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Abstract

Wind direction is an angular variable, as opposed to weather quantities such as
temperature, quantitative precipitation or wind speed, which are linear variables. Con-
sequently, traditional model output statistics and ensemble post-processing methods
become ineffective, or do not apply at all. We propose an effective bias correction tech-
nique for wind direction forecasts from numerical weather prediction models, which is
based on a state-of-the-art circular-circular regression approach. To calibrate forecast
ensembles, a Bayesian model averaging scheme for directional variables is introduced,
where the component distributions are von Mises densities centered at the individu-
ally bias-corrected ensemble member forecasts. We apply these techniques to 48-hour
forecasts of surface wind direction over the Pacific Northwest, using the University of
Washington Mesoscale Ensemble, where they yield consistent improvements in forecast
performance.

1 Introduction

Forecasts of wind direction have varied and important uses, ranging from air pollution man-
agement to aircraft and ship routing and recreational boating. However, wind direction is an
angular variable that takes values on the circle, as opposed to other weather quantities, such
as temperature, quantitative precipitation or wind speed, which are linear variables that
take values on the real line. As a result, traditional post-processing techniques for forecasts
from numerical weather prediction models tend to become ineffective or inapplicable. For
example, Engel and Ebert (2007, p. 1351) note that bias correction was “found not to be
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beneficial to wind direction forecasts”. The purpose of this paper is to develop effective bias
correction and ensemble calibration techniques that are tailored to wind direction, by taking
the angular nature of the variable into account.

The remainder of the paper is organized as follows. In Section 2 we describe our approach to
bias correction and ensemble calibration in detail. We adopt the circular-circular regression
approach of Downs and Mardia (2002) and Kato et al. (2008), and develop a Bayesian
model averaging scheme for directional variables, where the component distributions are
von Mises densities centered at the individually bias-corrected ensemble member forecasts.
Section 3 provides a case study on 48-hour forecasts of surface wind direction over the Pacific
Northwest in 2003 using the University of Washington Mesoscale Ensemble (Grimit and Mass
2002; Eckel and Mass 2005). In these experiments, our methods turn out to be effective and
yield consistent improvement in forecast performance. The paper closes with a discussion in
Section 4.

2 Methods

Wind direction is an angular variable that takes values on the circle, and as such can be
represented in various equivalent ways. We use degrees to describe predicted and observed
wind directions, with 0, 90, 180 and 270 degrees denoting a northerly, easterly, southerly
and westerly wind. The angular distance or circular absolute error,

AEcirc(f, v) = min(|v − f |, 360− |v − f |) (1)

between two directions 0 ≤ f, v < 360 then is a non-negative quantity with a maximum of
180 degrees. Occasionally, it will be useful to identify a direction, v, with the point

θ(v) = eiπ (90−v)/180

on the unit circle in the complex plane. Under this one-to-one mapping, directions of 0, 90,
180 and 270 degrees correspond to the imaginary unit, i, 1, −i and −1, respectively.

a. Bias correction

Systematic biases are substantial in dynamic modeling systems (Atger 2003; Mass 2003),
and bias correction is an essential and well-established step in weather forecasting. The
predominant approach is based on regression, using model output statistics (MOS) schemes
based on multiple linear regression for linear variables, such as temperature or pressure, and
logistic regression for binary variables, such as precipitation occurrence or freezing (Glahn
and Lowry 1972; Wilks 2006a). For wind, one might develop separate MOS equations for
zonal and meridional components and derive single-valued wind direction forecasts from them
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(Carter 1975; Glahn and Unger 1986), but this does not take the dependencies between the
wind components into account. Thus, we take a different approach and propose the use of a
state-of-the-art circular-circular regression technique.

Specifically, let f and v denote the predicted and observed wind direction, respectively.
Let θ(f) and θ(v) denote the associated points on the unit circle in the complex plane, as
described above. Downs and Mardia (2002) and Kato et al. (2008) propose a regression
equation of the form

θ(v) = β0
θ(f) + β1

1 + β̄1θ(f)
, (2)

where β0 is a complex number with modulus |β0| = 1, β1 is any complex number and the bar
denotes complex conjugation. The mapping from θ(f) to θ(v) is a Moebius transformation
in the complex plane which is one-to-one and maps the unit circle to itself. The regression
parameters β0 and β1 need to be estimated from training data. While β0 is a rotation
parameter, β1 can be interpreted as pulling a direction towards a fixed angle, namely the point
β1/|β1| on the unit circle, with the concentration about β1/|β1| increasing as |β1| increases
(Kato et al. 2008). In our circular-circular regression approach to bias correction for
wind direction, we estimate the regression model (2) from training data, by minimizing the
sum of the circular distances between the fitted bias-corrected forecasts and the respective
verifying directions as a function of the regression parameters β0 and β1.

For comparison, we consider two reference techniques. The first is median-angle correc-
tion, which arises as the special case of circular-circular regression in which the parameter
β1 = 0 is fixed. Then the regression equation (2) is simply a rotation. In our minimum circu-
lar distance approach to estimation, the rotation parameter β0 becomes the circular median
of the directional errors in the training data. The second reference technique is mean-angle
correction, that is, a rotation by the circular mean of the directional errors in the train-
ing data. Recall here that if the training data comprises the pairs (f1, v1), . . . , (fn, vn) of
predicted and observed directions, the median of the directional errors is the angle m that
minimizes

n
∑

k=1

AEcirc(|vk − fk|, m),

which is equivalent to the definition in eq. (2.32) of Fisher (1993, p. 36). The respective
circular mean is obtained by forming the vector sum of the directional errors, each of which
is represented as a unit vector in the complex plane, and rescaling to the unit circle, or
equivalently, by applying eq. (2.9) of Fisher (1993, p. 31).

b. Von Mises distribution for angular data

The von Mises distribution is a natural baseline for modeling angular data such as wind
directions, and it may be viewed as a circular analogue of the Gaussian distribution (Fisher
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1993, p. 49). Specifically, an angular variable is said to have a von Mises distribution with
mean direction µ and concentration parameter κ ≥ 0 if it has density

g(v|µ, κ) =
1

360

exp(κ cos((v − µ) π
180

))

I0(κ)

on the circle, where I0 is a modified Bessel function of the first kind and order zero. As
the concentration parameter κ gets close to zero, the von Mises distribution becomes a
uniform distribution on the circle. In the Appendix, we review maximum likelihood (ML)
estimation for the concentration parameter of the von Mises distribution, which can be
viewed as a limiting case of Bayes estimation under weak prior information (Guttorp and
Lockhart 1988).

c. Bayesian model averaging

During the past decade, the ability of ensemble systems to improve deterministic-style fore-
casts and to predict forecast skill has been convincingly established (Palmer 2002; Gneiting
and Raftery 2005). However, forecast ensembles are typically biased and underdispersive
(Hamill and Colucci 1997; Eckel and Walters 1998), and thus some form of statistical post-
processing is required. Wilks (2006b), Wilks and Hamill (2007) and Bröcker and Smith
(2008) review and compare techniques for doing this.

Bayesian model averaging (BMA) was introduced by Raftery et al. (2005) as a statistical
post-processing method that generates calibrated and sharp predictive probability density
functions (PDFs) from ensemble forecasts. The BMA predictive PDF of any future weather
quantity of interest is a weighted average of PDFs associated with the member forecasts,
where the weights reflect the members’ predictive skill over a training period. The initial
development was for linear weather quantities, such as surface temperature, quantitative
precipitation and wind speed (Raftery et al. 2005; Sloughter et al. 2007; Wilson et al. 2007;
Sloughter et al. 2009), for which the component PDFs are probability distributions on the
real line. For all variables considered and on both the synoptic scale and the mesoscale,
the BMA post-processed PDFs outperformed the unprocessed ensemble forecast and were
calibrated and sharp.

Here we extend the BMA approach to accommodate wind direction, which is an angular
variable and thus requires component PDFs that are probability distributions on the cir-
cle. Let f1, . . . , fm denote an ensemble of bias-corrected forecasts. We then take the BMA
predictive PDF to be a mixture of the form

p(v|f1, . . . , fm) =
m

∑

j=1

wj g(v|fj, κj),

where the components are von Mises distributions with mean direction fi and concentration
parameter κi. The BMA weights w1, . . . , wm are probabilities and so they are nonnegative
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and add up to 1, that is,
∑m

j=1 wj = 1. Our standard BMA specification uses a common
concentration parameter, so that

p(v|f1, . . . , fm) =

m
∑

j=1

wj g(v|fj, κ). (3)

The common concentration parameter simplifies and stabilizes estimation and, in our experi-
ence with the University of Washington Mesoscale Ensemble, does not deteriorate predictive
performance.

The BMA weights, w1, . . . , wm, and the concentration parameter, κ, of the component PDFs
are estimated by maximum likelihood (ML) from training data. Typically, the training
set comprises a temporally and/or spatially composited collection of past, bias-corrected
ensemble member forecasts, f1k, . . . , fmk, and the corresponding verifying direction, yk, where
k = 1, . . . , n, with n the number of cases in the training set. The likelihood function, ℓ, is
then defined as the probability of the training data, viewed as a function of the wi’s and κ,
that is,

ℓ(w1, . . . , wm; κ) =

n
∏

k=1

m
∑

j=1

wj g(vk|fjk, κ),

where the product extends over all instances in the training set. The ML estimates are those
values of the wj’s and κ that maximize the likelihood function, that is, the values under
which the verifying directions were most likely to materialize.

The likelihood function typically cannot be maximized analytically, and so it is maximized
using the expectation-maximization (EM) algorithm (Dempster et al. 1977; McLachlan and
Krishnan 1997). The EM algorithm is iterative, and alternates between two steps, the E
(or expectation) step, and the M (or maximization) step. It uses unobserved quantities zjk,
which can be interpreted as the probability of ensemble member j being the most skillful
forecast for verification vk. The z1k, . . . , zmk are nonnegative and sum to 1 for each instance
k in the training set.

In the E step, the zjk are estimated given the current values of the BMA weights and
component PDFs. Specifically,

z
(l+1)
jk =

w
(l)
j g(vk|fjk, κ

(l))
∑m

q=1 w
(l)
q g(vk|fqk, κ(l))

, (4)

where the superscript l refers to the lth iteration of the EM algorithm, and thus w
(l)
q and

κ(l) refer to the estimates at the lth iteration. In the M step we obtain updated estimates

w
(l+1)
j =

1

n

n
∑

k=1

z
(l+1)
jk (5)
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of the BMA weights. Furthermore, an updated estimate, κ(l+1), of the common concentration
parameter is obtained by optimizing the complete data likelihood given the latent variables,
that is, by maximizing

n
∑

k=1

m
∑

j=1

z
(l+1)
jk log g(vk|fjk, κ) (6)

over κ ≥ 0. For implementation details, see the Appendix.

An ensemble forecast can occasionally be poor, in the sense that all member forecasts turn
out to be substantially different from the verifying direction. This possibility motivates a
BMA specification with a uniform mixture component. Under this more general specification,
to which we refer as BMA+, the predictive density becomes

p(v|f1, . . . , fm) =

m
∑

j=1

wj g(v|fj, κ) + wm+1 u(v), (7)

where u is the density of a uniform distribution on the circle, that is, a von Mises distribution
with concentration parameter κ = 0, and where the BMA weights are nonnegative and add
up to 1, so that

∑m+1
j=1 wj = 1. The intention here is similar to that of the addition of

a climatological mixture component, as proposed and implemented for linear variables by
Rajagopalan et al. (2002) and Bröcker and Smith (2008). The adaption of the EM estimation
algorithm from the BMA to the BMA+ specification is straightforward.

d. Forecast verification

Wind direction is an angular variable, and standard scoring rules for linear variables do not
apply. Instead, we use circular analogues of the absolute error and the continuous ranked
probability score, as described by Grimit et al. (2006).

From a probabilistic forecast for an angular quantity, we can create a single-valued forecast
by determining the circular median of the predictive distribution, as described above and
by Fisher (1993, pp. 35–36). To assess the quality of this forecast, we use the mean circular
distance or circular absolute error, AEcirc(f, v), between the single-valued forecast, f , and
the verifying direction, v, as given by eq. (1) in the unit of degrees.

To assess probabilistic forecasts for an angular quantity, we use the angular or circular
continuous ranked probability score, which is defined by

CRPScirc(P, v) = E
{

AEcirc(V, v)
}

−
1

2
E
{

AEcirc(V, V ∗)
}

, (8)

where P is a forecast distribution on the circle, v is the verifying direction, V and V ∗ are
independent copies of an angular random variable with distribution P , and E{·} denotes
the expectation operator. Note that when P is a uniform distribution on the circle, then
CRPScirc(P, v) equals 45 degrees, independently of the verifying direction. The circular
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continuous ranked probability score is proper and reduces to the circular distance when the
forecast is single-valued, just as the linear continuous ranked probability score generalizes
the absolute error (Grimit et al. 2006). It takes the unit of degrees and allows for the
direct comparison of deterministic (single-valued) forecasts, discrete ensemble forecasts, and
post-processed ensemble forecasts that can take the form of a predictive density.

For some predictive distributions, such as mixtures of von Mises densities, the circular con-
tinuous ranked probability score cannot be computed analytically. In such cases, we approx-
imate it by simulating a Monte Carlo sample v1, . . . , vN from the predictive distribution, and
computing

CRPScirc(P, v) =
1

N

N
∑

i=1

AEcirc(vi, v) −
1

2N2

N
∑

i=1

N
∑

j=1

AEcirc(vi, vj),

which agrees with (8) when the predictive distribution assigns mass 1/N to each of v1, . . . , vN .
In order for the approximation to be accurate, the sample size N needs to be large, and we
generally use N = 1000.

3 Results for the University of Washington ensemble

over the Pacific Northwest

a. The University of Washington Mesoscale Ensemble (UWME)

The University of Washington ensemble system is a mesoscale, short-range ensemble based
on the Fifth-generation Pennsylvania State University – National Center for Atmospheric
Research Mesoscale Model (PSU-NCAR MM5; Grell et al. 1995). It forms an integral
part of the Pacific Northwest regional environmental prediction effort (Mass et al. 2003).
The original five-member mesoscale ensemble was designed as a single-model, multi-analysis
system that uses MM5 with a nested, limited-area grid configuration focusing on the states of
Washington and Oregon (Grimit and Mass 2002). Beginning in the autumn of 2002, the size
of the mesoscale ensemble was increased to eight members using additional global analyses
and forecasts and named the University of Washington Mesoscale Ensemble (UWME; Eckel
and Mass 2005). Table 1 shows acronyms and the sources of the initial and lateral boundary
conditions for the member forecasts.

The evaluation period of this study begins 1 January 2003 and extends through 31 December
2003, in which the UWME system provided 48-hour forecasts beginning at 0000 UTC each
day, with the verifying wind directions being recorded 48 hours later. Model 10 m wind
component forecasts at the four grid-box centers surrounding each station were bi-linearly
interpolated to the observation location and then rotated from grid-relative to north-relative.
No adjustment was made for any vertical displacement of the model surface level from the
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Table 1: Composition of the eight-member University of Washington Mesoscale Ensemble
(UWME; Eckel and Mass 2005), with member acronyms, and organizational and synoptic
model sources for the initial and lateral boundary conditions. The organizational sources
are the United States National Centers for Environmental Prediction (NCEP), the Canadian
Meteorological Centre (CMC), the Australian Bureau of Meteorology (ABM), the Japanese
Meteorological Agency (JMA), the Fleet Numerical Meteorology and Oceanography Center
(FNMOC), the Taiwan Central Weather Bureau (TCWB), and the United Kingdom Met
Office (UKMO).

Member Source Driving Synoptic Model

GFS NCEP Global Forecast System
ETA NCEP Limited-Area Mesoscale Model
CMCG CMC Global-Environment Multi-Scale Model
GASP ABM Global Analysis and Prediction Model
JMA JMA Global Spectral Model
NGPS FNMOC Navy Operational Global Atmospheric Prediction System
TCWB TCWB Global Forecast System
UKMO UKMO Unified Model

real terrain. Station-based observations of near-surface wind were acquired in real-time from
54 surface airway observation (SAO) stations in the United States and Canada, as illustrated
in Figure 2 below. Our verification results include forecast-observation cases only when the
verifying wind speed was at least 5 knots (2.57 m/s), since wind direction observations are
unreliable at lower wind speeds. In view of this constraint, forecast-observation cases at the
individual stations were available for a minimum of 201, median of 219 and maximum of 264
days in calendar year 2003.

Before showing composite verification results, we give a specific example of 48-hour BMA
and BMA+ forecasts of wind direction at Castlegar Airport, British Columbia (station code
CYCG), valid 0000 UTC on 26 August 2003. The member-specific circular-circular regression
schemes for bias correction and the BMA parameters were estimated on a 28-day sliding
training period, using data at Castlegar only. Table 2 shows the eight raw and bias-corrected
UWME member forecasts and the respective BMA and BMA+ weights. The bias correction
technique results in member-specific counter-clockwise rotations, which range from two to
twelve degrees. The UKMO member receives the highest BMA and BMA+ weights, but the
weights do not differ much between the ensemble members.

Figure 1 illustrates the raw and bias-corrected UWME ensemble forecasts and the BMA
and BMA+ density forecasts at Castlegar along with two reference forecasts, to which we
refer as climatology and median error climatology (MEC), respectively. The climatology
forecast uses the 28 observed wind directions during the sliding training period, giving them
equal weights in a discrete probability mass function. This is a short-term climatology,
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which can adapt to seasonal changes as well as to changes in atmospheric regimes. The
median error climatology (MEC) technique takes the form of a von Mises density that is
centered on the circular median of the bias-corrected ensemble members, with a concentration
parameter that is estimated (using ML) on the same 28-day training period as the other
methods. This resembles the mean error climatology method of Grimit et al. (2006), but the
density is centered on the circular ensemble median, rather than the circular mean, and the
estimation method is different. Each panel shows the respective forecast distribution, taking
the form of either a discrete probability mass function or a continuous probability density
function, along with the verifying wind direction, which was westerly at 280 degrees. The
circular continuous ranked probability score (CRPS) is smallest (that is, best) for the BMA+

forecast distribution, at 17.5 degrees, followed by the BMA, MEC, bias-corrected UWME,
raw UWME and climatology forecasts.

b. Bias correction

We turn to composite verification results for bias correction. In Section 2.a we proposed three
methods for bias correcting angular variables, namely circular-circular regression, which
employs a state-of-the-art regression approach tailored to circular data, and two benchmarks,
median-angle correction and mean-angle correction. As noted before, we fit the bias
correction schemes for each ensemble member individually.

There are two choices to be made here, namely about the method used and the length of
the sliding training period. Table 3 shows the mean circular absolute error for each method,
averaged over the eight UWME member forecasts, calendar year 2003, and the 54 stations
we consider, for sliding training periods that range from 7 to 42 days. In choosing the length
of the training period, there is a trade-off, and no automatic way of making it. Both weather
patterns and model specifications change over time, so that there is an advantage in using a
short training period to adapt to such changes. On the other hand, the longer the training
period, the less the estimation variance. The training sets are constrained to cases at the
location at hand, and the periods are extended if there are missing data. For example, the
7-day training period always uses the seven most recent available forecast cases.

At a 7-day training period the simpler methods outperform the more complex method,
namely circular-circular regression. However, as the training period grows, circular-circular
regression becomes the method of choice. This is not surprising, and can readily be explained
by the bias-variance trade-off, in that more complex statistical methods require larger train-
ing sets, to avoid overfitting. Overall, circular-circular regression with training periods of 28
days or more performs the best. On average, it reduces the circular absolute error by two
to three degrees, as compared to the raw forecast. In the subsequent ensemble postprocess-
ing experiments, we thus use circular-circular regression to bias-correct the UWME member
forecasts, where the regression parameters in (2) are fit on a member- and location-specific
28-day sliding training period.
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Table 2: Raw and bias-corrected UWME ensemble forecasts of wind direction at Castle-
gar Airport, British Columbia, valid 0000 UTC on 26 August 2003. The member-specific
circular-circular regression schemes for the bias correction and the BMA and BMA+ pa-
rameters were fit on a 28-day sliding training period. The concentration parameter κ was
estimated at 2.984 for BMA and 4.112 for BMA+.

GFS ETA CMCG GASP JMA NGPS TCWB UKMO Unif
UWME (raw) 325.0 321.3 332.4 330.1 319.4 254.3 327.7 324.7 —
UWME (bias-corrected) 323.2 315.7 320.6 326.5 310.7 246.8 323.1 318.4 —
BMA weight 0.113 0.124 0.109 0.134 0.114 0.132 0.117 0.157 —
BMA+ weight 0.098 0.110 0.099 0.119 0.105 0.115 0.110 0.147 0.097
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Figure 1: Circular diagrams of forecast distributions for wind direction at Castlegar Airport,
British Columbia, valid 0000 UTC on 26 August 2003. Each panel in the figure shows the
respective discrete forecast probability mass function (upper row: climatology, UWME raw,
and UWME bias-corrected) or continuous forecast probability density function (lower row:
MEC, BMA, and BMA+). The blue lines and graphs represent the forecast distributions; the
solid red line represents the verifying observation, at 280 degrees. The circular continuous
ranked probability score is also shown, in units of degrees.
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Table 3: Mean circular absolute error for raw and bias-corrected 48-hour forecasts of wind
direction over the Pacific Northwest. The results are averaged over the eight UWME member
forecasts, the calendar year 2003, and the 54 stations we consider, for sliding training periods
of length 7, 14, 21, 28, 35 and 42 days, using local data at the given station only.

Training period 7 days 14 days 21 days 28 days 35 days 42 days

UWME (raw) 45.14 45.14 45.14 45.14 45.14 45.14
Mean-angle correction 46.62 44.60 43.76 43.36 43.18 43.21
Median-angle correction 47.10 44.58 43.63 43.18 43.02 43.08
Circular-circular regression 49.42 45.37 43.60 42.88 42.69 42.80

c. Bayesian model averaging

With an effective bias-correction technique now at hand, we proceed to discuss ensemble
postprocessing techniques for wind direction. All results below are based on the same 28-
day sliding training period that we use for bias-correction via circular-circular regression,
and are insensitive to changes in the length of the training period. We compare the various
methods using the mean circular continuous ranked probability score. Furthermore, we
reduce the forecast distributions to the corresponding circular medians, and compute the
mean circular absolute error for these single-valued forecasts.

Specifically, Table 4 shows the verification statistics for the discrete UWME (raw) and
UWME (bias-corrected) forecast distributions, with the bias correction using circular-
circular regression, the BMA and BMA+ forecasts (based on the bias-corrected UWME),
and the two reference forecasts introduced and described in Section 2.a, namely clima-
tology and median-error climatology (MEC), where the latter is also based on the
bias-corrected UWME. The results are averaged over calendar year 2003 and the 54 stations
we consider. Bias-correction via circular-circular regression yields a reduction of the circular
absolute error for the ensemble median forecast of slightly over three degrees on average.
As expected, ensemble calibration does not result in any further reduction of the circular
absolute error, because MEC, BMA and BMA+ address calibration errors only. However,
the latter methods result in a much decreased mean circular continuous ranked probability
score, with BMA+ performing the best, while BMA is a close competitor.

Turning now to results at individual stations, Figure 2 shows the Pacific Northwest domain
for the UWME system, along with the locations of the 54 SAO stations considered in this
study. The color at each station location indicates what forecast method had the lowest
mean circular continuous ranked probability score in calendar year 2003. At 46 of these
stations the BMA+ method performed best, and at 6 stations the BMA forecasts showed
the lowest score. MEC and climatology performed best at one station each.
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Table 4: Mean circular absolute error and mean circular continuous ranked probability score
for 48-hour forecasts of wind direction over the Pacific Northwest, in units of degrees. The
results are averaged over the calendar year 2003 and the 54 stations we consider. A 28-day
sliding training period is applied, using local data at the given station only.

AEcirc CRPScirc

Climatology 56.9 35.9
UWME (raw) 42.8 35.0
UWME (bias-corrected) 39.3 31.2
MEC 39.3 28.8
BMA 39.4 27.8
BMA+ 39.3 27.6

4 Discussion

We have shown how to perform bias correction and ensemble calibration for wind direction,
which is an angular variable. For bias correction, we use the state-of-the-art circular-circular
regression approach of Downs and Mardia (2002) and Kato et al. (2008). For ensemble
calibration, our preferred choice is the BMA+ technique, which applies Bayesian model aver-
aging, where the von Mises components are centered on the bias-corrected ensemble member
forecasts. When compared to the standard BMA approach, the BMA+ specification uses
an additional uniform component, which can protect against gross forecast errors. A poten-
tial extension might replace the uniform component by a seasonally adaptive climatological
component, which could be estimated from multi-year records of wind observations.

These methods have been developed for the UWME system (Grimit and Mass 2002; Eckel
and Mass 2005), which has eight individually distinguishable members. They can easily be
adapted to accommodate situations in which the ensemble member forecasts are exchange-
able (that is, statistically indistinguishable), as in most bred, singular vector or ensemble
Kalman filter systems (Buizza et al. 2005; Torn and Hakim 2008). In these cases, the
circular-circular regression approach to bias correction continues to apply, but the regres-
sion equation (2) uses a single set of parameters across ensemble members. Similarly, the
BMA or BMA+ weights for the von Mises components in (3) and (7) need to be constrained
to be equal. These modifications result in physically principled bias correction and BMA
specifications, while simplifying the postprocessing. Similar adaptations allow for bias cor-
rection and ensemble calibration in multi-model systems with groups of exchangeable and/or
missing members, in ways analogous to those described by Fraley et al. (2009) for linear vari-
ables. For example, the THORPEX Interactive Grand Global Ensemble (TIGGE) system
comprises ten groups, with 11 to 51 members each, which typically are exchangeable (Park
et al. 2008; Bougeault et al. 2009), and thus will share common bias correction parameters
as well as equal BMA or BMA+ weights.
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Figure 2: Pacific Northwest domain for the UWME system, with the locations of the SAO
stations considered in this study. The color at each station location indicates which of the
forecast methods in Table 4 performed best in terms of mean CRPScirc over calendar year
2003: green stands for BMA+, blue for BMA, purple for MEC, and red for climatology. The
station at Castlegar Airport, British Columbia is marked by an arrow.

Our work should not be viewed as an endorsement of vector wind calibration techniques
in which wind speed and wind direction are treated independently. Rather, vector wind
postprocessing ought to proceed jointly on the zonal and meridional wind components. In
this light, new work is underway, in which we develop bias correction and Bayesian model
averaging techniques for vector wind. If the focus is on wind direction by itself, it remains
to be determined whether or not vector wind postprocessing with a subsequent reduction to
the directional part, is preferable to direct postprocessing of the wind direction forecasts, as
proposed and studied in this paper.
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Appendix: Details for the EM algorithm

Before discussing the details of our EM implementation, we review maximum likelihood (ML)
estimation for the concentration parameter of a von Mises population. Suppose that we have
a sample, v1, . . . , vn, from von Mises distributions with known mean directions, µ1, . . . , µk,
and unknown common concentration parameter, κ. The respective log-likelihood function is

−n log I0(κ) + κ

n
∑

k=1

cos(vk − µk), (9)

up to an additive constant. Therefore, the ML estimate for κ equals the unique root, κ̂, of
the equation

I ′

0(κ)

I0(κ)
= C̄ where C̄ =

1

n

n
∑

k=1

cos(vk − µk). (10)

This equation can be solved numerically or using the tables in Mardia (1972). Furthermore,
there are accurate analytic approximations, in that

κ̂
.
=

n + 2

2n(1 − C̄ )
(11)

if C̄ is small, and

1

κ̂
.
= 2(1 − C̄ ) +

1

C̄
(1 − C̄ )2 (.48794 − .82905C̄ − 1.3915C̄2) (12)

if C̄ is large, by equations (2.8) and (2.10) of Lenth (1981), where the symbol
.
= denotes an

approximate equality.

Turning now to the EM algorithm for estimating the BMA model (3) of Section 2.c, the
M step requires an updated estimate, κ(l+1), of the common concentration parameter. The
update is obtained by optimizing the complete data log-likelihood given the latent variables,
that is, by maximizing

n
∑

k=1

m
∑

j=1

z
(l+1)
jk log g(vk|fjk, κ) (13)
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over κ ≥ 0, where g( · |fjk, κ) is a von Mises density with mean fjk and concentration
parameter κ. It is easily seen that (13) takes essentially the same form as the log-likelihood
function (9), and thus we can apply the above methods and approximations. Specifically,
putting now

C̄ =
1

n

n
∑

k=1

m
∑

j=1

z
(l+1)
jk cos(vk − fjk),

we find κ(l+1) = κ̂ from the approximation (11) if C̄ ≤ 0.1, and from the approximation (12)
if C̄ ≥ 0.9. Otherwise we solve eq. (10) numerically.
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