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ABSTRACT
Recent studies indicate that the atmospheric response to anomalies in the lower boundary conditions, e.g. sea surface
temperatures, is strongly dependent on the atmospheric background flow. Since all general circulation models have
long-term systematic errors it is therefore possible that the skill in seasonal prediction is improved by reducing the
systematic errors of the model. In this study sensitivity experiments along this line are made with an empirically
corrected dynamical model for which the systematic errors are reduced substantially and the dynamical variability has
become more realistic than for the original model. As a measure of seasonal prediction skill, correlation of temporal
anomalies between modelled and observed data has been determined. The corrected model shows improved skill in the
Southern Hemisphere in general—on average a 20–30% improvement for the Southern Hemisphere compared with the
original model. In the Northern Hemisphere skill is improved in some areas, but in other areas the skill of the original
model is better. On average there is no improvement for the Northern Hemisphere. Also, pattern correlations have been
determined for the following areas: the Northern Hemisphere, the Southern Hemisphere, the tropics and Europe. The
general picture is that the two model versions are very similar in the Northern Hemisphere and in the tropics. For Europe
the results of the two models are rather different, but no model can be said to be better than the other. In the Southern
Hemisphere it is again seen that the correlations are higher for the corrected model than for the original model.

1. Introduction

Seasonal prediction has been an area of increasing interest in
recent years; most recently predictions on a monthly timescale
have also come into focus (Vitart, 2004). An important method
for obtaining predictions on monthly and seasonal timescales
is the use of general circulation models (GCMs) for produc-
ing ensemble forecasts (e.g. Palmer et al., 2000; Branković and
Palmer, 2000; Derome et al., 2001). Important factors affecting
the skill of ensemble predictions are the ensemble size, to reduce
the unpredictable climate noise (e.g. Déqué, 1997; Kumar and
Hoerling, 2000; Kharin et al., 2001), and the quality of the GCM
determined, for instance, by the systematic errors of the model
and its response to lower boundary conditions (e.g. Kumar et al.,
1996; Kharin and Zwiers, 2001). Recent studies indicate that
the response of an atmospheric model to anomalies in the lower
boundary conditions is strongly dependent on the background
flow (Peng et al., 1997; Peng and Whitaker, 1999) and there-
fore errors in the model climatology could have an impact on
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the response. As forcing from the lower boundary, e.g. sea sur-
face temperature (SST) or sea ice forcing, can be responsible for
a substantial part of the model variance (Derome et al., 2001),
it is likely that the skill of ensemble seasonal forecasts will be
improved if the systematic errors of the model can be reduced.

It is to be expected that Rossby wave energy dispersion will
be simulated more realistically when the basic state of the model
is closer to the observed climate. Since such energy dispersion
is crucial for the remote response to lower boundary conditions
(Branstator, 1983) seasonal prediction skill may benefit from an
improved model climatology. On the other hand there is no a
priori guarantee that an empirically corrected model with small
systematic errors in the flow dynamics will be better for sea-
sonal predictions. This is because convection and release of latent
heat is a fundamental process by which the atmosphere reacts
to SST forcing. Thus, if the physical parametrization of such
processes is inadequate reduced systematic errors may not nec-
essarily lead to improved seasonal forecast skill. Furthermore if
the spatial resolution of the model is too coarse it is not possi-
ble to correctly simulate, for example, the interaction between
the dynamics and the physical parametrization (Williamson,
2002).
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Sausen and Ponater (1990) reduced systematic errors of a
GCM by adding forcing terms (constant in time) based on sta-
tistical diagnosis of the average drift of the prognostic variables.
Although correction terms were applied only to the zonal mean
temperature, an overall improvement of the model climate was
seen.

D’Andrea and Vautard (2000) proposed a methodology for
reducing systematic errors of a quasi-geostrophic baroclinic at-
mospheric model. The method consists of estimating the ini-
tial tendency errors of the model by a variational assimilation
procedure and then correcting the model equations by adding
a flow-dependent parametrization of the initial tendency error.
The model shows substantial reduction of systematic errors and
improvement of both high- and low-frequency variability when
empirically corrected in this way.

In the present study the model is corrected by adding an es-
timate of the model initial tendency errors. The method for ob-
taining the tendency errors is based on the nudging technique
(Jeuken et al., 1996). The nudging residuals obtained during the
assimilation are the estimates of the model initial tendency er-
rors. This technique for obtaining tendency errors was also used
by (Kaas et al., 1999) with the aim of tuning the parametriza-
tion of unresolved scale interactions. The systematic errors of
the model are substantially reduced when the model is modified
by adding seasonally varying long-term mean values of these
tendency error estimates to the prognostic equations, and once
improved in this way the model is found to be suitable for testing
the expected impact of the reduced systematic errors on the skill
of predictions on a seasonal timescale.

Section 2 of this paper describes the general circulation model
and the procedure for empirically correcting the model. Sec-
tion 3 contains a description of the experiments that were
performed in order to compare the original model with the em-
pirically corrected model. In Section 4 the results of these exper-
iments are described and in Section 5 the results are discussed
and conclusions are drawn.

2. The models used

2.1. The standard model

The general circulation model used is a climate model derived
from ARPEGE/IFS (Déqué et al., 1994), version 2. This model is
a spectral primitive equation model and the equations are solved
using the transform method (Eliasen et al., 1970), Eulerian ad-
vection and a three-level semi-implicit time-stepping scheme.
The model has 31 sigma-pressure hybrid vertical levels defined
as in the ECMWF reanalysis data, ERA-15 (Gibson et al., 1997).
The spectral horizontal resolution is T42.

2.2. The empirically corrected model

The empirically corrected model is created by correcting for em-
pirically estimated initial tendency errors of the standard model

in the equations governing the time development of the prognos-
tic variables. For a given prognostic variable, �, the tendency
error is defined as (δ�/δt)O − (δ�/δt)M, where the subscript
O denotes the instantaneous tendency in the observations. (Note
that tendency errors are often defined with an opposite sign to the
definition used here.) In practical use analysis data will serve as
observations. Subscript M denotes the temporal tendency deter-
mined by the model when given the observed atmospheric state
vector. To build an empirically corrected model the tendency er-
ror (or residual), R, has to be added to the model equations in
order for the model to follow the observations, since (δ�/δt)O =
(δ�/δt)M + R.

It is a complicated task to determine realistic tendency resid-
uals, and several methods have been suggested. Klinker and
Sardeshmukh (1992) for example, used a set of one time
step forecasts for determining averages of tendency residuals,
whereas Schubert and Chang (1996) used analysis increments
for estimating the forcing errors of a model. Machenhauer and
Kirchner (2000) used slow normal-mode data assimilation for
obtaining the systematic initial tendency errors. In situations
where the model in question is not the model that has been
used for producing the analysis data (which is the case in this
study), one should be aware that the estimates obtained for the
tendency residuals might be polluted due to initial dynamical
gravity noise and processes related to moisture spin-up; the con-
sequence being that it is difficult to isolate the true tendency
residual.

In the present study the technique described in Jeuken et al.
(1996) has been applied, since this technique implies a reas-
similation of analysis data as done here. The technique, called
nudging, is a simple 4-D assimilation of the reference data, i.e.
the analysis data, where the prognostic model variables are re-
laxed towards the reference data:

�(t + �t) = �∗(t + �t) + 2�t
�REF(t + �t) − �∗(t + �t)

τ
.

(1)

The upper index ∗ indicates the preliminary prognostic vari-
able just before nudging and the upper index REF denotes the
reference variable towards which the model is relaxed. �t is the
length of the time step used in the model and τ is the relaxation
time. Equation (1) applies to a model using a three-level time-
stepping scheme because of the factor 2�t on the right-hand side.
The ECMWF reanalysis data (ERA-15) (Gibson et al., 1997) are
used as the reference data towards which the model is relaxed.
These data are available every 6 h in T106, L31 resolution. In
order to use them for nudging they have to be truncated to the
horizontal resolution used in the ARPEGE model (in this case
T42), and interpolated in the vertical to the orography-adjusted
hybrid levels. As the relaxation towards the reference data is
done at every time step (in this case every 15 min) a cubic spline
interpolation is used to obtain reference data at intermediate
times.
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The term [�REF(t + �t) − �∗(t + �t)]/τ is the estimate
of the tendency residual, because it is the term ensuring that the
evolution of the model is close to the observations. Note that only
in the case τ = 2�t is the term equal to the tendency residual,
assuming the reference state is known at every model time step.
For larger values of τ one gets only approximations to the initial
tendency residuals. This also follows from eq. (1) as only in
the case τ = 2�t will the assimilation model follow the reference
state exactly. In practice, when using the nudging technique the
relaxation time τ has to be chosen carefully since the estimate
of the tendency residual is dependent to a certain extent on τ .
If τ is too small noise and spin-up problems play an important
role, but if τ is too large the model does not follow the reference
data set closely enough to obtain a reasonable estimate of the
tendency residual. Normally, the same value of τ is not used for
all the prognostic variables. (For a discussion of these problems
see Jeuken et al. (1996).)

In order to obtain estimates of the tendency residuals an as-
similation run was done for each of the 14 winters from 1979–
1980 to 1992–1993. The assimilation was started on 1 November
and ended on 31 March. The variables assimilated were tem-
perature, vorticity, divergence, logarithm of surface pressure,
surface temperature and surface soil moisture. The variables
were nudged in spectral space, except for the two fields sur-
face temperature and surface moisture for which the assimila-
tion was done in grid point space. �t was 15 min. The τ used
was not the same for all the variables. The actual values were:
24 h for temperature, 6 h for vorticity, 48 h for divergence, 24 h
for logarithm of surface pressure, 48 h for surface temperature
and 48 h for surface soil moisture. The choice of these values
for τ was decided after several test experiments. The test ex-
periments were trial-and-error experiments where for selected
1-month periods the obtained mean monthly tendency residuals
were reinjected into the model equations. The modified model
was then run for the same 1-month periods and the monthly
mean compared with the ERA-15 data for the month in ques-
tion. The chosen set of τ values was the set from the collec-
tion of tested sets that led to the best reproduction of the ERA
data.

It is reasonable to nudge divergence with a rather large value of
τ since this field is rather noisy and not well observed, while it is
important that the observed value of vorticity is followed closely
during the assimilation, so for this variable a small value for τ

was used. For all the prognostic variables gradually larger values
for τ were used at the seven highest levels because at these levels
the ERA data are not as reliable as in the rest of the atmosphere
and because of the large dynamical variability in the stratosphere.
For some months a very cold winter stratosphere developed when
the same τ was used on all vertical levels in the 1-month test
experiments mentioned above. The agreement with the ERA-15
data was much better in these cases if the level dependence of τ

was introduced. The atmospheric humidity field was not nudged.

The reason for this is that processes related to humidity can act
on a timescale smaller than 6 h (the temporal resolution of the
reference data set in this case) through threshold processes like
condensation and deep convection. To avoid moisture spin-up
problems it therefore makes more sense to let the model develop
its own humidity field. This is especially important in the tropics
where convection plays a large role.

Monthly averages of the tendency residuals determined by this
method were used as correction terms, not as constant values for
each month, but for each day a linear interpolated value obtained
from the two closest monthly means was used. When adding
these correction terms it turned out that a cold winter stratosphere
developed. This problem was remedied by making yet another
assimilation. In this second assimilation the monthly means of
the tendency residuals from the first assimilation were used as
correction terms in the model equations, as just described, and
the temperature was then relaxed weakly towards the ERA-15
temperature. τ was 48 h, with gradually larger values on the
seven highest levels as in the first assimilation. Also in this second
assimilation it is important to nudge the highest levels weakly for
the same reasons as for the first assimilation. The final estimate
of the temperature residual used as the correction term in the
experiments described below was then the sum of the residuals
obtained in these two assimilations.

The question can be asked whether large temperature errors re-
main after the first assimilation, because the GCM used in gener-
ating the ERA-15 data set has itself strong temperature tendency
errors. Figure 51 in Kållberg (1997) shows the analysis incre-
ments of zonal and temporal means of temperature—defined as
the difference between the initialized analyses and the +6 h first
guess forecasts with the GCM used for the ERA-15 data. The
analysis increments show a warming in large parts of the tro-
posphere with maxima at 0.2 K and a cooling in the Northern
Hemisphere polar stratosphere with a maximum around 0.2 K in
annual mean (which might be even larger in the winter mean).
This means that there are errors in either the observed data or the
model used for the ERA-15 data, but as explained in Kållberg
(1997) this mismatch between the observed and predicted tem-
peratures cannot be attributed unequivocally to either data or
model problems; Kållberg (1997) mentions biases in the 1D-Var
retrievals and systematic errors in the model parametrizations of
radiative cooling and latent heat release as likely candidates for
causing the mismatch.

Monthly averages of the residuals were obtained for each of
the months November to March and in Fig. 1a the zonal mean
of the temperature residual determined from the first assimi-
lation averaged over the last 14 Januaries in the ERA-15 pe-
riod is shown as a function of model levels. (Approximate pres-
sure levels based on a reference surface pressure of 1013.22
hPa are added on the right vertical axis.) Figure 1b shows the
contribution from the second assimilation to the zonal mean
of the temperature residual and Fig. 1c shows the sum of the
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Fig. 1. Fourteen year average of the
temperature residual for January (unit K d−1)
for ARPEGE, version 2. Negative contour
lines are dashed. (a) Contribution to the
zonal mean of the residual obtained by the
first assimilation. Contour interval 0.2 K d−1.
(b) Contribution to the zonal mean of the
residual obtained by the second assimilation.
Contour interval 0.1 K d−1. (c) Zonal mean
of the total residual determined as the sum of
the contributions from the two assimilations.
Contour interval 0.2 K d−1.

Fig. 2. Geographical distribution of the
January mean of the total temperature
residual at model level 12 (∼270 hPa).
Negative contour lines are dashed.
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contributions from the two assimilations. The horizontal distri-
bution at vertical level number 12 (corresponding to approxi-
mately 270 hPa) of the January mean of the temperature resid-
ual (the sum of the contributions from the two assimilations) is
shown in Fig. 2.

It is seen from Fig. 1a that the upper troposphere is domi-
nated by positive values of the residual, meaning that the model
needs to be heated in that area in order to follow the refer-
ence data set. The residual is negative almost everywhere in
the lower troposphere. The contribution from the second assim-
ilation (Fig. 1b) is generally small, but larger contributions are
seen in the mid-latitude troposphere. Even though the contri-
bution is small, it might be important as it reduces the strato-
spheric cold bias. The sum of the two contributions (Fig. 1c)
shows the same pattern as the contribution from the first assim-
ilation: the upper troposphere is dominated by positive values
and the lower troposphere by negative values. From Fig. 2 it is
seen that model forcing errors as large as 1.0 K d−1 and larger
are evident in the South Pacific intertropical convergence zone
(ITCZ) and the tropical Indian and Atlantic ocean, areas with
large convective activity. The large forcing errors in these areas
could be due to the rather coarse resolution of the model used,
meaning that the processes involved are not well resolved, or
to an inadequate parametrization of convection or radiation or
cloudiness.

When relaxing the model towards the observations it is done
for all scales in the T42 resolution model, and since time inter-
polation of the observed data is performed because the observed
data are only available every 6 h this means that there could be a
contribution from small-scale features generated by the model’s
physics that are not in the observations. But as the correction
terms used are monthly means averaged over 14 yr, and we
assume that these inconsistencies are random, the contribution
from these is likely to be negligible.

3. Experiments

A set of seasonal prediction experiments has been performed
with the standard version of the model and with the empirically
corrected version. The empirically corrected version is defined
by adding a correction term based on monthly means of the ten-
dency residuals averaged over the 14 yr used for obtaining these
tendency residuals. As mentioned, instead of using a constant
correction term for each month, for each day a linear interpo-
lated value obtained from the two closest monthly means is used.
Nine-member ensemble forecasts were made for each of the 14
boreal winters from 1979–1980 to 1992–1993. The experimental
set-up used here is similar to the set-up defined in the PROVOST
project (Palmer et al., 2000): The nine forecasts were initiated on
the 22, 23, . . . , 30 November, respectively and ended at the end
of February. Observed SSTs from the ERA-15 data were used
in these runs. The results of the experiments are compared with
the ERA-15 data for the 14 winters.

4. Results

4.1. Systematic errors

The long-term mean systematic errors shown in this section are
calculated as the December–January–February (DJF) mean aver-
aged over the 14 boreal winters from 1979–1980 to 1992–1993,
and averaged over the nine members of the ensembles, minus
the DJF average of the ERA-15 climatology determined for the
same period.

Figure 3 shows the systematic errors for the fields’ zonal mean
of temperature (Figs. 3a and 3b) and zonal mean of zonal wind
(Figs. 3c and 3d). For the zonal mean temperature it is seen that
the control model (the standard ARPEGE, version 2) has small
biases in the lower troposphere whereas in the upper troposphere
and in the stratosphere there are large biases. The model is too
warm in the lower stratosphere in the tropics and in the rest
of the stratosphere it is too cold. In the upper troposphere the
model is too cold—in this area an extra positive forcing is added
when the model is run in corrected mode (as seen in Fig. 2 level
10–15). The forced model (the empirically corrected version of
ARPEGE, version 2) exhibits an overall reduction in system-
atic errors of the zonal mean temperature. The model is still
somewhat too cold in the stratosphere at the North Pole but the
systematic errors are generally very small compared with the
control model. For the zonal mean of the zonal wind the picture
is similar. The large biases in the upper troposphere, and espe-
cially in the stratosphere, in the control model, are substantially
reduced in the forced model.

Figure 4 shows the systematic errors of the 500 hPa height
field for the control and the forced model. In the control model
the largest errors are seen over the North Atlantic–European area
with negative values and over the North Pacific area with a dipole
structure. This error pattern is typical for many GCMs, reflect-
ing that the model is too zonal south of the error minima. In the
Southern Hemisphere the largest errors are seen over Antarc-
tica and over the mid-latitude ocean. The 500 hPa geopotential
height of the forced model is in much better agreement with the
observed data—a substantial reduction of the systematic errors
is seen almost everywhere.

Table 1 lists the root mean square (RMS) of the systematic
errors averaged over the Northern and Southern Hemispheres
for mean sea level pressure, 500 hPa geopotential height and
850 hPa temperature for the control model and for the forced
model. In the Northern Hemisphere a reduction of more than
50% of the error is seen for mean sea level pressure and 500 hPa
geopotential height. A substantial improvement is also seen in
the Southern Hemisphere.

Since the prognostic equation for humidity is not corrected,
it is important to make sure that the hydrological cycle is kept
reasonable in the corrected model version, and it turns out that for
the precipitation field the pattern and the size of the systematic
errors are quite similar for the two model versions (not shown).
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Fig. 3. Mean winter (DJF) systematic error
of (a) zonal mean temperature for the control
model (unit, K), (b) zonal mean temperature
for the empirically corrected model (unit, K),
(c) zonal mean of the zonal wind for the
control model (unit, m s−1) and (d) zonal
mean of the zonal wind for the empirically
corrected model (unit, m s−1).

As pointed out in Branković and Palmer (2000), the model
error should be less than the signal that is to be predicted, which
in this case means that the model error should be less than
the magnitude of the observed interannual variability. Figure 5
shows the ratio of the magnitude of the systematic error of the
500 hPa height and the corresponding standard deviation of the
analysis anomalies for the winter season for the period 1979–
1980 to 1992–1993 for the control and the forced model. This
relative error has reduced considerably in the corrected model
and is less than 1 almost everywhere except over Antarctica,
where the two models are comparable.

4.2. Variability

It is important when forcing the model with empirically deter-
mined forcing terms as described above that the variability of

the model is not destroyed and therefore both the high- and low-
frequency variability of the control and of the forced model are
determined. Figure 6 shows the systematic error of the standard
deviation of the band-pass filtered (2.5–6 d) 500 hPa height field
for the control and the forced model. It is seen that in general the
high-frequency variability of the forced model is in better agree-
ment with the reanalysis data than the control model; in particular
the Northern Hemisphere storm tracks are more realistic in the
forced model. Only in a very few areas is the high-frequency vari-
ability better represented in the control model. Figure 7 shows
the systematic error of the standard deviation of the low-pass
filtered (>10 d) 500 hPa height field and also in the case of
low-frequency variability there is a better agreement between
the forced model and the ERA-15 data than between the control
model and the ERA-15 data almost everywhere. Exceptions are
the northernmost parts of the Greenland Sea and Barents Sea
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Fig. 4. Mean winter (DJF) systematic error
of the 500 hPa height (unit, m) for (a) the
control model and (b) the empirically
corrected model.

where the low-frequency variability has become even higher,
and the southernmost part of the Indian Ocean where the low-
frequency variability is even less in the forced model than in the
control model.

Table 1. RMS of systematic errors for mean sea level pressure
(MSLP), 500 hPa height field (500 Z) and 850 hPa temperature (850 T)
as averages over the Northern (NH) and Southern Hemisphere (SH)
(units noted in brackets). Results are shown for the control and the
empirically corrected version of ARPEGE, version 2.

Field Area Control Forced

MSLP (hPa) NH 4.0 1.4
MSLP (hPa) SH 3.1 2.6

500 Z (m) NH 48.0 19.5
500 Z (m) SH 30.6 19.1

850 T (K) NH 1.4 0.8
850 T (K) SH 1.0 0.5

In conclusion it can be noted that as the ability of the models
to make seasonal predictions is studied a realistic description
of the variability is important, and in general the description of
the variability on the different scales is in better agreement with
observations in the empirically forced model than in the control
model.

4.3. Forecast skill

Anomaly correlation is used as a measure of the ability of the
two model versions to make seasonal predictions. Figures 8
and 9 show the geographical distribution of the temporal cor-
relation, over the 14 yr covered by the available data, between
model and observed winter season anomalies for two fields. For
each of the two models (the control and the forced) the ensem-
ble mean is used in the calculation of the correlations. As the
predictions for the DJF season have been made from initial
conditions on 22, 23, . . . , 30 November they are zero-lead
predictions, and therefore the skill of the models is influenced by
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Fig. 5. Mean winter (DJF) ratio of the
magnitude of the systematic error of the
500 hPa height and the standard deviation of
ERA-15 anomalies for the 500 hPa height
for (a) the control model and (b) the
empirically corrected model.

both lower boundary forcing (observed SSTs were used) and ini-
tial conditions. As observed SSTs were used and as the estimate
of the tendency error for the season in question is included in
the correcting term used in the forced model, these seasonal
prediction experiments are so-called potential predictability
experiments.

Figures 8a and b show the temporal correlation between the
anomalies of the control run and the ERA-15 data and the forced
run and the ERA-15 data respectively, for mean sea level pres-
sure. For both models the well known picture of relatively high
correlations in the tropics and smaller and even negative corre-
lations in the extratropics is seen. Comparing the results for the
empirically forced model with the results for the control model,
it is seen that there is a general increase in the correlation in the
Southern Hemisphere for the forced model. Only in very few
areas is the correlation larger for the control model than for the
forced model. In the Northern Hemisphere, on the other hand,
there is no general improvement. In some areas, like most of

the Atlantic–European area, the forced model has the highest
correlation, whereas in other areas, for example Central Asia,
the correlation of the control model is the highest. Correlations
larger than 0.53 are significant at the 5% level or better in a
Student’s t-test.

Figure 9 is similar to Fig. 8, but here correlations for the
850 hPa temperature field are shown. In this case the correlation
pattern is somewhat more noisy, but again some general im-
provement is seen in the Southern Hemisphere when the forced
model is compared with the control model.

In Table 2 the average of the time correlations for the North-
ern Hemisphere and for the Southern Hemisphere is listed for
each of the two model versions for the fields of mean sea
level pressure, 500 hPa height and 850 hPa temperature. For
all of these three fields the average correlation for the Southern
Hemisphere is larger for the forced model than for the control
model. In the Northern Hemisphere the two model versions are
comparable.
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Fig. 6. Mean winter (DJF) systematic error
of the standard deviation of the band-pass
filtered (2.5–6 d) 500 hPa height (unit, m) for
(a) the control model and (b) the empirically
corrected model.

Figures 10 and 11 show pattern correlations for the winter sea-
son for each year in the period covered by these experiments for
the temperature at 850 hPa and the 500 hPa height field, respec-
tively. Correlations are shown for the following areas: Northern
Hemisphere (20◦N–80◦N), Southern Hemisphere (80◦S–20◦S),
Europe (35◦N–75◦N, 13◦W–43◦E) and the tropics (30◦S–30◦N).
For each field and for each area the figures show the correlation
between the control model and the ERA-15 data (full lines), the
forced model and the ERA-15 data (dotted lines) and the corre-
lation between the two models (dashed lines). The correlations
between the two models and the ERA-15 data are characterized
by rather high interannual variability for both fields and for all ar-
eas. For the tropical area, where seasonal predictions are largely
influenced by the SSTs, the two models give almost identical
results and the correlation between the two models is very high.
For the European area the results for the two models are quite
different, but it cannot be concluded that one model is better
than the other. For the Northern Hemisphere as a whole there is

quite large agreement between the two models and the correla-
tion between the two models is relatively high. The results for
the Southern Hemisphere deviate from the results for the other
areas. Except for a few years where the correlation between the
two models and the ERA-15 data is very similar, the correlation
between the forced model and the ERA-15 data is higher than the
correlation between the control model and the ERA-15 data. The
Southern Hemisphere is also characterized by a high correlation
between the two models.

So as already seen for the temporal correlation, in the case
of pattern correlation the results obtained with the empirically
corrected model are also improved in the Southern Hemisphere
as compared with the results obtained with the control model.

Note, that although the forced version of the model is im-
proved considerably with regard to both systematic errors and
variability compared with the control model, the anomaly cor-
relation between the two models is still high and higher than the
correlation with the ERA-15 data for either of the models.
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Fig. 7. Mean winter (DJF) systematic error
of the standard deviation of the low-pass
filtered (>10 d) 500 hPa height (unit, m) for
(a) the control model and (b) the empirically
corrected model.

5. Discussion and conclusion

The general circulation model ARPEGE, version 2 has been
used in a study of the impact of model systematic errors on the
skill of ensemble forecasts for seasonal predictions. The model
has been modified by including empirically obtained forcing
terms, and this corrected version of the model has been compared
with the standard ARPEGE. The forcing terms were determined
as estimates of the tendency errors of the model by using the
nudging technique to assimilate the ECMWF reanalysis data
(ERA-15).

The empirically corrected model has small systematic errors
and they are reduced considerably compared with the system-
atic errors of the standard model. Also the variability on different
scales of the corrected model is in better agreement with obser-
vations than the variability of the standard model.

Calculations of temporal and pattern correlations of anomalies
show that the corrected model with an improved description of
the background flow has a somewhat higher seasonal forecast
skill in the Southern Hemisphere in general, whereas there is no

general improvement in the Northern Hemisphere, although the
relative reductions of systematic errors are largest in the Northern
Hemisphere.

It should be emphasized that in the procedure for correcting the
model only the most simple linear approach has been followed
by using the 3-D climatology of tendency errors. This clima-
tology of tendency errors is independent of any time variations
such as the El Niño–Southern Oscillation (ENSO) cycle. Situ-
ations where the spatial structure of the tendency errors reflect,
for example, the spatial structure of the tropical deep convec-
tion, which for example in the Pacific depends strongly on the
ENSO cycle, may not be properly accounted for and could cause
problems when attempting to make seasonal predictions for El
Niño and La Niña years. A more sophisticated, non-linear ap-
proach, such as the flow-dependent correction method used by
D’Andrea and Vautard (2000), is needed to take these problems
into account.

As the systematic errors of the corrected model are indeed re-
duced considerably compared with the standard version, it seems
likely that in order to obtain better skill scores by improving the
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Fig. 8. Temporal anomaly correlation
between ERA-15 winter (DJF) average and
nine-member ensemble forecasts for mean
sea level pressure for (a) the control model
and (b) the empirically corrected model.
Correlations larger than 0.53 are significant.

Fig. 9. Temporal anomaly correlation
between ERA-15 winter (DJF) average and
nine-member ensemble forecasts for the
850 hPa temperature for (a) the control
model and (b) the empirically corrected
model. Correlations larger than 0.53 are
significant.

model along the lines described in this paper a more realistic de-
scription of the model variability is needed—although the vari-
ability is already better described in the corrected model version.
It is likely that this could be obtained by correcting the model by
adding a flow-dependent parametrization of the initial tendency

errors as demonstrated by D’Andrea and Vautard (2000) for a
quasi-geostrophic model.

Yang and Anderson (2000) have corrected a coupled ocean–
atmosphere GCM by obtaining the systematic initial tendency
error for ocean temperature and using this tendency error as the
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Table 2. Temporal anomaly correlations for mean sea level pressure
(MSLP), 500 hPa height field (500 Z) and 850 hPa temperature (850 T)
as averages over the Northern (NH) and Southern Hemisphere (SH).
Results are shown for the control and the forced version of ARPEGE,
version 2.

Field Area Control Forced

MSLP NH 0.43 0.43
MSLP SH 0.37 0.48

500 Z NH 0.48 0.47
500 Z SH 0.42 0.51

850 T NH 0.40 0.42
850 T SH 0.31 0.41

Fig. 10. Pattern anomaly correlation
between ERA-15 winter (DJF) average and
nine-member ensemble forecasts for the
years 1979–1980 to 1992–1993 for 850 hPa
temperature. Full line, correlation between
control model and ERA-15 data; dotted line,
correlation between the empirically
corrected model and ERA-15 data; dashed
line, correlation between control model and
the empirically corrected model. The
correlations are shown for different areas: (a)
the Northern Hemisphere, (b) Europe, (c) the
Southern Hemisphere, (d) the tropics.

correction term. The corrected model is used for studying ENSO
forecast skill and some improvement has been achieved. Yang
and Anderson (2000) suggest that further improvement could be
obtained by correcting not only ocean temperature but all the
prognostic variables in the coupled system and add that such
a procedure is technically more difficult as it is necessary to
impose balance requirements when correcting all the variables.
Using long-term mean values as determined here by the nudging
technique is one way of determining balanced initial tendency
errors.

The experiments made with ARPEGE, version 2 show evi-
dence that an improved description of the background flow leads
to higher skill of the model when used for seasonal predictions.
On the other hand the improvement is not striking in spite of
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Fig. 11. Same as Fig. 10, except that results
are shown for the 500 hPa height.

a substantial reduction in the systematic errors. As mentioned
above, it is likely that a further improved description of the model
variability by the use of flow-dependent forcing terms (D’Andrea
and Vautard, 2000) is needed in order to see a larger influence
on the seasonal prediction skill scores. Also more sophisticated
techniques for obtaining initial tendency errors, like the methods
developed by Machenhauer and Kirchner (2000) and D’Andrea
and Vautard (2000), may lead to improvements. The experience
from the experiments described here is that a good description
of the stratosphere is essential, and that an even better described
model stratosphere might be of importance.

There is a general improvement of predictive skill in the South-
ern Hemisphere but not in the Northern Hemisphere. One reason
for this could be that the low-frequency variability in general is
higher in the Northern Hemisphere and that low-frequency noise

makes is difficult to improve skill in the Northern Hemisphere.
Despite the large reductions in systematic errors in the north-
ern extratropics there is no improvement in predictive skill. This
could suggest that improving model climatology is simply not
sufficient to improve model predictability for the northern extra-
tropics, and it may not be possible due to chaos.

It should be mentioned that the seasonal prediction experi-
ments have been performed for the same period as was used
for obtaining the tendency errors, showing the potential of the
method. The next step would be to make the seasonal prediction
experiments for a different time period using independent data.

The purpose of this study has been to investigate whether
reduced long-term model systematic errors would lead to im-
proved skill when using the model for seasonal prediction. An
empirical correction method has been used to obtain a model

Tellus 57A (2005), 4



588 A. GULDBERG ET AL.

with reduced systematic errors, but it should be emphasized that
in general model improvements in terms of, for example, better
parametrization schemes are preferable to empirical corrections
like the one used here.
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Branković, C̆. and Palmer, T. N. 2000. Seasonal skill and predictability
of ECMWF PROVOST ensembles. Q. J. R. Meteorol. Soc. 126, 2035–
2067.

Branstator, G. 1983. Horizontal energy propagation in a barotropic atmo-
sphere with meridional and zonal structure. J. Atmos. Sci. 40, 1689–
1707.

D’Andrea, F. and Vautard, R. 2000. Reducing systematic errors by em-
pirically correcting model errors. Tellus 52A, 21–41.
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Gibson, J. K., Kållberg, P., Uppala, S., Hernandez, A., Nomura, A. and
co-author 1997. ERA-15 Description. ECMWF Re-analysis Project
Report Series, Volume 1. ECMWF, Reading.

Jeuken, A. B. M., Siegmund, P. C., Heijboer, L. C., Feichter, J. and
Bengtsson, L. 1996. On the potential of assimilating meteorological
analyses in a global climate model for the purpose of model validation.
J. Geophys. Res. 101, 16 939–16 950.

Kållberg, P., 1997. Aspects of the Re-Analysed Climate. ECMWF Re-
analysis Project Report Series, Volume 2. ECMWF, Reading.

Kaas, E., Guldberg, A., May, W. and Déqué, M. 1999. Using tendency
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