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Abstract: To produce meaningful predictions for water resources assessments, we need to be able to 
correctly model climate variability on a range of time scales. Inability to represent low-frequency variability 
in precipitation and streamflow leads to a poor simulation of droughts, and can result in biased estimates of 
the security of water resources systems. This is particularly important in regions, such as Australia, where 
climate teleconnections lead to variability at interannual and interdecadal scales. The impacts of climate 
change on this variability are important to consider. 

The precipitation outputs of General Circulation Models (GCMs) are biased compared to observations at a 
range of time scales. At the daily scale, rainfall occurrence is poorly modelled with rainfall occurring too 
often, with too low intensities. At monthly and annual scales, the distributions of rainfall amounts can be 
biased, in some cases over-predicting rainfall amounts and in others, especially in coastal areas, under-
predicting rainfall totals. Interannual variability is also poorly modelled. We demonstrate the extent of this 
bias by comparing the precipitation from the CSIRO Mk3.5 model to observed data over Australia. 

We propose a framework to address and correct for these weaknesses in the GCM outputs. The model 
involves nesting the GCM simulations into monthly and annual time series of observed data, such that 
monthly and annual means, variances and lag correlations are appropriately simulated. 

Daily precipitation outputs from the CSIRO 
Mk3.5 model are corrected using the above 
model. The nesting model (NBC) is also 
compared to a simple monthly correction 
(MBC), and is found to provide better 
performance in terms of prediction error at 
annual and interannual time scales. At 
monthly time scales, the MBC gives 
slightly better predictions. The root mean 
square errors of the predictions compared to 
the observed Bureau of Meteorology data 
are presented in Table 1 for a range of 
statistics at different time scales. This data 
is presented for the validation period of 
1951 to 2000. 

The results of the models are also used to assess the difference in drought predictions using the Standardised 
Precipitation Index (SPI). Predictions of the SPI are compared for the raw GCM precipitation and the bias 
corrected outputs. The final three rows of Table 1 present the results of this analysis for the period 1951 to 
2000, showing the superior performance of the NBC methodology. For future climate projections, using the 
SRESA2 scenario for 2080, it is found that drought frequencies are overestimated when using the raw GCM 
precipitation outputs. Overall the study demonstrates that bias correction with nesting at multiple time scales 
can address some of the weaknesses of GCM precipitation fields. 

Keywords: Climate change, bias correction, precipitation, general circulation model (GCM) 

Table 1. Comparison of raw and bias corrected (MBC and 
NBC) prediction errors for key statistics. 

Statistic 
Raw GCM 

RMSE 
MBC 
RMSE 

NBC 
RMSE 

Annual Mean 214.0 48.8 47.4
Annual Std. Dev. 84.6 53.9 39.2
Annual Lag 1 Cor. 0.20 0.20 0.20
Monthly Mean 26.5 11.3 11.8
Monthly Std. Dev. 16.7 16.8 18.2
2 Year Minimum Sum 0.33 0.25 0.16
5 Year Minimum Sum 0.52 0.44 0.37
5th Percentile 1 Year SPI 1.28 0.45 0.29
5th Percentile 2 Year SPI 1.63 1.01 0.60
5th Percentile 5 Year SPI 2.08 1.31 0.84
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1. INTRODUCTION 

The impacts of climate change on water resources systems are of concern to a range of stakeholders from 
governments to water utilities, agriculturalists to urban consumers. Impact assessments seek to answer 
questions regarding future risks to water resources systems, particularly at a regional or watershed scale. To 
produce meaningful predictions for these assessments, we need to be able to correctly model climate 
variability on a range of time scales. But there are problems with general circulation model (GCM) rainfall 
outputs on all temporal scales. 

Firstly, although GCMs are expected to provide more reliable results at seasonal to annual time frames, there 
can still be significant biases in the annual and monthly statistics of precipitation when compared to 
observations. Figure 1(a) shows the observed annual mean rainfall and Figure 1(b) the bias in the annual 
means from the CSIRO Mk3.5 GCM for Australia for 1961 to 2000. We see that over the relatively dry, flat 
interior of Australia, the model overpredicts the annual rainfall by up to 200% in some locations. In coastal 
areas, annual average rainfall is underestimated. In Figure 1(c) we present a comparison of the ratio of the 
projected changes in annual average rainfall by 2080 to the bias in the annual average rainfall for the 20th 
century. Areas shown in light grey are those where the ratio of the change is larger than the bias, medium 
grey shows areas where the change and bias are of the same order of magnitude. Areas shown in black 
indicate where the bias is much larger than the projected changes for the SRESA2 scenario.  

Secondly, at a finer time scale it is well known that there are problems in the modelling of daily rainfall both 
in rainfall occurrence and rainfall intensity. Sun et al. (2006) found that GCMs tend to overestimate the 
number of days with rainfall less than 10 mm, whilst underestimating more intense events, with the errors 
cancelling each other out to give seasonal totals that can be reasonably realistic, although this is very model 
dependent (Randall et al., 2007). Other problems related to the modelling of daily rainfalls include preserving 
observed dry and wet spell lengths (Ines and Hansen, 2006).  

Thirdly, interannual variability of rainfall is dependent on regional and global climate teleconnections, and 
the nature and extent of this variability changes around the world. In Australia, major climate teleconnections 
that affect interannual rainfall variability include the El Nino Southern Oscillation (ENSO), the Interdecadal 
Pacific Oscillation (IPO), the Southern Annular Mode (SAM) and the Indian Ocean Dipole (IOD). Inability 
to represent low-frequency variability in precipitation and flow, results in a poor simulation of droughts and 
biased estimates of the security offered by existing water resources systems in a warmer climate. The 
modelling of ENSO in GCMs has been assessed in many studies. ArchutaRao and Sperber (2006)  
investigated how well ENSO was modelled in the GCMs submitted to the 3rd Coupled Model 
Intercomparison Project (CMIP3) for the IPCC Fourth Assessment Report. They attributed overall 
improvements since one of the earliest assessments of ENSO modelling (Neelin et al., 1992) to improved 
coupled model formulations. However, they note “the importance of reducing systematic model error” 
(AchutaRao and Sperber, 2006) to ensure the accuracy of precipitation climatologies. 

Despite the problems with GCM rainfall outputs, impact assessment studies still require future projections of 
rainfall for a range of applications. Stochastic and dynamic downscaling have both been used in many studies 
in an attempt to provide better future rainfall projections. However both stochastic and dynamic downscaling 
studies tend to be highly specialized and hence are developed for a particular region or specific question. We 

110 120 130 140 150

-5
0

-4
0

-3
0

-2
0

-1
0

 200  300 

 300 

 400  500 

 600 

 800 

 1
00

0 

(a)

0 200 300 400 500 600 800 1000120016002000

110 120 130 140 150

-5
0

-4
0

-3
0

-2
0

-1
0

 -100 

 100 

 100  300 

 300 

(b)

-1100-900-700-500-300-100 100 300 500 700 900 1200

110 120 130 140 150

-5
0

-4
0

-3
0

-2
0

-1
0

(c)

<50% >50% >100%<50% >50% >100%

Figure 1. Biases in mean annual GCM rainfall outputs  a) observed mean annual rainfall (mm/yr)  for 1901 
to 2000, b) mean annual bias (observed – modelled) in mean annual rainfall (mm/yr), c) ratio of changes 

projected for SRESA2 for 2061 to 2000 compared to bias for 1901 to 2000. 

3936



Johnson and Sharma, Assessing Future Droughts in Australia - A Nesting Model to Correct for Long Term 
Persistence in General Circulation Model Precipitation Simulations 

are interested in whether simple methods, which can quickly and easily be applied over different regions, 
could be used to improve some of the shortcomings of GCM rainfall. 

The remainder of this paper is organised as follows. In Section 2, we examine techniques that have been 
proposed in the literature to bias correct GCM rainfall. Section 3 describes our proposed bias correction 
technique. Section 4 presents the results of the model applied to 20th century GCM simulations over 
Australia and future drought projections, and Section 5 presents the conclusions. 

2. BIAS CORRECTION FOR GCM OUTPUTS 

Bias correction techniques have been developed to allow the use of GCM outputs directly, whilst accepting 
that there are problems in GCM modelling of rainfall. Combined with a spatial disaggregation step, they can 
provide inputs at a scale that is suitable for hydrologic modelling. Without spatial disaggregation, bias 
correction can be used to make regional assessments of water availability. 

Wood et al. (2004) compared three simple statistical downscaling approaches, including linear interpolation, 
spatial disaggregation and a combined bias correction and spatial disaggregation model. The bias correction 
method used quantile mapping to correct the monthly model climatology to the observed climatology. The 
bias correction with spatial disaggregation was the only method to “produce hydrologically plausible results” 
(Wood et al., 2004). Areas suggested by Wood et al (2004) for future work included modelling of interannual 
variability and sub-grid spatial variability.  

Maurer and Hidalgo (2008) compared the monthly quantile mapping of Wood et al (2004) to a constructed 
analogue downscaling approach. They commented that the advantage of the quantile mapping is that it 
“allows the mean and variability of a GCM to evolve in accordance with the GCM simulation, while 
matching all statistical moments between the GCM and observations for the base period” (Maurer and 
Hidalgo, 2008).  

Ines and Hansen (2006) also applied the quantile mapping technique, this time to daily rainfalls instead of 
monthly totals. The model was more successful than multiplicative scaling of monthly data at predicting 
monthly means, and daily intensity and occurrence. However, they found that crop yields were generally 
under-predicted using the bias corrected rainfalls which they attributed to the modelled wet and dry spell 
lengths in the raw GCM outputs, which were not changed by the bias correction techniques. 

3. NESTING METHODOLOGY 

The bias correction methods described in the preceding section focused on monthly or daily statistics of 
rainfall. However, longer term variations in rainfall also need to be well modelled to enable accurate 
estimates of drought and water resources availability. In this study, we propose a method that addresses the 
missing interannual variability by using statistics from the observed rainfall at two time scales – monthly and 
annual, rather than just one time scale. 

The issue of correctly modelling interannual variability in precipitation has been addressed by researchers 
looking at stochastic rainfall generation models. Srikanthan (2009) describes a nested two part model: daily, 
stochastically generated, rainfalls are modified by nesting in monthly and annual data to ensure that the daily, 
monthly and annual statistics of the observed rainfall are reproduced. A nesting procedure was also used by 
Wang and Nathan (2007), although in this case the nesting of the daily generated rainfall sequences was only 
carried out at the monthly level. 

To adapt the nesting model to bias correction, we use the daily GCM outputs instead of generating daily 
rainfall. The daily GCM sequences are then modified by nesting in the observed monthly and annual time 
series. The process for the nesting is now described. We use the 0.25 degree gridded rainfall data product 
from the Australia Bureau of Meteorology (BOM), which has data from 1900 onwards. We split the observed 
data into two periods, a calibration period to derive the model parameters of 1901 to 1950, and a validation 
period of 1951 to 2000. The method is applied to daily precipitation from the CSIRO Mk3.5 model. 

The observed and modeled rainfalls are aggregated to monthly data and parameters for the nesting model are 
calculated for each month of the year, using the all the years in the calibration period. For example, all 
January rainfalls from 1901 to 1950 are collated and the mean and standard deviation of these 50 values 
calculated. The time series of raw GCM monthly rainfalls (y) is then standarized to create y′ for each month 
in the time series by removing the model monthly mean and standard deviation for that month (i) as shown in 
(1). 
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We then remove the monthly lag one autocorrelations (ρmod,i) that are present in the model results from the 
standardized time series and instead apply the observed monthly lag one autocorrelations (ρobs,i)  to create y" 
as shown. Monthly lag one autocorrelations are defined as the correlation of the time series of the values 
from month i with the time series of month i-1. For example, the monthly autocorrelation for February is 
calculated as the correlation of the February values from 1901 to 1950, with the time series of January values 
from 1901 to 1950. 















−

′−′
−+′′×=′′ −

− 2

1,2
.1.

1
1

mod,i

iimodi
iobsiiobsi

yy
yy

ρ

ρ
ρρ  (2) 

We now rescale the observed means and standard deviations to create the nested time series (y′′′) at the 
monthly level. 

, ,i i obs i obs iy y σ μ′′′ ′′= × +  (3) 

The nested monthly values (y′′′) are then aggregated to the annual scale (z). The monthly process is repeated 
for the annual time step, with the difference that there is no need to allow for seasonality, as is done in the 
monthly model by calculating the model parameters separately for each month. 

Beginning with the annual time series (z), we modify by standardising with the mean and standard deviation 
of the annual rainfall, such that for year j, where j is between 1901 to 1950 for the calibration period: 

mod
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j

z
z

σ
μ−

=′  (4) 

We then remove any modelled lag one autocorrelations and apply the observed lag one autocorrelations. 
Yearly lag one autocorrelations are calculated as the correlation between the rainfall in one year and the next. 
As the observed lag one autocorrelations are generally quite small, this step does not generally lead to large 
changes compared to the standardised annual series (z′). 
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The last step is to create the final annual time series by rescaling with the observed annual means and 
standard deviations. 

j j obs obsz z σ μ′′′ ′′= × +   (6) 

We now have four time series that we will use to correct the daily GCM time series (x), the uncorrected 
monthly time series (y), the nested monthly time series (y′′′), the aggregated yearly time series (z) and the 
nested annual time series (z′′′). From Srikanthan (2009), the corrections at the monthly and annual level can 
be applied to the daily time series at the same time to create a one step correction as follows, where for day t 
which is in month m in year n, the weighting factor is the ratio of the monthly corrected rainfall to the raw 
GCM rainfall for month m, multiplied by the ratio of the yearly corrected rainfall to the aggregated GCM 
rainfall for year n. 

ˆ m n
t t

m n

y z
x x

y z
   ′′′ ′′′

= × ×   
   

 (7) 

For future periods, we use the observed and modelled statistics for the observation period to adjust the future 
model results, and thereby assuming that the biases in the model for observed period remain the same in the 
future. In more detail, the future bias correction steps with equations (1), (2), (4) and (5) use the monthly and 
annual statistics from the GCM for the current climate and equations (3) and (6) use the observed statistics as 
before. The form of equation (7) is unchanged for the future period. We use the SRESA2 scenario, with data 
from the period 2061 to 2100. Results are presented for the average of this period, nominally termed 2080. 

3938



Johnson and Sharma, Assessing Future Droughts in Australia - A Nesting Model to Correct for Long Term 
Persistence in General Circulation Model Precipitation Simulations 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Observed 2 Year Minimum Standardised Rainfall

M
od

el
le

d 
2 

Y
ea

r M
in

im
um

 S
ta

nd
ar

di
se

d 
R

ai
nf

al
l

Raw GCM
MBC
NBC

(a)

0 1 2 3 4 5

0
1

2
3

4
5

Observed 5 Year Minimum Standardised Rainfall

M
od

el
le

d 
5 

Y
ea

r M
in

im
um

 S
ta

nd
ar

di
se

d 
R

ai
nf

al
l

Raw GCM
MBC
NBC

(b)

 

Figure 3. a) 2 year and b) 5 year minimum rainfall totals, standardised by
mean annual rainfall 

4. RESULTS 

4.1. Modelling of Seasonal and Annual Rainfall Statistics 

We compare the results of the nesting bias correction to those from a bias correction method that corrects just  
the monthly means and standard deviations. In the following text, the monthly mean and standard deviation 
correction is term the Monthly Bias Correction (MBC), whilst the nested algorithm outlined in Section 3 is 
term the Nested Bias Correction (NBC). Figure 2 shows the bias corrected results for the MBC and NBC 
methods at the annual level for the validation period of 1951 to 2000. In Figures 2 to 4, each individual point 
on the graph represents the respective annual statistic for each grid cell (i.e. each location where the bias 
correction has been applied). Both methods give good improvements for the mean annual rainfall, whilst the 
NBC shows improvement in the annual standard deviations and lag one autocorrelations compared to both 
the raw GCM outputs and the MBC. This demonstrates that improving the modelling of mean rainfall is not 
enough to correct model rainfall variability. The lag one autocorrelations do not show as good improvement 
as the means and standard deviations. This is because the autocorrelations of the observed data are not as 
similar as the other statistics between the calibration and validation periods. Despite this, by bias correcting 
with the nested model, which includes correcting the lag one autocorrelations, we model interannual 
variability much better. This is demonstrated in the following section. 

4.2. Modelling of Interannual Rainfall Variability 

Looking at the statistics of interannual variability, we firstly consider the 2 and 5 year minimum rainfall 
totals. These statistics are standardised by the mean annual rainfall to allow comparisons of the statistics 
across Australia. Figure 3 presents plots of modelled vs observed for the validation period of 1961-2000. By 
correcting the GCM outputs at the 
annual level for the lag one 
autocorrelation, we improve the 
modelling of these minimum 
rainfall totals. This is important for 
ensuring that drought and flood 
periods are modelled correctly, 
particularly if the GCM outputs are 
being considered for analysis of 
dam capacities. The results from 
both Figure 2 and Figure 3 are 
summarised in Table 1, which 
presents the root mean square 
errors (RMSE) of the raw GCM 
outputs compared to observations 
and also the results from applying 
the MBC and NBC methods. 
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Figure 2: Modelled vs observed statistics of annual rainfall for raw GCM outputs and MBC and NBC bias 
corrected models for a) annual mean, b) annual standard deviation and c) annual lag one autocorrelation.  
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4.3. Modelling of Current and Future Drought Frequencies 

We now also present the results from an application of the bias corrected outputs for drought analysis using 
the Standardised Precipitation Index (SPI). The SPI was developed to provide a simple calculation of drought 
(Guttman, 1999). A time series of precipitation is fitted to a standard normal distribution and the quantiles of 
the fitted distribution are used to assess the severity of the drought. Negative values of the index occur during 
dry periods, with positive values indicating wet conditions. The SPI can be calculated for varying intervals; 
intervals of 1, 2 and 5 years are assessed in this study. 

We undertake two calculations using the SPI. The first compares the modelling of drought frequencies across 
Australia from the raw and bias corrected GCM outputs for the validation period of 1951 to 2000. Figure 4 
shows scatter plots of the estimated 5th percentile of the SPI at each grid cell compared to the observed data 
for SPI values calculated for the three time periods. The 5th percentile has previously been defined as severe 
drought by Burke and Brown (2008). 

Both bias correction methods improve the modelling of severe drought. The NBC is found to provide the best 
estimate of the magnitude of observed severe drought at each location. Table 1 presents the prediction error 
for each of the scenarios in Figure 4. For both bias correction methods, performance is best when we 
calculate the SPI at a one year interval and decreases for increasing SPI intervals. This is to be expected as 
our nesting model only corrects for lag 
one autocorrelations. We would require a 
measure of longer term persistence in our 
model to capture the variations of drought 
over longer periods. This is an area of 
ongoing research. 

With confidence that the nested bias 
correction method can improve the 
modelling of droughts, we move to 
assessing the frequency of future severe 
droughts. To do this, we use the observed 
5th percentile SPI value to define a severe 
drought threshold at each grid cell. We 
then use the future GCM projections (both 
raw and bias corrected) to see how 
frequently we expect severe droughts to 
occur in the future (Burke and Brown, 
2008). 

The results of this analysis highlight the 
impact of incorrectly modelling 
interannual variability in GCM outputs. 
Figure 5 shows the predictions of drought 
frequency for the future across Australia. 

The mean frequency of severe droughts 
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Figure 4. Modelled vs observed 5th percentile SPI values for a) 1 year SPI, b) 2 year SPI and c) 5 year SPI 
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Figure 5. Maps of severe drought frequency in 2080 for a) raw 
GCM, b) monthly and c) nested bias correction. A comparison 
of the distribution of values for the three cases is shown in d).
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occurring in the future using the raw GCM outputs is approximately 20% - meaning that in any one year, 
20% of the country is likely to be suffering from a severe drought. If we only bias correct the GCM outputs 
using a monthly scaling, then the pattern of severe droughts is quite similar, and the mean occurrence 
frequency is approximately 18%. On the other hand, using the nesting bias correction technique, we find that 
severe droughts are less likely than it would seem from the raw GCM outputs. The mean occurrence 
frequency is 15% in this case, and we can see the difference in the spatial patterns of severe drought 
frequency, with decreases in occurrence frequency particularly in Western Australia. It is important to note 
that we are still seeing increases in the frequency of severe droughts over 90% of the country. Also, if we 
assessed drought using a combined precipitation and temperature based index (e.g. the Palmer Drought 
Severity Index), then with the combination of increasing temperatures we would expect droughts to occur 
even more frequently. Further research is being undertaken whether these findings are specific to the CSIRO 
GCM or they apply to other GCMs as well. 

5. CONCLUSIONS 

This paper has presented the details of a nesting bias correction methodology that can be applied to GCM 
rainfall outputs to address known weaknesses in the modelling of monthly, annual and interannual statistics 
of rainfall. The nested bias correction model performs better than simple monthly means corrections, which 
have often been used in climate change impact assessments. Future work will involve extensions to the 
model to account for longer term persistence. It is also proposed to apply the nesting model to multiple 
GCMs. 
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