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ABSTRACT

Virtually all numerical forecast models possess systematic biases. Although attempts to reduce such
biases at individual stations using simple statistical corrections have met with some success, there is an acute
need for bias reduction on the entire model grid. Such a method should be viable in complex terrain, for
locations where gridded high-resolution analyses are not available, and where long climatological records
or long-term model forecast grid archives do not exist. This paper describes a systematic bias removal
scheme for forecast grids at the surface that is applicable to a wide range of regions and parameters.

Using observational data and model forecasts over the Pacific Northwest, a method was developed to
reduce the biases in gridded 2-m temperature, 2-m dewpoint temperature, and 12-h precipitation forecasts.
The method first estimates bias at observing locations using errors from forecasts that are similar to the
current forecast. These observed biases are then used to estimate bias on the model grid by pairing model
grid points with stations that have similar elevation and/or land-use characteristics.

Results show that this approach reduces bias substantially, particularly for periods when biases are large.
Adaptations to weather regime changes are made within a short period, and the method essentially “shuts
off” when model biases are small. With modest modifications, this approach can be extended to additional
variables.

1. Introduction

Virtually all weather prediction models possess sub-
stantial systematic bias, errors that are relatively stable
over days, weeks, or longer. Such biases occur at all
elevations but are generally largest at the surface where
deficiencies in model physics and surface specifications
are often substantial. For example, systematic bias in
2-m temperature (T2) is familiar to most forecasters,
with a lack of diurnal range often apparent in many
forecasting systems [see Fig. 1 for an example for
the fifth-generation Pennsylvania State University–
National Center for Atmospheric Research Mesoscale
Model (MM5)].

In the United States, the removal of systematic bias is
only attempted operationally at observation sites as a
by-product of applying model output statistics (MOS)
as a forecast postprocessing step (Glahn and Lowry
1972). In fact, it has been suggested by some (e.g., Neil-

ley and Hanson 2004) that bias removal is the most
important contribution of MOS and might be com-
pleted in a more economical way. As noted in Baars
and Mass (2005), although MOS reduces the average
forecast bias over extended periods, for shorter inter-
vals of days to weeks, MOS forecasts can possess large
biases. A common example occurs when models fail to
maintain a shallow layer of cold air near the surface for
several days to a few weeks; MOS is usually incapable
of compensating for such transient model failures and
produces surface temperature forecasts that are too
warm. MOS also requires an extended developmental
period (usually at least 2 yr) during which the model is
relatively stable, a problem for a model undergoing
continuous improvement. One approach to reducing a
consistent, but short-term, bias using MOS is updatable
MOS (UMOS) as developed at the Canadian Meteo-
rological Center (Wilson and Vallée 2002). The method
proposed in this paper is related to updatable MOS but
extends it in significant ways.

It has become increasingly apparent that bias re-
moval is necessary on the entire model grid, not only at
observation locations. For example, the National
Weather Service has recently switched to the Interac-
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tive Forecast Preparation System (IFPS), a graphical
forecast preparation and dissemination system in which
forecasters input and manipulate model forecast grids
before they are distributed in various forms (Ruth 2002;
Glahn and Ruth 2003). Systematic model biases need to
be removed from these grids, and it is a poor use of
limited human resources to have forecasters manually
eliminating model biases if an objective system could
do so. Additionally, it would be surprising if subjective
bias removal could be as skillful as automated ap-
proaches, considering the large amount of information
necessary to complete this step properly, and the fact
that biases can vary in space and time. Removal of
systematic bias away from observation sites is also
needed for a wide range of applications from wind en-
ergy prediction and transportation to air quality mod-
eling and military requirements, to name only a few.
Finally, bias removal on forecast grids is an important
postprocessing step for ensemble prediction, since sys-
tematic bias is knowable and therefore not a true
source of forecast uncertainty. Thus, systematic model
bias for each ensemble member should be removed as
an initial postprocessing step or the ensemble variance
will be inflated. Eckel and Mass (2005) demonstrated
that a simple grid-based, 2-week, running-mean bias
correction (BC) increased the reliability of the forecast
probabilities from an ensemble system by adjusting the
ensemble mean toward reality and increasing sharp-
ness/resolution through the removal of unrepresenta-
tive ensemble variance.

The need for model bias removal has been discussed
in a number of papers, with most limited to bias reduc-
tion at observation locations. Stensrud and Skindlov
(1996) found that model (MM5) 2-m temperature er-

rors at observation locations over the southwest United
States during summer could be considerably reduced
using a simple BC scheme that removes the average
bias over the study period. Stensrud and Yussouf
(2003) applied a 7-day running-mean bias correction to
each forecast of a 23-member ensemble system for 2-m
temperature and dewpoint; the resulting bias-corrected
ensemble-mean forecasts at observation locations over
New England during summer 2002 were comparable to
Nested Grid Model (NGM) MOS results for tempera-
ture and superior for dewpoint. A Kalman filter ap-
proach was used to create diurnally varying forecast
bias corrections to 2-m temperatures at 240 sites in
Norway (Homleid 1995). This approach removed much
of the forecast bias when averaged over a month, al-
though the standard deviations of the differences be-
tween the forecasts and observations remained nearly
unchanged.

Systematic bias removal on grids, as discussed in this
paper, has received less emphasis. As noted above,
Eckel and Mass (2005) applied bias removal to gridded
MM5 forecasts used in an ensemble forecasting system
before calculating the ensemble means and probabilis-
tic guidance. The corrections were based on average
model biases over the previous 2-week period using
analysis grids [i.e., the 20-km version of the Rapid Up-
date Cycle (RUC20) or the mean of operational Na-
tional Centers for Environmental Prediction (NCEP)
analyses] as truth. Yussouf and Stensrud (2006) inter-
polated the preceding 12-day biases at observing sites
to a model grid using a Cressman (1959) scheme and
used these biases to modify an ensemble of forecasts;
the result substantially enhanced the prediction of sur-
face variables over Oklahoma. The National Weather
Service has recently developed a gridded MOS system
that, like conventional MOS, reduces systematic bias
(Dallavalle and Glahn 2005). This system starts with
MOS values at observation sites and then interpolates
them to a grid using a modified Cressman scheme that
considers both station and gridpoint elevations. In ad-
dition, surface type is considered, with the interpolation
using only land (water) MOS locations for land (water)
grid points.

An optimal bias removal scheme for forecast grids
should have a number of characteristics. It must be
robust and applicable to any type of terrain. It must
work for a variety of resolutions and particularly for
grid spacings at which mesoscale models will be run in
the near future (1–10 km). It should be capable of deal-
ing with regions of sparse data, yet also be able to take
advantage of higher data densities when they are avail-
able. It must be viable where gridded high-resolution

FIG. 1. Observed (black) and MM5 forecast (grey) T2 at Burns,
OR. The MM5 simulation was initialized at 1200 UTC 24 Aug
2005.
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analyses are not available or where long climatological
records or long-term model forecast archives do not
exist. Finally, it should be able to deal gracefully with
regime changes, when model biases might change

abruptly. This paper describes an attempt to create
such a systematic bias removal scheme for forecast
grids at the surface, and one that is applicable to a wide
range of regions and parameters.

FIG. 2. The 12-km MM5 domain (top) topography and (bottom) land use. See Table 1 for
a description of land-use categories.
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2. Data

The bias correction algorithm developed in this re-
search was tested on forecasts made by the MM5, which
is run in real time at the University of Washington
(UW) (Mass et al. 2003). This modeling system uses 36-
and 12-km grid spacing through 72 h, and a nested do-
main with 4-km grid spacing that is run out to 48 h.
Using this system, the 2-m temperature (T2), 2-m
dewpoint temperature (TD2), and 12-h precipitation
(PCP12) forecasts on a grid were corrected for forecast
hours 12, 24, 36, 48, 60, and 72 for model runs initialized
at 0000 UTC during the 1-yr period from 1 July 2004 to
30 June 2005. For this work, only grids from the 12-km
domain (Fig. 2) were bias corrected. Corresponding
surface observations for the period were gathered from
the UW NorthwestNet mesoscale network, a collection
of observing networks from throughout the U.S. Pacific
Northwest. Over 60 networks and approximately 1500
stations are available in NorthwestNet (Mass et al.
2003) for the region encompassed by the 12-km do-
main. As described in the appendix, the observations
were randomly divided for use in either verification or
bias estimation.

Extensive quality control (QC) was performed on all
observations. Quality control is very important if a het-
erogeneous data network of varying quality is used,
since large observation errors could produce erroneous
biases that can be spread to nearby grid points. The QC
system applied at the University of Washington in-
cludes range checks, step checks (looking for unrealistic
spikes and rapid changes), persistence checks (to re-
move “flat lined” observations), and a spatial check
that ensures that observed values are not radically dif-

TABLE 1. MM5 land-use categories.

Vegetation
integer

identification Vegetation description

Albedo (%)

Moisture
available

(%)
Emissivity

(% at 9 mm)
Roughness
length (cm)

Thermal
inertia

(cal cm�2

K�1 s�1/2)

Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter

1 Urban 18 18 10 10 88 88 50 50 0.03 0.03
2 Dryland/cropland/pasture 17 23 30 60 92 92 15 5 0.04 0.04
3 Irrigated cropland/pasture 18 23 50 50 92 92 15 5 0.04 0.04
4 Mixed dry–irrigated

cropland/pasture
18 23 25 50 92 92 15 5 0.04 0.04

5 Cropland–grassland mosaic 18 23 25 40 92 92 14 5 0.04 0.04
6 Cropland–wood mosaic 18 20 35 60 93 93 20 20 0.04 0.04
7 Grassland 19 23 15 30 92 92 0.12 0.1 0.03 0.04
8 Shrubland 22 25 10 20 88 88 10 10 0.03 0.04
9 Mixed shrubs–grassland 20 24 15 25 90 90 11 10 0.03 0.04

10 Savanna 20 20 15 15 92 92 15 15 0.03 0.03
11 Deciduous broadleaf 16 17 30 60 93 93 50 50 0.04 0.05
12 Deciduous needleleaf 14 15 30 60 94 93 50 50 0.04 0.05
13 Evergreen broadleaf 12 12 50 50 95 95 50 50 0.05 0.05
14 Evergreen needleeaf 12 12 30 60 95 95 50 50 0.04 0.05
15 Mixed forest 13 14 30 60 94 94 50 50 0.04 0.06
16 Water bodies 8 8 100 100 98 98 0.01 0.01 0.06 0.06
17 Herbaceous wetland 14 14 60 75 95 95 20 20 0.06 0.06
18 Wooded wetland 14 14 35 70 95 95 40 40 0.05 0.05
19 Barren/sparse vegetation 25 25 2 50 85 85 10 10 0.02 0.02
20 Herbaceous tundra 15 60 50 90 92 92 10 10 0.05 0.05
21 Wooded tundra 15 50 50 90 93 93 30 30 0.05 0.05
22 Mixed tundra 15 55 50 90 92 92 15 15 0.05 0.05
23 Bare ground tundra 25 70 2 95 85 95 0.1 5 0.02 0.05
24 Snow or ice 55 70 95 95 95 95 5 5 0.5 0.5

TABLE 2. Combined land-use categories and their components.

Combined land-use category
Component MM5

land-use categories

1, urban 1
2, cropland 2, 3, 4, 5, 6
3, grassland 7, 8, 9, 10
4, forest 11, 12, 13, 14, 15
5, water 16
6, wetland 17, 18
7, barren tundra 19, 23
8, wooded tundra 20, 21, 22
9, snow–ice 24
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ferent from those of nearby stations of similar eleva-
tion. More information on this quality control scheme
can be found online (http://www.atmos.washington.
edu/�qcreport/).

3. An observation-based approach to bias removal
on a grid

As noted above, an observation-based scheme is
used because high-resolution analyses are only avail-
able for a small portion of the globe and even when
available they often possess significant deficiencies.
The gridded BC scheme for temperature and dewpoint
described below is based on a few basic ideas.

1) It begins with estimating the forecast error at ob-
serving locations. The forecast error at each observ-
ing site is calculated by subtracting the observed
value from the forecast, which is determined by bi-
linearly interpolating the four surrounding gridpoint
forecast values to the observation location. The
standard atmospheric lapse rate (�6.5°C km�1) is
used to account for the discrepancy between the
model terrain height and the real station elevation
when dealing with T2.

2) The BC scheme only uses observations of similar
elevation to that of the model grid point in question
and considers nearby observations before scanning
at greater distances. As described below, although
proximity is used in station selection, distance-
related weighting is not applied, reducing the impact
of a nearby station that might have an unrepresen-
tative bias.

3) The BC scheme makes use of land-use type, apply-
ing only forecast errors from observing sites with
similar land-use characteristics to the grid point in
question to estimate the bias at the grid point. This
approach is based upon the empirical observation
that land use has a large influence on the nature of
many surface biases; for example, water-covered re-
gions have different biases than land surfaces, and
desert regions possess different biases than irrigated
farmland or forest. To illustrate this relationship, the
24 land-use categories used in MM5 (Table 1) were
combined into nine that possessed similar character-
istics (see Table 2). The biases in T2 for these com-
bined land-use categories over the entire Pacific
Northwest were calculated for 2 months of summer
and winter. The summer results, shown in Fig. 3,
indicate substantial differences in warm season

FIG. 3. Biases of T2 over the Pacific Northwest for (top) July–August 2004 and (bottom)
December 2004–January 2005 (left) without and (right) with bias correction. The other con-
catenated categories (wetland, barren tundra, wooded tundra, and snow–ice) were not shown
due to a lack of observations.
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temperature bias among the various land-use cat-
egories, ranging from a small negative bias over wa-
ter to a large negative bias over grassland. In con-
trast, during the winter season the signs of the biases
vary from moderate positive biases over water,
cropland, and urban areas to a moderate negative
bias over forest and little bias over grassland. A Stu-
dent’s t test analysis revealed that the differences in
bias among the categories were statistically signifi-
cant. Based on these results, the nine combined
land-use categories were applied in the bias correc-
tion method presented in this paper. The land-use
type of each observation location is determined us-
ing a 1.33-km resolution land-use grid, while the
land-use type on the 12-km model grid is defined by

the predominant category within each 12-km grid
box.

4) This scheme is designed to mitigate the effects of
regime change, which is a major problem for most
bias correction methods because they typically use a
preceding period of a few days to a several weeks to
estimate the bias. Using such preforecast averaging
periods can result in very poor bias estimation when
a large regime change occurs. Specifically, the na-
ture of the bias can be altered during a regime
change and can result in the application of the
wrong corrections to the forecasts, thereby degrad-
ing the original predictions. The approach applied in
this work minimizes the effects of such regime
changes in two ways. First, only errors from fore-
casts of similar parameter value (and hopefully simi-
lar regime) are used in estimating the bias at a grid
point. Thus, if the forecast of T2 at a grid point is
70°F, only errors from forecasts with T2s that are
similar (say, between 65° and 75°F) are used in cal-
culating bias estimates at that point. Additionally,

FIG. 4. Stations chosen to bias correct grid point (89, 66; “�”
symbol) for T2 for forecast hour 48 of the forecast initialized at
1200 UTC 2 Mar 2005 are indicated by four- or five-letter iden-
tifiers. Observation locations are colored according to their com-
bined land-use category, relative terrain height (m) is shown with
the gray contour lines, and all model grid points within the region
are shown as small black dots.

TABLE 3. The optimized settings for the bias correction method
for T2 and TD2.

Setting
T2

value
TD2
value

No. of search dates for finding “similar
forecasts”

59 73

No. of similar forecasts 11 10
No. of “similar stations” per grid point 8 9
Tolerance used to define a similar forecast

(°C)
6.5 6.5

Max station error (QC parameter) 6.0 12.5
Max station-to-gridpoint distance (km) 864 1008
Max station-to-gridpoint elevation difference

(m)
250 480

TABLE 4. Optimized settings for the bias correction of 12-h
precipitation (PCP12).

Setting
PCP12
value

No. of search dates for finding similar
forecasts

74

No. of similar forecasts 6
No. of similar stations per grid point 4
Similar forecast bin 1 (in.) 0.0000
Similar forecast bin 2 (in.) 0.0001–0.1101
Similar forecast bin 3 (in.) 0.1102–0.4482
Similar forecast bin 4 (in.) 0.4483�
Max station error (QC parameter, in.) 4.5508
Max station-to-gridpoint distance (km) 718
Max station-to-grid-point elevation

difference (m)
1080
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only the most recent errors are used for estimating
bias at a station as long as a sufficient number are
available.

5) The biases are calculated for each forecast hour,
since biases vary diurnally and the character of the
bias can change with the forecast projection even for
the same time of day.

6) The scheme estimates the bias at a grid point by
using a simple average of the interpolated fore-
cast errors from a minimum number of different
sites that meet the criteria noted above and are
within a set radius for each grid point. Figure 4

shows an example of the stations in the vicinity
of a grid point (89, 66), including the five nearest
stations that were considered similar to the grid
point in question by the land-use, elevation, and
forecast-value criteria. Simple averaging of several
stations without distance weighting is used to avoid
spreading the representational error of a single
station to the surrounding grid points. By averaging
different observing locations in the calculation of
bias at each grid point, the influence of problematic
or unrepresentative observing sites is minimized.
Such an approach determines the underlying sys-

FIG. 5. The effects of bias correction on the 48-h forecast of T2 verifying at 0000 UTC 11 Aug 2004. Values of T2 (°C) (top left) with
and (top right) without bias correction. (bottom left) The bias correction produced by the algorithm (°C) and (bottom right) the
magnitude of the bias correction at observing sites, with blue (red) numbers indicating improvement (degradation) of the forecasts.
Stations degraded or improved by less than 2°C are shown in gray.
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tematic bias common to stations of similar land-use,
elevation, and forecast value. Furthermore, as an
additional quality control step, stations with ex-
tremely large (defined later) forecast errors are not
used.

Several parameter values that describe the various
distances and levels of “similarity” need to be set to
implement the BC method. These values may depend
on the particular observation network density and con-
figuration as well as the model forecast domain and
resolution. In the initial development of the method, an
empirical approach was taken in which parameter val-
ues were adjusted subjectively within physically reason-
able bounds. However, in an attempt to improve upon
the empirically determined settings, an objective opti-
mization was undertaken. The optimization process
used the Evol software module (Billam 2006), which
employs a random-search strategy for minimizing large
variable functions. The Evol routine minimizes a func-
tion by a single metric, which was chosen to be the
domain-averaged mean absolute error (MAE). Minimi-
zation of this metric was found to be more effective
than minimization of the domain-averaged mean error
(ME), since optimizing domain-averaged ME some-
times resulted in a degradation of the MAE due to the
existence of regional pockets of bias of opposite sign.
Experimental use of domain-averaged MAE as the op-
timization metric was found to minimize both MAE
and ME. A more detailed discussion of the optimiza-
tion process is given in the appendix. The optimized
settings for the seven parameters of the BC method for
T2 and TD2 are shown in Table 3. Parallel testing of the
empirical and objectively optimized settings produced
similar results, with the optimized settings showing a
small, but consistent, improvement. Thus, in this paper,
only results based on the objectively optimized settings
are presented.

Using the settings shown in Table 3, the algorithm
works in the following way for temperature (T2) and
dewpoint temperature (TD2). For each hour, it first
interpolates the model forecast for these parameters to
all available observation sites. At each site it then
searches back in time to find at least 11 (10 for TD2)
forecasts at that site that are similar to the current fore-
cast. For temperature and dewpoint, “similar” means
within 6.5°C. Looking for such similar forecasts, the
algorithm will search back a maximum of approxi-
mately 2 months (59 and 73 days, respectively, for T2
and TD2). Such a time limitation ensures that the al-
gorithm will not make use of data from a substantially
different season. Errors from these similar forecasts are
gathered and averaged to estimate the bias at each sta-

tion. Next, the model uses the biases at the observation
locations to estimate values on the grid. For each model
grid point, the algorithm searches for at least eight sta-
tions (all of which have similar forecasts as noted
above) with similar elevation and land use. If eight
“similar stations” are found, it averages the interpo-
lated forecast errors from those stations in order to
estimate an appropriate bias correction to be applied at
that grid point. To reject stations with potential prob-
lems, those with very large errors (6° and 12.5°C, re-
spectively, for T2 and TD2) are not used. The algorithm
is able to look fairly far afield, searching to a maximum
distance of 864 (1008) km for T2 (TD2). Elevations for
similar stations have to be within 250 m for T2 and 480
m for TD2.

For precipitation, some alterations in the algorithm
for T2 and TD2 are made. One adjustment is to elimi-
nate the use of land use when matching observing lo-
cations (and their corresponding errors) to grid points,
since land use is not expected to strongly influence the
forecast bias of precipitation. Thus, for a given grid
point, the search algorithm only looks for observing
stations within a given radius and elevation band. An-
other adjustment to the algorithm is to consider pre-
cipitation forecasts to be “similar” when they fall into
one of four bins: no precipitation, greater than 0.00 in.
but less than some value p1, greater than p1 but less
than or equal to some value p2, and greater than p2.
The value of p1 and p2 were initially determined
through empirical experimentation, with values of 0.01
and 0.10 in. showing reasonable results. Similar to T2
and TD2, an optimization slightly alters the algorithm
settings. Finally, the estimate of bias at a grid point is
calculated using the median of the errors from its
similar stations rather than the mean of those errors
as was done for T2 and TD2. [This was suggested by
T. Gneiting and C. Marzban (2007, personal communi-

TABLE 5. Verification statistics for the uncorrected and bias-
corrected forecasts for T2 (°C) during July 2004–June 2005 at
forecast hours 12, 24, 36, and 48 over the 12-km domain.

Forecast
hour Settings

ME
(°C)

MAE
(°C)

Fraction of
stations

improved
(�0.5°C)

Fraction of
stations

degraded
(�0.5°C)

F12 No BC 0.20 2.26 N/A N/A
BC 0.12 2.19 0.27 0.21

F24 No BC �0.34 2.13 N/A N/A
BC �0.10 1.98 0.30 0.19

F36 No BC �0.30 2.36 N/A N/A
BC �0.06 2.30 0.26 0.21

F48 No BC �0.65 2.38 N/A N/A
BC �0.16 2.19 0.32 0.20
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cation) and showed better results than using means.]
The optimized settings used for precipitation are shown
in Table 4.

An example of the application of the bias correction
scheme is found in Fig. 5, which shows the effects of

such a correction on the 48-h forecast of T2 that veri-
fied at 0000 UTC on 11 August 2004. A major issue at
that time was a significant warm bias for maximum tem-
perature, a problem that was particularly large east of
the Cascade Mountains. The bias correction scheme

FIG. 6. Domain-averaged (left) mean error and (right) mean absolute error by month for T2 corrected (dashed)
and uncorrected (solid) forecasts for 12, 24, 36, and 48 h.
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cooled the surface temperatures over nearly the entire
domain, with the largest alterations (�4°C) in the Co-
lumbia Basin of eastern Washington (Figs. 5a–c). The
bottom-right panel in Fig. 5 shows the difference be-
tween the bias-corrected forecast and the uncorrected
forecast in degrees Celsius at the verification observa-
tion sites, with the color blue indicating improvements
and red indicating degradations. On that day, the impact
of the scheme was highly positive with forecast errors at
nearly all sites being reduced by the bias correction.

4. Results

a. 2-m temperature (T2)

Domain-averaged verification statistics for the cor-
rected and uncorrected 12–48-h forecasts of T2 over the
period July 2004–June 2005 are shown in Table 5. A
total of 57 514 model–observation data pairs were used
in calculating each of these statistics, with the verifica-
tion data being independent from those used to per-
form the bias correction (see the appendix for an ex-

FIG. 7. Daily (top) mean error and (bottom) mean absolute error of T2 for 48-h forecast
for the corrected and uncorrected forecasts during July–September 2004.
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planation). For all hours, the bias correction improved
both the mean error (ME) and mean absolute error
(MAE). The largest improvements were for the 24–
48-h forecasts, which verified at 0000 UTC [1600 Pacific
standard time (PST)], near the time of maximum tem-
perature. For example, at 48 h the mean error for the
uncorrected forecasts was �0.65°C, with the bias cor-
rection reducing the bias by about 0.5°C and the MAE
by 0.19°C. It is worth noting that the algorithm de-
graded forecasts at some stations, but in all cases more

stations were improved than degraded. A comparison
of the bias histogram before (Fig. 3, left side) and after
correction (right side) reveals a large drop in bias in
four of the five combined land-use categories, with the
largest improvements during the summer months.

Figure 6 shows the domain-averaged ME and MAE
for T2 by month for the uncorrected and corrected
forecasts for hours 12, 24, 36, and 48 for July 2004–June
2005. There is substantial diurnal variability in the
amount of bias, with the largest errors occurring at the

FIG. 8. The T2 mean error for corrected and uncorrected 48-h forecasts for (top) Olympia
and (bottom) Elko for 1 Jul–30 Sep 2004.
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time of maximum temperature (hours 24 and 48). Not
surprisingly, the bias correction scheme makes the larg-
est change (improvement) during the hours of largest
bias. Even at times of minimum temperature and
smaller bias, the bias correction scheme substantially
reduces both the bias and mean absolute error. In ad-
dition to diurnal differences in bias, there are periods
with much larger bias, such as July–August 2004 and
February–April 2005. During such periods the bias cor-
rection makes large improvements to the forecasts dur-
ing the daytime, reducing the mean error by roughly
1°C and the mean absolute error by 0.5°C.

Daily domain-averaged results of the bias correction
method for T2 for a shorter period (July–September
2004) and one forecast hour (hour 48) are shown in Fig.
7. The bias correction algorithm decreased the ME by
about 2°C from late July 2004 through the first half of
August 2004, when a large cold bias was present. MAE
was also substantially reduced during this period. The
bias in the uncorrected forecast decreased to near zero
around 20 August 2004, and for a few days a small
warm bias correction was made. Subsequently, the un-
corrected forecast bias remained near zero, and the bias
correction essentially turned off.

The T2 mean errors for the uncorrected and bias-
corrected forecasts for Olympia, Washington, and
Elko, Nevada, for 1 July–30 September 2004, at fore-
cast hour 48, are shown in Fig. 8. Compared to daily
time series of domain-averaged ME (Fig. 7), the indi-
vidual-site ME results show increased temporal vari-
ance in the bias. On some occasions, the bias correction
algorithm degrades the forecast at a single station fol-
lowing major changes in bias. At Olympia, a warm
(positive) correction was made during most of the pe-
riod from 1 July through 30 September 2004. This led to
an improved forecast on some days and a degraded
forecast on others. Over the period shown, the uncor-
rected forecast ME was �0.62°C, while the bias-
corrected forecast ME was 0.86°C. In short, for a fore-
cast with only minimal bias and large variability, the
scheme produced a slight degradation. At Elko, the
forecast bias was much larger and consistent, and thus
the bias correction greatly improved the forecast, with
few days of degradation. Over this period, the uncor-
rected forecast ME at Elko was �2.68°C, while with
bias correction it dropped to �1.36°C.

b. 2-m dewpoint temperature (TD2)

Verification statistics for the corrected and uncor-
rected forecasts for TD2 for the 12–48-h forecasts for
July 2004–June 2005 are shown in Table 6. A total of
32 665 model–observation data pairs were used in cal-

culating these statistics, with verification data being in-
dependent from those used to perform the bias correc-
tion (see the appendix). As for T2, the bias correction
for TD2 improves the mean and mean absolute errors
at all hours. However, for TD2, the uncorrected errors
are much larger and the corrections are substantially
greater and thus highly beneficial, with improvements
in mean error exceeding 1°C at all hours. For TD2 the
ratio of improved to degraded forecasts is much larger
than for T2, with roughly half of all stations being im-
proved by more than 0.5°C.

Figure 9 shows the domain-average ME and MAE
for TD2 by month for the uncorrected and bias-
corrected 12–48-h forecasts for July 2004–June 2005.
This figure shows that the improvement of the bias-
corrected forecast is substantially greater for TD2 than
T2 (Fig. 6). Uncorrected biases are large and positive,
and generally decrease over the period at all forecast
projections. The bias correction scheme provides sub-
stantial improvement (1.5°–3.0°C) over most of the pe-
riod, with the only exception being at the end when the
uncorrected bias had declined to under 2°C. The largest
TD2 biases were during July 2004 and early spring
2005, with biases being greatest during the cool portion
of the day (1200 UTC, 0400 PST). Results of the bias
correction method for TD2 for July–September 2004
are shown in Fig. 10 for the 48-h forecasts and over the
entire domain. The bias corrections are roughly 2.0°–
2.5°C from mid-July through mid-August 2004, with
nearly all days showing substantial improvement. Simi-
lar improvements are noted in the MAE. As found for
temperature, the greatest improvements are made
when the bias is largest (in this case, the first half of the
period).

The spatial variations in the impacts of the bias cor-
rection scheme for TD2 for a sample forecast are shown
in Fig. 11, which presents corrected forecast error mi-

TABLE 6. Verification statistics for the uncorrected and bias-
corrected forecasts for TD2 (°C) during July 2004–June 2005 for
the 12-, 24-, 36-, and 48-h forecasts.

Forecast
hour Settings

ME
(°C)

MAE
(°C)

Fraction of
stations

improved
(�0.5°C)

Fraction of
stations

degraded
(�0.5°C)

F12 No BC 2.26 2.80 N/A N/A
BC 1.25 2.33 0.46 0.20

F24 No BC 2.55 3.23 N/A N/A
BC 1.36 2.65 0.48 0.21

F36 No BC 1.77 2.64 N/A N/A
BC 1.11 2.40 0.37 0.22

F48 No BC 2.35 3.25 N/A N/A
BC 1.32 2.79 0.46 0.23
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nus the uncorrected forecast error at observing loca-
tions for the 48-h forecast verifying at 0000 UTC on 9
August 2004. Forecasts at observation locations that
were “helped” by bias correction are shown by blue
negative numbers, and those that were “hurt” are indi-
cated by positive red numbers. For this forecast, the

impact of the bias correction was overwhelmingly posi-
tive, with typical improvements of �2°C.

An illustration of the influence of the bias-corrected
scheme on TD2 at two locations over the summer of
2004 is provided in Fig. 12 (again for the 48-h forecast).
One location had relatively little bias (Olympia), while

FIG. 9. Same as in Fig. 6 but for TD2. Shown are the results for 12, 24, 36, and 48 h.
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the other (Elko) possessed an extraordinarily large
bias. At Olympia, a modest 2°–3°C bias in the 48-h
forecast during the first month was reduced by the
scheme, while little was done during the second half of
the summer when the dewpoint bias was small. The
MEs for Olympia over that period were 1.26° and
0.09°C for the uncorrected and corrected 48-h forecasts,
respectively. In contrast, at Elko the bias was far larger,
averaging 5°–10°C, with transient peaks exceeding
15°C. At this location the bias correction scheme made
large improvements of �4°C, with the average ME be-

ing 7.86° and 3.39°C for the uncorrected and corrected
forecasts, respectively.

c. 12-h precipitation amounts (PCP12)

As noted earlier, the algorithm for bias-correcting
precipitation differs from that used for temperature and
dewpoint, with land use not being considered. Also dif-
ferent was the binning of precipitation to deal with the
need for sufficient information for bias correction for a
parameter that occurs less frequently than continuous
variables such as temperature or dewpoint. Table 7 pre-

FIG. 10. Same as in Fig. 7 but for TD2.
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sents a summary of the results for PCP12 for July 2004–
June 2005 for hours 12, 24, 36, and 48 over the entire
12-km domain. Mean error is reduced for three of the
four forecast hours, while mean absolute error is im-
proved at all times, with the greatest improvements for
the longest ranges. The ratio of improved to degraded
forecasts (by at least 0.05 in.) due to the bias correction
scheme increases from roughly 2.3 at hour 12 to ap-
proximately 3 at the longer projections.

Figure 13 shows monthly average mean and mean
absolute errors for the 12-, 24-, 36-, and 48-h PCP12
forecasts for July 2004–June 2005 over the entire 12-km
domain. Mean errors were generally improved from
June 2004 through February 2005, with dramatic en-
hancement occurring for hours 36 and 48, when biases
were highest. In contrast, average precipitation biases
were occasionally worsened during the later periods
when bias was low. Mean absolute errors are reduced
for all months and for all forecast projections, with par-
ticular improvements at 36 and 48 h.

An example of the impact of the bias correction
scheme for a shorter period of high precipitation (No-
vember–December 2004) is shown in a daily plot, which
presents average values over the entire domain (Fig.
14). The mean error plot (Fig. 14, top panel) indicates

persistent overprediction by the model. The bias cor-
rection scheme greatly reduces the excessive precipita-
tion but occasionally goes too far, particularly during
transient declines in precipitation. Mean absolute error
(Fig. 14, bottom panel) shows general reductions in er-
ror for the bias-corrected values over nearly the entire
period, even during the days of excessive compensation
for the model overprediction.

Figure 15 shows the daily 12-h precipitation error for
hour 48 at a single station, Seattle–Tacoma Interna-
tional Airport, for January–March 2005. The bias cor-
rection scheme generally improves the forecast, primar-
ily by reducing overprediction, but occasionally de-
grades the precipitation prediction during spikes of
model underprediction.

5. Discussion and summary

This paper has reviewed a new approach for reducing
systematic bias in the forecasts of 2-m temperature,
dewpoint temperature, and 12-h precipitation; one that
is applicable to other parameters as well. This scheme is
designed to be robust and flexible, adaptable to varying
observation densities, and able to handle regime
changes without large negative effects. An underlying

FIG. 11. Same as in Fig. 5, bottom-right panel, but for TD2.
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rationale of the algorithm is that biases in surface vari-
ables such as temperature and dewpoint are highly re-
lated to surface land use and elevation. Furthermore,
since changes in weather regimes can alter the system-
atic biases, bias correction should only make use of
information for recent periods of similar parameter val-
ues. To lessen the impact of unrepresentative stations,
an average of the forecast errors at several stations is
used, rather than employing proximity-based weighting
and allowing an individual station to heavily influence
neighboring grid points. The algorithm uses stations

close in time and space if their observations and site
characteristics meet the above requirements.

Based on over a year’s worth of real-time testing, it
appears that this algorithm is highly promising, substan-
tially reducing bias during periods of large and sus-
tained bias, while doing little when bias is small.
Changes in weather regime have a negative impact for
only a day or two and far more stations are improved
than degraded by this approach. Both the bias-
corrected and the original MM5 forecasts have been
distributed operationally to the Seattle office of the Na-

FIG. 12. Same as in Fig. 8 but for TD2. Mean errors are shown for (top) Olympia and
(bottom) Elko.
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tional Weather Service for over a year as an aid for
initializing its gridded weather preparation system (the
Interactive Forecast Preparation System, IFPS).

The approach described above is essentially univari-
ate and single level. Thus, inconsistencies can result
with other parameters (such as temperature being ad-
justed below the dewpoint) or with values at other lev-
els (since the adjustment at only one level can produce
an unphysical lapse rate). It would not be difficult to
expand the algorithm to deal with such potential incon-
sistencies, but it is not clear that this is a serious prob-
lem since many applications are only dependent on sur-
face conditions. The bias correction values produced by
this algorithm have value beyond their use in weather
prediction and other applications. Specifically, they
show the nature and characteristics of model bias, and
direct researchers and developers to deficiencies in
model and surface physics.

It is clear that real-time bias correction on a grid
deserves more attention and represents “low-hanging
fruit” in the quest to improve surface weather predic-
tion. Grid-based bias correction is a necessity for pro-
ducing reliable and sharp probabilistic information
from ensemble members with significant systematic bi-
ases, and bias removal will be an important component
of future ensemble-based data assimilation schemes,
such as ensemble Kalman filters (EnKFs). The rela-
tively simple grid-based bias correction scheme pre-
sented above is only a beginning and its improvement
and extension to other variables will be completed over
the course of the next year.
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APPENDIX

Optimization of the Bias Correction Settings

In an attempt to improve upon the results of the
experimentally determined settings for the BC method,
an objective optimization routine (Evol) was employed,
using MAE as the metric to minimize. To achieve in-
dependent evaluation of each iteration during optimi-
zation, as well as evaluation of the final optimized set-
tings, the observations were randomly divided into
three groups: one for bias estimation during optimiza-
tion (50% of all observations), one for metric calcula-
tion (verification) during the optimization (25% of all
observations), and a final set for independently verify-
ing the final, optimized settings (25% of all observa-
tions). A map showing the three groups of observations
can be seen in Fig. A1.

The optimization process proceeded as follows:

1) Using the experimentally determined (subjective)
settings as a first guess, the bias correction is per-
formed on the model grid using a 50% subset of the
observations for each day over a period in question
(e.g., 1 month) for a given forecast hour.

2) The resulting bias-corrected grids are then verified
using the second, 25% set of observations, produc-
ing a metric (domain-averaged MAE), which is re-
turned to the Evol routine along with the settings
that produced it.

3) Using its random search strategy, the Evol routine
determines a new group of settings to test and the
process is repeated until the domain-averaged MAE
is minimized.

4) Convergence was assumed when the variance of the
domain-averaged MAE over the previous 30 itera-
tions was less than 0.5% of the variance of the do-
main-averaged MAE over all prior iterations. The
settings at convergence were the final, “optimized”
settings for that period and forecast hour.

5) Using the final optimized settings, the grids were
bias corrected for each day in the given period and
the results were verified with the third, 25% set of
independent observations. The final verification al-
lowed for a fair comparison of the performance of
the optimized settings with other baseline settings.
Figure A2 shows the MAE metric for each iteration
during the optimization of July 2004 T2 at forecast
hour 24.

TABLE 7. Verification statistics for the uncorrected and bias-
corrected forecasts for PCP12 (in) during July 2004–June 2005 12-,
24-, 36-, and 48-h forecast hours over the 12-km domain.

Forecast
hour Settings

ME
(in.)

MAE
(in.)

Fraction of
stations

improved
(�0.05 in.)

Fraction of
stations

degraded
(�0.05 in.)

F12 No BC 0.003 0.040 N/A N/A
BC �0.011 0.035 0.07 0.03

F24 No BC 0.013 0.049 N/A N/A
BC �0.011 0.040 0.11 0.04

F36 No BC 0.018 0.053 N/A N/A
BC �0.010 0.040 0.132 0.042

F48 No BC 0.018 0.060 N/A N/A
BC �0.013 0.046 0.134 0.047
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Initially for T2 and TD2, optimizations were per-
formed separately for each month of the July 2004–
June 2005 period for forecast hours 12, 24, 36, 48, 60,
and 72, totaling 72 monthly optimizations for each
variable. For PCP12, optimizations were only per-
formed for each month of the July 2004–June 2005

period for forecast hours 36 and 48. Verification of these
optimized settings was then compared to that of the
experimentally determined settings. Monthly optimized
results were superior to the experimentally determined
settings in terms of MAE for 62 of the 72 months of the
July 2004–June 2005 period for T2 and TD2.

FIG. 13. (left) Mean error and (right) mean absolute error by month for PCP12 corrected (dashed) and
uncorrected (solid) 12-, 24-, 36-, and 48-h forecasts.
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Optimizations were also run for the entire 12-month
(July 2004–June 2005) period for T2 and TD2 for fore-
cast hours 12, 24, 36, 48, 60, and 72. As with the monthly
optimizations, the verification of the optimized settings
was then compared to the verification of the experi-
mentally determined settings. The optimized annual re-
sults were superior for all forecast hours tested. Annual
optimizations were not run for PCP12

The optimized settings varied more over the 72
monthly optimizations than over the 6 annual optimi-
zations. Figure A3 shows the optimized setting for the

maximum distance between observation and grid point
for each monthly optimization and each annual optimi-
zation verifying for forecast hours 24, 48, and 72 for T2.
The monthly optimized maximum distance ranged from
288 to 1008 km, while the annual optimized maximum
distance ranged from 660 to 816 km. The variability in
the optimized value for this setting was similar to the
variability seen for the other settings used in the BC
method. In general, the optimized settings increased in
value over the experimentally determined ones.

Given the variation of settings between the monthly

FIG. 14. (top) Mean error and (bottom) mean absolute error of PCP12 for the 48-h
forecasts corrected and uncorrected during November–December 2004.
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FIG. 15. Error in PCP12 for 48-h forecasts at Seattle–Tacoma International Airport.

FIG. A1. Observation groups used for bias estimation, optimization, and final verification.
Green stations (50% of total) were used for bias estimation during optimization, blue stations
(25% of total) were used for verification during optimization, and red stations (25% of total)
were used for independent verification of the final, optimized settings.
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and annual optimizations, tests were performed to
evaluate the bias correction using averages or medians
of the settings. For example, the average of the settings
from optimizations for all forecast hours verifying at
0000 UTC were used to bias correct each forecast hour
(even those verifying at 1200 UTC), with results com-
pared to a given forecast hour’s individually optimized
settings. The average optimized settings showed com-
petitive results with the forecast hour-specific opti-
mized settings. Various average settings were tested,

including the average of the monthly optimized settings
for all forecast hours, the average of the annual settings
for all forecast hours, and the median of the annual
settings for all forecast hours. For T2 and TD2, an av-
erage of the annual optimized settings for all forecast
hours performed as well as (and in some cases better
than) the individual forecast hour-specific optimized
settings. The competitive performance of the average
annually optimized settings held even when the verifi-
cation statistics were compared on a monthly basis. For

FIG. A2. MAE metric for each iteration of the Evol optimization for July 2004, T2,
forecast hour 24.

FIG. A3. Settings for the maximum distance between grid points and observations for
various monthly and annual optimizations for forecast hours valid at 0000 UTC.

458 W E A T H E R A N D F O R E C A S T I N G VOLUME 23

Fig A3 live 4/C



PCP12, an average of the monthly optimized settings
for forecast hours 36 and 48 performed the best.

The performance of the BC method was not particu-
larly sensitive to small or even moderate-sized changes
to individual settings. Hence, the optimization surface
appeared to be relatively “flat.” A considerable benefit
of this finding is that one group of settings appears to
suffice, eliminating the need to vary the settings by sea-
son or time of day. Table 3 shows the final settings for
T2 and TD2 and Table 4 shows the final settings for
PCP12.

For T2 and TD2, the final, optimized settings are
larger than the experimentally determined settings in
most cases. An effect of these increases in setting values
is to increase the data used for bias estimation at sta-
tions and grid points. The increases also slow the bias
correction algorithm’s response to changes in the un-
corrected forecast bias, as the number of similar fore-
casts used increased from 5 to 11 for T2 and from 5 to
10 for TD2.

For PCP12, the initial settings used for optimization
were essentially those of the final optimized settings for
T2, with the exception being the empirically set precipi-
tation bins. Settings for PCP12 did not change much
from these initial settings for all but the precipitation
bins, which all increased.
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