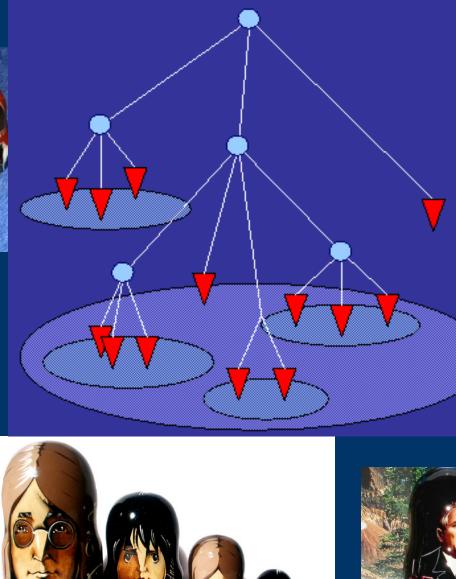
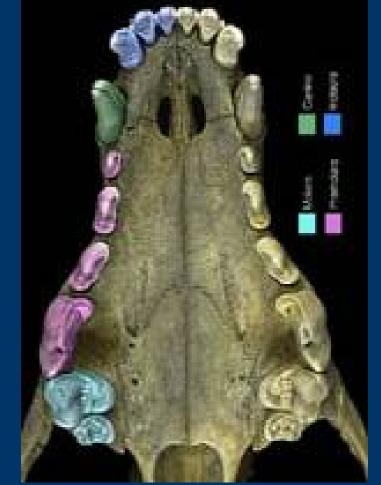
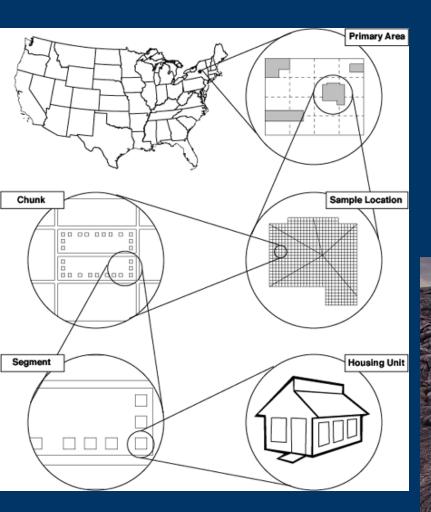
Multilevel modelling of fish abundance in streams

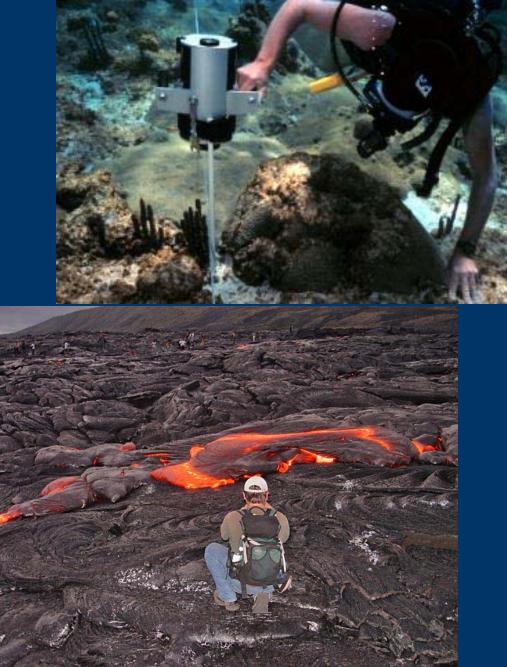

Marco A. Rodríguez Université du Québec à Trois-Rivières

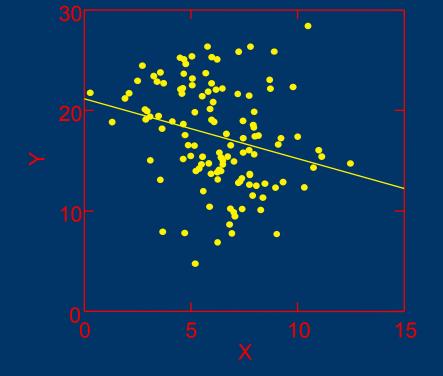
Hierarchies and nestedness are common in nature



Biological data often have clustered or nested structure, in which observations are made on units grouped at different hierarchical levels

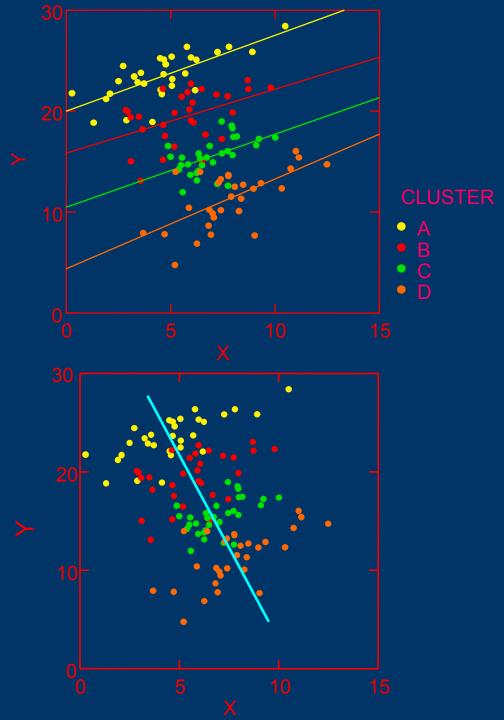

Nestedness in biological data arises both from natural structure...





e.g., teeth, or genes, nested within individuals

...and for methodological reasons (e.g. cluster sampling driven by logistical constraints)



Clustering in the context of bivariate regression:

- Units within a cluster tend to be alike
- Observations are not completely independent

<u>Hierarchical linear (HL) models</u> explicitly account for intragroup correlations and allow for modelling of variation at lower levels as a function of higher-level effects

- Random coefficient model
- Variance component model
- Multilevel regression model

Linear mixed-effects model (Laird and Ware 1982):

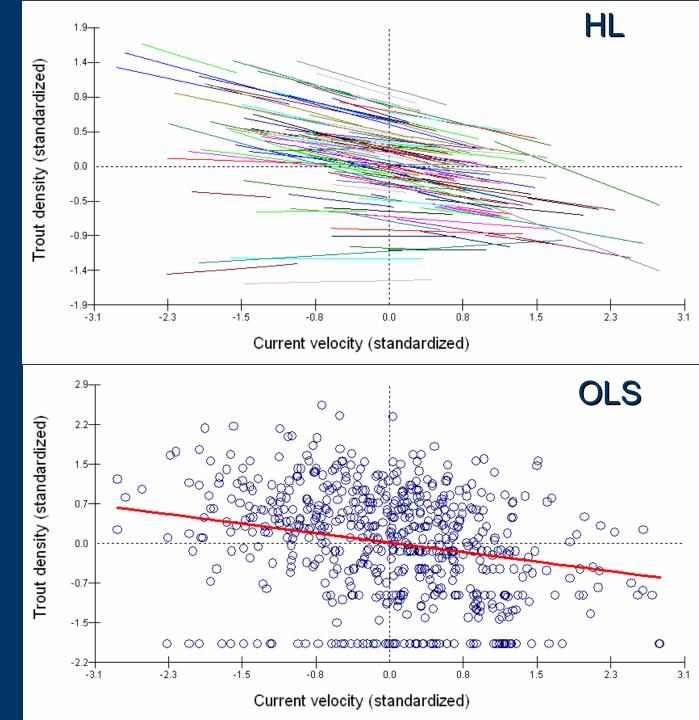
$$\mathbf{y}_i = \mathbf{X}_i \mathbf{\beta} + \mathbf{Z}_i \mathbf{b}_i + \boldsymbol{\varepsilon}_i, \quad i = 1, \dots, M$$

 $\boldsymbol{b}_{i} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma}), \quad \boldsymbol{\varepsilon}_{i} \sim N(\boldsymbol{0}, \, \sigma^{2} \boldsymbol{I})$

• Basic two-level HL model with a single level-1 predictor: $Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + \epsilon_{ij}$, i: sample index, j: group index

Level-1 coefficients (β s) can be directly related to level-2 predictors (Z_i):

$$\begin{split} \beta_{0j} &= \alpha_{00} + \alpha_{01}Z_{j} + u_{0j} \\ \beta_{1j} &= \alpha_{10} + \alpha_{11}Z_{j} + u_{1j} \\ Y_{ij} &= \alpha_{00} + \alpha_{10}X_{ij} + \alpha_{01}Z_{j} + \alpha_{11}X_{ij}Z_{j} + u_{1j}X_{ij} + u_{0j} + e_{ij} \\ u_{j} &\sim N(\mathbf{0}, \mathbf{\Omega}_{u}), \ e_{ij} \sim N(\mathbf{0}, \mathbf{\Omega}_{e}) \end{split}$$


 A key difference between HL and ordinary least squares (OLS) regression lies in the random parts: u_{1i}X_{ii} + u_{0i}

Hierarchical linear model:

- Units within groups can be dependent
- Groups are considered as randomly sampled from a larger population of groups
- Parameters that vary across groups are composed of fixed and random portions
- Ordinary least squares regression:
 - All units are considered independent regardless of group affiliation
 - Parameters are fixed and do not vary across groups

- Group-specific intercept and slope
- Empirical Bayes shrinkage estimators ("borrowing-ofstrength")

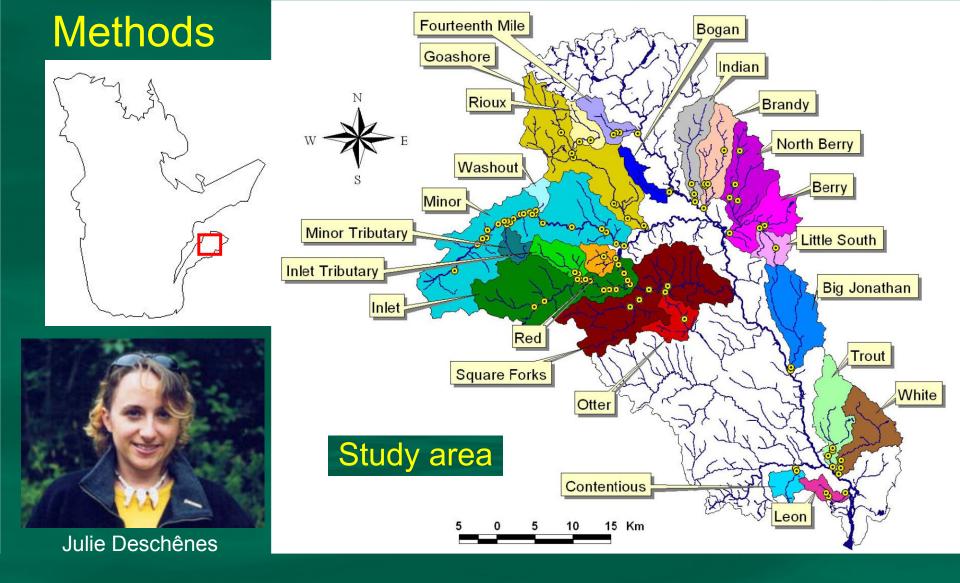
- Common intercept
- Common slope

Submodels of the general multilevel (HL) model

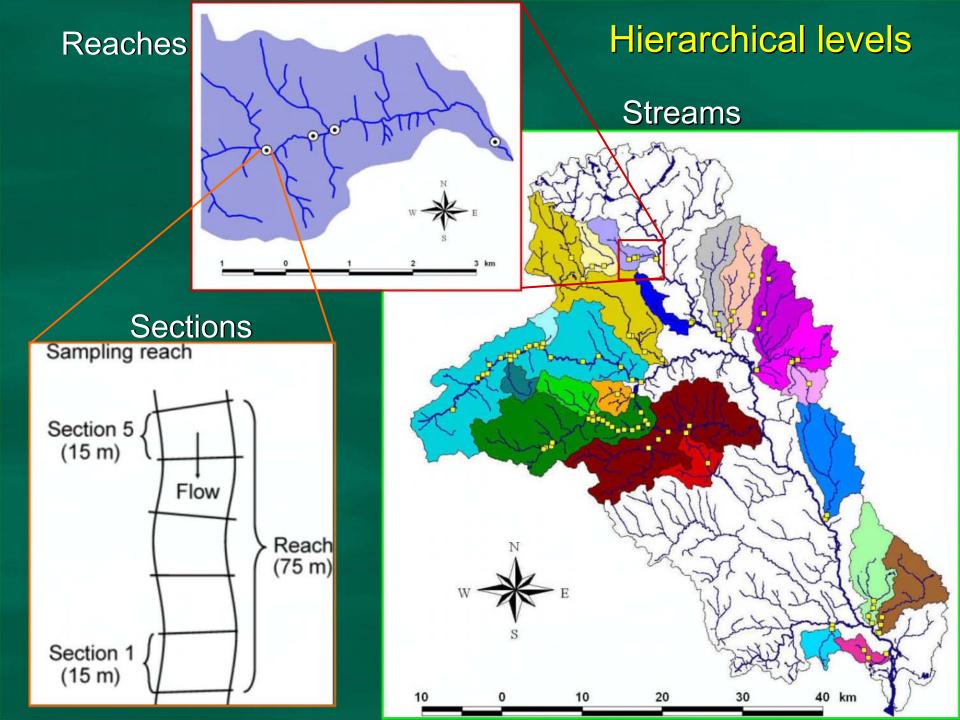
Model	Parameter noise	Level-1 predictors	Level-2 predictors
General multilevel	Yes	Yes	Yes
Random coefficients	Yes	Yes	No
Means(slopes)-as-outcomes	Yes	No	Yes
Random effects ANOVA	Yes	No	No
Interactions	No	Yes	Yes

modified from Steenbergen and Jones (2002)

Case study examining the relationship between population density of brook trout and habitat features nested at different hierarchical levels in a drainage basin

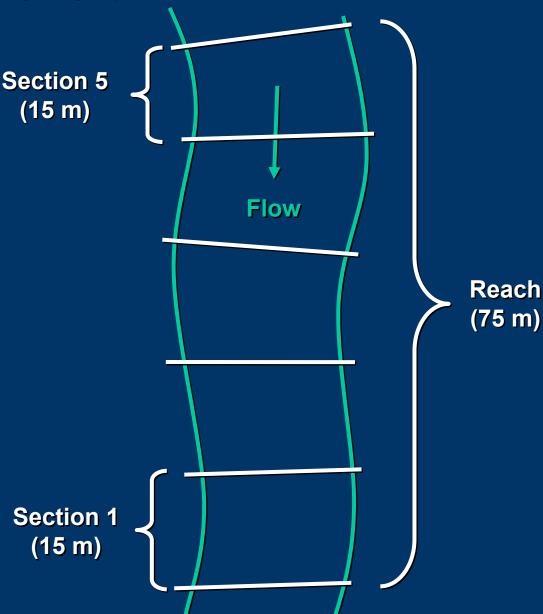

Objectives

Questions about units at different levels


- How does brook trout density vary with local habitat (level-1) characteristics such as current velocity?
- How does brook trout density vary with larger-scale reach (level-2) characteristics such as basin area?

Examination of cross-level interactions

 Contextual effects, e.g., does the relationship between brook trout density and current velocity (level 1) depend on basin area (level 2)?


 600 sections distributed among 120 reaches and 31 tributary streams of the Cascapedia River, Québec, Canada

Sampling and measurement

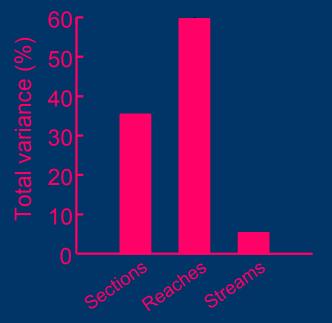
At each section:

- Brook trout density
 Electrofishing
- Predictor variables
 - 25 environmental features
 - 11 local habitat
 - 11 landscape
 - 3 accessibility

Environmental predictors

Variable name	Hierarchical level	Spatial extent
Mean depth (cm)	Section	Local habitat
Mean current velocity (cm·s ⁻¹)	Section	Local habitat
Mean substratum size	Section	Local habitat
Plant abundance index	Section	Local habitat
Cover index	Section	Local habitat
Canopy opening (°)	Section	Local habitat
Large woody debris	Section	Local habitat
Number of pools	Section	Local habitat
Stream slope (°)	Reach	Local habitat
Mean wetted width (m)	Reach	Local habitat
Temperature (°C)	Reach	Local habitat
Terrace width (m)	Reach	Landscape
Height at flood (m)	Reach	Landscape
Width at flood (m)	Reach	Landscape
Entrenchment (%)	Reach	Landscape
Altitude (m)	Reach	Landscape
Sub-basin area (km²)	Reach	Landscape
Total road density (km·km ⁻²)	Reach	Landscape
Logging 0-4 years old (%)	Reach	Landscape
Logging 0-9 years old (%)	Reach	Landscape
Logging 0-14 years old (%)	Reach	Landscape
Logging 0-19 years old (%)	Reach	Landscape
Distance to mainstem	Reach	Accessibility
Accessibility index	Reach	Accessibility
Distance to mainstem mouth	Stream	Accessibility

HL model (multilevel regression) comprising three levels:


- 1. Sections (i)
- 2. Reaches (j)
- 3. Streams (k)
- Autocorrelated errors (AR1) for residuals at level 1 to account for spatial proximity (dependence) of sections
- Estimation by full ML (IGLS) because interest focused on fixed effects
- Deviance tests for selection of environmental predictors
- Ordinary least squares multiple regression using the same predictors as the hierarchical linear model

Results

 Initial step: decomposition of the total variance by use of an intercept-only (variance components) model

$$Y_{ijk} = \beta_0 + u_{0jk} + v_{0k} + e_{ijk}$$

 β_0 = overall mean of Y e_{ijk} = variance of Y at section level: 35.3% u_{0jk} = variance of Y at reach level: 59.5% v_{0k} = variance of Y at stream level: 5.2%

- Trout density did not vary significantly at the highest level, across streams
 - The model was therefore simplified to two levels:
 - sections (level 1) within reaches (level 2)

HL model

trout density_{ij} ~ N(XB, Ω) trout density_{ij} = β_{0ij} + β_{1j} current velocity_{ij} + β_2 woody debris_{ij} + β_3 cover_{ij} + β_4 sub-basin area_j + β_5 height at flood_j + β_6 current.sub-basin_{ij}

$$\beta_{0ij} = \beta_0 + u_{0j} + e_{0ij}$$

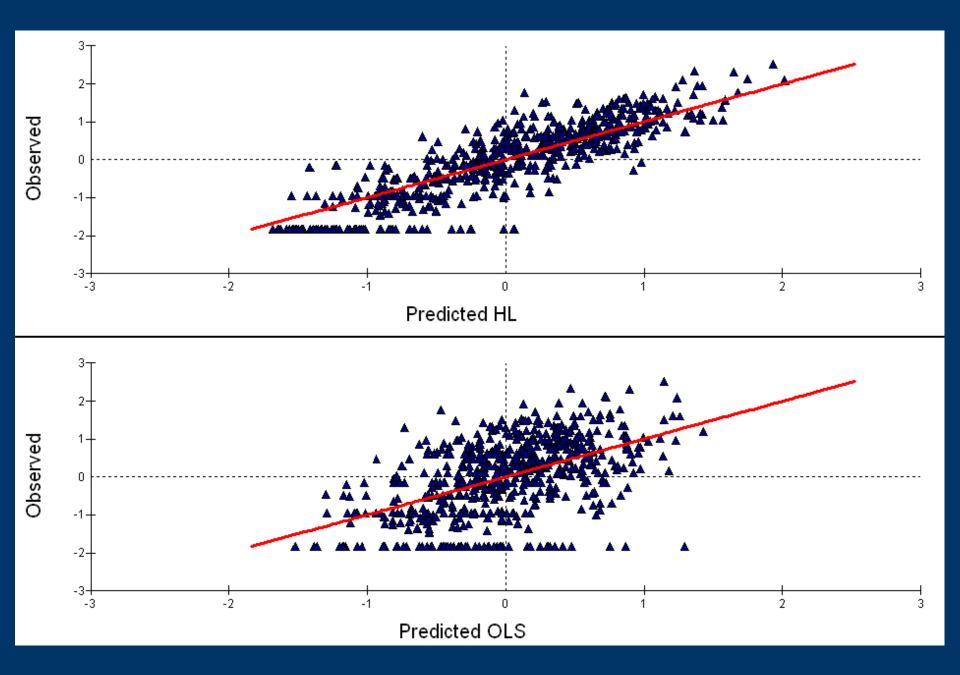
$$\beta_{1j} = \beta_1 + u_{1j}$$

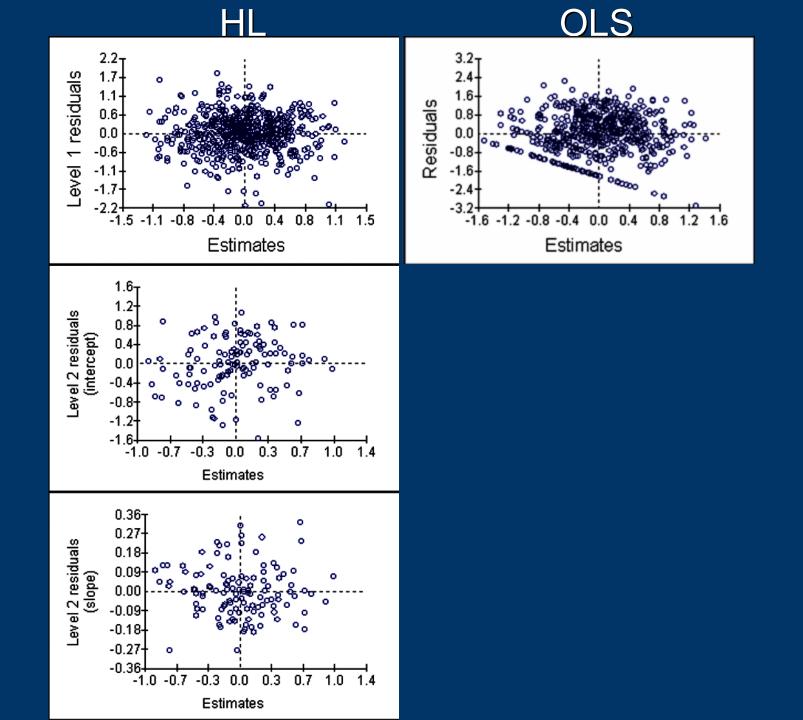
$$\begin{bmatrix} u_{0j} \\ u_{1j} \end{bmatrix} \sim N(0, \ \Omega_u) : \ \Omega_u = \begin{bmatrix} \sigma_{u0}^2 \\ \sigma_{u10} & \sigma_{u1}^2 \end{bmatrix}$$

$$\begin{bmatrix} e_{0ij} \end{bmatrix} \sim N(0, \ \Omega_e) : \ \Omega_e = \begin{bmatrix} \sigma_{e0}^2 \end{bmatrix}$$

OLS model

trout density_{ij} ~ N(XB, Ω)


trout density_{ij} = β_{0i} + β_1 current velocity_{ij} + β_2 woody debris_{ij} + β_3 cover_{ij} + β_4 sub-basin area_j + β_5 height at flood_j + β_6 current.sub-basin_{ij}


$$\beta_{0i} = \beta_0 + e_{0ij}$$
$$\begin{bmatrix} e_{0ij} \end{bmatrix} \sim \mathbf{N}(0, \ \Omega_e) : \ \Omega_e = \begin{bmatrix} \mathbf{\sigma}_{e0}^2 \end{bmatrix}$$

HL model

trout density_{ii} ~ N(XB, Ω) trout density_{ij} = β_{0ij} + β_{1j} current velocity_{ij} + 0.155(0.034) woody debris_{ij} + 0.109(0.042) cover_{ij} + -0.212(0.064) sub-basin area, +-0.210(0.070) height at flood, +-0.095(0.042) current. sub-basin_{ii} $\beta_{0ij} = 0.014(0.064) + u_{0j} + e_{0ij}$ $\beta_{1i} = -0.224(0.043) + u_{1i}$ $\begin{bmatrix} u_{0j} \\ u_{1j} \end{bmatrix} \sim N(0, \ \Omega_u) : \ \Omega_u = \begin{bmatrix} 0.372(0.068) \\ -0.053(0.028) & 0.045(0.025) \end{bmatrix}$ $\begin{bmatrix} e_{0ii} \end{bmatrix} \sim N(0, \Omega_e) : \Omega_e = \begin{bmatrix} 0.334(0.048) \end{bmatrix}$ OLS model trout density_{ii} ~ N(XB, Ω) trout density_{ij} = β_{0i} + -0.308(0.036)current velocity_{ij} + 0.224(0.036)woody debris_{ij} + 0.133(0.036) cover_{ii} + -0.189(0.037) sub-basin area_i + -0.179(0.040) height at flood_i + -0.137(0.036) current. sub-basin_{ij} $\beta_{0i} = 0.015(0.035) + e_{0ii}$

$$\begin{bmatrix} e_{0ij} \end{bmatrix} \sim N(0, \Omega_e) : \Omega_e = \begin{bmatrix} 0.736(0.042) \end{bmatrix}$$

Effect of Current x Basin interaction on brook trout density

HL

OLS

- Decomposition of variation showed that brook trout density
 - varied more across reaches than across sections within reaches
 - did not vary significantly across streams

 Brook trout density was related to both section- and reachlevel features

- One significant cross-level interaction in the HL model:
 - The influence of current velocity on brook trout density depended on basin size (a contextual effect)
 - In larger basins, density declined with increasing current velocity
 - In smaller basins, density varied little with current velocity
- In contrast, the OLS model indicated that brook trout density declined with current velocity in larger basins but increased with current velocity in smaller basins

Ignoring the hierarchical structure of data may result in erroneous statistical and ecological conclusions

Acknowledgments

Fonds de recherche sur la nature et les technologies Québec 💀

CENTRE INTERUNIVERSITAIRE DE RECHERCHE SUR LE SAUMON ATLANTIQUE

Société Cascapédia, inc.

Julie Deschênes Katrine Turgeon Véronique Bérard Karen Brassard Claudia Cossette Marie-Josée Gagnon Catherine Sauvé Émilie Racicot