Fill Cells with aRT

Pedro R. Andrade
April 4, 2011

Contents

(I_Introduction| 1
[2 Creating layers of cells| 2
[3 Fillling cell attributes| 4
[4 Other operations| 8

1 Introduction

Fill cell functions calculate attribute values for tables associated with layers of
cells. The goal is to homogenize information from different sources in different
formats (vector data, rasters as well as other cellular layers), aggregating them
into a single spatial (and possibly temporal) data source. Different operators
are available according to the geometrical representation and semantics of the
input data.

In the current Terralib version, cells are rectangular. They may have a
resolution of, for instance 1m x 1m, 500m x 500m, 100km x 200km, according
to the application needs. A single cellular layer may be associated to different
tables, which can be static (attributes that do not change over time) or dynamic
(attributes that change over time).

To execute the steps in this tutorial, some spatial data is required:

> require(aRT)
con=openConn (name="default")

v

db=openDb(con, "rondonia")

lcenso = openLayer(db, "censo")
tcenso = openTheme (db, "censo")
tcenso

vV V. VvV

Object of class aRTtheme

Theme: "censo"

Layer: "censo"

View: "censo"

Number of polygons: 68
Table: "censo"

Attributes:

> lroads
> troads
> troads

"MSLINK", "AREA_1", "PERIMETRO_", "CODIGO",
"NOMEMUNI", "RENDIMENTO", "NUMERO_PES",
"RENDAPCAPI", "DENS_POP"

= openLayer(db, "roads")
openTheme (db, "roads")

Object of class aRTtheme

Theme: "roads"
Layer: "roads"
View: "roads"
Number of lines: 22
Table: "roads"

Attributes:

> lpoints
> tpoints =
> tpoints

"SPRPERIMET", "SPRCLASSE", "OBJET_ID_b5",
"object_id_2"

openLayer(db, "urban")
openTheme (db, "urban")

Object of class aRTtheme

Theme: "urban"
Layer: "urban"
View: "urban"
Number of points: 9
Table: "urban"

Attributes:

"SPRROTULQ", "SPRNOME", "MSLINK", "MAPID",
"CODIGO", "AREA_1", "PERIMETRO_", "GEOCODIGO",
"NOME", "SEDE", "LATITUDESE", "LONGITUDES",
"AREA_TOT_G", "OBJET_ID_2", "object_id_3"

2 Creating layers of cells

A layer of cells is created from another database layer. There are two strategies
to create cells, depending on the type of spatial data of reference. The default
way of creating cells is from layers of polygons. The code below creates the cells
shown in Figure

Figure 1: Points, lines, and polygons used in this vignette.

> lcells = createlayer(lcenso, "cells", rx=4000)
> lcells

Object of class aRTlayer

Layer: "cells"
Database: "rondonia"
Number of cells: 824
Projection Name: "NoProjection"
Projection Datum: "Spherical"
Tables:

"cells": static

The default options create squared cells from the polygons. Bounding boxes
of the whole set of polygonal geometries can also be used to create the layer
of cells, using the argument all. In the next example, we create a layer of
non-squared cells by informing different resolutions for x and y:

> Icells2 = createlayer(lcenso, "cellsbox", rx=10000, ry=5000, all=TRUE)

Figure 2: Cells covering the layer of polygons.

Cells created this way cover the entire area of bounding box covering the
reference layer, similarly to a raster with a constant number of cells in each row
and column. The result is shown in Figure |3} In both cases, a static table with
the same name of the layer of cells is created automatically.

3 Fillling cell attributes

Cell attributes are created directly from the table of the layer of cells. The first
step to fill cell attributes is to open the table:

> tcells = openTable(lcells, "cells")
> tcells

Object of class aRTtable

Table: "cells"
Type: static
Layer: "cells"

Figure 3: A layer of non-squared cells covering the bounding box of the polygons.

Rows: 824

Attributes:
object_id0: character[48] (key)
Col: integer
Lin: integer

To create attributes using Terraliib functionalities, we use createAndFill-
Column (). This function may take different arguments depending on the strat-
egy used to fill the cells. The first argument is the table where the result will
be stored, the second is the name of the attribute to be created, the third is
the theme with the data used to compute the attribute, and the other depend
on the operation. For example, if one wants to create an attribute based on the
minimum distance from the centroid of the cells to a set of points, we can use
strategy “distance”.

> # repare aqui que, caso o tema possua apenas pontos, nao eh necessario usar o argumento 'g
> createAndFillColumn(tcells, newatt="dpoints", target=tpoints, geometry="point", strategy='

Operations such as distance may be used with any geometric type as param-
eter. However, some operations can be used with only one geometric type. For

example, the length of lines covering each cell can be created by calling:
> createAndFillColumn(tcells, "length_roads", target=troads, strategy="length")

The results of these two operations are shown in Figure

Figure 4: Results of ‘distance’ and ‘length’ operations.

Some strategies use not only geometries but also attributes related to those
geometries. To create an attribute that computes the maximum value of a given
geometry that has some overlap with the cells just call:

> createAndFillColumn(tcells, "maxrenda'", tcenso, att="RENDIMENTO", strat="maximum")

Table [1} in the end of this vignette, describes each operation available for
filling cells directly from createAndFillColumn(). Most of the strategies are
intuitive, but two deserve more attention, “sumwba” and “averagewba,” which
mean “sum weighted by area” and “average weighted by area,” respectively. The
first spreads a given attribute of a set of polygons through the cells. This
operation can be used for population data, because it keeps the overall sum of
the data in both sets. The second operation if useful to work with attributes
representing averages. The algorithm spreads averages of a set of polygons to

the cells, recomputing each average proportionally to the intersection area. The
results of these operations are shown in Figure

> createAndFillColumn(tcells, "pessoas", tcenso, att="NUMERO_PES", strat="sumwba")
> createAndFillColumn(tcells, "rendacap", tcenso, att="RENDAPCAPI", strat="averagewba")

Figure 5: Results of the operations “sumwba” (left) and “averagewba” (right).

Finally, to visualize the data it is necessary to create a theme using the table
that contains the attributes created.

> theme = createTheme(lcells, "mytheme")
> theme

Object of class aRTtheme

Theme: "mytheme"
Layer: "cells"

View: "mytheme"
Number of cells: 824
Table: "cells"

Attributes: "object_idO", "Col", "Lin", "dpoints", "length_roads",
"maxrenda", "pessoas", "rendacap"

cells = getData(theme)

#polygons = getData(tcenso)

#for(i in 1:length(d@polygons))

d@polygons[[i]]@labpt = c(0,0)

#for(i in 1:dim(d@data) [2]) # normalizing the attributes
#{

mmax = max(d@datal[,i])

d@datal,i] = d@datal,i]/mmax

#}

VVVVVVVVVVYVYV

The figures plotted in this vignette use plotColoured(), described and used
as follows:

plotColoured = function(spatialdata, attribute, slices, colors)

{
df = spatialdata@data

vcolors=rep(colors[1], dim(df)[1])

>

+

+

+

+

+

+ for(i in 1:length(slices))

+ {

+ vcolors[which(df[,attribute] > slices[i])] = colors[i]
+ }

+ plot(spatialdata, col=vcolors)

+ box ()

+ }

> plotColoured(cells, "dpoints", c(0, (1:5)*10000), heat.colors(6))

4 Other operations

Aditionally, it is possible to create new attributes directly using createColumn ()
and updateColumns (), instead of createAndFillColumn(). This way, you can
use all R functionalities to generate attributes according to the objectives of the
work. For further information on how to create attributes of tables, read the
vignette “Tables and Queries With aRT,” available within the package.

#d@data = d@datal[,-(1:3)] # removing the attributes of type string

Table 1: Different operations available for createAndFillColumn().

Operation

Description

area
average

averagewba

count
distance
length
majority
maximum

minimum

percentage
presence

stdev

sum

sumwba

xdistance

Total area of overlay between the cell and a layer of polygons.
Average of an attribute of the objects that have some intersec-
tion with the cell, without taking into account their geometric
properties.

Average weighted by area, based on the proportion of the in-
tersection area. Useful when you want to distribute atributes
that represent averages, such as per capita income.

Number of objects that have some overlay with the cell (re-
quires argument geometry).

Distance to the nearest object of a chosen geometry (requires
argument geometry).

Total length of overlay between the cell and a layer of lines.
More common value in the objects that have some intersec-
tion with the cell, without taking into account their geometric
properties.

Maximum value of an attribute among the objects that have
some intersection with the cell, without taking into account
their geometric properties.

Minimum value of an attribute among the objects that have
some intersection with the cell, without taking into account
their geometric properties.

Percentages of each class of a raster data. It creates one at-
tribute for each class of the raster.

Boolean value pointing out whether some object has an overlay
with the cell.

Standard deviation of an attribute of the objects that have
some intersection with the cell, without taking into account
their geometric properties.

Sum of an attribute of the objects that have some intersec-
tion with the cell, without taking into account their geometric
properties.

Sum weighted by area, based on the proportion of the intersec-
tion area. Useful when you want to preserve the total amount
in both layers, such as population size.

Approximated distance to the nearest object of a chosen ge-
ometry (requires arguments geometry and maxerror).

	Introduction
	Creating layers of cells
	Fillling cell attributes
	Other operations

