
aRT: R-TerraLib API

Pedro R. Andrade
Marcos A. Carrero
Paulo J. Ribeiro Jr

July 20, 2009

Contents

1 Introduction 1

2 Getting started 2
2.1 aRTconn class . 2
2.2 aRTdb class . 4
2.3 aRTlayer class . 4
2.4 aRTtheme class . 7

1 Introduction

R is a language and environment for statistical computing and graphics and is
freely distributed under the terms of the GNU General Public License [?]. It is
similar to the S language as originally developed at AT&T Bell Laboratories,
although having important differences in the design.

R provides a wide variety of statistical and graphical techniques, is highly
extensible having interface with procedures written in C/C++ or FORTRAN. A
web site with further information can be found at http://www.r-project.org.

TerraLib is a Geographic Information System (GIS) library written in C++,
developed at Brazil’s National Institute for Space Research (INPE), available
from the Internet as an open source project, allowing for a collaborative envi-
ronment for the development of multiple and flexible GIS tools [?]. TerraLib
defines geographical and temporal data models and provides support for this
model over a range of Data-Base Management Systems (DBMS). A web page
with further information on TerraLib is available at http://www.terralib.org.

An example of application that use TerraLib library of classes is TerraView.
This is a Geographical Application tool, with spatial analysis capabilities, and
is also licensed as free software under the GNU General Public License. It can
be downloaded together with TerraLib.

aRT (API R-TerraLib) is an R package that provides the integration between
the softwares R and TerraLib. The idea is to have a package that uses the

1

http://www.r-project.org
http://www.terralib.org

statistical analysis provided by R and the geographical data model and database
support by TerraLib. A web site with further information can be found at
http://leg.est.ufpr.br/aRT

The main motivation for the package development is to facilitate the ex-
changing of information between the spatial packages in R and the DBMS using
TerraLib ability to manage and perform some spatial operations on the database.
For instance, data can be easily moved between R and TerraLib, and routines in
TerraLib can be used to proccess data, making functionalities in TerraLib avail-
able to the R packages. This way a data analyst could, for instance, import
the data to R, perform some analysis using a spatial package such as spdep,
splancs, gstat, geoR, among others, and return the results to the database.
The results persisted in the database could them be accessed by a GIS software
such as TerraView.

aRT is being developed under a GNU/Linux-Debian platform and although
source code is distributed, there is no guarantee it will work in other one. There
are tentatives to mantain a compiled Windows version in the aRT web age. The
instructions about how to compile and install aRT are available at leg.est.

ufpr.br/aRT.

2 Getting started

After installing aRT and starting an R session, load the package with the com-
mand library(). If the package is loaded successfully a message TRUE will be
displayed.

> library(aRT)

aRT has four main classes to manipulate TerraLib data/functions: aRTconn,
aRTdb, aRTlayer and aRTtheme. The next subsections explain each class in
details. As this is an introductory vignette, we will enable the aRT functions
message dump, calling aRTsilent:

> aRTsilent(FALSE)

[1] FALSE

2.1 aRTconn class

Once the package is loaded, we need a DBMS connection. It is encapsulated in
an onbect of class aRTconn. The constructor of aRTconn gets as arguments user,
password, host, dbms and port, and their default values are USER variable,
empty string, empty string again, the first DBMS found by the configure, and
the default port for that DBMS, respectivaly. For example:

> con <- openConn(name="default")

2

http://leg.est.ufpr.br/aRT
leg.est.ufpr.br/aRT
leg.est.ufpr.br/aRT

Using '~/.aRTrc' item for slot 'user'

Using '~/.aRTrc' item for slot 'password'

Trying to connect ... yes

Connected to version 5.5.32-0ubuntu0.12.04.1

> con

Object of class aRTconn

DBMS: MySQL

User: root

Using password: Yes

Port: 3306

Host: localhost

Databases available:

"information_schema"

"auckland"

"bodmin"

"ca20"

"catarina"

"gpm"

"hello"

"mysql"

"parana"

"performance_schema"

"pol3"

"recife"

<omitting other 4 databases>

After creating con, the variables it contains cannot be changed. If you need
to set them, the only way is to create the object again. It happens because aRT

uses external pointers to store the objects, but we will not explain how it works
here.

One aRTconn object stores a virtual connection, i.e., all time that a database
access is required, it connects, does something, and then disconnects. The
objective of this class is to provide some database administration tasks, and open
real connections. For example, if it is the first time you are using aRT, perhaps
you will need to give permissions to some users. To do so, use addPermission():

> addPermission(con, "pedro")

Adding permissions to user 'pedro' ... yes

Warning : this function gives ALL permissions in ALL databases to a user.
If you want to do something different, see the documentation of addPermission.

With an aRTconn object, you can also see the databases available and remove
them. The next example shows the databases and tries to remove a database
called bodmin if it exists:

3

> showDbs(con)

[1] "information_schema" "auckland" "bodmin"

[4] "ca20" "catarina" "gpm"

[7] "hello" "mysql" "parana"

[10] "performance_schema" "pol3" "recife"

[13] "rondonia" "sp" "tabletest"

[16] "test"

> if(any(showDbs(con) =="bodmin")) deleteDb(con, "bodmin",

+ force=TRUE)

Checking for database 'bodmin' ... yes

Deleting database 'bodmin' ... yes

2.2 aRTdb class

To create a new database, or to access one, there is the aRTdb class. One object
from this class stores a real database connection, and we need an aRTconn object
to create it:

> db <- createDb(con, db="bodmin")

Creating database 'bodmin' ... yes

Creating conceptual model of database 'bodmin' ... yes

Creating application theme table 'bodmin' ... yes

Loading layer set from database 'bodmin' ... yes

Loading view set 'root' from database 'bodmin' ... yes

> db

Object of class aRTdb

Database: "bodmin"

Layers: (none)

Themes: (none)

External tables: (none)

This constructor fails if the database already exists. Once this object is
created, it depends no more on the con object.

A aRTdb object contains all TerraLib objects in memory needed by aRT. This
means that all objects opened from this one depends on it, even after they are
created in R. If this object is removed from R, all his “childrens” become invalid
objects when R’s garbage collector remove this object from memory.

4

2.3 aRTlayer class

To work with data in aRT, we need to manipulate layers. A layer can store any
geometry of one kind (points, lines, polygons, raster and cells), and attributes.
Layers are TerraLib abstrations that use tables of data and tables of control in
one database. So they can be created from aRTdb objects.

> layer.points <- createLayer(db, "points")

Checking for layer 'points' ... no

Building projection to layer 'points' ... yes

Creating layer 'points' ... yes

> layer.points

Object of class aRTlayer

Layer: "points"

Database: "bodmin"

Layer is empty

Projection Name: "NoProjection"

Projection Datum: "Spherical"

Tables: (none)

To insert data in the layer, we will use the bodmin dataset, available within
splancs package. We only need to remove the first point of bodmin polygon,
because it is a repetition of the second point, and then TerraLib may interpret
it as the end of a polygon with only one point.

> require(splancs)

> data(bodmin)

> names(bodmin)

[1] "x" "y" "area" "poly"

> bodmin$poly = bodmin$poly[-1,]

Before insert into the database, we must convert the data to aRT format,
following sp classes. The next commands converts it to a SpatialPoints-

DataFrame and inserts it into the database:

> SPoints = SpatialPointsDataFrame(cbind(bodmin$x, bodmin$y),

+ data.frame(ID=paste(1:length(bodmin$x))))

> addPoints(layer.points, SPoints)

Converting points to TerraLib format ... yes

Adding 35 points to layer 'points' ... yes

Reloading tables of layer 'points' ... yes

5

> t = createTable(layer.points, "tpoints")

Creating static table 'tpoints' on layer 'points' ... yes

Creating link ids ... yes

> layer.points

Object of class aRTlayer

Layer: "points"

Database: "bodmin"

Number of points: 35

Projection Name: "NoProjection"

Projection Datum: "Spherical"

Tables:

"tpoints": static

To insert the evolving polygon, we will create another layer:

> p = Polygon(bodmin$poly)

> P = Polygons(list(p), ID="1")

> SP = SpatialPolygons(list(P))

> layer.pol <- createLayer(db, l="polygons")

Checking for layer 'polygons' ... no

Building projection to layer 'polygons' ... yes

Creating layer 'polygons' ... yes

> addPolygons(layer.pol, SP)

Converting polygons to TerraLib format ... yes

Adding 1 polygons to layer 'polygons' ... yes

Reloading tables of layer 'polygons' ... yes

> t = createTable(layer.pol, "tpol")

Creating static table 'tpol' on layer 'polygons' ... yes

Creating link ids ... yes

Finally we will do a kernel analysis, and insert the raster data into the
database, in another layer:

> raster <- kernel2d(as.points(bodmin), bodmin$poly, h0=2,

+ nx=100, ny=200)

Xrange is -5.2 9.5

Yrange is -11.5 8.3

Doing quartic kernel

6

> ## converting the kernel to "sp"

> g <- cbind(expand.grid(x = raster$x, y = raster$y), as.vector(raster$z))

> coordinates(g) <- c("x", "y")

> gridded(g) <- TRUE

> fullgrid(g)=TRUE

> layer.raster <- createLayer(db, l="raster")

Checking for layer 'raster' ... no

Building projection to layer 'raster' ... yes

Creating layer 'raster' ... yes

> addRaster(layer.raster, g)

Initializing the raster ... yes

Adding raster data to layer 'raster' ... yes

Reloading tables of layer 'raster' ... yes

Finally, there are three layers in the database, and they can be seen in the
next code:

> showLayers(db)

[1] "points" "polygons" "raster"

> db

Object of class aRTdb

Database: "bodmin"

Layers:

"points"

"polygons"

"raster"

Themes: (none)

External tables: (none)

To get the layer’s geometry call getGeometry, and then you can plot it. But
if you don’t need the data the layer can be plotted directly:

> plot(layer.raster)

> plot(layer.points,add=TRUE)

> pols = getPolygons(layer.pol)

> plot(pols, add=TRUE)

7

Creating querier ... yes

Reading 35 element(s) from 0/35 ... yes

Creating querier ... yes

Reading 1 element(s) from 0/1 ... yes

Figure 1: Data from the three layers

8

2.4 aRTtheme class

The last class implemented in aRT is aRTtheme. Themes can be visualized in
TerraView software, and they can select data and join tables. For now, we will
only create themes of points and polygons, and put them in the view view:

> theme.points<-createTheme(layer.points, "points", view="view")

Checking for theme 'points' in layer 'bodmin' ... no

Checking for view 'view' in database 'bodmin' ... no

Creating view 'view' ... yes

Inserting view 'view' in database 'bodmin' ... yes

Creating theme 'points' on layer 'points' ... yes

Checking tables of theme 'points' ... yes

Saving theme 'points' ... yes

Building collection of theme 'points' ... yes

Generating positions of theme 'points' ... yes

> setVisual(theme.points, visualPoints(size=5))

> theme.pol<-createTheme(layer.pol, "polygons", view="view")

Checking for theme 'polygons' in layer 'bodmin' ... no

Checking for view 'view' in database 'bodmin' ... yes

Creating theme 'polygons' on layer 'polygons' ... yes

Checking tables of theme 'polygons' ... yes

Saving theme 'polygons' ... yes

Building collection of theme 'polygons' ... yes

Generating positions of theme 'polygons' ... yes

> setVisual(theme.pol, visualPolygons())

There is an argument that can be used in raster themes: the colors configu-
ration. It can be used as in the next example.

> theme.raster<-createTheme(layer.raster, "raster", v="view")

Checking for theme 'raster' in layer 'bodmin' ... no

Checking for view 'view' in database 'bodmin' ... yes

Creating theme 'raster' on layer 'raster' ... yes

Checking tables of theme 'raster' ... yes

Saving theme 'raster' ... yes

> setVisual(theme.raster, visualRaster(col = terrain.colors(20)), mode="raster")

9

	Introduction
	Getting started
	aRTconn class
	aRTdb class
	aRTlayer class
	aRTtheme class

