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ABSTRACT: Outputs from the Florida State University/Center for Ocean-Atmospheric Prediction
Studies (FSU/COAPS) regional spectral model were linked to the CERES-Maize dynamic crop
model, and the sources of uncertainty in yield prediction at 3 sites in the southeastern USA were
examined. Daily incoming solar radiation, Tmax and Tmin, and rainfall output data were obtained
from 1987 to 2004 of retrospective forecasts (hindcasts) that contained 20 ensemble members. These
raw hindcasts were bias-corrected on their cumulative probability functions by using the historical
daily weather records prior to the 18 yr hindcasted period. Six combinations of the 4 meteorological
variables from raw and bias-corrected hindcasts and climatological values were used as sets of
weather inputs into the CERES-Maize crop model. Uncertainties related to these combinations of sets
of weather inputs were analyzed. The bias-correction method improved values of monthly statistics
of the ensemble compared to the raw hindcasts in relation to the observed data. The number and
length of dry spells were also made more accurate with this correction. The main source of uncer-
tainty in linking the FSU/COAPS climate model to the CERES-Maize crop model was the specific
timing of the occurrence of dry spells during the cropping seasons. Plant growth stress caused by soil
water deficit during crucial phenological states largely affects simulated yields. Operationally, the
inability of FSU/COAPS to accurately predict the timing of the occurrence of dry spells makes its
climate forecasts less useful for farmers wishing to optimize planting dates and crop varieties for
crops with short crucial phenological phases, such as maize.
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1. INTRODUCTION

Agricultural and related stakeholders are greatly af-
fected by the interannual variability of the climate. High-
resolution forecasts produced by numerical climate
models may provide useful data for agricultural decision
makers. Important crop decisions are made at the begin-
ning of the cropping season. These decisions (such as
what, how, and when to plant) are usually based on his-
torical climate and crop data (Hansen 2002, Jagtap et al.
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2002), and they cannot be easily changed during the
cropping season (Jones et al. 2000, Baigorria 2007).
Dynamic crop models have been used in the last decade
as supporting tools for decision makers by evaluating
possible scenarios of interannual climate variability (e.g.
Hansen & Indeje 2004) and climate change (e.g. Dubrov-
sky et al. 2000) with agriculture. The El Nifio-Southern
Oscillation (ENSO) index has played an important role in
predicting crop yields in many regions of the world (e.g.
Podestd et al. 2002). However, seasonal ENSO effects do
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not always coincide with important cropping seasons
(Hansen et al. 1999); therefore ENSO does not always
have a clear effect on crop yields, especially during sum-
mers in the northern hemisphere. Regional Circulation
Models (RCMs) nested within Global Circulation Models
(GCMs) have the potential to improve forecasts because
they predict large-scale circulation patterns that may
influence local meteorological variables relative to
ENSO-phase alone. In the southeastern United States
(SE-USA) there is a weak predictability associated with
ENSO during the boreal summer growing season (e.g.
Saravanan & Chang 2000, Giannini et al. 2001). Our
hypothesis is that the use of seasonal climate forecasts
from an RCM in the SE-USA will produce more reliable
predictions of crop yields when coupled with a dynamic
crop model. However, it is necessary to understand the
uncertainties relating to: (1) the spatial downscaling
of the daily seasonal climate forecast; and (2) the inte-
gration effect of the crop model with seasonal climate
forecasts treated as daily weather sequences.

The Florida State University/Center for Ocean-
Atmospheric Prediction Studies regional spectral model
(FSU/COAPS; Cocke & LaRow 2000, Shin et al. 2006),
coupled to the National Center for Atmospheric Re-
search (NCAR) Community Land Model v.2 (CLM2;
Bonnan et al. 2002), may generate useful climate
forecasts for Alabama, Florida and Georgia. This
coupled model (FSU/COAPS) improves the horizontal
resolution of the seasonal surface climate outputs from
~200 km (global model) to ~20 km (Shin et al. 2005,
2006). Two previously validated convective schemes
were included in the model to improve the simulation
of seasonal rainfall in the region (Shin et al. 2003):
(1) The simplified Arakawa-Shubert scheme (SAS; Pan
& Wu 1994) from the National Center for Environmen-
tal Prediction; and (2) the relaxed Arakawa-Shubert
scheme (RAS; Rosmond 1992) developed in the Naval
Research Laboratory. Detailed information on the con-
vective scheme evaluation in the FSU/COAPS model
can be found in Shin et al. (2003).

Over land surfaces, a GCM grid-cell value generally
represents the spatial average of several values cor-
responding to different climatic zones. This fact, in
combination with imperfect model specification (e.g.
Mearns et al. 1995, Goddard et al. 2001), often causes
GCMs to overestimate the number of rainfall events.
Hence, the FSU/COAPS model creates shorter dry
spells in comparison to the observed data during
the simulated cropping season (Shin et al. 2006). This
characteristic leads to an under-prediction of water
stress and an over-prediction of yields, thus reducing
the interannual variability of yields (Dubrovsky et al.
2000). Ines & Hansen (2006) proposed a method to
correct biases in rainfall events and amounts applied
to the cumulative probability functions (CPF). This

method adjusts the CPFs of hindcasted daily rainfall to

the CPFs of the historical record. Biases in hindcasted

incoming solar radiation and Tmax and Tmin from
the FSU/COAPS model were reported by Shin et al.

(2006). We extended the bias correction of Ines &

Hansen (2006) to solve this reported problem.

Several studies link GCMs/RCMs to crop models
(Hansen & Indeje 2004, Cantelaube & Terres 2005,
Challinor et al. 2005, Shin et al. 2006, Baigorria 2007).
All these studies measured crop yield predictability
skills and used different techniques to integrate the
forecasted crop vield realizations as probability distri-
butions, but none investigated the uncertainty of yield
predictability due to linkage of numerical climate and
dynamic crop models—independent methodologies
that have been evolving in parallel.

The present study examined several questions related
to the linkage of daily hindcast data from a regional cli-
mate model to a crop model:

e How much uncertainty is associated with predicting
crop yvields by feeding crop models with daily
FSU/COAPS hindcast data of incoming solar radia-
tion, Tmax and Tmin and rainfall?

e How much uncertainty in crop yield forecasts is
associated with each hindcast variable?

e Can daily climate forecast outputs be used as sea-
sonal daily weather sequence forecasts?

Specific objectives of the present study were:

(1) to quantify improvements in skill when bias
corrections were applied to daily hindcasts of the 4
selected meteorological variables; and

(2) to find and quantify the uncertainty originating
from raw and bias-corrected hindcasts from the FSU/
COAPS when used in a dynamic crop model.

We made no attempt to predict observed corn yields
in the SE-USA. Available statistics of crop yield data
have their own uncertainties due to spatial (climate
and soil variability), temporal (seasonal timescales
such as planting dates and crop management timing)
and other factors more related to farmer and market
preferences (crop variety and management). We will
examine uncertainties related to spatial aggregation in
future research. In the present study, we focused on
the model linking process while trying to fit the crop
model outcomes using observed weather data. This
assumed that the crop model is a perfect representa-
tion of a cornfield.

2. DATA AND METHODS
2.1. Study area

The study area consists of the states of Alabama,
Florida and Georgia in the SE-USA between 35°23'N,
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88°59'W and 24°57'N, 79°26'W. This region has
some of the warmest climate conditions in the United
States. The annual rainfall ranges from 1100 to
1400 mm, with the highest annual precipitation
occurring along the Gulf of Mexico coast and in south
Florida (USGS 2006). Rainfall occurs throughout the
year and is caused by 2 different processes. During
most of the fall and winter months, rainfall occurs
mainly by fronts coming from the northwestern USA.
During this frontal rainy season, correlations among
rainfall measured at weather stations are character-
ized by a widely spread pattern in a northeast—south-
west direction, perpendicular to the usual weather
front paths. During most of the spring and summer
months, rainfall occurs mainly by convective pro-
cesses and tropical storms. During this convective
rainy season, correlations among rainfall measured
at weather stations are characterized by small
concentric patterns in which correlations decrease
rapidly over short distances from each weather station
(Baigorria et al. 2007).

Three counties in the study area with available
weather and soil data, and where corn has been con-
sistently cultivated during the last 18 yr, were selected
for the present study. The counties were Alachua
(Florida), De Kalb (Alabama) and Tift (Georgia).

2.2. Data and tools
2.2.1. Weather stations

One weather station from each of the selected
counties was used in this study: Gainesville in
Alachua County (29°42'N, 82°17'W, 38 m above sea
level [a.s.l.]), Crossville in De Kalb County (34°17'N,
85°58'W, 364 m a.s.l), and Tifton in Tift County
(31°27'N, 83°29'W, 116 m a.s.l). All the available
daily historical record of Tmax and Tmin and rainfall
from these weather stations were obtained from the
National Climate Data Center (www.ncdc.noaa.gov/
oa/ncdc.html). Incoming solar radiation was esti-
mated using the technique of Richardson & Wright
(1984).

Because the bias-correction method is based on fit-
ted probability distribution functions for each meteoro-
logical variable (Beta distribution for incoming solar
radiation, Gaussian distribution for temperatures, and
2-parameter Gamma distribution for rainfall), the chi-
squared test (x?) was used as a formal quantitative test
of the goodness-of-fit. The respective null hypotheses
that the observed data were drawn from a fitted hypo-
thetical distribution were not rejected even at the 5%
level in all months, weather stations and meteorologi-
cal variables.

2.2.2. Retrospective forecast data (hindcasts)

Daily hindcasts of incoming solar radiation, Tmax
and Tmin, and rainfall were taken individually from
20 ensemble members of the FSU/COAPS regional
spectral model (about 20 km resolution). The hindcast
outputs corresponded to the 18 yr period from 1987 to
2004, between March and September of each year. A
set of 20 ensemble members was generated from the
combinations of 10 different atmospheric initial condi-
tions and 2 convective schemes (SAS and RAS). The
seasonal climate simulation outcomes used in this
study are not true hindcasts because the FSU/COAPS
model uses prescribed weekly sea surface tempera-
tures as input. Each ensemble member is a determin-
istic hindcast; however the complete ensemble was
made to fit a probabilistic hindcast.

2.2.3. Soil data

Soil profile characteristics for crop simulations were
obtained from the Natural Resources Conservation
Service (www.nrcs.usda.gov). The soil in Crossville
was characterized by silt loam soil 1.8 m in depth, in
Tifton by loamy sand 2.0 m in depth, and in Gainesville
by sandy soil 2.5 m in depth. The highest field capacity,
which is the maximum amount of water soil can hold
against the force of gravity, was for the Crossville soil
(0.244 cm® cm™®) followed by Tifton (0.183 cm?® cm™3)
and Gainesville (0.103 cm® cm™). Soil organic carbon
content followed the same trend among locations with
15.3, 11.4 and 5.7 g kg™! respectively.

2.2.4. Crop model

The CERES-Maize model (Jones & Kiniry 1986) was
chosen because of the economic importance of corn in
the region and because this crop is more sensitive to
soil moisture deficit than other crops in the region,
such as cotton and peanuts (Sadras & Calvino 2001).
Thus, impacts of rainfall forecasts on crop yields can be
evaluated relative to impacts of total rainfall and rain-
fall frequency. The CERES-Maize model has been cal-
ibrated and validated in different regions of the world
(e.g. Steele et al. 2000, Fraisse et al. 2001, Jones et al.
2003), and used for studying impacts of climate vari-
ability and change in several regions (e.g. Phillips et al.
1999, Dubrovsky et al. 2000, SRAT 2002, Hansen &
Indeje 2004).

The CERES-Maize model was used to simulate corn
yield response under the different observed and hind-
casted weather data sets. With the exception of the
planting date, crop management was set according to
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previous research in Gainesville (Jones et al. 1986). The
corn variety simulated was McCurdy 84AA, planted in
a density of 7.2 plants m™2. Seven planting dates begin-
ning on March 20 and finishing on May 19 (every 10 d)
were simulated for each year. The planting date range
was in agreement with standard planting dates in the
southeastern USA, though early and late planting
dates were constrained due to the hindcast period
available. Harvests were set at physiological maturity.
The corn crops were simulated as rainfed (no irriga-
tion) and with a total of 255 kg ha! of N fertilization;
51 kg ha™! applied 5 times at 14 d intervals.

2.3. Bias correction

To correct the 18 yr period of daily rainfall amount
and frequency of each hindcast's ensemble member, a
bias-correction method was applied to the 2-parameter
Gamma CPF (Ines & Hansen 2006). Thus, at the
weather station, the CPF of each hindcasted ensemble
member was adjusted to the CPF made from the avail-
able historical record prior to 1987 (an independent
dataset). We extended this method to correct biases on
incoming solar radiation, and Tmin and Tmax using the
Beta and Gaussian cumulative probability distributions,
respectively. The mathematical formulations used to
bias-correct incoming solar radiation and temperatures
are given in Appendix 1. The bias-correction method
was applied to each ensemble member for each month
from March to September across the 18 yr period.

2.4. Measuring bias-correction performance
2.4.1. Incoming solar radiation and temperatures

The total squared error (TSE) was used as an accuracy
measurement to compare the cumulative probabilities of
the raw and subsequently the bias-corrected hindcast
[F(x)], inrelation to the observed cumulative probability
[F,(x)] of the evaluated variable x (see Eq. 1). TSE was
used to evaluate incoming solar radiation, Tmax and
Tmin. To do so, we integrated the areas between the
observed and hindcasted curves across the range of
cumulative probabilities and variable values.

42 1
TSE = [[F(x)- F,(x)*dx )

2.4.2. Rainfall
2.4.2.1. Daily rainfall occurrence events

To evaluate the performance of the bias-correction
method on the daily rainfall occurrence events in com-

parison to the observed data, 2 x 2 contingence tables
were used. Contingence tables were performed indi-
vidually for each ensemble member and for the entire
season. Four possibilities were evaluated in the contin-
gence tables: (1) hits: a rainfall event was hindcast and
an event occurred; (2) false alarms: a rainfall event was
hindcast but a rainfall event did not occur; (3) misses: a
rainfall event was not hindcast but a rainfall event
occurred; and (4) correct rejections: a rainfall event
was not hindcast and an event did not occur. The
Peirce skill score (PSS; Peirce 1884) was used to sum-
marize the square contingency tables. The PSS was
interpreted as an improvement over a reference fore-
cast, which in this case corresponds to the climatology.
The PSS was calculated for each ensemble (i) as:

pss = P10+ P(y2,00) = p(y1)P(0) = P(¥2)P(0y)
1-p(oy)p(oy)— p(o))p(0y)

Variables are defined in Table 1. Perfect forecasts
received a score of 1, random forecasts received a
score of 0, and forecasts inferior to the random fore-
casts received a negative score (Wilks 2006).

(2)

Table 1. Description of variables

Symbol Definition Units

X Daily value MIm2d?, °C

X Mean MJm2d?tor°C

n Sample size Dimensionless

pq Parameters of the Dimensionless
Beta distribution

s Standard deviation

a, b Minimum and maximum MJm2d!
possible values of incoming
solar radiation to truncate
the Beta distribution to the
range [0,1]

x' Transformed value MJm2d?

r Incomplete Gamma Dimensionless
distribution

X; Monthly hindcasted value ~ MJ m 2 mo!, °C

Xobs Monthly observed value at mm mo!
weather station

Xobs Monthly observed mean MJm 2 mo},°C
value at weather station

Xai Monthly observed climato- mm mo™!
logical value

py1,01) Joint probability of hits Dimensionless

P(¥2,02) Joint probability of correct Dimensionless
rejections

plo) Marginal distributions of Dimensionless
observations

pvi) Marginal distributions of Dimensionless
forecasts

F(x), F,(x) Cumulative probability of a = Dimensionless
hindcasted (raw or corrected)
and observed variable,
respectively
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2.4.2.2. Monthly rainfall and the number of rainy days

To evaluate the performance of the bias-correction
method on total monthly rainfall amounts and the
number of rainy days, mean and standard deviation
across the 18 yr hindcast period were calculated indi-
vidually for each ensemble member. These statistics
were calculated for both the raw and the bias-corrected
hindcasts, and were compared to the observed data.
Root mean squared deviations (RMSD) were calcu-
lated monthly and for the entire period from March to
September for each ensemble member.

A skill score SSg; (%), constructed using the mean
squared error as the accuracy statistic, was used.
The SSy; was computed using climatological values
as the reference forecast, and thus is the percentage
improvement over climatology (Wilks 2006). SSg
values range between —e (total lack of predictability in
comparison to the climatology) and +100 % (maximum
predictability in relation to the climatology). The SSu;
was calculated monthly and for the entire period from
March to September for each ensemble member (i)
(variables defined in Table 1):

Y. (X; = Xobs)?

100 Q)
Z(Xobs - XCH)Z -

SSai = 100-

cli;

2.4.2.3. Dry spell length frequencies

Dry spell length frequencies for the entire period
from March to September were calculated for each
ensemble member for both the raw and the bias-
corrected data. Histograms were performed to com-
pare these outcomes with the observed dry spell
length frequencies.

2.5. Linking crop models and RCM
2.5.1. Effects of bias-correcting meteorological variables

Six combinations of the 4 meteorological variables
from raw and bias-corrected hindcasts, and climato-
logical values, were used as sets of weather inputs to
the crop model: (1) raw hindcasts of all variables; (2) a
bias-corrected hindcast of incoming solar radiation
and a raw hindcast of the remaining variables; (3) a
bias-corrected hindcast of Tmax and Tmin and a
raw hindcast of the remaining variables; (4) a bias-
corrected hindcast of rainfall and a raw hindcast of
the remaining variables; (5) a bias-corrected hindcast
of rainfall and climatological monthly average of the
remaining variables; and (6) a bias-corrected hindcast
of all variables.

Each crop simulation used a single set of weather
inputs, as well as soil profile and management prac-
tices. We did not evaluate how representative the
scenarios were, and did not attempt to account for
heterogeneity of soils or weather.

After crop simulations for all ensemble members
were performed, yearly simulated grain yield dry mat-
ter was evaluated to measure the uncertainty of using
the 6 different sets of weather inputs. Pearson's corre-
lation and RMSD were computed for simulations using
each set of weather inputs based on comparisons with
the simulation using observed weather data. The inter-
annual variability of dry matter yields for the entire
ensemble was analyzed for each set of weather inputs
using box-whisker plots.

2.5.2. Effects of rainfall distribution

The CERES-Maize model considers 2 types of zero-
to-unity soil water deficit factors (0 indicates no stress,
and 1 indicates maximum stress). The factor selected
for the present study was the most sensitive, affecting
not only photosynthesis but also plant cell expansion
(growth). This soil water deficit factor is defined as the
ratio between the potential root water uptake from the
soil profile and the plant evaporation, multiplied by
0.67 (Jones & Kiniry 1986).

Analyses of the effects of the quantity and distribu-
tion of daily rainfall on the crop simulations were per-
formed seasonally using this water stress factor. Daily
values of water stress were transformed to binary data
by assigning 1 to all values >0 and leaving the remain-
ing values as 0. Thus, the distribution of the days
where water deficit affected growth and yield were
taken into account. This was done to analyze the tem-
poral relationship between dry spell distributions and
crop yields.

2.5.3. Simulated crop yield using observed data

The use of only one planting date to measure the
effects of hindcasted daily seasonal climate on crop
yields would cause the results to be highly affected by
the rainfall distribution relative to the one crop grow-
ing cycle (see Section 3.2.2). Analysis across several
planting dates reduces the effects of water stress in the
crop due to the daily distribution, and emphasizes the
interannual variability of the total amount of hind-
casted rainfall and the other 3 meteorological vari-
ables.

Bias correction applied to all meteorological vari-
ables was used to analyze the interannual variability
of the potential predictability of corn across the differ-
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ent planting dates. The mean of the 20 crop yield
ensemble members over all planting dates was calcu-
lated for each year. All grain dry-yield values below
0.5 Mg ha™! were discarded from the analysis because
under real conditions these values would be reached
when freezing events occur. Under these circum-
stances, farmers would partially or totally re-plant
their fields depending on the extent of damage. The
first quartile, the median, and the third quartile were
calculated yearly across the planting dates for both
simulations, using observed and hindcasted daily sea-
sonal climate data. Pearson's correlation, along with
its statistical significance level and RMSD, were cal-
culated by comparing the averages of both simulated
grain dry yields.

3. RESULTS AND DISCUSSION
3.1. Bias correction analysis
3.1.1. Incoming solar radiation and temperature

Comparing the TSE values obtained from the daily
raw and bias-corrected hindcasts, it was obvious that
the bias-correction of incoming solar radiation and
Tmin reduced the values of TSE for the 3 weather
stations. However, the bias-correction applied to Tmax
in Gainesville was not significant. The same analyses
performed at a monthly level showed that the bias-
correction for both temperatures were also not sig-
nificant when applied in Gainesville. This lack of
improvement was a result of good skill levels of pre-
dictions of these variables in that location by the FSU/
COAPS regional spectral model (Fig. 1).

3.1.2. Rainfall
3.1.2.1. Daily rainfall events

As expected, PSS values demonstrated that daily
rainfall occurrences were poorly hindcasted. After
bias-correcting daily rainfall occurrence events, 68 %
of the PSS values were positive; however values
were <0.082, therefore predictions were only slightly
better than a random forecast. These results are
not surprising because GCMs and RCMs were cre-
ated to generate seasonal-climate forecasts and they
are not accurate daily weather forecasters, despite
the simulation time at which they operate. How-
ever, we used bias-corrected daily RCM outputs in
dynamic crop models in this study, and the signifi-
cance of this will be examined further in Section
3.2.2.

3.1.2.2. Monthly rainfall and the number of rainy days

Bias correction effectively decreased the number of
monthly rainfall events by applying a threshold
to achieve the historical record distribution (Ines &
Hansen 2006). Adjustments to the CPF resulted in
good performance relative to correctly producing rain-
fall amounts across the studied months and to the
entire season in comparison to the historical record.
Over all ensembles, monthly and seasonal bias-
corrected rainfall amounts averaged for the 18 yr
period showed values similar to the climatology. Stan-
dard deviations from the historical record were, in
83% of the cases, lower than those calculated from
each ensemble member for the 18 yr period. Similar
means and standard deviations that were higher
than the climatology were due to the accumulation
of monthly rainfall overestimations across the 18 yr
period. For the entire season, RMSD within the bias-
corrected ensemble ranged from 28.2 to 70.0 % of the
observed mean rainfall, and from 10.5 to 39.0 % of the
observed mean number of rainy days. This was a sig-
nificant improvement in comparison to the RMSD
within the raw ensemble, which ranged from 77.0 to
197.1 % of the observed mean rainfall, and from 63.0 to
196.4 % of the observed mean number of rainy days.
Despite the improvements in the hindcasts, SSg;
showed negative values in most of the cases. Positive
values were lower than 8% for the total rainfall
amount, and lower than 5% for the number of rainy
days, taking into account the 3 weather stations and
the 20 ensemble members. This means that only in
some cases did the bias-corrected hindcast perform
better than the climatology. However, improvements in
some individual ensemble members increased the pre-
dictability skills of the entire probabilistic ensemble.

3.1.2.3. Dry spell length frequencies

The length and frequency of the dry spells were
adjusted adequately for the 3 weather stations using
the bias corrections. An example for Gainesville for 2
different ensemble members is shown in Fig. 2. Similar
results were obtained for all of the ensemble members
and weather stations.

3.2. Linking FSU/COAPS and CERES-Maize models
3.2.1. Effects of bias-correcting meteorological variable
A case study in which only one planting date was used

(Fig. 3) shows the comparison of simulated corn yields
using the raw hindcasts of all variables (Fig. 3a) versus
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the bias-corrected hindcasts of all variables (Fig. 3f), as
well as the effects of each of the bias-corrected indi-
vidual variables (Fig. 3b—e). The highest Pearson's cor-
relation between the mean of the 20 crop yield ensem-
ble members and the simulated crop yields using
observed weather was reached when all the variables
were bias-corrected (Fig. 3f). In almost all cases, except
Fig. 3e, Pearson's correlations increased in comparison
to the baseline (raw hindcast for all variables), although
none of the correlations were significant. The lowest
value for Pearson's correlation was found when in-
coming solar radiation and temperatures were replaced
by the climatological values (Fig. 3e). The highest
RMSD was found when temperatures were bias cor-
rected (Fig. 3c), and those hindcasts showed a large
positive bias. The lowest RMSD obtained in this case
study was obtained using a raw hindcast in all vari-
ables, closely followed by the cases when incoming
solar radiation was bias-corrected (Fig. 3b) and when
all variables were bias-corrected (Fig. 3f).

Bias correcting Tmax and Tmin increased yield
values compared to the raw hindcast of all variables
(Fig. 3c & 3a, respectively). Pearson's correlations and
RMSD increased in both cases. As shown in Fig. 1, the
FSU/COAPS regional spectral model overestimated
temperatures. Bias-correcting Tmax and Tmin de-
creased these values, thus decreasing the simulated
evapotranspiration rates and water stress. In addition,
cooler temperatures lengthened the crop growing sea-
son. Both of these physiological responses resulted in
higher simulated yields for this case.

Bias correction of incoming solar radiation increased
Pearson's correlations compared to the raw hindcast of
all variables (Fig. 3b & 3a, respectively).

Comparing crop yield ensembles, none of the con-
vective schemes was more skilful than the others. As
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explained by Shin et al. (2006), the spatial variability in
the predictability skills of the FSU/COAPS regional
spectral model was due to the highly nonlinear inter-
action between the land and the convective schemes.

3.2.2. Effects of rainfall distribution

Yields simulated by dynamic crop models were highly
sensitive to dry spell sequences during the cropping
season. Dubrovsky et al. (2000) reported that in-
creasing persistence of wet/dry day occurrence resulted
in an increasing probability of drought stress occur-
rences, which were accompanied by decreased mean
and increased variance of the grain yields. According
to our results, not only was increasing persistence of
wet/dry day occurrence important, but also the timing
of those dry spells within the cropping season was
especially important. Fig. 4 shows the total and
monthly amounts of rainfall during the cropping sea-
son, along with corn yields and stress factors affecting
growth during the cropping season. The randomly
selected location and year in Fig. 4 was Gainesville
1990. As an example, the crop yield Ensemble Member
2 received the maximum amount of rainfall in compar-
ison to other members and to the observed data. How-
ever, it showed one of the lowest simulated yields. This
was because a long dry spell occurred just before and
during tasseling, the most critical period in the produc-
tion of corn (Irmak et al. 2000). The opposite occurred
in crop yield Ensemble Member 6 where the total
rainfall amount was in the below-normal tercile, but
simulated yields were in the above-normal tercile.
In this case, most of the water stress occurred after
the grain-filling phase where water did not play an
important role in yield.
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Fig. 4. Observed (obs) and simulated (ensemble) periods of water stress affecting corn growth and the relationship to dry matter
grain yields and total monthly rainfall for Gainesville station, 1990
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Table 2. Root mean squared error (Mg ha™!) between simulated corn yields
(dry matter) using observed weather and each bias-corrected hindcast of
ensemble members for all variables. X: average dry matter from the 7

planting dates

showed a significant reduction in the RMSD
in Gainesville and Tifton. In Crossville, the
bias-correction method slightly increased
the RMSD. Comparisons of the interannual

i . i . i variability of the simulated grain dry matter
Planting Gainesville Crossville Tifton . . .
dates Raw Bias- Raw Bias- Raw Bias- yields using observed and bias-corrected
corrected corrected corrected hindcasted data are presented in Fig. 5. The
interannual distribution of mean simulated
March 20 5.52 2.45 2.28 2.73 4.20 1.84 grain dry matter yield and the first and third
March 30 4.77 246 1.94 2.52 411 2.02 uartiles produced using observed weather
April 9 408  2.32 216 2.57 423 241 q P g observed
April 19 3.27 231 2.56 2.79 4.10 248 data were higher than the distribution of the
April 29 2.86 2.11 2.31 2.48 4.12 2.84 same variable using bias-corrected hind-
May 9 2.68 2.25 2.45 2.63 4.06 2.75 casted data. These differences were due to
May 19 2.33 2.83 2.53 2.80 3.60 2.66 averages which were across the 20 crop
X 3.42 1.99 2.03 2.38 3.92 2.23 . . oL
yield ensemble members and which elimi-

Places with soil textures with higher clay, silt and
organic matter contents than the 3 selected locations
could be less affected by this problem since more
water can be retained in the soil, increasing water
availability, and thus reducing the water soil stress
factor.

3.2.3. Simulated crop yield using observed data

Application of the bias-correction method reduced the
RMSD of corn yields for all planting dates in Gaines-
ville and Tifton, but the opposite occurred in Crossville
(Table 2). Annual simulated grain dry matter, estimated
as the average across different planting dates, also
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r=0.1982 RMSD = 1.99
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nated extreme realizations.

4. CONCLUSIONS

Bias correction applied to the CPF improved the
quality of daily and monthly hindcast data provided by
the FSU/COAPS regional spectral model for most vari-
ables and locations. Dry spell length and frequency
were also adequately corrected over the 18 yr hind-
casted period by this method; however, as anticipated,
timing of rainfall events and dry spells within a grow-
ing season were not well simulated or corrected.

There was a large degree of variability among the
crop yield ensemble members. Differences in dry spell
distribution within the cropping season were the main

r=0.3079 RMSD =2.23

Grain dry matter (Mg ha™")

r=0.0361

RMSD =2.38
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Fig. 5. Simulated grain yield dry matter using observed

weather (dots and lines) and hindcasted daily seasonal cli-

mate (box and whisker plots) for (a) Gainesville, (b)

Crossville and (c) Tifton. (®) Mean, (----) first and third

quartile of the 20 ensemble member average across 7

planting dates. None of the Pearson correlation values
(r) are statistically significant (p = 0.05)
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source of uncertainty when linking the FSU/COAPS to
the CERES-Maize model. A lack of accuracy in pre-
dicting the timing of dry spell occurrences combined
with a short critical phenological phase window in the
crop made the linking process difficult. However, due
to improvements, the daily hindcast may be effective
when applied to crops that are less sensitive to water
stress in a critical growth phase (e.g. pastures, peanut
and cotton) in the SE-USA.
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Appendix 1. Description of the bias-correction method applied to incoming solar radiation and Tmax and Tmin

Bias-correction of incoming solar radiation

The probability density function for the Beta distribution
can be written as (Wilks 2006):
fwpa) = |22 g 0sxs1 pg>0 (A1)
I'(p)l'(qg)
See Table 1 for definitions of variables. The Beta distribu-
tion parameters were fitted using the method of moments
and thus, the moment estimators were calculated using:
_2 p— A —
~  X*(1-X) _ . 1-X
p=¥—x; qzu (A2)

52 X

where p and g are the moment estimators (dimensionless) of
p and qg. Because values of incoming solar radiation ranged
from 0 to 33 MJ m~2 d°!, and the Beta distribution is limited
to the interval [0,1], a transformation is needed before its
application by using:

- 2
_,_X-a o _  Sj
Xt T (b-a)? (A3)

T'(A) is defined as the gamma function, and is estimated

by: .
o = [ z-ledz
z=0

(Ad)

The inverse of the Beta cumulative distribution was used
to solve for specific x values by an iterative search tech-
nique. After the bias-correction was applied, values of in-

coming solar radiation were checked to avoid values out of
an appropriate range. Low values of incoming solar radia-
tion are usually related to short day lengths, and generally
occur in high latitudes and are related to cloudy conditions.
For instance, the lowest value of daily incoming solar radia-
tion (0 MJ m™2 d-') was reached only during wintertime in
latitudes higher than 66° 33’ (polar circles) where day length
= 0. Therefore, bias-corrected values with <20% of the
extraterrestrial radiation (<0.1 % of the data) were replaced
by this 20 %. This threshold was established by taking the
measured observation of 2 automatic weather stations net-
works operating in the study area (http://fawn.ifas.ufl.edu
and www.georgiaweather.net) into consideration.

Bias-correction of Tmax and Tmin

The probability density function for the Gaussian distribu-
tion can be written as (Wilks 2006):

_(x-x)?
e 2s2

f(x:X,s) =
sV2w
Applying bias-correction to Tmin and to Tmax separately
can generate values of Tmin larger than Tmax (G. A. Bai-
gorria pers. obs.). To avoid this, data from both variables
were combined before fitting the Gaussian distribution.
The inverse of the Gaussian cumulative distribution was
used to solve for specific x values by an iterative search
technique.
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