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In this paper, an adaptive Kalman filtering procedure is developed and applied to 2-metre temperature
and 10-metre wind-speed forecasts in Iceland. The goal is to reduce the systematic bias and improve the
accuracy of the local forecasts derived from a numerical weather prediction model and, in addition, to
produce reliable prediction intervals. The method consists of adding two algorithms to the traditional
Kalman filter procedure that adaptively estimate the noise statistics individually at each forecast location
and each time step. The tested data set shows that the method is able to remove the systematic errors and
to quantify the prediction uncertainty in a consistent manner.

1. Introduction

Statistical adaptations of numerical weather prediction
(NWP) model outputs are often necessary to cope with
local conditions and adjust the information delivered at
a coarse spatial resolution to a specific location. Two
common statistical methods that are used to locally
adjust the forecasts of surface parameters such as the 2-
metre temperature (T2m) and the 10-metre wind-speed
(FF10) are the Model Output Statistics (MOS) method
(Glahn & Lowry 1972) and the Perfect Prog Method
(PPM) (Klein & Lewis 1970). These methods are based
on the development of regression equations between
the observed parameter to be predicted and a set of
explanatory variables that are either forecasted (MOS),
or either observed or analysed (PPM). The development
of such equations usually requires an extensive data
set of historical observations. In the case of MOS, the
validity of the equations may become questionable if
the NWP model characteristics are modified and a new
calibration becomes necessary. This recalibration can
be performed, for instance, within the framework of
the updatable MOS, UMOS (Wilson & Vallée 2002,
2003). The Kalman filter (Kalman 1960) is an adaptive
method which offers an alternative solution to the
standard regression models and does not suffer from
these drawbacks. It is defined by a set of recursive
relationships which combine current measurements
and forecasts of the variable under study in order to
infer the statistical properties of future observations
of this variable. Applications in weather forecasting
can be found in Golanis & Anadranistokis (2002),
Homleid (1995), Persson (1991) and Simonsen (1991).
The Kalman filter (KF) procedure can be of variable
complexity, ranging from the simple bias adjustment to
more sophisticated and flexible modelling involving one
or more predictors. Since 1996, the T2m and FF10 local
forecasts derived from the European Centre for Medium

Range Weather Forecasts (ECMWF) deterministic T511
NWP model, 1200 UTC run (EC-12) have been post-
processed at the Icelandic Meteorological Office (IMO)
by applying a KF procedure. The algorithm used so far
at IMO is with non-adapted noise statistics and makes
use of a set of predefined values for the observation noise
variance Vt and the system noise variance Wt (where t
is a time index). In the present paper, a modification of
the current operational KF algorithm used at IMO is
studied. The goal is to reduce the systematic forecasting
errors, to better regulate the capacity of adaptation of
the algorithm when large errors occur and to produce
reliable prediction intervals. The modification consists
of extending the concept of adaptivity to the noise
statistics as well. This is performed by adding two
online algorithms that sequentially estimate Vt and Wt,
at each time step, individually for each forecast range
and each location on the basis of the previous forecasting
errors. Section 2 presents briefly the adaptive KF algori-
thm, section 3 indicates the potential of the method and
section 4 concludes this paper.

2. The adaptive Kalman filter

Below is a brief presentation of the principle of the
adaptive KF procedure.

Let Yt, Yt−�t, . . ., Yt−k�t, . . ., Yt0 denote the observed
values of the process under study (T2m or FF10) at
equally spaced time intervals �t: t, t − �t, . . ., t −
k�t, . . ., t0. Yt is assumed to depend on a n × 1 state
vector Xt and a known 1 × n vector Ht of predictors.

The state vector Xt is linearly related to Yt through the
observation equation:

Yt = Ht Xt + vt (1)
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Figure 1. The 11 sites of the local forecasts over Iceland.

where vt is the observation noise and is assumed to
be normally distributed with mean zero and variance
Vt, vt ∼ N(0,Vt). By comparison with a linear regres-
sion, Ht represents the predictors or explanatory
variables and the state vector Xt gives the regression
coefficients which are here allowed to vary at each time
step. This time dependent evolution of Xt is defined by
the system equation:

Xt = �Xt−k�t + �wt (2)

where � is a known n × n transition matrix, � a n × r
matrix of fixed coefficients, and wt a r × 1 vector
representing the system noise which is assumed to be
normally distributed with mean zero and variance Wt,
wt ∼ N(0,Wt), and independent of vt. The observation
and system equations define a dynamic linear model
(DLM) (see Harrison & Stevens 1976). The observation
equation describes the stochastic dependence of the
observations on the process parameters and the system
equation describes the time evolution of the process
parameters. The KF algorithm is a recursive relationship
used to identify the parameters of the DLM through a

straightforward application of the Bayes theorem (see
Meinhold & Singpurwalla 1983). Detailed description
of the algorithm is given in Appendix 1. The design
of the KF procedure requires the knowledge of Vt and
Wt. Homleid (1995) suggests defining these parameters
by using a statistical estimation procedure or by tuning
them in order to make the KF behave as requested,
for instance to allow the KF to react quickly to
new conditions. Simonsen (1991) proposes giving an
estimate according to the system designer expectations.
Persson (1991) suggests manipulating the covariances
through external interference with respect to external
conditions. In a number of practical situations, the
estimation of these parameters may prove to be difficult
for the modeller, when for instance a large number of
locations are considered with various climatic and/or
geographic conditions. To help with this, several online
methods can be used to adaptively estimate Vt and Wt
individually for each location in an automatic manner.
Golanis & Anadranistokis (2002) define an estimation
procedure for Wt and Vt based on the sample of the
last 7 values. West et al. (1985) suggest the use of a
discounting method for Wt and a learning procedure for
Vt. Prior to that work, Mehra (1970) described rigorous
methods for estimating Vt and Wt. In the present work,
two computationally simple methods are adopted for
estimating Vt and Wt. The observation noise variance
Vt is sequentially estimated with the Smith algorithm
(Smith 1967), described in Appendix 2. The system
noise variance, Wt, is estimated with the Jazwinski
algorithm (Jazwinski 1969), given in Appendix 3. This
algorithm takes care of the problem of filter divergence
and stiffness observed when the KF becomes over-
confident and the impact of incoming observations
is very limited. The Jazwinski algorithm detects such
behaviour and action is taken in order to modify the
sensitivity of the filter by inflating the system noise
variance in a suitable manner. Both algorithms used

Figure 2. Two-metre temperature forecast for Akureyri, 15 March 2000 at 1200 UTC, using the KF-2 protocol. The DMO
forecast, the observed temperature and the 80% prediction interval (PI) derived from the KF procedure are also represented.
For all the forecasts valid at 0000 UTC, the adjustment is as follows: KF-2 = DMO∗0.766 + 1.61. For all the forecasts valid at
1200 UTC, the adjustment is as follows: KF-2 = DMO∗0.89 + 3.72.

174



Adaptive Kalman filtering in Iceland

Figure 3. As Figure 2 but for Stykkisholmur. For all the forecasts valid at 0000 UTC, the adjustment is as follows: KF-2 =
DMO∗0.78 -1.0. For all the forecasts valid at 1200 UTC, the adjustment is as follows: KF-2 = DMO∗1.19 + 0.56.

Figure 4. Ten-metre wind-speed forecast for Hveravellir, 15 March 2000 at 1200 UTC, using the KF-2 protocol. The DMO
forecast, the observed temperature and the 80% prediction interval (PI) derived from the KF procedure are also represented.
For all the forecasts valid at 0000 UTC, the adjustment is as follows: KF-2 = DMO∗2.47 + 2.42. For all the forecasts valid at
1200 UTC, the adjustment is as follows: KF-2 = DMO∗1.99 + 1.60.

here are described in Sage & Husa (1969) who review a
large set of existing methods for the online adaptive
estimation of noise statistics. Once the adaptive KF
algorithm is set up, it enables inference to be made
about the statistical properties of future observations,
namely the mean (µ̂t|t−k�t) and variance (σ̂ 2

t|t−k�t) of the
predictive distribution of Yt made at time t − k�t (see
Eq. A-4 and A-5 in Appendix 1). From this information,
the 100(1 −α)% prediction interval for Yt can be
defined as follows:(

µ̂t|t−k�t − Uα/2 σ̂t|t−k�t, µ̂t|t−k�t + Uα/2 σ̂t|t−k�t
)

(3)

where Uα/2 denotes the upper α/2 quantile of the
standard normal distribution and σ̂t|t−k�t the standard-
deviation of the predictive distribution of Yt made at
time t − k�t. This prediction interval quantifies the
reliability of the local prediction.

3. Application of the adaptive KF procedure in
weather forecasting

In this section, the adaptive KF algorithm described
above is applied to the predictions of T2m and FF10 in
Iceland.

3.1. The data

The adaptive KF algorithm was run over the period
1 January 2000–1 March 2001 for post-processing
local DMO forecasts of T2m and FF10 derived from
EC-12, at locations corresponding to 11 synoptic
stations in Iceland (Figure 1). For three of these stations
(Blonduos, Bolungarvik and Kirkjubaejarklaustur), the
wind measurements are made visually, using qualitative
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Figure 5. As Figure 4 but for Reykjavik. For all the forecasts valid at 0000 UTC, the adjustment is as follows: KF-2 =
DMO∗0.46 + 1.32. For all the forecasts valid at 1200 UTC, the adjustment is as follows: KF-2 = DMO∗0.72 + 2.08.

Figure 6. Mean error (ME) for the 2-metre temperature forecasts, calculated for each location over the period 1 March 2000–
1 March 2001 and presented as a function of the forecast range.
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Figure 7. Root mean squared error (RMSE) for the 2-metre temperature forecasts, calculated for each location over the period
1 March 2000–1 March 2001 and presented as a function of the forecast range. The horizontal dashed line gives the RMSE for a
climatic prediction.

signs according to the Beaufort scale of wind (WMO
1988). The EC-12 NWP model is run once every
24 hours using initial information from the analysis
made at 1200 UTC. The spatial resolution of the
DMO data used in this study is 1.5◦. These DMO
data are then interpolated to each location using a
bilinear interpolation of the four nearest grid points.
The forecast projection times (KF time lags) considered
here range from + 12 hr to + 168 hr in 12 hr steps (�t).
The observations made at 0000 and 1200 UTC are used
to update the parameters of the KF procedure.

3.2. Experimental protocol

Two experimental protocols are compared in this study:

1. KF-1: the KF algorithm is applied as described in
Appendix 1. Each forecast issued at time t and valid

at a given projection time is treated independently of
the other projection times. A forecast issued at time
t (1200 UTC) and valid at time t + k�t (1200 UTC),
i.e. k = 2,4,6,8,10,12,14, is updated with information
from a forecast of the same forecast range, i.e.
issued at time t − k�t (1200 UTC) and valid at
time t (1200 UTC). A forecast issued at time t
(1200 UTC) and valid at time t + k�t (0000 UTC),
i.e. k = 1,3,5,7,9,11,13, is updated with information
from a forecast issued at time t-(k + 1)�t
(1200 UTC) and valid at time t − �t (0000 UTC).
This means that there are k�t/24 different KF series
for a given forecast range k�t valid at 1200 UTC and
(k + 1)�t/24 different KF series for a given forecast
range k�t valid at 0000 UTC.

2. KF-2: a certain linear dependency between the batch
of forecasts issued at instant t and valid at the
same verification time (either 0000 or 1200 UTC)
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Figure 8. Average reliability of the prediction intervals for the 2-metre temperature in Akurnes, calculated over the period
1 March 2000–1 March 2001, and presented for each forecast range. The 1:1 line corresponds to perfect reliability. The points
falling above the 1:1 line correspond to an underestimation of the size of the theoretical prediction interval. The points falling
under the 1:1 line correspond to an overestimation of the size of the theoretical prediction interval.

is assumed over the whole forecasting period. The
KF algorithm as described in Appendix 1 is applied
to the shortest forecast ranges valid at different
verification times. For the other forecast ranges, the
state vector X̂t+k�t|t is not computed but replaced
by the one computed for the shortest forecast
range valid at the same verification time. Once the
state vector X̂t+k�t|t is given, the other parameters
are recursively estimated by the KF algorithm as
described in Appendix 1, with an updating time
lag of k�t or (k + 1)�t depending if the forecast
is valid at 1200 or 0000 UTC. In practice, the KF
algorithm is applied individually to the + 12 hr and
+ 24 hr forecasts and updated every 24 hr. Then, for

forecast ranges k�t > 24 hr, the state vector X̂t+k�t|t
is not computed but replaced by X̂t+12hr |t or by
X̂t+24hr |t depending if the forecast is valid at 0000 or
1200 UTC, and then the other parameters are
recursively estimated by the adaptive KF algorithm.

3.3. Parameters specification

The parameters are specified for each location as
follows:

Yt is a scalar that defines the observation of T2m or FF10
made at time t.
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Figure 9. As Figure 8 but for Stykkisholmur.

Ht is the 1 × 2 vector of predictors: (Ft|t−k�t,1), where
Ft|t−k�t is the DMO forecast of T2m or FF10 made at
time t − k�t and valid at time t.
X̂t|t−k�t is a 2 × 1 vector.
X̂t|t is a 2 × 1 vector.
� is a 2 × 2 matrix set to the identity matrix I.
� is a 2 × 2 transition matrix set to the identity matrix I.

The initial values for αt, vt, Vt, X̂t|t and Pt|t (see
definition in Appendix 1 and 2) are specified for both
T2m and FF10 filters as follows:

α0 = 1, v0 = 0, V0 = 1, X̂0 = (1,0), P0 =
(

1 0
0 1

)

3.4. Statistical scores

The performances of the predictions are assessed using
the following statistical scores:

Mean error: ME = E[(εt|t−k�t)] (4)

Root mean squared error: RMSE = E[(εt|t−k�t)2]
1/2 (5)

where

εt|t−k�t = Ŷt|t−k�t − Yt (6)

denotes the error in predicting Yt from time t − k�t
and Ŷt|t−k�t denotes the prediction of Yt made at time
t − k�t:

Ŷt|t−k�t = Ft|t−k�t (Local DMO forecast)
Ŷt|t−k�t = Ht X̂t|t−k�t (KF-1)
Ŷt|t−k�t = Ht X̂t−k�t+24hr |t−k�t (KF-2) valid at 1200 UTC
Ŷt|t−k�t = Ht X̂t−k�t+12hr |t−k�t (KF-2) valid at 0000 UTC

The RMSE of the four different predictions will also be
compared to a climatic prediction defined here by the
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Figure 10. Two-metre temperature forecast for Reykjavik: Evolution of the observation noise variance Vt, estimated by the
algorithm of Smith in the KF-1 protocol and a forecast range of 24 hr.

30-year mean daily T2m or FF10 value over the period
1971–2000. The reliability of the prediction interval (3)
is assessed by counting the proportion of times the
observations belong to the prediction interval, over
the verification period. If the 100(1 −α)% prediction
interval is reliable on average, the proportion of
observations Yt lying within it should be 100(1 −α)%.
If the prediction interval is too large, the proportion of
observations Yt lying within it should be greater than
100(1 −α)%. If the prediction interval is too small, the
proportion of observations Yt lying within it should be
lower than 100(1 −α)%. For FF10, if the lower limit of
the prediction interval is negative, the limit is set to 0.

3.5. Preliminary results

In studying the methodology, it was observed that in
the presence of large forecasting errors (mainly for
ranges larger than 96 hr), the Jazwinski algorithm could
produce high values for βt (Eq. C-3, Appendix 3)
and consequently make the filter quite sensitive and
produce oscillations in the prediction (alternately
positive and negative errors with a large magnitude)
and high predictive variances. As a consequence, the
performances of the KF-1 protocol were observed to
be unbiased but relatively poor in terms of RMSE
for forecast ranges larger than 96 hr. The smoothing
procedure proposed by Jazwinski was not considered
here, but in order to limit this instability problem, it
was found effective simply to define an upper limit for
βt chosen with a certain degree of arbitrariness among
a small set of values in order to lower the RMSE to
a minimum value. The use of an upper limit for βt is
described as follows. Instead of opening the filter wide
in reaction to a large error, the adaptation is spread over

several time steps if necessary. If the large error is an
isolated case or is due perhaps to an observational error,
the influence of this event is relatively limited. If the
error is persistent, the filter will progressively open to
this change in a controlled manner. The KF-1 protocol
was observed to be more sensitive to the choice of this
upper limit than the KF-2 protocol, especially when
filtering FF10. This is due to the fact that both X̂t+k�t|t
and Pt+k�t|t are dependent upon the choice of this upper
limit. In the KF-2 protocol, on the other hand, X̂t+k�t|t is
not computed directly for forecast ranges greater than
24 hr, but given by the KF corresponding to the two
shortest forecast ranges valid at 0000 or 1200 UTC.
This fixed upper limit was observed to be reached more
frequently as the forecast projection time increased,
between 5% and 30% of the time. The following
results present the performances of the adaptive KF
with an upper limit for βt set to 0.2 for both T2m
and FF10.

3.6. Examples of the behaviour of the adaptive KF

Figures 2 and 3 present respectively the predictions
of T2m for Akureyri and Stykkisholmur issued on
15 March 2000 for the following seven days, together
with the 80% prediction intervals (PI). Figures 4 and
5 give the predictions of FF10 for Hveravellir and
Reykjavik issued the same day. The observed values
are also represented for comparison. For Akureyri
(Figure 2), the T2m DMO forecasts present a marked
negative bias. The KF has noticed this systematic
bias and attempts to correct it. The result is a
prediction systematically warmer than the DMO one.
The KF predictions are more accurate than the DMO
predictions 11 times out of 14. The size of the 80%
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Figure 11. Mean error (ME) for the 10-metre wind-speed forecasts, calculated for each location over the period 1 March 2000–
1 March 2001 and presented as a function of the forecast range.

PI increases slowly with the forecast range, showing an
increase of uncertainty. The 80% uncertainty in this case
represents about +/− 3 ◦C up to + 96 hr range and then
slowly increases up to +/− 7 ◦C Celsius at + 168 hr
range. It can also be seen that all the observations
except three belong to the 80% PI, i.e. 78.6% of the
data. For Stykkisholmur (Figure 3), the DMO forecast
does not exhibit any systematic bias. The KF algorithm
has noticed that and produces a prediction that oscillates
around the DMO value. In such a case, the KF
prediction does not perform better than the DMO one.
The size of the 80% PI is quite narrow, about +/− 2 ◦C
up to + 96 hr range, and then increases slowly, up to
+/− 6 ◦C at + 168 hr range. There are 11 observations
out of 14 belonging to the 80% PI, i.e. 78.6% of the data.
For Hveravellir (Figure 4), the FF10 DMO forecast has
the tendency to underestimate the observed wind speed.

The KF predictions are systematically increased. This
systematic adjustment turns out to be successful up to
+ 96 hr range and produces a more accurate prediction
than the DMO one. Then the observed wind speed
drops down and the DMO forecast becomes better than
the KF prediction. In total, over the seven forecasting
days, the KF predictions are closer to the observations
nine times out of 14. The size of the 80% PI is very large
in this case, more than +/− 8 m/s showing the difficulty
in predicting such an outcome. It is observed however
that ten observations are within the 80% PI limits, i.e.
71% of the data. For Reykjavik (Figure 5), the DMO is
overestimating FF10, most of the time. The KF reduces
this bias and the adjustment produces a more accurate
prediction ten times out of 14. All the observations
except three are within the limit of the 80% PI, i.e.
78.6% of the data.
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Figure 12. Root mean squared error (RMSE) for the 10-metre wind-speed forecasts, calculated for each location over the period
1 March 2000–1 March 2001 and presented as a function of the forecast range. The horizontal dashed line gives the RMSE for a
climatic prediction.

3.7. Summary statistics

In this section, the quality of the adaptive KF is studied
over a one-year period, from 1 March 2000 to 1 March
2001.

3.7.1. 2-metre temperature

Figures 6 and 7 present for each location the evolution
of ME and RMSE respectively, as a function of the
forecast range. The two sets of KF predictions remove
the bias (ME), if any, at all forecast ranges, but do not
necessarily reduce the RMSE. This shows that the KF
predictions are unbiased but not always more accurate
than the DMO forecasts. The reduction of RMSE is
observed at locations where the bias is quite systematic.

For locations where the error is not systematic and
more random, the RMSE from the KF predictions are
similar to the DMO ones. The KF-2 protocol quite
often gives slightly lower RMSE than the KF-1 protocol
for forecast ranges larger than 24 hr. A compari-
son with a climatic prediction shows the superiority
of the NWP model up to a range of seven days for
the sites where the DMO is unbiased. For locations
where the DMO forecast displays a strong systematic
bias, the climatic prediction displays a lower RMSE
than the DMO prediction beyond the 96 hr-range. The
KF prediction is unbiased at all sites and displays
a RMSE lower than the climatic prediction at all
forecast ranges, except for Blonduos beyond 96 hr. The
reliability of the prediction intervals is observed to be
remarkable for both protocols, at all forecast ranges and
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Figure 13. Average reliability of the prediction intervals for the ten-metre wind-speed in Reykjavik, calculated over the period
1 March 2000–1 March 2001, and presented for each forecast range. The 1:1 line corresponds to perfect reliability. The points
falling above the 1:1 line correspond to an underestimation of the size of the theoretical prediction interval. The points falling
under the 1:1 line correspond to an overestimation of the size of the theoretical prediction interval.

all locations. There is, in some cases, a tendency towards
a slight overestimation of the size of the prediction
intervals. In such cases, the proportion of observations
belonging to the prediction interval is slightly larger
than expected. An example of this reliability is given for
Akurnes in Figure 8 and Stykkisholmur in Figure 9.
Figure 10 illustrates an example of the evolution of
Vt for Reykjavik estimated by the Smith algorithm
(see Appendix 2). During the first month, the series
fluctuates and presents jumps. After that the evolution
of Vt is smooth and the series reaches a rather stationary
level. It is worth mentioning that it is observed (but not
shown) that Vt increases with the forecast range as a
consequence of the increase of prediction uncertainty.

3.7.2. 10-metre wind-speed

Figures 11 and 12 present the evolution of ME and
RMSE respectively, as a function of the forecast range.
The two sets of KF predictions are equally efficient in
removing any bias (ME). Concerning the accuracy of
the forecasts, the results are station dependent. For the
stations where the error is quite systematic, both KF
protocols reduce the RMSE but the advantage of using
one protocol rather than the other is not clearly defined.
For the stations where the error is more random, the
KF predictions exhibit an accuracy similar to the DMO
forecasts, except for Bolungarvik and Stykkisholmur
where it is slightly larger. Depending on the station,
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Figure 14. As Figure 13 but for Egilsstadir.

the climatic prediction displays a better accuracy than
the NWP beyond ranges exceeding 3–5 days. For
Kirkjubaejarklaustur, at 1200 UTC verification time,
the climatic prediction gives lower RMSE than both
DMO and KF predictions at all forecast ranges. These
results also show the difficulty of verifying and Kalman
filtering forecasts at locations where the measurements
are quite uncertain because they are made visually
using the Beaufort scale. Here too the reliability of the
prediction intervals is observed to be quite remarkable
for both protocols, at all forecast ranges and all the
locations. In some cases there is a tendency towards
a slight overestimation of the size of the prediction
intervals. An example is presented for Reykjavik in
Figure 13, and Egilsstadir in Figure 14. Figure 15 gives
an example of the evolution of Vt for Akureyri. The
fluctuations and the jumps are quite frequent during
the first month. After that the evolution becomes quite

smooth and the series reaches a rather steady level. Here
too, as for T2m, it is observed (but not shown) that Vt
increases with the forecast range.

3.8. Discussion

In weather forecasting, the Kalman filter is commonly
used as a tool to adjust the local forecasts of surface
parameters such as T2m and FF10 in order to remove the
systematic bias. Very little use is made of the predictive
variance (Eq. A-5 Appendix 1) and the assessment of
the performance of such a method is usually limited
to the study of the bias and the accuracy of the
prediction, but not the reliability. It is possible to
manually adjust the sensitivity of the KF by tuning
the observation and system noise variances. However,
this should be done in relation to the forecast range. A
high sensitivity may be advantageous for short ranges
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Figure 15. Ten-metre wind-speed forecast in Akureyri: Evolution of the observation noise variance Vt, estimated by the algorithm
of Smith in the KF-1 protocol and a forecast range of 24 hr.

but is not necessarily a good feature for longer ranges
because of the delay in the response, especially when
the errors are more random than systematic. Finding
the right balance between adaptivity, reliability and
forecast range may require tedious efforts when many
sites are considered. The KF procedure presented here
was developed with the following goals: reduction of
the systematic errors, automatic adaptation to abrupt
and/or structural changes in relation to the forecast
range, and reliability of the prediction intervals. From
the information given by the predictive distributions,
the forecaster may then issue the appropriate forecast
to a given situation. Even in situations where the KF
predictions are observed not to be more accurate than
the DMO forecasts, the adaptive KF procedure still
conveys useful information about the uncertainty of
the local predictions. Both protocols presented here
were observed to be unbiased and reliable on average.
It was also observed how difficult it is to improve the
accuracy of the forecasts in situations where the DMO
is already unbiased. It is difficult to clearly favour one
protocol rather than another because the results are not
fundamentally different. The results also demonstrated
the superiority of a Kalman filtered NWP forecast over
a climatic prediction, up to 7 days ahead for T2m, and 3
to 5 days ahead for FF10.

4. Summary and conclusions

The potential of a statistical method such as the KF is not
limited to bias reduction of a local forecast. It can also
provide guidance on the prediction uncertainty in the
form of an interval, reliable in average at a particular
location. The design of a reliable KF procedure can
prove to be difficult without any prior knowledge of
the noise statistics. An adaptive KF procedure is an
attractive solution to this because it can be set up quite

rapidly and applied individually at as many locations
as required. Further development might incorporate
more sophisticated modelling of the different matrices
involved in the system equation, set here to the identity
matrix. The algorithms used in this study to adaptively
estimate the noise statistics are not unique and other
solutions described in the literature could also be
considered.
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Appendix 1: The Recursive Kalman filter
algorithm

For a given time lag k�t (k > 0), the recursive algorithm
estimates the following parameters:

X̂t|t−k�t is the prior estimate of the state vector Xt given
information up to time t – k�t:

X̂t|t−k�t = �X̂t−k�t|t−k�t (A-1)

Where � is a known n × n transition matrix.

Pt|t−k�t is the prior error covariance matrix of Xt

(Var(Xt − X̂t|t−k�t)) given information up to time
t – k�t:

Pt|t−k�t = �Pt−k�t|t−k�t�
T + �Wt�

T (A-2)

Where � is a n × r matrix of fixed coefficients and Wt
the system noise variance.

Using all the available information up to and including
time t − k�t, the mean µ̂t|t−k�t and variance σ̂ 2

t|t−k�t of
the predictive distribution of any observation Yt, are
derived as follows (see for instance Harrison & Stevens
1976):

(Yt|X̂t|t−k�t, Ht) ∼ N
(
µ̂t|t−k�t, σ̂

2
t|t−k�t

)
(A-3)

where Ht represents the predictors or explanatory
variables.

µ̂t|t−k�t = Ht X̂t|t−k�t (A-4)

and

σ̂ 2
t|t−k�t = Ht Pt|t−k�t HT

t + Vt (A-5)

where Vt is the observation noise variance.

Once the observation Yt is available, the KF algorithm
updates the prior estimates. X̂t|t is the posterior estimate
of Xt given information up to time t:

X̂t|t = X̂t|t−k�t + Ktet|t−k�t (A-6)

where

et|t−k�t = Yt − µ̂t|t−k�t (A-7)

is the error in predicting Yt using information up to and
including time t – k�t, and

Kt = Pt|t−k�t HT
t

(
Ht Pt|t−k�t HT

t + Vt
)−1 (A-8)

is the Kalman gain matrix.

Pt|t is the posterior error covariance matrix of Xt (Var
(Xt − X̂t|t)) given information up to time t:

Pt|t = (I − Kt Ht)Pt|t−k�t (A-9)

where I denotes the identity matrix.

Appendix 2: Estimation of the observation noise
variance Vt, using Smith’s method

The algorithm of Smith (1967) allows the adaptive
identification of the observation noise variance Vt at
each time step. In this method, Vt is assumed to be the
product of a nominal value V0 and a coefficient αt , which
is assumed to have an inverted gamma distribution with
parameters δt and vt. This method is quite similar to
the learning procedure described in West et al. (1985).
After making the approximation δt = αt, the adaptive
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estimation of Vt is obtained as follows:

Vt = α̂t|t−k�tV0 (B-1)

α̂t = α̂t|t−k�t

vt|t−k�t + 1

{
vt|t−k�t + e2

t|t−k�t

Ht Pt|t−k�t HT
t + Vt

}
(B-2)

vt = vt|t−k�t + 1 (B-3)

Where α̂t|t−k�t and vt|t−k�t are the prior estimates of αt
and vt respectively, at time t – k�t.

Appendix 3: Estimation of the system noise
variance Wt, using Jazwinski’s method

The method of Jazwinski (1969) adjusts the system noise
variance Wt in order to produce consistency between
the residuals and their statistics and to avoid the KF
becoming divergent. This method was originally used in
orbit determination and found later applications in other
sciences, such as hydrology (e.g. for adjusting river flow-
rates forecasts; see Bolzern et al. 1980). A description of
the Jazwinski algorithm can also be found in De Meyer
(2000). The method defines

Wt = βt I (C-1)

where I is the identity matrix and βt the coefficient
to be determined according to the following require-
ment:

e2
t|t−k�t < E

[
e2

t|t−k�t|W = 0
]

where

E
[
e2

t|t−k�t|W = 0
] = Ht�Pt−k�t|t−k�t�

T HT
t + Vt

(C-2)

This leads to the following estimator

βt =




e2
t|t−k�t − E

[
e2

t|t−k�t

∣∣W = 0
]

Ht��T HT
t

if positive

0 otherwise
(C-3)

This estimate is based on one residual. The statistical
significance of βt can be improved, if necessary, by
using a smoothing procedure consisting of averaging
the k previous estimates. If a change has occurred and
a divergence is observed in the predictions, an action is
taken in order to increase the prior covariance matrix
Pt|t−k�t and consequently to allow the model parameter
Xt to adapt faster. With the Jazwinski procedure, Pt|t−k�t
is estimated once the observation becomes available at
time t. However, the goal of this paper is to estimate
the parameters of the predictive distribution (both the
mean and the variance, Eq. A-4 and A-5 Appendix 1)
before the observation is made, and to produce at time
t – k�t a prediction interval valid at time t. From this
requirement, the prior error covariance matrix Pt|t−k�t
needs to be estimated at time t – k�t and also Wt.
In order to provide this information, the Jazwinski
algorithm is used in this study to arbitrarily define Wt a
priori as follows:

Wt = βt−k�t I (C-4)

The system noise variance Wt, to be used in the next
prediction valid at time t, is defined here a priori at time
t – k�t according to the magnitude of the error made
in the previous forecast. In doing so, the prior error
covariance matrix Pt|t−k�t is inflated, and consequently
the predictive variance σ̂ 2

t|t−k�t as well. It indicates that
a large error has been detected and the sensitivity of the
Kalman filter is increased for the next adjustment.
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