponding to each
particular y.

The issue of a unique assignment becomes a well-formulated decision prob-
lem if relative values can be assigned to w01 and w10, the losses of utility
following from classifying an individual from group G0 into group G1 and vice
versa. A rule minimizing expected long-run loss of utility is to classify to group
G1 if and only if

π1

π0

f1(y)

f0(y)
≥ w01

w10
. (5.25)

The decision can be made arbitrarily in the case of exact equality.
The data enter only via the likelihood ratio f1(y)/f0(y). One non-Bayesian

resolution of the problem would be to use just the likelihood ratio itself as a
summary measure of evidence. It has some direct intuitive appeal and would
allow any individual with a prior probability to make an immediate assessment.

We may, however, approach the problem also more in the spirit of a direct
frequency interpretation involving hypothetical error rates. For this, derivation
of a sufficiency reduction is the first step. Write the densities in the form

f0(y) exp[log{ f1(y)/f0(y)}ψ − k(ψ)], (5.26)

where the parameter space for the parameter of interest ψ consists of the two
points 0 and 1. The sufficient statistic is thus the likelihood ratio.

Now consider testing the null hypothesis that the observation y comes from
the distribution f0(y), the test to be sensitive against the alternative distribution
f1(y). This is a radical reformulation of the problem in that it treats the two
distributions asymmetrically putting emphasis in particular on f0(y) as a null
hypothesis. The initial formulation as a classification problem treats both dis-
tributions essentially symmetrically. In the significance testing formulation we
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use the likelihood ratio as the test statistic, in virtue of the sufficiency reduction
and calculate as p-value ∫

Lobs

f0(y)dy, (5.27)

where Lobs is the set of points with a likelihood ratio as great or greater than that
observed. In the Neyman–Pearson theory of testing hypotheses this is indirectly
the so-called Fundamental Lemma.

A formally different approach to this issue forms the starting point to the
Neyman–Pearson theory of testing hypotheses formalized directly in the Fun-
damental Lemma. This states, in the terminology used here, that of all test
statistics that might be used, the probability of exceeding a preassigned p-value
is maximized under the alternative f1(y) by basing the test on the likelihood
ratio. Proofs are given in most books on statistical theory and will be omitted.

Symmetry between the treatment of the two distributions is restored by in
effect using the relation between tests and confidence intervals. That is, we
test for consistency with f0(y) against alternative f1(y) and then test again
interchanging the roles of the two distributions. The conclusion is then in the
general form that the data are consistent with both specified distributions, with
one and not the other, or with neither.

Of course, this is using the data for interpretative purposes not for the clas-
sification aspect specified in the initial part of this discussion. For the latter
purpose summarization via the likelihood ratio is simple and direct.

Example 5.13. Multivariate normal distributions. A simple example illustrat-
ing the above discussion is to suppose that the two distributions are multivariate
normal distributions with means µ0,µ1 and known covariance matrix �0. We
may, without loss of generality, take µ0 = 0. The log likelihood ratio is then

−(y − µ1)
T�−1

0 (y − µ1)/2 + (yT�−1
0 y)/2 = yT�−1

0 µ1 − µT
1�

−1
0 µ1/2.

(5.28)

The observations thus enter via the linear discriminant function yT�−1
0 µ1. The

various more detailed allocation rules and procedures developed above follow
immediately.

The geometric interpretation of the result is best seen by a preliminary linear
transformation of y so that it has the identity matrix as covariance matrix and
then the linear discriminant is obtained by orthogonal projection of y onto the
vector difference of means. In terms of the original ellipsoid the discriminant
is in the direction conjugate to the vector joining the means; see Figure 5.1.

If the multivariate normal distributions have unequal covariance matrices the
discriminant function becomes quadratic in y having the interpretation that an
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Y Y

(a) (b)

Figure 5.1. (a) The ellipses are contours of constant density for two bivariate
normal distributions with the same covariance matrix. The dashed lines show the
direction conjugate to the line joining means. Projection of the observed random
variable Y parallel to conjugate direction determines linear discriminant. (b) After
linear transformation component variables are independent with the same variance,
ellipses become circles and the discriminant corresponds to orthogonal projection
onto the line joining centres.

observation very distant from both vector means is more likely to come from
the distribution with larger covariance matrix contribution in the direction of
departure. An extreme case is when the two distributions have the same vector
mean but different covariance matrices.

Notes 5

Section 5.3. For the contradictions that may follow from manipulating fiducial
probabilities like ordinary probabilities, see Lindley (1958). For the exchange
paradox, see Pawitan (2000) and for a more detailed discussion Christensen
and Utts (1992).

Section 5.5. The discussion of rain in Gothenburg is an attempt to explain R. A.
Fisher’s notion of probability.

Section 5.6. Robinson (1979) discusses the difficulties with the notion of
recognizable subsets. Kalbfleisch (1975) separates the two different reasons for
conditioning. For a distinctive account of these issues, see Sundberg (2003).

Section 5.7. For more references on the history of these ideas, see Appendix A.
See Garthwaite et al. (2005) for a careful review of procedures for eliciting
expert opinion in probabilistic form. See also Note 4.2. Walley (1991) gives a
thorough account of an approach based on the notion that You can give only
upper and lower bounds to Your probabilities.
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Section 5.8. Again see Appendix A for further references. Stein (1959) gives
Example 5.5 as raising a difficulty with fiducial probability; his arguments are
just as cogent in the present context. Mitchell (1967) discusses Example 5.7.

Section 5.9. Bernardo (1979) introduces reference priors and gives (Bernardo,
2005) a careful account of their definition, calculation and interpretation. Jaynes
(1976) discusses finite parameter spaces. Berger (2004) defends the impersonal
approach from a personalistic perspective. Kass and Wasserman (1996) give a
comprehensive review of formal rules for selecting prior distributions. Lindley
(1956) develops the notion of information in a distribution and its relation to
Shannon information and to entropy.

Section 5.11. The argument in this section is variously regarded as wrong, as
correct but irrelevant, and as correct and important to a degree of belief concept
of probability.

Section 5.12. Greenland (2005) gives a searching discussion of systematic
errors in epidemiological studies, arguing from a Bayesian viewpoint.

Section 5.13. Copas and Eguchi (2005) discuss the effects of local model uncer-
tainty. A key issue in such discussions is the extent to which apparently similar
parameters defined in different models retain their subject-matter interpretation.

Section 5.15. Hochberg and Tamhane (1987) give a systematic account of mul-
tiple comparison methods. For work emphasizing the notion of false discovery
rate, see Storey (2002).

Section 5.16. A treatment of sequential stopping by Wald (1947) strongly based
on the use of the likelihood ratio between two base hypotheses led to very extens-
ive development. It was motivated by applications to industrial inspection. More
recent developments have focused on applications to clinical trials (Whitehead,
1997). Anscombe (1949, 1953) puts the emphasis on estimation and shows that
to a first approximation special methods of analysis are not needed, even from a
frequentist viewpoint. See also Barndorff-Nielsen and Cox (1984). Vaagerö and
Sundberg (1999) discuss a data-dependent design, the up-and-down method of
estimating a binary dose–response curve, in which it is the design rather than
the stopping rule that distorts the likelihood-based estimation of the slope of
the curve, tending to produce estimates of slope that are too steep. It is not
clear whether this is a case of failure of standard asymptotics or of very slow
convergence to the asymptotic behaviour.
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Section 5.17. The discrimination problem has been tackled in the literature
from many points of view. The original derivation of the linear discriminant
function (Fisher, 1936) is as that linear function of the data, normalized to have
fixed variance, that maximized the difference between the means. As such it
has probably been more used as a tool of analysis than for discrimination. Later
Fisher (1940) notes that by scoring the two groups say 0 and 1 and making a
least squares analysis of that score on the measured variables as fixed, not only
was the linear discriminant function recovered as the regression equation, but
the significance of coefficients and groups of coefficients could be tested by the
standard normal-theory tests as if the (0, 1) score had a normal distribution and
the measured variables were fixed.

To interpret Figure 5.1, in either of the defining ellipses draw chords parallel
to the line joining the two means. The locus of midpoints of these chords is a
line giving the conjugate direction.

The order in probability notation Op(1/
√

n) is used extensively in Chapter 6;
see Note 6.2.
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Asymptotic theory

Summary. Approximate forms of inference based on local approximations of
the log likelihood in the neighbourhood of its maximum are discussed. An ini-
tial discussion of the exact properties of log likelihood derivatives includes a
definition of Fisher information. Then the main properties of maximum like-
lihood estimates and related procedures are developed for a one-dimensional
parameter. A notation is used to allow fairly direct generalization to vector para-
meters and to situations with nuisance parameters. Finally numerical methods
and some other issues are discussed in outline.

6.1 General remarks

The previous discussion yields formally exact frequentist solutions to a number
of important problems, in particular concerning the normal-theory linear model
and various problems to do with Poisson, binomial, exponential and other expo-
nential family distributions. Of course the solutions are formal in the sense that
they presuppose a specification which is at best a good approximation and which
may in fact be inadequate. Bayesian solutions are in principle always available,
once the full specification of the model and prior distribution are established.

There remain, however, many situations for which the exact frequentist
development does not work; these include nonstandard questions about simple
situations and many models where more complicated formulations are unavoid-
able for any sort of realism. These issues are addressed by asymptotic analysis.
That is, approximations are derived on the basis that the amount of inform-
ation is large, errors of estimation are small, nonlinear relations are locally
linear and a central limit effect operates to induce approximate normality of
log likelihood derivatives. The corresponding Bayesian results are concerned

96
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with finding approximations to the integrals involved in calculating a posterior
density.

6.2 Scalar parameter

6.2.1 Exact results

It is simplest to begin with a one-dimensional unknown parameter θ and log
likelihood l(θ ; Y) considered as a function of the vector random variable Y ,
with gradient

U = U(θ) = U(θ ; Y) = ∂l(θ ; Y)/∂θ . (6.1)

This will be called the score or more fully the score function. Now, provided
the normalizing condition ∫

fY (y; θ)dy = 1 (6.2)

can be differentiated under the integral sign with respect to θ , we have that∫
U(θ ; y) fY (y; θ)dy = 0. (6.3)

That is,

E{U(θ ; Y); θ} = 0, (6.4)

where the expectation and differentiation take place at the same value of θ . If
it is legitimate to differentiate also (6.3) under the integral sign it follows that∫

{∂2l(θ ; Y)/∂θ2 + U2(θ ; Y)} fY (y; θ)dy = 0. (6.5)

Therefore if we define

i(θ) = E{−∂2l(θ ; Y)/∂θ2; θ}, (6.6)

then

var{U(θ ; Y); θ} = i(θ). (6.7)

The function i(θ) is called the expected information or sometimes the Fisher
information about θ . Note that it and the gradient U are calculated from the
vector Y representing the full vector of observed random variables. Essentially
i(θ) measures the expected curvature of the log likelihood and the greater the
curvature the sharper the inference.
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Example 6.1. Location model (ctd). If Y is a single random variable from the
density g(y − θ), the score is

dg(y − θ)/dθ

g(y − θ)
(6.8)

and the information is ∫
[{dg(y)/dy}2/g(y)]dy, (6.9)

sometimes called the intrinsic accuracy of the family g(.). That the inform-
ation is independent of θ is one facet of the variation inherent in the model
being independent of θ . For a normal distribution of unknown mean and known
variance σ 2

0 the intrinsic accuracy is 1/σ 2
0 .

Example 6.2. Exponential family. Suppose that Y corresponds to a single
observation from the one-parameter exponential family distribution with
canonical parameter θ , the distribution thus being written in the form

m(y) exp{θs − k(θ)}. (6.10)

Then the score function is s−dk(θ)/dθ = s−η, where η is the mean parameter,
and the information is d2k(θ)/dθ2, which is equal to var(S; θ). The information
is independent of θ if and only if k(θ) is quadratic. The distribution is then
normal, the only exponential family distribution which is a special case of
a location model in the sense of Example 6.1.

By an extension of the same argument, in which the new density fY (y; θ + δ)
is expanded in a series in δ, we have

E{U(θ); θ + δ} = i(θ)δ + O(δ2). (6.11)

This shows two roles for the expected information.
Discussion of the regularity conditions involved in these and subsequent

arguments is deferred to Chapter 7.

6.2.2 Parameter transformation

In many applications the appropriate form for the parameter θ is clear from
a subject-matter interpretation, for example as a mean or as a regression
coefficient. From a more formal viewpoint, however, the whole specification
is unchanged by an arbitrary smooth (1, 1) transformation from θ to, say,
φ = φ(θ). When such transformations are under study, we denote the rel-
evant score and information functions by respectively U�(θ ; Y), i�(θ) and
U(φ; Y), i(φ).
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Directly from the definition

U{φ(θ); Y} = U�(θ ; Y)dθ/dφ (6.12)

and, because the information is the variance of the score,

i{φ(θ)} = i�(θ)(dθ/dφ)2. (6.13)

Example 6.3. Transformation to near location form. If we choose the
function φ(θ) so that

dφ(θ)/dθ = √
i�(θ), (6.14)

i.e., so that

φ(θ) =
∫ θ

a

√
i�(x)dx, (6.15)

then the information is constant in theφ-parameterization. In a sense, the nearest
we can make the system to a pure location model is by taking this new paramet-
erization. The argument is similar to but different from that sometimes used in
applications, of transforming the observed random variable aiming to make its
variance not depend on its mean.

A prior density in which the parameter φ is uniform is called a Jeffreys prior.

For one observation from the exponential family model of Example 6.2 the
information about the canonical parameter θ is i�(θ) = k′′(θ). The information
about the mean parameter η = k′(θ) is thus

iη(θ) = i�(θ)/(dη/dθ)2 = 1/k′′(θ), (6.16)

the answer being expressed as a function of η. This is also the reciprocal of the
variance of the canonical statistic.

In the special case of a Poisson distribution of mean µ, written in the form

(1/y!) exp(y logµ− µ), (6.17)

the canonical parameter is θ = logµ, so that k(θ) = eθ . Thus, on differentiating
twice, the information about the canonical parameter is eθ = µ, whereas the
information about η = µ is 1/µ. Further, by the argument of Example 6.3, the
information is constant on taking as new parameter

φ(θ) =
∫ θ

a
ex/2dx (6.18)

and, omitting largely irrelevant constants, this suggests transformation to
φ = eθ/2, i.e., to φ = √

µ. Roughly speaking, the transformation extends the
part of the parameter space near the origin and contracts the region of very large
values.
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6.2.3 Asymptotic formulation

The results so far involve no mathematical approximation. Suppose now that
there is a quantity n which is frequently a sample size or other measure of the
amount of data, but which more generally is an index of the precision of the
resulting estimates, such as a reciprocal variance of a measurement procedure.
The following mathematical device is now used to generate approximations.

We denote the mean expected information per unit information, i(θ)/n, by
ı̄(θ) and assume that as n → ∞ it has a nonzero limit. Further, we assume that
U(θ)/

√
n converges in distribution to a normal distribution of zero mean and

variance ı̄(θ). Note that these are in fact the exact mean and limiting variance.
Results obtained by applying the limit laws of probability theory in this

context are to be regarded as approximations hopefully applying to the data and
model under analysis. The limiting operation n → ∞ is a fiction used to derive
these approximations whose adequacy in principle always needs consideration.
There is never any real sense in which n → ∞; the role of asymptotic analysis
here is no different from that in any other area of applied mathematics.

We take the maximum likelihood estimate to be defined by the equation

U(θ̂ ; Y) = 0, (6.19)

taking the solution giving the largest log likelihood should there be more than
one solution. Then the most delicate part of the following argument is to show
that the maximum likelihood estimate is very likely to be close to the true value.
We argue somewhat informally as follows.

By assumption then, as n → ∞, i(θ)/n → ı̄(θ) > 0, and moreover l(θ)
has the qualitative behaviour of the sum of n independent random variables,
i.e., is Op(n) with fluctuations that are Op(

√
n). Finally it is assumed that

U(θ ; Y) is asymptotically normal with zero mean and variance i(θ). We call
these conditions standard n asymptotics. Note that they apply to time series
and spatial models with short-range dependence. For processes with long-range
dependence different powers of n would be required in the normalization. For
a review of the o, O, op, Op notation, see Note 6.2.

It is convenient from now on to denote the notional true value of the parameter
by θ∗, leaving θ as the argument of the log likelihood function. First, note that by
Jensen’s inequality

E{l(θ ; Y); θ∗} (6.20)

has its maximum at θ = θ∗. That is, subject to smoothness, E{l(θ ; Y)} as a
function of θ has its maximum at the true value θ∗, takes a value that is O(n)
and has a second derivative at the maximum that also is O(n). Thus unless
|θ − θ∗| = O(1/

√
n) the expected log likelihood is small compared with its
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E{l(θ)}

Curvature at max

O(n)

O(√n)

O(1/√n)

O(1)

θ* θ

Figure 6.1. Behaviour of expected log likelihood (solid line) near the true value
within the band of width O(

√
n) around the expected value. Asymptotic behaviour

near maximum as indicated.

maximum value, and the likelihood itself is exponentially small compared with
its maximum value.

Next note that the observed log likelihood will lie within Op(
√

n) of its
expectation and because of the smoothness of the observed log likelihood this
statement applies to the whole function over a range within O(1/

√
n) of θ∗,

so that θ̂ lies within Op(1/
√

n) of θ∗. See Figure 6.1.
The argument does not exclude the occurrence of other local maxima to l(θ)

but typically the log likelihood evaluated there will be very much less than l(θ̂),
the overall maximum. Of course, the possibility of multiple maxima may well
be a considerable concern in implementing iterative schemes for finding θ̂ .

In the light of the above discussion, we expand l(θ) about θ∗ to quadratic
terms to obtain

l(θ)− l(θ∗) = U(θ∗)(θ − θ∗)− (θ − θ∗)2j(θ∗)/2, (6.21)

where

j(θ∗) = −∂2l(θ∗)/∂θ2 (6.22)
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is called the observed information function at θ∗ in the light of its connection
with i(θ∗), the expected information. In the range of interest within Op(1/

√
n)

of θ∗ the next term in the expansion will be negligible under mild restrictions
on the third derivative of l(θ).

It follows, on differentiating (6.21), then obtaining the corresponding
expansion for U(θ), and finally because U(θ̂) = 0, that approximately

θ̂ − θ∗ = j−1(θ∗)U(θ∗), (6.23)

which to achieve appropriate normalization is better written

(θ̂ − θ∗)√n = {nj−1(θ∗)}{U(θ∗)/√n}. (6.24)

Now j(θ∗)/n converges in probability to its expectation i(θ∗)/n which itself has
been assumed to converge to ı̄(θ∗), the mean expected information per unit n.

We appeal to the result that if the sequence of random variables Zn converges
in distribution to a normal distribution of zero mean and variance σ 2 and if
the sequence An converges in probability to the nonzero constant a, then the
sequence AnZn converges in distribution to a normal distribution of zero mean
and variance a2σ 2. That is, variation in the An can be ignored. This can be
proved by examining the distribution function of the product.

Now, subject to the continuity of i(θ), the following ratios all tend in
probability to 1 as n → ∞:

i(θ̂)/i(θ∗); j(θ∗)/i(θ∗); j(θ̂)/i(θ∗). (6.25)

This means that in the result for the asymptotic distribution of the maximum
likelihood estimate the asymptotic variance can be written in many asymptotic-
ally equivalent forms. In some ways the most useful of these employs the third
form involving what we now denote by ̂ and have called simply the observed
information, namely

̂ = j(θ̂). (6.26)

It follows from (6.24) and (6.25) that, the maximum likelihood estimate is
asymptotically normally distributed with mean θ∗ and variance that can be
written in a number of forms, in particular ̂−1 or i−1(θ∗).

Suppose that we make a (1, 1) transformation of the parameter from θ toφ(θ).
The likelihood at any point is unchanged by the labelling of the parameters
so that the maximum likelihood estimates correspond exactly, φ̂ = φ(θ̂).
Further, the information in the φ-parameterization that gives the asymptotic
variance of φ̂ is related to that in the θ -parameterization by (6.13) so that the
asymptotic variances are related by

var(φ̂) = var(θ̂)(dφ/dθ)2. (6.27)
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This relation follows also directly by local linearization of φ(θ), the so-called
delta method. Note that also, by the local linearity, asymptotic normality applies
to both θ̂ and φ̂, but that in any particular application one version might be
appreciably closer to normality than another.

Thus we may test the null hypothesis θ = θ0 by the test statistic

(θ̂ − θ0)/
√

i−1(θ0), (6.28)

or one of its equivalents, and confidence intervals can be found either from the set
of values consistent with the data at some specified level or more conveniently
from the pivot

(θ − θ̂ )/
√
̂−1. (6.29)

6.2.4 Asymptotically equivalent statistics

Particularly in preparation for the discussion with multidimensional parameters
it is helpful to give some further discussion and comparison formulated primar-
ily in terms of two-sided tests of a null hypothesis θ = θ0 using quadratic test
statistics.

That is, instead of the normally distributed statistic (6.28) we use its square,
written, somewhat eccentrically, as

WE = (θ̂ − θ0)i(θ0)(θ̂ − θ0). (6.30)

Because under the null hypothesis this is the square of a standardized normal
random variable, WE has under that hypothesis a chi-squared distribution with
one degree of freedom.

In the form shown in Figure 6.2, the null hypothesis is tested via the
squared horizontal distance between the maximum likelihood estimate and the
null value, appropriately standardized.

An alternative procedure is to examine the vertical distance, i.e., to see how
much larger a log likelihood is achieved at the maximum than at the null
hypothesis. We may do this via the likelihood ratio statistic

WL = 2{l(θ̂)− l(θ0)}. (6.31)

Appeal to the expansion (6.21) shows that WL and WE are equal to the first
order of asymptotic theory, in fact that

WE − WL = Op(1/
√

n). (6.32)

Thus under the null hypothesis WL has a chi-squared distribution with one
degree of freedom and by the relation between significance tests and confidence



104 Asymptotic theory

WE

WL

l(θ)

θ θθ0

WU

Figure 6.2. Three asymptotically equivalent ways, all based on the log likelihood
function of testing null hypothesis θ = θ0: WE , horizontal distance; WL vertical
distance; WU slope at null point.

regions a confidence set for θ is given by taking all those values of θ for which
l(θ) is sufficiently close to l(θ̂). That is,

{θ : l(θ̂)− l(θ) ≤ k∗2
1; c/2}, (6.33)

where k∗2
1; c is the upper c point of the chi-squared distribution with one degree of

freedom, forms a 1 − c level confidence region for θ . See Figure 6.2. Note that
unless the likelihood is symmetric around θ̂ the region will not be symmetric.
To obtain a one-sided version of WL more directly comparable to (θ̂ − θ0)

√
̂

we may define the signed likelihood ratio statistic as

sgn(θ̂ − θ0)
√

WL , (6.34)

treating this as having approximately a standard normal distribution when
θ = θ0.

There is a third possibility, sometimes useful in more complicated problems,
namely to use the gradient of the log likelihood at θ0; if this is too large it
suggests that the data can be explained much better by changing θ . See again
Figure 6.2.

To implement this idea we use the statistic

TU = U(θ0)/
√

i(θ0), (6.35)
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i.e., the slope divided by its standard error. Note that for direct comparability
with the other two one-sided statistics a change of sign is needed.

In the quadratic version we take

WU = U(θ0; Y)i−1(θ0)U(θ0; Y). (6.36)

It follows directly from the previous discussion that this is to the first order
equal to both WE and WL .

Note that WE and WL would be identical were the log likelihood exactly
quadratic. Then they would be identical also to WU were observed rather than
expected information used in the definitions. Under the standard conditions for
asymptotic theory this quadratic behaviour is approached locally and asymp-
totically. In applications the three statistics are very often essentially equal for
practical purposes; any serious discrepancy between them indicates that the
standard theory is inadequate in at least some respects. We leave to Section 6.6
the discussion of what to do then and the broader issue of the relative advantages
of the forms we have given here.

6.2.5 Optimality considerations

One approach to the discussion of the optimality of these procedures is by
detailed analysis of the properties of the resulting estimates and tests. A more
direct argument is as follows. In the previous discussion we expanded the log
likelihood around the true value. We now expand instead around the maximum
likelihood estimate θ̂ to give for θ sufficiently close to θ̂ that

l(θ) = l(θ̂)− (θ − θ̂ )2̂ /2 + O(1/
√

n), (6.37)

or, on exponentiating, that the likelihood has the form

m(y) exp{−(θ − θ̂ )2̂ /2}{1 + O(1/
√

n)}, (6.38)

where m(y) is a normalizing function. This gives an approximate version of
the Fisherian reduction and shows that to the first order of asymptotic theory the
data can be divided into (θ̂ , ̂ ), which summarize what can be learned given the
model, and the data conditionally on (θ̂ , ̂ ), which provide information about
model adequacy. That is, the maximum likelihood estimate and the observed
information are approximately sufficient statistics. Note that θ̂ could be replaced
by any estimate differing from it by Op(n−1) and there are many such!
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6.2.6 Bayesian analysis

In principle once the Bayesian formulation has been established, the calculation
of the posterior distribution involves only integration and so the role of asymp-
totic theory, at least in one dimension, is restricted to establishing the general
form of the answers to be expected and often to simplifying the calculation of
the normalizing constant in the posterior distribution.

We distinguish two cases. First, suppose that the prior density, to be denoted
here by p(θ), is continuous and nonzero in the neighbourhood of the true
value θ∗, and, for simplicity, bounded elsewhere. The posterior density of �
is then

p(θ) exp{l(θ)}
/ ∫

p(ω) exp{l(ω)}dω. (6.39)

Now expand l(ω) about θ̂ as in (6.21). Only values of θ and ω near θ̂ make
an effective contribution, and the numerator is approximately

p(θ̂) exp{l(θ̂)} exp{−(θ − θ̂ )2̂ /2}, (6.40)

whereas the denominator is, after some calculation, to the same order of
approximation

(2π)1/2p(θ̂) exp{l(θ̂)}/√̂ . (6.41)

That is, the posterior distribution is asymptotically normal with mean θ̂ and
variance ̂−1. The approximation technique used here is called Laplace expan-
sion. The asymptotic argument considered amounts to supposing that the prior
varies little over the range of values of θ reasonably consistent with the data
as judged by the likelihood function. As with all other asymptotic considera-
tions, the extent to which the assumptions about the prior and the likelihood are
justified needs examination in each application.

The caution implicit in the last statement is particularly needed in the second
case that we now consider where there is an atom of prior probabilityπ0 at a null
hypothesis θ = θ0 and the remaining prior probability is distributed over the
nonnull values. It is tempting to write this latter part in the form (1 −π0)p0(θ),
where p0(θ) is some smooth density not depending on n. This is, however, often
to invite misinterpretation, because in most, if not all, specific applications in
which a test of such a hypothesis is thought worth doing, the only serious
possibilities needing consideration are that either the null hypothesis is (very
nearly) true or that some alternative within a range fairly close to θ0 is true. This
suggests that the remaining part of the prior density should usually be taken
in the form q{(θ − θ0)

√
n}√n, where q(.) is some fixed probability density

function. This is of scale and location form centred on θ0 and with a dispersion



6.3 Multidimensional parameter 107

of order 1/
√

n. As n → ∞ this concentrates its mass in a local region around
θ0. It then follows that the atom of posterior probability at θ0 is such that the
odds against θ0, namely {1 − p(θ0 | y)}/p(θ0 | y), are

(1 − π0)
∫

exp{l(θ)}q{(θ − θ0)
√

n}√ndθ

π0 exp{l(θ0)} . (6.42)

Now expand the log likelihood around θ0, replacing j(θ0) by nı̄ and the signed
gradient statistic by TU = U(θ0; Y)/

√{nı̄(θ0)}. The posterior odds against θ0

are then approximately

(1 − p0)

∫
exp(vTU − v2/2)q(v/

√
ı̄)/

√
ı̄dv/p0. (6.43)

Thus as n → ∞ the posterior odds are asymptotically a fixed function of the
test statistic TU , or indeed of one of the other essentially equivalent statistics
studied above. That is, for a fixed q(.) the relation between the significance level
and the posterior odds is independent of n. This is by contrast with the theory
with a fixed prior in which case the corresponding answer depends explicitly
on n because, typically unrealistically, large portions of prior probability are in
regions remote from the null hypothesis relative to the information in the data.

6.3 Multidimensional parameter

The extension of the results of the previous section when the parameter θ is
d-dimensional is immediate. The gradient U is replaced by the d × 1 gradient
vector

U(θ ; Y) = ∇l(θ ; Y), (6.44)

where ∇ = (∂/∂θ1, . . . , ∂/∂θd)
T forms a column vector of partial derivatives.

Arguing component by component, we have as before that

E{U(θ ; Y); θ} = 0. (6.45)

Then, differentiating the rth component of this equation with respect to θs of�,
we have in generalization of (6.7) that the covariance matrix of U(θ ; Y) is

cov{U(θ ; Y); θ} = E{U(θ ; Y)UT (θ ; Y)} = i(θ), (6.46)

where the d × d matrix i(θ), called the expected information matrix, is the
matrix of second derivatives

i(θ) = E{−∇∇T l(θ ; Y); θ}. (6.47)
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Because this is the covariance matrix of a random vector it is positive definite
unless there are linear constraints among the components of the gradient vector
and we assume these absent.

Further,

E{U(θ ; Y); θ + δ} = i(θ)δ + O(‖δ‖2). (6.48)

Suppose that we transform from θ by a (1, 1) transformation to new para-
meters φ(θ), the transformation having Jacobian ∂φ/∂θ in which the rows
correspond to the components of φ and the columns to those of θ . Adopting the
notation used in the scalar parameter case, we have that the score vectors are
related by

U(φ; Y) = (∂θ/∂φ)T U�(θ ; Y) (6.49)

and the information matrices by

i(φ) = ∂θT

∂φ
i�(θ)

∂θ

∂φ
. (6.50)

The inverse information matrices satisfy

{i(φ)}−1 = ∂φ

∂θ

T

{i�(θ)}−1 ∂φ

∂θ
. (6.51)

These are the direct extensions of the results of Example 6.3.
In terms of asymptotics, we suppose in particular that U(θ ; Y) has an asymp-

totic multivariate normal distribution and that i(θ)/n tends to a positive definite
matrix ı̄(θ). The univariate expansions are replaced by their multivariate forms,
for example expanding about the true value θ∗, so that we can write l(θ ; Y) in
the form

l(θ∗; Y)+ (θ − θ∗)T U(θ∗; Y)− (θ − θ∗)T j(θ∗)(θ − θ∗)/2, (6.52)

where j(θ∗) is minus the matrix of observed second derivatives.
Essentially the same argument as before now shows that θ̂ is asymptotically

normal with mean θ∗ and covariance matrix i−1(θ∗) which can be replaced by
j−1(θ∗) or more commonly by ̂−1, the observed inverse information matrix at
the maximum likelihood point.

Now if Z is normally distributed with zero mean and variance v, then Zv−1Z =
Z2/v has, by definition, a chi-squared distribution with one degree of freedom.
More generally if Z is a d × 1 vector having a multivariate normal distribution
with zero mean and covariance matrix V of full rank d, then ‖Z‖2

V = ZT V−1Z
has a chi-squared distribution with d degrees of freedom. To see this, note
that the quadratic form is invariant under nonsingular transformations of Z
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with corresponding changes in the covariance matrix and that Z can always be
transformed to d independent standardized normal random variables. See also
Note 2.6.

It follows that the pivots

(θ − θ̂ )T i−1(θ)(θ − θ̂ ) (6.53)

or

(θ − θ̂ )T ̂−1(θ − θ̂ ) (6.54)

can be used to form approximate confidence regions for θ . In particular, the
second, and more convenient, form produces a series of concentric similar
ellipsoidal regions corresponding to different confidence levels.

The three quadratic statistics discussed in Section 6.3.4 take the forms,
respectively

WE = (θ̂ − θ0)
T i(θ0)(θ̂ − θ0), (6.55)

WL = 2{l(θ̂)− l(θ0)}, (6.56)

WU = U(θ0; Y)T i−1(θ0)U(θ0; Y). (6.57)

Again we defer discussion of the relative merits of these until Sections 6.6
and 6.11.

6.4 Nuisance parameters

6.4.1 The information matrix

In the great majority of situations with a multidimensional parameter θ , we need
to write θ = (ψ , λ), whereψ is the parameter of interest andλ the nuisance para-
meter. Correspondingly we partition U(θ ; Y) into two components Uψ(θ : Y)
and Uλ(θ ; Y). Similarly we partition the information matrix and its inverse in
the form

i(θ) =
(

iψψ iψλ

iλψ iλλ

)
, (6.58)

and

i−1(θ) =
(

iψψ iψλ

iλψ iλλ

)
. (6.59)

There are corresponding partitions for the observed information ̂ .
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6.4.2 Main distributional results

A direct approach for inference about ψ is based on the maximum likeli-
hood estimate ψ̂ which is asymptotically normal with mean ψ and covariance
matrix iψψ or equivalently ̂ψψ . In terms of a quadratic statistic, we have for
testing whether ψ = ψ0 the form

WE = (ψ̂ − ψ0)
T (iψψ)−1(ψ̂ − ψ0) (6.60)

with the possibility of using (̂ψψ)−1 rather than (iψψ)−1. Note also that even
ifψ0 were used in the calculation of iψψ it would still be necessary to estimate λ
except for those special problems in which the information does not depend onλ.

Now to study ψ via the gradient vector, as far as possible separated from λ,
it turns out to be helpful to write Uψ as a linear combination of Uλ plus a
term uncorrelated with Uλ, i.e., as a linear least squares regression plus an
uncorrelated deviation. This representation is

Uψ = iψλi−1
λλ Uλ + Uψ ·λ, (6.61)

say, where Uψ ·λ denotes the deviation of Uψ from its linear regression on Uλ.
Then a direct calculation shows that

cov(Uψ ·λ) = iψψ ·λ, (6.62)

where

iψψ ·λ = iψψ − iψλi−1
λλ iλψ = (iψψ)−1. (6.63)

The second form follows from a general expression for the inverse of a
partitioned matrix.

A further property of the adjusted gradient which follows by direct evaluation
of the resulting matrix products by (6.63) is that

E(Uψ ·λ; θ + δ) = iψψ ·λδψ + O(‖δ‖2), (6.64)

i.e., to the first order the adjusted gradient does not depend on λ. This has the
important consequence that in using the gradient-based statistic to test a null
hypothesis ψ = ψ0, namely

WU = UT
ψ ·λ(ψ0, λ)iψψ(ψ0, λ)Uψ ·λ(ψ0, λ), (6.65)

it is enough to replace λ by, for example, its maximum likelihood estimate
given ψ0, or even by inefficient estimates.

The second version of the quadratic statistic (6.56), corresponding more
directly to the likelihood function, requires the collapsing of the log likelihood
into a function of ψ alone, i.e., the elimination of dependence on λ.
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This might be achieved by a semi-Bayesian argument in which λ but not ψ
is assigned a prior distribution but, in the spirit of the present discussion, it is
done by maximization. For givenψ we define λ̂ψ to be the maximum likelihood
estimate of λ and then define the profile log likelihood of ψ to be

lP(ψ) = l(ψ , λ̂ψ ), (6.66)

a function of ψ alone and, of course, of the data. The analogue of the previous
likelihood ratio statistic for testing ψ = ψ0 is now

WL = 2{lP(ψ̂)− lP(ψ0)}. (6.67)

Expansions of the log likelihood about the point (ψ0, λ) show that in the
asymptotic expansion, we have to the first term that WL = WU and there-
fore that WL has a limiting chi-squared distribution with dψ degrees of freedom
when ψ = ψ0. Further because of the relation between significance tests and
confidence regions, the set of values of ψ defined as

{ψ : 2{lP(ψ̂)− lP(ψ)} ≤ k∗2
dψ ; c} (6.68)

forms an approximate 1 − c level confidence set for ψ .

6.4.3 More on profile likelihood

The possibility of obtaining tests and confidence sets from the profile log like-
lihood lP(ψ) stems from the relation between the curvature of lP(ψ) at its
maximum and the corresponding properties of the initial log likelihood l(ψ , λ).

To see this relation, let ∇ψ and ∇λ denote the dψ × 1 and dλ × 1 operations
of partial differentiation with respect toψ and λ respectively and let Dψ denote
total differentiation of any function of ψ and λ̂ψ with respect to ψ . Then, by
the definition of total differentiation,

DT
ψ lP(ψ) = ∇T

ψ l(ψ , λ̂ψ )+ ∇T
λ l(ψ , λ̂ψ )Dψ(λ̂

T
ψ }T . (6.69)

Now apply Dψ again to get the Hessian matrix of the profile likelihood in
the form

DψDT
ψ lP(ψ) = ∇ψ∇T

ψ l(ψ , λ̂ψ )+ {∇ψ∇T
λ l(ψ , λ̂ψ )(∇ψλ̂T

ψ)}T

+ {∇T
λ l(ψ , λ̂ψ )}{∇ψ∇T

ψλ̂
T
ψ } + (∇ψλ̂T )∇λ∇T

ψ l(ψ , λ̂ψ )

+ (∇ψλ̂T
ψ){∇λ∇T

λ l(ψ , λ̂ψ )(∇ψλ̂T
ψ)

T }. (6.70)

The maximum likelihood estimate λ̂ψ satisfies for all ψ the equation
∇T
λ l(ψ , λ̂ψ ) = 0. Differentiate totally with respect to ψ to give

∇ψ∇T
λ l(ψ , λ̂ψ )+ (Dψλ̂

T
ψ)∇λ∇T

λ l(ψ , λ̂ψ ) = 0. (6.71)
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Thus three of the terms in (6.70) are equal except for sign and the third term is
zero in the light of the definition of λ̂ψ . Thus, eliminating Dψλ̂ψ , we have that
the formal observed information matrix calculated as minus the Hessian matrix
of lP(ψ) evaluated at ψ̂ is

̂P,ψψ = ̂ψψ − ̂ψλ̂
−1
λλ ̂λψ = ̂ψψ ·λ, (6.72)

where the two expressions on the right-hand side of (6.72) are calculated from
l(ψ , λ). Thus the information matrix forψ evaluated from the profile likelihood
is the same as that evaluated via the full information matrix of all parameters.

This argument takes an especially simple form when both ψ and λ are scalar
parameters.

6.4.4 Parameter orthogonality

An interesting special case arises when iλψ = 0, so that approximately jλψ = 0.
The parameters are then said to be orthogonal. In particular, this implies that the
corresponding maximum likelihood estimates are asymptotically independent
and, by (6.71), that Dψλ̂ψ = 0 and, by symmetry, that Dλψ̂λ = 0. In nonortho-
gonal cases if ψ changes by O(1/

√
n), then λ̂ψ changes by Op(1/

√
n); for

orthogonal parameters, however, the change is Op(1/n). This property may
be compared with that of orthogonality of factors in a balanced experimental
design. There the point estimates of the main effect of one factor, being contrasts
of marginal means, are not changed by assuming, say, that the main effects of
the other factor are null. That is, the Op(1/n) term in the above discussion is
in fact zero.

There are a number of advantages to having orthogonal or nearly orthogonal
parameters, especially component parameters of interest. Independent errors of
estimation may ease interpretation, stability of estimates of one parameter under
changing assumptions about another can give added security to conclusions
and convergence of numerical algorithms may be speeded. Nevertheless, so
far as parameters of interest are concerned, subject-matter interpretability has
primacy.

Example 6.4. Mixed parameterization of the exponential family. Consider a
full exponential family problem in which the canonical parameter φ and the
canonical statistic s are partitioned as (φ1,φ2) and (s1, s2) respectively, thought
of as column vectors. Suppose that φ2 is replaced by η2, the corresponding
component of the mean parameter η = ∇k(φ), where k(φ) is the cumulant
generating function occurring in the standard form for the family. Then φ1 and
η2 are orthogonal.
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To prove this, we find the Jacobian matrix of the transformation from (φ1, η2)

to (φ1,φ2) in the form

∂(φ1, η2)/∂(φ1,φ2) =
(

I 0

∇1∇T
2 k(φ) ∇2∇T

2 k(φ)

)
. (6.73)

Here ∇1 denotes partial differentiation with respect to φl for l = 1, 2.
Combination with (6.51) proves the required result. Thus, in the analysis of

the 2 × 2 contingency table the difference of column means is orthogonal to
the log odds ratio; in a normal distribution mean and variance are orthogonal.

Example 6.5. Proportional hazards Weibull model. For the Weibull
distribution with density

γρ(ρy)γ−1 exp{−(ρy)γ } (6.74)

and survivor function, or one minus the cumulative distribution function,

exp{−(ρy)γ }, (6.75)

the hazard function, being the ratio of the two, is γρ(ρy)γ−1.
Suppose that Y1, . . . , Yn are independent random variables with Weibull dis-

tributions all with the same γ . Suppose that there are explanatory variables
z1, . . . , zn such that the hazard is proportional to eβz. This is achieved by writing
the value of the parameter ρ corresponding to Yk in the form exp{(α+βzk)/γ }.
Here without loss of generality we take�zk = 0. In many applications z and β
would be vectors but here, for simplicity, we take one-dimensional explanatory
variables. The log likelihood is

�(log γ + α + βzk)+ (γ − 1)� log yk −� exp(α + βzk)y
γ

k . (6.76)

Direct evaluation now shows that, in particular,

E

(
− ∂2l

∂α∂β

)
= 0, (6.77)

E

(
− ∂2l

∂β∂γ

)
= −β�z2

k

γ
, (6.78)

E

(
− ∂2l

∂γ ∂α

)
= −0.5771 + α

γ
, (6.79)

where Euler’s constant, 0.5771, arises from the integral∫ ∞

0
v log vdv. (6.80)
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Now locally near β = 0 the information elements involving β are zero or
small implying local orthogonality of β to the other parameters and in particular
to γ . Thus not only are the errors of estimating β almost uncorrelated with those
of the other parameters but, more importantly in some respects, the value of
β̂γ will change only slowly with γ . In some applications this may mean that
analysis based on the exponential distribution, γ = 1, is relatively insensitive to
that assumption, at least so far as the value of the maximum likelihood estimate
of β is concerned.

6.5 Tests and model reduction

One of the uses of these results for vector parameters of interest is in some-
what exploratory investigation of the form of model to be used as a basis for
interpretation steered by a wish, for various reasons, to use reasonably simple
models wherever feasible. We may have in addition to common nuisance para-
meters that the parameter of interestψ can be partitioned, say as (ψT

1 , . . . ,ψT
h ),

and that models with only the first g components, g < h, may be preferred if
reasonably consistent with the data. The individual components will typically
be vectors; it is also not essential to assume, as here, that the model reductions
considered are hierarchical.

We can thus produce a series of maximized log likelihoods involving max-
imization always over λ taken with the full vectorψ , the vectorψ withψh = 0,
down to the vector ψ1 alone, or possibly even with ψ = 0. If we denote these
maximized log likelihoods by l̂h, . . . , l̂0 a formal test that, say, ψg = 0 given
that ψg+1 = · · · = ψh = 0 is provided by

2(l̂g − l̂g−1) (6.81)

tested by comparison with the chi-squared distribution with degrees of freedom
the dimension of ψg.

This generates a sequence of values of chi-squared and in a sense the hope is
that this sequence jumps suddenly from the highly significant to small values,
all consistent with the relevant degrees of freedom, indicating unambiguously
the simplest model in the sequence reasonably consistent with the data.

If the models being considered are not nested within some overall model
the analysis is more complicated. Suppose that we have two distinct families
of models f (y; θ) and g(y;φ) which can give sufficiently similar results that
choice between them may be delicate, but which are separate in the sense that
any particular distribution in one family cannot be recovered as a special case
of the other. A simple example is where there are n independent and identically
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distributed components, with one family being exponential and the other log
normal, so that θ is one-dimensional and φ is two-dimensional.

There are broadly three approaches to such problems. One is to produce
a comprehensive model reducing to the two special cases when a specifying
parameter takes values, say 0 and 1. Such a family might be

c(ψ , θ ,φ) exp{ψ log f (y; θ)+ (1 − ψ) log g(y;φ)}, (6.82)

used to estimate ψ and very particularly to examine possible consistency with
the defining values 0 and 1.

A simpler and in many ways the most satisfactory approach is to follow the
prescription relating confidence intervals to significance tests. That is, we take
each model in turn as the null hypothesis and test, for example by the log like-
lihood ratio log{f (y; θ̂ )/g(y; φ̂)}, consistency first with f and then with g. This
leads to the conclusion that both, either one, or neither model is reasonably
consistent with the data at whatever significance levels arise. The distributional
results obtained above for the nested case no longer apply; in particular the
log likelihood ratio test statistic has support on positive and negative real val-
ues. While analytical results for the distribution are available, much the most
effective procedure is simulation.

A third approach is Bayesian and for this we suppose that the prior prob-
abilities of the two models are respectively πf ,πg = 1 − πf and that the
conditional prior densities of the parameters given the model are respectively
pf (θ) and pg(φ). Then the ratio of the posterior probability of model g to that
of model f , i.e., the odds ratio of g versus f , is

πg
∫

exp{lg(φ)} pg(φ)dφ

πf
∫

exp{lf (θ)} pf (θ)dθ
, (6.83)

where lg and lf are the relevant log likelihoods. Separate Laplace expansion of
numerator and denominator gives that the odds ratio is approximately

πg exp(l̂g) pg(φ̂)(2π)dg/2�̂
−1/2
g

πf exp(l̂f ) pf (θ̂)(2π)df /2�̂
−1/2
f

. (6.84)

Here, for example, dg is the dimension of φ and �̂g is the determinant of the
observed information matrix in model g.

A crucial aspect of this is the role of the prior densities of the parameters
within each model. In a simpler problem with just one model a flat or nearly flat
prior density for the parameter will, as we have seen, disappear from the answer,
essentially because its role in the normalizing constant for the posterior density
cancels with its role in the numerator. This does not happen here. Numerator
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and denominator both have terms expressing the ratio of the maximized likeli-
hood to that of the approximating normal density of the maximum likelihood
estimate. Entry of the prior densities is to be expected. If one model has para-
meter estimates in a region of relatively high prior density that is evidence in
favour of that model.

To proceed with a general argument, further approximations are needed.
Suppose first that the parameter spaces of the two models are of equal dimension,
dg = df . We can then set up a (1, 1) correspondence between the two parameter
spaces, for example by making a value φ′ correspond to the probability limit
of θ̂ when calculated from data distributed according to g(y;φ′). Then, if the
prior density pf (θ) is determined from pg(φ) by the same transformation and
the determinants of the observed information related similarly, it follows that
the posterior odds are simply

πg exp(l̂g)

πf exp(l̂f )
(6.85)

and to this level of approximation the discussion of Example 5.13 of the com-
parison of completely specified models applies with maximized likelihood
replacing likelihood. The assumptions about the prior densities are by no means
necessarily true; it is possible that there is substantial prior information about φ
if g is true and only weak prior information about θ if f is true.

When, say, dg > df the argument is even more tentative. Suppose that φ can
be partitioned into two parts, one of dimension df that can be matched to θ
and the other of dimension dg − df , which is in some sense approximately
orthogonal to the first part and whose probability limit does not depend on θ . The
contribution of the latter part can come only from the prior and we suppose that
it is equivalent to that supplied by n0 fictitious observations, as compared with
the n real observations we have for analysis. Then the ratio of the prior density to
the corresponding information contribution is approximately (n0/n)(dg−df )/2.

This indicates the penalty to be attached to a maximized likelihood for every
additional component fitted. This is most concisely represented by replacing a
maximized log likelihood, say l̂g by

l̂g − (dg/2) log n. (6.86)

The term in n0 has been omitted as being small compared with n, although the
logarithmic dependence on n is warning that in any case the approximation may
be poor.

This is called the Bayesian information criterion, BIC, although it was ori-
ginally suggested from a frequentist argument. A number of somewhat similar
criteria have been developed that are based on the l̂g, but all of which aim
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to provide an automatic criterion, not based on significance-testing considera-
tions, for the selection of a model. They all involve penalizing the log likelihood
for the number of parameters fitted. The relevance of any relatively automatic
method of model selection depends strongly on the objective of the analysis, for
example as to whether it is for explanation or for empirical prediction. To dis-
cuss the reasonableness of these and similar procedures would involve detailed
examination of the strategy to be used in applying statistical methods. This is
defined to be outside the scope of the present book.

For interpretative purposes no automatic method of model selection is appro-
priate and while the sequence of tests sketched above may often give some useful
guidance, mechanical application is likely to be unwise.

If the Bayesian formulation is adopted and if the posterior distribution of
all aspects is reasonably defined a procedure of Bayesian model averaging is
formally possible. If, for example, the objective is predicting the value of y
corresponding to some specific values of explanatory variables, then in essence
predictions from the separate models are weighted by the relevant posterior
probabilities. For the method to be appropriate for interpretation, it is, however,
essential that the parameter of interest ψ is defined so as to have identical
interpretations in the different models and this will often not be possible.

6.6 Comparative discussion

There are thus three broad routes to finding asymptotic test and confid-
ence regions, two with variants depending on whether observed or expected
information is used and at what point the information is evaluated. In the one-
dimensional case there is also the issue of whether equi-tailed intervals are
appropriate and this has already been discussed in Section 3.3. In most cases
the numerical differences between the three key asymptotic procedures are of no
consequence, but it is essential to discuss what to do when there are appreciable
discrepancies.

Were the observed log likelihood exactly quadratic around θ the procedures
using ̂ as the basis for assessing precision would be exactly the same for
the three procedures. Procedures based directly on the maximum likelihood
estimate and a measure of precision have substantial advantages for the concise
summarization of conclusions via an estimate and its estimated precision which,
via the implied pivot, can be used both for tests and confidence intervals and as
a base for further analysis, combination with other data and so on.

They do, however, have the disadvantage, substantial under some circum-
stances, of not being invariant under nonlinear transformations of θ ; the other
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two statistics do have this exact invariance. Indeed WL from (6.56) can often
be regarded as close to the value that WE from (6.55) with ̂ would take after
reparameterization to near-quadratic form. There can be additional and related
difficulties with WE if j(θ) or i(θ) changes rapidly with θ in the relevant range.

Two further issues concern the adequacy of the normal or chi-squared form
used to approximate the distribution of the test statistics and behaviour in very
nonstandard situations. We return to these matters briefly in Section 6.11 and
Chapter 7. Both considerations tend to favour the use of WL , the likelihood
ratio statistic, and a simple summary of the arguments is that this is the safest
to use in particular applications should any discrepancies appear among the
different statistics, although in extremely nonstandard cases special analysis is,
in principle, needed.

For methods involving the maximum likelihood estimate and an estimate
of its standard error the preference for staying close to a direct use of the
likelihood, as well as more elaborate arguments of the kind summarized in
the next section, suggest a preference for using the observed information ̂
rather than the expected information i(θ̂). The following examples reinforce
that preference.

Example 6.6. A right-censored normal distribution. Let Y1, . . . , Yn be inde-
pendently normally distributed with unknown meanµ and varianceσ 2

0 , assumed
for simplicity to be known. Suppose, however, that all observations greater than
a known constant b are recorded simply as being greater than b, their individual
values not being available. The log likelihood is

−�′(yk − µ)2/(2σ 2
0 )+ r log{(µ− a)/σ0}, (6.87)

where r is the number of censored observations and�′ denotes summation over
the uncensored observations.

The sufficient statistic is thus formed from the mean of the uncensored obser-
vations and the number, r, censored. There is no exact ancillary statistic suitable
for conditioning. The maximum likelihood estimating equation is

µ̂ = ȳ′ + rσ0(n − r)−1ν{(µ− a)/σ0}, (6.88)

where ν(x) = ′(x)/(x) is the reciprocal of the Mills ratio. Moreover, the
observed information is given by

̂σ 2
0 = n − r − rν′{(µ̂− a)/σ0}. (6.89)

An important point is that if r = 0, the inference is unaffected, to the first
order at least, by the possibility that censoring might have occurred but in
fact did not; the standard pivot for the mean of a normal distribution is used.
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This is in line with the Bayesian solution that, except possibly for any impact
of potential censoring on the prior, the inference for r = 0 would also be
unaffected. Were the expected information to be used instead of the observed
information, this simple conclusion would not hold, although in most cases the
numerical discrepancy between the two pivots would be small.

The following is a more striking example of the need to consider observed
rather than expected information.

Example 6.7. Random walk with an absorbing barrier. Consider a random
walk in which if at time m the walk is at position k, the position at time m + 1
is k + 1 with probability θ and is k − 1 with probability 1 − θ , the steps at
different times being mutually independent. Suppose that at time zero the walk
starts at point y0, where y0 > 0. Suppose, further, that there is an absorbing
barrier at zero, so that if the walk ever reaches that point it stays there for ever.

The following qualitative properties of the walk are relevant. If θ ≤ 1/2
absorption at zero is certain. If θ > 1/2 there are two distinct types of path.
With probability {(1 − θ)/θ}y0 the walk ends with absorption at zero, whereas
with the complementary probability the walk continues indefinitely reaching
large values with high probability.

If one realization of the walk is observed for a long time period, the likelihood
is θ r+(1 − θ)r− , where r+ and r− are respectively the numbers of positive and
negative steps. Use of the expected information would involve, when θ > 1/2,
averaging over paths to absorption and paths that escape to large values and
would be misleading, especially if the data show speedy absorption with little
base for inferring the value of θ . Note though that the event of absorption does
not provide an ancillary statistic.

A formal asymptotic argument will not be given but the most interesting case
is probably to allow observation to continue for a large number n of steps, and
to suppose that y0 = b0

√
n and that θ = 1/2 + δ/

√
n.

A very similar argument applies to the Markovian birth–death process in
continuous time, generalizing the binary fission process of Example 2.4. In this
particles may die as well as divide and if the number of particles reaches zero
the system is extinct.

6.7 Profile likelihood as an information summarizer

We have seen in the previous section some preference for profile log likelihood
as a basis for inference about the parameter of interest ψ over asymptotically
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equivalent bases, in particular over the maximum likelihood estimate ψ̂ and its
estimated covariance matrix ̂ψψ . If the profile log likelihood is essentially sym-
metrical locally around ψ̂ the approaches are nearly equivalent and, especially
if ψ is one-dimensional, specification of the maximum likelihood estimate and
its standard error is more directly interpretable and hence preferable. While a
parameter transformation may often be used, in effect to correct for asymmetry
in the profile log likelihood, as already stressed physical interpretability of a
parameter must take preference over the statistical properties of the resulting
estimates and so parameter transformation may not always be appropriate.

An important role for statistical analysis is not only the clarification of what
can reasonably be learned from the data under analysis, but also the summariz-
ation of conclusions in a form in which later work can use the outcome of the
analysis, for example in combination with subsequent related results. Recourse
to the original data may sometimes be impracticable and, especially in com-
plex problems, only information about the parameterψ of interest may be worth
retaining.

Where the profile log likelihood lP(ψ) is appreciably asymmetric around the
maximum, or in other cases of notable departure from local quadratic form, it
may be sensible to record either the profile log likelihood in numerical form or
to record say the third and even fourth derivatives at the maximum, as well as
the second, the information element. When independent sets of data potentially
relevant to ψ become available the overall profile likelihood can then be recon-
structed as the sum of the separate contributions. The mutual consistency of
the various estimates of ψ can be examined via a chi-squared test and, subject
to reasonable consistency, a pooled estimate, the overall maximum likelihood
estimate, found. This analysis implicitly assumes that nuisance parameters in
different sets of data are distinct or, if that is not the case, that the information
lost by ignoring common elements is unimportant.

6.8 Constrained estimation

In general, the more parameters, the more complicated the estimation problem.
There are exceptions, however, notably when a model is expanded to a saturated
form or, more generally, where the (k, d) curved exponential family model is
expanded to the full (k, k) family. We may sometimes usefully estimate within
the larger family and then introduce the specific constraints that apply to the
specific problem. This idea can, in particular, be used to find simple estimates
asymptotically equivalent to maximum likelihood estimates. We shall relate the
method more specifically to the exponential family.
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Suppose that the model of interest is defined by a parameter vector θ and
that the extended or covering model for which estimation is simpler is defined
by φ = (θ , γ ). If i(φ), partitioned in the usual way, denotes the expected
information matrix and UT

φ = (UT
θ , UT

γ ) is the gradient of the log likelihood, the

maximum likelihood estimates, θ̂r , under the reduced, i.e., originating, model
and the estimates, θ̂c, under the covering model satisfy after local linearization

iθθ (θ̂r − θ) = Uθ , (6.90)

iθθ (θ̂c − θ)+ iθγ (γ̂c − γ ) = Uθ . (6.91)

Suppose that γ is defined so that the model of interest corresponds to
γ = 0. Then

θ̃r = θ̂c + i−1
θθ iθγ γ̂c (6.92)

is close to θ̂r , the difference being Op(1/n). The expected information may be
replaced by the observed information. The estimate θ̃r is essentially the estimate
under the covering model adjusted for regression on γ̂c, which is an estimate of
zero. If the regression adjustment were appreciable this would be an indication
that the reduced model is inconsistent with the data.

Realistic applications of this idea are to relatively complex contingency table
problems and to estimation of normal-theory covariance matrices subject to
independence constraints. In the latter case the covering model specifies an
unconstrained covariance matrix for which estimation is simple. The following
is an artificial example which shows how the method works.

Example 6.8. Curved exponential family model. After reduction by sufficiency,
suppose that (Ȳ1, Ȳ2) are independently normally distributed with mean (θ , bθ2)

and variances σ 2
0 /n, where σ 2

0 is known. Here b is a known constant. This
forms a (2, 1) exponential family and there is no ancillary statistic to reduce the
problem further. Consider the covering model in which the mean is (θ , bθ2+γ ).
Then the estimates under the covering model are θ̂c = Ȳ1, γ̂c = Ȳ2 − bȲ2

1 . The
information matrix at γ = 0 has elements

iθθ = (1 + 4b2θ2)n/σ 2
0 , iθγ = 2bθn/σ 2

0 , iγ γ = n/σ 2
0 . (6.93)

Thus, on replacing θ in the matrix elements by the estimate Ȳ1, we have that

θ̃r = Ȳ1 + 2bȲ1

(1 + 4b2Ȳ2
1 )
(−bȲ2

1 + Ȳ2). (6.94)

That is, the adjusted estimate differs from the simple estimate Ȳ1 by an
amount depending on how far the observations are from the curve defining
the exponential family.
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Direct calculation with the information matrices shows that, in contrast with
var(Ȳ1) = σ 2

0 /n, the new estimate has asymptotic variance

(σ 2
0 /n)(1 + 4b2θ2)−1. (6.95)

We now take a different route to closely related results. Consider the
exponential family model with log likelihood

sTφ − k(φ). (6.96)

Recall that the mean parameter is η = ∇k(φ), and that the information matrix
i(θ) is the Jacobian of the transformation from φ to η.

Suppose that the model is constrained by requiring some components of the
canonical parameter to be constant, often zero, i.e.,

φc = 0 (c ⊂ C). (6.97)

We therefore consider a Lagrangian with Lagrange multipliers νc, namely

sTφ − k(φ)−�c⊂Cνcφc. (6.98)

If we differentiate with respect to φm for m not in C we have sm = η̂m,
whereas for m ⊂ C, we have that

sm − η̂m − νm = 0. (6.99)

The Lagrange multipliers νm are determined by solving the simultaneous
equations obtained by expressing φ as a function of η as

φc(sU , sC − ν) = 0, (6.100)

where sU are the components of the canonical statistic not in the conditioning
set C. That is, the estimates of the mean parameters not involved in the con-
straints are unaffected by the constraints, whereas the estimates of the other
mean parameters are defined by enforcing the constraints.

It can be shown that if standard n asymptotics holds, then ν is O(1/
√

n) and
expansion of (6.100) yields essentially the noniterative procedure given at the
beginning of this section.

A similar analysis, different in detail, applies if the constraints pertain to the
mean parameter η rather than to the canonical parameter φ. In this case the
Lagrangian is

sTφ − k(φ)− ωTηC , (6.101)

with Lagrange multipliers ω.
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Differentiate with respect to φm to give maximum likelihood estimating
equations

sm − η̂m −�ωk∂η̂k/∂φm = 0, (6.102)

i.e.,

sm − η̂m − ı̂kmωk = 0. (6.103)

For m ⊂ C we require η̂m = 0, so that

sC = ı̂CC λ̂, (6.104)

where ı̂CC is the part of the information matrix referring to the variables in C
and evaluated at the maximum likelihood point. Similarly, for the variables
U not in C,

η̂U = sU − ı̂PC ı̂CCsC . (6.105)

If we have n replicate observations and standard n asymptotics apply we may
again replace ı̂ by simpler estimates with errors Op(1/

√
n) to obtain noniterat-

ive estimates of ηU that are asymptotically equivalent to maximum likelihood
estimates.

Example 6.9. Covariance selection model. A special case, arising in particular
in the discussion of Markovian undirected graphical systems, is based on inde-
pendent and identically distributed p × 1 random vectors normally distributed
with covariance matrix �. There is no essential loss of generality in supposing
that the mean is zero. The log likelihood for a single observation is

(log det�−1 − yT�−1y)/2 (6.106)

and the second term can be written

−tr{�−1(yyT )}/2. (6.107)

Here the trace, tr, of a square matrix is the sum of its diagonal elements.
It follows that for the full data the log likelihood is

{n log det�−1 − tr(�−1S)}/2, (6.108)

where S is the matrix of observed sums of squares and products. The concen-
tration matrix is the canonical parameter, the canonical statistic is S and the
mean parameter n�. It follows that in the unconstrained model the maximum
likelihood estimate of �, obtained by equating the canonical statistic to its
expectation, is the sample covariance matrix T/n.

Now consider the constrained model in which the elements of�−1 in the set C
are zero. The statistical interpretation is that the pairs of components in C are
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conditionally independent given the remaining components. It follows from the
general discussion that the maximum likelihood estimates of the covariances of
pairs of variables not in C are unchanged, i.e., are the sample covariances. The
remaining estimates are defined by forcing the implied concentration elements
to zero as required by the constraints. Approximations can be obtained by
replacing the information matrices by large-sample approximations.

6.9 Semi-asymptotic arguments

In some applications relatively simple exact inference would be available about
the parameter of interest ψ were the nuisance parameter λ known. If errors of
estimating λ are relatively small the following argument may be used.

Suppose that to test the hypothesis ψ = ψ0 for known λ the p-value cor-
responding to data y is a function of part of the data yψ and is p(yψ ,ψ0; λ).
Suppose that conditionally on yψ the estimate λ̃ of λ has expectation λ+o(1/n)
and covariance matrix v(λ)/n. Now taking expectations over the distribution of
λ̃ given yψ , we have, after Taylor expansion to two terms, that

E{p(yψ ,ψ0, λ̃)} = p(yψ ,ψ0, λ)+ 1

2n
tr{v(λ)∇λ∇T

λ p(yψ ,ψ0, λ)}. (6.109)

Now an estimated probability with expectation equal to a true value will
itself, subject to lying in (0, 1), have a probability interpretation. This leads to
consideration of

p(yψ ,ψ0, λ̃)− (2n)−1tr{v(λ̃)∇λ∇T
λ p(yψ ,ψ0, λ̃)}. (6.110)

This is most safely expressed in the asymptotically equivalent form
p(yψ ,ψ0, λ̃+ χ̃), where χ̃ is any solution of

χ̃∇λp = −(2n)−1tr(v∇λ∇T
λ p). (6.111)

Thus if λ is a scalar we take

p

{
yψ ,ψ0, λ̃− v(λ̃)∂2p/∂λ2

2n∂p/∂λ

}
. (6.112)

Example 6.10. Poisson-distributed signal with estimated background.
Suppose that in generalization of Example 3.7 we observe two random variables
Y and YB having independent Poisson distributions with means respectively
(ψ + λ)tS and λtB. Thus Y refers to a signal plus background observed for a
time tS and YB to the background observed for a time tB. We consider a situ-
ation in which tB is long compared with tS , so that the background is relatively
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precisely estimated. If λ were known the p-value for testing ψ = ψ0 sensitive
against larger values of ψ would be

p(y,ψ0, λ) = �
y
v=0 exp{−(ψ0 + λ)tS}{(ψ0 + λ)tS}v/v!. (6.113)

We write λ̃ = t−1
B yB and to a sufficient approximation v(λ)/n = yB/t2

B. In the
special case when y = 0 the adjusted p-value becomes

exp[−ψ0tS − yBtSt−1
B {1 + tS/(2tB)}]. (6.114)

6.10 Numerical-analytic aspects

6.10.1 General remarks

In the majority of applications the maximum of the likelihood l(θ) and asso-
ciated statistics have to be found numerically or in the case of Bayesian
calculations broadly comparable numerical integrations have to be done. In
both frequentist and Bayesian approaches it may be fruitful to explore the gen-
eral character of the likelihood function and, in particular, to compute and plot
the profile log likelihood in the region of the maximum. The details of these
procedures raise numerical-analytic rather than statistical issues and will not
be discussed in depth here. We deal first with deterministic numerical methods
and then with simulation-based approaches.

6.10.2 Numerical maximization

One group of techniques for numerical maximization of a function such as a
log likelihood can be classified according as specification in readily computable
form is possible for

• only function values,
• function values and first derivatives,
• function values and first and second derivatives.

In some situations an initial value of θ is available that is virtually sure to be close
to the required maximum. In others it will be wise to start iterative algorithms
from several or indeed many different starting points and perhaps also to use
first a very coarse grid search in order to assess the general shape of the surface.

The most direct method available for low-dimensional problems is grid
search, i.e., computation of l(θ) over a suitably chosen grid of points. It can
be applied more broadly to the profile likelihood when ψ is, say, one- or
two-dimensional, combined with some other method for computing λ̂ψ . Grid
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search, combined with a plot of the resulting function allows checking for like-
lihoods of nonstandard shapes, for example those departing appreciably from
the quadratic form that is the basis of asymptotic theory.

In particular, a simple but effective way of computing the profile likelihood
for one- or even two-dimensional parameters of interest, even in relatively com-
plicated problems, is just to evaluate l(ψ , λ) for a comprehensive grid of values
of the argument; this in some contexts is feasible provided a reasonably efficient
algorithm is available for computing l. The envelope of a plot of l against ψ
shows the profile log likelihood. This is especially useful if ψ is a relatively
complicated function of the parameters in terms of which the likelihood is most
conveniently specified.

Next there is a considerable variety of methods of function maximization
studied in the numerical-analytic literature, some essentially exploiting local
quadratic approximations applied iteratively. They are distinguished by whether
none, one or both of the first and second derivatives are specified analytically.
All such procedures require a convergence criterion to assess when a max-
imum has in effect been reached. Especially when there is the possibility of a
somewhat anomalous log likelihood surface, caution is needed in judging that
convergence is achieved; reaching the same point from very different starting
points is probably the best reassurance.

The most widely used method of the first type, i.e, using only function eval-
uations, is the Nelder–Mead simplex algorithm. In this the log likelihood is
evaluated at the vertices of a simplex and further points added to the simplex
in the light of the outcome, for example reflecting the point with lowest log
likelihood in the complementary plane. There are numerous possibilities for
changing the relative and absolute sizes of the edges of the simplex. When the
algorithm is judged to have converged subsidiary calculations will be needed
to assess the precision of the resulting estimates.

Many of the procedures are some variant of the Newton–Raphson iteration
in which the maximum likelihood estimating equation is linearized around θ0

to give

∇l(θ0)+ ∇∇T l(θ0)(θ̂ − θ0) = 0, (6.115)

leading to the iterative scheme

θ̂t+1 − θ̂t = −{∇∇T l(θ̂t)}−1∇l(θ̂t). (6.116)

This requires evaluation of first and second derivatives. In many problems of
even modest complexity the direct calculation of second derivatives can be
time-consuming or impracticable so that indirect evaluation via a set of first
derivatives is to be preferred. Such methods are called quasi-Newton methods.
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These and related methods work well if the surface is reasonably close
to quadratic in a region including both the starting point and the eventual
maximum. In general, however, there is no guarantee of convergence.

An important technique for finding maximum likelihood estimates either
when there is appreciable missing information which distorts a simple estima-
tion scheme or where the likelihood is specified indirectly via latent variables
involves what is sometimes called a self-consistency or missing information
principle and is encapsulated in what is called the EM algorithm. The gen-
eral idea is to iterate between formally estimating the missing information and
estimating the parameters.

It can be shown that each step of the standard version of the EM algorithm can
never decrease the log likelihood of Y . Usually, but not necessarily, this implies
convergence of the algorithm, although this may be to a subsidiary rather than a
global maximum and, in contrived cases, to a saddle-point of the log likelihood.

There are numerous elaborations, for example to speed convergence which
may be slow, or to compute estimates of precision; the latter are not obtainable
directly from the original EM algorithm.

In all iterative methods specification of when to stop is important. A long
succession of individually small but steady increases in log likelihood is a
danger sign!

6.10.3 Numerical integration

The corresponding numerical calculations in Bayesian discussions are ones
of numerical integration arising either in the computation of the normaliz-
ing constant after multiplying a likelihood function by a prior density or by
marginalizing a posterior density to isolate the parameter of interest.

The main direct methods of integration are Laplace expansion, usually taking
further terms in the standard development of the expansion, and adaptive quad-
rature. In the latter standard procedures of numerical integration are used that
are highly efficient when the function evaluations are at appropriate points. The
adaptive part of the procedure is concerned with steering the choice of points
sensibly, especially when many evaluations are needed at different parameter
configurations.

6.10.4 Simulation-based techniques

The above methods are all deterministic in that once a starting point and
a convergence criterion have been set the answer is determined, except for



128 Asymptotic theory

what are normally unimportant rounding errors. Such methods can be contras-
ted with simulation-based methods. One of the simplest of these in Bayesian
discussions is importance sampling in which a numerical integration is inter-
preted as an expectation, which in turn is estimated by repeated sampling. The
most developed type of simulation procedure is the Markov chain Monte Carlo,
MCMC, method. In most versions of this the target is the posterior distribution
of a component parameter. This is manoeuvred to be the equilibrium distribu-
tion of a Markov chain. A large number of realizations of the chain are then
constructed and the equilibrium distribution obtained from the overall distribu-
tion of the state values, typically with an initial section deleted to remove any
transient effect of initial conditions.

Although in most cases it will be clear that the chain has reached a stationary
state there is the possibility for the chain to be stuck in a sequence of transitions
far from equilibrium; this is broadly parallel to the possibility that iterative
maximization procedures which appear to have converged in fact have not
done so.

One aspect of frequentist discussions concerns the distribution of test statist-
ics, in particular as a basis for finding p-values or confidence limits. The simplest
route is to find the maximum likelihood estimate, θ̂ , of the full parameter vector
and then to sample repeatedly the model fY (y; θ̂ ) and hence find the distribution
of concern. For testing a null hypothesis only the nuisance parameter need be
estimated. It is only when the conclusions are in some sense borderline that this
need be done with any precision. This approach ignores errors in estimating θ .
In principle the sampling should be conditional on the observed information ̂ ,
the approximately ancillary statistic for the model. An ingenious and powerful
alternative available at least in simpler problems is to take the data themselves as
forming the population for sampling randomly with replacement. This proced-
ure, called the (nonparametric) bootstrap, has improved performance especially
if the statistic for study can be taken in pivotal form. The method is related to the
notion of empirical likelihood, based on an implicit multinomial distribution
with support the data points.

6.11 Higher-order asymptotics

A natural development of the earlier discussion is to develop the asymptotic
theory to a further stage. Roughly this involves taking series expansions to fur-
ther terms and thus finding more refined forms of test statistic and establishing
distributional approximations better than the normal or chi-squared distribu-
tions which underlie the results summarized above. In Bayesian estimation
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theory it involves, in particular, using further terms of the Laplace expansion
generating approximate normality, in order to obtain more refined approxim-
ations to the posterior distribution; alternatively asymptotic techniques more
delicate than Laplace approximation may be used and may give substantially
improved results.

There are two objectives to such discussions in frequentist theory. The more
important aims to give some basis for choosing between the large number of pro-
cedures which are equivalent to the first order of asymptotic theory. The second
is to provide improved distributional approximations, in particular to provide
confidence intervals that have the desired coverage probability to greater accur-
acy than the results sketched above. In Bayesian theory the second objective is
involved.

Typically simple distributional results, such as that the pivot (θ̂−θ)√(nı̄) has
asymptotically a standard normal distribution, mean that probability statements
about the pivot derived from the standard normal distribution are in error by
O(1/

√
n) as n increases. One object of asymptotic theory is thus to modify the

statement so that the error is O(1/n) or better. Recall though that the limiting
operations are notional and that in any case the objective is to get adequate
numerical approximations and the hope would be that with small amounts of
data the higher-order results would give better approximations.

The resulting theory is quite complicated and all that will be attempted here
is a summary of some conclusions, a number of which underlie some of the
recommendations made above.

First it may be possible sometimes to find a Bayesian solution for the posterior
distribution in which posterior limits have a confidence limit interpretation
to a higher order. Indeed to the first order of asymptotic theory the posterior
distribution of the parameter is normal with variance the inverse of the observed
information for a wide class of prior distributions, thus producing agreement
with the confidence interval solution.

With a single unknown parameter it is possible to find a prior, called a
matching prior, inducing closer agreement. Note, however, that from conven-
tional Bayesian perspectives this is not an intrinsically sensible objective. The
prior serves to import additional information and enforced agreement with
a different approach is then irrelevant. While a formal argument will not be
given the conclusion is understandable from a combination of the results in
Examples 4.10 and 6.3. The location model of Example 4.10 has as its fre-
quentist analysis direct consideration of the likelihood function equivalent to
a Bayesian solution with a flat (improper) prior. Example 6.3 shows the trans-
formation of θ that induces constant information, one way of approximating
location form. This suggests that a flat prior on the transformed scale, i.e., a prior
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density proportional to
√

i(θ), (6.117)

is suitable for producing agreement of posterior interval with confid-
ence interval to a higher order, the prior thus being second-order match-
ing. Unfortunately for multidimensional parameters such priors, in general,
do not exist.

The simplest general result in higher-order asymptotic theory concerns the
profile likelihood statistic WL . Asympotically this has a chi-squared distribution
with dψ degrees of freedom. Were the asymptotic theory to hold exactly we
would have

E(WL) = dψ . (6.118)

Typically

E(WL) = dψ(1 + B/n), (6.119)

where, in general, B is a constant depending on unknown parameters.
This suggests that if we modify WL to

W ′
L = WL/(1 + B/n) (6.120)

the mean of the distribution will be closer to that of the approximating chi-
squared distribution. Remarkably, not only is the mean improved but the whole
distribution function of the test statistic becomes closer to the approximating
form. Any unknown parameters in B can be replaced by estimates. In complic-
ated problems in which theoretical evaluation of B is difficult, simulation of
data under the null hypothesis can be used to evaluate B approximately.

The factor (1 + B/n) is called a Bartlett correction. When ψ is one-
dimensional the two-sided confidence limits forψ produced from W ′

L do indeed
have improved coverage properties but unfortunately in most cases the upper
and lower limits are not, in general, separately improved.

Notes 6

Section 6.2. A proof of the asymptotic results developed informally here
requires regularity conditions ensuring first that the root of the maximum likeli-
hood estimating equation with the largest log likelihood converges in probability
to θ . Next conditions are needed to justify ignoring the third-order terms in the
series expansions involved. Finally the Central Limit Theorem for the score and
the convergence in probability of the ratio of observed to expected information
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have to be proved. See van der Vaart (1998) for an elegant and mathematically
careful account largely dealing with independent and identically distributed
random variables. As has been mentioned a number of times in the text, a key
issue in applying these ideas is whether, in particular, the distributional results
are an adequate approximation in the particular application under study.

A standard notation in analysis is to write {an} = O(nb) as n → ∞ to mean
that an/nb is bounded and to write an = o(nb) to mean an/nb → 0. The cor-
responding notation in probability theory is to write for random variables An

that An = Op(nb) or An = op(nb) to mean respectively that An/nb is bounded
with very high probability and that it tends to zero in probability respectively.
Sometimes one says in the former case that an or An is of the order of mag-
nitude nb. This is a use of the term different from that in the physical sciences
where often an order of magnitude is a power of 10. If An − a = op(1) then An

converges in probability to a.
In discussing distributional approximations, in particular normal approxim-

ations, the terminology is that Vn is asymptotically normal with mean and
variance respectively µn and σ 2

n if the distribution function of (Vn − µn)/σn

tends to the distribution function of the standard normal distribution. Note that
µn and σn refer to the approximating normal distribution and are not necessarily
approximations to the mean and variance of Vn.

The relation and apparent discrepancy between Bayesian and frequentist tests
was outlined by Jeffreys (1961, first edition 1939) and developed in detail by
Lindley (1957). A resolution broadly along the lines given here was sketched
by Bartlett (1957); see, also, Cox and Hinkley (1974).

Section 6.3. Another interpretation of the transformation results for the score
and the information matrix is that they play the roles respectively of a contra-
variant vector and a second-order covariant tensor and the latter could be
taken as the metric tensor in a Riemannian geometry. Most effort on geometrical
aspects of asymptotic theory has emphasized the more modern coordinate-free
approach. See Dawid (1975), Amari (1985) and Murray and Rice (1993). For a
broad review, see Barndorff-Nielsen et al. (1986) and for a development of the
Riemannian approach McCullagh and Cox (1986).

Section 6.5. For more on Bayes factors, see Kass and Raftery (1995) and
Johnson (2005).

Section 6.8. Asymptotic tests based strongly on the method of Lagrange mul-
tipliers are developed systematically by Aitchison and Silvey (1958) and Silvey
(1959). The discussion here is based on joint work with N. Wermuth and
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G. Marchetti. Covariance selection models involving zero constraints in con-
centration matrices were introduced by Dempster (1972). Models with zero
constraints on covariances are a special class of linear in covariance structures
(Anderson, 1973). Both are of current interest in connection with the study of
various kinds of Markov independence graphs.

The discussion of a covering model as a systematic device for generating close
approximations to maximum likelihood estimates follows Cox and Wermuth
(1990); R. A. Fisher noted that one step of an iterative scheme for maximum
likelihood estimates recovered all information in a large-sample sense.

Section 6.10. Nelder and Mead (1965) give a widely used algorithm based on
simplex search. Lange (2000) gives a general account of numerical-analytic
problems in statistics. For the EM algorithm see Dempster et al. (1977) and for
a review of developments Meng and van Dyk (1997). Sundberg (1974) develops
formulae for incomplete data from an exponential family model. Efron (1979)
introduces the nonparametric bootstrap; see Davison and Hinkley (1997) for
a very thorough account. Markov chain Monte Carlo methods are discussed
from somewhat different perspectives by Liu (2002) and by Robert and Casella
(2004). For a wide-ranging account of simulation methods, see Ripley (1987).
For an example of the envelope method of computing a profile likelihood, see
Cox and Medley (1989).

Section 6.11. Higher-order asymptotic theory of likelihood-based statistics
was initially studied by M. S. Bartlett beginning with a modification of the
likelihood ratio statistic (Bartlett, 1937) followed by the score statistic (Bartlett,
1953a, 1953b). Early work explicitly or implicitly used Edgeworth expansions,
modifications of the normal distribution in terms of orthogonal polynomials
derived via Taylor expansion of a moment generating function. Nearly 30 years
elapsed between the introduction (Daniels, 1954) of saddle-point or tilted
Edgeworth series and their systematic use in inferential problems. Butler (2007)
gives a comprehensive account of the saddle-point method and its applications.
Efron and Hinkley (1978) establish the superiority of observed over expected
information for inference by appeal to conditionality arguments. For a gen-
eral account, see Barndorff-Nielsen and Cox (1994) and for a wide-ranging
more recent review Reid (2003). The book by Brazzale et al. (2007) deals both
with the theory and the implementation of these ideas. This latter work is in a
likelihood-based framework. It may be contrasted with a long series of papers
collected in book form by Akahira and Takeuchi (2003) that are very directly
in a Neyman–Pearson setting.



7

Further aspects of maximum likelihood

Summary. Maximum likelihood estimation and related procedures provide
effective solutions for a wide range of problems. There can, however, be dif-
ficulties leading at worst to inappropriate procedures with properties far from
those sketched above. Some of the difficulties are in a sense mathematical
pathologies but others have serious statistical implications. The first part of the
chapter reviews the main possibilities for anomalous behaviour. For illustration
relatively simple examples are used, often with a single unknown parameter.
The second part of the chapter describes some modifications of the likelihood
function that sometimes allow escape from these difficulties.

7.1 Multimodal likelihoods

In some limited cases, notably connected with exponential families, convexity
arguments can be used to show that the log likelihood has a unique maximum.
More commonly, however, there is at least the possibility of multiple maxima
and saddle-points in the log likelihood surface. See Note 7.1.

There are a number of implications. First, proofs of the convergence of
algorithms are of limited comfort in that convergence to a maximum that is
in actuality not the overall maximum of the likelihood is unhelpful or worse.
Convergence to the global maximum is nearly always required for correct inter-
pretation. When there are two or more local maxima giving similar values to
the log likelihood, it will in principle be desirable to know them all; the natural
confidence set may consist of disjoint intervals surrounding these local maxima.
This is probably an unusual situation, however, and the more common situation
is that the global maximum is dominant.

The discussion of Sections 6.4–6.7 of the properties of profile likelihood
hinges only on the estimate of the nuisance parameter λ̂ψ being a stationary
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point of the log likelihood given ψ and on the formal information matrix jψψ ·λ
being positive definite. There is thus the disturbing possibility that the profile
log likelihood appears well-behaved but that it is based on defective estimates
of the nuisance parameters.

The argument of Section 6.8 can sometimes be used to obviate some of these
difficulties. It starts from a set of estimates with simple well-understood proper-
ties, corresponding to a saturated model, for example. The required maximum
likelihood estimates under the restricted model are then expressed as small
corrections to some initial simple estimates. Typically the corrections being
Op(1/

√
n) in magnitude should be of the order of the standard error of the ini-

tial estimates, and small compared with that if the initial estimates are of high
efficiency. There are two consequences. If the correction is small, then it is quite
likely that close to the global maximum of the likelihood has been achieved. If
the correction is large, the proposed model is probably a bad fit to the data. This
rather imprecise argument suggests that anomalous forms of log likelihood are
likely to be of most concern when the model is a bad fit to the data or when the
amount of information in the data is very small.

It is possible for the log likelihood to be singular, i.e., to become unbounded
in a potentially misleading way. We give the simplest example of this.

Example 7.1. An unbounded likelihood. Suppose that Y1, . . . , Yn are independ-
ently and identically distributed with unknown mean µ and density

(1 − b)φ(y − µ)+ bλ−1φ{(y − µ)/λ)}, (7.1)

where φ(.) is the standard normal density, λ is a nuisance parameter and b is
a known small constant, for example 10−6. Because for most combinations of
the parameters the second term in the density is negligible, the log likelihood
will for many values of λ have a maximum close to µ = ȳ, and ȳ, considered
as an estimate of µ, will enjoy the usual properties. But for µ = yk for any k
the log likelihood will be unbounded as λ → 0. Essentially a discrete atom, the
limiting form, gives an indefinitely larger log likelihood than any continuous
distribution. To some extent the example is pathological. A partial escape route
at a fundamental level can be provided as follows. All data are discrete and the
density is used to give approximations for small bin widths (grouping intervals)
h. For any value of µ for which an observation is reasonably central to a bin
and for which λ is small compared with h one normal component in the model
attaches a probability of 1 to that observation and hence the model attaches
likelihood b, namely the weight of the normal component in question. Hence
the ratio of the likelihood achieved at µ = yk and small λ to that achieved at
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µ = ȳ with any λ not too small is

b
√
(2π) exp{−n(yk − ȳ)2/2}

h(1 − b)
. (7.2)

This ratio is of interest because it has to be greater than 1 for the optimum
likelihood around µ = yk to dominate the likelihood at µ = ȳ. Unless b/h
is large and yk is close to ȳ the ratio will be less than 1. The possibility of
anomalous behaviour with misleading numerical consequences is much more
serious with the continuous version of the likelihood.

7.2 Irregular form

A key step in the discussion of even the simplest properties is that the maximum
likelihood estimating equation is unbiased, i.e., that

E{∇l(θ ; Y); θ} = 0. (7.3)

This was proved by differentiating under the integral sign the normalizing
equation ∫

f (y; θ)dy = 1. (7.4)

If this differentiation is not valid there is an immediate difficulty and we may
call the problem irregular. All the properties of maximum likelihood estimates
sketched above are now suspect. The most common reason for failure is that
the range of integration effectively depends on θ .

The simplest example of this is provided by a uniform distribution with
unknown range.

Example 7.2. Uniform distribution. Suppose that Y1, . . . , Yn are independently
distributed with a uniform distribution on (0, θ), i.e., have constant density 1/θ
in that range and zero elsewhere. The normalizing condition for n independent
observations is, integrating in Rn,∫ θ

0
(1/θn)dy = 1. (7.5)

If this is differentiated with respect to θ there is a contribution not only from
differentiating 1/θ but also one from the upper limit of the integral and the key
property fails.

Direct examination of the likelihood shows it to be discontinuous, being zero
if θ < y(n), the largest observation, and equal to 1/θn otherwise. Thus y(n) is
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the maximum likelihood estimate and is also the minimal sufficient statistic for
θ . Its properties can be studied directly by noting that

P(Y(n) ≤ z) = �P(Yj ≤ z) = (z/θ)n. (7.6)

For inference about θ , consider the pivot n(θ − Y(n))/θ for which

P{n(θ − Y(n))/θ < t} = (1 − t/n)n, (7.7)

so that as n increases the pivot is asymptotically exponentially distributed. In
this situation the maximum likelihood estimate is a sure lower limit for θ , the
asymptotic distribution is not Gaussian and, particularly significantly, the errors
of estimation are Op(1/n) not Op(1/

√
n). An upper confidence limit for θ is

easily calculated from the exact or from the asymptotic pivotal distribution.

Insight into the general problem can be obtained from the following simple
generalization of Example 7.2.

Example 7.3. Densities with power-law contact. Suppose that Y1, . . . , Yn are
independently distributed with the density (a + 1)(θ − y)a/θa+1, where a is
a known constant. For Example 7.2, a = 0. As a varies the behaviour of the
density near the critical end-point θ changes.

The likelihood has a change of behaviour, although not necessarily a local
maximum, at the largest observation. A slight generalization of the argument
used above shows that the pivot

n1/(a+1)(θ − Y(n))/θ (7.8)

has a limiting Weibull distribution with distribution function 1 − exp(−ta+1).
Thus for −1/2 < a < 1 inference about θ is possible from the maximum
observation at an asymptotic rate faster than 1/

√
n.

Consider next the formal properties of the maximum likelihood estimating
equation. We differentiate the normalizing equation∫ θ

0
{(a + 1)(θ − y)a/θa+1}dy = 1 (7.9)

obtaining from the upper limit a contribution equal to the argument of the
integrand there and thus zero if a > 0 and nonzero (and possibly unbounded)
if a ≤ 0.

For 0 < a ≤ 1 the score statistic for a single observation is

∂ log f (Y , θ)/∂θ = a/(θ − Y)− (a + 1)/θ (7.10)

and has zero mean and infinite variance; an estimate based on the largest
observation is preferable.
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For a > 1 the normalizing condition for the density can be differentiated
twice under the integral sign, Fisher’s identity relating the expected information
to the variance of the score holds and the problem is regular.

The relevance of the extreme observation for asymptotic inference thus
depends on the level of contact of the density with the y-axis at the terminal
point. This conclusion applies also to more complicated problems with more
parameters. An example is the displaced exponential distribution with density

ρ exp{−ρ(y − θ)} (7.11)

for y > θ and zero otherwise, which has a discontinuity in density at y = θ .
The sufficient statistics in this case are the smallest observation y(1) and the
mean. Estimation of θ by y(1) has error Op(1/n) and estimation of ρ with error
Op(1/

√
n) can proceed as if θ is known at least to the first order of asymptotic

theory. The estimation of the displaced Weibull distribution with density

ργ {ρ(y − θ)}γ−1 exp[−{ρ(y − θ)}γ ] (7.12)

for y > θ illustrates the richer possibilities of Example 7.3.
There is an important additional aspect about the application of these and

similar results already discussed in a slightly different context in Example 7.1.
The observations are treated as continuously distributed, whereas all real data
are essentially recorded on a discrete scale, often in groups or bins of a par-
ticular width. For the asymptotic results to be used to obtain approximations
to the distribution of extremes, it is, as in the previous example, important that
the grouping interval in the relevant range is chosen so that rounding errors
are unimportant relative to the intrinsic random variability of the continuous
variables in the region of concern. If this is not the case, it may be more relevant
to consider an asymptotic argument in which the grouping interval is fixed as
n increases. Then with high probability the grouping interval containing the
terminal point of support will be identified and estimation of the position of
the maximum within that interval can be shown to be an essentially regular
problem leading to a standard error that is O(1/

√
n).

While the analytical requirements justifying the expansions of the log like-
lihood underlying the theory of Chapter 6 are mild, they can fail in ways less
extreme than those illustrated in Examples 7.2 and 7.3. For example the log like-
lihood corresponding to n independent observations from the Laplace density
exp(−|y − θ |)/2 leads to a score function of

−�sgn(yk − θ). (7.13)

It follows that the maximum likelihood estimate is the median, although if n
is odd the score is not differentiable there. The second derivative of the log
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likelihood is not defined, but it can be shown that the variance of the score does
determine the asymptotic variance of the maximum likelihood estimate.

A more subtle example of failure is provided by a simple time series problem.

Example 7.4. Model of hidden periodicity. Suppose that Y1, . . . , Yn are
independently normally distributed with variance σ 2 and with

E(Yk) = µ+ α cos(kω)+ β sin(kω), (7.14)

where (µ,α,β,ω, σ 2) are unknown. A natural interpretation is to think of the
observations as equally spaced in time. It is a helpful simplification to restrict
ω to the values

ωp = 2πp/n (p = 1, 2, . . . , [n/2]), (7.15)

where [x] denotes the integer part of x. We denote the true value of ω holding
in (7.14) by ωq.

The finite Fourier transform of the data is defined by

Ỹ(ωp) = √
(2/n)�Ykeikωp

= Ã(ωp)+ iB̃(ωp). (7.16)

Because of the special properties of the sequence {ωp} the transformation
from Y1, . . . , Yn to �Yk/

√
n, Ã(ω1), B̃(ω1), . . . is orthogonal and hence the

transformed variables are independently normally distributed with variance σ 2.
Further, if the linear model (7.14) holds with ω = ωq known, it follows that:

• for p 
= q, the finite Fourier transform has expectation zero;
• the least squares estimates of α and β are

√
(2/n) times the real and

imaginary parts of Ỹ(ωq), the expectations of which are therefore
√
(n/2)α

and
√
(n/2)β;

• the residual sum of squares is the sum of squares of all finite Fourier
transform components except those at ωq.

Now suppose that ω is unknown and consider its profile likelihood after
estimating (µ,α,β, σ 2). Equivalently, because (7.14) for fixed ω is a normal-
theory linear model, we may use minus the residual sum of squares. From the
points listed above it follows that the residual sum of squares varies randomly
across the values of ω except at ω = ωq, where the residual sum of squares is
much smaller. The dip in values, corresponding to a peak in the profile likeli-
hood, is isolated at one point. Even though the log likelihood is differentiable
as a function of the continous variable ω the fluctuations in its value are so
rapid and extreme that two terms of a Taylor expansion about the maximum
likelihood point are totally inappropriate.
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In a formal asymptotic argument in which (α,β) are O(1/
√

n), and so on the
borderline of detectability, the asymptotic distribution of ω̂ is a mixture of an
atom at the true value ωq and a uniform distribution on (0,π/2). The uniform
distribution arises from identifying the maximum at the wrong point.

7.3 Singular information matrix

A quite different kind of anomalous behaviour occurs if the score statistic is
defined but is singular. In particular, for a scalar parameter the score function
may be identically zero for special values of the parameter. It can be shown that
this can happen only on rather exceptional sets in the parameter space but if
one of these points corresponds to a null hypothesis of interest, the singularity
is of statistical concern; see Note 7.3.

Example 7.5. A special nonlinear regression. Suppose that Y1, . . . , Yn are
independently normally distributed with unit variance and that for constants
z1, . . . , zn not all equal we have one of the models

E(Yj) = exp(θzj)− 1 − θzj (7.17)

or

E(Yj) = exp(θzj)− 1 − θzj − (θzj)
2/2. (7.18)

Consider the null hypothesis θ = 0. For the former model the contribution
to the score statistic from Yj is

− (∂/∂θ){Yj − exp(θzj)+ 1 + θzj}2/2 (7.19)

and both this and the corresponding contribution to the information are
identically zero at θ = 0.

It is clear informally that, to extend the initial discussion of maximum like-
lihood estimation and testing to such situations, the previous series expansions
leading to likelihood derivatives must be continued to enough terms to obtain
nondegenerate results. Details will not be given here. Note, however, that loc-
ally near θ = 0 the two forms for E(Yj) set out above are essentially (θzj)

2/2
and (θzj)

3/6. This suggests that in the former case θ2 will be estimated to a
certain precision, but that the sign of θ will be estimated with lower precision,
whereas that situation will not arise in the second model θ3, and hence the sign
of θ , being estimable.

A more realistic example of the same issue is provided by simple models of
informative nonresponse.
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Example 7.6. Informative nonresponse. Suppose that Y1, . . . , Yn are independ-
ently normally distributed with mean µ and variance σ 2. For each observation
there is a possibility that the corresponding value of y cannot be observed. Note
that in this formulation the individual study object is always observed, it being
only the value of Y that may be missing. If the probability of being unobserved
is independent of the value of y the analysis proceeds with the likelihood of the
observed values; the values of y are missing completely at random. Suppose,
however, that given Y = y the probability that y is observed has the form

exp{H(α0 + α1(y − µ)/σ)}, (7.20)

whereα0,α1 are unknown parameters and H(.) is a known function, for example
corresponding to a logistic regression of the probability of being observed as a
function of y. Missing completely at random corresponds to α1 = 0 and interest
may well focus on that null hypothesis and more generally on small values
of α1.

We therefore consider two random variables (R, Y), where R is binary, taking
values 0 and 1. The value of Y is observed if and only if R = 1. The contribution
of a single individual to the log likelihood is thus

−r log σ − r(y − µ)2/(2σ 2)+ rH{α0 + α1(y − µ)/σ }
+ (1 − r) log E[1 − exp{H(α0 + α1(Y − µ)/σ)}]. (7.21)

The last term is the overall probability that Y is not observed. The primary
objective in this formulation would typically be the estimation of µ allowing
for the selectively missing data values; in a more realistic setting the target
would be a regression coefficient assessing the dependence of Y on explanatory
variables.

Expansion of the log likelihood in powers of α1 shows that the log likelihood
is determined by

nc, �c(yk − µ), �c(yk − µ)2, (7.22)

and so on, where nc is the number of complete observations and �c denotes
sum over the complete observations. That is, the relevant functions of the data
are the proportion of complete observations and the first few sample moments
of the complete observations.

If the complete system variance σ 2 is assumed known, estimation may be
based on nc and the first two moments, thereby estimating the three unknown
parameters (µ,α0,α1). If σ 2 is regarded as unknown, then the sample third
moment is needed also.

The general difficulty with this situation can be seen in various ways. One is
that when, for example, σ 2 is assumed known, information about the missing
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structure can be inferred by comparing the observed sample variance with the
known value and ascribing discrepancies to the missingness. Not only will such
comparisons be of low precision but more critically they are very sensitive to the
accuracy of the presumed value of variance. When the variance is unknown the
comparison of interest involves the third moment. Any evidence of a nonvan-
ishing third moment is ascribed to the missingness and this makes the inference
very sensitive to the assumed symmetry of the underlying distribution.

More technically the information matrix is singular at the point α1 = 0.
Detailed calculations not given here show a parallel with the simpler regression
problem discussed above. For example when σ 2 is unknown, expansion yields
the approximate estimating equation

α̃3
1 = {H ′′′(α̃0)}−1γ̂3, (7.23)

where γ̂3 is the standardized third cumulant, i.e., third cumulant or moment
about the mean divided by the cube of the standard deviation. It follows that
fluctuations in α̃1 are Op(n−1/6); even apart from this the procedure is fragile
for the reason given above.

7.4 Failure of model

An important possibility is that the data under analysis are derived from a
probability density g(.) that is not a member of the family f (y; θ) originally
chosen to specify the model. Note that since all models are idealizations the
empirical content of this possibility is that the data may be seriously incon-
sistent with the assumed model and that although a different model is to be
preferred, it is fruitful to examine the consequences for the fitting of the original
family.

We assume that for the given g there is a value of θ in the relevant parameter
space such that

Eg{∇l(θ)}θ=θg = 0. (7.24)

Here Eg denotes expectation with respect to g.
The value θg minimizes∫

g(y) log{ fY (y; θ)/g(y)}dy. (7.25)

This, the Kullback–Leibler divergence, arose earlier in Section 5.9 in connection
with reference priors.
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A development of (7.24) is to show that the asymptotic distribution of θ̂ under
the model g is asymptotically normal with mean θg and covariance matrix

Eg{∇∇T log fY (y; θ)}covg{∇ log fY (y; θ)}{Eg{∇∇T log fY (y; θ)}}T , (7.26)

which is sometimes called the sandwich formula.
The most immediate application of these formulae is to develop likelihood

ratio tests for what are sometimes called separate families of hypotheses. Sup-
pose that we regard consistency with the family fY (y; θ) as a null hypothesis
and either a single distribution gY (y) or more realistically a family gY (y;ω)
as the alternative. It is assumed that for a given θ there is no value of ω that
exactly agrees with fY (y; θ) but that in some sense there are values for which
there is enough similarity that discrimination between them is difficult with the
data under analysis. The likelihood ratio statistic

lg(ω̂)− lf (θ̂) (7.27)

can take negative as well as positive values, unlike the case where the null
hypothesis model is nested within the alternatives. It is clear therefore that the
asymptotic distribution cannot be of the chi-squared form. In fact, it is normal
with a mean and variance that can be calculated via (7.26). Numerical work
shows that approach to the limiting distribution is often very slow so that a more
sensible course in applications will often be to compute the limiting distribution
by simulation. In principle the distribution should be found conditionally on
sufficient statistics for the null model and at least approximately these are θ̂ and
the corresponding observed information. Usually it will be desirable to repeat
the calculation interchanging the roles of the two models, thereby assessing
whether both, one but not the other, or neither model is adequate in the respect
considered.

Sometimes more refined calculations are possible, notably when one or
preferably both models have simple sufficient statistics.

7.5 Unusual parameter space

In many problems the parameter space of possible values is an open set in
some d-dimensional space. That is, the possibility of parameter points on the
boundary of the space is not of particular interest. For example, probabilities
are constrained to be in (0, 1) and the possibility of probabilities being exactly
0 or 1 is usually not of special moment. Parameter spaces in applications are
commonly formulated as infinite although often in practice there are limits on
the values that can arise.
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Constraints imposed on the parameter space may be highly specific to a
particular application. We discuss a simple example which is easily generalized.

Example 7.7. Integer normal mean. Suppose that Ȳ is the mean of n inde-
pendent random variables normally distributed with unknown mean µ and
known variance σ 2

0 . Suppose that the unknown mean µ is constrained to be
a nonnegative integer; it might, for example, be the number of carbon atoms in
some moderately complicated molecule, determined indirectly with error. It is
simplest to proceed via the connection with significance tests. We test in turn
consistency with each nonnegative integer r, for example by a two-sided test,
and take all those r consistent with the observed value ȳ as a confidence set.
That is, at level 1 − 2c the set of integers in the interval

( ȳ − k∗
cσ0/

√
n, ȳ + k∗

cσ0/
√

n) (7.28)

forms a confidence set. That is, any true integer value of µ is included with
appropriate probability. Now if σ0/

√
n is small compared with 1 there is some

possibility that the above set is null, i.e., no integer value is consistent with the
data at the level in question.

From the perspective of significance testing, this possibility is entirely reas-
onable. To achieve consistency between the data and the model we would have
to go to more extreme values of c and if that meant very extreme values then
inconsistency between data and model would be signalled. That is, a test of
model adequacy is automatically built into the procedure. From a different
interpretation of confidence sets as sets associated with data a specified pro-
portion of which are correct, there is the difficulty that null sets are certainly
false, if the model is correct. This is a situation in which the significance-testing
formulation is more constructive in leading to sensible interpretations of data.

These particular formal issues do not arise in a Bayesian treatment. If the
prior probability thatµ = r isπr , then the corresponding posterior probability is

πr exp(rȳγ − r2γ /2)
/ ∞∑

s=1

πs exp(sȳγ − s2γ /2), (7.29)

where γ = n/σ 2
0 . When γ is large the posterior probability will, unless the

fractional part of ȳ is very close to 1/2, concentrate strongly on one value,
even though that value may, in a sense, be strongly inconsistent with the data.
Although the Bayesian solution is entirely sensible in the context of the for-
mulation adopted, the significance-testing approach seems the more fruitful
in terms of learning from data. In principle the Bayesian approach could, of
course, be extended to allow some probability on noninteger values.
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There are more complicated possibilities, for example when the natural
parameter space is in mathematical terms not a manifold.

Example 7.8. Mixture of two normal distributions. Suppose that it is required
to fit a mixture of two normal distributions, supposed for simplicity to have
known and equal variances. There are then three parameters, two meansµ1,µ2

and an unknown mixing probability π . Some interest might well lie in the
possibility that one component is enough. This hypothesis can be represented
as π = 0,µ1 arbitrary, or as π = 1,µ2 arbitrary, or again asµ1 = µ2, this time
with π arbitrary. The standard asymptotic distribution theory of the likelihood
ratio statistics does not apply in this case.

The general issue here is that under the null hypothesis parameters defined
under the general family become undefined and therefore not estimable. One
formal possibility is to fix the unidentified parameter at an arbitrary level and
to construct the corresponding score statistic for the parameter of interest, then
maximize over the arbitrary level of the unidentified parameter. This argument
suggests that the distribution of the test statistic under the null hypothesis is that
of the maximum of a Gaussian process. While the distribution theory can be
extended to cover such situations, the most satisfactory solution is probably to
use the likelihood ratio test criterion and to obtain its null hypothesis distribution
by simulation.

If the different components have different unknown variance, the apparent
singularities discussed in Example 7.1 recur.

7.6 Modified likelihoods

7.6.1 Preliminaries

We now consider methods based not on the log likelihood itself but on some
modification of it. There are three broad reasons for considering some such
modification.

• In models in which the dimensionality of the nuisance parameter is large
direct use of maximum likelihood estimates may be very unsatisfactory and
then some modification of either the likelihood or the method of estimation
is unavoidable.

• Especially in problems with non-Markovian dependency structure, it may
be difficult or impossible to compute the likelihood in useful form. Some
time series and many spatial and spatial-temporal models are like that.

• The likelihood may be very sensitive to aspects of the model that are
thought particularly unrealistic.
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We begin by discussing the first possibility as the most important, although
we shall give examples of the other two later.

7.6.2 Simple example with many parameters

We give an example where direct use of maximum likelihood estimation is
misleading. That it is a type of model which the exact theory in the first part of
the book can handle makes comparative discussion easier.

Example 7.9. Normal-theory linear model with many parameters. Suppose
that the n×1 random vector Y has components that are independently normally
distributed with variance τ and that E(Y) = zβ, where z is an n×d matrix of full
rank d < n and β is a d ×1 vector of unknown parameters. The log likelihood is

− (n/2) log τ − (Y − zβ)T (Y − zβ)/(2τ). (7.30)

Now suppose that τ is the parameter of interest. The maximum likelihood
estimate of β is, for all τ , the least squares estimate β̂. It follows that

τ̂ = (Y − zβ̂)T (Y − zβ̂)/n, (7.31)

the residual sum of squares divided by sample size, not by n − d, the degrees
of freedom for residual. Direct calculation shows that the expected value of the
residual sum of squares is (n − d)τ , so that

E(τ̂ ) = (1 − d/n)τ . (7.32)

Conventional asymptotic arguments take d to be fixed as n increases; the
factor (1 − d/n) tends to 1 and it can be verified that all the standard proper-
ties of maximum likelihood estimates hold. If, however, d is comparable with
n, then τ̂ is for large n very likely to be appreciably less than τ ; systematic
overfitting has taken place.

Two quite realistic special cases are first factorial experiments in which the
number of main effects and interactions fitted may be such as to leave relatively
few degrees of freedom available for estimating τ . A second illustration is a
matched pair model in which Y is formed from m pairs (Yk0, Yk1) with

E(Yk0) = λk −�, E(Yk1) = λk +�. (7.33)

Here n = 2m and d = m + 1 so that τ̂ underestimates τ by a factor of 2. There
is the special feature in this case that the λk are incidental parameters, meaning
that each only affects a limited number of observations, in fact two. Thus the
supposition underlying maximum likelihood theory that all errors of estimation
are small is clearly violated. This is the reason in this instance that direct use
of maximum likelihood is so unsatisfactory.
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The same explanation does not apply so directly to the factorial design where,
with a suitable parameterization in terms of main effects and interactions of
various orders, all regression parameters representing these contrasts can be
estimated with high precision. The same issue is, however, latent within this
example in that we could, somewhat perversely, reparameterize into a form in
which the matrix of coefficients defining the linear model is sparse, i.e., contains
many zeros, and then the same point could arise.

While appeal to asymptotic maximum likelihood theory is not needed in the
previous problem, it provides a test case. If maximum likelihood theory is to be
applied with any confidence to similar more complicated problems an escape
route must be provided. There are broadly three such routes. The first is to avoid,
if at all possible, formulations with many nuisance parameters; note, however,
that this approach would rule out semiparametric formulations as even more
extreme. The second, and somewhat related, approach is applicable to problems
where many or all of the individual parameters are likely to take similar values
and have similar interpretations. This is to use a random effects formulation in
which, in the matched pair illustration, the representation

Yk0 = µ−�+ ηk + εk0, Yk1 = µ+�+ ηk + εk1 (7.34)

is used. Here the ηk and the εks are mutually independent normal random vari-
ables of zero mean and variances respectively τη, τε and where τε , previously
denoted by τ , is the parameter of interest.

Example 7.10. A non-normal illustration. In generalization of the previous
example, and to show that the issues are in no way specific to the normal dis-
tribution, suppose that (Yl0, Yl1) are for l = 1, . . . , m independently distributed
in the exponential family form

m(y) exp{ yφ − k(φ)} (7.35)

with canonical parameters (φl0,φl1) such that

φl1 = λl + ψ , φl0 = λl − ψ . (7.36)

Thus the log likelihood is

�tlλl + ψ�dl −�{k(λl + ψ)+ k(λl − ψ)}, (7.37)

where tl = yl1 + yl0, dl = yl1 − yl0.
The formal maximum likelihood equations are thus

tl = k′(λ̂l + ψ̂)+ k′(λ̂l − ψ̂), �dl = �k′(λ̂l + ψ̂)− k′(λ̂l − ψ̂).

(7.38)
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If we argue locally near ψ̂ = 0 we have that approximately

ψ̂ = �dl

2�k′′(λ̂l)
, (7.39)

the limit in probability of which is

ψ
lim n−1�k′′(λl)

limp n−1�k′′(λ̂l)
. (7.40)

In general the factor multiplying ψ is not 1. If, however, k′′(λ) is constant
or linear, i.e, k(.) is quadratic or cubic, the ratio is 1. The former is the special
case of a normal distribution with known variance and unknown mean and in
this case the difference in means is the limit in probability of the maximum
likelihood estimate, as is easily verified directly.

Another special case is the Poisson distribution of mean µ and canonical
parameter φ = logµ, so that the additive model in φ is a multiplicative repres-
entation for the mean. Here k′′(φ) = k(φ) = eφ = µ. It follows again that the
ratio in question tends to 1 in probability. It is likely that in all other cases the
maximum likelihood estimate of ψ is inconsistent.

7.6.3 Requirements for a modified likelihood

The final route to resolving these difficulties with direct use of maximum
likelihood, which we now develop, involves modifying the likelihood function.

Suppose that the maximum likelihood estimating equation

[∇θ l(θ ; y)]
θ̂

= ∇l(θ̂ ; y) = 0 (7.41)

is replaced for some suitable function q by

∇q(θ̃ ; y) = 0. (7.42)

In order for the main properties of maximum likelihood estimates to apply
preferably in some extended circumstances, we require that:

• the estimating equation is unbiased in the sense that

E{∇q(θ ; Y); θ} = 0; (7.43)

• the analogue of Fisher’s identity that relates the variance of the score to the
information holds, namely that

E{∇∇T q(θ ; Y)+ ∇q(θ ; Y)∇T q(θ ; Y)} = 0; (7.44)

• an asymptotic dependence on n obtains similar to that for maximum
likelihood estimates. Then the asymptotic covariance matrix of θ̃ is given
by the inverse of a matrix analogous to an information matrix;
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• preferably in some sense all or most of the available information is
recovered.

We call the first two properties just given first- and second-order validity
respectively.

First-order validity is essential for the following discussion to apply. If first-
but not second-order validity holds the asymptotic covariance matrix is given
by the slightly more complicated sandwich formula of Section 7.4.

We now give a number of examples of modified likelihoods to which the
above discussion applies.

7.6.4 Examples of modified likelihood

We begin by returning to Example 7.9, the general linear normal-theory model.
There are two approaches to what amounts to the elimination from the problem
of the nuisance parameters, in this case the regression parameter β.

We can find an orthogonal matrix, b, such that the first d rows are in the space
spanned by the columns of z. Then the transformed variables V = bY are such
that E(Vd+1) = 0, . . . , E(Vn) = 0. Moreover, because of the orthogonality of
the transformation, the Vs are independently normally distributed with constant
variance τ . The least squares estimates β̂ are a nonsingular transformation of
v1, . . . , vd and the residual sum of squares is RSS = v2

d+1 + · · · + v2
n.

Therefore the likelihood is the product of a factor from V1, . . . , Vd , or equi-
valently from the least squares estimates β̂, and a factor from the remaining
variables Vd+1, . . . , Vn. That is, the likelihood is

L1(β, τ ; β̂)L2(τ ; vd+1, . . . , vn). (7.45)

Suppose we discard the factor L1 and treat L2 as the likelihood for inference
about τ . There is now a single unknown parameter and, the sample size being
n − d, the maximum likelihood estimate of τ is

RSS/(n − d), (7.46)

the standard estimate for which the usual properties of maximum likelihood
estimates apply provided (n − d) → ∞.

It is hard to make totally precise the condition that L1 contains little inform-
ation about τ . Note that if β is a totally free parameter, in some sense, then an
exact fit to any values of v1, . . . , vd can always be achieved in which case it is
compelling that there is no base left for estimation of τ from this part of the
original data. Any constraint, even a somewhat qualitative one, on β would,
however, change the situation. Thus if it were thought that β is close to a fixed
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point, for example the origin, or more generally is near some space of lower
dimension than d, and the distance of β̂ from the origin or subspace is smaller
than that to be expected on the basis of RSS/(n−d), then there is some evidence
that this latter estimate is too large.

We say that the likelihood L2(τ ) is directly realizable in that it is the ordin-
ary likelihood, calculated under the original data-generating specification, of a
system of observations that could have arisen. It is conceptually possible that
the original data could have been collected, transformed and only vd+1, . . . , vn

retained. In this and other similar cases, directly realizable likelihoods may be
very different from the full likelihood of the whole data.

Such likelihoods are often obtained more generally by a preliminary trans-
formation of Y to new variables V , W and then by writing the original likelihood
in the form

fV (v; θ) fW |V (w; v, θ) (7.47)

and arranging that one of the factors depends only on the parameter of interest
ψ and that there are arguments for supposing that the information about ψ in
the other factor is unimportant. Provided the transformation from Y to (V , W)
does not depend on θ , the Jacobian involved in the transformation of continuous
variables plays no role and will be ignored.

The most satisfactory version of this is when the factorization is complete in
the sense that either

fV (v; λ) fW |V (w; v,ψ) (7.48)

or

fV (v;ψ) fW |V (w; v, λ). (7.49)

In the former case the information about ψ is captured by a conditional
likelihood of W given V and in the latter case by the marginal likelihood of V .

There are other possible bases for factorizing the likelihood into components.
When a factor can be obtained that totally captures the dependence onψ there is
no need for the component of likelihood to be directly realizable. The required
first- and second-order properties of score and information follow directly from
those of the whole log likelihood, as in the following example.

Example 7.11. Parametric model for right-censored failure data. For simpli-
city we consider a problem without explanatory variables. Let failure time have
density fT (t;ψ) and survival function ST (t;ψ) and censoring time have density
and survival function fC(c; λ) and SC(c; λ). We represent uninformative cen-
soring by supposing that we have n independent pairs of independent random
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variables (Tk , Ck) and that we observe only Yk = min(Tk , Ck) and the indicator
variable Dk = 1 for a failure, i.e., Tk < Ck and zero for censoring. Then the
likelihood is

�f 1−dk
C (yk ; λ)Sdk

C (yk ; λ)×�f dk
T (yk ;ψ)S1−dk

T (yk ;ψ). (7.50)

Here we use the second factor for inference about ψ , even though it does not
on its own correspond to a system of observations within the initial stochastic
specification. Note that the specification assumes that there are no parameters
common to the distributions of T and C. Were there such common parameters
the analysis of the second factor would retain key properties, but in general lose
some efficiency.

A factorization of the likelihood in which the values of the conditional inform-
ation measure, iψψ ·λ, were respectively O(1), i.e., bounded, and O(n) would
asymptotically have the same properties as complete separation.

7.6.5 Partial likelihood

We now discuss a particular form of factorization that is best set out in terms of
a system developing in time although the temporal interpretation is not crucial.
Suppose that, possibly after transformation, the sequence Y1, . . . , Yn of observed
random variables can be written T1, S1, . . . , Tm, Sm in such a way that the density
of Sk given Ck , all the previous random variables in the sequence, is specified as
a function ofψ . Here m is related to but in general different from n. It is helpful
to think of Sk as determining an event of interest and the Tk as determining
associated relevant events that are, however, of no intrinsic interest for the
current interpretation.

We then call

�fSk |Ck (sk | Ck = ck ;ψ) (7.51)

a partial likelihood based on the Sk . Let Uk and ik(ψ) denote the contribution
to the component score vector and information matrix arising from the kth
term, i.e., from Sk . Then, because the density from which these are calculated
is normalized to integrate to 1, we have that

E(Uk) = 0, var(Uk) = ik(ψ). (7.52)

Now the total partial likelihood is in general not normalized to 1 so that
the same argument cannot be applied for the sum of the partial scores and
information. We can, however, argue as follows. The properties of Uk hold
conditionally on Ck , the total history up to the defining variable Sk , and hence



7.6 Modified likelihoods 151

in particular

E(Uk | U1, . . . , Uk−1 = u1, . . . , uk−1) = 0 (7.53)

and, in particular for l < k,

E(UlUk) = E{UlE(Uk | Ul)} = 0, (7.54)

so that the components of the total score, while in general not independent, are
uncorrelated. Therefore the total information matrix is the covariance matrix of
the total score and, provided standard n asymptotics holds, the usual properties
of maximum likelihood estimates and their associated statistics are achieved.
In the more formal theory a martingale Central Limit Theorem will give the
required asymptotic normality but, of course, the issue of the adequacy of the
distributional approximation has always to be considered.

Example 7.12. A fairly general stochastic process. Consider a stochastic pro-
cess with discrete states treated for simplicity in continuous time and let zero be
a recurrent point. That is, on entry to state zero the system moves independently
of its past and the joint density of the time to the next transition and the new
state, k, occupied is pm(t;ψ) for m = 1, 2, . . .. Recurrence means that it returns
to zero state eventually having described a trajectory with properties of unspe-
cified complexity. Then the product of the pm(t;ψ) over the exits from state
zero, including, if necessary, a contribution from a censored exit time, obeys
the conditions for a partial likelihood. If zero is a regeneration point, then each
term in the partial likelihood is independent of the past and the partial likelihood
is directly realizable, i.e., one could envisage an observational system in which
only the transitions out of zero were observed. In general, however, each term
pm(t;ψ) could depend in any specified way on the whole past of the process.

Example 7.13. Semiparametric model for censored failure data. We suppose
that for each of n independent individuals observation of failure time is subject
to uninformative censoring of the kind described in Example 7.11. We define,
as before, the hazard function corresponding to a density of failure time f (t) and
survival function S(t) to be h(t) = f (t)/S(t). Suppose further that individual l
has a hazard function for failure of

h0(t) exp(zT
l ψ), (7.55)

where zl is a vector of possibly time-dependent explanatory variables for indi-
vidual l, ψ is a vector of parameters of interest specifying the dependence of
failure time on z and h0(t) is an unknown baseline hazard corresponding to an
individual with z = 0.
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Number the failures in order and let Ck specify all the information available
about failures and censoring up to and including the time of the kth failure,
including any changes in the explanatory variables, but excluding the identity
of the individual who fails at this point. Let Mk specify the identity of that indi-
vidual (simultaneous occurrences being assumed absent). Now Ck determines
in particular Rk , the risk set of individuals who are available to fail at the time
point in question. Then the probability, given a failure at the time in question,
that the failure is for individual Mk is

exp{zT
mk
ψ}h0(t)/�lεRk exp{zT

l ψ}h0(t). (7.56)

Thus the baseline hazard cancels and the product of these expressions over k
yields a relatively simple partial likelihood for ψ .

7.6.6 Pseudo-likelihood

We now consider a method for inference in dependent systems in which the
dependence between observations is either only incompletely specified or spe-
cified only implicitly rather than explicitly, making specification of a complete
likelihood function either very difficult or impossible. Many of the most import-
ant applications are to spatial processes but here we give more simple examples,
where the dependence is specified one-dimensionally as in time series.

In any such fully specified model we can write the likelihood in the form

fY1(y1; θ)fY2|Y1(y2, y1; θ) · · · fYn|Y (n−1) (yn, y(n−1); θ), (7.57)

where in general y(k) = (y1, . . . , yk). Now in a Markov process the dependence
on y(k) is restricted to dependence on yk and more generally for an m-dependent
Markov process the dependence is restricted to the last m components.

Suppose, however, that we consider the function

�fYk |Yk−1(yk , yk−1; θ), (7.58)

where the one-step conditional densities are correctly specified in terms of an
interpretable parameter θ but where higher-order dependencies are not assumed
absent but are ignored. Then we call such a function, that takes no account of
certain dependencies, a pseudo-likelihood.

If Uk(θ) denotes the gradient or pseudo-score vector obtained from Yk ,
because each term in the pseudo-likelihood is a probability density normalized
to integrate to 1, then

E{Uk(θ); θ} = 0, (7.59)
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and the covariance matrix of a single vector Uk can be found from the appropri-
ate information matrix. In general, however, the Uk are not independent and so
the covariance matrix of the total pseudo-score is not i(θ), the sum of the separ-
ate information matrices. Provided that the dependence is sufficiently weak for
standard n asymptotics to apply, the pseudo-maximum likelihood estimate θ̃
found from (7.58) is asymptotically normal with mean θ and covariance matrix

i−1(θ)cov(U)i−1(θ). (7.60)

Here U = �Uk is the total pseudo-score and its covariance has to be found,
for example by applying somewhat empirical time series methods to the
sequence {Uk}.
Example 7.14. Lag one correlation of a stationary Gaussian time series. Sup-
pose that the observed random variables are assumed to form a stationary
Gaussian time series of unknown mean µ and variance σ 2 and lag one cor-
relation ρ and otherwise to have unspecified correlation structure. Then Yk

given Yk−1 = yk−1 has a normal distribution with mean µ+ ρ(yk−1 − µ) and
variance σ 2(1 − ρ2); this last variance, the innovation variance in a first-order
autoregressive process, may be taken as a new parameter. Note that if a term
from Y1 is included it will have the marginal distribution of the process, assum-
ing observation starts in a state of statistical equilibrium. For inference about ρ
the most relevant quantity is the adjusted score Uρ·µ,σ of (6.62) and its variance.
Some calculation shows that the relevant quantity is the variance of

�{(Yk − µ)(Yk−1 − µ)− (Yk − µ)2}. (7.61)

Here µ can be replaced by an estimate, for example the overall mean, and the
variance can be obtained by treating the individual terms in the last expression
as a stationary time series, and finding its empirical autocorrelation function.

Example 7.15. A long binary sequence. Suppose that Y1, . . . , Ym is a sequence
of binary random variables all of which are mutually dependent. Suppose that
the dependencies are represented by a latent multivariate normal distribution.
More precisely, there is an unobserved random vector W1, . . . , Wm having a mul-
tivariate normal distribution of zero means and unit variances and correlation
matrix P and there are threshold levels α1, . . . ,αm such that Yk = 1 if and only if
Wk > αk . The unknown parameters of interest are typically those determining
P and possibly also the α. The data may consist of one long realization or of
several independent replicate sequences.

The probability of any sequence of 0s and 1s, and hence the likelihood, can
then be expressed in terms of the m-dimensional multivariate normal distribu-
tion function. Except for very small values of m there are two difficulties with
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this likelihood. One is computational in that high-dimensional integrals have to
be evaluated. The other is that one might well regard the latent normal model as
a plausible representation of low-order dependencies but be unwilling to base
high-order dependencies on it.

This suggests consideration of the pseudo-likelihood

�k>lP(Yk = yk , Yl = yl), (7.62)

which can be expressed in terms of the bivariate normal integral; algorithms for
computing this are available.

The simplest special case is fully symmetric, having αk = α and all correl-
ations equal, say to ρ. In the further special case α = 0 of median dichotomy
the probabilities can be found explicitly because, for example, by Sheppard’s
formula,

P(Yk = Yl = 0) = 1

4
+ sin−1ρ

2π
. (7.63)

If we have n independent replicate sequences then first-, but not second-,
order validity applies, as does standard n asymptotics, and estimates of α and
ρ are obtained, the latter not fully efficient because of neglect of information
in the higher-order relations.

Suppose, however, that m is large, and that there is just one very long
sequence. It is important that in this case direct use of the pseudo-likelihood
above is not satisfactory. This can be seen as follows. Under this special correl-
ational structure we may write, at least for ρ > 0, the latent, i.e., unobserved,
normal random variables, in the form

Wk = V
√
ρ + Vk

√
(1 − ρ), (7.64)

where V , V1, . . . , Vm are independent standard normal random variables. It fol-
lows that the model is equivalent to the use of thresholds at α − V

√
ρ with

independent errors, instead of ones at α. It follows that if we are concerned
with the behaviour for large m, the estimates of α and ρ will be close respect-
ively to α − V

√
ρ and to zero. The general moral is that application of this

kind of pseudo-likelihood to a single long sequence is unsafe if the long-range
dependencies are not sufficiently weak.

Example 7.16. Case-control study. An important illustration of these ideas
is provided by a type of investigation usually called a case-control study; in
econometrics the term choice-based sampling is used. To study this it is helpful
to consider as a preliminary a real or notional population of individuals, each
having in principle a binary outcome variable y and two vectors of explanatory
variables w and z. Individuals with y = 1 will be called cases and those with
y = 0 controls. The variables w are to be regarded as describing the intrinsic
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nature of the individuals, whereas z are treatments or risk factors whose effect on
y is to be studied. For example, w might include the gender of a study individual,
z one or more variables giving the exposure of that individual to environmental
hazards and y might specify whether or not the individual dies from a specific
cause. Both z and w are typically vectors, components of which may be discrete
or continuous.

Suppose that in the population we may think of Y , Z , W as random
variables with

P(Y = 1 | W = w, Z = z) = L(α + βT z + γ T w), (7.65)

where L(x) = ex/(1 + ex) is the unit logistic function. Interest focuses on
β, assessing the effect of z on Y for fixed w. It would be possible to include
an interaction term between z and w without much change to the following
discussion.

Now if the response y = 1 is rare and also if it is a long time before the
response can be observed, direct observation of the system just described can
be time-consuming and in a sense inefficient, ending with a very large number
of controls relative to the number of cases. Suppose, therefore, instead that data
are collected as follows. Each individual with outcome y, where y = 0, 1, is
included in the data with conditional probability, given the corresponding z, w,
of py(w) and z determined retrospectively. For a given individual, D denotes its
inclusion in the case-control sample. We write

P(D | Y = y, Z = z, W = w) = py(w). (7.66)

It is crucial to the following discussion that the selection probabilities do
not depend on z given w. In applications it would be quite common to take
p1(w) = 1, i.e., to take all possible cases. Then for each case one or more
controls are selected with probability of selection defined by p0(w). Choice of
p0(w) is discussed in more detail below.

It follows from the above specification that for the selected individuals, we
have in a condensed notation that

P(Y = 1 | D, z, w)

= P(Y = 1 | z, w)P(D | 1, z, w)

P(D | z, w)

= L(α + βT z + γ T w)p1(w)

L(α + βT z + γ T w)p1(w)+ {1 − L(α + βT z + γ T w)}p0(w)

= L{α + βT z + γ T w + log{p1(w)/p0(w)}}. (7.67)

There are now two main ways of specifying the choice of controls. In the
first, for each case one or more controls are chosen that closely match the case
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with respect to w. We then write for the kth such group of a case and controls,
essentially without loss of generality,

γ T w + log{p1(w)/p0(w)} = λk , (7.68)

where λk characterizes this group of individuals. This representation points
towards the elimination of the nuisance parameters λk by conditioning. An
alternative is to assume for the entire data that approximately

log{p1(w)/p0(w)} = η + ζ T w (7.69)

pointing to the unconditional logistic relation of the form

P(Y = 1 | D, z, w) = L(α∗ + βT z + γ ∗T w). (7.70)

The crucial point is that β, but not the other parameters, takes the same value
as the originating value in the cohort study.

Now rather than base the analysis directly on one of the last two formulae,
it is necessary to represent that in this method of investigation the variable y is
fixed for each individual and the observed random variable is Z . The likelihood
is therefore the product over the observed individuals of, again in a condensed
notation,

fZ|D,Y ,W = fY |D,Z ,W fZ|D,W/ fY |D,W . (7.71)

The full likelihood function is thus a product of three factors. By (7.70) the
first factor has a logistic form. The final factor depends only on the known
functions pk(w) and on the numbers of cases and controls and can be ignored.
The middle factor is a product of terms of the form

fZ(z){L(α + βT z + γ T w)p1(w)+ (1 − L(α + βT z + γ T w))p0(w)}∫
dv fZ(v){L(α + βT v + γ T w)p1(w)+ (1 − L(α + βT v + γ T w))p0(w)} .

(7.72)

Thus the parameter of interest, β, occurs both in the relatively easily handled
logistic form of the first factor and in the second more complicated factor. One
justification for ignoring the second factor could be to regard the order of the
observations as randomized, without loss of generality, and then to regard the
first logistic factor as a pseudo-likelihood. There is the difficulty, not affecting
the first-order pseudo-likelihood, that the different terms are not independent
in the implied new random system, because the total numbers of cases and
controls are constrained, and may even be equal. Suppose, however, that the
marginal distribution of Z , i.e., fZ(z), depends on unknown parameters ω in
such a way that when (ω,α,β, γ ) are all unknown the second factor on its own
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provides no information about β. This would be the case if, for example, ω
represented an arbitrary multinomial distribution over a discrete set of possible
values of z. The profile likelihood for (α,β, γ ), having maximized out overω, is
then essentially the logistic first factor which is thus the appropriate likelihood
function for inference about β.

Another extreme case arises if fZ(z) is completely known, when there is
in principle further information about β in the full likelihood. It is unknown
whether such information is appreciable; it seems unlikely that it would be wise
to use it.

7.6.7 Quasi-likelihood

The previous section concentrated largely on approximate versions of likeli-
hood applicable when the dependency structure of the observations is relatively
complicated. Quasi-likelihood deals with problems in which, while a relation
between the mean and variance is reasonably secure, distributional assumptions
are suspect.

The simplest instance is provided by Example 1.3, the linear model in which
no normality assumption is made and an analysis is made on the basis of the
second-order assumptions that the variance is constant and observations are
mutually uncorrelated. The definition of the least squares estimates as obtained
by orthogonal projection of Y on the space spanned by the columns of the
defining matrix z and properties depending only on expectations of linear and
quadratic functions of Y continue to hold.

The sufficiency argument used above to justify the optimality of least squares
estimates does depend on normality but holds in weaker form as follows. In
the linear model E(Y) = zβ, any linear estimate of a single component of β
must have the form lT Y , where l is an estimating vector. Now l can be resolved
into a component lz in the column space of z and an orthogonal component l⊥z.
A direct calculation shows that the two components of lT Y are uncorrelated, so
that var(lT Y) is the sum of two contributions. Also the second component has
zero mean for all β. Hence for optimality we set l⊥z = 0, the estimate has the
form lzT Y , and, so long as z is of full rank, is uniquely the component of the
least squares estimate. The proof may be called an appeal to linear sufficiency.

If instead of the components of Y being uncorrelated with equal variance,
they have covariance matrix γV , where γ is a scalar, possibly unknown, and V
is a known positive definite matrix, then the least squares estimates, defined by
orthogonal projection in a new metric, become

zT V−1(Y − zβ̂) = 0, (7.73)
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as can be seen, for example, by a preliminary linear transformation of Y to
V−1/2Y .

Now suppose that E(Y) = µ(β), where the vector of means is in general a
nonlinear function of β, as well as of explanatory variables. We assume that the
components of Y are uncorrelated and have covariance matrix again specified
as γV(β), where γ is a constant and V(β) is a known function of β. Now
the analogue of the space spanned by the columns of z is the tangent space
defined by

zT (β) = ∇µT (β) (7.74)

a dβ × n matrix; note that if µ(β) = zβ, then the new matrix reduces to
the previous zT . The estimating equation that corresponds to the least squares
estimating equation is thus

zT (β̃)V−1(β̃){Y − µ(β̃)} = 0. (7.75)

This may be called the quasi-likelihood estimating equation. It generalizes the
linear least squares and the nonlinear normal-theory least squares equations.

The asymptotic properties of the resulting estimates can be studied via those
of the quasi-score function

zT (β)V−1(β){Y − µ(β)}, (7.76)

which mirror those of the ordinary score function for a parametric model. That
score was defined as the gradient of the log likelihood and in many, but not all,
situations the quasi-score is itself the gradient of a function Q(β, y) which may
be called the quasi-likelihood. Just as there are sometimes advantages to basing
inference on the log likelihood rather than the score, so there may be advantages
to using the quasi-likelihood rather than the quasi-score, most notably when the
quasi-likelihood estimating equation has multiple roots.

By examining a local linearization of this equation, it can be shown that
the properties of least squares estimates holding in the linear model under
second-order assumptions extend to the quasi-likelihood estimates.

Relatively simple examples are provided by logistic regression for binary
variables and log linear regression for Poisson variables. In the latter case, for
example, the component observations are independent, the basic Poisson model
has variances equal to the relevant mean, whereas the more general model has
variances γ times the mean, thus allowing for overdispersion, or indeed for the
less commonly encountered underdispersion.
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Notes 7

Section 7.1. A saddle-point of a surface is a point such that some paths through
it have local maxima and other paths local minima, as at the top of a mountain
pass. The Hessian matrix at such a point has eigenvalues of both signs.

Section 7.2. A survey of nonregular problems is given by Smith (1989). Hall
and Wang (2005) discuss Bayesian estimation of the end-point of a distribution.

The special choice of frequencies ω = ωp in Example 7.4 ensures such
identities as

� cos2(ωp) = � sin2(ωp) = n/2,

as well as the exact orthogonality of components at different values of ω.

Section 7.3. The rather exceptional sets in fact have Lebesgue measure zero.
The discussion here is based on Rotnitzky et al. (2000), where references to
earlier work are given. The main application is to methods for dealing with
so-called informative nonresponse. In some simpler situations with singular
information a transformation of the parameter is all that is required.

Section 7.4. Cox (1961, 1962) develops a theory for estimates when the model
is false in connection with the testing of separate families of hypotheses. This is
concerned with testing a null hypothesis that the model lies in one family when
the alternatives form a mathematically distinct although numerically similar
family. The main applications have been econometric (White, 1994). See also
Note 6.5.

Section 7.5. The argument for dealing with situations such as the normal mix-
ture is due to Davies (1977, 1987). For a general discussion, see Ritz and
Skovgaard (2005). In specific applications simulation is probably the best way
to establish p-values.

Section 7.6. There is a very large literature on modified forms of likelihood,
stemming in effect from Bartlett (1937) and then from Kalbfleisch and Sprott
(1970). Partial likelihood was introduced by Cox (1972, 1975). The key property
(7.54) links with the probabilistic notion of a martingale which underlies general
discussions of maximum likelihood for dependent random variables (Silvey,
1961). Much work on survival analysis emphasizes this link (Andersen et al.,
1992).
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Pseudo-likelihood was introduced by Besag (1974, 1977) and studied in a
form related to the issues outlined here by Azzalini (1983). Example 7.5 is based
on Cox and Reid (2004). Quasi-likelihood is due to Wedderburn (1974) and its
optimal properties are given by McCullagh (1983). For a general treatment of
modified likelihoods , see Lindsay (1988) and Varin and Vidoni (2005). Song
et al. (2005) discussed breaking the log likelihood into two parts, one with
relatively simple form and standard behaviour and the other encapsulating the
complicated aspects. Formal application of these ideas in a Bayesian setting
would allow specifications to be studied that were less complete than those
needed for a full Bayesian discussion.

Other forms of likelihood centre more strongly on non- or semiparametric
situations and include empirical likelihood (Owen, 2001) in which essentially
multinomial distributions are considered with support the data values. There is
a link with the nonparametric bootstrap. For a synthesis of some of these ideas,
see Mykland (1995), who develops a notion of dual likelihood.

The fitting of smooth relations that are not specified parametrically is often
accomplished by maximizing a formal likelihood function from which a cor-
rection is subtracted depending on the irregularity of the fitted relation. The
correction might depend, for example, on an average squared value of a high-
order derivative. While some arbitrariness may be attached both to the form
of the penalty as well as to the weight attached to it, such penalized functions
bring some unity to what would otherwise be a rather ad hoc issue. See Green
and Silverman (1994).

The treatment of case-control studies largely follows Prentice and Pyke
(1979) and Farewell (1979). For a comprehensive treatment of case-control
studies, see Breslow and Day (1980). For a Bayesian analysis, see Seaman and
Richardson (2004).
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Additional objectives

Summary. This chapter deals in outline with a number of topics that fall
outside the main theme of the book. The topics are prediction, decision ana-
lysis and point estimation, concentrating especially on estimates that are exactly
or approximately unbiased. Finally some isolated remarks are made about
methods, especially for relatively complicated models, that avoid direct use
of the likelihood.

8.1 Prediction

In prediction problems the target of study is not a parameter but the value
of an unobserved random variable. This includes, however, in so-called hier-
archical models estimating the value of a random parameter attached to a
particular portion of the data. In Bayesian theory the formal distinction between
prediction and estimation largely disappears in that all unknowns have prob-
ability distributions. In frequentist theory the simplest approach is to use
Bayes’ theorem to find the distribution of the aspect of interest and to replace
unknown parameters by good estimates. In special cases more refined treatment
is possible.

In the special case when the value Y∗, say, to be predicted is conditionally
independent of the data given the parameters the Bayesian solution is par-
ticularly simple. A predictive distribution is found by averaging the density
fY∗(y∗; θ) over the posterior distribution of the parameter.

In special cases a formally exact frequentist predictive distribution is obtained
by the following device. Suppose that the value to be predicted has the distribu-
tion fY∗(y∗; θ∗), whereas the data have the density fY (y; θ). Construct a sensible
test of the null hypothesis θ = θ∗ and take all those values of y∗ consistent
with the null hypothesis at level c as the prediction interval or region.

161
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Example 8.1. A new observation from a normal distribution. Suppose that the
data correspond to independent and identically distributed observations having
a normal distribution of unknown mean µ and known variance σ 2

0 and that it is
required to predict a new observation from the same distribution. Suppose then
that the new observation y∗ has mean µ∗. Then the null hypothesis is tested by
the standard normal statistic

y∗ − ȳ

σ0
√
(1 + 1/n)

(8.1)

so that, for example, a level 1−c upper prediction limit for the new observation is

ȳ + k∗
cσ0

√
(1 + 1/n). (8.2)

The difference from the so-called plug-in predictor, ȳ+k∗
cσ0, in which errors

of estimatingµ are ignored, is here slight but, especially if a relatively complic-
ated model is used as the base for prediction, the plug-in estimate may seriously
underestimate uncertainty.

8.2 Decision analysis

In many contexts data are analysed with a view to reaching a decision, for
example in a laboratory science context about what experiment to do next. It is,
of course, always important to keep the objective of an investigation in mind, but
in most cases statistical analysis is used to guide discussion and interpretation
rather than as an immediate automatic decision-taking device.

There are at least three approaches to a more fully decision-oriented discus-
sion. Fully Bayesian decision theory supposes available a decision space D,
a utility function U(d, θ), a prior for θ , data y, and a model f (y; θ) for the data.
The objective is to choose a decision rule maximizing for each y the expec-
ted utility averaged over the posterior distribution of θ . Such a rule is called a
Bayes rule. The arguments for including a prior distribution are strong in that
a decision rule should take account of all reasonably relevant information and
not be confined to the question: what do these data plus model assumptions
tell us? Here utility is defined in such a way that optimizing the expected utility
is the appropriate criterion for choice. Utility is thus not necessarily expressed
in terms of money and, even when it is, utility is not in general a linear function
of monetary reward. In problems in which the consequences of decisions are
long-lasting the further issue arises of how to discount future gains or losses
of utility; exponential discounting may in some circumstances be inappropriate
and some form of power-law discount function may be more suitable.
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Wald’s treatment of decision theory supposed that a utility function but not
a prior is available; in some respects this is often an odd specification in that
the choice of the utility may be at least as contentious as that of the prior.
Wald showed that the only admissible decision rules, in a natural definition of
admissibility, are Bayes rules and limits of Bayes rules. This leaves, of course,
an enormous range of possibilities open; a minimax regret strategy is one
possibility.

A third approach is to fall back on, for example, a more literal interpretation
of the Neyman–Pearson theory of testing hypotheses and to control error rates at
prechosen levels and to act differently according as y falls in different regions of
the sample space. While there is substantial arbitrariness in the choice of critical
rates in such an approach, it does achieve some consistency between different
similar applications. In that sense it is sometimes used as an essential component
by regulatory agencies, such as those dealing with new pharmaceutical products.

8.3 Point estimation

8.3.1 General remarks

The most obvious omission from the previous discussion is point estimation,
i.e., estimation of a parameter of interest without an explicit statement of
uncertainty. This involves the choice of one particular value when a range of
possibilities are entirely consistent with the data. This is best regarded as a
decision problem. With the exception outlined below imposition of constraints
like unbiasedness, i.e., that the estimate T of ψ satisfy

E(T ;ψ , λ) = ψ , (8.3)

for all (ψ , λ), is somewhat arbitrary.
Here we consider the point estimate on its own; this is distinct from taking

it as the basis for forming a pivot, where some arbitrariness in defining the
estimate can be absorbed into the distribution of the pivot.

An important generalization is that of an unbiased estimating equation.
That is, the estimate is defined implicitly as the solution of the equation

g(Y , ψ̃) = 0, (8.4)

where for all θ we have

E{g(Y ,ψ); θ} = 0. (8.5)

Exact unbiasedness of an estimate, E(T ; θ) = ψ , is indeed rarely an import-
ant property of an estimate. Note, for example, that if T is exactly unbiased
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for ψ , then the estimate h(T) will rarely be exactly unbiased for a nonlinear
function h(ψ). In any case our primary emphasis is on estimation by assess-
ing an interval of uncertainty for the parameter of interest ψ . Even if this is
conveniently specified via an implied pivot, a central value and a measure of
uncertainty, the precise properties of the central value as such are not of direct
concern.

There are, however, two somewhat related exceptions. One is where the
point estimate is an intermediate stage in the analysis of relatively complex
data. For example, the data may divide naturally into independent sections and
it may be both convenient and enlightening to first analyse each section on
its own, reducing it to one or more summarizing statistics. These may then be
used as input into a model, quite possibly a linear model, to represent their
systematic variation between sections, or may be pooled by averaging across
sections. Even quite a small but systematic bias in the individual estimates might
translate into a serious error in the final conclusion. The second possibility is that
the conclusions from an analysis may need to be reported in a form such that
future investigations could use the results in the way just sketched.

8.3.2 Cramér–Rao lower bound

A central result in the study of unbiased estimates, the Cramér–Rao inequality,
shows the minimum variance achievable by an unbiased estimate. For simplicity
suppose that θ is a scalar parameter and let T = T(Y) be an estimate with bias
b(θ) based on a vector random variable Y with density fY (y; θ). Then∫

t(y)fY (y; θ)dy = θ + b(θ). (8.6)

Under the usual regularity conditions, differentiate with respect to θ to give∫
t(y)U(y; θ)fY (y; θ)dy = 1 + b′(θ), (8.7)

where U(y; θ) = ∂ log fY (y; θ)/∂θ is the gradient of the log likelihood. Because
this gradient has zero expectation we can write the last equation

cov(T , U) = 1 + b′(θ), (8.8)

so that by the Cauchy–Schwarz inequality

var(T)var(U) ≥ {1 + b′(θ)}2 (8.9)

with equality attained if and only if T is a linear function of U; see Note 8.2.
Now var(U) is the expected information i(θ) in the data y. Thus, in the particular
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case of unbiased estimates,

var(T) ≥ 1/i(θ). (8.10)

A corresponding argument in the multiparameter case gives for the variance
of an unbiased estimate of, say, the first component of θ the lower bound i11(θ),
the (1, 1) element of the inverse of the expected information matrix.

The results here concern the variance of an estimate. The role of information
in the previous chapter concerned the asymptotic variance of estimates, i.e., the
variance of the limiting normal distribution, not in general to be confused with
the limiting form of the variance of the estimate.

Example 8.2. Exponential family. In the one-parameter exponential family
with density m(y) exp{sφ− k(φ)} the log likelihood derivative in the canonical
parameter φ is linear in s and hence any linear function of S is an unbiased
estimate of its expectation achieving the lower bound. In particular this applies
to S itself as an estimate of the moment parameter η = k′(θ).

Thus if Y1, . . . , Yn are independently normally distributed with mean µ and
known variance σ 2

0 the mean Ȳ is unbiased for µ and its variance achieves
the lower bound σ 2

0 /n. If, however, the parameter of interest is θ = µ2, the
estimate Ȳ2 − σ 2

0 /n is unbiased but its variance does not achieve the lower
bound. More seriously, the estimate is not universally sensible in that it estimates
an essentially nonnegative parameter by a quantity that may be negative, in fact
with appreciable probability if |µ| is very small. The above estimate could be
replaced by zero in such cases at the cost of unbiasedness. Note, however, that
would be unwise if the estimate is to be combined linearly with other estimates
from independent data.

Example 8.3. Correlation between different estimates. Suppose that T and T∗
are both exactly (or very nearly) unbiased estimates of the same parameter θ and
that T has minimum variance among unbiased estimates. Then for any constant
a the estimate aT + (1 − a)T∗ is also unbiased and has variance

a2var(T)+ 2a(1 − a)cov(T , T∗)+ (1 − a)2var(T∗). (8.11)

This has its minimum with respect to a at a = 1 implying that

cov(T , T∗) = var(T), (8.12)

as in a sense is obvious, because the estimate T∗ may be regarded as T plus an
independent estimation error of zero mean.

Alternatively

corr(T , T∗) = {var(T)/var(T∗)}1/2. (8.13)
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The ratio of variances on the right-hand side may reasonably be called the
efficiency of T∗ relative to T , so that the correlation of an inefficient estim-
ate with a corresponding minimum variance estimate is the square root of the
efficiency. For example, it may be shown that the median of a set of n inde-
pendently normally distributed random variables of mean µ and variance σ 2

0 is
an unbiased estimate of µ with variance approximately πσ 2

0 /(2n). That is, the
correlation between mean and median is

√
2/

√
π , which is approximately 0.8.

Essentially the same idea can be used to compare the efficiency of tests of
significance and to study the correlation between two different test statistics
of the same null hypothesis. For this suppose that T and T∗, instead of being
estimates of θ , are test statistics for a null hypothesis θ = θ0 and such that
they are (approximately) normally distributed with means µ(θ) and µ∗(θ) and
variances σ 2

T (θ)/n and σ 2
T∗(θ)/n. Now locally near the hypothesis we may

linearize the expectations writing, for example

µ(θ) = µ(θ0)+ [dµ(θ)/dθ ]θ0(θ − θ0), (8.14)

thereby converting the test statistic into a local estimate

{T − µ(θ0)}{[dµ(θ)/dθ ]θ0}−1. (8.15)

Near the null hypothesis this estimate has approximate variance

{σ 2(θ0)/n}{[dµ(θ)/dθ ]θ0}−2. (8.16)

This leads to the definition of the efficacy of the test as

{[dµ(θ)/dθ ]θ0}2{σ 2(θ0)}−1. (8.17)

The asymptotic efficiency of T∗ relative to the most efficient test T is then
defined as the ratio of the efficacies. Furthermore, the result about the correlation
between two estimates applies approximately to the two test statistics. The
approximations involved in this calculation can be formalized via considerations
of asymptotic theory.

Example 8.4. The sign test. Suppose that starting from a set of independent
normally distributed observations of unknown mean θ and known variance σ 2

0
we consider testing the null hypothesis θ = θ0 and wish to compare the standard
test based on the mean Ȳ with the sign test, counting the number of observations
greater than θ0. The former leads to the test statistic

T = Ȳ (8.18)
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with dµ(θ)/dθ = 1 and efficacy 1/σ 2
0 . The sign test uses T∗ to be the proportion

of observations above θ0 with binomial variance 1/(4n) at the null hypothesis
and with

µ∗(θ) = (θ − θ0)− 1/2, (8.19)

so that the efficacy is 2/(πσ 2). Thus the asymptotic efficiency of the sign test
relative to the test based on the mean is 2/π . Not surprisingly, this is the ratio
of the asymptotic variances of the mean and median as estimates of µ, as is
indeed apparent from the way efficacy was defined.

8.3.3 Construction of unbiased estimates

Occasionally it is required to find a function of a sufficient statistic, S, that
is, exactly or very nearly unbiased for a target parameter θ . Let V be any
unbiased estimate of θ and let S be a sufficient statistic for the estimation of θ ;
we appeal to the property of completeness mentioned in Section 4.4. Then
T = E(V | S) is a function of S unbiased for θ and having minimum variance.
Note that because the distribution of Y given S does not involve θ neither does T .

The mean of T is

ESE(V | S) = E(V) = θ . (8.20)

To find var(T) we argue that

var(V) = varSE(V | S)+ varSE(V | S). (8.21)

The first term on the right-hand side is var(T) and the second term is zero if
and only if V is a function of S. Thus T has minimum variance. Completeness
of S in the sense that no function of S can have zero expectation for all θ shows
that T is unique, i.e., two different V must lead to the same T .

A second possibility is that we have an approximately unbiased estimate and
wish to reduce its bias further. The easiest way to do this appeals to asymp-
totic considerations and properly belongs to Chapter 6, but will be dealt with
briefly here. Commonly the initial estimate will have the form h(T), where
h(.) is a given function, h(θ) is the target parameter and T has reasonably well-
understood properties, in particular its expectation is θ and its variance is known
to an adequate approximation.

Example 8.5. Unbiased estimate of standard deviation. Suppose that
Y1, . . . , Yn are independently distributed with the same mean µ, the same vari-
ance τ = σ 2 and the same fourth cumulant ratio γ4 = κ4/τ

2 = µ4/τ
2 − 3,

where κ4 and µ4 are respectively the fourth cumulant and the fourth moment
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about the mean of the distribution of the Yk ; note that the notation γ4 is preferred
to the more commonly used notation γ2 or the older β2 − 3. If s2 is the stand-
ard estimate of variance, namely �(Yk − Ȳ)2/(n − 1), direct calculation with
expectations shows that s2 is exactly unbiased for τ and that approximately for
large n

var(s2) = 2(1 + γ4/2)τ
2/n. (8.22)

To obtain an approximately unbiased estimate of σ , write T = s2 and
consider

√
T . We expand about τ to obtain

√
T = √

τ {1 + (T − τ)/τ }1/2

= √
τ {1 + (T − τ)/(2τ)− (T − τ)2/(8τ 2)+ · · · }. (8.23)

Now take expectations, neglecting higher-order terms. There results

E(
√

T) = √
τ {1 − (1 + γ4/2)/(8n)}, (8.24)

suggesting, recalling that s = √
T , the revised estimate

s{1 + (1 + γ4/2)/(8n)}. (8.25)

This requires either some approximate knowledge of the fourth cumulant ratio
γ4 or its estimation, although the latter requires a large amount of data in the
light of the instability of estimates of fourth cumulants.

For a normal originating distribution the correction factor is to this order
{1 + 1/(8n)}. Because in the normal case the distribution of T is proportional
to chi-squared with n − 1 degrees of freedom, it follows that

E(
√

T) = √
τ

√
2�(n/2)√

(n − 1)�(n/2 − 1/2)
(8.26)

from which an exactly unbiased estimate can be constructed. The previous
argument essentially, in this case, amounts to a Laplace expansion of the ratio
of gamma functions.

This argument has been given in some detail because it illustrates a simple
general method; if the originating estimate is a function of several component
random variables a multivariable expansion will be needed. It is to be stressed
that the provision of exactly (or very nearly) unbiased estimates is rarely, if ever,
important in its own right, but it may be part of a pathway to more important
goals.

As a footnote to the last example, the discussion raises the relevance of the
stress laid in elementary discussions of estimation on the importance of dividing
a sum of squares of deviations from the mean by n − 1 and not by n in order to
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estimate variance. There are two justifications. One is that it eases the merging
of estimates of variance by pooling small samples from different sources; the
pooled sums of squares are divided by the pooled degrees of freedom. The
other reason is more one of convention. By always dividing a residual sum of
squares from a linear model by the residual degrees of freedom, i.e., by the rank
of the relevant quadratic form, comparability with, for example, the use of the
Student t distribution for inference about a regression coefficient is achieved.
The argument that an individual estimate is unbiased has little force in that
the sampling error is much greater than any bias induced by dividing by, say,
n rather than by n−1. In general for a single estimate adjustments that are small
compared with the sampling error are unimportant; when several or many such
estimates are involved the position is different.

Note finally that while comparison of asymptotic variances of alternative
estimates is essentially a comparison of confidence intervals, and is invariant
under nonlinear transformation of the target parameter, such stability of inter-
pretation does not hold for small-sample comparisons either of mean squared
error or of variances of bias-adjusted estimates.

8.4 Non-likelihood-based methods

8.4.1 General remarks

A limitation, at least superficially, on the discussion in Chapters 1–7 has been
its strong emphasis on procedures derived from likelihood and gaining both
intuitive appeal and formal strength thereby. While, especially with modern
computational developments, tackling new problems via some form of like-
lihood is often very attractive, nevertheless there are many contexts in which
some less formal approach is sensible. This and the following section therefore
consider methods in which likelihood is not used, at least not explicitly.

Likelihood plays two roles in the earlier discussion. One is to indicate
which aspects of the data are relevant and the other, especially in the Bayesian
approach, is to show directly how to extract interpretable inference. In some of
the situations to be outlined, it may be that some other considerations indicate
summarizing features of the data. Once that step has been taken likelihood-
based ideas may be used as if those summarizing features were the only
data available. A possible loss of efficiency can sometimes then be assessed
by, for example, comparing the information matrix from the reduced data
with that from the originating data. Most of the previous discussion is then
available.
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Some of the reasons for not using the likelihood of the full data are as
follows:

• obtaining the likelihood in useful form may be either impossible or
prohibitively time-consuming;

• it may be desired to express a dependency via a smooth curve or surface not
of prespecified parametric form but obtained via some kind of smoothing
method;

• it may be desired to make precision assessment and significance testing by
cautious methods making no parametric assumption about the form of
probability distributions of error;

• there may be a need to use procedures relatively insensitive to particular
kinds of contamination of the data;

• it may be wise to replace complex computations with some more
transparent procedure, at least as a preliminary or for reassurance;

• there may be a need for very simple procedures, for example for
computational reasons, although computational savings as such are less
commonly important than was the case even a few years ago.

8.4.2 Alternatives to the log likelihood

We begin with a relatively minor modification in which the log likelihood l(θ) is
replaced by a function intended to be essentially equivalent to it but in a sense
simpler to handle. To the order of asymptotic theory considered here l(θ) could
be replaced by any function having its maximum at θ̂ + Op(1/n) and having
second derivatives at the maximum that are ̂{1 + Op(1/

√
n)}. There are many

such functions leading to estimates, confidence limits and tests that are all in
a sense approximately equivalent to those based on l(θ). That is, the estimates
typically differ by Op(1/n), a small difference when compared with the standard
errors which are Op(1/

√
n).

In fact a number of considerations, notably behaviour in mildly anomalous
cases and especially properties derived from higher-order expansions, suggest
that log likelihood is the preferred criterion. Sometimes, however, it is useful
to consider other possibilities and we now consider one such, reduction to the
method of least squares.

For this we suppose that we have m random variables Y1, . . . , Ym and that
each is a condensation of more detailed data, each Yk having a large information
content, i.e., O(n). A fuller notation would replace Yk , say, by Y (n)k to emphasize
that the asymptotics we consider involve not increasing m but rather increasing
internal replication within each Yk .



8.4 Non-likelihood-based methods 171

Suppose that there is a transformation from Yk to h(Yk) such that
asymptotically in n the transformed variable is normally distributed with mean
a simple function of θ and variance τk which can be estimated by vk such that
vk/τk = 1 + Op(1/

√
n). Although the restriction is not essential, we shall take

the simple function of θ to be linear, and using the notation of the linear model,
write the m × 1 vector of asymptotic means in the form

E{h(Y)} = zβ, (8.27)

where z is an m×p matrix of constants of full rank p < m and β is a p×1 vector
of parameters and cov{h(Y)} is consistently estimated by diag(vk). This is to
be taken as meaning that the log likelihood from the formal linear model just
specified agrees with that from whatever model was originally specified for Y
with error Op(1/

√
n). Note for this that the log likelihood for h(Yk) differs by

at most a constant from that for Yk and that typically a random variable whose
asymptotic distribution is standard normal has a distribution differing from the
standard normal by O(1/

√
n). In this argument, as noted above, the asympotics,

and hence the approximations, derive from internal replication within each Yk ,
not from notional increases in m.

Application of standard weighted least squares methods to (8.27) may be
called locally linearized least squares with empirically estimated weights.

Example 8.6. Summarization of binary risk comparisons. Suppose that the
primary data are binary outcomes for individuals who have one of two possible
levels of a risk factor or treatment. In the kth investigation for k = 1, . . . , m,
there are nkt individuals in risk category t for t = 0, 1 of whom rkt show a
positive response. If πkt denotes the corresponding probability of a positive
response, we have previously in Example 4.5 considered the linear logistic
model in which

log{πkt/(1 − πkt)} = αkt +�t. (8.28)

There are arbitrary differences between levels of k but the logistic difference
between t = 0 and t = 1 is constant.

We take Yk to be the collection (nk0, Rk0, nk1, Rk1), where the Rkt are binomial
random variables. Let

h(Yk) = log
Rk1

Rk0

(nk0 − Rk0)

(nk1 − Rk1)
. (8.29)

This may be called the empirical logistic difference between the two conditions
because it is a difference of two observed log odds, each of which is an empirical
logistic transform.
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Then asymptotically h(Yk) is normally distributed with mean� and variance
estimated by

vk = 1/Rk1 + 1/Rk0 + 1/(nk1 − Rk1)+ 1/(nk0 − Rk0). (8.30)

Weighted least squares gives for the estimation of the single parameter� the
estimate and asymptotic variance

�̃ = �h(Yk)v
−1
k

�v−1
k

(8.31)

and

1/�v−1
k . (8.32)

Moreover, the weighted residual sum of squares, namely

�{h(Yk)− �̃}2/vk , (8.33)

has an asymptotic chi-squared distribution with m−1 degrees of freedom and is
the asymptotic equivalent to the likelihood ratio and other tests of the constancy
of the logistic difference for all k.

The following further points arise.

• Other functions than the logistic difference could be used, for example the
estimated difference between probabilities themselves.

• If significant heterogeneity is found via the chi-squared test, the next step is
to find relevant explanatory variables characterizing the different k and to
insert them as explanatory variables in the linear model.

• If it is suspected that the binomial variation underlying the calculation of vk

underestimates the variability, inflation factors can be applied directly to
the vk .

• If the data emerging for each k and encapsulated in Yk include adjustments
for additional explanatory variables, the argument is unchanged, except
possibly for minor changes to vk to allow for the additional variance
attached to the adjustments.

• The standard subsidiary methods of analysis associated with the method of
least squares, for example those based on residuals, are available.

Any advantage to this method as compared with direct use of the log like-
lihood probably lies more in its transparency than in any computational gain
from the avoidance of iterative calculations.
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8.4.3 Complex models

One way of fitting a complex model, for example a stochastic model of temporal
or spatial-temporal development, is to find which properties of the model can
be evaluated analytically in reasonably tractable form. For a model with a
d-dimensional parameter, the simplest procedure is then to equate d functions of
the data to their analytical analogues and to solve the resulting nonlinear equa-
tions numerically. If there is a choice of criteria, ones judged on some intuitive
basis as likely to be distributed independently are chosen. For example, from
data on daily rainfall one might fit a four-parameter stochastic model by equat-
ing observed and theoretical values of the mean and variance, the proportion of
dry days and the lag one serial correlation coefficient.

If s further features can be evaluated analytically they can be used for an
informal test of adequacy, parallelling informally the sufficiency decomposi-
tion of the data used in simpler problems. Alternatively, the d +s features could
be fitted by the d parameters using some form of weighted nonlinear general-
ized least squares. For this a covariance matrix would have to be assumed or
estimated by simulation after a preliminary fit.

Such methods lead to what may be called generalized method of moments
estimates, named after the parallel with a historically important method of
fitting parametric frequency curves to data in which for d parameters the first
d moments are equated to their theoretical values.

Especially if the features used to fit the model are important aspects of the
system, such methods, although seemingly rather empirical compared with
those developed earlier in the book, may have appreciable appeal in that even if
the model is seriously defective at least the fitted model reproduces important
properties and might, for example, therefore be a suitable base for simulation
of further properties.

An important feature in the fitting of relatively complex models, especially
stochastic models of temporal or spatial-temporal data, is that it may be recog-
nized that certain features of the data are poorly represented by the model,
but this may be considered largely irrelevant, at least provisionally. Such fea-
tures might dominate a formal likelihood analysis of the full data, which would
therefore be inappropriate.

Such issues are particularly potent for stochastic models developed in con-
tinuous time. For formal mathematical purposes, although not for rigorous
general development, continuous time processes are often easier to deal with
than the corresponding discrete time models. Whenever a continuous time
model is fitted to empirical data it is usually important to consider critically
the range of time scales over which the behaviour of the model is likely to be a
reasonable approximation to the real system.
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For example, the sample paths of the stochastic process might contain
piece-wise deterministic sections which might allow exact determination of
certain parameters if taken literally. Another somewhat similar issue that may
arise especially with processes in continuous time is that the very short time
scale behaviour of the model may be unrealistic, without prejudicing properties
over wider time spans.

Example 8.7. Brownian motion. Suppose that the model is that the process
{Y(t)} is Brownian motion with zero drift and unknown variance parameter
(diffusion coefficient) σ 2. That is, increments of the process over disjoint inter-
vals are assumed independently normally distributed with for any (t, t + h) the
increment Y(t + h)− Y(t) having zero mean and variance σ 2h. If we observe
Y(t) over the interval (0, t0), we may divide the interval into t0/h nonoverlap-
ping subintervals each of length h and from each obtain an unbiased estimate
of σ 2 of the form

{Y(kh + h)− Y(kh)}2/h. (8.34)

There being t0/h independent such estimates, we obtain on averaging an
estimate with t0/h degrees of freedom. On letting h → 0 it follows that for
any t0, no matter how small, σ 2 can be estimated with arbitrarily small estima-
tion error. Even though Brownian motion may be an excellent model for many
purposes, the conclusion is unrealistic, either because the model does not hold
over very small time intervals or because the measurement process distorts local
behaviour.

8.4.4 Use of notionally inefficient statistics

As noted in the preliminary remarks, there are various reasons for using other
than formally efficient procedures under a tightly specified model. In particular
there is an extensive literature on robust estimation, almost all concentrating
on controlling the influence of observations extreme in some sense. Deriva-
tion of such estimates can be done on an intuitive basis or by specifying a
new model typically with modified tail behaviour. Estimates can in many cases
be compared via their asymptotic variances; a crucial issue in these discus-
sions is the preservation of the subject-matter interpretation of the parameter of
interest.

More generally, frequentist-type analyses lend themselves to the theoretical
comparison of alternative methods of analysis and to the study of the sensitiv-
ity of methods to misspecification errors. This may be done by mathematical
analysis or by computer simulation or often by a combination. It is common to
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present the conclusions of such studies by one or more of:

• the bias, variance and possibly mean square error of alternative point
estimates;

• the coverage properties, at a given level, of confidence intervals;
• the probability of rejecting correct null hypotheses, and of power, i.e., the

probability of detecting specified departures, both types of comparison
being at prespecified levels, for example 5 per cent or 1 per cent values of p.

These are, however, quite often not the most revealing summaries of, for
example, extensive simulation studies. For instance, coverage properties may
better be studied via the whole distributions of pivots based on alternative ana-
lyses and significance tests similarly by comparing distributions of the random
variable P.

In terms of the analysis of particular sets of data the issue is whether spe-
cific conclusions are vulnerable to underlying assumptions and sensitivity
assessment has to be appropriately conditional.

Parallel Bayesian analyses involve the sensitivity of a posterior distribution
to perturbation of either the likelihood or the prior and again can be studied
analytically or purely numerically.

Notes 8

Section 8.1. Some accounts of statistical analysis put much more emphasis than
has been done in this book on prediction as contrasted with parameter estim-
ation. See, for example, Geisser (1993) and Aitchison and Dunsmore (1975).
Many applications have an element of or ultimate objective of prediction. Often,
although certainly not always, this is best preceded by an attempt at analysis
and understanding. For a discussion of prediction from a frequentist viewpoint,
see Lawless and Fridette (2005). An alternative approach is to develop a notion
of predictive likelihood. For one such discussion, see Butler (1986).

A series of papers summarized and substantially developed by Lee and Nelder
(2006) have defined a notion of h-likelihood in the context of models with
several layers of error and have applied it to give a unified treatment of a
very general class of models with random elements in both systematic and
variance structure. Some controversy surrounds the properties that maximizing
the h-likelihood confers.

Section 8.2. An element of decision-making was certainly present in the early
work of Neyman and Pearson, a Bayesian view being explicit in Neyman and
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Pearson (1933), and the decision-making aspect of their work was extended
and encapsulated in the attempt of Wald (1950) to formulate all statistical
problems as ones of decision-making. He assumed the availability of a util-
ity (or loss) function but no prior probability distribution, so that Bayesian
decision rules played a largely technical role in his analysis. Most current treat-
ments of decision theory are fully Bayesian, in principle at least. There is a very
strong connection with economic theory which does, however, tend to assume,
possibly after a largely ritual hesitation, that utility is linear in money.

Section 8.3. Emphasis has not been placed on point estimation, especially
perhaps on point estimates designed to minimize mean squared error. The reason
is partly that squared error is often not a plausible measure of loss, especially in
asymmetric situations, but more importantly the specification of isolated point
estimates without any indication of their precision is essentially a decision
problem and should be treated as such. In most applications in which point
estimates are reported, either they are an intermediate step in analysis or they
are essentially the basis of a pivot for inference. In the latter case there is some
allowable arbitrariness in the specification.

The Cauchy–Schwarz inequality in the present context is proved by noting
that, except in degenerate cases, for all constants a, b the random variable
aT + bU has strictly positive variance. The quadratic equation for, say, b/a
obtained by equating the variance to zero thus cannot have a real solution.

The elegant procedure for constructing unbiased estimates via an arbitrary
unbiased estimate and a sufficient statistic is often called Rao–Blackwellization,
after its originators C. R. Rao and D. Blackwell. A collection of papers on
estimating equations was edited by Godambe (1991) and includes a review of
his own contributions. An especially influential contribution is that of Liang
and Zeger (1986).

Example 8.3 follows an early discussion of Fisher (1925a). The notion of
asymptotic relative efficiency and its relation to that of tests was introduced
essentially in the form given here by Cochran (1937), although it was set out in
more formal detail in lecture notes by E. J. G. Pitman, after whom it is usually
named. There are other ideas of relative efficiency related to more extreme tail
behaviour.

Section 8.4. Estimates with the same asymptotic distribution as the maximum
likelihood estimate to the first order of asymptotic theory are called BAN (best
asymptotically normal) or if it is desired to stress some regularity conditions
RBAN (regular best asymptotically normal). The idea of forming summarizing
statistics on the basis of some mixture of judgement and ease of interpretation
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and then using these as the base for a second more formal stage of analysis has
a long history, in particular in the context of longitudinal data. In econometrics it
has been developed as the generalized method of moments. For an account with
examples under the name ‘the indirect method’, see Jiang and Turnbull (2004).
The asymptotic variance stated for the log odds is obtained by using local lin-
earization (the so-called delta method) to show that for any function h(R/n)
differentiable at µ, then asymptotically var{h(R/n)} = {h′(µ)}2var(R/n),
where µ = E(R/n).

The more nearly linear the function h(.) near µ the better the approximation.
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Randomization-based analysis

Summary. A different approach to statistical inference is outlined based not on
a probabilistic model of the data-generating process but on the randomization
used in study design. The implications of this are developed in simple cases,
first for sampling and then for the design of experiments.

9.1 General remarks

The discussion throughout the book so far rests centrally on the notion of a
probability model for the data under analysis. Such a model represents, often
in considerably idealized form, the data-generating process. The parameters
of interest are intended to capture important and interpretable features of that
generating process, separated from the accidental features of the particular data.
That is, the probability model is a model of physically generated variability,
of course using the word ‘physical’ in some broad sense. This whole approach
may be called model-based.

In some contexts of sampling existing populations and of experimental design
there is a different approach in which the probability calculations are based
on the randomization used by the investigator in the planning phases of the
investigation. We call this a design-based formulation.

Fortunately there is a close similarity between the methods of analysis emer-
ging from the two approaches. The more important differences between them
concern interpretation of the conclusions. Despite the close similarities it seems
not to be possible to merge a theory of the purely design-based approach seam-
lessly into the theory developed earlier in the book. This is essentially because
of the absence of a viable notion of a likelihood for the haphazard component
of the variability within a purely design-based development.
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These points will be illustrated in terms of two very simple examples, one of
sampling and one of experimental design.

9.2 Sampling a finite population

9.2.1 First and second moment theory

Suppose that we have a well-defined population of N labelled individuals and
that the sth member of the population has a real-valued property ηs. The quant-
ity of interest is assumed to be the finite population mean mη = �ηs/N . The
initial objective is the estimation of mη together with some assessment of the
precision of the resulting estimate. More analytical and comparative aspects
will not be considered here.

To estimate mη suppose that a sample of n individuals is chosen at random
without replacement from the population on the basis of the labels. That is, some
impersonal sampling device is used that ensures that all N !/{n!(N − n)!} dis-
tinct possible samples have equal probability of selection. Such simple random
sampling without replacement would rarely be used directly in applications, but
is the basis of many more elaborate and realistic procedures. For convenience
of exposition we suppose that the order of the observations y1, . . . , yn is also
randomized.

Define an indicator variable Iks to be 1 if the kth member of the sample is the
sth member of the population. Then in virtue of the sampling method, not in
virtue of an assumption about the structure of the population, the distribution
of the Iks is such that

ER(Iks) = PR(Iks = 1) = 1/N , (9.1)

and, because the sampling is without replacement,

ER(IksIlt) = (1 − δkl)(1 − δst)/{N(N − 1)} + δklδst/N , (9.2)

where δkl is the Kronecker delta symbol equal to 1 if k = l and 0 otherwise. The
suffix R is to stress that the probability measure is derived from the sampling
randomization. More complicated methods of sampling would be specified by
the properties of these indicator random variables,

It is now possible, by direct if sometimes tedious calculation from these and
similar higher-order specifications of the distribution, to derive the moments of
the sample mean and indeed any polynomial function of the sample values. For
this we note that, for example, the sample mean can be written

ȳ = �k,sIksηs/n. (9.3)
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It follows immediately from (9.1) that

ER( ȳ) = mη, (9.4)

so that the sample mean is unbiased in its randomization distribution.
Similarly

varR( ȳ) = �k,svar(Ik,s)η
2/n2 + 2�k>l,s>tcov(Iks, Ilt)ηsηt/n

2. (9.5)

It follows from (9.2) that

varR( ȳ) = (1 − f )vηη/n, (9.6)

where the second-moment variability of the finite population is represented by

vηη = �(ηs − mη)
2/(N − 1), (9.7)

sometimes inadvisably called the finite population variance, and f = n/N is
the sampling fraction.

Thus we have a simple generalization of the formula for the variance of a
sample mean of independent and identically distributed random variables. Quite
often the proportion f of individuals sampled is small and then the factor 1 − f ,
called the finite population correction, can be omitted.

A similar argument shows that if s2 = �(yk − ȳ)2/(n − 1), then

ER(s
2) = vηη, (9.8)

so that the pivot

mη − ȳ

{s2(1 − f )/n}1/2
(9.9)

has the form of a random variable of zero mean divided by an estimate of its
standard deviation. A version of the Central Limit Theorem is available for
this situation, so that asymptotically confidence limits are available for mη by
pivotal inversion.

A special case where the discussion can be taken further is when the popu-
lation values ηs are binary, say 0 or 1. Then the number of sampled individuals
having value 1 has a hypergeometric distribution and the target population value
is the number of 1s in the population, a defining parameter of the hypergeo-
metric distribution and in principle in this special case design-based inference
is equivalent, formally at least, to parametric inference.

9.2.2 Discussion

Design-based analysis leads to conclusions about the finite population mean
totally free of assumptions about the structure of the variation in the population
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and subject, for interval estimation, only to the usually mild approximation
of normality for the distribution of the pivot. Of course, in practical sampling
problems there are many complications; we have ignored the possibility that
supplementary information about the population might point to conditioning
the sampling distribution on some features or would have indicated a more
efficient mode of sampling.

We have already noted that for binary features assumed to vary randomly
between individuals essentially identical conclusions emerge with no special
assumption about the sampling procedure but the extremely strong assumption
that the population features correspond to independent and identically distrib-
uted random variables. We call such an approach model-based or equivalently
based on a superpopulation model. That is, the finite population under study is
regarded as itself a sample from a larger universe, usually hypothetical.

A very similar conclusion emerges in the Gaussian case. For this, we may
assume η1, . . . , ηN are independently normally distributed with mean µ and
variance σ 2. Estimating the finite population mean is essentially equivalent to
estimating the mean ȳ∗ of the unobserved individuals and this is a prediction
problem of the type discussed in Section 8.1. That is, the target parameter is
an average of a fraction f known exactly, the sample, and an unobserved part,
a fraction 1−f , The predictive pivot is, with σ 2 known, the normally distributed
quantity

( ȳ∗ − ȳ)/(σ
√{1/n + 1/(N − n)}) (9.10)

and when σ 2 is unknown an estimated variance is used instead. The pivotal
distributions are respectively the standard normal and the Student t distribu-
tion with n − 1 degrees of freedom. Except for the sharper character of the
distributional result, the exact distributional result contrasted with asymptotic
normality, this is the same as the design-based inference.

One difference between the two approaches is that in the model-based formu-
lation the choice of statistics arises directly from considerations of sufficiency.
In the design-based method the justification for the use of Ȳ is partly general
plausibility and partly that only linear functions of the observed values have a
randomization-based mean that involves mη. The unweighted average ȳ has the
smallest variance among all such linear unbiased estimates of mη.

While the model-based approach is more in line with the discussion in the
earlier part of this book, the relative freedom from what in many sampling
applications might seem very contrived assumptions has meant that the design-
based approach has been the more favoured in most discussions of sampling in
the social field, but perhaps rather less so in the natural sciences.
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Particularly in more complicated problems, but also to aim for greater the-
oretical unity, it is natural to try to apply likelihood ideas to the design-based
approach. It is, however, unclear how to do this. One approach is to regard
(η1, . . . , ηN ) as the unknown parameter vector. The likelihood then has the fol-
lowing form. For those s that are observed the likelihood is constant when the
ηs in question equals the corresponding Y and zero otherwise and the likelihood
does not depend on the unobserved ηs. That is, the likelihood summarizes that
the observations are what they are and that there is no information about the
unobserved individuals. In a sense this is correct and inevitable. If there is no
information whatever either about how the sample was chosen or about the
structure of the population no secure conclusion can be drawn beyond the indi-
viduals actually sampled; the sample might have been chosen in a highly biased
way. Information about the unsampled items can come only from an assumption
of population form or from specification of the sampling procedure.

9.2.3 A development

Real sampling problems have many complicating features which we do not
address here. To illustrate further aspects of the interplay between design- and
model-based analyses it is, however, useful to consider the following extension.
Suppose that for each individual there is a further variable z and that these are
known for all individuals. The finite population mean of z is denoted by mz

and is thus known. The information about z might indeed be used to set up
a modified and more efficient sampling scheme, but we continue to consider
random sampling without replacement.

Suppose further that it is reasonable to expect approximate proportionality
between the quantity of interest η and z. Most commonly z is some measure
of size expected to influence the target variable roughly proportionally. After
the sample is taken ȳ and the sample mean of z, say z̄, are known. If there were
exact proportionality between η and z the finite population mean of η would be

m̃η = ȳmz/z̄ (9.11)

and it is sensible to consider this as a possible estimate of the finite population
mean mη in which any discrepancy between z̄ and mz is used as a base for a
proportional adjustment to ȳ.

A simple model-based theory of this can be set out in outline as follows.
Suppose that the individual values, ηk , and therefore if observed yk , are random
variables of the form

ηk = βzk + ζk
√

zk , (9.12)
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where ζ1, . . . , ζN are independently normally distributed with zero mean and
variance σ 2

ζ . Conformity with this representation can to some extent be tested
from the data. When zk is a measure of size and ηk is an aggregated effect over
the individual unit, the square root dependence and approximate normality of
the error terms have some theoretical justification via a Central Limit like effect
operating within individuals.

Analysis of the corresponding sample values is now possible by the method
of weighted least squares or more directly by ordinary least squares applied to
the representation

yk/
√

zk = β
√

zk + ζk , (9.13)

leading to the estimate β̂ = ȳ/z̄ and to estimates of σ 2
ζ and var(β̂) = σ 2

ζ /(nz̄).

Moreover, σ 2
ζ is estimated by

s2
ζ =

∑ (yk − β̂zk)
2/zk

n − 1
. (9.14)

The finite population mean of interest, mη, can be written in the form

nȳ + (1 − f )�∗ηl/(N − n) = f ȳ + (1 − f ){β�∗(zl + ζl
√

zl)} (9.15)

where �∗ denotes summation over the individuals not sampled. Because

{nz̄ + (1 − f )�∗zl}/N = mz, (9.16)

it follows, on replacing β by β̂ that the appropriate estimate of mη is m̃η and
that its variance is

(mz − f z̄)mz

Nz̄
σ 2
ζ . (9.17)

This can be estimated by replacing σ 2
ζ by s2

ζ and hence an exact pivot formed
for estimation of mη.

The design-based analysis is less simple. First, for the choice of m̃η we rely
either on the informal argument given when introducing the estimate above or
on the use of an estimate that is optimal under the very special circumstances
of the superpopulation model but whose properties are studied purely in a
design-based formulation.

For this, the previous discussion of sampling without replacement from a
finite population shows that ( ȳ, z̄) has mean (my, mz) and has covariance matrix,
in a notation directly extending that used for vηη,(

vηη vηz

vzη vzz

)
(1 − f )/n. (9.18)
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If n is large and the population size N is such that 0 < f < 1, the design-based
sampling distribution of the means is approximately bivariate normal and the
conditional distribution of ȳ given z̄ has approximately the form

mη + (vηz/vzz)(z̄ − mz)+ ζ , (9.19)

where ζ has zero mean and variance vηη·z(1 − f )/n, and vηη·z = vηη − v2
ηz/vzz

is the variance residual to the regression on z. We condition on z̄ for the reasons
discussed in Chapters 4 and 5. In principle z̄ has an exactly known probability
distribution although we have used only an asymptotic approximation to it.

Now, on expanding to the first order, the initial estimate is

m̃η = mη + ( ȳ − mη)− mη(z̄ − mz)/mz (9.20)

and, on using the known form of ȳ, this gives that

m̃η = mη + (z̄ − mz)(vηz/vzz − mη/mz)+ ζ ; (9.21)

in the penultimate term we may replace mη by ȳ.
Now if the superpopulation model holds (vηz/vzz − mη/mz) = Op(1/

√
n)

and the whole term is Op(1/n) and can be ignored, but in general this is not the
case and the adjusted estimate

m̃′
η = ȳmz

z̄
− (z̄ − mz)ȳ

mz
(9.22)

is appropriate with variance vηη·z(1−f )/n as indicated. Note that in the unlikely
event that η and z are unrelated this recovers ȳ.

The model-based analysis hinges on the notion, sometimes rather contrived,
that the finite population of interest is itself a random sample from a super-
population. There are then needed strong structural assumptions about the
superpopulation, assumptions which can to some extent be tested from the
data. There results a clear method of estimation with associated distributional
results. By contrast the design-based approach does not on its own specify the
appropriate estimate and the associated standard errors and distributional theory
are approximations for large sample sizes but assume much less.

9.3 Design of experiments

9.3.1 General remarks

We now turn to the mathematically strongly related but conceptually very
different issue of the role of randomization in the design of experiments,
i.e., of investigations in which the investigator has in principle total control
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over the system under study. As a model of the simplest such situation we
suppose that there are 2m experimental units and two treatments, T and C, to
be compared; these can be thought of as a new treatment and a control. The
investigator assigns one treatment to each experimental unit and measures a
resulting response, y.

We shall introduce and compare two possible designs. In the first, a so-called
completely randomized design, m of the 2m units are selected at random without
replacement to receive T and the remainder receive C. For the second design
we assume available supplementary information about the units on the basis of
which the units can be arranged in pairs. In some aspect related to the response,
there should be less variation between units within a pair than between units in
different pairs. Then within each pair one unit is selected at random to receive
treatment T , the other receiving C. This forms a matched pair design, a special
case of what for more than two treatments is called a randomized complete
block design.

We compare a model-based and a design-based analysis of these two designs.

9.3.2 Model-based formulation

A model-based formulation depends on the nature of the response variable, for
example on whether it is continuous or discrete or binary and on the kind of
distributional assumptions that are reasonable. One fairly general formulation
could be based on an exponential family representation, but for simplicity we
confine ourselves here largely to normal-theory models.

In the absence of a pairing or blocking structure, using a completely ran-
domized design, the simplest normal-theory model is to write the random
variable corresponding to the observation on unit s for s = 1, . . . , 2m in the
symmetrical form

Ys = µ+ dsψ + εs. (9.23)

Here ds = 1 if unit s receives T and ds = −1 if unit s receives C and εs are
independently normally distributed with zero mean and variance σ 2

CR. In this
formulation the treatment effect is 2ψ = �, say, assumed constant, and σ 2

CR
incorporates all sources of random variation arising from variation between
equivalent experimental units and from measurement error.

The corresponding formulation for the matched pair design specifies for
k = 1, . . . , m; t = T , C that the observation on unit k, t is the observed value of
the random variable

Ykt = µ+ λk + dktψ + εkt . (9.24)
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Here again the ε are independently normally distributed with zero mean but
now in general with a different variance σ 2

MP. The general principle involved in
writing down this and similar models for more complicated situations is that if
some balance is inserted into the design with the objective of improving preci-
sion then this balance should be represented in the model, in the present case
by including the possibly large number of nuisance parameters λk , representing
variation between pairs. Note that either design might have been used and in
notional comparisons of them the error variances are not likely to be the same.
Indeed the intention behind the matched design is normally that σ 2

MP is likely
to be appreciably less than σ 2

CR.
In general the analysis of the second model will need to recognize the relat-

ively large number of nuisance parameters present, but for a linear least squares
analysis this raises no difficulty. In both designs the difference between the two
treatment means estimates � = 2ψ with variance 2/m times the appropriate
variance. This variance is estimated respectively by the appropriate residual
mean squares, namely by

{�s⊂T (Ys − ȲT )
2 +�s⊂C(Ys − ȲC)

2}/(2m − 2) (9.25)

and by

{�(YkT − YkC)
2 − m(ȲT − ȲC)

2}/(m − 1). (9.26)

Here in both formulae ȲT and ȲC are the means of the observations on T and
on C and in the first formula s ⊂ T , for example, refers to a sum over units
receiving T .

It can be enlightening, especially in more complicated situations, to summar-
ize such data in analysis of variance tables which highlight the structure of the
data as well as showing how to estimate the residual variance.

These arguments lead to pivots for inference about�, the pivotal distributions
being of the Student t form with respectively 2m − 2 and m − 1 degrees of
freedom.

9.3.3 Design-based formulation

For a design-based discussion it is simplest to begin with no explicit block or
pair structure and with a null hypothesis of no treatment effect. Consider what
may be called the strong null hypothesis that the response observed on unit s
is a constant, say, ηs, characteristic of the sth unit and is independent of the
allocation of treatments to it and other units. That is, the treatments have no
differential effect of any sort (in terms of the particular response variable y).
Note that this hypothesis has no stochastic component. It implies the existence
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of two potential physical possibilities for each unit, one corresponding to each
treatment, and that only one of these can be realized. Then it is hypothesized
that the resulting values of y are identical.

Note that if an independent and identically distributed random variable were
added to each possible response, one for T and one for C, so that the dif-
ference between T and C for a particular unit became a zero mean random
variable identically distributed for each unit, the observable outcomes would be
undetectably different from those under the original strong null hypothesis. That
is, the nonstochastic character of the strong null hypothesis cannot be tested
empirically or at least not without supplementary information, for example
about the magnitude of unexplained variation to be anticipated.

The analysis under this null hypothesis can be developed in two rather dif-
ferent ways. One is to note that ȲT , say, is in the completely randomized design
the mean of a random sample of size m drawn randomly without replacement
from the finite population of size 2m and that ȲC now has the role played by
Ȳ∗ in the sampling-theory discussion of the complementary sample. It follows
as in the previous section that

ER(ȲT − ȲC) = 0, varR(ȲT − ȲC) = 2vη/m (9.27)

and that vη is estimated to a rather close approximation by the model-based
estimate of variance. To see the form for the variance of the estimated effect,
note that (ȲT + ȲC) is twice the mean over all units and is a constant in the
randomization. Thus the difference of means has the variance of twice that of the
sample mean ȲT , itself a random sample corresponding to a sampling fraction
of 1/2. This argument leads to the same test statistic as in the model-based
approach. Combined with an appeal to a form of the Central Limit Theorem,
we have an asymptotic version of the model-based analysis of the completely
randomized design. We shall see later that an exact distributional analysis is in
principle possible.

For the matched pair design the analysis is the same in general approach but
different in detail. The most direct formulation is to define Xk , a new variable
for each pair, as the difference between the observation on T and that on C.
Under the strong null hypothesis Xk is equally likely to be xk or −xk , where xk is
the observed difference for the kth pair. It follows that under the randomization
distribution X̄ = ȲT − ȲC has zero mean and variance

�x2
k/m. (9.28)

The test statistic is a monotonic function of that involved in the model-based
discussion and the tests are asymptotically equivalent.
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For comparison with the completely randomized design, note that the
variance equivalent to that in the linear model is

�x2
k/(2m) = �(ηk1 − ηk0)

2/(2m), (9.29)

as contrasted with what it would be if the completely randomized design were
used on the same set of units

�(ηkl − η̄..)
2/(2m − 1). (9.30)

A rather different approach is the following. Choose a test statistic for com-
paring the treatments. This could be, but does not have to be, ȲT − ȲC or the
corresponding standardized test statistic used above. Now under the strong null
hypothesis the value of the test statistic can be reconstructed for all possible
treatment allocations by appropriate permutation of T and C. Then, because
the design gives to all these arrangements the same probability, the exact ran-
domization distribution can be found. This both allows the choice of other
test statistics and also avoids the normal approximation involved in the initial
discussion.

Table 9.1 illustrates a very simple case of a matched pair experiment. Com-
pletion of the enumeration shows that 7 of the 32 configurations give a total
summed difference of 8, the observed value, or more and, the distribution
being symmetrical about zero, another 7 show a deviation as great as or more
extreme than that observed but in the opposite direction. The one-sided p-value

Table 9.1. Randomization distribution for a simple matched
pair experiment. First column gives the observed differ-
ences between two treatments. Remaining columns are the
first few of the 25 configurations obtained by changing
signs of differences. Under randomization null hypothesis
all 25 possibilities have equal probability. Last row gives
column totals.

Observed
difference

6 6 −6 6 −6 6 −6 . . .
3 3 3 −3 −3 3 3 . . .

−2 2 2 2 2 −2 −2 . . .
2 2 2 2 2 2 2 . . .

−1 −1 −1 −1 −1 −1 −1 . . .

8 14 2 8 −4 10 −2 . . .
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is 7/32 = 0.22. A normal approximation based on the known mean and vari-
ance and with a continuity correction of the observed difference from −8 to
−7 is (−7/

√
54) = 0.17. Note that because the support of the test stat-

istic is a subset of even integers, the continuity correction is 1 not the more
usual 1/2.

A first point is that in the randomization distribution all possible data config-
urations have the same value of�x2

k so that, for example, the Student t statistic
arising in the model-based approach is a monotone function of the sample mean
difference or total. We therefore for simplicity take the sample total �xk as the
test statistic rather than Student t and form its distribution by giving each pos-
sible combination of signs in �(±xk) equal probability 2−m. The one-sided
p-value for testing the strong null hypothesis is thus the proportion of the 2m

configurations with sample totals as large or larger than that observed. Altern-
atively and more directly, computer enumeration can be used to find the exact
significance level, or some form of sampling used to estimate the level with
sufficient precision. Improvements on the normal approximation used above
can sometimes be usefully found by noting that the test statistic is the sum of
independent nonidentically distributed random variables and has the cumulant
generating function

log ER(e
p�Xk ) = � log cosh(pxk) (9.31)

from which higher-order cumulants can be found and corrections for
nonnormality introduced.

Such tests are called randomization tests. They are formally identical to
but conceptually quite different from the permutation tests outlined briefly in
Chapter 3. Here the basis of the procedure is the randomization used in alloc-
ating the treatments; there is no assumption about the stochastic variability of
the individual units. By contrast, the validity of the permutation tests hinges
on the assumed independence and identical distributional form of the random
variability.

In the design-based test the most extreme significance level that could be
achieved is 2−m in a one-sided test and 2−m+1 in a two-sided test. Thus for
quite small m there is inbred caution in the design-based analysis that is not
present in the normal-theory discussion. This caution makes qualitative sense
in the absence of appreciable prior knowledge about distributional form. There
is a further important proviso limiting the value of randomization in isolated
very small investigations. We have implicitly assumed that no additional con-
ditioning is needed to make the randomization distribution relevant to the data
being analysed. In particular, the design will have taken account of relevant
features recognized in advance and for reasonably large m with a large number
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of arrangements among which to randomize it will often be reasonable to regard
these arrangements as essentially equivalent. For very small m, however, each
arrangement may have distinctive features which may be particularly relevant
to interpretation. The randomization distribution then loses much or all of its
force. For example in a very small psychological experiment it might be sensible
to use gender as a basis for pairing the individuals, disregarding age as likely
to be largely irrelevant. If later it was found that the older subjects fell predom-
inantly in, say, the control group the relevance of the randomization analysis
would be suspect. The best procedure in such cases may often be to use the
most appealing systematic arrangement. Randomization simply of the names
of the treatments ensures some very limited protection against accusations of
biased allocation.

Example 9.1. Two-by-two contingency table. If the response variable is binary,
with outcomes 1 (success) and 0 (failure), the randomization test takes a very
simple form under the strong null hypothesis. That is, the total number of 1s,
say r, is considered fixed by hypothesis and the randomization used in design
ensures that the number of 1s in, say, sample 1 is the number of 1s in a sample of
size m drawn randomly without replacement from a finite population of r 1s and
n − r 0s. This number has a hypergeometric distribution, recovering Fisher’s
exact test as a pure randomization test. The restriction to samples of equal size
is unnecessary here.

In earlier discussions of the 2×2 table, marginal totals have been fixed either
by design or by what was termed technical conditioning. Here the total number
of 1s is fixed for a third reason, namely in the light of the strong null hypothesis
that the outcome on each study individual is totally unaffected by the treatment
allocation.

For large m there is a broad agreement between the randomization ana-
lysis and any model-based analysis for a given distributional form and for
the choice of test statistic essentially equivalent to Student t. This is clear
because the model-based distribution is in effect a mixture of a large number
of randomization distributions.

The above discussion has been solely in terms of the null hypothesis of
no treatment effect. The simplest modification of the formalism to allow for
nonzero effects, for continuous measurements, is to suppose that there is a
constant � such that on experimental unit s we observe ηs +� if T is applied
and ηs otherwise.

This is the special case for two treatments of unit-treatment additivity. That
is, the response observed on a particular unit is the sum of a constant char-
acteristic of the unit and a constant characteristic of the treatment applied to
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that unit and also is independent of the treatment allocation to other units.
It is again a deterministic assumption, testable only indirectly. Confidence
limits for � are obtained by using the relation between confidence intervals
and tests. Take an arbitrary value of �, say �0, and subtract it from all the
observations on T . Test the new data for consistency with the strong null hypo-
thesis by using the randomization test. Repeat this in principle for all values of
�0 and take as confidence set all those values not rejected at the appropriate
level.

Adjustment of estimated treatment effects for concomitant variables, in prin-
ciple measured before randomization to ensure that they are not affected by
treatment effects, is achieved in a model-based approach typically by some
appropriate linear model. A design-based analysis is usually approximate
broadly along the lines sketched in Section 9.2 for sampling.

One of the primary advantages of the design-based approach is that the same
formulation of unit-treatment additivity leads for a broad class of randomiza-
tion patterns, i.e., designs, to an unbiased estimate of the treatment differences
and to an unbiased estimate of the effective error variance involved. This con-
trasts with the model-based approach which appears to make a special ad hoc
assumption for each design. For example for a Latin square design a special
so-called main effect model that appears to be a highly specific assumption is
postulated. This leads to the estimation of error via a particular residual sum
of squares. In fact the same residual sum of squares arises in the design-based
analysis directly from the specific randomization used and without any special
assumption.

There is the following further conceptual difference between the two
approaches. A model-based approach might be regarded as introducing an
element of extrapolation in that the conclusions apply to some ensemble of
real or hypothetical repetitions that are involved in defining the parameters.
The design-based approach, by contrast, is concerned with elucidating what
happened in the particular circumstances of the investigation being analysed;
how likely is it that the adverse play of chance in the way the treatments were
allocated in the study has distorted the conclusions seriously? Any question of
extrapolation is then one of general scientific principle and method and not a
specifically statistical issue.

This discussion of randomization has been from a frequentist standpoint.
While the role of randomization in a formal Bayesian theory is not so clear,
from one point of view it can be regarded as an informal justification of
the independence assumptions built into typical forms of likelihood used in
Bayesian inference. This is essentially parallel to the interplay between design-
and model-based analyses in frequentist theory. In the more personalistic
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approaches it might be argued that what is required is that You believe the
allocation to be essentially random but empirical experience suggests that,
in some contexts at least, this is a very hazardous argument!

Notes 9

Section 9.1. Randomization has three roles in applications: as a device for
eliminating biases, for example from unobserved explanatory variables and
selection effects; as a basis for estimating standard errors; and as a foundation
for formally exact significance tests. The relative importance of these varies
greatly between fields. The emphasis in the present discussion is on the con-
ceptual possibility of statistical inference not based on a probabilistic model of
the underlying data-generating process. It is important to distinguish permuta-
tion tests from the numerically equivalent randomization tests. The former are
based on some symmetries induced by the probabilistic model, whereas the
latter are a by-product of the procedure used in design. Modern computational
developments make the use of permutation tests feasible even in quite com-
plicated problems (Manly, 1997). They provide protection of significance tests
against departures of distributional form but not against the sometimes more
treacherous failure of independence assumptions.

Section 9.2. General accounts of sampling theory are given by Cochran (1977)
and Thompson (1992) and a more mathematical discussion by Thompson
(1997). There has been extensive discussion of the relative merits of model-
and design-based approaches. For the applications to stereology, including
a discussion of model- versus design-based formulations, see Baddeley and
Jensen (2005). For a comparison of methods of estimating the variance of ratio
estimates, see Sundberg (1994).

Section 9.3. The basic principles of statistical design of experiments were
set out by Fisher (1935a) and developed, especially in the context of agricul-
tural field trials, by Yates (1937). For an account of the theory emphasizing
the generality of the applications, see Cox and Reid (2000). Fisher intro-
duced randomization and randomization tests but his attitude to the use of
the tests in applications is unclear; Yates emphasized the importance of ran-
domization in determining the appropriate estimate of error in complex designs
but dismissed the detailed randomization analysis as inferior to least squares.
Kempthorne (1952) took the opposing view, regarding least squares analyses as
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computationally convenient approximations to the randomization analyses. The
development from the counterfactual model of experimental design to address
studies of causation in observational studies has been extensively studied; see,
in particular, Rubin (1978, 1984). By adopting a Bayesian formulation and
assigning a prior distribution to the constants characterizing the observational
units, the analysis is brought within the standard Bayesian specification.
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A brief history

A very thorough account of the history of the more mathematical side of stat-
istics up to the 1930’s is given by Hald (1990, 1998, 2006). Stigler (1990) gives
a broader perspective and Heyde and Seneta (2001) have edited a series of
vignettes of prominent statisticians born before 1900.

Many of the great eighteenth and early nineteenth century mathematicians
had some interest in statistics, often in connection with the analysis of astro-
nomical data. Laplace (1749–1827) made extensive use of flat priors and
what was then called the method of inverse probability, now usually called
Bayesian methods. Gauss (1777–1855) used both this and essentially fre-
quentist ideas, in particular in his development of least squares methods of
estimation. Flat priors were strongly criticized by the Irish algebraist Boole
(1815–1864) and by later Victorian mathematicians and these criticisms were
repeated by Todhunter (1865) in his influential history of probability. Karl
Pearson (1857–1936) began as, among other things, an expert in the theory
of elasticity, and brought Todhunter’s history of that theory to posthumous
publication (Todhunter, 1886, 1893).

In one sense the modern era of statistics started with Pearson’s (1900)
development of the chi-squared goodness of fit test. He assessed this without
comment by calculating and tabulating the tail area of the distribution. Pearson
had some interest in Bayesian ideas but seems to have regarded prior distribu-
tions as essentially frequency distributions. Pearson’s influence was dominant in
the period up to 1914, his astonishing energy being shown in a very wide range
of applications of statistical methods, as well as by theoretical contributions.

While he continued to be active until his death, Pearson’s influence waned
and it was R. A. Fisher (1890–1962) who, in a number of papers of the highest
originality (Fisher, 1922, 1925a, 1934, 1935b), laid the foundations for much
of the subject as now known, certainly for most of the ideas stressed in the
present book. He distinguished problems of specification, of estimation and
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of distribution. He introduced notions of likelihood, maximum likelihood and
conditional inference. He also had a distinctive view of probability. In parallel
with his theoretical work he suggested major new methods of analysis and
of experimental design, set out in two books of high impact (Fisher, 1925b,
1935a). He was firmly anti-Bayesian in the absence of specific reasons for
adopting a prior distribution (Fisher, 1935a, 1956). In addition to his central
role is statistical thinking, he was an outstanding geneticist, in particular being
a pioneer in putting the theory of natural selection on a quantitative footing.

Fisher had little sympathy for what he regarded as the pedanticism of precise
mathematical formulation and, only partly for that reason, his papers are not
always easy to understand. In the mid 1920s J. Neyman (1894–1981), then
in Warsaw, and E. S. Pearson (1885–1980) began an influential collaboration
initially designed primarily, it would seem, to clarify Fisher’s writing. This led to
their theory of testing hypotheses and to Neyman’s development of confidence
intervals, aiming to clarify Fisher’s idea of fiducial intervals. As late as 1932
Fisher was writing to Neyman encouragingly about this work, but relations
soured, notably when Fisher greatly disapproved of a paper of Neyman’s on
experimental design and no doubt partly because their being in the same building
at University College London brought them too close to one another! Neyman
went to Berkeley at the start of World War II in 1939 and had a very major
influence on US statistics. The differences between Fisher and Neyman were
real, centring, for example, on the nature of probability and the role, if any,
for conditioning, but, I think, were not nearly as great as the asperity of the
arguments between them might suggest.

Although some of E. S. Pearson’s first work had been on a frequency-based
view of Bayesian inference, Neyman and Pearson, except for an early eleg-
ant paper (Neyman and Pearson, 1933), showed little interest in Bayesian
approaches. Wald (1900–1950) formulated a view of statistical analysis and
theory that was strongly decision-oriented; he assumed the availability of a
utility or loss function but not of a prior distribution and this approach too
attracted much attention for a while, primarily in the USA.

Fisher in some of his writing emphasized direct use of the likelihood as a
measure of the relation between data and a model. This theme was developed by
Edwards (1992) and by Royall (1997) and in much work, not always published,
by G. A. Barnard (1915–2002); see, in particular, Barnard et al. (1962).

As explained above, twentieth century interest in what was earlier called
the inverse probability approach to inference was not strong until about 1950.
The economist John Maynard Keynes (1883–1946) had written a thesis on the
objectivist view of these issues but the main contribution to that approach, and
a highly influential one, was that of the geophysicist and applied mathematician
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Harold Jeffreys (1891–1989). He wrote on the objective degree of belief view
of probability in the early 1930s but his work is best approached from the
very influential Theory of Probability, whose first edition was published in
1939. He justified improper priors, gave rules for assigning priors under some
circumstances and developed his ideas to the point where application could
be made. Comparable developments in the philosophy of science, notably by
Carnap, do not seem to have approached the point of applicability. The most
notable recent work on standardized priors as a base for comparative analyses
is that of Bernardo (1979, 2005); this aims to find priors which maximize the
contribution of the data to the posterior.

At the time of these earlier developments the philosopher F. P. Ramsey (1903–
1930) developed a theory of personalistic probability strongly tied to personal
decision-making, i.e., linking probability and utility intimately. Ramsey died
before developing these and other foundational ideas. The systematic develop-
ment came independently from the work of de Finetti (1906–1985) and Savage
(1917–1971), both of whom linked personalistic probability with decision-
making. The pioneering work of I. J. Good (1916–) was also important. There
were later contributions by many others, notably de Groot (1931–1989) and
Lindley (1923–). There followed a period of claims that the arguments for this
personalistic theory were so persuasive that anything to any extent inconsistent
with that theory should be discarded. For the last 15 years or so, i.e., since
about 1990, interest has focused instead on applications, especially encouraged
by the availability of software for Markov chain Monte Carlo calculations, in
particular on models of broadly hierarchical type. Many, but not all, of these
applications make no essential use of the more controversial ideas on person-
alistic probability and many can be regarded as having at least approximately
a frequentist justification.

The later parts of this brief history may seem disturbingly Anglo-centric.
There have been, of course, many individuals making important original
contributions in other languages but their impact has been largely isolated.
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A personal view

Much of this book has involved an interplay between broadly frequentist dis-
cussion and a Bayesian approach, the latter usually involving a wider notion
of the idea of probability. In many, but by no means all, situations numeric-
ally similar answers can be obtained from the two routes. Both approaches
occur so widely in the current literature that it is important to appreciate the
relation between them and for that reason the book has attempted a relatively
dispassionate assessment.

This appendix is, by contrast, a more personal statement. Whatever the
approach to formal inference, formalization of the research question as being
concerned with aspects of a specified kind of probability model is clearly of
critical importance. It translates a subject-matter question into a formal statist-
ical question and that translation must be reasonably faithful and, as far as is
feasible, the consistency of the model with the data must be checked. How this
translation from subject-matter problem to statistical model is done is often the
most critical part of an analysis. Furthermore, all formal representations of the
process of analysis and its justification are at best idealized models of an often
complex chain of argument.

Frequentist analyses are based on a simple and powerful unifying principle.
The implications of data are examined using measuring techniques such as
confidence limits and significance tests calibrated, as are other measuring instru-
ments, indirectly by the hypothetical consequences of their repeated use. In
particular, they use the notion that consistency in a certain respect of the data
with a specified value of the parameter of interest can be assessed via a p-value.
This leads, in particular, to use of sets of confidence intervals, often conveni-
ently expressed in pivotal form, constituting all parameter values consistent with
the data at specified levels. In some contexts the emphasis is rather on those
possible explanations that can reasonably be regarded as refuted by the data.

The well-known definition of a statistician as someone whose aim in life
is to be wrong in exactly 5 per cent of everything they do misses its target.

197
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The objective is to recognize explicitly the possibility of error and to use that
recognition to calibrate significance tests and confidence intervals as an aid
to interpretation. This is to provide a link with the real underlying system, as
represented by the probabilistic model of the data-generating process. This is
the role of such methods in analysis and as an aid to interpretation. The more
formalized use of such methods, using preset levels of significance, is also
important, for example in connection with the operation of regulatory agencies.

In principle, the information in the data is split into two parts, one to assess the
unknown parameters of interest and the other for model criticism. Difficulties
with the approach are partly technical in evaluating p-values in complicated
systems and also lie in ensuring that the hypothetical long run used in calibra-
tion is relevant to the specific data under analysis, often taking due account of
how the data were obtained. The choice of the appropriate set of hypothetical
repetitions is in principle fundamental, although in practice much less often a
focus of immediate concern. The approach explicitly recognizes that drawing
conclusions is error-prone. Combination with qualitative aspects and external
knowledge is left to a qualitative synthesis. The approach has many advantages,
not least in its ability, for example especially in the formulation of Neyman and
Pearson, to provide a basis for assessing methods of analysis put forward on
informal grounds and for comparing alternative proposals for data collection
and analysis. Further, it seems clear that any proposed method of analysis that
in repeated application would mostly give misleading answers is fatally flawed.

Some versions of the Bayesian approach address the same issues of inter-
pretation by a direct use of probability as an impersonal measure of uncertainty,
largely ignoring other sources of information by the use of priors that are in
some sense standardized or serving as reference points. While there is inter-
esting work on how such reference priors may be chosen, it is hard to see a
conceptual justification for them other than that, at least in low-dimensional
problems, they lead, at least approximately, to procedures with acceptable fre-
quentist properties. In particular, relatively flat priors should be used as such
with caution, if at all, and regarded primarily as a possible route to reason-
able confidence limits. Flat priors in multidimensional parameters may lead to
absurd answers. From this general perspective one view of Bayesian proced-
ures is that, formulated carefully, they may provide a convenient algorithm for
producing procedures that may have very good frequentist properties.

A conceptually entirely different Bayesian approach tackles the more ambi-
tious task of including sources of information additional to the data by doing
this not qualitatively but rather quantitatively by a specially chosen prior distri-
bution. This is, of course, sometimes appealing. In particular, the interpretation
of data often involves serious sources of uncertainty, such as systematic errors,
other than those directly represented in the statistical model used to represent
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the data-generating process, as well as uncertainties about the model itself. In a
more positive spirit, there may be sources of information additional to the data
under analysis which it would be constructive to include. The central notion,
used especially in the task of embracing all sorts of uncertainty, is that prob-
ability assessments should be coherent, i.e., internally consistent. This leads
to the uncertainty attached to any unsure event or proposition being measured
by a single real number, obeying the laws of probability theory. Any such use
of probability as representing a notion of degree of belief is always heavily
conditional on specification of the problem.

Major difficulties with this are first that any particular numerical probability,
say 1/2, is given exactly the same meaning whether it is Your current assessment
based on virtually no information or it is solidly based on data and theory.
This confusion is unacceptable for many interpretative purposes. It raises the
rhetorical question: is it really sensible to suppose that uncertainty in all its
aspects can always be captured in a single real number?

Next, the issue of temporal coherency discussed in Section 5.10 is often
largely ignored; obtaining the data, or preliminary analysis, may entirely prop-
erly lead to reassessment of the prior information, undermining many of the
conclusions emanating from a direct application of Bayes’ theorem. Direct
uses of Bayes’ theorem are in effect the combination of different sources of
information without checking for mutual consistency. Issues of model criti-
cism, especially a search for ill-specified departures from the initial model, are
somewhat less easily addressed within the Bayesian formulation.

Finally, perhaps more controversially, the underlying definition of probability
in terms of Your hypothetical behaviour in uncertain situations, subject only to
internal consistency, is in conflict with the primacy of considering evidence from
the real world. That is, although internal consistency is desirable, to regard it
as overwhelmingly predominant is in principle to accept a situation of always
being self-consistently wrong as preferable to some inconsistent procedure that
is sometimes, or even quite often, right.

This is not a rejection of the personalistic Bayesian approach as such; that
may, subject to suitable sensitivity analysis, sometimes provide a fruitful way of
injecting further information into an analysis or using data in a more speculative
way, especially, but, not only, as a basis for personal decision-making. Rather it
is an emphatic rejection of the notion that the axioms of personalistic probability
are so compelling that methods not explicitly or implicitly using that approach
are to be rejected. Some assurance of being somewhere near the truth takes
precedence over internal consistency.

One possible role for a prior is the inclusion of expert opinion. This opinion
may essentially amount to a large number of empirical data informally analysed.
There are many situations where it would be unwise to ignore such information,
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although there may be some danger of confusing well-based information with
the settling of issues by appeal to authority; also empirical experience may
suggest that expert opinion that is not reasonably firmly evidence-based may
be forcibly expressed but is in fact fragile. The frequentist approach does not
ignore such evidence but separates it from the immediate analysis of the specific
data under consideration.

The above remarks address the use of statistical methods for the analysis and
interpretation of data and for the summarization of evidence for future use. For
automatized decision-making or for the systemization of private opinion, the
position is rather different. Subject to checks of the quality of the evidence-
base, use of a prior distribution for relevant features may well be the best route
for ensuring that valuable information is used in a decision procedure. If that
information is a statistical frequency the Bayesian procedure is uncontroversial,
subject to the mutual consistency of the information involved. It is significant
that the major theoretical accounts of personalistic probability all emphasize
its connection with decision-making. An assessment of the evidence-base for
the prior remains important.

A further type of application often called Bayesian involves risk assessment,
usually the calculation of the probability of an unlikely event arising from a
concatenation of circumstances, themselves with poorly evaluated probabilit-
ies. Such calculations can certainly be valuable, for example in isolating critical
pathways to disaster. They are probably usually best regarded as frequentist
probability calculations using poorly known elements and as such demand care-
ful examination of dependence both on the values of marginal probabilities and
on the strong, if not always explicit, independence assumptions that often under-
lie such risk assessments. There are standard techniques of experimental design
to help with the sensitivity analyses that are desirable in such work.

The whole of this appendix, and indeed the whole book, is concerned with
statistical inference. The object is to provide ideas and methods for the critical
analysis and, as far as feasible, the interpretation of empirical data arising from
a single experimental or observational study or from a collection of broadly
similar studies bearing on a common target. The extremely challenging issues
of scientific inference may be regarded as those of synthesising very different
kinds of conclusions if possible into a coherent whole or theory and of placing
specific analyses and conclusions within that framework. This process is surely
subject to uncertainties beyond those of the component pieces of information
and, like statistical inference, has the features of demanding stringent evaluation
of the consistency of information with proposed explanations. The use, if any,
in this process of simple quantitative notions of probability and their numerical
assessment is unclear and certainly outside the scope of the present discussion.
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observed preferred to expected, 132

information matrix
expected, 107, 165
partitioning of, 109, 110
singular, 139
transformation of, 108

informative nonresponse, 140, 159
innovation, 13
interval estimate, see confidence interval,

posterior distribution
intrinsic accuracy, 98
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invariance, 6, 117
inverse gamma distribution as prior,

60, 62
inverse Gaussian distribution, 90
inverse probability, see Bayesian

inference
irregular likelihoods, 159

Jeffreys prior, 99
Jensen’s inequality, 100

Kullback–Leibler divergence, 141

Lagrange multiplier, 122, 131
Laplace expansion, 115, 127, 129, 168
Laplace transform, see moment

generating function
Least squares, 10, 15, 44, 55, 95, 110, 157
Likelihood, 17, 24, 27

conditional, 149, 160
conditions for anomalous form, 134
exceptional interpretation of, 58
higher derivatives of, 120
irregular, 135
law of, 28
local maxima of, 101
marginal, 149, 160
multimodal, 133, 135
multiple maxima, 101
partial, 150, 159
profile, 111, 112
sequential stopping for, 88
unbounded, 134
see also modified likelihood

likelihood principle, 47, 62
likelihood ratio, 91

signed, 104
sufficient statistic as, 91

likelihood ratio test
nonnested problems for, 115
see also fundamental lemma, profile

log likelihood
linear covariance structure, 122, 132
linear logistic model, 171
linear model, 4, 19, 20, 55, 145, 148
linear regression, 4
linear sufficiency, 157
location parameter, 5, 48, 57, 73, 98, 129
log normal distribution, 74
logistic regression, 140

Mantel–Haenszel procedure, 54, 63
Markov dependence graph, 123
Markov Property, 12, 119, 152
Markov chain Monte Carlo (MCMC),

128, 132
martingale, 159
matched pairs, 145, 146, 185

nonnormal, 146
maximum likelihood estimate

asymptotic normality of, 102, 108
definition of, 100
exponential family, 22
Laplace density for, 137
properties of, 102

mean parameter, see exponential family
metric, 29
missing completely at random, 140
missing information, 127
mixture of distributions, 144
model

base of inference, 178
choice of, 114, 117
covering, 121
failure of, 141, 142
nature of, 185
primary and secondary features of, 2
saturated, 120
separate families of, 114
uncertainty, 84

model criticism, 3, 7, 37, 58, 90
Poisson model for, 33
sufficient statistic used for, 19, 33

modified likelihood, 144, 158, 159
directly realizable, 149
factorization based on, 149
marginal, 75
need for, 144
partial, 159
pseudo, 152
requirements for, 147, 148

moment generating function, 15, 21
multinomial distribution, 33, 53, 63
multiple testing, 86, 88, 94
multivariate analysis, normal theory, 6,

29, 92

Nelder–Mead algorithm, 126, 132
Newton–Raphson iteration, 126
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Neyman factorization theorem, see
sufficient statistic

Neyman–Pearson theory, 25, 29, 33, 36,
43, 63, 68, 163, 176

asymptotic theory in, 106
classification problem for, 92
fundamental lemma in, 92
optimality in, 68
suboptimality of, 69

non central chi-squared, paradox with, 74
non-likelihood-based methods, 175

see also nonparametric test
non-Markov model, 144
nonlinear regression, 4, 10, 16, 22, 139
nonparametric model, 2
nonparametric test, 37
normal means, 3, 11, 32, 46, 56, 59, 165

Bayesian analysis for, 9, 60, 73, 80
consistency of data and prior for, 85
information for, 98
integer parameter space for, 143
ratio of, 40

notorious example, 63, 68
related to regression analysis, 69

nuisance parameter, see parameters
null hypothesis, 30

see significance test
numerical analysis, 125, 132

objectives of inference, 7
observed information, see information
odds ratio, 5
one-sided test,
optional stopping, see sequential stopping
orbit, 58
order of magnitude notation, 95, 131
order statistics, 20, 40

nonparametric sufficiency of, 38
orthogonal projection, 157
orthogonality of parameters

balanced designs, in, 112

p-value, see significance test
parameter space

dimensionality of, 144
nonstandard, 142, 144
variation independence, 2

parameters
criteria for, 13, 14, 112
nuisance, 2

of interest, 2
orthogonality of, 112, 114
superabbundance of, 145–147
transformation of, 98, 99, 102, 108,

131
vector of interest, 27

parametric model, 2
see also nonparametric model,

semiparametric model
partial likelihood, 150, 152
periodogram, 187, 189
permutation test, 38, 138
personalistic probability, 79, 81

upper and lower limits for, 93
Pitman efficiency, see asymptotic relative

efficiency
personalistic probability, see Bayesian

inference
pivot, 25, 27, 29, 175

asymptotic theory, role in, 109
irregular problems, for, 136
sampling theory, in, 181

plug-in estimate for prediction, 161
plug-in formula, 161, 162
point estimation, 15, 165–169
Poisson distribution, 32, 34, 55, 63, 99,

147
multiplicative model for, 54, 63
overdispersion in, 158

Poisson process, 90
observed with noise, 41, 124

posterior distribution, 5, 9
power law contact, 136
prediction, 84, 161, 175
predictive distribution, 161
predictive likelihood, 175
primary feature, see model
prior closed under sampling, see

conjugate prior
prior distribution, 9

consistency with data of, 77, 85
flat, 73
improper, 46
matching, 129, 130
normal variance, for, 59
reference, 76, 77, 83, 94
retrospective, 88
see also Bayesian inference

probability
axioms of, 65
interpretations of, 7, 65, 70
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probability (contd)
personalistic, 71, 72
range of applicability of, 66

profile log likelihood, 111, 119
projection, 10
proportional hazards model, 151
protocol, see significance test
pseudo-score, 152
pseudo-likelihood, 152, 160

binary sequence for, 153
case-control study for, 154
pitfall with, 154
time series for, 153

pure birth process, see binary fission

quadratic statistics, 109
quasi likelihood, 157, 158, 160
quasi-Newton method, 126
quasi-score, 158

random effects, 146
see also component of variance

random sampling without replacement,
55, 179, 180

random walk, 119
randomization, motivation of, 192
randomization test, 188, 189, 191
randomized block design, 185
rank tests, 39
Rao–Blackwellization, 176
ratio estimate in sampling theory, 182,

184
Rayleigh distribution, 22
recognizable subset, 71, 93
rectangular distribution, see uniform

distribution
reference prior, see prior distribution
region of Neyman structure, 63
regression, 16
regulatory agency, 70
rejection of null hypotheses, see

Neyman–Pearson theory
residual sum of squares, 10, 19, 145, 172
Riemannian geometry, 131

saddle-point, 133, 159
expansion, 132

sample size, data-dependent choice of, 89
sampling theory, 179–184, 192

sandwich formula, 142, 153
scale and location problem, 6, 56, 58

reference prior for, 77
scale problem, 6
score, 97
score test, 104
secondary feature, see model
selection effects in testing, 78
selective reporting, 86, 87
self-denial, need for, 81
semi-asymptotic, 124
semiparametric model, 2, 4, 26, 151, 160
sensitivity analysis, 66, 82, 175
separate families, 142, 159

likelihood ratio for, 142
sequential stopping, 88, 90, 94
Shannon information, 94
Sheppard’s formula, 154
sign test, 166

asymptotic efficiency of, 167
significance test, 30

choice of test statistic, 36, 37
confidence intervals related to, 31
discrete cases, 34, 43
interpretation of, 41, 42
linear model for, 49
nonparametric, 40, 44
one-sided, 35, 36
protocol for use of, 86
severity, 44
simple, 31, 32
strong null hypothesis, 186
two-sided, 35, 36
types of null hypothesis, 30, 31

simulation, 3, 127, 132, 159, 174, 175
singular information matrix, 139, 141
smoothing, 4
spatial process, 12, 16
standard deviation, unbiased estimation

of, 167
Stein’s paradox, 74
strong Law of Large Numbers, essential

irrelevance of, 29
Student t distribution, 8, 26, 59, 61, 169,

190
sufficient statistic, 18, 20, 28

ancillary part, 48
Bayesian inference, role in, 18
complete, 50
factorization theorem for, 18
minimal form of, 18
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motivation for, 18
Neyman–Pearson theory, related to, 68
use of, 24

superpopulation model, 181
support of distribution, definition of, 14
survival data, 39, 113, 149, 159
survival function, 113, 151
symmetry, nonparametric test of, 38
systematic errors, 66, 94

see also bias

tangent plane, 12, 158
temporal coherency, see coherency
time series, 12, 138, 159
transformation model, 57, 59, 63
transformation of parameter, see

parameters
transparency of analysis, 172
two measuring instruments, random

choice of, see notorious example
two-by-two contingency table

exponential family based analysis of,
51, 54

generating models for, 51, 63, 190
Poisson distribution, relation to, 52
randomization test for, 190, 191

two-sample nonparametric test, 39

unbiased estimate, 15, 163, 169
construction of, 167–169
correlation between different

estimates, 165
exceptional justification of, 164
exponential family, in, 165

unbiased estimating equation, 163
modified likelihood, for, 147

uniform distribution, 20, 47, 135
unique event

probability of, 70
up and down method, 94
utility, 162

validity of modified likelihood
estimates, 148

variance ratio used for model criticism,
36

variation independence, 49

weak law of large numbers, 27, 29, 79
Weibull distribution, 113

displaced, 137

You, definition of, 71




