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Enhancing the utility of daily GCM rainfall for crop yield
prediction

Amor V. M. Ines,* James W. Hansen and Andrew W. Robertson
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ABSTRACT: Global climate models (GCMs) are promising for crop yield predictions because of their ability to simulate
seasonal climate in advance of the growing season. However, their utility is limited by unrealistic time structure of daily
rainfall and biases in rainfall frequency and intensity distributions. Crop growth is very sensitive to daily variations of
rainfall; thus any mismatch in daily rainfall statistics could impact crop yield simulations. Here, we present an improved
methodology to correct GCM rainfall biases and time structure mismatches for maize yield prediction in Katumani, Kenya.
This includes GCM bias correction (BC), to correct over- or under-predictions of rainfall frequency and intensity, and
nesting corrected GCM information with a stochastic weather generator, to generate daily rainfall realizations conditioned
on a given monthly target. Bias-corrected daily GCM rainfall and generated rainfall realizations were used to evaluate crop
response. Results showed that corrections of GCM rainfall frequency and intensity could improve crop yield prediction but
yields remain under-predicted. This is strongly attributed to the time structure mismatch in daily GCM rainfall leading to
excessively long dry spells. To address this, we tested several ways of improving daily structure of GCM rainfall. First, we
tested calibrating thresholds in BC but were found not very effective for improving dry spell lengths. Second, we tested
BC-stochastic disaggregation (BC-DisAg) and appeared to simulate more realistic dry spell lengths using bias-corrected
GCM rainfall information (e.g., frequency, totals) as monthly targets. Using rainfall frequency alone to condition the
weather generator removed biases in dry spell lengths, improved predicted yields, but under-predicted yield variability.
Combining rainfall frequency and totals, however, not only produced more realistic yield variability but also corrected
under-prediction of yields. We envisaged that the presented method would enhance the utility of daily GCM rainfall in
crop yield prediction. Copyright  2010 Royal Meteorological Society
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1. Introduction

Translating seasonal climate forecasts into crop yield
response is crucial for food security planning and man-
agement as they provide useful information for decision
makers to formulate decisions in advance of food inse-
curity outlooks (Challinor et al., 2005; Hansen et al.,
2006). Linking climate forecasts with crop models is
often the method used for forecasting crop yields (Hansen
and Indeje, 2004; Hansen and Ines, 2005; Semenov and
Doblas-Reyes, 2007; Mishra et al., 2008). The procedure,
however, is not straightforward because of mismatch
between the time structure of climate data required by
crop simulation models and the temporal resolution of cli-
mate forecasts. Crop models usually require daily weather
inputs for simulating crop growth (Tsuji et al., 1994;
Jones et al., 2003) while climate forecasts are typically
made for seasonal time scale (typically 3 months) (God-
dard et al., 2001; Goddard and Mason, 2002). Recent
progress in addressing this problem includes linking sea-
sonal climate forecasts with stochastic weather generators

* Correspondence to: Amor V. M. Ines, International Research Insti-
tute for Climate and Society, The Earth Institute at Columbia Univer-
sity, Palisades, NY 10964-8000, USA. E-mail: ines@iri.columbia.edu

to generate daily rainfall sequences, then used as inputs
to crop simulation models (Hansen and Indeje, 2004;
Hansen and Ines, 2005; Robertson et al., 2007; Semenov
and Doblas-Reyes, 2007; Mishra et al., 2008).

Daily outputs from global or regional climate models
have been proposed for bridging the gap between crop
simulation models and seasonal climate forecasts (Hansen
and Indeje, 2004). Dynamic climate models run in
forecast mode could easily provide the daily data required
by crop simulation models. However, linking daily GCM
rainfall with crop models is not also as straightforward
as it seems because of the biases in GCM rainfall
relative to station data. Biases in rainfall statistics must
be first corrected before linking them with crop models
as distortions in rainfall frequency and intensity could
adversely impact the simulation of crop growth and
yield, resulting in unrealistic outcomes (Mearns et al.,
1996; Riha et al., 1996; Mavromatis and Jones, 1999;
Hansen and Jones, 2000; Baron et al., 2005). Devising
ways for extracting and refining information from daily
GCM rainfall for crop simulations are crucial for their
successful applications in crop yield predictions.

Ines and Hansen (2006) developed a bias correction
(BC) method for daily GCM rainfall for correcting
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biases in rainfall frequency, intensity and totals relative
to a station inside a grid cell. They used a two-
step approach by correcting rainfall frequency, then the
intensity distribution. Rainfall frequency was corrected
by truncating the cumulative distribution function (CDF)
of daily GCM rainfall from the observation distribution
above a calibrated threshold. Mapping the quantiles of the
truncated daily GCM rainfall CDF onto the observations
was used to correct rainfall intensity. As rainfall total
is the product of frequency and intensity, correcting
both the biases of intensity and frequency will correct
rainfall total bias. Schmidli et al. (2006) also proposed
a slightly varied method for correcting daily GCM
rainfall biases. They used a wet-day threshold to match
observed and model rainfall frequency, similar to Ines
and Hansen (2006), and a scaling factor, based on the
ratio between wet-day intensities of observations and
adjusted GCM rainfall, to correct rainfall intensity. A
recent comparison between the two methods can be seen
in Dobler and Ahrens (2008). GCM BC has been used
in other applications as well (e.g. Sharma et al., 2007;
Elshamy et al., 2009; Mishra and Singh, 2009; Mishra
et al., 2009) aside from agro-meteorological applications
(Baigorria et al., 2007, 2008).

Bias-corrected daily GCM rainfall used as input to
crop simulation models has made improvements in
predicted yields compared to using raw daily GCM
rainfall alone (Hansen et al., 2006). Ines and Hansen
(2006) observed, however, that a significant bias (neg-
ative) in the predicted yields still exists after BCs of
daily GCM rainfall. Their analysis suggests that the
time structure of daily GCM rainfall does not corre-
spond well with station data and that daily GCM rain-
fall tends to overestimate dry spell lengths (here, ≤1
mm = dry day) exposing the crops to longer periods
of dry spells, thus reducing yields. The deterministic
GCM BC was not able to correct this bias in dry spell
lengths.

The general purpose of this article is to test the notion
that by improving the daily structure of GCM rainfall

(in bias-corrected or in derived form), the predicted
yields by crop simulation models can be improved
further. Specifically, we aim (1) to explore strategies
for improving the time structure of bias-corrected daily
GCM rainfall and (2) to evaluate the performance of the
improved daily GCM rainfall for crop yield predictions.
We tested the methods in an agricultural experimental
station in Katumani, Machakos district of eastern Kenya,
using maize as a case study.

2. Materials and methods

2.1. Climate data

We used ECHAMv4.5 (Roeckner et al., 1996) simu-
lated daily rainfall forced by concurrent observed sea-
surface temperature (SST) (http://iridl.ldeo.columbia.edu)
for BC and crop yield prediction. Note that a GCM
run in historical mode delineates the upper bound
of climate predictability and that predictive skill in
forecast mode (i.e. forced by forecast SSTs) may be
lesser than this level (Challinor et al., 2005). For pur-
poses of testing and demonstration, we chose model
runs in historical mode. Here, we expanded the study
domain considered by Ines and Hansen (2006) from
a single to multiple grid cells to test if multi-grid
GCM cells can provide better information for crop
yield prediction. We selected 3 × 3 model grid cells
(1°23.7′N–4°10.8′S, 33°45′E–39°20.5′E) encompassing
the Katumani Dryland Research Center (1°35′S, 37°14′E)
(Table I, Figure 1) wherein all 24 ensemble members
(GCM simulations from different initial conditions) in
each grid cell considered were extracted for analy-
sis for the study period (1970–1995). Rainfall in this
region is bi-modal, occurring in February–May and Octo-
ber–December. The latter shorter rainy season is an
important maize growing season in the region whose pre-
dictability potential has been established in recent studies
(e.g. Indeje et al., 2000; Hansen and Indeje, 2004). Daily
rainfall observations and other weather data needed for

Table I. Geographic locations, distance from station, weights and uncorrected yield correlations of the selected ECHAMv4.5 grid
cells.

Location Longitude Latitude Distance, r

(degrees)
Weight, ω (r)
(degrees−2)

Uncorrected yield R

(−) and MBE (Mg ha−1,
in parenthesis)

Corrected yield† R

(−) and MBE (Mg ha−1,
in parenthesis)

Station 37°14′E 1°35′S 0.000 Null Null Null
Grid1 33°45′E 4°11.16′S 4.348 0.053 0.60 (−0.32) 0.61 (−0.18)
Grid2 36°33.75′E 4°11.16′S 2.688 0.138 0.68 (−2.18) 0.71 (−0.85)
Grid3 39°22.5′E 4°11.16′S 3.371 0.088 0.43 (−2.84) 0.36 (−0.62)
Grid4 33°45′E 1°23.72′S 3.488 0.082 0.04 (0.76) 0.67 (−0.20)
Grid5 36°33.75′E 1°23.72′S 0.697 2.060 0.61 (−2.35) 0.70 (−0.90)
Grid6 39°22.5′E 1°23.72′S 2.150 0.216 0.44 (−3.13) 0.38 (−0.30)
Grid7 33°45′E 1°23.72′N 4.583 0.048 0.40 (0.52) 0.58 (−0.15)
Grid8 36°33.75′E 1°23.72′N 3.053 0.107 0.65 (−2.10) 0.61 (−0.70)
Grid9 39°22.5′E 1°23.72′N 3.669 0.074 0.59 (−3.17) 0.45 (−0.34)

† Using the new bias correction approach, BC2 (>0 mm threshold; Section 2.2.1).
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Figure 1. (a) Correlation map of raw October–December ECHAMv4.5 rainfall and maize yield simulated by observed weather at Katumani
Dryland Research Center; (b) schematic of grid cells and spatial kernel (ωi = 1

/
r2
i ) used determined the contribution of a grid cell to a station

location (�); ri denotes for distance of grid cell at midpoint (+) from station location (Table I).

crop simulations, such as daily maximum (Tmax) and min-
imum temperature (Tmin), and solar radiation (SRAD),
were also collected from the research station.

2.2. Improving time structure of GCM rainfall

2.2.1. BC with calibrated thresholds

The first approach used to improve the time structure of
daily GCM rainfall is by calibrating rainfall thresholds.
The GCM BC (Ines and Hansen, 2006) corrects rainfall
frequency by fitting a GCM threshold value x̃I,GCM to
truncate the empirical distribution of uncorrected daily
GCM rainfall. As a result, mean rainfall frequency
of calendar month I above the threshold matches the
observed. The x̃I,GCM value is calculated by inverting
the empirical cumulative rainfall distribution of GCM
(FI,GCM) as (Equation (1)):

x̃I,GCM = F −1
I,GCM[FI,obs(x̃I,obs)] (1)

where x̃I,obs is an observed threshold value for delineating
rainy days from observed rainfall (Figure 2; Hansen
et al., 2006). Varying x̃I,obs magnitude during BC runs
could alter the time structure of bias-corrected daily GCM
rainfall. This is expected because x̃I,GCM also changes
whenever x̃I,obs is varied.

An update to the GCM BC (BC1) is outlined below; we
call the updated version BC2 onwards. The general notion
of daily GCM rainfall is that it always over-predicts
rainfall frequency. But this is not always the case; hence
we implemented a new BC formulation that can handle
cases when GCM rainfall frequency is less than or more
than the observed. When GCM rainfall frequency is less
than the observed, we append a number of wet-day events

Figure 2. The new bias correction method (BC2) correcting the
left side of the empirical distribution if x̃I,GCM values are too
many (‘nugget effect’) to preserve equal number of wet days with
observations (see inset). This figure is available in colour online at

wileyonlinelibrary.com/journal/joc

with minimum rainfall amounts (i.e. x̃I,obs + 0.1 mm) in
the GCM rainfall CDF to match the observed rainfall
frequency. The number of appended wet-days depends
on the discrepancy between the number of wet-days in
the GCM rainfall CDF above the calibrated threshold
and observations. In turn, these wet days are added and
distributed evenly (stochastically) in the GCM rainfall
daily time series. Tests show, however, that this case
is not always the norm, and if it happens, only small
number of wet-days per calendar month is added in the
time series. The update also handles a case if the left-side
of the empirical distribution of GCM rainfall contains
more values equivalent to x̃I,GCM above the truncation
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point (Figure 2) by preserving those values instead of
eliminating them (‘nugget effect’) ensuring that rainfall
frequency is preserved. This case often occurs during BC,
which was not handled in the earlier version.

We used only the two-parameter gamma distribution
G(x; α, β) to simulate rainfall intensity distributions of
both observed and GCM rainfall, both for BC1 and
BC2. This so-called gamma–gamma transformation cor-
rects rainfall intensity by mapping gamma-transformed
daily GCM rainfall onto the gamma distribution of the
observed (truncated) rainfall. GCM rainfall x on day i is
corrected as (Equation (2)):

x ′
i = G−1

I,obs[GI,GCM(xi; xi > x̃I,GCM)], otherwise, 0.

(2)

Shape and scale parameters of GCM and observed rain-
fall gamma distributions are calculated using maximum
likelihood method.

2.2.2. BC-stochastic disaggregation (DisAg)

Daily GCM rainfall tends to be highly auto-correlated,
hence it tends to cluster and persist but with low inten-
sities (e.g. Ines and Hansen, 2006, 2009). Calibrating
thresholds on GCM BC may alter the daily variations of
rainfall within rain clusters in the time series but may not
be able to correct the mismatch in dry spells especially
between rain clusters. For this reason, a stochastic way
of redistributing the bias-corrected daily GCM rainfall
information within a time series was sought. The purpose
is to preserve the corrected GCM wet days in a calen-
dar month, while the time structure of rainfall occurrence
is stochastically adjusted based on that corrected proba-
bility of wet days. Here, we nested the GCM BC with
a stochastic disaggregation method described in Hansen
and Ines (2005) to generate sequences of daily rainfall
conditioned on the bias-corrected GCM rainfall informa-
tion (e.g. rainfall frequency) to produce a more realistic
dry spell length distribution. In the temporal disaggrega-
tion, we focused in using corrected rainfall frequency as
conditioning data for generating daily rainfall sequences
as this relates directly to daily statistics of GCM rainfall.
However, we also used the combination of frequency and
rainfall totals for conditioning the stochastic disaggrega-
tion process to augment the deficiency of using rainfall
frequency information alone.

The rainfall occurrence model of the stochastic weather
generator used in the stochastic disaggregation is a two-
state, hybrid second-order Markov chain able to simulate
rainfall occurrence with a first-order chain if the previ-
ous day was wet, or a second-order chain if the previous
day was dry (Hansen and Ines, 2005; Stern and Coe,
1984; Wilks, 1999). Literature suggests that higher order
Markov chain models better simulate dry spell distribu-
tions than first-order models (Wilks and Wilby, 1999). If
the Markov model simulates occurrence of rainfall in a
given day, the rainfall amount is sampled from a mixture
of two exponential distributions (Woolhiser and Roldán,
1982). Details of the temperature and SRAD sub-models
are described in Hansen and Mavromatis (2001).

The rainfall frequency of bias-corrected daily GCM
rainfall was used to adjust the first- and second-order
transition probabilities of the rainfall occurrence model
to simulate time series of wet and dry days. The
formalism for adjusting these transition probabilities
(i.e. first-order probabilities, e.g. wet day following
(−>) a dry day (p01), wet->wet (p11), and second-
order probabilities, p101 and p001) to match a target
rainfall frequency (e.g. from bias-corrected GCM rainfall)
is shown in Hansen and Ines (2005) and elsewhere.
But for the purpose of completeness, we also show
it here. The transition probabilities of a first-order,
two-state Markov chain rainfall occurrence model are
related directly to the unconditional rainfall occurrence
probability, π (Equation (3)) and persistence of dry days,
ρ1 (Equation (4)) (Katz and Parlange, 1998; Wilks and
Wilby, 1999).

π = p01

1 + p01 − p11
(3)

ρ1 = p11 − p01 (4)

Assuming that persistence of dry days remains constant
when a target rainfall occurrence probability changes, π ′,
the first-order adjusted transition probabilities (with apos-
trophes) are determined by solving Equations (3) and (4)
simultaneously, resulting to,

p′
01 = π ′(1 − ρ1) (5)

p′
11 = ρ1 + p′

01 (6)

Equations (5) and (6) are used to determine a wet day
if the previous day was wet. If the previous day was
dry, the second-order Markov chain is used to deter-
mine if the current day will be wet or dry through the
adjusted second-order transition probabilities. The tran-
sition probabilities for the hybrid second-order Markov
chain rainfall occurrence model can be adjusted for a
given rainfall frequency by keeping the first- and second-
order persistence of dry days [ρ1 (Equation (4)) and ρ2

(Equation (7))] constant.

ρ2 = p101 − p001 (7)

The adjusted transition probabilities are given as fol-
lows (Equations (8)–(10)) (Katz and Parlange, 1998;
Hansen and Mavromatis, 2001)

p′
11 = π ′(1 − ρ1) + ρ2 (8)

p′
001 = π ′ (1 − ρ1)(1 − π ′) − ρ2(1 − p′

11)

1 − π ′ (9)

p′
101 = p′

001 + ρ2 (10)

If rainfall frequency and total are used at the same
time to condition the stochastic weather generator,
(1) transition probabilities (first- and second-order) of
the rainfall occurrence model are adjusted based on
bias-corrected monthly GCM rainfall frequency, (2) daily
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Table II. Summary descriptions of methods used in this study.

Methods Descriptions

BC1 Based on Ines and Hansen (2006), corrects rainfall frequency (under-prediction) by truncating GCM rainfall
distribution at a given threshold, corrects rainfall intensity using gamma–gamma transformation

BC1-DisAg1 BC1 combined with stochastic disaggregation (DisAg) conditioned on the corrected rainfall frequency of each
ensemble member, respectively

BC1-DisAg2 BC1 combined with DisAg conditioned on the corrected average rainfall frequency from all ensemble members
BC2 Corrects rainfall frequency (under- and over-prediction) by truncating the GCM rainfall distribution at a given

threshold, and also corrects the ‘nugget effect’ of truncating empirical distribution (Figure 2). Corrects rainfall
intensity using gamma–gamma transformation

BC2-DisAg1 BC2 combined with DisAg conditioned on the corrected rainfall frequency of each ensemble member,
respectively

BC2-DisAg2 BC2 combined with DisAg conditioned on the corrected average rainfall frequency from all ensemble members
BC2-m BC2 applied to multiple grid cells
BC2-DisAg2-m BC2 combined with DisAg conditioned on the corrected average rainfall frequency (and amounts) from all

multiple grid cells

rainfall realizations are generated iteratively until gen-
erated monthly rainfall total matches 95% of the tar-
get value (the bias-corrected monthly GCM rainfall),
(3) generated daily values are re-scaled by a ratio of
monthly target (Rm) and generated rainfall totals (Rm)
(i.e. Rm/Rm) such that the monthly rainfall total gen-
erated matches the target value. These three steps are
repeated in turn, for each calendar month in a year, for
all the years considered (Hansen and Ines, 2005).

2.3. Case studies for BC and BC-stochastic
disaggregation

Table II shows a summary of the experiments performed
in this study. First, we considered a single ECHAMv4.5
grid cell encompassing the agricultural research station
(Figure 1) to compare the performances of BC1 and
BC2. The 24 ensemble members were individually bias-
corrected using several observed threshold values (>0, 1,
3 and 5 mm). Monthly rainfall statistics from the bias-
corrected daily GCM rainfall were extracted for linking
to stochastic disaggregation. In the single grid cell case,
only the monthly time series of rainfall frequency (π)
was used to condition the stochastic weather generator
(as this can directly represent the daily GCM rainfall
statistics), (1) for each ensemble member (BC-DisAg1)
and (2) aggregated 24 members (BC-DisAg2), where BC
is the general term for GCM bias correction (BC) and
DisAg for stochastic disaggregation.

The second case involves multiple grid cells from
ECHAMv4.5 where all nine grid cells selected were used
in the analysis (Figure 1). Using only now, the new BC
formulation (BC2), the 24 ensemble members from each
GCM grid cell were bias-corrected individually, then
analysed to extract monthly rainfall statistics. As will be
shown later, individual ensemble member contains lesser
information than when combined with other ensemble
members in the GCM run. Therefore, we used only
the aggregated monthly rainfall frequency, and rainfall
totals, for each grid cell to develop a grid-based monthly
time series of rainfall frequency and totals for stochastic

disaggregation. This was done using a simple spatial
kernel given below (Equations (11)–(13); Figure 1(b)).

πt =

N∑
i=1

ωiπit

N∑
i=1

ωi

∀t (11)

ωi = 1

r2
i

(12)

ri =
√

(xi − xstation)2 + (yi − ystation)2 (13)

where π is the weighted conditioning data (e.g. fre-
quency, totals), ω is a weighting function, r is the grid
cell distance from the weather station, x and y are lon-
gitude and latitude, i is an index of grid cell, t an index
for time (i.e. months, for 26 years), and N is the num-
ber of grid cells. We also used arithmetic averaging (all
grid cells have the same weights) for developing the grid-
based conditioning data for stochastic disaggregation.

We generated 24 realizations of daily rainfall for all
the BC-stochastic disaggregation experiments. The 24
realizations were replicated ten times to minimize the
variability of small samples in stochastic modelling.
The 24-realization run was chosen for the stochastic
disaggregation to give a better basis for comparison with
the BC runs applied to 24 ensemble members.

As will be shown in Section 2.4, we linked the cor-
rected information with a crop simulation model. This
requires that the corrected daily GCM rainfall must be
coupled with other weather variables considering their
dependency with rainfall. There are several ways to sat-
isfying this requirement. Baigorria et al. (2007) suggested
bias correcting climate model’s daily temperature (T ) and
SRAD in addition to rainfall for inputs to crop yield pre-
diction. This approach attempts to ensure that T and
SRAD are consistent with rainfall, but since they are
bias-corrected independently, a perfect dependency with
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rainfall is not always guaranteed in the end. This can be
applied using BC alone. We can also use the weather
generator to generate daily realizations of temperature
(Tmin and Tmax) and SRAD conditioned on the time series
of bias-corrected GCM rainfall. In this study, however,
we opted for a simpler approach. For all BC and BC-
DisAg runs, daily Tmin, Tmax and SRAD were generated
as monthly mean values conditioned on the occurrence or
nonoccurrence of rainfall. In other words, if the current
day is wet, we used the wet-day mean values of Tmin,
Tmax and SRAD of that month as values on that partic-
ular day, vice versa. This is analogous to filling missing
data with mean + noise, with noise = 0 and the mean is
a conditional value. Conditioning the values on a wet or
dry day occurrence preserves the co-variation of rainfall
with other weather variables. Our earlier tests show that
this approximation resulted to yields comparable to those
simulated with actual weather.

2.4. Linking daily GCM rainfall with a crop model

The performance of BC and BC-DisAg outputs were
quantitatively evaluated by linking them to a crop simula-
tion model. We used CERES-Maize (Ritchie et al., 1998)
to simulate and predict maize yields. Data inputs on soil
properties, local cultivar ‘Katumani composite B ’ char-
acteristics and management assumptions were based on
a previous study at the same site (Keating et al., 1992).
The sandy clay loam soil used in the crop modelling has
plant-extractable water-holding capacity of 180 mm m−1

of soil. For each simulation year, the soil-water balance
was initialized on 17 October with initial soil moisture
at 20% water-holding capacity. Sowing was established
by the CERES-Maize and was simulated once the soil
moisture content of the top 15 cm soil surface exceeded
40% of water-holding capacity. If sowing fails within the
prescribed window, sowing will commenced forcedly on
1 November. The plant density was assumed to be 4.4
plants m−2 with 50 cm row spacing and 20 kg N ha−1

applied as ammonium nitrate (NH4NO3) at sowing. Other
details are described in Ines and Hansen (2006).

CERES-Maize was run with observed daily rainfall
(>0 mm threshold) for baseline, daily rainfall from
ECHAMv4.5 without BC, with BC (all thresholds, >0,
1, 3, 5 mm) under BC1 and BC2, and with variants of
BC (all thresholds) - stochastic disaggregation (Table II).
Simulated yields for individual years were averaged
across the 24 GCM ensemble members and from the
24 realizations (replicated ten times) by the stochastic
disaggregation, then compared with the baseline yields.
To ensure that yields are simulated with consistent
temperature and SRAD, we used the conditional mean
values of Tmin, Tmax and SRAD in the baseline simulation
in lieu of the observed values.

2.5. Analysis of results

Standard goodness-of-fit statistics was used to analyse
model performances. We decomposed the mean squared

error (Equation (14)) into a random component (not cor-
rected by linear regression) (Equation (15)) and a system-
atic component (can be corrected by linear regression)
(Equation (16)) based on Willmott (1982),

MSE = 1

n

n∑
i=1

(ŷi − yi)
2 (14)

MSER = 1

n

n∑
i=1

(ŷ∗
i − yi)

2 (15)

MSES = MSE − MSER (16)

where n is the number of years, i, y and ŷ are yields
simulated with observed and uncorrected/corrected GCM
rainfall, ŷ∗ is ŷ calibrated by linear regression. We also
used correlation coefficient (R), mean bias error (MBE),
root-mean-squared error (RMSE) and index of agreement
d-statistics (Equation (17)) to measure performance,
where y is average observed yields.

d = 1 −

n∑
i=1

(ŷi − yi)
2

n∑
i=1

(|ŷi − y| + |yi − y|)2

. (17)

Aside from yields, goodness-of-fit statistics for bias-
corrected and generated GCM-based rainfall were cal-
culated to evaluate the performance of the enumerated
methods for enhancing the utility of daily GCM rain-
fall for crop yield prediction. Of particular interest is
the evaluation of dry spell lengths among methods, as
this was suggested to be the major influencing factor for
the underestimation of yields when linking daily GCM
rainfall with crop simulation models.

3. Results and discussions

3.1. Crop yield predictions

3.1.1. Without BC

Due to lack of available actual yield data, we opted
to pursue the analysis with maize yields simulated
by observed weather, with the exception of temper-
ature and SRAD values (Section 2.4). ECHAMv4.5
October–December (raw) rainfall is moderately–high-
ly correlated with the baseline yield (Figure 1(a)). This
is interesting to note because it suggests the good
predictability of maize yields in the region.

Figure 3 shows the predicted yields using uncorrected
daily GCM rainfall from the selected 3 × 3 grid cells.
Except for grid cell 4 (Figure 1(b)), a moderate to strong
correlation (0.40–0.68, Table I) exists between yields
simulated by observed station rainfall and those simulated
by uncorrected GCM rainfall from surrounding grid cells,
suggesting that the inter-annual variability of rainfall
was more or less captured by the climate model for the
majority of grid cells selected, as evident in Figure 1(a).
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But most of the yields simulated by uncorrected daily
GCM rainfall extremely under-predicted those simulated
by observed station rainfall (Table I, MBE uncorrected).
This can be explained in part by the rainfall characteris-
tics of the selected grid cells. The seasonal rainfall (Octo-
ber–December) was extremely underestimated (Table III,
uncorrected).

For comparison purposes, we selected three grid cells
representing the three clusters of simulated yield levels
(Figure 3) for in-depth analysis. Here, we selected grid
cells 3, 4 and 5 from the bottom, top and middle clusters,
respectively; grid cell 5 was the chosen study domain
in Ines and Hansen (2006) and kept it here for better
comparison of methods. Figure 4 shows the rainfall char-
acteristics (total, intensity and frequency) of grid cells 3,
4 and 5 compared to observed station weather. On the
average, although rainfall frequency was over-predicted
in all three grid cells during the growing season (sow-
ing to anthesis, October–December), all the ensemble
members in grid cells 3 and 5 underestimated rainfall
intensities and totals. Apparently, rainfall intensities from
these two grid cells were too low to saturate the rootzone
that even with too many rainfall events during the grow-
ing season, did not improve the simulated yields. Ines and
Hansen (2006) suggested that some of this yield bias may
be attributed to the longer dry spells (≤1 mm = dry day)
associated with daily GCM rainfall as the low intensity
rains, even if they are frequently occurring, do not satisfy
crop water requirements as they tend to be only lost by

Figure 3. Uncorrected yields from the 3 × 3 ECHAMv4.5 grid cells
compared to station data. This figure is available in colour online at

wileyonlinelibrary.com/journal/joc

canopy interception or evaporated before reaching the soil
surface. In contrast, grid cell 4 showed a relatively lesser
yield mean bias error (MBE) than grid cells 3 and 5,
but poses the worst yield correlation (Table I; Figure 3).
Rainfall intensity in grid cell 4 was fairly simulated well
by the GCM, but the frequency was extremely over-
predicted resulting to wetter growing seasons (Figure 4)
and perhaps causing this higher than average but lowly
correlated yields (poor inter-annual variability) (Table I;
Figure 3). The above discussion exhibits the complexity
of interactions between rainfall (and its time structure)
and crop growth.

3.1.2. BC-stochastic disaggregation, Case 1: single
grid cell

Using grid cell 5 as a case study, we tested and evalu-
ated the BC-stochastic disaggregation methods (Table II)
designed for extracting useful information from daily
GCM rainfall for crop prediction. This grid cell encom-
passes the agricultural experimental station (Figure 1)
used in this study. In Section 3.1.1, we showed that grid
cell 5 always over-predicts rainfall frequency (Figure 4).
The inability of BC1 to correct the ‘nugget effect’ of
truncating empirical rainfall distributions (Figure 2) can
undermine BC of rainfall frequency. This grid cell there-
fore is a good test-bed for the performance of the
improved BC method (BC2, Table II) developed in this
study.

Overall, BC and its combination with stochastic dis-
aggregation for tuning daily GCM rainfall information
improved the simulation of crop yields, compared to no
corrections made in the GCM rainfall (Figure 5). BC of
rainfall frequency and intensity of GCM rainfall could
improve the systematic and random errors in the pre-
dicted yields (Table IV). The yield correlations are higher
and MBE lower after BCs. This trend is shown by the
increased d-statistics and reduced MSE of the predicted
yields. But a majority of the total error (MSE) after BC
is still systematic in nature (MSEs) due to mean bias
(Figure 5), corroborating the earlier findings of Ines and
Hansen (2006).

Calibrating thresholds on GCM BC had little impact
to the performance of the predicted yields (Table IV;

Table III. Seasonal GCM rainfall (October–December) from different grid cells.

Station obs. 1 2 3 4 5 6 7 8 9

Uncorrected
Totals, mm d−1 2.96 2.71 1.34 0.93 5.51 1.17 0.53 2.75 1.22 0.40
Intensity, mm wd−1 7.34 3.49 2.00 1.85 6.17 1.70 1.23 3.41 2.06 1.03
Frequency, wd d−1 0.36 0.70 0.56 0.43 0.87 0.59 0.35 0.75 0.50 0.30
Corrected †

Totals, mm d−1 2.96 2.99 2.97 3.01 2.97 2.97 3.29 2.99 2.94 3.40
Intensity, mm wd−1 7.34 7.19 6.62 7.03 7.02 6.55 7.53 7.42 6.74 7.87
Frequency, wd d−1 0.36 0.36 0.36 0.36 0.36 0.37 0.36 0.36 0.36 0.36

† Using BC2 (Table II).
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Figure 4. Sample uncorrected rainfall totals (top row), intensity (middle row) and frequency (bottom row) of selected grid cells, 4 (first
column), 5 (second column; Ines and Hansen, 2006) and 3 (third column), compared to station data. This figure is available in colour online at

wileyonlinelibrary.com/journal/joc

Figure 5. Performance of bias correction – stochastic disaggregation in crop yield prediction, grid cell 5. This figure is available in colour online
at wileyonlinelibrary.com/journal/joc
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Table IV. Performance of the bias correction-stochastic disaggregation methods on crop yield prediction when correcting only
for over-predictions in GCM rainfall frequency (BC1) (grid cell 5).

Thresholds
(x̃I,obs)

R (−) MBE (Mg ha−1) d (−) MSE (Mg ha−1)2 MSER (Mg ha−1)2 MSES (Mg ha−1)2

Uncorrected
– 0.61 −2.35 0.50 6.61 1.06 5.55

BC1
>0 mm 0.70 −1.04 0.67 1.95 0.86 1.09
>1 mm 0.70 −0.98 0.67 1.84 0.86 0.98
>3 mm 0.72 −1.01 0.68 1.86 0.82 1.04
>5 mm 0.71 −1.07 0.67 2.01 0.84 1.17
BC1-DisAg1
>0 mm 0.63 −0.41 0.66 1.22 1.01 0.21
>1 mm 0.65 −0.42 0.68 1.18 0.97 0.21
>3 mm 0.66 −0.64 0.69 1.37 0.95 0.42
>5 mm 0.67 −0.84 0.68 1.65 0.93 0.72
BC1-DisAg2
>0 mm 0.73 −0.20 0.74 0.91 0.79 0.12
>1 mm 0.68 −0.14 0.75 0.95 0.92 0.04
>3 mm 0.72 −0.26 0.80 0.88 0.81 0.07
>5 mm 0.69 −0.39 0.75 1.04 0.89 0.16

Uncorrected and BC1 at threshold >0 mm values are excerpt from Ines and Hansen (2006).

Figure 5). Increasing observed threshold values (x̃I,obs)
tend to reduce a little the total error (MSE) in predicted
yields (up to a certain threshold). But we noticed that
increasing the observed threshold value (x̃I,obs) for a
wet-day reduces the rainfall frequency (both observed
and GCM) and shifts the rainfall intensity distribution
to the right, causing lesser frequent but higher intensity
bias-corrected GCM rainfall (compared to observation at
>0 mm threshold). The good performance of >3 mm
threshold for predicting crop yields could be an artifact
of this process. Moderately higher threshold value could
lead to favourable rainfall conditions for crop growth due
to resulting wetter growing season, caused by the more
intense but relatively lesser frequent rainfall, compared
to bias-corrected GCM rainfall conditions generated
by >0 mm threshold. Extreme threshold values (e.g.
>5 mm), however, can produce significantly (negatively)
biased number of wet days (compared to observation at
>0 mm) that even with very intense rainfall (distribution
extremely shifted to the right) could not improve crop
yields due to longer dry spells caused by extremely lesser
rainfall events.

Applying BC and stochastic disaggregation to individ-
ual ensemble members (BC1-DisAg1) reduced more the
systematic errors of predicted yields than from using BC1
alone, but yield correlations are lower, hence more ran-
dom errors (MSER) in the predicted yields (Table IV).
It should be noted that ensemble members contained
noisier information individually than when pooled collec-
tively, as shown by the results in BC1-DisAg2. Although
a redundant way of exploration, conducting the BC1-
DisAg1 confirms the need for multi-ensemble simulations
to capture better physical processes. When averaged rain-
fall frequency from all ensemble members was used to

condition the stochastic disaggregation, it did not only
preserve higher yield correlations, but also improved sys-
tematic errors in the predicted yields (see also d-statistics;
Table IV).

More improvements in the predicted yields were
observed when correcting the ‘nugget effect’ (Figure 2)
of truncating empirical distributions (Table V; Figure 5).
Note that BC2 is able to correct both over- and under-
prediction of rainfall frequency in the GCM data (Section
2.2.1) although the latter capability was not used in this
case because the number of wet days in grid cell 5 was
always over-predicted (Figure 4). But since BC1 cannot
correct the ‘nugget effect’ of truncating empirical distri-
butions, the corrected long-term rainfall frequency tends
to be underestimated when the ‘nugget effect’ is present
during BC. BC2 ensures that the number of wet days is
consistent between calibrated GCM and observed rain-
fall when this situation occurs during BC. The impact of
this GCM BC update is mostly observed in the system-
atic errors of predicted yields (Tables IV and V; Figure 5,
BC2 vs BC1) suggesting the sensitivity of number of wet
days in the crop simulations.

Outcomes of BC2 improvements are noticed more in
the performance of individual ensemble members when
combined with stochastic disaggregation (BC2-DisAg1).
When BC2-improved rainfall frequency for each ensem-
ble member was used to condition the stochastic weather
generator, yield correlations were higher and systematic
errors lower than BC1-DisAg1 (Tables IV and V). Using
BC2-DisAg2 (Table II) further reduced mean bias errors
compared to BC1-DisAg2, although other goodness-of-
fit indicators gave somewhat mixed results (Tables IV
and V).

Overall, BC-stochastic disaggregation using averaged
GCM information (BC-DisAg2) gave the best results
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Table V. Performance of the bias correction-stochastic disaggregation methods on crop yield prediction when correcting for both
under- or over-predictions and ‘nugget effects’ in GCM rainfall frequency (BC2) (grid cell 5).

Thresholds
(x̃I,obs)

R (−) MBE (Mg ha−1) d (−) MSE (Mg ha−1)2 MSER (Mg ha−1)2 MSES (Mg ha−1)2

Uncorrected
– 0.61 −2.35 0.50 6.61 1.06 5.55

BC2
>0 mm 0.70 −0.90 0.69 1.69 0.87 0.82
>1 mm 0.71 −0.89 0.70 1.64 0.83 0.81
>3 mm 0.72 −0.93 0.70 1.69 0.81 0.87
>5 mm 0.71 −1.04 0.68 1.93 0.85 1.09
BC2-DisAg1
>0 mm 0.67 −0.14 0.66 1.06 0.94 0.12
>1 mm 0.70 −0.20 0.71 0.98 0.87 0.11
>3 mm 0.70 −0.44 0.71 1.10 0.86 0.24
>5 mm 0.68 −0.79 0.68 1.57 0.92 0.65
BC2-DisAg2
>0 mm 0.70 0.06 0.71 0.96 0.86 0.09
>1 mm 0.69 0.13 0.76 0.92 0.88 0.04
>3 mm 0.72 −0.03 0.79 0.84 0.82 0.02
>5 mm 0.69 −0.33 0.77 0.99 0.88 0.11

Uncorrected values are excerpt from Ines and Hansen (2006).

Table VI. Performance of the bias correction (>0 mm threshold)-stochastic disaggregation on crop yield prediction with BC2
(multiple grid cells).

Methods R (−) MBE (Mg ha−1) d (−) MSE (Mg ha−1)2 MSER (Mg ha−1)2 MSES (Mg ha−1)2

Uncorrected-m† 0.62 −2.25 0.50 6.19 1.03 5.15
BC2-m† 0.69 −0.78 0.68 1.51 0.88 0.63
BC2-DisAg2-m (π )‡ 0.72 0.10 0.71 0.95 0.82 0.13
BC2-DisAg2-m (π + Rm)‡ 0.70 0.13 0.84 0.98 0.86 0.11
BC2-DisAg2-m (π )§ 0.70 0.13 0.66 1.05 0.87 0.18
BC2-DisAg2-m (π + Rm)§ 0.67 0.36 0.80 1.07 0.92 0.15

† Weighted average yields.
‡ Weighted average frequency (π), and frequency (π ) + totals (Rm).
§ Arithmetic average π , and π + Rm.

among the methods tested. Not only it produced higher
yield correlations but also reduced drastically systematic
bias in predicted yields, suggesting that post-process
corrections of systematic errors by linear regression (e.g.
Baigorria et al., 2008) may no longer be necessary, if
the GCM bias-correction-stochastic disaggregation was
applied in crop yield prediction.

3.1.3. BC-stochastic disaggregation, Case 2: multiple
grid cells

Because of scale and process aggregation is GCM
schemes, sometimes climate signals from a GCM are
geographically shifted and that grid cells other than the
grid cell containing the study location may better predict
a local phenomenon (Wilks, 1995). Here, we used all
nine surrounding grid cells to predict maize yields at the
station using now only BC2 (Figure 1). Interestingly, grid
cell 4, which initially had very low yield correlations
improved yield simulations drastically (R = 0.60) after

BC (Table I; Figure 3), suggesting further that correcting
daily GCM rainfall for rainfall frequency and intensity
biases could improve systematic errors as well as random
errors in predicted yields provided there is a skill
of the GCM. Table III shows the improvements in
seasonal (October–December) rainfall for each grid cell
after BCs.

Averaging schemes (distance-based and equal
weighting) of yields from the bias-corrected grid cells
had little impact on the total error (MSE) of pre-
dicted yields (Tables V and VI; Figures 6 and 5; see
BC2-m and BC2). Some surrounding grid cells have
lower skills than grid cell 5 (Table I) and that blend-
ing them with this cell, which is nearest to the sta-
tion and happens to be predicting yield better (Table I),
did not impact the final outcome. Goodness-of-fit statis-
tics showed that results from the multiple grid cell
analysis are more or less similar with the single
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Figure 6. Performance of the bias-correction stochastic disaggregation
using multiple grid cells. This figure is available in colour online at

wileyonlinelibrary.com/journal/joc

grid cell case (Tables V and VI). But this could be
an artifact of the inverse-distance weighting method
used in summarizing multiple grid cell yield simula-
tions.

Using all corrected rainfall frequency (π alone) from
surrounding grid cells to condition the weather generator
improved all goodness-of-fit statistics in yield predic-
tions (Table VI; Figure 6). Conditioning rainfall fre-
quency while constraining the generation of monthly
rainfall totals at the same time (π + Rm) also improved
the degree of similarity (d-statistics) in predicted yields
(Table VI). Using π + Rm for conditioning, the weather

Table VII. Average, standard deviation (std. dev.) and coeffi-
cient of variation (cv) in predicted yields using multiple grid

cell information (>0 mm threshold).

Methods Average
(Mg ha−1)

Std. dev.
(Mg ha−1)

c.v.
(−)

Observed 3.34 1.33 0.40
Uncorrected 1.09 0.53 0.49
BC2-m 2.57 0.76 0.30
BC2-DisAg2-m (π )† 3.44 0.59 0.17
BC2-DisAg2-m (π + Rm)† 3.47 1.25 0.36

† Weighted average frequency (π), and frequency (π) + totals (Rm).

generator not only improved the mean of predicted yield
distribution but also its variance (Table VII) suggesting
that for a more realistic yield distribution, it is neces-
sary to make sure that frequency of rainfall and its time
structure are corrected, as well as the amount of rain-
fall generated. Giving the same weights to each grid
cell’s average π and Rm for stochastic disaggregation
did not make any improvements in crop yield predic-
tion as compared to inverse-distance-weighting results
(Table VI; Section 2.3).

3.2. Properties of bias-corrected
and stochastically-disaggregated daily GCM rainfall

Figure 7 shows the effects of the BC methods on rain-
fall total, intensity and frequency (grid cell 5). The

Figure 7. Corrected rainfall totals (top row), intensity (middle row) and frequency (bottom row) of grid cell 5 (>0 mm threshold) using
BC1 (first column; Ines and Hansen, 2006) and BC2 (second column), compared to station data. This figure is available in colour online at

wileyonlinelibrary.com/journal/joc
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Figure 8. Dry spell length distributions (15 November–31 December) of Uncorrected GCM rainfall (grid cell 5), corrected by BC1, BC2,
BC2-DisAg1 and BC2-DisAg2 at various threshold values compared to station data. Uncorrected and BC1 results based on Ines and Hansen

(2006). (Note: ≤1 mm is dry day). This figure is available in colour online at wileyonlinelibrary.com/journal/joc

advantage of BC2 over BC1 (Table II) is mostly appar-
ent at rainfall frequency and total corrections (Figure 7,
BC2). As BC1 was not able to correct the ‘nugget
effect’ of truncating empirical distributions (Figure 2),
the corrected GCM rainfall frequency underestimated
reality (e.g. October–December) (Figure 7, BC1). BC2
corrected this by implementing the ‘nugget effect’ cor-
rection although some room for improvements is apparent
(Figure 7, BC2).

Raw ECHAMv4.5 daily rainfall over-predicts dry spell
lengths (Figure 8; Uncorrected), which was attributed as
one of the main causes of the large negative mean bias in
predicted yields after BC (Ines and Hansen, 2006). Dry
spell length bias, however, is attributed to the unrealistic
time structure of daily GCM rainfall, which deterministic
GCM BC methods may not be able to correct. Corrections
of rainfall frequency, however, led to small improvements
in dry spell length bias (Figure 8; BC1, >0 mm). The
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updated BC algorithm (BC2) slightly improved the dry
spell length distribution compared to BC1 (Figure 8;
BC2, >0 mm). Increasing the threshold did not improve
dry spell length (Figure 8; BC2, >5 mm).

And this all boils down to the research question
of: Does improving time structure of bias-corrected
GCM rainfall effectively improve yield simulations?
Table VIII suggests that calibrating thresholds could not
correct dry spell length bias. But there is evidence
that BC itself, and the improvements made with the
GCM BC method (BC2) could correct some of the
systematic bias in dry spell lengths, however, this was
not enough. The improvements in simulated yields using
bias-corrected daily GCM rainfall are a compounded
effect of corrected rainfall frequency and intensity (and
hence total), including the slight nudge to the bias
of dry spell lengths especially during flowering stage.
Figure 9 shows the improvements in seasonal rainfall
(October–December) after BC.

But distributing better the bias-corrected number of wet
days within a calendar month using a hybrid-order (i.e.
first-, when yesterday was wet, and second-order, when
yesterday was dry) Markov chain rainfall occurrence
model could lead to a more realistic daily rainfall dis-
tribution, including simulations of dry spells (Figure 8).
Notice that even with the case of BC2-DisAg1 (>0 mm;
one GCM member, 24 realizations) the generated daily

Table VIII. Summary of dry spell length (days) statistics of
bias-corrected daily GCM rainfall, grid cell 5 (15 Novem-

ber–31 December).

Thresholds (x̃I,obs) Mean Std. Dev. c.v. Std. dev. of mean
across ensemble

Uncorrected
– 9.82 10.24 1.04 1.24

Observed
– 4.05 4.18 1.03 –

BC1
>0 mm 7.05 7.53 1.07 1.05
>1 mm 7.20 7.64 1.06 0.85
>3 mm 9.10 9.65 1.06 0.91
>5 mm 11.01 11.33 1.03 0.91
BC2
>0 mm 6.50 6.99 1.07 0.86
>1 mm 6.97 7.36 1.06 0.84
>3 mm 8.81 9.48 1.08 1.04
>5 mm 10.93 11.46 1.05 0.86
BC1-DisAg2
>0 mm 3.99 4.40 1.10 0.35
>1 mm 4.53 4.78 1.05 0.29
>3 mm 5.78 6.18 1.07 0.40
>5 mm 6.64 7.32 1.10 0.51
BC2-DisAg2
>0 mm 3.85 4.25 1.10 0.22
>1 mm 4.33 4.54 1.05 0.37
>3 mm 5.37 5.88 1.09 0.43
>5 mm 6.47 7.12 1.10 0.49

≤1 mm is equivalent to dry day.

Figure 9. Seasonal rainfall characteristics (October-December) after
bias correction, grid cell 5 (BC2, >0 mm threshold). This figure is

available in colour online at wileyonlinelibrary.com/journal/joc

rainfall already matched the dry spell length distribution
of the station rainfall. There was only a slight over-
prediction of the tail of the dry spell distribution (i.e.
more longer dry spells from individual realization). When
using the averaged ensemble members’ corrected rain-
fall frequency (BC2-DisAg2, >0 mm) to condition the
weather generator, this led to a better fit of the simulated
dry spell length distribution. Similar results were obtained
from BC1-DisAg runs, thus it is not shown here. The only
difference is that, using individual member’s information
alone (BC1-DisAg1) over-predicted the longer dry spells
more than BC1-DisAg2. Dry spell length distributions
from the multi-grid cell analysis were mostly similar to
BC2-DisAg2 results using a single grid cell. As men-
tioned earlier, this could be an artifact of the inverse
distance weighting method used to summarize multi-grid
cell information.

Based on these results, we suggest that the improve-
ments made in the predicted yields, from BC to BC-
DisAg (Tables II, IV and V), could be attributed to
the better time structure of the generated daily rainfall
obtained from the bias-corrected daily GCM informa-
tion. This more realistic time structure corrected the bias
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Figure 10. Sample daily rainfall data, (October-December 1995) before and after bias correction, stochastic disaggregation; grid cell 5. This
figure is available in colour online at wileyonlinelibrary.com/journal/joc

in dry spell lengths, thus reducing the mean bias and
eliminated most of the systematic errors in the predicted
yields (Tables IV and V). Figure 10 shows a sample of
bias corrected daily GCM rainfall (October–December,
1995) and how BC-DisAg distributed the number of rain-
fall events using the bias-corrected GCM information
(>0 mm threshold). Table VIII also shows the dry spell
length statistics with BC-DisAg using various threshold
levels. Until >1 mm threshold, the corrected mean dry
spell length approximates the observed. Beyond that, we
observed a significant deviation but this is more pro-
nounced with BC alone (Figure 8, BC-DisAg, higher
thresholds).

4. Summary and conclusions

We present a methodology for eliciting useful information
from daily GCM rainfall. The BC of daily GCM rainfall
can improve crop yield prediction compared to no cor-
rection, although the predicted yields are still negatively
biased. This improvement in yield simulations was asso-
ciated with better rainfall frequency, intensity and total of
the corrected GCM rainfall. However, deterministic BC
cannot correct the time structure of daily GCM rainfall,
although it was shown that rainfall frequency correction
could slightly improve dry spell length distributions.

Calibrating thresholds on GCM BC was not successful
to improve the time structure of GCM rainfall. In fact,
as we increased the observed threshold value delineating
a wet day, we also decreased the number of wet days,
contributing more to longer dry spells in the resulting
daily GCM rainfall. Threshold calibration also tends to
shift the rainfall intensity distribution to the right.

Coupling GCM BC with stochastic disaggregation
(BC-DisAg) was more successful for simulating better
dry spell length distributions from the corrected daily
GCM rainfall information. Using monthly series of bias-
corrected GCM rainfall frequency to adjust transition
probabilities of the hybrid-order Markov chain rainfall
occurrence model corrected the dry spell length bias
adequately. This correction of time structure removed
most of the mean bias error in predicted yields, but
not the spread of the yield distribution. Combining
bias-corrected GCM rainfall frequency and totals for
stochastic disaggregation improved both the mean of
predicted yield distribution and its variance.

Furthermore, the improvements made to the GCM
BC method accounting for over- and under-prediction
of rainfall frequency, and the ‘nugget effect’ correction
for truncating empirical distributions, resulted to better
GCM rainfall frequency correction and in the correc-
tion of dry spell lengths when coupled with stochastic
disaggregation. We did not get better information from
using multiple grid cells because the grid cell nearest
to the agricultural experimental station dominated the
solutions. Using more robust aggregation methods for
summarizing information better for the multi-grid cell
case (e.g. optimized weighting of grid cell information
(not based on distance alone), Model Output Statistics
(MOS) correction, etc.) may circumvent the caveat of
distance-weighted method.
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Giorgetta M, Schiese U, Schulzweida U. 1996. The atmospheric
general circulation model ECHAM-4: model description and
simulation of present-day climate. Report No. 218, Max Planck
Institute for Meteorology. Hamburg.

Schmidli J, Frei C, Vidale PL. 2006. Downscaling from GCM
precipitation: a benchmark for dynamical and statistical downscaling
methods. International Journal of Climatology 26: 679–689.

Semenov MA, Doblas-Reyes FJ. 2007. Utility of dynamical seasonal
forecasts in predicting crop yield. Climate Research 34: 71–81.

Sharma D, Gupta AD, Babel MS. 2007. Spatial disaggregation of bias-
corrected GCM precipitation for improved hydrologic simulation:
Ping River Basin, Thailand. Hydrology and Earth System Sciences
11: 1373–1390.

Stern RD, Coe R. 1984. A model fitting analysis of daily rainfall data.
Journal of Royal Statistical Society A 147: 1–34.

Tsuji GT, Uehara G, Salas S. (eds). 1994. DSSATv3.0, Vol. 3.
University of Hawaii: Honolulu, Hawaii, p. 286.

Wilks DS. 1995. Statistical Methods in the Atmospheric Sciences,
Academic Press: San Diego.

Wilks DS. 1999. Interannual variability and extreme-value character-
istics of several stochastic daily precipitation models. Agricultural
and Forest Meteorology 93: 153–169.

Wilks DS, Wilby RL. 1999. The weather generation game: a review
of stochastic weather models. Progress in Physical Geography 23:
329–357.

Willmott CJ. 1982. Some comments on the evaluation of model
performance. Bulletin of the American Meteorological Society 63:
1309–1313.

Woolhiser DA, Roldán J. 1982. Stochastic daily precipitation models.
2. A comparison of distributions of amounts. Water Resources
Research 18: 1461–1468.

Copyright  2010 Royal Meteorological Society Int. J. Climatol. (2010)




