
A New Way to Improve Seasonal Prediction by Diagnosing and Correcting
the Intermodel Systematic Errors

ZONGJIAN KE

Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, and Key Laboratory of Regional

Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

PEIQUN ZHANG

Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China

WENJIE DONG

State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China

LAURENT LI

Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China,
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ABSTRACT

Seasonal climate prediction, in general, can achieve excellent results with a multimodel system. A relevant

calibration of individual models and an optimal combination of individual models are the key elements

leading to this success. However, this commonly used approach appears to be insufficient to remove the

intermodel systematic errors (IMSE), which represent similar error properties in individual models after

their calibration. A new postprocessing method is proposed to correct the IMSE and to increase the pre-

diction skill. The first step consists of carrying out a diagnosis on the calibrated errors before constructing the

multimodel ensemble. In contrast to previous studies, the calibrated errors here are treated directly as the

investigation target, and temporal correlation coefficients between the calibrated errors and other meteo-

rological variables are calculated. In the second stage, mathematical and statistical tools are applied in an

effort to forecast the IMSE in individual models. Then, the IMSE are removed from the calibrated results

and the new corrected data are used to construct the multimodel ensemble. The hindcast of the European

Union–funded Development of a European Multimodel Ensemble System for Seasonal-to-Interannual

Prediction (DEMETER) multimodel system is used to test the method. The simulated Southern Oscillation

index is used to diagnose and to correct the calibrated errors of the simulated precipitation. The prediction

qualities of the corrected data are assessed and compared with those of the uncorrected dataset. The results

show that it is feasible to improve seasonal precipitation prediction by forecasting and correcting the IMSE.

This improvement is visible not only for the individual models, but also for the multimodel ensemble.

1. Introduction

For seasonal climate prediction, a multimodel en-

semble average built over several general circulation

models from different operational centers is generally

more capable than the individual forecasts (Palmer

et al. 2000; Pavan and Doblas-Reyes 2000). Hagedorn

et al. (2005) demonstrated that the basic idea of the

multimodel concept is to take into account a number

of independent and skillful models with the hope of

achieving better coverage of the whole possible climate

phase space. With idealized and real-world cases, they

demonstrated that better coverage improves the pre-

diction and the improvement can be mainly attributed

to greater consistency and a higher reliability of the

multimodel over the long term. Many studies have
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concentrated on the combination of different single

models in order to achieve the maximum consistency and

to obtain a more reliable forecast system (Krishnamurti

et al. 1999, 2000; Yun et al. 2003, 2005; Doblas-Reyes

et al. 2005; Barnston et al. 2003). Doblas-Reyes et al.

(2005) compared the forecast skills of both multiple

linear regression (MLR) and simple multimodel mean

(SMM) ensembles in terms of probability scores and

determined that much longer time series and colinearity

reduction between the single models was required for

the MLR ensemble to achieve a significant accuracy

improvement. To reduce the colinearity among the sin-

gle models, principal component analysis and empirical

orthogonal function methods are often used to produce

new datasets for the construction of the multimodel

ensemble, but the SMM still remains one of the best

methods (Doblas-Reyes et al. 2005; Yun et al. 2005).

Yoo and Kang (2005) also indicated that the skill of a

multimodel composite appears to depend on numerous

factors: the ensemble size of the individual models, the

number of participating models, the particular spatial

patterns, and the capability of the combined models.

In addition, together with the multimodel ensemble,

Bayesian methods are also reported to have the po-

tential to improve climate prediction skill (Coelho et al.

2004, 2006; Stephenson et al. 2005).

Although the multimodel ensemble shows some ad-

vantages over single models, it does not help very much

to reduce errors with similar patterns among the single

models (Hagedorn et al. 2005). In fact, the commonly

used calibration procedure with bias and variance cor-

rection cannot remove intermodel systematic errors

(IMSE), which represent similar error properties among

individual models. If simulated errors were stochastic

after the calibration, the multimodel (either SMM or

MLR) would be an appropriate approach to removing

them by increasing the number of models; however, this

is far from the reality as errors from individual models are

often not random. Rather, they are systematic behaviors

of individual models. It is obvious that the multimodel

ensemble cannot remove such IMSE because they are

often related to the nonlinearity of the climate system.

This issue was largely ignored in previous studies, and no

substantial work on the IMSE can be found in the liter-

ature, although many studies have addressed systematic

errors in individual models (Feddersen et al. 1999; Yang

and Anderson 2000; Kang et al. 2004; Guldberg et al.

2005) or on the multimodel ensemble with statistical

downscaling approaches (Feddersen et al. 2005; Pavan

et al. 2005; Gutiérrez et al. 2005; Dolores Frı́as et al. 2005;

Dı́ez et al. 2005). Therefore, we concentrate our efforts

on the IMSE and error diagnosis is performed in the

individual models and in the ensemble forecast.

Because the IMSE cannot be removed with a multi-

model ensemble, a correction technology based on error

diagnosis is used to reduce the IMSE. In this paper, the

IMSE are regarded as a direct objective, and therefore

the predictands are converted to the IMSE, which dif-

fers from the methods used in previous studies. The key

element is to diagnose and forecast the IMSE in an ef-

ficient manner. When the IMSE in individual models is

predicted accurately, an improvement of the prediction

skill can be obtained. It is important to choose an ap-

propriate diagnostic factor for different simulated me-

teorological parameters, which is helpful to predict and

correct the IMSE.

A description of the dataset used is given in section 2.

The method and corresponding measurement tools are

presented in section 3. The results of error diagnosis and

correction of the simulated precipitation are presented

in section 4. The conclusions and discussion are sum-

marized in section 5.

2. Data

The Development of a European Multimodel En-

semble System for Seasonal-to-Interannual Prediction

(DEMETER) hindcast datasets are chosen to study the

precipitation errors and to construct the multimodel

ensemble. The DEMETER system (Palmer et al. 2004)

comprises seven state-of-the-art global coupled ocean–

atmosphere models, run under a common protocol.

Each hindcast has four initialization dates, 1 February,

1 May, 1 August, and 1 November, with a duration of

6 months and an ensemble of nine members. Because our

focus is on the seasonal predictability, monthly-mean

precipitation data are first converted into a seasonal-

mean format. Given that the length of the seasonal

forecast is not uniform for the seven models, only the

models of the European Centre for Medium-Range

Weather Forecasts (ECMWF), Météo-France (MF),

and the Met Office (UKMO), which have the same

longer period (up to 43 yr), are chosen for the period

from 1959 to 2001. An ensemble mean of nine members

is first performed for the individual models, respec-

tively. The climate variable of interest is the precipita-

tion rate, which is important for societal applications.

Precipitation is also an integrated indicator of model

performance. The Climate Prediction Center Merged

Analysis of Precipitation (CMAP) dataset (Xie and

Arkin 1997; Chen et al. 2002, 2003, 2004), downloaded

from the official public Web site (ftp://ftp.cpc.ncep.

noaa.gov) is used for verification. These data, obtained

from both simulations and observations, are first inter-

polated to a common 2.58 3 2.58 horizontal grid through

use of a bilinear interpolation.
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Given the exploratory character of this study in re-

ducing the IMSE of precipitation in multimodel en-

semble, we propose, with some subjectivity, to use the

sea surface temperature (SST) to improve forecast skill.

The idea behind this choice is that the SST is an im-

portant parameter that depicts the interaction between

ocean and atmosphere. However, the simulated SST

data cannot be obtained from the ECMWF official Web

site. Because there is a strong relationship between the

sea level pressure (SLP) and SST, the SLP is considered

as a diagnostic factor in our study.

The El Niño–Southern Oscillation is one of the most

prominent sources of interannual variations in weather

and climate around the world. The Southern Oscillation

index (SOI), obtained as the Tahiti–Darwin SLP dif-

ference, is used to represent the reverse variation of

pressure between the eastern Pacific Ocean and the

tropical Indian Ocean, which is a global-scale tele-

connection pattern in the atmosphere. It has been in-

dicated that the SOI has a dominant effect on seasonal

precipitation throughout the tropical Pacific (Trenberth

and Caron 2000). Moreover, the correlation patterns of

seasonal precipitation with the SOI are strongest in

December–February (DJF). Therefore, the simulated

SOI from DEMETER is chosen to investigate the var-

iation of the simulated precipitation errors in DJF.

3. Method

a. Initial calibration

Because the main shortcoming of single-model pre-

dictions is the lack of reliability that results from sys-

tematic biases in individual models, a calibration pro-

cedure has to be applied to individual models to remove

or reduce such biases. The calibration procedure can be

realized through the utilization of observations and can

be considered as a way of obtaining predictions with

average statistical properties similar to those of the

reference dataset. A simple inflation of the model var-

iance is employed to adjust the simulated spread to the

observed one.

An initial calibration on the model outputs consists of

performing a variance inflation and shifting the mean

values to make the average statistical properties of the

models close to those of the observations. This cali-

bration is carried out before the diagnosis of the IMSE

of the precipitation. The expression for this is as follows:

Fcl
it 5 O 1 (F it 2 Fi)(So/SF), (1)

where Fit is the ith model forecast in the tth time, Fi

represents the climatological forecast of the ith model,

O is the climatological observation, and So and SF rep-

resent the standard deviation of the observation and

simulation, respectively. The forecast errors after the

calibration may therefore be written as follows:

Errcl
it 5 Fcl

it 2 Ot, (2)

where Ot is the tth time observation. As mentioned

above, Errcl
it comprises mainly the IMSE that are un-

likely to be removed by the calibration process or by the

multimodel ensemble.

b. Correction of the IMSE

The IMSE are the main target of our study, and we

need to find a relevant correction to reduce errors that

are persistent after the initial calibration. We cannot

elucidate all physical causes for such errors; we can,

however, apply statistical methods to quantify the

influencing factors.

The performance of all three models before carrying

out any diagnosis in simulating the SOI in DJF is shown

in Fig. 1. A generally good performance for the SOI can

be found in individual models with correlation coeffi-

cients higher than 0.8. The distribution of scattering

points indicates that the simulation of the SOI in indi-

vidual models is steady. The SOI is therefore confirmed

as a good choice to make a first diagnosis, and we calculate

FIG. 1. Scatterplots of the forecast and observed SOI in DJF over the 43 yr: (a) ECMWF, (b) MF, and (c) UKMO.
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the temporal correlation coefficients between the cali-

brated precipitation errors and the simulated SOI. We

also need to define a threshold for the correlation co-

efficient to be statistically significant.

The threshold is fixed at 0.301 in our study, which cor-

responds to a confidence level of 95% for a t test. Regions

with temporal correlation coefficients of larger than 0.301

in the individual models are eligible for additional error

correction. As an exploratory study, we want to use a

correction method that is as simple as possible. A linear

regression is thus performed between the precipitation

errors and the simulated SOI during the training period.

Therefore, the precipitation errors within the forecast

phase can be obtained with a simulated SOI derived

from models in the forecasting time and the regression

coefficients calculated in the training time. A cross-

validation method is adopted in the process of error

correction (Michaelsen 1987). Each year is successively

withheld, and the remaining 42 yr are used to calculate

the regression coefficients. Last, the obtained precipi-

tation errors are removed from the calibrated precipi-

tation, and the corrected precipitation can be written as

follows:

Fcr
it 5 Fcl

it 2 Errcr
it , (3)

where Errcr
it and F cr

it are the calculated forecast error and

the corrected forecast of the ith model in the tth time,

respectively.

In an operational seasonal prediction system, the

statistics, such as the linear regression, for evaluating

the IMSE can be constructed through previously cali-

brated model outputs. The diagnostic factors, such as

the simulated SOI, in the forecasting phase can directly

serve as predictors to forecast the IMSE.

It is important to note that the threshold of 0.301 is

applied in our study to the temporal correlation coefficient

calculated over the whole period to keep the studied re-

gions unchanged in the cross-validation process. This ar-

rangement induces a slight variation in the estimation of

the confidence level of the correlation coefficients during

the training time, but it is believed to have no significant

impact on our study. Furthermore, this approximation can

be avoided in an operational system, as mentioned earlier.

The operation of error diagnosis and correction is carried

out for each grid point separately.

c. Validation tools

Forecast quality and capability assessment can be

achieved through different measurement tools that

emphasize different aspects of the forecast (Jolliffe and

Stephenson 2003). The anomaly correlation coefficient

(ACC), which assesses the relationship between two

meteorological variables, is a good measure of the phase

errors. It is used not only to diagnose the calibrated

precipitation errors, but also to measure the skill of

different forecasts. The ACC can be formally written as

ACC 5
�(F 2 F)(O 2 O)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�(F 2 F)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(O 2 O)2

q , (4)

where F and O are the forecast and observation, re-

spectively, and F and O are their temporal averages.

The Brier score (BS) is a quadratic measure of errors

for probabilistic forecasts (Brier 1950). It plays a similar

role to the root-mean-square in deterministic forecasts.

The average BS for a set of n forecasts is defined as

BS 5
1

n
�

n

i51
( f i 2 oi)

2, (5)

where fi is the forecast probability for the ith forecast

and oi is the ith outcome of the observation probability.

The Brier skill score (BSS) is defined as (Wilks 1995;

Toth et al. 2003)

BSS 5 1 2
BS

BSref
. (6)

This quantity represents the level of improvement of the

Brier score relative to that of a reference forecast

strategy BSref. It is a positively oriented accuracy mea-

surement, meaning that larger BSS values indicate

better forecasts, and vice versa. The most widely used

reference strategy for calculating the BSS is that of

‘‘climatology,’’ in which the climatological probability

of the forecast variable is issued perpetually (Mason

2004). Climatology is an appealing reference strategy

because it is intended to provide an indication of

whether the forecasts are better than having no forecast

information at all, apart from knowledge of the histor-

ical likelihood of the event. Given that the BSS can be

used in multievent situations, the precipitation proba-

bility is divided into three categories—above normal,

normal, and below normal—with similar numbers of

years in each (14, 15, and 14, respectively) over the 43-yr

period of interest.

4. Results

The temporal correlation coefficient is used to illus-

trate the IMSE in different models. Figure 2 displays

maps of the temporal correlation coefficients between

the calibrated precipitation errors and the simulated

SOI during DJF for the three individual models and the

simple multimodel (SMM) ensemble, respectively. It is
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clear that a strong similarity exists among the three

models. Negative correlation is found over the tropical

Pacific, especially in the western and eastern parts. The

northeast Pacific (308N, 1508W) gives consistently neg-

ative correlations, as does the Southern Ocean at 408S

from the Indian Ocean to the middle of the Pacific. The

subtropical zone of the North Atlantic Ocean also exhibits

a negative correlation. Positive correlation is consistently

present over a few oceanic domains: the subtropics of the

Southern Ocean at about 308S, the high latitudes of the

Southern Ocean at about 508S, the subtropics of the North

Pacific at 108N, the subtropics of the Atlantic at about

308N, and the high latitudes of the North Pacific. Al-

though there is a slight difference in the location and in-

tensity of the high correlation centers among different

models, the geographical shape of the correlation coeffi-

cients is generally similar. Furthermore, we can see in the

following (left panels of Fig. 3) that most regions with a

high correlation between the precipitation errors and the

SOI are also regions in which simulated precipitation is

less similar to the observed precipitation. These IMSE are

indeed related to the nonlinearity (such as an asymmetric

response for an equal-amplitude SST anomaly with op-

posite signs), which has a very similar manifestation among

different models.

SMM with equal weighting are used for the ensemble

forecast, and the corresponding temporal correlation

distribution is presented in Fig. 2d. The high-correlation

regions are still persistent, which means that the multi-

model ensemble is hardly capable of removing the

similar properties of the calibrated precipitation errors

among various models, which is in accord with the re-

sults of a previous study (Hagedorn et al. 2005). A

similar conclusion can be drawn from the MLR en-

semble proposed by Krishnamurti et al. (1999).

After correction of the IMSE, the results (not shown)

clearly demonstrate that the precipitation errors no

longer have high correlations with the SOI. Figure 3

displays the temporal ACC between the simulated and

observed precipitation during DJF in each individual

model and in the ensemble forecast. Figures 3a–d show

the results of the calibrated data, and Figs. 3e–h depict the

results of the corrected data. In the regions in which

the IMSE are corrected, such as the northwestern

and central Pacific, the North Atlantic, and the south-

eastern Pacific in the Southern Hemisphere, the temporal

FIG. 2. Temporal correlation coefficients between the calibrated precipitation errors and the simulated SOI during

DJF over the 43 yr: (a) ECMWF, (b) MF, (c) UKMO, and (d) SMM.
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FIG. 3. Temporal ACC between the simulated and the observed precipitation in the corrected regions during

DJF for (a) ECMWF, (b) MF, (c) UKMO, and (d) SMM, before correction. (e)–(h) As in (a)–(d), but with the

corrected data.
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anomaly correlation coefficients of the three models

increase significantly. Moreover, in the high-latitude

regions of the Southern Hemisphere, similar improve-

ments can be found over oceans after the IMSE cor-

rection. In comparison with the multimodel ensemble

result based on the calibrated data, the corrected en-

semble forecast also shows significant improvements in

the individual models, especially over oceans.

Figure 4 shows scatterplots of the temporal ACC in

the corrected regions. A general improvement can be

seen in the individual models and in the ensemble

forecast. The amelioration is particularly important in

the ECMWF and UKMO models, whereas the im-

provement is less important in the MF model. This is

because the corrected regions are mainly over oceans in

the ECMWF and UKMO but are also over the Eurasian

continent in the MF. Our IMSE correction, through a

simple linear regression between the precipitation er-

rors and the SOI, may not be entirely appropriate over

continents. Figure 5 shows the mean temporal ACC

averaged over different regions. It is clear that a general

improvement is present for all models and all regions.

Figure 6 depicts the BSS for the individual models

and the ensemble forecast based on the calibrated and

corrected datasets in the corrected regions. Obvious

differences exist in the BSS after the IMSE correction.

The corrected BSS values are generally higher than the

uncorrected values, which indicates that the probabi-

listic skill scores of the forecast can also be improved

with IMSE correction. The SMM ensemble forecast

demonstrates a performance that is similar to that of the

individual models.

The IMSE of the precipitation in other seasons are

also studied in the same manner, as presented here for

DJF. The results are not shown for the sake of concise-

ness, but the same process of diagnosing, forecasting, and

FIG. 4. Scatterplots of the temporal ACC between the simulated and observed precipitations

in the corrected regions during DJF: (a) ECMWF, (b) MF, (c) UKMO, and (d) SMM. The ‘‘N’’

in the parentheses of the ordinates represents the results before correcting errors. The numbers

on top of (a)–(d) correspond to the number of times the score of the system in the abscissa has a

larger value than the one in the ordinate (to the left of the slash), the total number of cases (to

the right of the slash), and, in parentheses, the percentage.
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removing the IMSE, followed by a correction of calibrated

precipitation errors, can improve the forecast skills for

other seasons.

Last, we point out that the simulated SOI is not the

only variable that is useful for reducing the IMSE. In

some regions across the globe, the SOI is probably an

unsuitable diagnostic factor for the IMSE of precipita-

tion. It is then feasible to use other meteorological

variations to diagnose the calibrated errors and to cor-

rect the IMSE. In addition, this method of reducing the

IMSE is not in conflict with the previous studies of error

correction through different statistical methods, in-

cluding statistical downscaling (Feddersen et al. 1999;

Yang and Anderson 2000; Kang et al. 2004). It can serve

as a preprocessing operation before carrying out other

statistical correction methods.

5. Conclusions and discussion

The multimodel ensemble has been regarded for a long

time as a pragmatic approach to reduce the simulation

errors of single models. However, multimodel ensembles

hardly show improvement for IMSE. Some statistical

correction methods have been proposed to reduce these

systematic errors in previous studies, but little attention

has been paid to the systematic errors themselves and

little work about IMSE diagnosis relevant to multimodel

ensembles can be found. Therefore, we propose a method

of error diagnosis and forecast to reduce the IMSE.

Our study differs from previous ones, because the IMSE

is the direct forecast object, and the main goal to improve

seasonal prediction is assessed by a proper forecasting of

the IMSE. An error diagnosis and a forecast procedure

were performed after calibrating the simulation data.

Error correction was then applied to the single models

through a simple mathematical manipulation. A multi-

model ensemble could thus be reconstructed using the

corrected data. Let us note that the applied method to

correct the IMSE is not in conflict with previously repor-

ted statistical correction methods. Moreover, this diagno-

sis and correction can be used as a preprocessing step for

statistical correction or downscaling methods.

As an example, the simulated SOI was used to diag-

nose and correct the calibrated precipitation errors. The

results showed that a strong similarity among models

existed in the geographical patterns of the correlation

FIG. 5. The mean temporal ACC calculated by the calibrated and corrected datasets over

different corrected regions during DJF: (a) global, (b) tropics (208S–208N), (c) extratropics in the

Northern Hemisphere (208–608N), and (d) extratropics in the Southern Hemisphere (608–208S).

The gray and white bars represent the calibrated and corrected forecasts, respectively.
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calculated between the calibrated systematic errors

of precipitation and the simulated SOI in different

DEMETER models. The forecast skills of individual

models and their ensemble were all improved through

the forecast and correction of the IMSE. It was also

found that the improvement of precipitation forecasts

over oceans was more significant than over continents,

which indicates that the simulated SOI is a more ap-

propriate variable to diagnose the calibrated precipita-

tion errors over oceans. It is speculated that different

meteorological variations in different regions may in-

volve different variables that are more relevant than

others and can be used to diagnose and correct the

IMSE. Such studies will be pursued in the future to

further improve the forecast skills of individual models

and their ensembles in seasonal climate prediction. We

are also planning to use a similar approach with other

atmospheric oscillation indexes, such as the North At-

lantic Oscillation, to perform further correction of the

IMSE. We will also extend our study to temperatures.
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