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Abstract: Consider a generalized linear model with a canonical link function, con-

taining both fixed and random effects. In this paper, we consider inference about

the fixed effects based on a conditional likelihood function. It is shown that this

conditional likelihood function is valid for any distribution of the random effects

and, hence, the resulting inferences about the fixed effects are insensitive to mis-

specification of the random effects distribution. Inferences based on the conditional

likelihood are compared to those based on the likelihood function of the mixed ef-

fects model.
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1. Introduction

The addition of random effects to a generalized linear model substantially
increases the usefulness of such models; however, such an increase comes at a
cost. To obtain the likelihood function of the model, we must average over the
random effects. In many cases, the resulting integral does not have a closed form
expression and, even when one is available, the simple structure of a fixed-effects
generalized linear model is generally lost. Furthermore, the resulting inferences
may be sensitive to the assumption regarding the random effects distribution
(Neuhaus, Hauck and Kalbfleisch (1992)), a choice that is often difficult to verify.

Let yij, j = 1, . . . , ni, i = 1, . . . ,m, denote independent scalar random vari-
ables such that yij follows an exponential family distribution with canonical
parameter θij, θij = xijβ + zijγ where xij and zij are known covariate vectors,
β is a parameter vector representing the fixed effects and γ is a vector random
variable representing the random effects. We assume that the distribution of γ

is known, except for an unknown parameter η.
Consider inference about the fixed effects parameter β. If γ is fixed, rather

than random, then the loglikelihood function is of the form∑
i,j

{yijxijβ + yijzijγ − k(xijβ + zijγ)},
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where k(·) denotes the cumulant function of the exponential family distribution.
In this case, it is well-known that inference about β in the presence of γ may be
based on the conditional distribution of the data given the statistic s =

∑
i,j yijzij,

which depends only on β. See, e.g., Diggle, Heagerty, Liang and Zeger (2002,
Section 9.2.1).

Although this conditional approach is typically used when γ is fixed, the
same approach may be used in the model in which γ is random. Let p(y|γ;β)
and p(s|γ;β) denote the density functions of y and s, respectively, in the model
with γ held fixed, and let p̄(y;β, η) and p̄(s;β, η) denote the density functions of
y and s, respectively, in the random effects model with γ removed by integration
with respect to the random effects density h(γ; η). For example,

p̄(y;β, η) =
∫

p(y|γ;β)h(γ; η)dγ.

Likelihood inference in the mixed effects model is based on L̄(β, η) = p̄(y;β, η),
which we call the integrated likelihood.

The density p̄(y;β, η) may also be used to form a conditional likelihood. Let
p̄(y|s;β, η) denote the density of y given s based on p̄(y;β, η). In Section 2, it is
shown that p̄(y|s;β, η) depends only on β so that likelihood inference for β may
be based on the corresponding conditional likelihood. Furthermore, it is shown
that p̄(y|s;β) = p(y|s;β); hence, the conditional likelihood based on p̄(y|s;β)
does not depend on the specification of h(γ; η). The purpose of this paper is to
consider the properties of the conditional likelihood in the random effects model;
that is, we consider conditional likelihood inference under the assumption that γ

is a random rather than a fixed effect, as is done, e.g., in Diggle, Heagerty, Liang
and Zeger (2002, Chap. 9).

Although inference for β may be based on p̄(y|s;β), clearly this conditional
density is not useful for inference regarding η, the parameter of the random effects
distribution; inference regarding η can be carried out using standard methods
(see, e.g., Diggle, Heagerty, Liang and Zeger (2002, Chap. 9)). Thus, condi-
tional inference in the mixed-effects model essentially uses a fixed-effects-model
approach to inference regarding β, while inference regarding γ is based on the
assumption that γ is random. That is, the conditional approach in the mixed
effects model is a hybrid between fixed-effects and mixed-effects methods.

In Section 2 the properties of the conditional likelihood function for β are
considered and an approximation to the conditional likelihood is presented. In
Section 3 the conditional likelihood is compared to the integrated likelihood for
β. Sections 2 and 3 consider models in which any possible dispersion parameter
is known; in Section 4 we consider models containing an unknown dispersion
parameter. Section 5 contains a numerical example.
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Many different approaches to inference in generalized linear mixed mod-
els have been considered; these approaches generally include some method of
avoiding the integration needed to compute the integrated likelihood. See, for
example, Schall (1991), Breslow and Clayton (1993), McGilchrist (1994), Engel
and Keen (1994) and Lee and Nelder (1996). For inference about population-
averaged quantities, the generalized estimating equation approach of Liang and
Zeger (1986) may be used. Davison (1988) considers inference based on condi-
tional likelihoods in generalized linear models with fixed effects only; in some
sense, the present paper may be viewed as an extension of Davison’s work to
mixed models. Breslow and Day (1980) use conditional likelihood methods for
inference in a mixed effects model for binary data. Another approach to inference
in mixed models is to use Bayesian methods; see, for example, Zeger and Karim
(1991), Draper (1995) and Gelman, Carlin, Stern and Rubin (1995).

The mixed models considered here are closely related to mixture models in
which the random effects distribution is treated as an unknown mixture distribu-
tion. Conditional likelihood methods are often used for inference in these models;
see, for example, Basawa (1981), Lindsay (1983, 1995), van der Vaart (1988) and
Lindsay, Clogg and Grego (1991).

2. Conditional Likelihood

Since p(y|γ;β) = p(y|s;β)p(s|γ;β), we have that

p̄(y;β, η) =
∫

p(y|γ;β)h(γ; η)dγ =
∫

p(y|s;β)p(s|γ;β)h(γ; η)dγ

= p(y|s;β)p̄(s;β, η).

Hence,

p̄(y|s;β, η) =
p̄(y;β, η)
p̄(s;β, η)

=
p(y|s;β)p̄(s;β, η)

p̄(s;β, η)
= p(y|s;β).

Therefore, the conditional likelihood based on p̄(y|s;β) is the the same as that
based on p(y|s;β) and does not depend on the choice of h. Furthermore, since
the conditional likelihood is a genuine likelihood function for β, its properties are
not affected by the dimension of γ.

Example 1. Poisson regression
Let yij, j = 1, . . . , ni, i = 1, . . . ,m, denote independent Poisson random

variables such that yij has mean exp{xijβ + γi}. The conditional density of the
data given γ = (γ1, . . . , γm) is given by

p(y|γ;β) =
exp{∑i,j yijxijβ +

∑
i γiyi −

∑
i,j exp(xijβ + γi)}∏

i,j yij !
,
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where yi =
∑

j yij. Hence, in the model with γ held fixed, (y1, . . . , ym) is sufficient
for fixed β and the conditional likelihood function is given by

exp(
∑

i,j yijxijβ)∏
i{
∑

j exp(xijβ)}yi
. (1)

Now consider a distribution for the random effects. Suppose that exp{γ1},
. . . , exp{γm} are independent random variables, each with an exponential distri-
bution with mean η. Then

p̄(y;β, η) = exp{
∑
i,j

yijxijβ}
∏
i

ηyi
Γ(yi + 1)

{η∑j exp(xijβ) + 1}yi+1

∏
i,j

1
yij!

.

Clearly, (y1, . . . , ym) is sufficient for η; i.e., it is sufficient in the model with
β taken to be known. Given γ, y1, . . . , ym are independent Poisson random
variables with means exp{γi}∑j exp{xijβ}, i = 1, . . . ,m, respectively. Hence,
the marginal density of yi is

{
∑
j

exp(xijβ)}yi
∏
i

Γ(yi + 1)
{η∑j exp(xijβ) + 1}yi+1

1
yi!

and the conditional likelihood given y1, . . . , yn is identical to (1). The argument
given earlier in this section shows that the same result holds for any random
effects distribution.

Some functions of β may not be identifiable based on the conditional distri-
bution given s. Let X denote the n × p matrix, n =

∑
ni, p = dim(β), given

by
X = M(xij) ≡ (xT

11 xT
12 · · · xT

1n1
· · · xT

m1 xT
m2 · · · xT

mnm
)T;

similarly, let Z = M(zij) and y = M(yij) so that Z is n × q, q = dim(γ) and
y is n × 1. The sufficient statistic in the full model is given by (XTy, ZTy) and
the conditioning statistic s is equivalent to ZTy. Hence, if there exists a vector b

such that Xb = Za for some vector a, the corresponding linear function of β will
not be identifiable in the conditional model. Therefore we assume that Xb = Za

only if a and b are both zero vectors, so that the entire vector β is identifiable
in the conditional model. If, for a given model, this condition is not satisfied,
the results based on the conditional likelihood given below may be interpreted as
applying only to those components of β that are identifiable in the conditional
model.

Those linear functions of β not identifiable in the conditional model are also
not identifiable in the model with γ treated as fixed effects. However, they may
be identifiable in the model with γ taken to be random effects; in this case, those
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parameters may be viewed as being parameters of the random effects distribution
and, hence, inferences regarding those parameters may be particularly sensitive
to assumptions regarding the random effects distribution.

Example 2. Poisson regression (continued).
Suppose that xij = 1 for all i, j. Then (y1, . . . , ym) is still sufficient in the

model with β held fixed; however, (y1, . . . , ym) is also sufficient in the general
model with parameter (β, γ1, . . . , γm) so that the conditional likelihood does not
depend on β.

The identifiability of β in the mixed model depends on the distribution of the
random effects. In the model with γ held fixed, the likelihood function may be
written exp[

∑
i{(γi + β)yi −ni exp(β + γi)}]. Hence, γi + β, i = 1, . . . ,m may be

viewed as the random effects and β is therefore a parameter of the random effects
distribution. If exp{γ1}, . . . , exp{γm} are taken to be independent exponential
random variables with mean η, then exp{γ1+β}, . . . , exp{γm+β} are independent
exponential random variables with mean η exp(β) so that β is not identifiable in
this model.

However, if exp{γ1}, . . . , exp{γm} are independent random variables each
with a gamma distribution with mean 1 and variance 1/η, then the integrated
likelihood is given by

exp{
∑

i

yiβ} ηmη

Γ(η)m
∏
i

Γ(η + yi)
(η + ni exp{β})η+yi

and β is identifiable.

If exact computation of the conditional likelihood is difficult, an approxima-
tion may be used. Using a saddlepoint approximation (e.g., Daniels (1954) and
Jensen (1995)) to the density of s, an approximation to the conditional likelihood
given y1, . . . , ym is given by

L̂(β) =
∣∣∣{∑

i,j

zT
ijk

′′(xijβ + zij γ̂β)zij}
∣∣∣ 12 exp[

∑
i,j

{yijxijβ + zij γ̂β − k(xijβ + zij γ̂β)}],

where γ̂β is the maximum likelihood estimator of γ for fixed β. Note that since
L̂(β) is based on a saddlepoint approximation to the density of s, this approxi-
mation does not depend on the choice of random effects density h; hence, L̂(β) is
not related to Laplace approximations to the integrated likelihood (e.g., Breslow
and Lin (1995) and Booth and Hobert (1998)). If the dimension of γ is fixed, the
error of the approximation is O(n−1). If m, the dimension of γ, increases with n,
then the error is o(1), provided that m = o(n3/4); see Sartori (2003) for further
details.
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The approximation L̂(β) is identical to the one given by Davison (1988)
for inference in a fixed-effects generalized linear model. Note that L̂(β) =
|jγγ(β, γ̂β)|1/2Lp(β) where Lp(β) denotes the profile likelihood and jγγ(β, γ) de-
notes the observed information for fixed β; in both cases, γ is treated as fixed
effects. Hence, L̂(β) is also identical to the modified profile likelihood function
(Barndorff-Nielsen (1980, 1983)). That is, the modified profile likelihood based
on treating γ as a fixed effect is also valid if γ is modeled as a random effect.

Since �c is also a conditional loglikelihood in the model with parameters
(β, η), under standard regularity conditions β̂, the maximizer of �c, is asymp-
totically distributed according to a multivariate normal distribution (Andersen
(1970)). The asymptotic covariance matrix of β̂ may be estimated using ĵc, the
observed information based on �c evaluated at β̂. Furthermore, Andersen (1970)
shows that the convergence of the normalized β̂ to a normal distribution holds
conditionally on γ. Hence, the asymptotic normality of β̂ is valid for any random
effects distribution.

A confidence region for β may be based on W = 2{�c(β̂) − �c(β)}. Under
standard conditions, W is asymptotically distributed according to a chi-squared
distribution with p degrees-of-freedom (Andersen (1971)). As with the asymp-
totic normality of β̂, this result holds conditionally on γ and, hence, the result is
valid for any random effects distribution.

3. Relationship between the Conditional and Integrated Likelihoods

Let �c(β) denote the conditional loglikelihood for β and let �̄(β, η) = log p̄(y;
β, η) denote the integrated loglikelihood based on a particular choice for the
random effects distribution. Since �̄(β, η) depends on η and β, for inference
about β, we may consider the profile integrated loglikelihood, �̄p(β) = �̄(β, η̂β);
for instance, β may be estimated by maximizing �̄p(β).

In general, �̄p(β) − �c(β) = �̄p(β; s) where �̄(β, η; s) denotes the integrated
loglikelihood function based on the marginal distribution of s and �̄p(β; s) is the
corresponding profile loglikelihood function. Hence, the difference between �c(β)
and �̄p(β) depends on how �̄p(β; s) varies with β. Since �c does not depend on the
choice of h, the sensitivity of �̄p(β) to choice of h is measured by the sensitivity
of �̄p(β; s) to the choice of h.

If �̄p(β; s) does not depend on β, then �̄p(β) = �c(β). This occurs, e.g., if
the statistic s is S-ancillary for β based on the density p̄(s;β, η) (Severini (2000,
Section 9.2)). Recall that s is S-ancillary for β if, for each β1, β2, η1, there exists
η2 such that ∫

p(s|γ;β2)h(γ; η2)dγ =
∫

p(s|γ;β1)h(γ; η1)dγ;
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this holds, in particular, if p̄(s;β, η) depends on (β, η) only through a function
of lower dimension. Hence, this condition depends on both p(s|γ;β) and h(γ; η).

Example 3. Matched pairs of Poisson random variables
Consider the following special case of the Poisson regression model in which

ni = 2 for all i and xij = 1 if j = 1 and xij = 0 if j = 2. In this model,
s = (y1, . . . , ym) where y1, . . . , ym are independent Poisson random variables
such that yi has mean ωiT (β), ωi = exp(γi) and

T (β) =
∑
j

exp(xijβ) = exp(β) + 1.

Assume that ω1, . . . , ωm are independent identically distributed random vari-
ables and let g(·; η) denote the density of ωi. Then

p̄(s;β, η) =
∏
i

1
yi!

∫
{ωT (β)}yi exp{−ωT (β)}g(ω; η)dω.

If η is a scale parameter, then g(ω; η) = g(ω/η; 1)/η and

p̄(s;β, η) =
∏
i

1
yi!

∫
{(ω/η)ηT (β)}yi exp{−(ω/η)ηT (β)}g(ω/η; 1)/ηdω.

Therefore, p̄(s;β, η) depends on (β, η) only through ηT (β) and, hence s is S-
ancillary. Thus, in the two-sample model, any integrated likelihood function
based on a scale model for the exp(γi) yields the same estimate of β and that
estimate is identical to the one based on �c(β).

This same result holds in a general Poisson regression model provided that
the design is balanced in the sense that xij , j = 1, . . . , ni, are the same for each
i.

Exact agreement between �c(β) and �p(β) occurs only in exceptional cases.
It is straightforward to show that the Laplace approximation to the integrated
likelihood function is given by

∣∣∣{∑
i,j

zT
ijk

′′(xijβ+zij γ̂β)zij}
∣∣∣− 1

2 exp{
∑
i,j

[yijxijβ+yijzij γ̂β−k(xijβ+zij γ̂β)]}h(γ̂β ; η)

so that �p(β) may be approximated by

�̂c(β) − log
∣∣∣{∑

i,j

zT
ijk

′′(xijβ + zij γ̂β)zij}
∣∣∣ + log h(γ̂β ; η̃β),

where �̂c(β) denotes the saddlepoint approximation to the conditional loglikeli-
hood given in Section 2 and η̃β maximizes h(γ̂β ; η) with respect to η for fixed
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β. When the dimension of γ is fixed, the relative error of this approximation is
O(n−1). In this case,

1√
n

�̄′p(β) =
1√
n

�′c(β) + Op(
1√
n

). (2)

That is, �c(β) provides a first-order approximation to �̄p(β) based on any
non-degenerate random effects distribution. It is important to note that the Op

term in this expression refers to the distribution of the data corresponding to the
random effects distribution h.

The analysis above is based on the assumption that m, the dimension of
γ, remains fixed as n → ∞ and the conclusions do not necessarily hold when
m increases with n. For instance, the saddlepoint approximation and Laplace
approximation used are valid only when m grows very slowly with n, specifically
when m = o(n1/3) (Shun and McCullagh (1995) and Sartori (2003)).

Example 4. Poisson regression (continued)
Suppose �̄(β, η) is based on the assumption that exp(γ1), . . . , exp(γm) are

independent exponential random variables with mean η. It follows that

�̄′p(β) − �′c(β) =
∑

i

yi − η̂β
∑

j exp(xijβ)∑
j exp(xijβ)

∑
j xij exp(xijβ)

η̂β
∑

j exp(xijβ) + 1
.

For each i = 1, . . . ,m,

yi − η̂β
∑

j exp(xijβ)∑
j exp(xijβ)

= Op(1) as ni → ∞.

Hence, under the assumption that each ni → ∞ while m stays fixed, �̄′p(β)/
√

n =
�′c(β)/

√
n + Op(1/

√
n), in agreement with the general result given above.

Now suppose the ni remain fixed while m → ∞. Since η̂β = η + Op(n− 1
2 ),

yi − η̂β
∑

j exp(xijβ)∑
j exp(xijβ)

=
yi − η

∑
j exp(xijβ)∑

j exp(xijβ)
+ Op(n−1),

and, hence,
m∑

i=1

yi − η̂β
∑

j exp(xijβ)∑
j exp(xijβ)

= Op(
√

m).

It follows that, in this case, �̄′p(β)/
√

n = �′c(β)/
√

n + Op(1), as described above.

For cases in which �c and �̄p lead to different estimators of β, an important
question is the relative efficiency of those estimators. It follows from (2) that,
if m is considered fixed as n → ∞, then β̂, the maximizer of �c, is asymptoti-
cally efficient (Liang (1983)). However, this is not necessarily true if m → ∞
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as n → ∞. It has been shown that, if the set of possible random effects distri-
butions is sufficiently broad, then β̂ is asymptotically efficient (Pfanzagl (1982,
Chap. 14), Lindsay (1980)). However, when there is a parametric family of ran-
dom effects distributions, β̂ is not necessarily asymptotically efficient (Pfanzagl
(1982), Chap. 14). Hence, if the dimension of γ is large relative to n, there may
be some sacrifice of efficiency associated with the use of β̂. However, the estima-
tor of β is valid under any random effects distribution and any loss of efficiency
must be viewed in that context.

Using a definition of finite-sample efficiency based on estimating functions,
Godambe (1976) shows that the estimating function based on �c is optimal if
either the conditioning statistic s is S-ancillary or the set of possible distributions
of s is complete for fixed β.

4. Models with a Dispersion Parameter

Generalized linear models often have an unknown dispersion parameter as
well, so that, conditional on γ, the loglikelihood function is of the form

∑
i,j

yijxijβ + yijzijγ − k(xijβ + zijγ)
a(σ)

+
∑
i,j

c(yij , σ),

where σ > 0 is an unknown parameter and c and a are known functions. The
conditional likelihood given

∑
yijzij is still independent of γ, although it now

depends on σ.
Inference about β may be based on the profile conditional loglikelihood,

�c(β, σ̂β) where σ̂β is the value of σ that maximizes �c(β, σ) for fixed β. Note
that σ̂β is valid estimator of σ for fixed β for any random effects distribution.

Now consider inference about σ. For fixed σ and γ, the statistics t =∑
i,j yijxij and s =

∑
i,j yijzij are sufficient; hence, we may form a conditional

likelihood for σ by conditioning on these statistics. The argument given in Sec-
tion 2 showing that the conditional likelihood function given s is valid in the
random effects model, for any random effects distribution, is valid for the con-
ditional likelihood given s, t as well. Hence, the conditional likelihood estimator
of σ is a valid estimator of σ in the random effects model for any random effects
distribution.

Example 5. Normal distribution
Let yij , j = 1, . . . , ni, i = 1, . . . ,m, denote independent normal random

variables such that yij has mean xijβ + zijγ and variance σ2. The conditional
loglikelihood function given

∑
i,j yijxij ,

∑
i,j yijzij is given by −∑i,j(yij −xij β̂ −

zij γ̂)2/(2σ2) − (n − p − q) log σ, where β̂ and γ̂ are the least-squares estimators
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of β and γ, respectively. Hence, the conditional maximum likelihood estimator
of σ2 is the usual unbiased estimator: s2 =

∑
i,j(yij − xijβ̂ − zij γ̂)2/(n − p − q).

5. An Example

Consider the data in Table 1 of Booth and Hobert (1998, p.263). These
data describe the effectiveness of two treatments administered at eight different
clinics. For clinic i and treatment j, nij patients are treated and yij patients
respond favorably. Following Beitler and Landis (1985), we model the clinic
effects as random effects. Given the random effects, the yij are taken to be
independent binomial random variables such that yi1 has index ni1 and mean
ni1 exp(γi + β0 + β1)/[1 + exp(γi + β0 + β1)] and yi2 has index ni2 and mean
ni2 exp(γi + β0)/[1 + exp(γi + β0)].

Let yi = yi1 + yi2. The conditional loglikelihood for β1 is given by

β1

∑
i

yi1 −
∑

i

log{
∑
u

(
ni1

u

)(
ni2

yi − u

)
exp(β1u)},

where the summation with respect to u is from max(0, yi − ni2) to min(yi, ni1).
The random effects γ1, . . . , γ8 are taken to be independent and identically

distributed, each with density h(·; η). Several choices were considered for the
random effects distribution: a normal distribution, a logistic distribution, and an
extreme value distribution for γi and a gamma distribution for exp(γi). In each
case, γi has mean 0 and standard deviation η.

Table 1. Parameter estimates in the example.

Parameter
Likelihood β0 β1 η

Conditional Exact 0.756 (.303)
Saddlepoint 0.755 (.303)

Integrated Normal -1.20 (0.549) 0.739 (0.300) 1.40 (0.430)
Logistic -1.22 (0.582) 0.738 (0.300) 1.52 (0.510)

Extreme value -1.15 (0.580) 0.743 (0.301) 1.49 (0.526)
Gamma -1.23 (0.643) 0.729 (0.299) 1.67 (0.653)

Table 1 contains parameter estimates based on the conditional likelihood as
well as on the integrated likelihood for each of the four random effects distribu-
tions. In addition, estimates based on the saddlepoint approximation to the con-
ditional likelihood function are given. The integrated likelihood functions were
computed numerically using Hardy quadrature. Standard errors of the estimates
are given in parentheses. Inferences for β1 based on the conditional likelihood are
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essentially the same as those based on the integrated likelihood for each choice
of the random effects distribution; note, however, that the conditional likelihood
eliminates the need for numerical integration.
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