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ABSTRACT

Potential predictability of summer mean precipitation over the globe is investigated using data obtained from
seasonal prediction experiments for 21 yr from 1979 to 1999 using the Korea Meteorological Administration–
Seoul National University (KMA–SNU) seasonal prediction system. This experiment is a part of the Climate
Variability and Predictability Program (CLIVAR) Seasonal Model Intercomparison Project II (SMIP II). The
observed SSTs are used for the external boundary condition of the model integration; thus, the present study
assesses the upper limit of predictability of the seasonal prediction system. The analysis shows that the tropical
precipitation is largely controlled by the given SST condition and is thus predictable, particularly in the ENSO
region. But the extratropical precipitation is less predictable due to the large contribution of the internal at-
mospheric processes to the seasonal mean. The systematic error of the ensemble mean prediction is particularly
large in the subtropical western Pacific, where the air–sea interaction is active and thus the two-tier approach
of the present prediction experiment is not appropriate for correct predictions in the region.

The statistical postprocessing method based on singular value decomposition corrects a large part of the
systematic errors over the globe. In particular, about two-thirds of the total errors in the western Pacific are
corrected by the postprocessing method. As a result, the potential predictability of the summer-mean precipitation
is greatly enhanced over most of the globe by the statistical correction method; the 21-yr-averaged pattern-
correlation value between the predictions and their observed counterparts is changed from 0.31 before the
correction to 0.48 after the correction for the global domain and from 0.04 before the correction to 0.26 after
the correction for the Asian monsoon and the western Pacific region.

1. Introduction

Water resources in the Asian monsoon region depend
largely on the precipitation during the summer rainy
season (Ramage 1971; Terjung et al. 1989; Wang and
LinHo 2002). Thus, the prediction of summer monsoon
precipitation has been an important issue in Asian mon-
soon countries, and it has a long history, dating back
to the 1870s (Normand 1953). In recent years, several
investigators have attempted monsoon predictions using
a state-of-art dynamical tool, namely, general circulation
models (GCMs; Sperber and Palmer 1996; Goswami
1998; Sperber et al. 2001; Kang et al. 2002a,b). The
GCM studies, however, show the limitations of dynam-
ical monsoon prediction. It is known that the present
skill of dynamical seasonal prediction is limited by sev-
eral factors, mainly inherent nonlinear characteristics of

Corresponding author address: Prof. In-Sik Kang, Climate En-
vironment System Research Center, Seoul National University, Kan-
wak-Gu, Seoul 151-742, South Korea.
E-mail: kang@climate.snu.ac.kr

the atmosphere and the inaccurate performance of cur-
rent GCMs. In the present study, we investigate what
portion of the predictability is affected by the atmo-
spheric internal and external processes and develop a
statistical tool for correcting the GCM predictions.

Regional climate anomalies can arise from many
sources of external forcings, such as ocean and land
anomalies, and internal processes inherent in the at-
mosphere. The internal processes of the atmosphere are
mainly associated with atmospheric instability mecha-
nisms with shorter time scales and involve stochastic
nonlinear processes. Such internal processes are known
to have a predictability of only a few days (Lorenz
1960). Thus, the seasonal predictability is very much
limited by the atmospheric internal processes. On the
other hand, the slowly varying external forcings, such
as SST anomalies, produce the atmospheric responses
that might result in a predictable signal of the seasonal
anomalies. The ratio of external to internal components
of the seasonal anomalies is an important parameter for
the potential predictability. Recently potential predict-
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ability has been estimated using an ensemble of climate
simulations, where all members are forced by the same
observed SST but are started from slightly different at-
mospheric initial conditions (Dix and Hunt 1995; Kumar
and Hoerling 1995; Stern and Miyakoda 1995; Zwiers
1996). The basic idea of this approach is that the sen-
sitivity to the initial conditions can be used to quantify
the random (internal) component of the seasonal anom-
alies, whereas the relative similarity between ensemble
members can be considered as the atmospheric response
to the external forcing. Thus, the ensemble mean can
be considered to be the external component of the pre-
diction forced by the SST forcing, and the deviation
from the ensemble mean to be the stochastic internal
component of the prediction.

In the present study, the potential predictability is
measured by the ratio between the external and internal
components of the seasonal prediction using a standard
statistical tool for this kind of problem: analysis of var-
iance (ANOVA), which is detailed in the regional study
of Rowell et al. (1995) and the global study of Rowell
(1998). The data utilized are from the Seasonal Model
Intercomparison Project II (SMIP II) initiated by the
Climate Variability and Predictability Program (CLI-
VAR)/Working Group of Seasonal to Interannual Pre-
diction (WGSIP). The purpose of SMIP II is to evaluate
the current dynamical seasonal prediction systems in a
simplified framework, where the lower boundary con-
ditions are prescribed with the observed SSTs for the
20-yr period of 1979–98. Therefore, the uncertainty of
SST prediction is avoided in SMIP II, and this study
provides the upper limit of the potential predictability.

The low skill of the dynamical seasonal prediction is
due not only to the atmospheric internal processes but
also to the model’s inability to produce the atmospheric
responses to external forcings, particularly the SST
anomalies. This model bias in the external component
appears in a systematic way in both the climatological
mean and the anomaly component. The mean bias can
be corrected by subtracting the prediction climatology
from the seasonal prediction of each individual year.
The systematic error of the anomaly component is re-
lated to the incorrect performance of the GCM in sim-
ulating the anomalies, predominantly forced by the SST
anomalies. It is noted that a slight shift of the spatial
pattern of variability in the model can result in a sub-
stantial drop in skill scores when the skill is measured
based on the performance at individual grid points. A
major part of this systematic error can be corrected by
using a statistical relationship between the prediction
and observed anomalies, the so-called coupled pattern
technique (Graham et al. 1994). The most commonly
used methodologies of the coupled pattern technique are
based on singular value decomposition analysis (SVDA)
and canonical correlation analysis (CCA). Ward and Na-
varra (1997) applied SVDA to simultaneous fields of
GCM-simulated precipitation and observed precipita-
tion to correct the errors in the model response to SST

forcing. CCA has been widely used as a statistical sea-
sonal prediction system (Barnett and Preisendorfer
1987; Barnston 1994). A recent study by Feddersen et
al. (1999) demonstrated that the postprocessed results
are not sensitive to the choice among the methods based
on the CCA, SVD, and EOF decompositions. In the
present study, the postprocessing procedure of the error
correction is developed based on the SVD analysis,
which is similar to the method used by Feddersen et al.
(1999), and the potential predictability of the seasonal
prediction is assessed after applying the correction pro-
cedure. By comparing the potential predictabilities with
and without the correction, we can evaluate how the
postprocessing of the error correction enhances the pre-
dictability in the regions of interest.

Section 2 describes the seasonal prediction system,
seasonal prediction experiments, and the data utilized
in the present study. In section 3, the summer-mean
climatology of the predicted precipitation and the in-
terannual variability of the summer mean are compared
to the observed counterparts. The interannual variance
of the predicted precipitation is decomposed to the ex-
ternal component forced by SST anomalies and the in-
ternal component of the model. Section 4 shows the
model skill of the seasonal-mean precipitation without
correction. Section 5 describes the postprocessing meth-
od for systematic error correction and the verification
method of the seasonal prediction. The potential pre-
dictability of the seasonal prediction after correction is
assessed by applying the postprocessing methods to the
prediction data. A summary and concluding remarks are
given in section 6.

2. Data

The data utilized in the present study are produced by
the Korea Meteorological Administration–Seoul National
University (KMA–SNU) seasonal prediction system as
part of the Seasonal Prediction Model Intercomparison
Project II (SMIP II). The SMIP II was initiated by the
CLIVAR/WGSIP in 2000 as a follow-up program to the
SMIP, which focused on one-season-lead prediction for
four summers and four winters (Kusunoki et al. 2001).
The SMIP II extends the prediction target to two seasons
for all four seasons (winter, spring, summer, autumn) for
the 21 yr from 1979 to 1999, requiring each participating
center to carry out 10 ensemble integrations for 7 months
with observed initial conditions of 0000 and 1200 UTC
24–28 February for spring and summer prediction, 0000
and 1200 UTC 27–31 May for summer and fall predic-
tion, 0000 and 1200 UTC 27–31 August for autumn and
winter prediction, and 0000 and 1200 UTC 26–30 No-
vember for winter and spring prediction. The observed
SSTs are prescribed for the integration. Therefore, the
SMIP II can estimate the upper bound of seasonal pre-
dictability but not the actual predictability. (See the de-
tails of SMIP II online at http://www-pcmdi.llnl.
gov/smip.)
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FIG. 1. Climatological summer-mean precipitation: (a) observation,
(b) model. Contour interval is 2 mm day21.

FIG. 2. Variance of the interannual variation of the summer-mean
precipitation for the 21 yr from 1979 to 1999: (a) observation and
(b) all members of the prediction (10 members 3 21 yr). The contour
interval is 2 mm2 day22 and the dashed line indicates 1 mm2 day22.

The KMA–SNU model is a global spectral model
with a spectral truncation at T63 and it has 21 vertical
levels. The major physical parameterizations adapted in
the model include the relaxed Arakawa–Shubert scheme
for the convection (Moorthi and Suarez 1992), the k-
distribution radiation scheme for the shortwave and
longwave radiation (Nakajima and Tanaka 1986), the
Bonan (1998) scheme for the land surface processes, a
nonlocal planetary boundary layer scheme (Holtslag and
Boville 1993), and an orographic gravity wave drag
parameterization (McFarlane 1987). Kim et al. (1998)
showed that the model is capable of simulating the cli-
matology and interannual variations of global precipi-
tation and circulation statistics reasonably well. The
model performance in simulating the summer monsoon
statistics and the 1997/98 El Niño anomalies compared
to those of the other 10 current GCMs that participated
in the CLIVAR/Monsoon GCM Intercomparison Project
can be found in Kang et al. (2002a,b).

The present study focuses on the predictability of
seasonal-mean rainfall for boreal summer. For brevity,
hereafter ‘‘boreal summer’’ is abbreviated to ‘‘summer.’’
The prediction data utilized consist of 10 members of
summer-mean precipitation for the 21 summers of
1979–99. The horizontal interval of the data converted
is 2.58 in latitude and 2.58 in longitude. The observed
precipitation data utilized are from the Climate Predic-
tion Center (CPC) Merged Analysis of Precipitation
(CMAP) dataset (Xie and Arkin 1997).

3. Climatological mean and interannual variability

The summer-mean climatology of predicted precipi-
tation (Fig. 1b) is compared to the corresponding ob-
served precipitation (Fig. 1a). Figure 1a is based on the
observed summer means for the 21 yr, and Fig. 1b is
obtained by averaging the 210 members of the predic-
tion, 21 summers 3 10 members. The observation
shows that a large amount of precipitation appears in
the Asian monsoon regions of southern and eastern Asia,
the tropical western Pacific, and the intertropical con-
vergence zone along the equatorial Pacific. The ob-
served precipitation pattern is reasonably well simulated
by the model, although some deficiencies are seen in
the simulated field, particularly too much dryness in the
equatorial western Indian Ocean and south of the Phil-
ippines, and the maximum precipitation region in the
western Pacific is shifted to the north by about 58–108.
Also note that the East Asian rainfall belt from eastern
China toward the Korean peninsula is missing in the
prediction field. A similar failure of the prediction ap-
pears off the east coast of North America.

The interannual variability of the summer-mean pre-
cipitation is examined in terms of its variance, the mean
square of the anomalies. The anomaly here is defined
as the deviation of the summer-mean precipitation from
its climatology. Figure 2a shows the variance of the
observed summer-mean precipitation for the 21 yr. The
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FIG. 3. (a) Forced variance of the precipitation based on the en-
semble average of each year. The contour interval is 2 mm2 day22

and the dashed line indicates 1 mm2 day22. (b) Internal variance based
on the deviation of individual members from the ensemble average.
The contour interval is 1 mm2 day22 and the dashed line indicates
0.5 mm2 day22. (c) Ratio of (a) to (b). Contour levels are 1, 2, 4, 8,
and 16 and the dashed line indicates 0.5.

spatial pattern of Fig. 2a is similar to that of Fig. 1a,
indicating that large variability appears in the regions
of large mean precipitation. Figure 2b is the correspond-
ing variance of the prediction, based on all 210-member
predictions for the 21 yr, which will be referred to as
the total variance of the prediction. As in the obser-
vation, the spatial distribution of the simulated variance
appears to be similar to that of the simulated mean. The
simulated variance is larger than that of the observed
in most of the Tropics. The difference between the ob-
served and the simulated may be partly due to the dif-
ference in the number of samples. But, the larger var-
iance of the prediction seems to be related to the larger
summer mean of the prediction compared to the ob-
served, particularly in the Pacific. The northward shift
of the variance center in the prediction field in the north-
ern western Pacific is also seen in the predicted summer
mean.

The total variance ( ) is divided into the external2sTOT

( ) and internal variances [ ; Rowell (1996)]. The2 2s sSST INR

internal variance is estimated by the 21-summer-mean var-
iance of the deviations of the 10 members from the en-
semble mean of each year, which can be expressed as

N n1
2 2s 5 (x 2 x ) , (1)O OINR i j iN(n 2 1) i51 j51

where x is the precipitation, i indicates the individual
year, N 5 21, j is the ensemble member, and n 5 10.
Here, i is the ensemble mean. The external variance isx
obtained by the mean square of the deviation of each
year’s ensemble mean from the climatological mean and
considering the bias correction as used in Rowell
(1996):

1
2 2 2s 5 s 2 s , andSST EN INRn

N1
2 2s 5 (x 2 x ) , (2)OEN iN 2 1 i51

where is the climatological mean of the ensemblex
mean 5 [1/(Nn)] xij. It is noted that the sumN nx S Si51 j51

of the external and internal variances expressed above
is equal to the total variance.

The spatial pattern of the external variance shown in
Fig. 3a is similar to that of the total variance and con-
tributes most of the total variance. The ratio of the ex-
ternal part to the internal part is shown in Fig. 3c. In
most of the tropical regions, the external variance is
much larger than the internal part. In the extratropics,
on the other hand, the internal variance is bigger than
the external variance. This may be due to the insensi-
tivity of the atmosphere to the extratropical SST and
the relatively large stochastic processes of the extra-
tropical atmosphere associated with internal instability
mechanisms. The figure indicates that the tropical rain-
fall is less controlled by the atmospheric internal pro-
cesses and more predictable for a given SST condition
than the extratropical rainfall. On the other hand, the

extratropical rainfall variability is internal and therefore
less predictable.

As seen in Fig. 3c, the tropical rainfall variations are
shown to be mainly controlled by the SST anomalies.
Thus, the tropical rainfall has a large potential predict-
ability, if the model simulates the responses to SST
anomalies reasonably well. But, the model is incomplete
and systematic errors due to model bias are expected in
the ensemble mean prediction. Therefore, the ratio
shown in Fig. 3c shows the upper limit of the predict-
ability. The systematic error is estimated as the differ-
ence between the ensemble mean of the model predic-
tion and the corresponding observation. The variance
of the systematic error is shown in Fig. 4a. It is inter-
esting to note that large errors appear in the regions of
large response to the SST anomaly shown in Fig. 3a,



838 VOLUME 17J O U R N A L O F C L I M A T E

FIG. 4. (a) Variance of the systematic error, the difference between
the ensemble average of the prediction and the corresponding ob-
servation. The contour interval is 2 mm2 day22. (b) Ratio between
the variances of the ensemble mean and the systematic error. Contour
levels are 1, 2, 4, and 8 and the dashed line indicates 0.5.

FIG. 5. Distribution of the correlation coefficient between the ob-
served and the simulated ensemble-mean precipitation at each grid
point. Contour interval is 0.2. Zero line is not drawn.

FIG. 6. Pattern correlation coefficients between the observed and
predicted ensemble-mean precipitations (a) over the globe (shaded
bar) and the ENSO–monsoon region (308S–308N and 408E–808W;
open bar) and (b) over the monsoon region (308S–308N and 408–
1608E; shaded bar) and the ENSO region (308S–308N and 1608E–
808W; open bar). In (a), the pattern correlation coefficients of the
individual ensemble member are marked by crosses.

particularly in the western Pacific. The ratio of the ex-
ternal variance to the error variance is shown in Fig.
4b. If the ratio is bigger than one, the prediction signal
can be considered to be larger than the error. Such re-
gions appear in the central equatorial Pacific, the tropical
Indian Ocean, and near the northeastern coast of South
America.

4. Correlation skill of the prediction without
correction

The prediction skill of the model can be measured by
the anomaly correlation between the predictions and the
corresponding observations for the 21 yr. Figure 5a
shows the spatial distribution of the correlation coeffi-
cient between the ensemble mean and the corresponding
observation. As expected, the regions of large ratio
shown in Fig. 4b coincide with the regions of large
correlation. The figures indicate that the skill of the
model prediction is relatively high only in parts of the
Tropics, particularly in the central and eastern tropical
Pacific, the Indonesian subcontinent, and east of Brazil.
It is also noted that the correlation is negative in the
tropical western Pacific and tropical central Indian
Ocean, where the external response has a large system-

atic error (systematic error larger than the ensemble
mean; Fig. 4c). Therefore, the relatively poor skill in
the western Pacific and Indian Oceans is due to the
model bias, probably due to poor parameterizations of
the physical processes.

The spatial correlation over the globe between the
ensemble mean of predicted summer-mean precipitation
anomalies at each year and the corresponding observed
precipitation anomaly is shown in Fig. 6a with shaded
bars. The spatial correlation for the ENSO–monsoon
region (308S–308N and 408E–808W) is also shown in
Fig. 6a with open bars. The spatial correlation of each
ensemble member is shown with crosses. The global
correlation varies from 0.08 in 1981 to 0.50 in 1987.
The correlation of the ENSO–monsoon region varies
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similarly to that of the globe, indicating that the global
precipitation variability is mainly controlled by the pre-
cipitation variation over the ENSO–monsoon region,
where relatively large precipitation prevails in the sum-
mer. It is also noted that the correlation value is rela-
tively large for both the warm and cold phases of ENSO
with the exception of 1982.

The spatial correlations are also obtained for the mon-
soon (308S–308N, 408–1608E) and ENSO (308S–308N,
1608E–808W) regions, separately, and their year to year
variations are shown in Fig. 6b. The correlation values
for the ENSO region are large (bigger than 0.6) for most
of the El Niño events and relatively large even in normal
years, for example, 1980, 1986, 1990, 1995, and so on.
However, the monsoon precipitation is not well pre-
dicted in most of the summers. It is also noted that the
prediction skill in the monsoon region is typically not
related to the ENSO. The poor predictability is mainly
due to poor performance of the model in the western
Pacific. This poor performance in the western Pacific is
related to the model systematic error as shown in the
previous section, which will be discussed in more detail
in the next section.

5. Prediction skill after correction

a. Error correction and verification methods

A correction procedure of the model bias can be de-
veloped based on the statistical relationship between the
model and observation. The most commonly used meth-
ods developed to date are based on singular value de-
composition (SVD) analysis and canonical correlation
analysis (CCA) of the observation and model output
(Barnstorn and Smith 1996; Ward and Navarra 1997;
Feddersen et al. 1999). In the present study, the error
correction method is developed in terms of leading SVD
modes as described in Feddersen et al. (1999). Before
obtaining a transfer function between two anomaly
fields, EOF analysis is applied to the simulated and
observed anomalies, separately, to reduce the spatial
dimensions. Here the observed and predicted fields are
reconstructed by retaining the leading 10 EOF modes
of each field. After that, the SVD analysis is used to
extract coupled modes between the two anomaly fields.
The systematic errors of the simulated anomaly are cor-
rected by replacing the simulated modes to the corre-
sponding observed modes. The transfer function for the
replacement can be constructed as follows:

P

X(x, t) 5 a Y (t)R (x), (3)O i i i
i51

where X(x, t) is the corrected field, Y(t) is the time
coefficients of the SVD mode for the simulated field,
and R(x) is the projection of SVD singular vector onto
the observed field; i is the mode number, P the total
number of the SVD modes, and a is the correlation
coefficient between the time series of the SVD mode of

prediction and the corresponding SVD time series of
the observation.

Double cross validation (Kaas et al. 1996) is used to
evaluate the skill of the bias-corrected prediction anom-
alies. The relatively short period of record, 21 yr, uti-
lized in the present study may produce overestimated
skill scores by overfitting random variability as indi-
cated by Davis (1976). To control this kind of problem,
SVD analysis is repeatedly applied to data from which
1 yr is excluded and the error correction is made for
that year. In addition, in each step of the cross-validation
procedure, cross-validated expansion coefficients of the
SVD modes are computed in order to select which
modes to include in the bias correction. That is, the
predictive skill of the individual modes is assessed a
priori by determining the correlations between the cross-
validated expansion coefficients. Details of the present
verification procedure can be found in Feddersen et al.
(1999).

It is noted that the adjustment of the prediction toward
the observation based on the SVD leads to a loss of
variability in absolute magnitude; that is, the adjusted
field stays close to the climatology. Thus, it may be
necessary to apply some sort of inflation method to the
adjusted field. The most common method for this type
of inflation is to multiply the adjusted values by the
ratio between the standard deviation of the observations
and that of the adjusted values. In the present study, the
inflation factor is obtained by combining the common
method of inflation and the weighting factor considered
by Feddersen et al. (1999). The weighting factor de-
pends on the magnitude of the local variability of the
adjusted field. This approach leaves grid points of small
variability, which usually have little skill, uninflated,
while concentrating the inflation on more skillful grid
points with large variability. The inflation factor IFk in
a grid point k is defined here as

s sk,obs k,fctIF 5 w , (4)k 1 2s sk,fct max,fct

where sk,obs is the standard deviation of the observation,
sk,fct is that of the bias-corrected simulation anomaly,
smax,fct is the maximum value of sk,fct , and w(x) is an s-
shaped weight function w(x) 5 {1 1 tanh[6.9(x 2
0.5)]}/2, which is close to zero for x 5 0 and close to
one for x 5 1.

b. Predictability after error correction

The impact of the bias correction on the prediction
of the global precipitation is examined in this section.
Before making the correction, we examined how well
the model reproduces the EOF eigenmodes of the pre-
cipitation variability over the globe. Figure 7a shows
the first eigenvector of the observed summer-mean pre-
cipitation, which explains 24.3% of total variance, and
Fig. 7c is the predicted counterpart, explaining 39.0%
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FIG. 7. EOF modes of the observed and simulated ensemble-mean precipitation. (a), (b) The observed first and
second eigenvectors; (c), (d) the simulated counterparts, and (e), (f ) the time series associated with the eigenvectors.
Solid and dashed lines indicate the observed and simulated time series, respectively.

of the total variance. Both figures are characterized by
an east–west seesaw pattern between the anomalies in
the tropical central Pacific and the Indonesian subcon-
tinent, although the model centers are shifted to the east.
Other noticeable differences include sign differences in
the subtropical western Pacific and the Indian Ocean
eastward from 608E. The poor performance of the model
in those regions has already been mentioned in the pre-
vious section. The time series associated with the ei-
genvectors, shown in Fig. 7e, vary in a similar way and
are related to ENSO SST anomalies. The difference be-
tween the model and observed eigenvectors in the sub-
tropical western Pacific and Indian Oceans is due to the
failure of the model simulation in response to ENSO
SST anomalies. The poor simulation over the regions

can be related to the limitation of the two-tier approach
of the seasonal prediction, since the atmospheric re-
sponses to those ocean regions are controlled not simply
by the atmosphere alone but by the ocean–atmosphere
interaction (Wang et al. 2004).

The second eigenvector of the observed summer-
mean precipitation shown in Fig. 7b explains 15.7% of
total variance. The spatial pattern is characterized by
large variations in the subtropical western Pacific. The
model counterpart, shown in Fig. 7d, shows that the
model reproduces the western Pacific center but with
much weaker amplitude. It also produces anomalies in
other regions in the Pacific and Indian Oceans that are
somewhat different from the observations. However, the
similarity between the time series associated with the
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FIG. 8. As in Fig. 5 except for the predicted precipitation after
correction of the systematic error.

FIG. 9. Pattern correlation coefficients between the observed and
predicted precipitation before (open bar) and after (shaded bar) the
bias correction (a) over the globe and (b) for the Asian monsoon and
western Pacific regions (108–408N, 808–1608E).

observed EOF modes and the corresponding time series
of the predicted modes provides us some hope of error
correction for the predicted field. That is, the atmosphere
model captures the observed eigenmodes responding to
distinctive SST anomaly patterns such as El Niño, al-
though the spatial patterns of the modes are somewhat
different from their observed counterparts. The differ-
ence can be corrected by replacing the model eigen-
modes with the corresponding observed modes. The er-
ror correction has been done by using Eq. (2) and the
SVD modes, which represent more clearly the coupled
modes of the observed and predicted fields than the EOF
modes do. Note that the two leading SVD singular vec-
tors (not shown) are very similar to the corresponding
EOF eigenvectors shown in Fig. 7. The similarity can
be anticipated from Figs. 7e and 7f, where the two time
series of the observed and predicted vary almost si-
multaneously, indicating that the two EOF modes are
coupled to each other.

In each summer and at each grid point, the number
of SVD modes is determined by the double cross-val-
idation procedure. In general, the first four SVD modes
are used for the correction. The modes after the fifth
consist of small-scale patterns and explain small frac-
tions of the variance. The sum of the first four modes
explains 41.2% of the total variance.

Figure 8 shows the spatial distribution of the corre-
lation coefficient between the corrected seasonal pre-
diction and the corresponding observation, obtained
from the double cross-validation procedure described in
the previous section. The figure shows the potential pre-
dictability of the seasonal prediction after correction,
when the actual SST is used for the prediction. In the
figure, the correlation coefficients of the corrected pre-
diction are replaced by those without correction, if the
former is smaller than the latter. Those locations are in
the central tropical Pacific, where the correlation co-
efficient of the original prediction (Fig. 3) is already
very large. But, in most of the regions, the predictability
is significantly enhanced by the statistical correction.
The enhancement of the predictability is particularly
pronounced in the western Pacific where the correction
skill is negative without the correction but has relatively
large positive values afterward.

The predictability skill is also examined in terms of
the spatial pattern correlation between the observed and
predicted fields of each year for the domain of 208S–
508N and 08–3608 (Fig. 9a). In Fig. 9a, the open and
shaded bars indicate the pattern correlations for the pre-
dictions without and with correction, respectively. As
seen in the figure, the potential predictability is en-
hanced by the correction for all years except the first
(1979) summer. The same correlations are also obtained
for the Asia monsoon and the western Pacific region,
where the original prediction is poor, and are plotted in
Fig. 9b. It is clear that the correction enhances the pre-
dictability skill over the domain in most of the years.
In particular, for the years such as 1985, 1987–89, and
1991, the spatial correlations with negative values be-
fore the correction have relatively large positive values
after the correction. In the years 1995 and 1996, on the
other hand, the skill is degraded by the correction. Over-
all, however, the dynamical prediction with the statis-
tical correction appears to have potential skill over East
Asia and the western Pacific region.

It would be interesting to know the regions where the
statistical correction has its largest impact on the pre-
diction skill. To help determine this, we divided the
error, E 5 Prediction (P) 2 Observation (O), into a
corrected part (P 2 C) and a noncorrectable error part
(C 2 O), where C stands for the corrected value. The
variance of E was shown in Fig. 4a. Figures 10a and
10b show the variances of the corrected and noncor-
rectable parts, respectively. Note that the sum of the two
variances is approximately the same as the variance of
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FIG. 10. Variances of the (a) corrected part and (b) noncorrectable
part of the systematic error. See text for the definitions of corrected
and noncorrected parts. The contour interval is 2 mm2 day22 and the
dashed line indicates 1 mm2 day22.

FIG. 11. (a) Distribution of the local correlation coefficient between
the observed precipitation and the SST anomalies at each grid point.
(b) As in (a) except for the simulated precipitation. The contour
interval is 0.2.

the total error shown in Fig. 4a. Figure 10a indicates
that the SVD-based postprocessing method reduces the
prediction errors, particularly over the western Pacific
in the Northern and Southern Hemispheres. Those errors
are mainly related to poor simulation of the precipitation
anomalies in the western Pacific during El Niño, as in-
dicated by the difference between the first EOF modes
of the observed and the predicted anomalies, shown in
Figs. 7a and 7c, respectively. As a result, the variance
of the noncorrectable error is much reduced (Fig. 10b).

The errors in the western Pacific are correctable be-
cause they are systematic. These systematic errors can
be produced by the model deficiency itself but appear
to be related largely to the prescription of the SST con-
dition in the prediction system. In the western Pacific
where the air–sea interaction is active, the SST is also
strongly affected by the atmosphere (Wang and Xie
1998; Lau and Nath 1999). But in the present two-tier
prediction system, the model atmosphere is a slave to
the prescribed SST condition and the atmospheric feed-
back to the ocean is missing. In the model, in fact, the
predicted precipitation anomalies are positively related
to the local SST anomalies in most of the western Pacific
(Fig. 11b). In the observations, on the other hand, the
local SST and precipitation anomalies are negatively
correlated to each other in the subtropical western Pa-
cific (Fig. 11a). This difference between the SST–pre-

cipitation relationships of the observation and the model
results in the systematic errors in the western Pacific.
But, they are largely correctable by using the present
postprocessing method.

6. Summary and concluding remarks

The potential predictability of summer-mean precip-
itation over the globe is investigated in the present study.
The data utilized in the present study are obtained from
a 21-yr seasonal prediction experiment using the KMA–
SNU seasonal prediction system under the guidance of
Seasonal Model Intercomparison Project II (SMIP II)
initiated by the CLIVAR/Working Group on Seasonal
to Interannual Prediction (WGSIP). The potential pre-
dictability assessed in the present study is an upper-limit
estimate of the predictability of the prediction system,
since the SMIP II uses the observed SST as an external
boundary condition for the model integration of sea-
sonal prediction.

Potential predictability measured by the analysis of
variance indicates that the external SST condition con-
trols the summer-mean precipitation in the Tropics, par-
ticularly in the ENSO region. On the other hand, the
extratropical summer mean is more controlled by the
internal atmospheric processes. The result indicates that
the summer-mean precipitation over the Asian monsoon
and ENSO regions is potentially predictable, if the mod-
el is perfect. Over the ENSO region, the present model
has the capability to reproduce the observed interannual
variation of the precipitation for a given SST condition.
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Over the Asian monsoon region, on the other hand, the
model is not able to reproduce the summer-mean pre-
cipitation even given the actual SST condition. This
failure can be due to the problem of the present at-
mosphere model itself. However, it is also possible that
the Asian monsoon precipitation, particularly in the
western Pacific, is not simply related to the SST anom-
alies but is mainly controlled by the feedback processes
of atmosphere–ocean interaction. The importance of the
air–sea interaction on the circulation anomalies in the
western Pacific associated with the evolution of ENSO
has been demonstrated by Wang and Xie (1998) with
observed data and Lau and Nath (1999) using models.
As shown in Fig. 11, the difference between the SST–
precipitation relationships of the observation and the
model results in the systematic errors in the western
Pacific. Therefore, the present two-tier approach of sea-
sonal prediction, based on the atmospheric model sim-
ulation with a prescribed future SST condition, may not
be adequate for the seasonal prediction of Asian summer
monsoon.

The present model is capable of predictability of the
summer-mean precipitation in only some of the tropical
region, particularly in the tropical central and eastern
Pacific. Although the simulation is poor, the predict-
ability of the Asian summer monsoon can be improved
since the model errors are systematic and related to the
external SST condition. In the present study, these errors
are shown to be correctable by a statistical relationship
between the observation and the model prediction. In
particular, the improvement of the predictability after
the statistical correction is substantial in the subtropical
western Pacific. The error in the subtropical Pacific is
discernable in the first EOF eigenvector and the SVD
singular vector of model summer-mean precipitation,
and this mode is related to the poor simulation of the
observed ENSO mode in the region. After the correc-
tion, the correlation skill of the summer-mean precipi-
tation is usable in most of the western Pacific. It is also
shown that the statistical correction is more effective
for the East Asian and western Pacific regions if the
correction procedure based on the SVD is applied to the
regional data rather than the global data. Now the ques-
tion is how to predetermine the region of analysis. At
the moment, the region of best predictability may be
chosen by trial and error using different regional do-
mains.

The correction method in the present study has been
developed based on the global SVD modes. But, some
of the regional precipitation variability can be controlled
by regional modes, which may not be represented in the
global modes, since the precipitation has a strong local
gradient particularly in the Asian monsoon region. Thus
the correction method for the regional precipitation can
be developed based on the SVD modes over the domain.
The statistical correction can also be developed for each
grid point based on the relationship between the ob-
served variability at the grid point and the model-sim-

ulated pattern. Then the prediction value at the grid point
can be produced by projecting the model pattern known
a priori to the predicted field. Various kinds of correction
methods mentioned above should be developed and test-
ed for a better seasonal prediction. Other research to be
done includes the examination of the potential predict-
ability of other seasons and the application of the present
correction method to other variables such as surface
temperature and circulation statistics. The present study
has examined the potential predictability by prescribing
the observed SST condition in the model, and therefore
we assessed the upper limit of the predictability of the
present seasonal prediction system. It has been dem-
onstrated here that the present seasonal prediction sys-
tem has large potential predictability in many regions
of the globe, particularly in Asian monsoon and ENSO
regions. But the actual predictability should depend on
the skill in predicting SST. Therefore, research into a
better SST prediction system is required to produce a
usable seasonal prediction. It is also worth noting that
the development of a seasonal prediction system based
on a coupled ocean–atmosphere model may be needed,
particularly for the Asia and western Pacific monsoon
regions, since the western Pacific summer-mean precip-
itation appears to be largely controlled by air–sea feed-
back processes.
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