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AbstractStatistical analysis methods are generally derived under the assumptionthat forecast errors are strictly random and zero in the mean. If the short-termforecast, used as the background �eld in the statistical analysis equation, is infact biased, so will the resulting analysis be biased. The only way to properlyaccount for bias in a statistical analysis is to do so explicitly, by estimating theforecast bias and then correcting the forecast prior to analysis.We present a rigorous method for estimating forecast bias by means of dataassimilation, based on an unbiased subset of the observing system. The resultis a sequential bias estimation and correction algorithm, whose implementationinvolves existing components of operational statistical analysis systems. Thealgorithm is designed to perform on-line, in the context of suboptimal data as-similation methods which are based on approximate information about forecastand observation error covariances. The added computational cost of incorporat-ing the algorithm into an operational system roughly amounts to one additionalsolution of the statistical analysis equation, for a limited number of observa-tions. O�-line forecast bias estimates based on previously produced assimilateddata sets can be produced as well, using an existing analysis system.We show that our sequential bias estimation algorithm �ts into a broadertheoretical framework provided by the separate-bias estimation approach ofestimation theory. In this framework the bias parameters are de�ned rathergenerally and can be used to describe systematic model errors and observationalbias as well. We illustrate the application of on-line forecast bias estimation andcorrection in a simulated data assimilation experiment with a one-dimensionalforced-dissipative shallow-water model. A climate error is introduced into theforecast model via topographic forcing, while random errors are generated bystochastic forcing. In this simple experiment our algorithm is well able toestimate and correct the forecast bias caused by this systematic error, and theclimate error in the assimilated data set is virtually eliminated as a result.
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1 IntroductionAtmospheric data assimilation systems combine observational data with a background�eld, usually consisting of a short-term model forecast, in order to produce accurateand comprehensive analyses of atmospheric �elds and parameters. Optimal analysisaccuracy, in a proper statistical sense, is obtained when the ensemble means andensemble covariances of the error �elds associated with the model forecasts and withthe observations are known and accurately speci�ed. Since these statistics are notgenerally available, actual implementations of statistical data assimilation algorithmsare always suboptimal.A large portion of the research pertaining to the speci�cation of error statistics in dataassimilation systems has concerned covariance modeling, which is the development ofmethods for representing and estimating forecast and observation error covariances.Error statistics required for optimal interpolation (OI) are usually estimated fromtime series of observed-minus-forecast residuals (Rutherford 1972; Hollingsworth andL�onnberg 1986; L�onnberg and Hollingsworth 1986; Daley 1991; Bartello and Mitchell1992). Advanced statistical data assimilation techniques aim to improve the accuracyof forecast error statistics by taking into account the e�ect of model dynamics on theevolution of forecast errors (Ghil et al. 1981; Dee 1991; Cohn and Todling 1996).The point of departure in covariance modeling is complete knowledge of the means.Most often it is simply assumed that the forecast model as well as the observing in-struments are unbiased; that is, the mean errors are zero or they have been removed.Identi�cation and correction of observational bias is an important component of oper-ational data assimilation systems. Examples include radiation correction procedures1



for radiosonde observations (Julian 1991), and bias removal schemes for cloud-clearedradiance (Eyre 1992). Some numerical weather prediction centers use 6-hour modelforecasts to provide a reference for removing bias from the observations (Baker 1991),at the risk of perpetuating any existing biases in the forecast itself.The term forecast bias is synonymous with non-zero mean forecast error; if present,the forecast model is a biased estimator of the actual atmosphere. Forecast bias isdue to the presence of systematic errors in the forecast model, such as are causedby incorrect physical parameterizations, numerical dispersion, or faulty boundaryconditions. Often the e�ects of such errors persist for a certain amount of time, andare detected when speci�c aspects of the model climatology di�er from the actualatmospheric climatology as derived from observations. Although it is well knownthat systematic errors contribute signi�cantly to forecast errors (see, for example,Reynolds et al. 1996), the problem of estimating and properly accounting for forecastbias in data assimilation systems has received little attention so far.Saha (1992) has estimated forecast bias in the U.S. National Centers for Environ-mental Predictions (NCEP)1 model by averaging one month of di�erences betweenone-day forecasts and the verifying operational analyses. It is not uncommon to evalu-ate systematic errors in a forecast model by using analyses as a reference (e.g., Takacsand Suarez 1996). The success of this approach obviously depends on the validity ofthe underlying assumption that the analyses themselves are unbiased. Tenenbaum(1996) has shown by using independent (i.e., not assimilated) aircraft data that an-alyzed jet stream winds obtained from various operational centers are signi�cantlybiased. The likely explanation for this is that the analyses are produced from biased1Formerly the National Meteorological Center (NMC).2



forecasts; sparse observations of jet stream winds will, at best, only partially removethis bias. Thus, if forecast bias is a problem, then it is not safe to assume thatanalyses are unbiased.The purpose of this article is to present a rigorous, yet practical, method for estimat-ing forecast bias in an atmospheric data assimilation system. The method is fullyconsistent with the state-space approach of estimation theory, originally presentedin the context of atmospheric data assimilation by Ghil et al. (1981). This theoryrequires explicit assumptions on statistics of observation errors and on forecast errors,possibly including unknown systematic (i.e., non-zero mean) components. From theseassumptions it is then possible to derive a consistent set of algorithms for estimatingforecast bias and for producing unbiased analyses.The basic assumption we adopt here is that there exists a subset of the observingsystem for which bias is negligible compared to the forecast bias. In addition, weexplicitly de�ne forecast bias as the time-mean (climatological) error in the short-term forecast, and this is the quantity we set out to estimate. We are then able toderive a rigorous sequential forecast bias estimation algorithm, whose implementationinvolves existing components of statistical data assimilation systems. Consequentlyone can incorporate forecast bias estimation in an operational system with only minormodi�cations. The algorithm is designed to perform in the context of suboptimal dataassimilation methods in which error covariance information is only approximate. Theadded computational cost of on-line forecast bias estimation is roughly one additionalsolution of the statistical analysis equation. O�-line forecast bias estimates can beproduced as well, using an existing data assimilation system and stored output froma previous data assimilation run. 3



To provide our bias estimation algorithm with a �rm theoretical footing, we brieyreview the so-called separate-bias estimation approach of estimation theory. Friedland(1969) formulated the bias estimation problem for a class of linear stochastic-dynamicsystems with constant bias parameters, and showed that estimates of these parameterscan be obtained separately from the estimates of the dynamic state variables. Otherauthors subsequently clari�ed and extended Friedland's formulation (e.g., Tacker andLee 1972; Mendel 1976; Friedland 1978; Ignagni 1981; Ignagni 1990; Zhou et al. 1993).Separate-bias estimation algorithms can be applied more generally to estimate modelerror parameters and observational bias as well.The organization of this paper is as follows. In section 2 we discuss forecast errorsand their statistics, and show that the usual statistical analysis equation producesbiased analyses in the presence of forecast bias. We show in section 3 how forecastbias can be estimated sequentially in a data assimilation system, provided unbiased(or bias-corrected) observations are available. Section 4 contains a concise review ofthe bias estimation theory originally developed by Friedland (1969), and there wereconcile our approach to forecast bias estimation with this theory. In section 5 wediscuss certain practical aspects of forecast bias estimation, for o�-line as well as on-line implementations. Here we also describe a simple numerical experiment based on alinear, one-dimensional shallow water model with topographic and stochastic forcing.The climate of the forecast model in this experiment di�ers from the simulated 'true'climate, and we show that our algorithm successfully corrects this systematic error.We briey conclude in section 6. 4



2 Bias and the analysis equationHere we show that a biased forecast invariably leads to a biased analysis, indepen-dently of the weights used in the analysis update. Bias can be reduced by assigningmore weight to the observations, but the result will be an increasingly noisy analysis.We also briey discuss the distinction between ensemblemeans and time averages. We�rst de�ne forecast and observation errors and their �rst- and second-order statistics.2.1 Forecast and observation errors.Suppose that the n-vector wfk is a model forecast valid for time tk, and wtk is theunknown true state of the atmosphere at that time. It is convenient to de�ne bothquantities in terms of the same state representation: wtk is an n-vector as well, con-taining, for example, the true grid-point values or spectral coe�cients. The forecasterror is then simply"fk � wfk �wtk: (1)For a pk-vector wok of measurements generated by a particular instrument at time tk,the observation error is de�ned by"ok � wok � hk(wtk): (2)The nonlinear pk-vector function hk is the discrete forward observation operator (e.g.,Cohn 1996), mapping model variables to the data type associated with the instrument.We introduce the following notation for the forecast error mean and covariancebfk � h"fki; Pfk � D("fk � bfk)("fk � bfk)TE ; (3)5



and for the observation error mean and covariancebok � h"oki; Rk � D("ok � bok)("ok � bok)TE : (4)Here h�i denotes the ensemble average or expectation operator, whose proper de�nitioninvolves the joint probability distribution of forecast and observation errors.In order to simplify the presentation we will assume throughout that observation andforecast errors are uncorrelated:D("ok � bok)("fk � bfk)TE = 0: (5)Removal of this assumption does not introduce any signi�cant complications in whatfollows.A forecast wfk is said to be biased if the mean forecast error bfk is nonzero; bfk isthe forecast bias. Similarly, the observations wok are said to be biased if the meanobservation error or observation bias bok is nonzero.2.2 Ensemble means vs. time averages.We de�ned forecast and observation error statistics in terms of ensemble means: theseare averages over all possible realizations of the errors, weighted by their probabilityof occurrence. This de�nition is appropriate since the optimality criteria underlyingstate estimation algorithms are generally formulated in terms of probability distri-butions of the stochastic-dynamic state variables (Jazwinski 1970; Cohn 1996). Forexample, the optimal estimate (in a rather broad sense) of the true atmospheric statewtk given any set W of observations is provided by the conditional (ensemble) meanhwtkjW i. This quantity is de�ned in terms of the joint probability distributions of wtkand W . 6



Note, however, that the ensemble of all possible realizations of the actual atmosphericstate is di�erent from the ensemble of all possible realizations of the modeled atmo-spheric state, both in concept and in substance. Ensemble forecasting (Toth andKalnay 1993; Houtekamer et al. 1996) involves di�erent realizations of model fore-casts obtained by perturbing initial conditions and/or selected model parameters; thenumber of such realizations is limited only by the computing resources at hand. Theensemble of actual atmospheric states, on the other hand, is nothing more than atheoretical device. Only a single member of this ensemble exists, and only this singlephysical realization of the atmospheric state evolution is in fact observable; all generalinferences about the ensemble rely on theory. For example, to assert that propertiesof the ensemble of actual states can be emulated by generating an ensemble of mod-eled states involves assumptions on the exact relationship between the model and thereal atmosphere.In practice, �rst- and second-order forecast and observation error statistics are com-puted by averaging over time, usually over periods on the order of a month or so(Rutherford 1972; Schlatter 1975; Lorenc 1981; Bartello and Mitchell 1992). Sub-stitution of ensemble means by some other kind of average is, of course, a practicalnecessity. One could attempt to justify this substitution by assuming ergodicity ofthe stochastic processes involved, although this would seem to be rather farfetched.We will not further address this issue here but simply keep in mind the practicalde�nition of forecast and observation error statistics in terms of time averages as analternative to the theoretical de�nition in terms of ensemble means.Our notion of forecast bias in particular is usually associated with errors that per-sist for a certain amount of time. Such systematic errors are detectable when they7



cause speci�c aspects of the model climatology to di�er from the actual atmosphericclimatology, as derived from observations.2.3 The analysis equation in the presence of bias.If the forecast bias were known, one could compute an unbiased forecastewfk = wfk � bfk : (6)Similarly,ewok = wok � bok (7)would be a set of unbiased observations. Throughout this paper we will use tildes toindicate that a quantity is either unbiased (in case of an estimate) or that its meanis zero (in case of a random vector).To simplify the presentation we now assume that the observation operator is linear:hk(�) = Hk� in (2), with Hk a pk �n matrix. The statistical analysis equation whichproperly accounts for bias is thenewak = ewfk +Kk h ewok �Hk ewfk i ; (8)where ewak is the analysis at time tk, and Kk is an n� pk gain matrix which takes intoaccount the relative accuracies of forecast and observations. Independently of thespeci�cation of this gain, the analysis is an unbiased estimate of the true atmosphericstate:bak � h"aki = 0; "ak � ewak �wtk: (9)If, in particular,Kk = PfkHTk hHkPfkHTk +Rki�1 ; (10)8



then (8) provides the linear minimum variance estimate of the true atmospheric stategiven all observations up to and including time tk (Anderson & Moore 1979, section5.2).In operational data assimilation systems the bias terms bok;bfk are usually unknownand hence neglected. Using wok;wfk in place of ewok; ewfk the analysis equation iswak = wfk +Kk hwok �Hkwfk i : (11)Taking the ensemble average and using (6) and (7) impliesbak = bfk +Kk hbok �Hkbfki ; (12)which shows that, for any gain Kk, the analysis is biased unless the forecast as wellas the observations happen to be unbiased. Equation 12 also shows that the meananalysis increment (the second term on the right-hand side) does not provide a goodestimate of forecast bias, even when bok � 0, since the gain coe�cients are generallyless than one.Given an analysis equation of the form (11) in which bias is not explicitly accountedfor, it is nevertheless interesting to consider the particular gain Kk which leads to thesmallest total (systematic plus random) root-mean-square (rms) analysis error. Thisis important from a practical point of view since (11) is precisely the equation beingsolved in operational sequential data assimilation systems. It is not di�cult to showthat the rms analysis error due to (11) is minimal forKk = PfkHTk hHkPfkHTk +Rki�1 ; (13)with Pfk � D"fk("fk)TE = Pfk + bfk(bfk)T ; (14)Rk � D"ok("ok)TE = Rk + bok(bok)T : (15)9



The analysis resulting from (11) with Kk = Kk is still biased, as is true for any gainKk. An unbiased analysis can be produced only if explicit estimates of forecast biasand observation bias are available.2.4 A scalar example.Suppose that wfk and wok are both scalars, withbfk = h"fki = b; P fk = h("fk � b)2i = �2; (16)bok = h"oki = 0; Rk = h("ok)2i = �2: (17)Using (8), the optimal analysis is given bywak = 12( ewfk + wok) = 12(wfk � b+ wok); (18)for whichbak = 0; h("ak)2i = 12�2: (19)Ignoring forecast bias as in (12) would give insteadwak = 12(wfk + wok); (20)which is biased:bak = 12b; h("ak)2i = 14b2 + 12�2: (21)The magnitude of the mean analysis increment in this case is b=2 and would under-estimate the forecast bias by a factor of two.Note that the analysis reduces the bias but does not remove it. Suppose now thatb = �, i.e. the typical magnitude of the random component of forecast error is equal10



to that of the systematic component. Increasing the weight of the observation as in(13) then giveswak = 13(wfk + 2wok); (22)which is still biased but has somewhat less total variance:bak = 13b; h("ak)2i = 19b2 + 59�2: (23)Drawing the analysis even closer to the observation would further reduce the biasbut increase the total analysis error variance, due to the random error component.Figure 1 summarizes this example; it shows the dependence on the weight K of theanalysis bias, the standard deviation of the random component of analysis error,and the total expected analysis error if (12) is used. This example shows clearlythat, unless bias is explicitly accounted for, it can be reduced only at the expense ofincreasing the noisiness of the analysis.

11



total error     

random error    

systematic error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

K

an
al

ys
is

 e
rr

or

Figure 1: Analysis error as a function of the scalar gain coe�cient K, whenforecast bias is not explicitly accounted for in the analysis, forthe scalar example presented in section 2. The dotted horizontalline indicates the minimum analysis error level obtainable with anunbiased forecast.
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3 Sequential bias estimationForecast bias can be estimated by comparing forecasts with observations, i.e., fromobserved-minus-forecast residuals. Without additional information it is not possibleto separate the e�ect of forecast bias on these residuals from that of biased observa-tions. We therefore assume, in this section, that a subset of the observing system isunbiased. This then leads to a sequential estimation algorithm for the time-averagedforecast error. First, we briey discuss observed-minus-forecast residuals and their�rst- and second-order statistics.3.1 Observed-minus-forecast residuals.The observation operator introduced in (2) is a device for comparing forecasts withobservations. The observed-minus-forecast residuals de�ned byvk � wok � hk(wfk ) (24)are routinely computed in operational data assimilation systems. The residual pk-vector time series fvkg is often referred to as the innovation sequence, although thisterminology is not entirely correct since it presumes optimality of the data assimilationalgorithm (Anderson & Moore 1979, section 5.3). In any case, these residuals containimportant information about the actual observation and forecast errors, sincevk � "ok �Hk"fk ; (25)where the linearized observation operator Hk, a pk � n-matrix, is de�ned byHk � @hk@w �����w=wfk : (26)13



Equation 25 is obtained by linearizing (24) about the forecast state and using (1)and (2). The accuracy of the approximation (25) depends on the size of the forecasterrors; it is exact for linear observation operators.The residual mean and covariance are easily obtained from (25):hvki � bok �Hkbfk ; (27)D(vk � hvki)(vk � hvki)TE � Rk +HkPfkHTk : (28)We used the additional approximation hHk �i �Hkh�i; for linear observation operators(27) and (28) are both exact. Compare (28) with (10); speci�cation of optimal weightsin the analysis update requires complete knowledge of the residual covariance.3.2 A state-space description of forecast bias.We now assume that there exists a subset of the observing system for which bias isnegligible:bok � 0; (29)or, rather, that jbokj � jHkbfk j in some meaningful sense. This amounts to therequirement that systematic errors, if any, have been e�ectively removed from theobservations. In that case (25) can be re-writtenvk = �Hkbfk + e�k; (30)where e�k is a noise term whose �rst- and second-order statistics arehe�ki � 0; (31)he�k e�Tk i � Rk +HkPfkHTk : (32)14



This follows from (25) and (29) by noting that e�k = vk � hvki and using (28).Equation (30) can be regarded as a measurement model for the forecast bias bfk . It ex-presses the relationship between the observations, the forecast, and the actual forecastbias under the assumption (29). If observations alone are insu�cient to completelydetermine forecast bias, they must be supplemented with additional information. Wetherefore introduce a state model for bfk which describes its evolution in time. For-mulation of the state model in fact amounts to an explicit de�nition of the quantitywe wish to estimate, i.e., of our notion of forecast bias.Our practical goal is to estimate the time-mean forecast error, averaged over a timeperiod which exceeds synoptic time scales. By de�nition, this quantity is approxi-mately constant in time, so that a reasonable state model for bfk is the persistencemodelbfk = bfk�1: (33)This model will serve to predict forecast bias for time tk based on a previous biasestimate valid for time tk�1.Forecast errors are state-dependent, and the evolution in time of forecast bias istherefore likely to be more complex than the persistence model (33) suggests. Forexample, the presence of a systematic error in the convective parameterization of aforecast model will result in systematic but transient short-term forecast errors inconvectively active regions. Tibaldi and Molteni (1990) and Miyakoda and Sirutis(1990) discuss systematic forecast errors which occur during the onset of blocking,and their impact on forecast skill. It will be a challenge to express this type of15



information explicitly in terms of a bias evolution model of a more general form, say,bfk = bfk�1 + g(wtk�1); (330)where g is some nonlinear operator.Equations (30) and (33) (or (330)) together constitute a state-space description (An-derson and Moore 1979) of the forecast bias bfk . Given such a description, the esti-mation of this quantity becomes a standard problem in estimation theory. Gri�thand Nichols (1996) pursue a similar approach, but in the context of variational dataassimilation. They propose to extend the variational continuous assimilation method(Derber 1989) by introducing a deterministic evolution model for model error, anal-ogous to (330). The model error is then treated as part of the control variable in thevariational formulation of the data assimilation problem, and can be estimated alongwith the forecast trajectory using adjoint techniques.3.3 Sequential estimation of forecast bias.A sequential bias estimation algorithm producing estimates b̂k of the forecast biasbfk can be de�ned recursively as follows. Given a previous bias estimate b̂k�1, thepersistence model (33) predicts the forecast bias at time tk simply byb̂�k = b̂k�1: (34)In case of the more general model (330) the bias prediction might beb̂�k = b̂k�1 + g(b̂k�1;wak�1): (340)An updated estimate b̂k of forecast bias can be obtained by combining the bias pre-diction b̂�k with the measurements provided by (30). It is easy to show from (30{32)16



that the least-variance unbiased linear combination of prediction and measurementsis given byb̂k = b̂�k � Lk hvk +Hkb̂�k i ; (35)with Lk = Pb�k HTk hHkPfkHTk +Rki�1 ; (36)where Pb�k is the error covariance of the bias estimate b̂�k :Pb�k � D(b̂�k � bfk)(b̂�k � bfk)TE : (37)The algorithm must be initialized with an a priori bias estimate b̂0, and it requiresspeci�cation of the error covariances Pb�k .For a linear stochastic-dynamic bias evolution model (in particular, for the persistencemodel (33)) it is possible to derive recursions for the covariances Pb�k , as we shall showin section 4. Supplemented by these recursions, the algorithm (34{36) is just theKalman �lter for the system (30, 33). It will be more practical, however, to specifythe covariance Pb�k directly|that is, without recourse to the covariance equations|analogous to the direct modeling of forecast and observation error covariances inoperational data assimilation systems. We will return to the issue of estimation errorcovariance modeling in section 5.In case of a linear bias model the bias estimate b̂k de�ned by (35) is unbiased, providedthe observations are unbiased:hb̂ki = bfk : (38)This statement follows directly from (35) combined with (29), and does not dependon the particular gain Lk. The least-variance property of the estimator, on the other17



hand, holds only if the error covariances Pb�k , Pfk , and Rk are correctly speci�ed in(36). Actual implementations of the algorithm will generally be suboptimal.Stability properties of the sequential bias estimation algorithm can be stated in termsof stability properties of the Kalman �lter. For linear bias models the convergence ofb̂k to bfk (in the statistical mean-square sense) depends on observability and control-lability properties of the state-space system (30,33 or 330). In practical terms, andfor the persistence model (33) in particular, this means that the (unbiased) observ-ing system must provide su�cient coverage during the maximum time interval overwhich forecast bias can be presumed constant. Bias estimates at locations where nounbiased observations are available will be determined partly by the a priori bias es-timate b̂0 there, and partly by the speci�cation of the error covariances Pb�k betweenlocations within and without the observed regions.
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4 Bias estimation theoryIn this section we summarize the approach to bias estimation �rst developed byFriedland (1969) and subsequently clari�ed and extended by others (Tacker and Lee1972; Mendel 1976; Friedland 1978; Ignagni 1981; Ignagni 1990; Zhou et al. 1993).The work of these authors provides a rigorous framework for the sequential biasestimation algorithm presented in the previous section, and can be applied moregenerally to the estimation of model error parameters and/or observational bias.4.1 General framework.Friedland (1969) considered the problem of estimating the true state wtk of a linearstochastic-dynamic process in the presence of a set of constant (but unknown) biasparameters �. Other than being constant, the bias parameters are rather generallyde�ned, and may a�ect both the state model and the measurement model. In partic-ular, it is not assumed that observations are unbiased. The theory has been developedfor both continuous and discrete processes; here we present only the latter.The framework assumes linear stochastic-dynamic state and measurement models ofthe form:wtk = Akwtk�1 +Bk� + e�k; (39)wok =Hkwtk�1 +Ck� + e�k: (40)Here Ak;Bk;Hk;Ck are known matrices of appropriate dimensions, and e�k; e�k aremutually independent white Gaussian vector processes with known �rst- and second-19



order statisticshe�ki = 0; �e�ke�Tk � = Qk; (41)he�ki = 0; De�k e�Tk E = Rk: (42)If the bias parameters � were known (or if Bk � Ck � 0) the optimal state estimateat time tk based on all observations up to that time would be given by the usualKalman �lter equations.Note that the bias parameters can enter the problem in di�erent ways, dependingon the de�nition of the matrices Bk and Ck. When Bk � 0 the state model (39) isunbiased; in our application this corresponds to an unbiased forecast model. WhenCk � 0 the observations are unbiased. Generally, the term Bk� represents the e�ectof unknown model error parameters entering into the state evolution. The bias vector� may consist of just a few parameters|say, unknown spectral coe�cients of modelerror|or it may be dimensionally compatible with the true state wtk.4.2 Optimal state estimation in the presence of bias.Optimal estimates of the true state wtk and the bias parameters � can be obtainedby applying the standard technique of augmenting the state vector with the biasparameters (e.g., Jazwinski 1970, section 8.4). Linear state and measurement modelsfor the augmented state follow from (39) and (40) together with the statement that thebias parameters are constant. The Kalman �lter for this system then simultaneouslyprovides the optimal estimates of wtk and �. The obvious drawback to this approachis that it is not a simple matter to modify an existing implementation of a stateestimation algorithm by introducing state augmentation.20



Friedland showed that the Kalman �lter equations for the augmented state are alge-braically equivalent to two loosely coupled sets of recursions, resulting in a two-stageestimation algorithm. The �rst stage consists of the usual �lter equations for the statewtk, obtained by ignoring the bias altogether. The second stage provides estimates ofthe bias parameters � based on the output of the �rst stage. Results from the twostages can then be combined to produce the optimal (unbiased) state estimates.This two-stage approach to concurrent state and bias estimation is known as separate-bias estimation in the literature. The �rst stage in the algorithm was originally calledthe bias-free state estimator by Friedland, since none of the equations in this stageinvolve bias estimates. We have found this terminology to be potentially confusingsince it suggests that bias-free state estimates are unbiased, which is not actuallythe case. We therefore prefer to use the term bias-blind state estimator, which moreclearly indicates that bias is present yet ignored in that part of the algorithm.Friedland's two-stage approach is attractive for many applications because the biasestimator can be implemented as a supplemental component to an existing (bias-blind) state estimator: the design of the state estimator is una�ected by the additionof the bias estimator. The latter can be activated as needed, e.g. when output diag-nostics indicate signi�cant bias problems. We include the complete set of algorithmsand some important properties here without proof; see Friedland (1969; 1978) andIgnagni (1981; 1990) for details.
21



Bias-blind state estimator.The bias-blind state estimates wfk ;wak are given bywfk = Akwak�1; (43)wak = wfk +Kk hwok �Hkwfk i ; (44)where the gain Kk isKk = SfkHTk hHkSfkHTk +Rki�1 ; (45)and Sfk is de�ned recursively bySfk = AkSak�1ATk +Qk; (46)Sak = [I�KkHk]Sfk : (47)In the absence of bias (43{47) are just the Kalman �lter equations.Bias estimator.Bias parameter estimates �̂k are given by�̂k = �̂k�1 +K�k hwok �Hkwfk �Tk�̂k�1i ; (48)where the gain K�k isK�k = P�k�1TTk hTkP�k�1TTk +HkSfkHTk +Rki�1 ; (49)and P�k is de�ned recursively byP�k = hI�K�kTkiP�k�1: (50)The matrix Tk is de�ned by the following set of recursions:Tk = HkUk +Ck; (51)Uk = AkVk�1 +Bk; (52)Vk = Uk �KkTk: (53)The last equation in this set depends on the state estimator gain Kk.



Bias correction.Unbiased state estimates ewfk ; ewak are obtained byewfk = wfk +Uk�̂k�1; (54)ewak = wak +Vk�̂k: (55)Initialization.The recursions for the two estimators are initialized by specifying a priori state andbias estimates wa0 and �̂0 as well as the matrices Sa0, P�0 , and V0. Generally, if it isassumed thatwt0 = w0 +M0�; Dw0�TE = 0 (56)with M0 a known matrix, thenSa0 = D(wa0 �w0)(wa0 �w0)TE ; (57)P�0 = D(�̂0 � �)(�̂0 � �)TE ; (58)V0 =M0: (59)4.3 Properties and some extensions.Friedland (1969) showed that the �̂k de�ned by (48{53) are optimal estimates of thebias parameters �, given all observations up to and including time tk. The matricesP�k are the actual estimation error covariances:P�k = D(�̂k � �)(�̂k � �)TE : (60)23



The unbiased state estimates ewfk ; ewak de�ned by (54, 55) are optimal, with errorcovariances given byPfk � D( ewfk �wtk)( ewfk �wtk)TE = Sfk +UkP�k�1UTk ; (61)Pak � D( ewak �wtk)( ewak �wtk)TE = Sak +VkP�kVTk : (62)The cross-covariances between the state estimates and the bias estimates areD( ewfk �wtk)(�̂k�1 � �)TE = UkP�k�1; (63)D( ewak �wtk)(�̂k � �)TE = VkP�k : (64)Unless � = 0 the bias-blind state estimator (43{47) is suboptimal and producesbiased state estimates wfk ;wak. The quantities Sfk ;Sak are covariance matrices, i.e.,they are in fact positive semide�nite, but (61, 62) show that they di�er from theactual estimation error covariances Pfk ;Pak for the unbiased estimates ewfk ; ewak. Onecan prove, however, that the covariances Sfk ;Sak do converge to Pfk ;Pak as k !1,provided the model system (39, 40) is uniformly completely observable and uniformlycompletely controllable. In that case the second term in each of the equations (61, 62)approaches zero as the bias parameter estimates converge, since the Uk;Vk de�nedby (51{53) will remain bounded due to the stability of the bias-blind state estimator.Several extensions to the two-stage state and bias estimation algorithm have beenproposed based on natural generalizations of the linear, constant-bias framework pro-vided by the model system (39, 40). Various authors (Tacker and Lee 1972; Ignani1990) have considered model systems in which the bias parameters � are allowed tovary in time. Optimal bias and state estimates can still be obtained using simpleextensions of Friedland's two-stage estimator, provided the variation in time of thebias parameters can be modeled and the resulting model system is still linear. Oth-24



ers (Mendel 1976; Zhou et al. 1993) have proposed modi�cations to the algorithmsdesigned to handle nonlinear state models; the resulting estimates are, of course,suboptimal.4.4 Forecast bias estimation.Using our de�nition (3) of forecast bias in section 2,bfk � hwfk �wtki (65)= h ewfk �wtki � hUk�̂k�1i (66)= �Uk� (67)where we used (54) and the fact that ewfk and �̂k�1 are unbiased estimates of the truestate wtk and the bias parameters �, respectively. In fact, �̂k is an unbiased estimateof � as well, so thatb̂�k � �Uk�̂k�1; (68)b̂k � �Uk�̂k (69)are both estimates of forecast bias bfk. Their error covariances arePb�k � D(b̂�k � bfk)(b̂�k � bfk)TE = UkP�k�1UTk ; (70)Pbk � D(b̂k � bfk)(b̂k � bfk)TE = UkP�kUTk ; (71)using (60).The estimate b̂�k predicts forecast bias at time tk based on data prior to tk: thecorrected (unbiased) forecast (54) isewfk = wfk � b̂�k : (72)25



The second estimate b̂k is an update of the �rst, using additional data available at timetk. Optimality of the bias estimator implies that these are the least-variance estimatesgiven the observations upon which they are based; in particular, the updated estimateb̂k is more accurate than b̂�k .We will now review the sequential forecast bias estimation algorithm (34{36) devel-oped in section 3, using the theory presented here. Consider the special case in whichthe measurement model (40) is una�ected by the bias parameters, i.e.,Ck � 0: (73)This corresponds to the assumption that observations are unbiased. Equations (51{53) then reduce toTk = HkUk; (74)Uk = Ak [I�Kk�1Hk�1]Uk�1 +Bk: (75)Multiplying (48) by �Uk and using (68{70) and (74), we obtain the forecast biasupdate equationb̂k = b̂�k � Lk hwok �Hkwfk +Hkb̂�k i ; (76)with Lk � UkK�k (77)= Pb�k HTk hHkPb�k HTk +HkSfkHTk +Rki�1 : (78)Compare (76, 78) with (35, 36); they are identical by virtue of (24), (61), and (70).The covariance update equation implied by (50) isPbk = [I�LkHk]Pb�k ; (79)26



where we used (77) and (70, 71).Equations for the forecast bias prediction b̂�k and its error covariance Pb�k can be sim-ilarly obtained. For prediction, however, it is necessary to de�ne the precise relation-ship between the bias parameters � and the evolution of the true state, representedby the matrix Bk in the state model (39). In section 3 we took a somewhat di�erentapproach by directly modeling the evolution in time of the forecast bias itself. Incase of the persistence model (33) this is easily reconciled with the present theory, asfollows. If the forecast bias bfk is presumed constant in time, (67) implies thatUk � U = const. (80)But then (68, 69) together implyb̂�k = b̂k�1; (81)which is just (34). Similarly, (70, 71) together implyPb�k = Pbk�1: (82)Note from (75) that (80) corresponds to the particular choiceBk = fI�Ak [I�Kk�1Hk�1]gU (83)in the state model (39), for an arbitrary (but constant) matrix U. It would befarfetched to assume that the model (39) with this choice of Bk provides a realis-tic description of the actual state evolution. For this and other practical reasons itmakes sense to bypass the covariance equations (79, 82) altogether and instead ap-proximate the estimation error covariances directly, as is usually done in operationaldata assimilation systems. 27



4.5 The unbiased analysis equation revisited.Still assuming unbiased observations (Ck � 0) it follows from (51) and (53) thatVk = [I�KkHk]Uk (84)which, together with (55, 69) impliesewak = wak � [I�KkHk] b̂k; (85)showing how the updated forecast bias estimate b̂k may be used to obtain the optimal(unbiased) analysis.Equation (85) can be used to re-derive the unbiased analysis equation (8), as follows.Using (44) and (76),ewak = wfk +Kk hwok �Hkwfk i� [I�KkHk] b̂k (86)= ewfk + fKk + [I�KkHk]Lkg hwok �Hk ewfk i : (87)The covariance relation (61) can also be written asPfk = Sfk +Pb�k ; (88)and this together with (49), (78) impliesfKk + [I�KkHk]Lkg = PfkHTk hHkPfkHTk +Rki�1 ; (89)which proves (8), since ewok = wok here (observations are unbiased).Another useful way to express the unbiased analysis equation is in terms of the quan-tity eewfk � wfk � b̂k (90)28



which is the a posteriori unbiased forecast. From (86) we simply obtainewak = eewfk +Kk �wok �Hk eewfk� : (91)

29



5 Implementation in practiceIn this section we summarize the on-line and o�-line bias estimation algorithms andaddress some practical issues. We also present the results of a simple numericalexperiment performed with a linear one-dimensional shallow-water model.5.1 Selection of observations for bias estimation.The basic assumption leading to the ability to estimate forecast bias is that unbiasedobservations are available for this purpose. In practical terms this means that obser-vational bias must have been e�ectively removed, so that any remaining systematiccomponent of the time-averaged observed-minus-forecast residuals can be attributedto forecast bias. This requirement is not realistic for all data types used in oper-ational data assimilation systems. In practice one may therefore need to de�ne alimited subset of observations to be used for the purpose of estimating forecast bias.We will use the superscript notation j to indicate that a quantity is associated withthis restricted subset. In particular, wojk denotes the vector of unbiased observationsat time tk; it is a subset of the full set of observations wok. Similarly let hjk;Hjk, andRjk be the corresponding restrictions of the observation operator hk, the linearizedobservation operator Hk, and the observation error covariance Rk, respectively.5.2 Summary of the algorithms.The o�-line algorithm produces estimates of forecast bias based on stored output froman assimilation system. The on-line algorithm, on the other hand, utilizes currentforecast bias predictions and updates in order to produce unbiased forecasts and30



analyses. Bias estimates are based exclusively on observations which are consideredunbiased. The computational cost of bias estimation is roughly that of a singlesolution of the analysis equation for a limited number of observations.

31



O�-line forecast bias estimation.bias prediction:b̂�k = b̂k�1 + g(b̂k�1;wak�1) (92)ewfk = wfk � b̂�k (93)bias update:b̂k = b̂�k � Lk hwojk � hjk( ewfk)i (94)Lk = Sb�k HjkT �HjkSb�k HjkT +HjkSfkHjkT +Rjk��1 (95)On-line forecast bias estimation and correction.forecast and bias prediction:wfk = Ak ewak�1 (96)b̂�k = b̂k�1 + g(b̂k�1; ewak�1) (97)ewfk = wfk � b̂�k (98)bias update:b̂k = b̂�k �Lk hwojk � hjk( ewfk )i (99)Lk = Sb�k HjkT �HjkSb�k HjkT +HjkSfkHjkT +Rjk��1 (100)eewfk = wfk � b̂k (101)analysis:ewak = eewfk +Kk �wok � hk( eewfk)� (102)Kk = SfkHTk hHkSfkHTk +Rki�1 (103)32



5.3 Covariance modeling.According to the theory presented in section 4, the on-line estimates are optimal whenSfk = Pfk �Pb�k ; (104)Sb�k = Pb�k ; (105)where Pfk = D( ewfk �wtk)( ewfk �wtk)TE ; (106)Pb�k = D(b̂�k � bfk)(b̂�k � bfk)TE : (107)Note that Sfk would be the forecast error covariance in the optimal case if there wereno bias, or if the bias were precisely known and properly handled in the analysis. Thecovariance Pfk , on the other hand, is the optimal forecast error covariance in case of abiased forecast model, and it is bounded from below by Sfk: it is clearly not possibleto do as well when forecast bias is not precisely known.In operational data assimilation systems forecast error covariances are approximatedon the basis of various simplifying assumptions about the forecast error �elds. Forexample, it is usually assumed that height error correlations at �xed pressure levelsare isotropic, and that extra-tropical wind error �elds are in geostrophic balance withthe height errors. Remaining free parameters in the covariance formulations (suchas error standard deviations and spatial de-correlation length scales) can then beestimated from past observed-minus-forecast residuals, although on-line estimationof some parameters based on current data is possible as well (Dee 1995).A similar direct modeling approach could be used to approximate the forecast biasprediction error covariance Pb�k . Use of the Kalman �lter recursions for these co-33



variances in a practical application is not sensible, especially when forecast bias isbeing predicted by means of a simple heuristic model. The assumptions underlyingcovariance models for bias prediction errors b̂�k � bfk and for the random forecasterrors ewfk � wtk should be consistent. For example, it is natural to assume that thesystematic component of forecast error is approximately geostrophic as well in themiddle latitudes.Parameters for approximating the forecast error covariance Pfk should be estimatedfrom mean-zero observed-minus-forecast residualsevk � wok � hk( ewfk ); (108)since Devk evTk E � Rk +HkPfkHTk : (109)A simple prescription for the bias prediction error covariance in terms of the forecasterror covariance Pfk might beSb�k = Pfk ; (110)with 0 <  < 1 a free parameter. Consistent with (104) one should then takeSfk = (1�)Pfk: (111)With this covariance model the gains Kk and Lk are given in terms of Pfk and Rk byKk = (1�)PfkHTk h(1�)HkPfkHTk +Rki�1 ; (112)Lk = PfkHjkT �HjkPfkHjkT +Rjk��1 : (113)It should be relatively simple to use existing software for solving the analysis equationswith these modi�ed gains. 34



The parameter  in our covariance model controls the stability of the bias estimates:the relative size of the bias updates is proportional to this parameter. An alternativeinterpretation is that  determines the extent to which observational information isapplied toward estimating the systematic rather than the random component of error.In the limit when  ! 0 there are no bias updates and the on-line algorithm reducesto the usual analysis equation with a �xed (possibly zero) forecast bias correction.On the other hand, when  ! 1 the observations are used exclusively for estimatingforecast bias; the data assimilation scheme will then rely completely on the bias-corrected forecast. This would be appropriate if the forecast error were in fact entirelydeterministic. Forecast error in practice consists of both systematic and randomcomponents; under some circumstances their relative magnitudes may be predictableand this information could be used to specify the parameter .5.4 A numerical experiment.We conclude this section with a simple application of the algorithm in a data as-similation system which is based on a discrete version of the linear one-dimensionalshallow-water model@h@t + U @h@x +H @u@x � fUg v = �1� h+ U @hs@x ; (114)@u@t + U @u@x � fv + g@h@x = �1� u; (115)@v@t + U @v@x + fu = �1� v: (116)Equations (114{116) are obtained by linearizing the nonlinear two-dimensional shallow-water equations at a �xed latitude ' about a geostrophic basic state, assuming peri-odic height- and wind-perturbations h; u; v depending on the longitudinal coordinate0 � x � L only. The terms on the right-hand side represent linear damping and35



topographic forcing. Model parameters for our experiments are chosen to roughlyrepresent quasi-geostrophic 500mb scales: ' = 45� (model latitude), L = 2�a sin'(length of the circle of latitude), a = 6:371�106m (earth's radius), g = 9:81m2s�2(gravity constant), f = 2
 sin � (Coriolis parameter), 
 = 2�/day (earth's rotationrate), U = 17ms�1 (mean zonal wind), H = 8000m (mean height), and � = 5 days(damping time scale). The topography hs is a smoothed version of the actual to-pography at 45N. We solve (114{116) numerically on a uniformly spaced grid withM =64 points by means of the Richtmyer two-step formulation of the Lax-Wendro�scheme (Richtmyer and Morton 1967), using a time step of about 12 minutes. Forquasi-geostrophic solutions of (114{116) the perturbation velocity component u is atleast an order of magnitude smaller than v, and we will therefore completely ignoreu in the presentation of our results.The system (114{116) admits a stationary solution which is a function of the topog-raphy hs. This stationary solution represents the climate of the true atmosphere inour experiment. The forecast model is de�ned by changing the speci�cation of thetopography (by using data at 48N instead), resulting in a fairly large climate error.Figure 2 shows the true topography (dotted curve) and forecast model topography(solid curve) in the top panel, and the h� and v�components of the correspondingclimates in the center and bottom panels, respectively. These climates were obtainedby integrating (114{116), starting from a state of rest, for a period of 30 days. Thesystematic error in the forecast model which is due to the misspeci�cation of topo-graphic forcing will result in biased forecasts; the rms systematic height error in a12-hour forecast is roughly 15m in this setup.A single realization of the true atmospheric state evolution is simulated by adding36
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other grid location) and 20 observations of the meridional wind component v (atevery other grid location where hs > 0) every 12 hours of simulation time; u is notobserved. The height- and wind-observation error standard deviations speci�ed in thedata assimilation scheme are 40m and 4ms�1, respectively, although for our single-realization experiment we actually generate perfect observations.
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Figure 3: True state (dotted curve), bias-blind forecast (dashed curve), andbias-blind analysis (solid curve) after 48 hours of data assimilation.The h�component is shown in the top panel; the v�componentin the bottom panel. Observations are taken every 12 hours asmarked.Rather than computing error covariances exactly in accordance with the theory, theywill be prescribed as in (110) and (111) with =0:5. The forecast error covariance Pfk38



is modeled by assuming random isotropic height errors and geostrophically balancedwind errors. Geostrophy in (114{116) is expressed by u = 0, v = gf @h@x . Thus, ourmodel for Pfk is completely determined by two parameters: the height error standarddeviation �fh (taken to be constant in time and space) and a length scale parameter lfor the spatial height error correlations (modeled by a simple power law). No attemptis made to tune or optimize these covariance parameters; we take �fh=20m (roughlythe rms norm of the 12-hour forecast height error) and l = 1500km (roughly threegrid cells).Figure 3 shows a typical snapshot of the bias-blind state estimates, obtained byignoring the forecast bias altogether. Heights are shown in the top panel; winds(v�component only) in the bottom panel. The solid curves represent the analysesproduced at 48h. The dashed curves show the forecast based on the previous (36h)analysis, the dotted curves indicate the true state, and height- and wind-observationsare marked. The forecast bias is visible in these plots, particularly near the troughslocated to the east of the main topographic features. Note that the impact of theobservations is positive, in the sense that the analysis errors are signi�cantly smallerthan the forecast errors.Estimates of forecast bias were produced simultaneously with the bias-blind stateestimates, based on all observations. In �gure 4 we show the bias prediction (dashedcurve) and the updated bias estimate (solid curve) after 48 hours of data assimilation,together with the true forecast error (dotted curve). The forecast error contains arandom as well as a systematic component; only the latter is represented by the biasestimates. The bias-corrected state estimates are shown in �gure 5. The analysisincrements are now much smaller than those for the bias-blind estimates, since the39
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Figure 4: True forecast error (dotted curve), bias prediction (dashed curve),and updated bias estimate (solid curve) after 48 hours of dataassimilation. The h�component is shown in the top panel; thev�component in the bottom panel.forecast bias has been greatly reduced and only the random component of error isbeing corrected in the analysis.Figure 6 shows the rms error evolution in time for the bias-blind (dashed curves) andfor the bias-corrected (solid curves) state estimates, during the �rst 10 days of simu-lation. Forecast as well as analysis errors, both for height and for wind components,are reduced by more than a factor of two by application of the bias correction proce-dure. The climate error in the assimilation is reduced even more. Climate error was40
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Figure 5: True state (dotted curve), bias-corrected forecast (dashed curve)and bias-corrected analysis (solid curve) after 48 hours of dataassimilation. The h�component is shown in the top panel; thev�component in the bottom panel. Observations are taken every12 hours as marked.computed by simulating 40 days of data assimilation, calculating the mean analyzedstate over the last 30 days of the assimilation, and comparing the result to the meantrue state over the same period. In �gure 7 we show the h� and v�components ofclimate error for the assimilation run without bias correction (dashed curve), for therun with bias correction (solid curve), as well as for a climate run of the forecastmodel in which no data are assimilated (dotted curve). The latter corresponds to thedi�erence between the model and true climates, as can be seen from Figure 1 as well.41



The rms climate height error associated with the bias-corrected analyses is 0:85m,compared to 12:7m for the bias-blind analyses and 96:2m for the forecast model; thecorresponding rms climate wind errors (v-component) are 0:13ms�1; 0:99ms�1; and2:9ms�1, respectively.
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Figure 6: Root-mean square error evolution for the bias-blind estimates(dashed curve) and for the bias-corrected estimates (solid curve).The horizontal axis represents time tk (in hours).
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Figure 7: Climate errors computed from 40-day simulations without dataassimilation (dotted curve), with data assimilation but withoutbias correction (dashed curve), and with data assimilation and on-line bias correction (solid curve). The h�component is shown inthe top panel; the v�component in the bottom panel.
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6 ConclusionIt is well-recognized in practice that forecast models contain systematic errors whichcan result in biased forecasts. Forecast bias may have a signi�cant impact on theclimatology of assimilated data sets, as well as on the instantaneous accuracy of aparticular analysis. The bias problem has been largely ignored, however, in the devel-opment of data assimilation methodology. Statistical analysis methods are generallyderived under the assumption that forecast errors are strictly random and zero in themean. In actual implementations of these methods the error statistics are sometimesadjusted in order to reduce analysis bias, but|as we showed in section 2|this is anad-hoc remedy which is only partially e�ective, and which causes an increase in therandom component of analysis error. The only way to properly account for forecastbias in a statistical analysis scheme is to do so explicitly, by estimating the bias andthen correcting the forecast prior to analysis.We presented a rigorous method for estimating forecast bias in an atmospheric dataassimilation system based on an unbiased subset of the available observations. Themain components of our sequential bias estimation algorithm are already available inexisting statistical analysis systems. The added computational cost of incorporatingthe algorithm into an operational system is roughly one additional solution of thestatistical analysis equation, for a limited number of observations. O�-line forecastbias estimates can be produced as well, using an existing analysis system and storedoutput from a previous data assimilation run. We plan to perform bias estimationexperiments in the immediate future using the Goddard Earth Observing System(Pfaendtner et al. 1995). 44



Forecast bias estimation merely represents the �rst step in addressing the bias problemas it a�ects atmospheric data assimilation. Once estimates of forecast bias becomeavailable they can be used to remove, or at least reduce, analysis bias. However, themechanisms responsible for generating forecast bias will cause the model diagnosticsto be awed in many cases. This problem is critical when the output of the system isto be used for climate research, which requires a continuous and unbiased record ofprognostic as well as diagnostic atmospheric variables.Ultimately, routine production and monitoring of forecast bias estimates in an opera-tional data assimilation system should lead to improvements in the formulation of theforecast model itself. In the meantime it will be necessary to consider bias correctionmethods in which model forcing is continuously being adjusted in order to compen-sate for the e�ect of systematic errors in the forecast model. Saha (1992) and Takacs(1996) have developed bias correction schemes for statistical data assimilation, whileDerber (1989) and Gri�th and Nichols (1996) address the problem in the context ofthe variational method. In future work we plan to develop bias correction methodswhich are consistent with the framework provided by the present article.Acknowledgements. We are grateful to Steve Cohn, Greg Gaspari, Joanna Joiner,Dave Lamich, Richard M�enard, Chris Redder, Leonid Rukhovets, Larry Takacs, Ri-cardo Todling, and Siegfried Schubert for many interesting and useful discussionsabout forecast bias. Special thanks to Ricardo Todling for pointing out a number ofimportant references in the literature on separate-bias estimation, and for a carefulreview of the manuscript. 45
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