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ABSTRACT

A neural network–based flux correction technique is applied to three land surface models. It is then used
to show that the nature of systematic model error in simulations of latent heat, sensible heat, and the net
ecosystem exchange of CO2 is shared between different vegetation types and indeed different models. By
manipulating the relationship between the dataset used to train the correction technique and that used to
test it, it is shown that as much as 45% of per-time-step model root-mean-square error in these flux outputs
is due to systematic problems in those model processes insensitive to changes in vegetation parameters. This
is shown in the three land surface models using flux tower measurements from 13 sites spanning 2 vegetation
types. These results suggest that efforts to improve the representation of fundamental processes in land
surface models, rather than parameter optimization, are the key to the development of land surface model
ability.

1. Introduction

A land surface model (LSM) is used in a climate
model to represent the interaction between the atmo-
sphere and land surface. It simulates radiation, water,
heat, and carbon exchanges, with explicit representa-
tion of vegetation and soil types (see Pitman 2003).
LSMs are commonly evaluated using observed values
of three key model outputs: latent heat flux (Qle), sen-
sible heat flux (Qh), and Net Ecosystem Exchange
(NEE) of CO2 from eddy covariance flux measure-
ments (e.g., Sellers and Dorman 1987; Chen et al. 1997;

Dai et al. 2003). While several eddy covariance–based
studies have attempted to reduce model bias associated
with inappropriate parameter values (e.g., Wang et al.
2001; Braswell et al. 2005; Drewry and Albertson 2006),
few have attempted to examine bias resulting from the
LSM itself (Dekker et al. 2001 is a notable exception).
In the broader context of geophysical fluid dynamics,
longer-term trends have been subtracted from the
model output as a way of removing bias in reanalysis
(e.g., Klinker and Sardeshmukh 1992; Saha 1992). Also,
more recently, bias identification techniques have been
developed for state-based data assimilation (e.g., Dee
and Todling 2000; Keppenne et al. 2005). While these
tools are useful for improving numerical weather pre-
dictions, they offer little benefit for long-term prognos-
tic simulations or insight into how bias identification
can aid model development.
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Abramowitz et al. (2006) attempted to identify bias
in an “uncoupled” LSM (not coupled to a climate
model) using eddy covariance data from two flux tower
sites. They showed that flux predictions could be sig-
nificantly improved in a variety of measures using an
Artificial Neural Network (ANN) correction to Qle,
Qh, and NEE. Ensembles from multiple criteria param-
eter estimation pareto sets (see Vrugt et al. 2003) were
used to remove bias associated with inappropriate pa-
rameter values. In that paper, a Self-Organizing Fea-
ture Map (SOFM; Kohonen 1989) based ANN was
used to correct model flux predictions at each time step,
using meteorological variables (LSM inputs) and LSM
flux predictions as inputs to the ANN. The ANN, by
means of supervised training, established a functional
relationship between these inputs and the magnitude of
model error (simply the observed minus modeled
value) in a particular flux. Using a dataset unseen by
the ANN, predictions of LSM error made by the ANN
were used to correct LSM output.

In this paper, this methodology is extended so that
ANN training and testing sets incorporate several sites
simultaneously. In the first instance, this allows us to
examine the potential for applying the correction re-
gionally or globally. More importantly, however, by us-
ing the correction technique as a tool to characterize
and quantify LSM systematic error, we can understand
the extent to which LSM systematic error is shared be-
tween simulations of different environments. Such an
understanding clearly helps to define directions for
LSM improvement. We also note the known ability of
ANNs to simulate moisture and carbon fluxes region-
ally (e.g., Papale and Valentini 2003).

We investigate whether systematic LSM bias is
shared in different environments by examining how dis-
similar ANN training and testing sets need to be before
the nature of LSM error learned by the ANN from the
training set is no longer useful in predicting LSM error
on the testing set. Tests for the “robustness” of the
correction by changing the relationship between train-
ing and testing sets have been undertaken for the ANN
correction trained and tested at a single site, both in
terms of temporal robustness (Abramowitz et al. 2006)
and in terms of a temperature-based climate change
scenario (Pitman and Abramowitz 2005). This multiple-
site examination, however, allows us to compare the
size and nature of the LSM systematic error at a range
of sites with different vegetation types. In particular, we
show that the considerable systematic bias identified in
simulations of temperate grassland sites is of a similar
nature to that identified at coniferous forest sites. That
is, an ANN trained to correct a LSM at one vegetation
type competently corrects the same LSM at another.

This was true, to some extent, of all three LSMs exam-
ined. This implies that the nature of the LSM error is
shared across different LSM parameter sets represent-
ing the different vegetation types, so that those model
processes responsible for the systematic error in output
are largely insensitive to vegetation parameters. We
therefore suggest that efforts to improve existing pro-
cesses within LSMs, using the increasing wealth of in
situ observational data, would be fruitful.

We begin by outlining the correction technique and
the five configurations we use to train and test it. Re-
sults are then discussed for each configuration in turn.
We then discuss the implications of the results in terms
of directions for LSM improvement as well as possible
protocols that may assist further improvement.

2. Methodology

We wish to examine the improvement in LSM per-
formance afforded by an ANN-based statistical correc-
tion. The experimental design is essentially that of
Abramowitz et al. (2006), which we now explain. The
ANN-based correction is made independently to three
LSM output fluxes, Qle, Qh and NEE, on a per-time-
step basis. Figure 1 represents the two-stage correction
process, with shaded boxes representing the goal of
each stage. Ultimately, the ANN will make a prediction
of the model’s error in a particular flux (the ANN out-
put), based on meteorological conditions and the mod-
el’s output (the ANN inputs; Fig. 1b). This prediction of
error will then be used to correct the LSM’s simulation.
By LSM “error,” we simply mean the difference be-
tween the simulated and observed value. To do this, the
ANN must first “learn” the relationship between these

FIG. 1. The two phases of ANN operation. (a) The training
phase seeks to find ANN weights that represent the relationship
between ANN inputs and outputs and (b) the testing phase, when
this is used to correct model output.
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inputs and this output. The first stage therefore in-
volves providing the ANN with a time series of input–
output training data from which it establishes this
relationship. This information is stored in the ANN’s
internal weights (Fig. 1a).

For this work, Qle error for a particular model time
step was simulated by the ANN as a function of down-
ward shortwave, air temperature, and modeled Qle at
that time step; the Qh error was simulated by the ANN
as a function of downward shortwave, air temperature,
and modeled Qh; the NEE error as a function of down-
ward shortwave, air temperature, and modeled NEE.
While a systematic sensitivity study to determine the
optimal set of ANN inputs in each case would deliver
the greatest correction, this single set of three inputs
better demonstrates the broad, universal nature of the
models’ systematic bias and thus the universal applica-
bility of the correction. We also note this choice of
inputs is broadly consistent with van Wijk and Bouten
(1999).

The ANN we use is the Self-Organizing Linear Out-
put map (SOLO; Hsu et al. 2002). Readers familiar
with ANNs might assume we use a feed-forward ANN.
However, unlike a feed-forward ANN, SOLO uses a
SOFM to classify input data into a two-dimensional
matrix of groups, or “nodes.” Here, each member of a
group is a time step of downward shortwave, tempera-
ture, and the modeled flux. Time steps with similar
characteristics (in terms of these three variables) will
belong to neighboring groups in the SOFM. Once the
classification of all time steps into groups is complete, a
multiple linear regression is performed between all the
members of a particular group (a collection of three-
dimensional vectors) and their corresponding output
values in the time series from which they came. The
SOLO algorithm therefore establishes a piecewise lin-
ear relationship between the three input variables and
the output, LSM flux error. If we use just one node in
the SOFM, SOLO corrects the LSM with a single mul-
tiple linear regression between the three input variables
mentioned above and the flux error. The regression-
based structure of SOLO therefore avoids some of the
pitfalls of feed-forward ANNs, such as problems with
gradient descent convergence and overtraining (e.g.,
van Wijk and Bouten 1999). More details about SOLO
can be found in Hsu et al. (2002) and Abramowitz et al.
(2006). The only SOLO parameter we manually adjust
in this work is the resolution (or number of groups) of
the SOFM.

To avoid results being model specific we used three
LSMs, chosen based on availability, documentation,
and ease of modification of the input–output format.
We also wished that the LSMs broadly reflected the

range of approaches to land surface modeling used in
climate modeling applications. The three LSMs we use
are the Commonwealth Scientific and Industrial Re-
search Organisation (CSIRO) Biosphere Model (CBM;
Leuning et al. 1998; Wang and Leuning 1998), the Or-
ganising Carbon and Hydrology in Dynamic Ecosys-
tems model (ORCHIDEE; Krinner et al. 2005), and
the Community Land Model (CLM; Levis et al. 2004;
Oleson et al. 2004), which includes dynamic vegetation.
Throughout this paper, these models are executed of-
fline (not coupled within a climate model).

To compare LSM bias in different environments, we
must be satisfied that the above correction does indeed
correct for systematic bias. If we represent a LSM func-
tionally as

Yt � M�It, �, �t�1�, �1�

where Yt are the LSM outputs for a given time step t, It

are the LSM inputs, � are the (time invariant) param-
eters, and �t�1 are the previous time step’s states, we
can then express the LSM error for this time step as

E��, It, Ot, �t�1, M� � Yt � Ot, �2�

where Ot are the observations of the LSM outputs
made concurrently with the LSM inputs. This suggests
four sources of LSM simulation error: parameter val-
ues, �, that do not best represent the system being
simulated; measurement error in the LSM inputs and
outputs, It and Ot; misprescription of initial states, �t�1;
and flaws in the LSM’s representation of physical pro-
cesses, M (note that some authors may also refer to this
as “model structure error” or “model parameterization
error”). While we deal with each of these sources in
turn, our argument differs from Abramowitz et al.
(2006) only in the method parameter prescription, so
we will focus on this process.

For all three LSMs, for each site simulated, we used
the default set of parameters provided by the model
developers. These were derived from global fields, as
though each LSM were running inside a climate model,
with each site represented by a relatively large grid cell.
This clearly means that agreement between the LSMs
and individual site measurements will not be as good as
if we had optimized model parameters at each of these
sites individually. However, Abramowitz (2005) and
Abramowitz et al. (2006) showed that LSM bias was
considerably larger than gains afforded by parameter
optimization. Results below showing the transferability
of the ANN correction from one vegetation type to
another (with very different parameter values) suggest
that the same is true in the cases presented here. We
also note that this is how parameter values are com-
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monly selected for these LSMs in global coupled simu-
lations. Our only departure from this regime was choos-
ing vegetation types for CBM and ORCHIDEE to best
match the vegetation found at the flux tower sites.
CLM incorporated dynamic vegetation while CBM and
ORCHIDEE did not. We discuss CLM’s representa-
tion of the two vegetation types below when discussing
state initialization.

The 13 flux tower sites are shown in Table 1. These
sites are from the Fluxnet network (available online at
http://www.fluxnet.ornl.gov/fluxnet/index.cfm) with
gap filling described by Falge et al. (2001). Where ob-
servational teams had flagged time steps that had been
gap filled, we excluded these, where possible, from the
analysis. The sites represent essentially two vegetation
types within the LSMs, nine are coniferous forest and
four are grassland or cropland. While we would have
liked to explore a wider range of vegetation, these were
the two vegetation types available from the Fluxnet site
that had sufficiently long datasets, contained the range
of gap-filled variables we required and were repre-
sented by several sites.

With a large range of sites from different observa-
tional teams, observational error (in It and Ot above) is
inevitable. We wish to distinguish, however, between
random and systematic error. With hundreds to many
thousands of data points for each regression node in the
SOFMs used in the ANN, truly random error in obser-
vations should not prevent the ANN from capturing
systematic LSM bias. Systematic bias in observations,
however, would hinder the ability of the correction
technique. Given known issues with energy closure in
eddy correlation data (Twine et al. 2000; Wilson et al.
2002), we cannot dismiss this as a possibility. We will
return to this issue in the discussion, where we argue
that the spread of LSM simulations suggests that LSM
bias is significant relative to observational bias.

State initialization issues in long-term prognostic
simulation are usually dealt with by “spinning up” the
LSMs concerned. The LSM runs a simulation dataset
repeatedly until model states, such as the soil moisture,
temperature, and vegetation distribution equilibrate.
All LSM simulations performed here involved a spinup
period, some as long as 200 yr due to the CLM using
dynamic vegetation. This is no guarantee, however, that
for a given time step, the previous time step’s state, �t�1,
is representative of the natural system. The internal
feedback of errors resulting from LSM inadequacy, M,
in time steps 1, . . . , t�1 mean that LSM states may
“drift” from measured values, if they exist. For the
short integration times of numerical weather forecasts,
�t�1 is sensitive to �1, which is the initial state value. The
availability of state observations therefore mean that
there are real rewards, through Kalman filter or varia-
tional approaches, for state-estimation data assimila-
tion. For this work, however, since the length of inte-
gration means that this sensitivity does not exist, we
consider �t�1 as functionally dependent on LSM’s rep-
resentation of processes, or structure, M. This is par-
ticularly important for CLM’s representation of dy-
namic vegetation at these sites, since there is no mecha-
nism that ensures that the vegetation at a flux tower site
will match CLM’s prediction. We note, however, that
grassland sites were indeed dominated by grass plant
functional types (see Levis et al. 2004; Table 1) with
vegetation heights ranging from 0 to 5.5 m and conif-
erous forest sites similarly represented by tall forest at
3.5–10.8 m. This considerably looser definition of veg-
etation types for CLM is particularly important for the
last two of the five training-testing cases we present
below.

We examine the ability of the ANN to correct model
output in five configurations. The differences between
the five configurations of the ANN are essentially

TABLE 1. The 13 flux observation sites.

Vegetation type Lat Lon Country Annual rain Yr/length

Aberfeldy Coniferous 56°37�N 03°48�W Scotland 1200 12 Mar 1997–31 Dec 1998
Bondville Cropland 40°0�N 88°18�W U.S.-IL 760 1 Jan 1997–31 Dec 1999
Bordeaux Coniferous 44°42�N 00°46�W France 950 12 Jul 1996–31 Dec 1998
Flakaliden Coniferous 64°07�N 19°27�E Sweden 590 8 Oct 1996–31 Dec 1998
Hyytiala Coniferous 61°51�N 24°17�E Finland 640 2 Apr 1996–31 Dec 2003
Little Washita Grassland 34°58�N 97°59�W U.S.-OK 830 14 May 1996–31 Dec 1998
Loobos Coniferous 52°10�N 05°45�E Netherlands 790 1 Jan 1997–31 Dec 2002
Metolius Coniferous 44°30�N 121°37�W U.S.-OR 710 1 Jan 1996–31 Dec 1997
Norunda Coniferous 60°05�N 17°28�E Sweden 530 1 Jan 1996–31 Dec 1998
Ponca City Grassland 36°46�N 97°08�W U.S.-OK 800 1 Jan 1997–31 Dec 1997
Shidler Grassland 36°56�N 96°41�W U.S.-OK 830 1 Jan 1997–31 Dec 1997
Tharandt Coniferous 50°58�N 13°38�E Germany 820 1 Jan 1996–31 Dec 2000
Weiden Brunnen Coniferous 50°09�N 11°52�E Germany 890 12 Jun 1996–31 Dec 1999
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changes in the relationship between the data used to
train the ANN and the data used to test it:

• Case 1: Train a single ANN on the first half of the
time series of data from all 13 sites and test on the
second half. This is a test of the temporal transitivity
of the ANN correction.

• Case 2: Train a single ANN on the entire time series
from half of the coniferous sites and test it on the
entire time series from the other half of the conifer-
ous sites. Then use a second ANN to do the same for
grassland sites. This is a test of spatial transitivity of
the ANN correction within a vegetation type, for two
vegetation types.

• Case 3: Train a single ANN on the entire time series
from half of all the sites, both conifer and grass, and
test it on the entire time series from the other half of
the sites. This is a test of the spatial transitivity across
both vegetation types.

• Case 4: Use the ANN from the first instance of case
2, trained to correct LSMs at coniferous sites, and test
its ability to correct at grassland sites. Then the re-
verse, using an ANN trained on grassland to correct
coniferous site simulations. This is a test of vegeta-
tion-type transitivity.

• Case 5: Use an ANN from case 1, trained to correct
one LSM, and test it on another. Given there are only
three models, we look at all six permutations. This is
a test of model transitivity.

Cases 4 and 5 should make it clear that we are not
only interested in using the correction technique re-
gionally, but that we also wish to examine the similarity
in the nature of LSM systematic error across vegetation
types and the three models. We now look at the results
from each of these five configurations in turn.

3. Results

a. Case 1: Temporal transitivity (both vegetation
types)

In this case we use a single ANN to correct each
LSM’s simulations at all 13 sites. We train the ANN
using the first half of the time series from all sites, and
test on the second. This is essentially a multiple-site
version of the technique described in Abramowitz et al.
(2006). As noted above, for the correction of each of
the three fluxes, we use downward shortwave, air tem-
perature, and the model output value of the flux as the
ANN inputs. In case 1, we also include a fourth input:
vegetation type. This is an integer input that repre-
sents the dominant vegetation type, which in CBM and

ORCHIDEE is either coniferous forest or grassland.
For CLM, since dynamic vegetation was enabled, there
was no restriction. The ANN output is simply error in
the flux under consideration. Case 1 is the only case of
the five that uses all time steps of observed data, in-
cluding those flagged as unreliable in the quality con-
trol procedure mentioned above. That is, the entire first
half of the time series from all sites forms the training
set and the entire second half forms the testing set. This
was simply to facilitate analysis and would likely make
the correction by the ANN less effective.

Figure 2a shows the reduction in the per-time-step
root-mean-square error (RMSE) of each of the three
fluxes (columns) afforded by the ANN correction for
the testing period in case 1. The y axis shows RMSE in
each flux (�mol m�2 s�1 for NEE, W m�2 for Qle and
Qh), while the x axis shows increasing resolution of the
SOFM used in the ANN. This can be interpreted as
increasing complexity or sophistication of the ANN
used to make the correction. For example, the number
“8” on the x axis implies a 82 � 64 node SOFM. The
RMSE value at x � 0 represents the RMSE of the
uncorrected model simulation. The result shown is an
average over all 13 sites. It shows a clear relationship
between increasing SOFM resolution and decreasing
per-time-step RMSE.

The results of case 1 are summarized in Table 2. The
ANN afforded a correction of 10%–40% in per-time-
step NEE RMSE with an appropriate choice of SOFM
resolution, bringing the RMSE of all corrected LSM
simulations to 4.0–4.2 �molm�2 s�1. The per-time-step
Qle RMSE was reduced by 17%–41%, bringing each
model’s corrected simulation to a RMSE of around 37
W m�2. The Qh reductions were on the order 19%–
28% RMSE, bringing all corrected simulations to about
45 W m�2 of RMSE. We can also begin to see the clear
systematic nature of model error. Even a single node
SOFM (“1” on the x axis), which represents a linear
correction to the LSMs, removes a significant propor-
tion of the error. In all three fluxes in case 1, noting the
lowest corrected values (Table 2 and the right-hand
side of Fig. 2a), we see that the ANN acts as a convinc-
ing “model equaliser.” That is, once corrected the three
LSMs have nearly identical per-time-step RMSE.
Whether or not this truly represents a theoretical limit
or not is unclear.

This is, however, only one measure of performance.
It gives us an idea of the amount each model de-
viates from the observation at each time step. We
will consider other measures after detailing the next
two possible configurations for the correction tech-
nique.
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b. Case 2: Spatial transitivity within vegetation type

Case 2 uses two ANNs to correct each LSM: one for
coniferous and one for grassland sites. Whereas in case
1 we divided our total data into training and testing sets
temporally, in case 2 we do so spatially. That is, for each
vegetation type we train the ANN correction on the
entire time series from some sites, and test it on the
entire time series from other sites.

For the coniferous ANN correction, we train the
ANN using the meteorological, model, and model error
time series from four sites: Aberfeldy, Scotland; Bor-
deaux, France; Hyytiala, Finland; and Weiden Brun-
nen, Germany (see Table 1). We test the spatial tran-
sitivity of the ANN correction learned at these four
sites by testing it at the other five: Flakaliden, Sweden;
Loobos, Netherlands; Metolius, Oregon; Norunda,
Sweden; and Tharandt, Germany. For the grassland/

FIG. 2. The per-time-step RMSE of ANN-corrected LSM simulations: (a) case 1, temporal transitivity, all sites; (b), (c) case 2, spatial
transitivity across coniferous and grassland sites, respectively; and (d) case 3, spatial transitivity across both vegetation types. Blue lines
represent CBM, green represent ORCHIDEE, and red represent CLM. The x axis moves from uncorrected LSM simulation (x � 0),
through a linear correction (x � 1), to a correction by a 162 � 256 node SOLO ANN. Results are shown for NEE (�mol m�2 s�1), Qle,
and Qh (W m�2).

TABLE 2. The per-time-step RMSE in NEE, Qle, and Qh for case 1. Corrections are shown for all three LSMs using optimal SOFM
resolution (refer to Fig. 2a).

CASE 1 CBM CBM correction ORCH ORCH correction CLM CLM correction

NEE (�mol m�2 s�1) 5.34 4.06 (24%) 4.71 4.22 (10%) 5.01 4.28 (15%)
Qle (W m�2) 63.94 37.85 (41%) 46.40 37.05 (20%) 44.94 37.29 (17%)
Qh (W m�2) 61.29 45.32 (26%) 62.73 44.88 (28%) 56.21 45.72 (19%)

994 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 8

Fig 2 live 4/C



cropland correction, we train the ANN using the entire
time series from two sites, Little Washita, and Ponca
City, Oklahoma, and test on the entire time series from
the other two, Bondville, Illinois, and Shidler, Okla-
homa. This choice of sites was arbitrary, we did not
examine any other combinations but believe that other
configurations are unlikely to affect the nature of the
conclusions. In both of these ANNs, we use downward
shortwave, air temperature, and modeled flux as ANN
inputs.

Figures 2b,c show the results of the coniferous and
grassland ANN corrections, respectively. For the conif-
erous case, the nature of the correction are similar, al-
though the magnitudes are slightly smaller. Results are
summarized in Table 3 [case 2(i)]. With an appropriate
choice of SOFM resolution, NEE RMSE is reduced by
6%–16% depending on LSM, bringing all corrected
simulations down to around 4.3 �mol m�2 s�1 RMSE.
The Qle RMSE is reduced by 13%–37%, bringing all
runs to about 39 W m�2 RMSE. The Qh RMSE is
reduced by 13%–27%, which brings runs to about 49 W
m�2 RMSE. Note that the best correction to Qle for
both CBM and ORCHIDEE in case 2 is a linear cor-
rection (i.e., a correction made by a one-node SOFM).

The behavior for the grassland site correction is dif-
ferent. For ORCHIDEE’s NEE correction, there is a
clear disadvantage to using higher-resolution SOFM
ANNs, with the correction actually making the per-
time-step RMSE worse for SOFMs with resolution
162 � 256 nodes. This result indicates that the extra
information about ORCHIDEE’s error learned by the
higher-resolution SOFM is specific to the training sites,
and not applicable or transferable to the testing sites. It

implies that ORCHIDEE does capture some of the de-
tailed differences between sites, since if it could not, we
would expect the RMSE to decrease with increasing
SOFM resolution. With lower resolutions we can how-
ever decrease per-time-step NEE RMSE by between
3% and 24%, the Qle RMSE by between 12% and
42%, and the Qh RMSE by between 30% and 43% [see
Table 3(ii)].

c. Case 3: Spatial transitivity (both vegetation types)

Here we use a single ANN, trained with the entire
time series from half the sites and tested with the entire
time series of the other half of the sites, with some of
each vegetation type in both the training and testing
sets. The training set consists of Aberfeldy, Bordeaux,
Hyytiala, Little Washita, Ponca City, and Weiden
Brunnen; the testing set consists of Bondville,
Flakaliden, Loobos, Metolius, Norunda, Shidler, and
Tharandt (Table 1). The inputs to the ANN are same as
case 1: downward shortwave, air temperature, the
model output value of the flux, and the vegetation type.

The results for case 3, shown in Fig. 2d and summa-
rized in Table 4, again suggest that the ANN correcting
ORCHIDEE’s NEE simulation learns too much infor-
mation specific to the training sites if the SOFM reso-
lution is high. On the whole, however, with an appro-
priate choice of SOFM resolution, the correction still
provides clear improvements in all fluxes. Note that
here, as in the previous two cases, Qh requires a higher-
resolution SOFM than Qle to achieve the best correc-
tion. This suggests that the nature of LSM systematic
error in Qh is significantly more complex than in Qle.

TABLE 3. The per-time-step RMSE in NEE, Qle, and Qh for case 2. Corrections are shown for all three LSMs using optimal SOFM
resolution (refer to Figs. 3b,c). Results are shown for the ANN trained and tested on (i) coniferous forest sites and (ii) grassland sites.

CASE 2 (i) CBM CBM correction ORCH ORCH correction CLM CLM correction

NEE (�mol m�2 s�1) 4.78 4.37 (9%) 4.56 4.28 (6%) 5.14 4.31 (16%)
Qle (W m�2) 62.90 39.87 (37%) 46.11 39.08 (15%) 45.57 39.49 (13%)
Qh (W m�2) 62.82 49.25 (22%) 66.61 48.43 (27%) 57.36 49.73 (13%)

CASE 2 (ii)
NEE (�mol m�2 s�1) 6.84 6.34 (7%) 8.16 6.21 (24%) 7.42 7.20 (3%)
Qle (W m�2) 74.65 43.01 (42%) 50.41 37.61 (25%) 50.65 44.65 (12%)
Qh (W m�2) 70.43 39.80 (43%) 52.51 36.73 (30%) 68.73 41.85 (39%)

TABLE 4. The per-time-step RMSE in NEE, Qle, and Qh for case 3. Corrections are shown for all three LSMs using optimal SOFM
resolution (refer to Fig. 3d).

CASE 3 CBM CBM correction ORCH ORCH correction CLM CLM correction

NEE (�mol m�2 s�1) 5.21 4.83 (7%) 5.39 5.14 (5%) 5.61 5.13 (9%)
Qle (W m�2) 65.23 40.79 (37%) 46.93 40.91 (13%) 46.53 40.35 (13%)
Qh (W m�2) 64.26 49.10 (24%) 64.30 50.02 (22%) 59.56 54.18 (9%)
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We now examine the effect of the case-3 correction
on mean annual flux values and average diurnal cycle.
In doing so, we will address the very real possibility that
these corrections stem from the systematic observation
error rather than the LSM error.

Figure 3 is a scatterplot of annually averaged Qle
versus Qh for all LSMs and their corrected values at
four sites, each represented by a symbol: Hyytiala (�),
Shidler (	), Tharandt (
), and Bondville (�). Black
bold symbols represent the observed fluxes, while the
three colors represent the three models (CBM in blue,
ORCHIDEE in green, and CLM in red). Corrected
LSM values (by an ANN with SOFM resolution of
162 � 256 nodes), are shown as bold, while normal-type
symbols represent uncorrected LSM simulations. The 4
sites are chosen to be broadly representative of the 13,
both in terms of climate and the effect of the case-3
correction. If the correction has been successful, we
would expect a symbol to “move” (from normal to
bold) closer to its black counterpart. This is the case, for
example, for CBM at Hyytiala—the bold blue triangle
is closer to the black triangle than the normal type tri-
angle. A quick visual inspection suggests that overall,
the correction affords real improvements in this mea-
sure, consistent with the drop in per-time-step RMSE
shown in Fig. 2d.

Figure 4 shows the average diurnal cycle for the three
fluxes at the same four sites. LSM simulation values
without correction are shown as dashed lines, while cor-
rected LSM simulations are represented by solid lines.
Observed values are again in black. As with Fig. 3,

results in this measure are broadly consistent with per-
time-step RMSE: while in some cases the correction
does not improve LSM simulations (e.g., Shidler and
Tharandt NEE), overall it does clearly enhance the
LSM’s predictive ability, particularly in the two energy
fluxes.

d. Case 4: Vegetation-type transitivity

We now investigate whether the nature of the sys-
tematic model error learned by the ANN with one veg-
etation type is transferable to the other. That is, we use
the ANN from case 2, trained to correct coniferous
sites, and test its ability to correct the grassland sites
from the other case-2 testing set, and vice versa. As in
case 2, we only have the standard three ANN inputs;
the ANN has no mechanism to recognize the change in
vegetation type.

Figure 5a shows the results of the ANN correction
trained on coniferous sites tested on grassland sites.
This is the same testing set as in Fig. 2c; note that the
uncorrected model values (the RMSE values at x � 0)
are the same in both plots. In all three fluxes, for all
three models, the ANN is able to produce a positive
correction despite the apparent disparity in its training
and testing sets. Results for Qle and Qh are summa-
rized in Table 5. This demonstrates that the nature sys-
tematic error (a considerable portion of total error) in
these LSMs is relatively insensitive to vegetation type,
at least for the two vegetation types considered here.

Figure 5b shows the results of the ANN correction
trained on grassland sites tested on coniferous sites.
This is the same testing set as in Fig. 2b. Immediately
we can see that the information learned about NEE
LSM error at the grassland sites is not transferable to
the coniferous sites; corrections to all LSMs at all
SOFM resolutions decrease performance. Correction
to Qle and Qh, however, are still strong (see Table 5).
This suggests that the LSMs have some skill in simu-
lating vegetation-specific NEE but not Qle and Qh, at
least for these vegetation types. The asymmetry of veg-
etation-type transitivity presumably means that the
range of NEE prediction error behavior at coniferous
sites is larger and contains the range of behavior seen at
grassland sites to some extent. Why this should be so is
not immediately clear.

e. Case 5: Model transitivity

We now attempt to gauge whether the nature of the
systematic error revealed in previous cases is common
between these LSMs. We use an ANN trained to cor-
rect one LSM and use it to correct another. We use the
training and testing sets from case 1, and therefore have

FIG. 3. Scatterplot of average latent heat (Qle) vs sensible heat
(Qh) at four flux tower sites. Black symbols represent observed
values, blue represent CBM, green represent ORCHIDEE, and
red represent CLM. Bold colored symbols represent each LSM
corrected by a 256-node SOFM ANN, while normal symbols rep-
resent uncorrected model values.
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the same four ANN inputs as case 1. We examine all six
possible permutations.

The two rows of Fig. 5c show the same results using
two different scales. The top row uses the same scale as
in previous cases, and the bottom row allows the full
range of behavior to be shown. We use the shortened
“CBM2ORC” to mean we have trained the ANN to
make a correction to CBM but tested its ability to correct
ORCHIDEE. The legend is as follows: CBM2ORC
(black), CBM2CLM (dark blue), ORC3CBM (green),
ORC2CLM (red), CLM2CBM (light blue), and
CLM2ORC (pink). In considering Fig. 5c, it is useful to
think of the relationship between pairs of models: CBM
and ORCHIDEE (black and green), CBM and CLM
(dark blue and light blue), and ORCHIDEE and CLM
(red and pink). Note that the six lines converge to the

three uncorrected LSM simulation values at the y axis,
and that these three values are those of case 1 in Fig. 2a.

These results demonstrate higher sensitivity to the
SOFM resolution than the previous cases. In all three
fluxes, corrections to CLM by other model ANNs (red
and dark blue lines) result in severe degradations at
certain SOFM resolutions. Also, CLM-trained ANNs
have little capacity to correct the other two models
(light blue and pink). This suggests that the nature of
CLM’s systematic error is significantly different to that
of the other two LSMs. This contrasts with the relation-
ship between CBM and ORCHIDEE (green and black
lines). The ORCHIDEE-trained ANN reduces CBM
NEE RMSE from 5.34 to 4.66 �mol m�2 s�1 (13%);
and vice versa from 4.71 to 4.50 �mol m�2 s�1 (4%).
The ORCHIDEE-trained ANN reduces CBM Qle

FIG. 4. Average diurnal cycles for NEE, Qle, and Qh at the same four sites as Fig. 3. Black lines represent observed values, dashed
lines represent uncorrected LSM simulations, and solid lines represent each LSM corrected by a 256-node SOFM ANN. Blue represents
CBM, green represents ORCHIDEE, and red represents CLM. NEE fluxes are in �mol m�2 s�1; Qle and Qh are in W m�2.
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63.94 to 44.64 W m�2 (30%) and vice versa from 46.40
to 40.05 W m�2 (14%). The ORCHIDEE-trained ANN
reduces CBM Qh from 61.29 to 45.30 W m�2 (26%)
and vice versa from 62.73 to 45.06 W m�2 (28%). This

grouping of CBM and ORCHIDEE is also evident in
the diurnal averages in Fig. 4, particularly for NEE and
Qh. We suspect that these differences in behavior are
likely to be the result of CLM using dynamic vegetation

FIG. 5. The per-time-step RMSE in NEE, Qle, and Qh of corrected LSM simulations. Case 4 represents the ANN correction (a)
trained on coniferous sites and tested on grassland sites, and (b) trained on grassland sites and tested on coniferous sites. (c) Case 5
represents the ANN correction trained to correct one model applied to another model, in all six possible permutations: CBM2ORC
(train on CBM, test on ORCHIDEE, represented in black), CBM2CLM (dark blue), ORC2CBM (green), ORC2CLM (red),
CLM2CBM (light blue), and CLM2ORC (pink). The two rows in (c) are the same plots on two different scales, to allow comparison
with earlier plots.

TABLE 5. Summary of per-time-step Qle and Qh RMSE improvements due to a 256-node SOFM ANN. Results are shown for case
2 (spatial transitivity within vegetation types) and case 4 (vegetation-type transitivity).

Case Qle (W m�2) CBM CBM correction ORCH ORCH correction CLM CLM correction

2(i) Train grass, test grass 74.65 43.01 (42%) 50.41 37.61 (25%) 50.65 44.65 (12%)
4(i) Train conifer, test grass 74.65 40.17 (46%) 50.41 37.71 (25%) 50.65 40.17 (21%)
2(ii) Train conifer, test conifer 62.90 39.87 (37%) 46.11 39.08 (15%) 45.57 39.49 (13%)
4(ii) Train grass, test conifer 62.90 38.45 (39%) 46.11 39.71 (14%) 45.57 39.41 (14%)

Qh (W m�2) CBM CBM correction ORCH ORCH correction CLM CLM correction

2(i) Train grass, test grass 70.43 39.80 (43%) 52.51 36.73 (30%) 68.73 41.85 (39%)
4(i) Train conifer, test grass 70.43 49.73 (29%) 52.51 48.46 (8%) 68.73 51.18 (26%)
2(ii) Train conifer, test conifer 62.82 49.25 (22%) 66.61 48.43 (27%) 57.36 49.73 (13%)
4(ii) Train grass, test conifer 62.82 49.30 (22%) 66.61 50.00 (25%) 57.36 49.97 (13%)
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where the other models did not have this activated,
although a larger LSM sample size would be required
to confirm this.

4. Discussion

Cases 1–3 demonstrate the potential of this type of
correction to be used in regional simulations, at least in
a LSM not coupled to a GCM. They also tell us some-
thing about the proportion of LSM error that is system-
atic error (and thus may be removed through improving
the LSM). We saw in Fig. 2 that despite a wide range of
per-time-step RMSE performance across the three
LSMs (x � 0 values), once the correction was applied
their performance was similar. Whether these values
represent a theoretical limit imposed by the quality of
observed data or the nature of the natural system is
unclear.

How best to choose the SOFM resolution is also not
particularly clear. Although in the extended analysis of
case 3 we chose a 256-node SOFM, there is no reason to
believe that this will always be appropriate. From Figs.
2 and 5a,b it should be clear that there may be a point
at which increasing resolution does not provide any ad-
ditional benefit and may in fact make some simulations
worse. There are however several possibilities for im-
proving this uncertainty. The first would be to ensure
that the training set has a wider range of climatic con-
ditions than the testing set (e.g., by making a more
careful selection of training sites). This may well mean
that all of the curves in these figures continue to de-
crease with increasing SOFM size. The second would
be to improve the mapping ability of SOLO, for ex-
ample, by adding a dimension reduction technique to
the input data.

We must also consider the possibility that the correc-
tion’s success is due to observational bias rather than
LSM bias. That is, that the ANN is correcting reason-
able LSM simulations to better match biased observa-
tions. If this were the case, in Figs. 3 and 4 we would
expect uncorrected LSM values to be grouped together
and observations to be relatively separate. While this
occurs in some instances, it does not appear to be a
consistent pattern. In Fig. 4, for example, uncorrected
model simulations (dashed lines) of all three fluxes are
consistently below observed values at some sites, con-
sistently above at some sites, as well as spread around
observations at others. In terms of annual averages
(Fig. 3), some sites have uncorrected model simulations
spread around the observed values (e.g., Shidler, Bond-
ville, etc.), and others do not. While it is likely that
some observational bias exists (especially given the en-
ergy closure issues discussed by Wilson et al. 2002), it

still appears that model bias dominates. Looking at Fig.
4, it seems more plausible that the ANN has, for ex-
ample, corrected considerable systematic bias CBM’s
prediction of Qle and CLM’s prediction of Qh, particu-
larly at Shidler. The incompatibility of CLM with either
ORCHIDEE or CBM in case 5 also supports the idea
that the bias in question predominantly originates from
the LSMs. We also note that if these results were
largely due to observational bias, the bias would have
to be consistent across the many (and relatively inde-
pendent) observational teams that collected the data.

Case 4 gives us considerable insights into where in-
side the LSMs these problems may occur. In Table 5 we
can see that for Qle, the success of the correction is
entirely independent of the vegetation type on which it
was trained. That is, systematic error in Qle is indepen-
dent of the parts of the model code that distinguish
between these two vegetation types. The results for Qh
tell us something different. While it is clear for grass-
land that a grassland-trained ANN is best for correction
(as we would expect), it matters very little for the co-
niferous sites. This suggests that the much larger range
of Qh behavior at the grassland has enabled the grass-
land-trained ANN to capture the nature of the models’
coniferous error.

Case 5 confirms that the nature of systematic error is
shared by two of the three LSMs. In general, this ap-
proach could be used as a technique for deciding which
models have similar behavioral characteristics, beyond
simply comparing the average values of their outputs.
LSMs that have similar bias characteristics (e.g., CBM
and ORCHIDEE) might, for example, be considered
“dependent” and unsuitable for co-inclusion in a model
ensemble. LSMs which have differing characteristics in
this respect (e.g., CBM and CLM) we might consider as
“independent,” and be ideal for an ensemble simula-
tion.

One of the major criticisms of ANNs is that they
offer little insight into the processes they simulate. This
is certainly true of the correction technique as we have
described it so far. However, while the weights of nodes
in feed-forward ANNs have very little concrete mean-
ing (e.g., as used in van Wijk and Bouten 1999; Dekker
et al. 2001), we suggest that the SOFM-based SOLO
ANN used here could provide insight into the causes of
LSM error. Each SOFM node represents a subset or
“climatological regime” of the training set; those with
large outputs (i.e., large LSM systematic error) should
indicate the subset of conditions under which the LSM
behaves poorly. While such an investigation is beyond
the scope of this paper, this may be another possible
tool for understanding which processes in an LSM re-
quire further development.
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The existence of considerable systematic error in
LSMs (albeit in a sample of only three models) suggests
a need for refinement of the existing processes in LSMs
and brings us to the question of how we can develop
testing regimes that help us to avoid these problems. In
this manuscript we considered three measures of per-
formance. While there is much argument over what
constitutes validation (Berk et al. 2002; Medlyn et al.
2005), for a general LSM validation we would hope for
a more comprehensive set of tests than this. However,
even if we had many performance measures, we still
would have no mechanism to define how well an LSM
should perform. Qualitative descriptions of model abil-
ity may be convincing, but the meaning of any quanti-
tative description is not clear, as we have no benchmark
with which to define “good” performance. Without
having seen the solid colored lines in Fig. 4, we may
have agreed that all three LSMs (dotted lines) were
performing well. Given that a simple multiple linear
regression has the ability to capture seasonal and diur-
nal cycles, we need to be clear that broad qualitative
agreement of long-term averages should not qualify as
model validation.

One possible solution to this problem is to use a
“benchmark time series” to prescribe the level of ability
we expect from a LSM. By providing a time series with
the same time step size as the model under analysis, the
benchmark delineates superior/inferior performance in
whichever measure of performance is appropriate for a
particular study. For example, Abramowitz (2005) used
the SOLO ANN presented here as a statistical model to
produce a benchmark time series. Based on site-by-site
flux tower data, this biophysically based benchmark
time series provided a stricter test at highly predictable
sites (e.g., energy-limited sites), since it was derived
from observed data at each site in question.

5. Conclusions

We have demonstrated the existence of a consider-
able systematic error in the flux outputs of three LSMs.
This systematic error was as much 45% of the per-time-
step RMSE. We have also demonstrated the ability of a
neural network–based technique to correct this system-
atic error. The technique was demonstrated with three
fluxes: latent heat, sensible heat, and net ecosystem ex-
change of CO2, at 13 flux tower sites. The method’s
success was most marked for latent and sensible heat,
but also evident in the net ecosystem exchange of
CO2.The technique also offered some insight into
which LSM processes may be improved to reduce this
systematic error, although the potential for using the
self-organizing map structure of the ANN for this pur-
pose was not explored.

The success of the ANN correction vindicates the
work done by flux observation groups. The fact that the
correction technique trained at some sites was success-
fully tested at others, even on other continents, implies
that the quantities measured by these independent
groups are consistent and directly comparable. The real
possibility that models’ transferability resulted from
systematic observation bias rather than model bias ap-
pears unlikely as model values were regularly scattered
around the observed values (see Figs. 3 and 4). Unfor-
tunately our quality control process and the need for
both meteorological and flux gap-filled data meant this
study could only source data to adequately represent
two vegetation types: coniferous forest and grassland.

By illustrating the considerable proportion of LSM
error that is removable, the technique alerts us to prob-
lems in land surface modeling that might otherwise go
unnoticed. When testing or validating a model, each
user will have particular measures of performance that
they deem important. Yet aside from qualitative agree-
ment with observations, we have no objective measure
to decide how well a model should perform in a quan-
titative sense. How good is good enough? In many of
the cases presented here, a simple linear regression cor-
rection (“1” on the x axes of Figs. 2 and 5) to the LSMs
provided considerable improvements in performance at
sites not included in the regression calculation. These
included sites with different vegetation types, on differ-
ent continents, and in different climatic zones. On this
basis we suggest the use of a benchmarking technique
at a variety of sites, such as that presented in Abramo-
witz (2005), to aid the process of LSM refinement. Vali-
dation of a model would then require a level of model
performance that reflected the complexity and variabil-
ity of the sites being simulated.
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