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Abstract

This dissertation describes research designed to enhance hydrometeorological forecasts. The
objective of the research is to deliver an optimal methodology to produce reliable, skillful
and economically valuable probabilistic temperature and precipitation forecasts.

Weather plays a dominant role for energy companies relying on forecasts of watershed
precipitation and temperature to drive reservoir models, and forecasts of temperatures to
meet energy demand requirements. Extraordinary precipitation events and temperature
extremes involve consequential water- and power-management decisions.

This research compared weighted-average, recursive, and model output statistics bias-
correction methods and determined optimal window-length to calibrate temperature and
precipitation forecasts. The research evaluated seven different methods for daily maximum
and minimum temperature forecasts, and three different methods for daily quantitative
precipitation forecasts, within a region of complex terrain in southwestern British Columbia,
Canada.

This research then examined ensemble prediction system design by assessing a three-
model suite of multi-resolution limited area mesoscale models. The research employed two
different economic models to investigate the ensemble design that produced the highest-
quality, most valuable forecasts.

The best post-processing methods for temperature forecasts included moving-weighted
average methods and a Kalman filter method. The optimal window-length proved to be
14 days. The best post-processing methods for achieving mass balance in quantitative pre-
cipitation forecasts were a moving-average method and the best easy systematic estimator
method. The optimal window-length for moving-average quantitative precipitation fore-
casts was 40 days. The best ensemble configuration incorporated all resolution members
from all three models.

A cost/loss model adapted specifically for the hydro-electric energy sector indicated that
operators managing rainfall-dominated, high-head reservoirs should lower their reservoir
with relatively low probabilities of forecast precipitation. A reservoir-operation model based
on decision theory and variable energy pricing showed that applying an ensemble-average or
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Abstract

full-ensemble precipitation forecast provided a much greater profit than using only a single
deterministic high-resolution forecast.

Finally, a bias-corrected super-ensemble prediction system was designed to produce prob-
abilistic temperature forecasts for ten cities in western North America. The system exhibited
skill and value nine days into the future when using the ensemble average, and 12 days into
the future when employing the full ensemble forecast.
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Chapter 1

Background

Energy utility companies must efficiently balance production from limited energy sources
with increasing demand from industrial, business, and residential consumers. Hydro-electric
companies rely on forecasts of watershed precipitation and temperature to drive hydrologic
reservoir inflow models, and forecasts of urban temperatures to anticipate energy demand
(Dempsey et al., 1998; Stensrud, 2006). Weather forecasts affect three types of hydro-electric
planning— operations, financial, and social/environmental:

1. Operations includes managing water levels in reservoirs, changing the water flow
through turbines to generate energy, and controlling river flow downstream of dams.
Operations planners rely on weather forecasts for extreme high-inflow (flood) events,
for daily operations planning, and for long-term water resource management. Ta-
ble 1.1 shows how weather factors on various timescales influence the decision making
process.

2. Financial planners consider spot market prices for selling and buying power, and
for short- and long-term futures markets. On a daily basis, significant precipitation
events or temperature extremes involve potential profit or loss decisions in the tens to
hundreds of thousands of dollars worth of power generation. These economic factors
add to environmental and societal benefits and costs that must be considered as part
of a complete decision-making structure.

3. Environmental and social aspects of planning and decision-making may be volun-
tary on behalf of a power-generation company; they may be in the best economic
interests of a company in a competitive energy marketplace where consumers want
green energy; or they may be regulated by water-use licenses agreed upon by multiple
stakeholders. There are many competing interests constraining a simple maxim of gen-
erating power to meet load. For example, government environmental agencies tasked
with supporting multi-species fish stocks require reservoir levels and downstream flows
that sustain fish and riparian habitat. Municipalities oversee jurisdictional authority
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to ensure public safety during high-flow flooding events. Private businesses that op-
erate docks, marinas, and recreational facilities rely on stable reservoir water levels
to sustain their economic viability. Therefore, improvement in hydrometeorological
forecasts provides a cascading arena of benefits to companies, government agencies,
stakeholders, and the general public.

This dissertation is motivated by the requirement by water resource managers for im-
proved weather forecasts. The approach is to investigate the ability of recent numerical
weather prediction (NWP) computer models to provide site-specific detailed forecasts in
the one to fifteen day forecast range.

The research will have potential applications for all energy utilities. A recent survey
commissioned by the Canadian Electrical Association found that 70% of responding electric
utility companies in Canada, the United States, and other worldwide locations did not
incorporate NWP model output for hydrologic guidance (Morassutti, 2004). The remaining
30% utilized NWP output but without post-processing (bias correcting) the data prior to
inputting into their respective hydrologic models. The report states that:

“[P]oor hydrologic forecasts are largely the result of deficient forecasts of pre-
cipitation and temperature. It would also appear that there is a fair measure of
subjective judgement involved when making modifications to the NWP model
output before implementation into hydrological models.”

The report also states that:

“The reason why utility companies have not developed more intricate techniques
for handling and processing NWP model output for hydrological prediction lies
in the fact that the private sector generally lags five to ten years behind method-
ological developments achieved within the scientific research community.”

In addition to published reports, recent workshops and conferences espouse the need for
improved hydrometeorological information. A series of workshops organized by HEPEX1

(the latest in June 2007 in Stresa, Italy) have brought the international hydrological com-
munity together with the meteorological community. The objective of the workshops was to
develop a method to produce reliable hydrological ensemble forecasts that can be used with

1Hydrological Ensemble Prediction EXperiment. HEPEX is an international collaboration of scientists
formed specifically to address downscaling and ensemble forecasting issues for the hydrometeorological com-
munity.
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confidence to assist water resource managers. Water resource managers frequently confront
decisions of significant consequence for public health and safety and for the economy.

HEPEX is working toward a state-of-the-art end-to-end hydrological ensemble stream-
flow prediction system (Schaake et al., 2007). The ultimate goal ensures an automated,
skillful, reliable ensemble streamflow forecast product that explicitly accounts for the major
sources of uncertainty in the forecasting process. The initial stage in the process clas-
sifies an ensemble of atmospheric forecasts forcing a hydrologic model with downscaled,
bias-corrected meteorological forecasts of specific hydrometeorological variables.

Krzysztofowicz (2001) targeted future precipitation as the prevalent source of uncertainty
in hydrologic forecasting. Krzysztofowicz et al. (1993) acknowledged that precipitation
constitutes the principal input into a hydrologic model, and Hoinka and Davies (2007)
stated that an accurate quantitative precipitation forecast (QPF) is currently one of the
most critical operational forecasting challenges. Droegemeier et al. (2000) claimed that
accurate forecasts of precipitation amounts at fine spatial and temporal resolution are a
critical input for hydrometeorological flood and river flow forecasting models. As short-
range precipitation forecasts generated by mesoscale ensemble forecast systems continue to
improve, Yuan et al. (2005) agreed that it is becoming feasible to consider their use to
drive hydrologic models for general flood and streamflow forecasting. Yuan et al. (2005)
summarized their recent findings by stating:

“[W]e believe the results of this paper support the notion that the time is ripe to
pursue an accelerated development of ensemble hydrometeorological prediction
systems. Before the goal of a skillful coupled ensemble forecast runoff system
can be routinely realized, however, comprehensive calibration studies and mul-
tivariate calibration efforts must be performed for atmospheric variables that
historically have not been scrutinized. Such studies must be extended to longer
forecast projections.”

A widespread need exists to research probabilistic downscaled forecasts specifically for
hydrometeorologic applications. This dissertation addresses this need by merging the ad-
vancements forged in the meteorological research community with the requirements of pro-
fessional hydrologists to improve water resource management capabilities.
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1.1 Forecast Evaluation

The first question that a water resource manager asks when given a weather forecast is:
“How good are these forecasts?” Before attempting to answer this question, a suite of
defined terms must be agreed upon. Murphy (1993) distinguished three types of “goodness”:

Consistency - the degree to which the forecast corresponds to the forecaster’s best
judgement about the situation, based upon the forecaster’s knowledge base.

Quality - the degree to which the forecast corresponds to what actually happened.

Value - the degree to which the forecast helps a decision-maker realize some incre-
mental economic, environmental, or societal benefit.

Looking more closely at forecast quality, Murphy (ibid.) describes nine attributes that
assess the quality of a forecast. These are:

Bias - the correspondence between the sample mean forecast and the sample mean
observation.

Association - the strength of the linear relationship between the forecasts and obser-
vations (e.g., the correlation coefficient measures this linear relationship).

Accuracy - the level of agreement between the forecast and the truth (as represented
by observations). The difference between the forecast and the observation is the error.
The lower the errors, the greater the accuracy.

Skill - the relative accuracy of the forecast over some reference forecast. The reference
forecast is generally an unskilled forecast such as random chance, persistence (defined
as the most recent set of observations, “persistence” implies no change in condition),
or climatology. Skill refers to the increase in accuracy due purely to the capability
of the forecast system. Weather forecasts may be more accurate simply because the
weather is easier to forecast – skill takes this into account.

Reliability - the average agreement between the forecast values and the observed
values. If all forecasts are considered together, then the overall reliability is the same
as the bias. If the forecasts are stratified into different ranges or categories, then the
reliability is the same as the conditional bias, i.e., it has a different value for each
category.
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Resolution - the ability of the forecast to sort or resolve the set of events into subsets
with different frequency distributions. This means that the distribution of outcomes
when “A” is forecast is different from the distribution of outcomes when “B” is fore-
cast. Even if the forecasts are wrong, the forecast system has resolution if it can
successfully separate one type of outcome from another.

Sharpness - the tendency of the forecast to predict extreme values. To use a counter-
example, a forecast of “climatology” has no sharpness. Sharpness is a property of the
forecasts only, and, like resolution, a forecast can have this attribute even if it’s wrong
(in this case it would have poor reliability).

Discrimination - ability of the forecast to discriminate among observations, that is, to
have a higher prediction frequency for an outcome whenever that outcome occurs.

Uncertainty - the variability of the observations. The greater the uncertainty, the
more difficult the forecast will tend to be. This definition of uncertainty is dependent
on the observations only and is not related to predictive uncertainty.

While statistical post-processing can enhance reliability, the same does not apply to
resolution and discrimination. Therefore measures of resolution and discrimination assess
more directly the inherent quality of a forecasting system.

Traditionally, forecast verification has emphasized accuracy and skill. It is important to
note that the other attributes of forecast performance also have a strong influence on the
value of the forecast. Forecast value is not the same as forecast quality. A forecast has high
quality if it predicts the observed conditions well according to some objective or subjective
criteria. It has value if it helps the user to make a better decision.

The “truth” data that we use to verify forecasts generally come from observational data.
Typically rain gauge measurements, temperature observations, wind speed and direction, or
any other measurable meteorologic quantities constitute an observational dataset. In many
cases it is difficult to know the exact truth because there are errors in the observations.
Sources of uncertainty include random and systematic errors in the measurements them-
selves, sampling error, instrument calibration error, and analysis error if the observational
data are altered or smoothed to match the scale of the forecast. Most verification studies
neglect the errors in observations (or analysis fields), the unwritten argument in each study
assuming that observation errors are small compared to errors in the forecasts and therefore
have a negligible effect on the results. Saetra et al. (2004) claimed that, in the short-range,
where forecast errors are still small, this argument may not be justified.
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A single verification metric is inadequate for evaluating all of the above desired attributes
of an ensemble forecasting system. Also, in contrast to a single deterministic forecast, it is
impossible to objectively assess the quality of a single probabilistic forecast; ensemble sys-
tems must be verified over many cases. Therefore the research presented here employed the
following suite of verification measures, proposed at a 1999 workshop on short-to-medium
range ensemble forecasting (Hamill et al., 2000a), to assess the quality and value of the
hydrometeorological ensemble forecasts examined in this dissertation.

The use of these verification measures was confirmed in a report from a November
2007 European Centre for Medium-Range Weather Forecasts workshop on ensemble pre-
diction (available online at http://www.ecmwf.int/newsevents/meetings/workshops/2007/
ensemble prediction/wg3.pdf, accessed April 12, 2008). See Jolliffe and Stephenson (2003)
or Wilks (2006) for a complete description of these verification metrics:

1. Probabilistic skill scores, including the Brier Score, Brier Skill Score, Brier Score de-
composition (into reliability, resolution, and uncertainty terms), and the Continuous
Ranked Probability Score (also decomposed into reliability, resolution, and uncer-
tainty terms), to judge the quality of probabilistic forecasts.

2. Reliability diagrams, with a subset diagram indicating sharpness of the forecasts, to
evaluate forecast reliability.

3. The Relative Operating Characteristic (ROC) curve, employed to provide a mea-
sure of resolution and discrimination. In addition, a static economic decision model
(Richardson, 2000, 2003), uniquely determined from ROC curves, was employed to
assess the potential economic value of the forecasts.

4. Rank histograms and trade-off diagrams, included to diagnose the ability of the en-
semble to sample the spread of the forecasts in relation to the associated observations.

Even the most thorough examination of ensemble prediction systems cannot escape the
tenet that all evaluation methods are contaminated by at least three sources of noise (Hamill
et al., 2000a): improper estimates of probabilities from small-sized ensembles, insufficient
variety and number of cases in the forecast evaluation, and imperfect observations. Saetra
et al. (2004) reported the findings that rank histograms were especially sensitive to the
presence of observation errors in their study, while reliability diagrams were far less sensitive
in this respect.

Given these noise sources, how can we remove or minimize errors in the NWP forecasts?
Systematic errors can be reduced using statistical post-processing, described next. Random
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errors can be reduced by combining an ensemble of different NWP forecasts, as described in
section 1.3. Knowledge of the probability distribution of the remaining errors can be used
to suggest the best, most economical decisions in the face of uncertainty, as described in
section 1.4.

1.2 Statistical Post-processing

The operational use of NWP model output for hydrologic (and other) applications is ham-
pered by large biases in surface sensible-weather fields (Clark et al., 2004; Eckel and Mass,
2005). Statistical post-processing the output of numerical weather forecasts can be a suc-
cessful technique to reduce, minimize, correct, or eliminate bias. The bias corrections
are needed to account (for example) for differences between the model and actual terrain
heights, errors in the depth of the surface layer and near-surface lapse rate, the amount of
entrainment from the boundary layer top, the ratio of sensible to latent heat fluxes, net
radiation (Stensrud and Yussouf, 2003), and any systematic errors in NWP model initial
conditions (ICs) and boundary conditions (BCs).

The earliest method of statistical post-processing that gained widespread use was the
perfect prog method (Klein et al., 1959). In the perfect prog method (PPM), regression
equations are derived for predictands that were not forecast as a function of NWP analyses
predictors (as if the forecasts were perfect). However, forecast model bias is not taken
into account in PPM, therefore, this method is usually applied to very short-term forecasts
(Brunet et al., 1988; Mohanty and Dimri, 2004).

The method of Model Output Statistics, or MOS, was originally formalized in the seminal
paper by Glahn and Lowry (1972), and is the gold standard of NWP model output post-
processing (Kalnay, 2003). MOS routines are generally much more computer intensive
than PPM routines, requiring a long, stable dataset since MOS forecast variance is both
model and forecast-period dependent. Woodcock and Engel (2005) suggested that the
importance of direct-model-output (DMO) will increase relative to MOS because MOS
cannot easily accommodate new sites, models, and model changes; MOS often employs over
a million predictive equations that require 2 to 4 years of stable developmental data for
their derivation.

Direct comparison between MOS forecasts and PPM forecasts (Brunet et al., 1988; Carter
et al., 1989; Hay and Clark, 2003; Wilson and Vallée, 2003; Clark and Hay, 2004; Hart et al.,
2004) has shown that PPM forecasts retain their sharpness (forecast extreme events more
often) over the entire range of forecast projections, while MOS forecasts conservatively
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tend toward climatology with increasing projection. However MOS forecasts retain their
reliability (remain well calibrated) while PPM forecasts become less reliable with increasing
projection.

Taylor and Leslie (2005) performed a single-station assessment of MOS temperature
forecasts within the continental United States, concluding that error in the forecasts is
proportional to variance in the observations, and that forecasts for any one station rarely
follow a consistent temporal pattern for more than two or three consecutive days. Taylor
and Leslie (2005) also demonstrated that MOS forecasts are often inaccurate in the vicinity
of strong temperature gradients, for locations affected by shallow cold air masses, or for
stations in regions of anomalously warm or cold temperatures.

For hydrometeorological applications that require operational forecasts for many loca-
tions and many projection times, the development and maintenance of a MOS system can
prove too onerous. Even national weather centers such as the Meteorological Service of
Canada (MSC) discontinued their MOS forecast system in the late 1980’s because signifi-
cant model changes had become too frequent and the development cost too great to maintain
a statistically stable MOS system (Wilson and Vallée, 2002).

Further research has indicated updateable MOS (UMOS) can lessen the disadvantage of
model variance over standard MOS routines. UMOS (Wilson and Vallée, 2002, 2003) can be
implemented with briefer training than MOS, but requires an even more extensive database
overhead to maintain and update. UMOS forecasts in western Canada are provided by
MSC, but only at a limited set of valley-bottom airport sites. Other advancements in the
use of MOS are the application of consensus MOS (CMOS) forecasts (an average of MOS
over two or more models), and weighted MOS (WMOS) (Baars and Mass, 2005).

Non-linear methodologies, including neural networks (Hall et al., 1999; Koizumi, 1999;
Marzban, 2003; Yuval and Hsieh, 2003; Yuan et al., 2007), logistic regression (Vislocky
and Young, 1989), and generalized additive modeling (Vislocky and Fritsch, 1995) have
been adapted to post-processing weather forecasts in various specific applications. Neural
network applications require an extensive dataset and are computationally expensive to
implement operationally on a real-time basis. Clustering (Gutierrez et al., 2004) is an analog
method requiring a very large dataset. Pattern Typing (Conway et al., 1996) is a dynamic
method that may require subjective intervention. An alternative theoretical approach that
combines the benefit of MOS and PPM by utilizing the information in reanalysis data has
been proposed by Marzban et al. (2006).

The drawbacks to MOS-based techniques have led to the exploration of other approaches
to statistically post-process model forecast output that do not require long data archival
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periods (Stensrud and Yussouf, 2003; Cheng and Steenburgh, 2007). The overall objective
of error correction is to minimize the error of the next forecast using measurement estimates
of past errors. A short learning period enables an updating system to respond quickly to
factors that affect error (for example model changes and changes in weather regime) but
increases vulnerability to missing data and/or large errors and other limitations of small
sample estimates such as missing extreme events (Woodcock and Engel, 2005).

A simple 7-day moving average error calculation is shown to improve upon raw model
point forecasts (Stensrud and Skindlov, 1996). Eckel and Mass (2005) and Jones et al.
(2007) successfully implemented a moving average technique as a post-processing method
to reduce systematic error in DMO, using a 14-day moving average error calculation to
reduce mean error in temperature forecasts. Woodcock and Engel (2005) stated a 15-30
day bias correction window effectively removes bias in DMO forecasts using the best easy
systematic estimator (Wonnacott and Wonnacott, 1972).

Kalman filtering (Kalman and Bucy, 1961; Bozic, 1994; Homleid, 1995; Majewski, 1997;
Kalnay, 2003; Roeger et al., 2003; Delle Monache, 2005) is a linear method that is adaptive
to model changes, using the previous observation-forecast pair to calculate model error. It
then predicts the model error to correct the next forecast. This recursive, adaptive method
does not need an extensive, static database to be trained.

Exploring a wide array of statistical post-processing methodologies continues to be an
active area of research, as documented by several very recent publications on the subject.
Hacker and Rife (2007) and Gel (2007) provided analyses for estimating systematic error on
(bias-correcting) mesoscale model output grids of near-surface parameters. Hansen (2007)
used a fuzzy logic-based analog method to improve standard objective techniques for airport
ceiling and visibility forecasts in TAFs (terminal aerodrome forecast).

In summary, statistical post-processing adds value to DMO by objectively reducing sys-
tematic error between forecasts and observations by producing site-specific forecasts. In
Chapter 2 of this dissertation, several weighted-average post-processing methods, a re-
cursive method (Kalman filtering), and an updateable MOS method are investigated for
hydrometeorological applications (specifically temperature and precipitation forecasts) in
complex terrain.
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1.3 Ensemble Forecasting

1.3.1 Historical Perspective

John M. Lewis (2005) has published a treatise on the roots of ensemble forecasting, tracing
the generation of a probabilistic view of dynamical weather prediction back to the early
1950’s. Lewis (ibid.) crediteds Eric Eady with first questioning the limits of deterministic
prediction (Eady, 1951) and introducing the view that a model’s estimate of the atmo-
sphere’s initial state is generally erroneous and that the models are imperfect. By the end
of the decade, Philip Thompson (Thompson, 1957) and Edward Lorenz explored the pre-
dictability limits of deterministic forecasting. By the early 1960’s, anchored by the seminal
work by Lorenz (1963), the essential nature of non-linear dynamic flows−unstable systems
characterized by nonperiodicity (later referred to as chaotic systems)−placed bounds on the
predictability of the system. Edward Epstein (1969) is credited with first formulating the
method of stochastic-dynamic prediction which, though impractical for all but very low or-
der models, forms the theoretical basis for subsequent ensemble forecasting. However, many
of today’s authors cite Leith (1974) as laying the foundation stone of operational ensemble
forecasting−approximating a forecast probability density function using a finite sample of
statistically-generated forecast scenarios [e.g., Du et al. (1997); Hamill and Colucci (1998);
Hamill et al. (2000a); Hou et al. (2001); Wandishin et al. (2001); Buizza et al. (2005); Eckel
and Mass (2005); Chien et al. (2006)] and establishing that the ensemble mean yields a
forecast more skillful than the individual ensemble members, while the ensemble dispersion
provides quantitative information on forecast uncertainty (Tracton and Kalnay, 1993).

Buizza et al. (2005) summarized this past half-century of work on probabilistic forecasting
in the following encapsulated description:

“The weather is a chaotic system: small errors in the initial conditions of a
forecast grow rapidly and affect predictability. Furthermore, predictability is
limited by model errors linked to the approximate simulation of atmospheric
processes of the state-of-the-art numerical models. These two sources of uncer-
tainty limit the skill of single, deterministic forecasts in an unpredictable way,
with days of high/poor quality forecasts followed by days of poor/high quality
forecasts. Ensemble prediction is a feasible way to complement a single, de-
terministic forecast with an estimate of the probability density function of the
forecast states.”
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1.3.2 Recent Developments

Operational forecasting centers employ several methods to create ensemble members, such
as a Monte Carlo-like approach (Palmer et al., 1990), the breeding of growing modes (Toth
and Kalnay, 1993), singular vectors (Buizza and Palmer, 1995; Molteni et al., 1996), and
by perturbing observations with random errors (Houtekamer et al., 1996; Hamill et al.,
2000b). And, since the underlying atmospheric model remains imperfect, forecasters gain
a more complete picture of uncertainty by including perturbed model physics, in addition
to perturbed initial conditions, in an ensemble prediction system (Andersson et al., 1998;
Houtekamer and Mitchell, 1998; Stensrud et al., 2000). For example, Wang and Seaman
(1997) found that different convective parameterization schemes embedded in the same
model produced different precipitation results, and no one scheme always outperformed
the others. Buizza et al. (2005) assembled a thorough description and inter-comparison of
perturbation methods adopted at the Canadian, European, and American global ensemble
prediction centers, while Kalnay (2003) authored a rich source of information about atmo-
spheric modeling. Readers looking for a short synopsis on the subject of current ensemble
forecasting methods are referred to the 2-page article by Gneiting and Raftery (2005). The
following paragraphs summarize the use of hydrometeorological ensemble forecasting tech-
niques.

Global Ensemble Forecasting

Global ensemble forecasting has been a mainstay of operational production at both the
American National Centers for Environmental Prediction [NCEP; Toth and Kalnay (1993);
Tracton and Kalnay (1993); Toth et al. (1997)] and the European Centre for Medium-
Range Weather Forecasts [ECMWF; Palmer et al. (1993); Molteni et al. (1996)] since
December 1992. The Canadian Meteorological Centre [CMC; Houtekamer et al. (1996);
Houtekamer and Lefaivre (1997)] has maintained an operational global ensemble prediction
system since January 1996. Each of the centers produces the ensembles using different
forecast models and different ensemble construction techniques (Hamill et al., 2000a). The
Japan Meteorological Agency (Kobayashi et al., 1996), the US Navy Fleet Numerical and
Oceanography Center (Rennick, 1995), and the U.K. Met Office have also joined the ranks
of weather centers around the world producing global ensembles.

In the first five years of operational ensemble production, research (Toth and Kalnay,
1993; Tracton and Kalnay, 1993; Molteni et al., 1996; Du et al., 1997) focused on medium-
range applications (6−10 day forecasts) and impacts on planetary-scale flow regimes, syn-
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optic wave patterns, and cyclone positions. Analyses in these early days of operational
ensemble prediction encompassed mid-level parameters such as geopotential height and
temperature.

In the mid 1990’s, attention turned to proposals (Mullen and Baumhefner, 1991, 1994;
Brooks and Doswell, 1993; Brooks et al., 1995) that ensemble methods could also benefit
short-range (1−2 day) forecasts of sensible weather elements such as surface-based tempera-
ture and precipitation. Successful experimental testing of short-range ensemble forecasts at
NCEP (Hamill and Colucci, 1998; Stensrud et al., 1999; Du and Tracton, 2001; Wandishin
et al., 2001) and by a larger community of scientists during the Storm and Mesoscale En-
semble Experiment (SAMEX) of 1998 (Hou et al., 2001) paved the way for other research
groups and operations centers to initiate their own regional ensemble modeling systems
(Grimit and Mass, 2002).

Sensible-weather-element Ensemble Forecasting with Limited-area Models

The success of global ensemble prediction systems led to researching ensemble forecasting
with limited-area models (LAMs) at finer resolutions and shorter time-frames. The LAM
ensemble approach proved successful at improving short-range weather forecasts, especially
temperature and precipitation (Brooks et al., 1995; Stensrud et al., 1999; Hamill et al.,
2000a; Hou et al., 2001; Eckel and Mass, 2005). More recently, Engel and Ebert (2007) have
extended the operational consensus forecast (OCF) method of Woodcock and Engel (2005)
by blending multiple statistically post-processed, weighted-average models to produce near-
surface forecasts of air temperature, dewpoint temperature, relative humidity, MSLP, and
wind speed and direction.

Short-range forecasting utilizing LAM ensembles is not without its share of pitfalls,
however. Mass et al. (2002) reminded us that the value of short-term mesoscale ensembles
remains unproven. These authors discovered diminishing returns as forecast model grid
spacing drops below 12 km, when evaluated using standard measures of forecast skill (with
the caveat that, for some areas of complex terrain and where orographic flows dominate,
very-high resolution models produce far more realistic mesoscale weather features). In
addition, the value of resolution may be underestimated when normal verification procedures
are applied at fixed observation locations (usually spaced much further apart than the
horizontal grid points of the forecast model). The structures of important mesoscale features
often become better defined as resolution increases, but objective verification scores are
profoundly degraded by even small timing and spatial errors.

Mass et al. (2002) suggested that non-traditional means of verification (e.g., verifying
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mesoscale structures) would demonstrate the benefits of high resolution. The authors com-
pleted their review by stating that the optimal approach to high-resolution NWP may
well be a hybrid: a collection of medium-resolution ensemble runs providing probabilistic
information about larger-scale evolution and forecast reliability, and a limited number of
high-resolution runs to realistically simulate crucial topographic circulations in regions of
complex terrain. Chapter 3 in this dissertation probes and evaluates this latter ensemble-
forecasting concept.

Temperature Forecasting

Hydrologic models require accurate temperature forecasts so that the model can distinguish
between rain and snow, because rain can lead to rapid surface runoff while snow usually adds
to longer-term storage. High-resolution temperature forecasts are especially important in
mountainous regions where precipitation type is a function of surface elevation, and where
rain-on-snow events can produce exceptionally high inflows and flooding events.

Energy load models also require accurate temperature forecasts at hourly intervals in
the 0−48 hour range for generation-scheduling models, and in the one-to-seven day (or
more) range for peak power consumption predictions. Urban load-center temperatures
drive electrical load and peak power usage, especially during extreme heat waves and arctic
outbreaks. Accurate temperature forecasts allow energy planners to ensure generation units
are on-line and market purchases are secured to meet expected peak loads.

Fortunately, ensemble prediction research in temperature forecasting has proven positive
in many published reports (Eckel and Mass, 2005; Jones et al., 2007). Stensrud and Yussouf
(2003) published a study of a short-range ensemble prediction system for post-processed
2-m temperature and dew-point temperature forecasts that specifically cited the energy
sector as a primary customer of the forecasts. Yussouf and Stensrud (2007) formulated
a promising and inexpensive scheme for a short-range bias-corrected ensemble of post-
processed forecasts. In Chapter 5 of this dissertation, I extend this scheme through the
medium and long range (1-15 days), motivated by the benefit to energy planners and traders.

Precipitation Forecasting

Probabilistic QPFs serve as critical parameters for weather predictions because of the signif-
icant economic and social impacts of accurate precipitation forecasts (Fritsch et al., 1998).
Unfortunately, precipitation forecast skill has improved relatively slowly compared to other
weather elements (Sanders, 1986; Applequist et al., 2002; Chien and Ben, 2004), a con-
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sequence of the initial errors that saturate much faster for precipitation forecasting than
for other sensible weather elements (Wandishin et al., 2001). Errors in the model physical
parameterization schemes also play a significant role in rapid degradation of precipitation
forecasts. Many authors have realized and lamented that an accurate precipitation forecast
remains one of the most challenging tasks in meteorology (Olson et al., 1995; Chien and
Ben, 2004; Hoinka and Davies, 2007). Therefore, it is extremely desirable to learn how
much short-range ensemble forecasting can improve a quantitative precipitation forecast,
given accessible model capability and computing power (Du et al., 1997)— research that
gives direction to this dissertation. Nonetheless, ensemble precipitation forecast research
has proven beneficial and advantageous in many case studies and circumstances [e.g., Du
et al. (1997); Hamill and Colucci (1998); Mullen et al. (1999); Mullen and Buizza (2001);
Wandishin et al. (2001); Bowler et al. (2006); Chien et al. (2006); Gallus et al. (2007); Jones
et al. (2007); Stensrud and Yussouf (2007)].

Ensemble Prediction System Design

A seemingly endless array of choices faces the mesoscale ensemble prediction system de-
signer, who is, ultimately, limited by computer power and real-time forecasting deadlines.
Ensemble system designers should be aware of the challenges Eckel and Mass (2005) sub-
mitted to the task:

• The small-scale, surface variables of interest are often less predictable than mid-level
synoptic fields and their errors may saturate too quickly for an ensemble to be of use.

• Model error, which is poorly understood and difficult to account for, has a larger
impact on the surface variables in the short range than mid-level fields in the mid-
range.

• The best method for defining the initial conditions is unclear since large-scale error
propagation growth is initially linear. Most ensemble initial condition methodologies
(e.g., breeding of growing modes) were developed for the medium range in which
nonlinear error growth generates a large spread of solutions.

• Use of a limited area model may inhibit ensemble dispersion even when perturbed
lateral boundary conditions are applied.

• It may be important to capture variability at small scales using very high resolution
LAMs.
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A sample of recent research into mesoscale ensemble prediction system design is provided
next. Chien et al. (2006) found that a single 15 km resolution mesoscale model run with
16 different combinations of cumulus parameterization schemes and microphysics schemes
performed well, though still underforecast rainfall. Chien et al. (2006) also found that the
ensemble mean produced better forecasts than any individual member. Du et al. (1997)
found, in an ensemble driven by perturbing initial conditions, that large sensitivity to initial
condition uncertainty marks ensemble QPFs in special cases of explosive cyclogenesis. Eckel
and Mass (2005) evaluated a multi-model (different LAMs generate each ensemble member)
vs. a multi-IC (a single LAM is driven with multiple initial condition configurations derived
from different global models) approach to mesoscale ensemble forecast production and found
that the multi-model system exhibited greater dispersion and superior performance.

Jones et al. (2007) constructed multiple short-range 12 km resolution LAM forecasts
specifically to compare an ensemble system that varies internal physics packages (planetary
boundary layer schemes and convective parameterizations) to generate ensemble members
with a system that varies external initial conditions (from different global driving models) to
generate ensemble members; results were mixed depending on cool season vs. warm season
and on weather parameter (surface temperature, wind speed, sea-level pressure, and 24-h
precipitation). Jones et al. (2007) also incorporated a 14-day running mean bias calibration
that added 10%−30% more skill by improving reliability. Stensrud and Yussouf (2003) cited
eight studies published between 1996 and 2001 that indicated multi-model ensembles deliv-
ered more skill than varied-model ensembles; the most recent of these studies (Wandishin
et al., 2001) promoted the advantages gained from a multi-model strategy, stating that
even ensemble configurations with as few as five 80-km resolution members can outperform
a single 29-km model. Roebber et al. (2004) submitted a comprehensive summary of open
questions that remain in the quest for improving operational high-resolution ensembles for
forecasters.

A review of the debate into ensemble-member generation methodologies remains incom-
plete without acknowledging the deleterious effect that the observation-poor Pacific Ocean
region imparts on North American west coast forecasts. Two specific studies (Hacker et al.,
2003; McMurdie and Mass, 2004) relate numerical forecast failures in the northeast Pacific
region stemming from poor model initializations. Kelly et al. (2007) and Buizza et al. (2007)
used NWP data denial experiments to show how reduced observational data over the north
Pacific cause large forecast errors in days 1–3 downstream over northwestern North Amer-
ica. Optimal ensemble design is regional— some regions may benefit more from improving
model physics, others from improving observations or data-assimilation schemes.
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Hamill and Colucci (1998) provided some suggestions that guided the research into en-
semble prediction testing presented in this dissertation. These authors suggested that en-
semble system development should include testing to determine an optimal ensemble size
and resolution. Coarser resolution forecasts are generally less precise than finer-resolution
forecasts, so an increase in the size of the ensemble typically comes at the expense of some-
what lessened accuracy of each member forecast. Chapter 3 of this dissertation delves
into this issue of short-range ensemble size vs. member resolution particularly for precip-
itation forecasts used as inputs into hydrologic models. Hamill and Colucci (1998) also
stated that, though previous work showed some ability of medium-range ensembles to fore-
cast mid-tropospheric forecast skill on the large scale, users should not assume the skill
of surface weather effects at specific locations can also be forecast from day to day until
rigorous testing confirms this; also, research is needed into designing an ensemble forecast
system with different perturbation methodology, changes to model physics, or changes in the
post-processing strategy. Chapter 5 of this dissertation explores the skill of medium-range
surface temperature forecasts driven by a super-ensemble incorporating initial-condition
perturbations, model physics and parameterization perturbations, and site-specific optimal
post-processing.

1.4 Economic Value of Forecasts

Additional work (Murphy, 1977; Katz and Murphy, 1997; Richardson, 2000, 2003; Zhu
et al., 2002) adds to this meteorological view by attributing value to specific probabilistic
forecasts. Proper evaluation of the benefit of a forecast system should involve not only the
intrinsic skill of the forecasts, but also knowledge of the weather-sensitivity and decision-
making processes of the end users (Hamill et al., 2000a). The most prevalent economic
decision model found in applied meteorologic studies is the cost/loss model (Thompson and
Brier, 1955; Murphy, 1977; Katz and Murphy, 1997; Richardson, 2000, 2003). It has been
incorporated into recent studies focusing on the general economic value of ensemble weather
forecasts (Mullen and Buizza, 2002; Stensrud and Yussouf, 2003; Legg and Mylne, 2004,
2007). Roulston and Smith (2004) and Roulston et al. (2006) explored the social value of
using probabilistic forecasts based on the cost/loss economic model.

Compared to other economic sectors, such as agriculture and transportation, relatively
little work has been published in the meteorological literature defining the economic value for
weather forecasts for hydrological applications. Roulin and Vannitsem (2005) incorporated a
water balance model into a hydrologic ensemble prediction system for two low-relief Belgian
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water catchments. The value of this ensemble prediction system was evaluated using a
cost/loss decision model. Chapter 4 of this dissertation incorporates the cost/loss model and
a decision-theory model, building on the meteorologic evaluation presented in Chapter 3, to
express the potential economic value of forecasts intended for hydro-power reservoirs based
in high-precipitation watersheds in regions of complex terrain.

Recent studies investigated the skill of bias-corrected ensemble (BCE) forecasts designed
specifically to save costs for energy companies (Stensrud et al., 2006). The cost/loss eco-
nomic model is an integral component of Chapter 5 in this dissertation to communicate the
potential value of medium and long range ensemble temperature forecasts to end users in
the energy sector.

1.5 Summary

The entire realm of ensemble mesoscale weather forecasting has reached a remarkable level
of maturity in less than 15 years. Wilks and Hamill (1995), in their 1995 article espousing
the potential economic value of ensemble-based surface weather forecasts, published this
statement on the state-of-the-art at that time:

“It is assumed implicitly that the enhanced information available from ensemble
forecasts will yield greater economic value, but to our knowledge this proposi-
tion has not yet been investigated formally. A significant impediment to this
kind of investigation is that most real-world weather-sensitive decision problems
relate to surface weather variables (e.g., maximum temperature or precipitation
amount). While ensemble forecasting of large-scale geopotential height fields is
presently practiced at major operational centers, to our knowledge no ensemble-
based forecast guidance for surface weather elements is either available or under
development. Therefore, we resort here to the analysis of hypothetical ensemble-
based forecasts of surface weather, which may be broadly representative of the
kind of forecast guidance that may eventually become available.”

Compare this to the current sentiment on the subject, conveyed in the December 2007
article by Hacker and Rife (2007):

“The maturity of limited-area, mesoscale modeling systems has occurred with
an explosion in the number of users who rely on precise forecasts for regional
applications.”
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People endeavour to forecast the weather not because it’s easy, but because it’s impor-
tant. No less eminent a scientist than Richard Feynman, Nobel Prize laureate and one of
the 20th century’s greatest physicists, known (among his many remarkable achievements)
for expanding the theory of quantum electrodynamics, had this to say about weather fore-
casting2:

The theory of meteorology has never been satisfactorily worked out by the physi-
cist. . . If we know the condition of air today, why can’t we figure out the condi-
tion of the air tomorrow? We do not really know what the condition is today; the
air is swirling and twisting everywhere. The motion of the air is very sensitive,
and even unstable. . . Even a smooth moving mass of air going over a mountain
turns into complex whirlpools and eddies. Nobody in physics has really been
able to analyze it in spite of its importance: circulating or turbulent fluid flow.
We cannot analyze the weather. Quickly, let’s leave the subject of weather, and
discuss geology!

This dissertation describes research undertaken to enhance hydrometeorological fore-
casts to benefit decision makers in water management and electric utility sectors. The
objective of the research is to deliver an optimal methodology to produce reliable, skillful
and economically valuable probabilistic temperature and precipitation forecasts.

2From: Feynman, R. P., Leighton, R. B., and Sands, M., 1963: The Feynman Lectures on Physics, Vol I.
Addison-Wesley, Reading, Mass., Chapter 3 pp.7-8.
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Table 1.1: Weather factors that influence hydro-electric planning operations.

Weather and energy impact Planning timeline
Heavy rainfall resulting in extreme 3-hour increments out 48 hours

runoff and reservoir inflow
Real-time generation-load balance hourly increments out 48 hours
Daily rainfall and snowmelt One to fourteen days
Daily peak power consumption One to fourteen days
Monthly precipitation and temperatures Quarterly and yearly water supply
Yearly precipitation and temperatures Five years

affecting reservoir levels and inflow regimes
Climate change affecting precipitation Decades

and temperature patterns
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Chapter 2

Hydrometeorological Accuracy

Enhancement via Post-processing

of Numerical Weather Forecasts in

Complex Terrain3.

2.1 Introduction

Statistical post-processing to calibrate NWP output has a long history in operational
weather forecasting. It is firmly established that statistical post-processing of NWP output
significantly improves the skill of deterministic forecasts, primarily through the reduction
of systematic errors (Hamill et al., 2000). The goal of post-processing was originally to pro-
duce point forecasts of sensible weather elements that were not readily available from early
low-resolution models, incorporating statistical relationships between large-scale aspects of
the flow and specific point observations. More recently, post-processing has been employed
to improve the skill of point forecasts of sensible weather elements obtainable directly from
higher-resolution models. The objective is to reduce the future systematic error between
direct model output (DMO) forecasts and verifying observations by building and employing
statistical relationships between past model output and past observations.

Previous studies (Stensrud and Skindlov, 1996; Mao et al., 1999; Eckel and Mass, 2005;
Stensrud and Yussouf, 2005) have shown how straightforward moving-average techniques
can reduce systematic error in DMO. In the study presented in this paper, moving average
and other related post-processing techniques are applied to daily maximum and minimum
temperature forecasts and daily quantitative precipitation forecasts (QPFs). These sensible
weather element forecasts of temperature and precipitation are extremely important in hy-

3A version of this chapter has been published. McCollor, D. and R. Stull, 2008: Hydrometeorological
Accuracy Enhancement via Postprocessing of Numerical Weather Forecasts in Complex Terrain. Wea.
Forecasting, 23, 131-144
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drometeorological applications such as runoff forecasting. The goal of these post-processing
techniques is to reduce the error in the current forecast using estimates of past error.

To achieve this goal, a balance must be reached between a short learning period to enable
an updating system to respond quickly to changes in error patterns, and a longer training pe-
riod that increases statistical stability (Woodcock and Engel, 2005). Several moving-average
and weighted-average methods are compared in the present paper, along with a Kalman
Filter technique, to determine the effect of these straightforward post-processing techniques
in reducing systematic error in DMO forecasts. Secondly, the techniques presented here
are compared to post-processed forecasts produced by the Canadian Meteorological Centre
(CMC), in an effort to test these new techniques against an established standard.

2.1.1 Background

Both systematic error and random error exist in a forecast. In mountainous regions, the sys-
tematic component of error, often termed bias, is largely due to differences between model
topography and actual orography and landuse, and also deficiencies in model representation
of physical processes. Subgrid-scale processes parameterized in the model do not adequately
represent local dynamic and thermodynamic effects required for detailed point-specific fore-
casting (Hart et al., 2004). Improvement in model parameterization and representation of
topography as well as post-processing DMO can reduce the systematic error component.
Random forecast error, on the other hand, is largely associated with the inherent chaotic
nature of atmospheric motion and cannot be reduced through post-processing. Associated
observations also have inherent and sometimes unknown bias and random error due to
equipment limitations such as sampling rate, calibration, and site representation.

Forecast error, then, can be written εf = xf − xt, where xt is the unknown truth, and
xf is a forecast. Sample realizations of the real atmosphere can be taken as observations
yo, which also have error εo = yo − xt. If observation errors are random (not due to
equipment mis-calibration), then 〈yo〉 = 〈xt〉 where 〈 〉 is the expected or time-averaged
value. A bias is then the expected value of the forecast error, 〈εf 〉 = 〈xf − xt〉 = 〈xf − yo〉.
Expected values can be estimated from a sufficiently large sample of errors. The expectation
is approximated by the mean of a given sample of errors, where the sample can include the
entire climatological record or be limited to (hence characteristic of) the recent synoptic
flow regime. The best post-processing techniques will attempt to address both sources of
bias in the forecast.

Calibrated forecasts of temperature and precipitation are necessary when used as input
into hydrologic streamflow forecast models. Such forecasts pose a unique challenge in areas
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of complex terrain where meteorological conditions exhibit dramatic spatial variability (Hart
et al., 2004). Specifically for hydrometeorological applications, improvements in streamflow
forecasts require more accurate local-scale forecasts of precipitation and temperature (Clark
and Hay, 2004).

DMO of sensible weather elements, such as temperature and precipitation amount, are
often not optimal estimates of local conditions in complex terrain. One reason is large
systematic error inherent in the NWP models (Mao et al., 1999; Clark and Hay, 2004).
Numerous methods have been devised to adapt NWP forecasts to produce local, or point
forecasts for specific applications. The general methodology of post-processing techniques
derives a statistical regression between NWP produced values and weather-element obser-
vations over a set period of time, and then uses this regression to adjust future NWP
forecasts. If successful, the adjusted, or post-processed forecasts should have reduced mean
error compared to the original DMO.

In complex mountainous terrain, regression adjustments to local NWP forecasts are
highly flow-dependent. All but extremely high-resolution NWP models will have diffi-
culty discerning topographically-induced differences in precipitation patterns, but a properly
trained post-processing technique could likely improve the individual forecasts by greatly re-
ducing measured forecast error due to topographic effects. Only post-processing techniques
with very short averaging periods would be able to adapt rapidly changing flow-dependent
conditional bias correction factors. However, short averaging periods lead to statistical
instability. The best post-processing methods must find a balanced trade-off between con-
ditional bias correction and statistical stability.

2.1.2 Review

The earliest method of statistical post-processing that gained widespread use was the perfect
prog method (Klein et al., 1959), which derives regression equations between analyzed fields
and near concurrent observations. However, since the perfect prog method uses analyses for
the predictors, forecast model error is not taken into account in determining the regression
coefficients. The method of Model Output Statistics, or MOS (Glahn and Lowry, 1972), uses
model forecast fields for predictors hence MOS forecast variance is both model and forecast-
period dependent. Therefore, MOS requires forecasts from a model that remains unchanged
over at least several seasons (Stensrud and Yussouf, 2005) so that the operational forecast
relationship matches the developmental historical relationship. Woodcock and Engel (2005)
suggested that the importance of DMO will increase relative to MOS because MOS cannot
easily accommodate new sites, models, and model changes; MOS often employs over a
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million predictive equations that require at least 2 years of stable developmental data for
their derivation (Jacks et al., 1990).

For hydrometeorological applications that require operational forecasts for many loca-
tions and many projection times, the development and maintenance of a MOS system can
prove too onerous. Even national weather centers such as the Meteorological Service of
Canada (MSC) discontinued their MOS forecast system in the late 1980s because signifi-
cant model changes had become too frequent and the development cost too great to maintain
a statistically stable MOS system (Wilson and Vallée, 2002).

Further research has indicated updateable MOS (UMOS) can lessen the disadvantage of
model variance over standard MOS routines. UMOS (Wilson and Vallée, 2002, 2003) can be
implemented with briefer training than MOS, but requires an even more extensive database
overhead to maintain and update. UMOS forecasts in western Canada are provided by
MSC, but only at a limited set of valley-bottom airport sites, similar to that found by Hart
et al. (2004) for MOS forecasts in the western U.S.

The drawbacks to MOS-based techniques have led to other approaches to statistically
post-process model forecast output that do not require long data archival periods (Stensrud
and Yussouf, 2003). The overall objective of error correction is to minimize the error of the
next forecast using measurement estimates of past errors. A short learning period enables an
updating system to respond quickly to factors that affect error (for example model changes
and changes in weather regime) but increases vulnerability to missing data and/or large
errors and other limitations of small sample estimates (Woodcock and Engel, 2005).

Simple 7-day and 12-day moving average error calculations are shown to improve upon
raw model point forecasts (Stensrud and Skindlov, 1996; Stensrud and Yussouf, 2003, 2005).
Eckel and Mass (2005) successfully implemented a moving average technique as a post-
processing method to reduce systematic error in DMO, using a 14-day moving average
error calculation to reduce mean error in temperature forecasts. Jones et al. (2007) found a
14-day moving average bias correction improved temperature forecasts better than a 7-day
or 21-day moving average. Woodcock and Engel (2005) stated a 15-30 day bias correction
window effectively removes bias in DMO forecasts using the best easy systematic estimator.

Kalman filtering (Homleid, 1995; Majewski, 1997; Kalnay, 2003; Roeger et al., 2003;
Delle Monache et al., 2006) is adaptive to model changes, using the previous observation-
forecast pair to calculate model error. It then predicts the model error to correct the next
forecast. This recursive, adaptive method does not need an extensive, static database to be
trained.

In summary, statistical post-processing adds value to DMO by objectively reducing
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systematic error between forecasts and observations by producing site-specific forecasts.
In the following sections, several weighted-average post-processing methods, a recursive
method, and an updateable MOS method are investigated for hydrometeorological applica-
tions (specifically temperature and precipitation forecasts) in complex terrain.

2.2 Data

A meso-network of observations and forecasts from 19 locations in southwestern British
Columbia is employed in this study to compare various post-processing techniques (see
Fig. 2.1). The meso-network includes 12 observation sites operated as part of a hydrom-
eteorologic data analysis and forecast program in support of reservoir operations for 15
managed watersheds within the region. Additionally, seven sites maintained by MSC were
included in this study. Station elevations range from 2 m AMSL at coastal locations to
1920 m AMSL in high mountainous watersheds, to capture significant orographic compo-
nents of the forecasts and observations. Southwestern British Columbia is a topographically
complex region of land/ocean boundaries, fjords, glaciers, and high mountains, and is sub-
ject to rapidly changing weather conditions under the influence of land-falling Pacific frontal
systems.

2.2.1 Temperature

The time period 1 April 2004 to 31 March 2005 defined the one-year evaluation portion of
this study. This period exhibited examples of extreme temperature. The lowest temperature
recorded at any of the stations during the period was −24◦C, while the highest tempera-
ture recorded at any station was +38◦C. Concurrent forecasts were obtained from NWP
forecasts produced by the Canadian Meteorological Centre. Point forecasts for each of the
19 sites were obtained for forecast days one through eight from the operational Global En-
vironmental Multiscale (GEM) model (Côté et al., 1998a,b). Each forecast day was treated
separately by applying the techniques independently to a series of forecast-observation pairs
valid for each particular forecast day (one through eight) only.

For maximum and minimum temperature forecasts, six different post-processing tech-
niques were applied to the DMO on a daily basis for direct comparison during the period
of study. The first method was a seasonal mean error (SNL). In SNL, the average mean
error over a constant previous six-month period was subtracted from the current day’s fore-
cast. SNL mean error was seasonally adjusted. For forecasts issued for the cool season
(1 October through 31 March), a mean error calculated from the previous cool season was
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calculated and applied. For the warm season (1 April through 30 September), a separate
mean error was calculated from the previous warm season and applied. The second method
was a moving average of the previous error estimates (MA), with each previous value re-
ceiving equal weight. A simple moving average is the unweighted mean of the previous n

data points, where n is a pre-determined value. The third method was a linear-weighted
average of the previous errors (LIN). For LIN forecasts, recent error estimates are weighted
more heavily than previous error, in a linear fashion. The fourth method was a weighted
average with a cos2 weighting function (COS2) applied. The fifth method uses the best
easy systematic estimator (BES) as described in Woodcock and Engel (2005). The BES
method is robust with respect to extreme values but represents the bulk of the mean error
distribution because it involves quartiles:

BES = (Q1 + 2Q2 + Q3)/4 (2.1)

where Q1, Q2, and Q3 are the first, second, and third quartiles of the mean error, re-
spectively. The sixth method was a Kalman Filter (KF) applied to the forecast error (see
Appendix A for a description of the KF method), which recursively weights recent errors
more heavily than past errors.

The concept of using LIN and COS2 weighting functions is also to weight recent error
estimates more heavily than past error estimates in a smoothly-varying form. The objec-
tive is to achieve a balance between a short weighting period to include recent changes in
error due to weather regime and model changes and a longer weighting period to enhance
statistical stability. The post-processing techniques are summarized in Table 2.1.

The equation used to apply the weights is given by:

εf
c =

1
M

M∑
k=1

wk · εf
k (2.2)

where

• εf
c is the error correction applied to today’s DMO by subtracting this value from the

current DMO forecast;

• M is the number of prior days errors to be weighted. It is also known as the window
length;

• wk is the weight on the kth day prior to the current day, where
∑M

k=1 wk = 1; and

• εf
k is the error estimate on the kth day prior to the current day, xf

k − yo
k.
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The next issue to address is the length of the sample error correction window, to find a
balance between synoptic pattern changes and model changes (requiring a shorter window)
and statistical stability (requiring a longer window). Published studies include windows
of M = 7 days (Stensrud and Skindlov, 1996), 12 days (Stensrud and Yussouf, 2005),
21 days (Mao et al., 1999), and 15-30 days (Woodcock and Engel, 2005). Woodcock and
Engel (2005) tested the relationship between number of days in the running error-correction
window and improvement in the day one forecast.

A similar test was performed in the study reported here, for forecast days one through
eight. It was found that all post-processing methods tested showed a rapid decrease in
mean absolute error, reaching an asymptotic value by 14 days (see Fig. 2.2 for the test
using maximum temperature forecasts and the LIN method of mean error reduction). In
Fig. 2.2, all forecast days show a rapid improvement in MAE initially then reach a long-term
value. Longer range forecasts take systematically more time to reach the long-term value.
By day 14 all forecast days have reached a steady value. Similar results were obtained (not
shown) for the MA, COS2, and BES methods and for minimum temperatures. Therefore,
a common value of 14 days was employed for the MA, LIN, COS2, and BES methods.

UMOS

To examine a direct comparison between the post-processing methods described in this
study and one of the standard methods described in section 2.1, a set of UMOS temperature
forecasts was obtained from CMC for the same forecast period: 1 April 2004 through 31
March 2005. UMOS forecasts were available only for a subset of stations consisting of six of
the seven MSC stations, and were available only for temperature. Also, only the first two
days of the forecast cycle have UMOS forecasts available. The post-processing techniques
listed in Table 2.1 were recalculated for this same subset of UMOS-available stations. The
UMOS forecasts are included in this study to serve as a direct comparison among the various
weighted average techniques described in section 2.2.1.

2.2.2 Precipitation

Forecast verification for precipitation was performed for the six month period 1 October
2004 through 31 March 2005, to encompass the local wet season. The verification period
exhibited examples of extreme precipitation: the highest 24-hour precipitation amount
reported at a single site was 152 mm.

Observations of 24-hour precipitation amounts were obtained from the observation net-
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work described at the beginning of section 2.2. Equivalent forecasts were obtained from
NWP forecasts produced by the same CMC GEM model that produced the temperature
forecasts described in section 2.2.1. Point forecasts for each of the 19 sites were obtained
for forecast days one through eight. Each forecast day was treated separately by applying
techniques independently to a series of forecast-observation pairs valid for each particular
forecast day (one through eight) only.

Accuracy in precipitation forecasts is a much more challenging goal than for temperature
forecasts for reasons discussed later in section 2.3.2. Day-to-day variability in precipitation
is much higher than for temperature; therefore, a longer averaging period is needed. In
addition, sample mean error correction, as applied to the temperature forecasts, is not
appropriate for precipitation because the resulting bias-corrected forecast could be negative.
An appropriate error measure for quantitative precipitation forecasts is degree of mass
balance (DMB) between DMO and observations. DMB describes the ratio of the predicted
to the observed net water mass for a given interval (Grubǐsić et al., 2005), and is given by

DMBN =
∑N

k=1 xf
k∑N

k=1 yo
k

(2.3)

where DMBN is the degree of mass balance for the interval of N days, xf
k is the 24-hour

precipitation forecast for day k and yo
k is the associated observation for day k.

DMB cannot be applied to a single day’s forecast-observation pair because the operation
would result in division by zero on days with no observed precipitation. DMB must cover
a period of time for which some precipitation has been observed. For the current study, it
was found that a period of 21 days was sufficient to ensure precipitation had occurred and
that DMB could be evaluated. For the same reason, some of the bias-correction methods
employed for temperature foecasts are not suitable for precipitation forecasts because they
must be applied on a daily basis. The techniques suitable for DMB-correction are SNL,
MA, and BES.

A DMB-correction method should, ideally, correct model over- or under-prediction of
precipitation. DMB calculations with varying length of MA window from 21 to 120 days,
for forecast days one through eight, are shown in Fig. 2.3. The results indicate that the
MA technique corrects the DMB to within about 10% with a DMB-correction window of
30-40 days. By day 40 all forecast days have essentially reached a steady value between
1.0 and 1.1 DMB, indicating the method is producing forecasts that reflect the quantity
of precipitation observed. Similar results (not shown) were obtained for the BES method.
In Fig. 2.3, the DMB values for forecast day seven drift slightly to lower values at longer
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range. This drifting away from a steady value for forecast day seven does not appear to
affect the results, as shown in the next section.

It was also found that the post-processing methods applied to precipitation showed a
decrease in mean absolute error, reaching an asymptotic value by 40 days (see Fig. 2.4 for
the test employing the MA method of DMB-correction). The longer range forecasts take
longer to stabilize to a steady value than the shorter range forecasts. By day 40 all forecast
days have reached a steady MAE value. Therefore a common value of 40 days was employed
for the MA and BES methods.

DMB-corrected quantitative precipitation forecasts, using the MA and BES methods,
are calculated by

QPF c =
DMO

DMBN
(2.4)

where

• DMBN is the DMB-correction error applied to the current DMO forecast;

• QPF c is the new DMB-corrected QPF forecast.

For 24-hour precipitation forecasts, the SNL method averaged DMB over a constant
six month period, and this factor was applied to each day’s forecast. SNL was seasonally
adjusted, that is, for forecasts issued for the wet season 1 October through 31 March, a
constant wet-season DMB was calculated from the same period of the previous year and
applied.

2.3 Results

2.3.1 Daily Temperature

All seven post-processing methods tested in this analysis indicated improvement over the
DMO maximum and minimum daily temperature forecasts, for all forecast periods day
one through eight. Mean error (ME) and mean absolute error (MAE) were calculated to
evaluate the forecasts using the following standard equations:

ME =
1
N

N∑
k=1

(xf
k − yo

k) (2.5)

MAE =
1
N

N∑
k=1

|xf
k − yo

k| (2.6)
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where N is the number of forecast-observation pairs, and xf
k and yo

k are individual forecasts
and observations for day k, respectively.

In terms of mean error, the daily maximum temperature DMO forecast errors ranged
from −2.5◦C to −3.5◦C for days one through eight, respectively, indicating a cold bias
to DMO maximum temperature forecasts (Fig. 2.5). Daily minimum temperature DMO
forecast errors ranged from +1.3◦C to +3.0◦C, indicating a warm bias for DMO overnight
temperature forecasts. All post-processing methods show a significant reduction in DMO
mean error for all forecast days. All methods except SNL reduce the DMO mean error to
near zero for all forecast days.

The trend in forecast bias for minimum temperatures was unusual in that bias de-
creased from +2.0◦C to +1.3◦C for days one through three, then increased considerably
to +3.0◦C on day four; bias then remained nearly constant at +2.8◦C for days five through
eight. The increase in DMO minimum-temperature bias between days three and four may
be due to the fact that forecast temperatures for days one, two, and the first half of day
three come from the higher-resolution regional GEM model (a 48-hour forecast model),
while the DMO forecast temperatures for the second half of day three through day eight
come from the lower-resolution version of the GEM global model (termed the global or
GLB model that runs operationally out to a lead time of at least 10 days). The model grid
change between day three and day four may account for some of the sudden increase in min-
imum temperature bias after day three, since a large part of the bias error is attributable to
poor representation of topography in the model. No such change is seen in the maximum
temperature forecast bias, however.

All post-processing methods reduced the mean error in the DMO forecasts. The four
moving-weighted-average methods (MA, LIN, COS2, and BES) and the Kalman Filter
method (KF) were nearly equal in keeping mean errors under 0.2◦C for both maximum
and minimum temperature forecasts. These methods respond rapidly to changes in the
model and changes in flow regime. The seasonal method of mean error reduction (SNL)
maintains the same error-correction factor throughout a complete six-month period (cold
or warm season). The SNL method shows gradually increasing negative mean error (for
maximum temperature forecasts), with a mean error near −0.8◦C for days five through
eight, though this method still greatly outperformed DMO. The difference in performance
between SNL and the other methods, though slight, may be due to residual impact of model
changes or flow regime changes that are not readily incorporated in this method.

Mean absolute error (MAE) was evaluated for all the post-processing methods (Fig. 2.6).
All post-processing methods show significant improvement in MAE over the DMO forecasts,
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especially for short-range daily maximum temperature forecasts. The KF technique per-
forms best by a slight margin. MAE was generally greater for maximum temperature
forecasts than for minimum temperature forecasts, and generally increased from days one
through eight. In terms of MAE, all six methods (SNL, MA, LIN, COS2, BES, and KF)
performed nearly equally well in keeping MAE between 1.5◦C and 3.5◦C throughout the
forecast period.

To show these results more clearly, an MAE skill score, measured with DMO as the
reference forecast, is shown in Fig. 2.7. The MAE skill score is adapted from Wilks (2006)
and Mao et al. (1999):

MAE Skill Score = 1 − MAEPP

MAEDMO
(2.7)

In this formulation MAEPP represents the MAE of the particular post-processing tech-
nique, as indicated in the text and in Fig. 2.7. An MAE skill score value of zero indicates no
improvement in skill over the associated DMO forecast; the range from zero to one indicates
improving skill, with a value of one indicating perfect forecasting skill. A negative MAE
skill score indicates the post-processing technique shows less skill than the corresponding
DMO forecast.

One trend visible in Fig. 2.7 is that the SNL technique shows improving skill with lead
time, relative to the moving-weighted-average and KF methods. As one would expect,
early in the forecast period (days one through four) the weighted average techniques hold a
slight advantage over SNL because they are weighted by recent error estimates that may be
affected by weather regime changes or, infrequently, model changes that the SNL technique
does not incorporate. At longer lead times (days five through eight) the inclusion of recent
error becomes less effective because overall random error in the forecast increases so much
at the longer lead times; the statistical stability of a six-month seasonal error average shows
its advantage at the longer lead times.

For some applications of temperature forecasting an error threshold is important, in
that the forecasts are expected to remain within a certain critical error threshold. For
example, agencies or commercial providers may have guidelines or contractual stipulations
that require temperature forecast errors to not exceed a particular threshold for a certain
percentage of time without incurring a penalty. The post-processing techniques evaluated
here were also tested against critical error thresholds of 5◦C and 10◦C (see Figs. 2.8 and 2.9).
All post-processing techniques show a significant reduction in errors over DMO forecasts
at both thresholds, through the eight day forecast period. The KF technique indicates the
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best results, especially in the longer forecast range.
Daily maximum temperature errors are greater than minimum temperature errors, with

forecast errors greater than 5◦C occurring less than 10% of the time through day three and
less than 25% of the time through day eight. Daily minimum temperature errors greater
than 5◦C remain below 10% through day six.

Daily minimum temperature errors greater than 10◦C are rare even for DMO forecasts,
though the methods presented here still achieve improvement in these forecasts. Daily
maximum temperature errors greater than 10◦C occur less than 1% of the time through
day 5 for all methods, increasing to occurrences about 3% of the time by day eight; these
methods show much improvement over DMO forecasts, which indicate 10◦C errors occur
5% to 10% of the time for forecast days five through eight.

UMOS

The UMOS forecasts were available only for a subset of six stations. The weighted-average
methods (listed in Table 2.1) were re-calculated for this subset of stations to allow direct
comparison with the UMOS forecasts. The UMOS forecasts were the poorest amongst all
methods at reducing mean error, with mean error as great as 1.8◦C (Fig. 2.10).

MAE comparisons of UMOS with weighted average techniques (Fig. 2.11) indicate that
UMOS forecasts fare worse than the other post-processing methods for both maximum
temperature forecasts and minimum temperature forecasts. Stensrud and Yussouf (2003)
found similar results with temperature-forecast errors corrected with a simple 7-day running
mean that proved competitive with, or better than, MOS forecasts. Results from Stensrud
and Yussouf (2005) showed that temperature-forecast errors corrected with a 12-day moving-
average have lower error than comparable MOS forecasts.

2.3.2 Daily Precipitation

One of the most long-standing and challenging problems in weather forecasting is the quan-
titative prediction of precipitation (Mao et al., 2000; Chien and Ben, 2004; Barstad and
Smith, 2005; Zhong et al., 2005), and for hydrometeorological applications, precipitation
is the most important factor in watershed modeling (Beven, 2001). The challenge of pre-
cipitation forecasting is often exacerbated in regions with complex terrain (Westrick and
Mass, 2001). This difficulty in forecasting precipitation is unfortunate since forecasting
for water resource planning, flash floods, and glacier mass balance in mountainous terrain
depends on accurate weather forecast models. Inflow forecasting, based largely on accurate
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precipitation forecasts from NWP models, is critical for reservoir management (Yao and
Georgakakos, 2001).

There are many reasons that quantitative-precipitation forecasting and verification is
much more challenging than for daily maximum or minimum temperatures, including the
following:

• The basic moisture variable in NWP models is specific humidity while temperature
itself is a basic variable in primitive equation models. Instantaneous precipitation rate
in NWP is a parameterized variable encapsulating many complex physical processes.
QPF is an integrated compilation of precipitation rate. Precipitation requires a finite
spin-up time for operational NWP models that encompass a dry start.

• Precipitation is discontinuous in space and time; temperature is a continuous space-
time variable.

• Precipitation exhibits a non-normal sampling distribution; maximum and minimum
temperatures tend toward a normal distribution.

• Daily precipitation amounts are highly variable from one day to the next; daily tem-
peratures less so.

• Daily temperature falls into a natural 24-hour evaluation window because of diurnal
temperature trends. Cool-season stratiform precipitation stems from evolving mid-
latitude storm systems that do not have such a natural 24-hour cycle.

• Precipitation occurs in different phases and types.

• Varying rates of horizontal advection and vertical fall speed occur for different sizes
and composition of hydrometeors, which affects collection efficiency in rain gauge
observations.

• Precipitation in NWP models is calculated as a grid-square average, while direct
precipitation observation is by point (radar-derived precipitation totals are areal in
nature; however, the derived values depend on subjective algorithms that are difficult
to implement in mountainous terrain due to blocking of the radar beam). The dif-
ference in scale between a mesoscale model forecasting precipitation on a 10 km grid
spacing and a typical precipitation gauge (1 m2 opening) is eight orders of magnitude.

• Precipitation observation technologies are more subject to errors due to equipment
limitations than temperature recording technology (e.g., tipping bucket gauges are
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susceptible to upper-rain-rate limits and below-freezing temperatures; rain bucket
gauges are susceptible to snow-capping; all gauges are susceptible to misrepresenting
hydrometeor fall rates in strong winds).

DMO for QPF shows a slight overforecasting (wet) trend throughout the eight day
forecast period, averaged over all 19 stations (see Fig. 2.12). The SNL method of DMB-
correction overcompensates by reducing the DMB to less than one for all forecast days. The
MA and BES methods perform equally well in reducing DMB error in the DMO forecasts.
The resulting QPF-adjusted values from the MA and BES methods result in well balanced
DMB values (near one) for all forecast days— the main objective of the post-processing
application. A non-parametric statistical significance test was performed to confirm the
results. Error bars in Fig. 2.12 represent the 95% confidence limits for SNL, MA, and BES
methods. Details of the statistical significance test methodology are given in Appendix B.

Closer inspection, however, shows that the DMO forecasts have a much wider range
of error determined station to station compared to SNL, MA and BES. For example, on
forecast day two the DMO DMB ranges from 0.57 to 2.3, while SNL ranges from 0.36 to
1.27, MA ranges from just 0.97 to 1.27, and BES ranges from 0.92 to 1.35 (see Fig. 2.13).
This diagram shows that the MA and BES methods are similar in correcting DMB values
to near one, outperforming the SNL method in a station-by-station comparison. DMO
precipitation forecast errors as shown are significant for certain stations in this region of
complex terrain and require appropriate post-processing measures to reduce topographically
forced systematic errors in the forecasts.

Examination of the output for other forecast days indicates similar results. Therefore
even though the average DMB over all stations is fairly comparable for DMO compared to
the other methods, either MA or BES proved a good choice for a post-processing method
based on station-to-station DMB consideration.

Considering the MAEs of daily precipitation forecasts (Fig. 2.14), all the post-processing
techniques show improvement over DMO throughout the eight-day forecast period. All of
the techniques show similar improvement for days one through four with SNL showing
slightly less MAE (better performance) on days two through four. From forecast days five
through eight the SNL method clearly proves the best method (based on MAE), pointing
to the value of a longer seasonal training period in improving mid-range DMO precipitation
forecasts.

An MAE skill score chart (Fig. 2.15) shows this trend more clearly in a different format.
The MA and BES methods, relying on just the most recent 40 days for an error correction
window, show very slight MAE skill relative to DMO for the day five through day eight
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forecasts (the methods show less than 8% improvement in MAE skill over DMO, with no
skill for day six). The long seasonal correction window employed by the SNL technique is
necessary to improve the mid-range precipitation forecasts (indicating about a 12% MAE
skill improvement over DMO forecasts). This MAE skill score diagram shows the results
evident in Fig. 2.14 more clearly.

Daily precipitation thresholds of 10 mm and 25 mm were chosen to show the improvement
of the forecasts over DMO by using the stated post-processing techniques (see Figs. 2.16
and 2.17). All techniques show slight improvement over DMO at both threshold criteria.
Similar to the MAE analysis, the MA and BES methods perform best for the day one
forecast, then the SNL method performs best for the remainder of the forecast days two
through eight (though by a very slight margin).

2.4 Summary and Conclusions

Daily forecast values of maximum temperature, minimum temperature, and quantitative
precipitation are the prime drivers of inflow forecasts for the 15 reservoirs within the area
of study described in this paper, with precipitation being the most important factor. Seven
statistical post-processing techniques have been compared here for maximum and minimum
temperature forecasts, and three methods for 24-hour quantitative precipitation forecasts.
For this study in mountainous western Canada, all the techniques for temperature post-
processing showed significant improvement over direct model output. The best method
was Kalman filtering, followed closely by the four 14-day moving-weighted-average methods
(moving average, linear weighted average, cosine squared weighted average, and best easy
systematic estimator). A method based on seasonally-averaged error characteristics also
showed similar positive error-reduction results, especially in the longer forecast period days
five through eight. All the methods performed better than a comparative study against
updateable MOS temperature forecasts.

All three post-processing methods for 24-hour QPFs improved error characteristics over
DMO forecasts. The best method for QPF, using DMB calibration to unity as a metric, was
shared by the moving average method and best easy systematic estimator method (both
based on a 40-day averaging period). However the seasonal method had slightly better error
reduction characteristics judging by MAE and particular error thresholds in the day two
through eight period.

The post-processing methods tested in this study can provide requisite error reduction in
DMO for local point forecasts to aid decision makers in hydrometeorological and other eco-
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nomic or regulatory sectors. Specifically, water resource managers rely on weather forecasts
of precipitation and temperature to drive hydrologic reservoir inflow models as a major
component of their decision-making process. Decision makers rely on current, value-added
weather forecasts for daily reservoir operations planning, extreme high-inflow events, and
long-term water resource management. Such forecasts present added challenges in regions
of complex topography where steep mountains and land-ocean boundaries increase the vari-
ability of local weather.
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Figure 2.1: The area of study in southwestern British Columbia, Canada. 19 weather-
station locations (dots) in 15 watersheds (black lines) are depicted in the figure. Elevations
range from 2 m above MSL at YVR to 1920 m above MSL at BLN.
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Figure 2.3: The 24 hour precipitation forecast degree of mass balance as a function of
averaging window length for the MA post-processing method. Calculations for each of the
forecast days one through eight are shown. DMB values near one are better since values
greater than one indicate the degree of over-forecasting precipitation and values less than
one indicate the degree of underforecasting precipitation.
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Figure 2.4: The 24 hour precipitation forecast mean absolute error (mm day−1) as a function
of averaging window length for the MA post-processing method. Calculations for each of
the forecast days one (lowest MAE) through eight (highest MAE) are shown. Lower values
are better.
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Figure 2.5: The daily maximum (a) and minimum (b) temperature mean error from the
sample for forecast days one through eight. The different post-processing techniques, from
left (black) to right (white) are DMO, SNL, MA, LIN, COS2, BES, and KF, as shown in
the legend. Zero mean error is best.
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Figure 2.6: The same as Fig. 2.5 but for mean absolute error. Zero MAE is best.
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Figure 2.7: The same as Fig. 2.6 but for mean absolute error skill score (relative to DMO).
Skill-score values closer to one are better.
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Figure 2.8: The daily maximum (a) and minimum (b) temperature absolute errors greater
than 5◦C (in percent) from the sample for forecast days one through eight. The different
post-processing techniques, from left (black) to right (white) are DMO, SNL, MA, LIN,
COS2, BES, and KF. Values closer to zero are better.
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Figure 2.9: The same as Fig. 2.8 but for temperature absolute errors greater than 10◦C (in
percent).
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Figure 2.10: The daily maximum (a) and minimum (b) temperature mean error from the
UMOS sub-sample for forecast days one and two. The different post-processing techniques,
from left (black) to right (white) are DMO, SNL, MA, LIN, COS2, BES, KF, and UMOS.
Zero mean error is best.
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Figure 2.11: The same as Fig. 2.10 but for temperature mean absolute error. Zero MAE is
best.
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Figure 2.12: The daily 24 hour precipitation DMB (degree of mass balance) from the sample
for forecast days one through eight. For precipitation the DMB is calculated as forecasts
divided by observations so that balanced forecasts have a value of one. The different post-
processing techniques, from left (black) to right (white) are DMO, SNL, MA, and BES.
Values closer to one are better. For statistical significance analysis, error bars are included
to indicate the 2.5th and 97.5th percentiles of a resampled distribution, referenced to the
DMO forecasts.
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Figure 2.13: A comparison of 24 hour precipitation DMB values for each of the 19 stations
for the day two forecast. The different post-processing methods are (as labelled) DMO,
SNL, MA, and BES. Values closer to one are better.

59



Chapter 2. Hydrometeorological Accuracy Enhancement via Post-processing

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8
0

1

2

3

4

5

6

7

8

9

10

D
ai

ly
 P

re
ci

pi
ta

tio
n 

M
A

E
 (

m
m

 d
ay

  −
1 )

Figure 2.14: The same as Fig. 2.12 but for precipitation mean absolute error. Values closer
to zero are better.
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Figure 2.15: The same as Fig. 2.14 but for precipitation mean absolute error skill score
(relative to DMO). Values closer to one are better.
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Figure 2.16: The daily 24 hour precipitation errors greater than 10mm day−1 (in percent)
from the sample for forecast days one through eight. The different post-processing tech-
niques, from left (black) to right (white) are DMO, SNL, MA, and BES.

62



Chapter 2. Hydrometeorological Accuracy Enhancement via Post-processing

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8
0

5%

10%

15%

D
ai

ly
 p

re
ci

pi
ta

tio
n 

er
ro

rs
 >

 2
5m

m
 d

ay
 −

1

Figure 2.17: The same as Fig. 2.16 but for precipitation errors greater than 25mm day−1

(in percent).
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Table 2.1: Table of post-processing methods and descriptions for temperature and pre-
cipitation forecasts. The post-processing methods are applied to DMO forecasts of daily
maximum and minimum temperature for days one through eight. The three methods SNL,
MA, and BES are evaluated for 24-hour precipitation forecasts for days one through eight.

Post-processing method Description
SNL Six month seasonal average
MA Moving average
LIN Linear weighting
COS2 cos2 weighting
BES Best easy systematic estimator
KF Kalman filter
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Grubǐsić, V., R. K. Vellore, and A. W. Huggins, 2005: Quantitative precipitation forecast-
ing of wintertime storms in the Sierra Nevada: Sensitivity to the microphysical parame-
terization and horizontal resolution. Mon. Wea. Rev., 133, 2834–2859.

65



Bibliography

Hamill, T. M., S. L. Mullen, C. Snyder, Z. Toth, and D. P. Baumhefner, 2000: Ensemble
forecasting in the short to medium range: Report from a workshop. Bull. Amer. Meteor.
Soc., 81, 2653–2664.

Hart, K. A., W. J. Steenburgh, D. J. Onton, and A. J. Siffert, 2004: An evaluation of
mesoscale-model-based output statistics (MOS) during the 2002 Olympic and Paralympic
games. Wea. Forecasting , 19, 200–218.

Homleid, M., 1995: Diurnal corrections of short-term surface temperature forecasts using
the Kalman Filter. Wea. Forecasting , 10, 689–707.

Jacks, E., J. B. Bower, V. J. Dagostaro, J. P. Dallavalle, M. C. Erickson, and J. C. Su,
1990: New NGM-based MOS guidance for maximum/minimum temperature, probability
of precipitation, cloud amount, and surface wind. Wea. Forecasting , 5, 128–138.

Jones, M. S., B. A. Colle, and J. S. Tongue, 2007: Evaluation of a mesoscale short-range
ensemble forecast system over the northeast United States. Wea. Forecasting , 22, 36–55.

Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability . Cambridge
University Press, New York.

Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction of five-day mean
temperatures during winter. J. Atmos. Sci., 16, 672–682.

Majewski, D., 1997: Operational regional prediction. Meteor. Atmos. Phys., 63, 89–104.

Mao, Q., R. T. McNider, S. F. Mueller, and H. H. Juang, 1999: On optimal model output
calibration algorithm suitable for objective temperature forecasting. Wea. Forecasting , 14,
190–202.

Mao, Q., S. F. Mueller, and H. H. Juang, 2000: Quantitative precipitation forecasting for
the Tennessee and Cumberland river watersheds using the NCEP regional spectral model.
Wea. Forecasting , 15, 29–45.

Roeger, C., R. Stull, D. McClung, J. Hacker, X. Deng, and H. Modzelewski, 2003: Verifi-
cation of mesoscale numerical weather forecasts in mountainous terrain for application to
avalanche prediction. Wea. Forecasting , 18, 1140–1160.

Stensrud, D. J. and J. A. Skindlov, 1996: Gridpoint predictions of high temperature from
a mesoscale model. Wea. Forecasting , 11, 103–110.

66



Bibliography

Stensrud, D. J. and N. Yussouf, 2003: Short-range ensemble predictions of 2-m temperature
and dewpoint temperature over New England. Mon. Wea. Rev., 131, 2510–2524.

— 2005: Bias-corrected short-range ensemble forecasts of near surface variables. Meteorol.
Appl., 12, 217–230.

Westrick, K. J. and C. F. Mass, 2001: An evaluation of a high-resolution hydrometeorolog-
ical modeling system for prediction of a cool-season flood event in a coastal mountainous
watershed. J. Hydrometeorology , 2, 161–180.

Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, San
Diego, 2nd edition.

Wilson, L. J. and M. Vallée, 2002: The Canadian updateable model output statistics
(UMOS) system: Design and development tests. Wea. Forecasting , 17, 206–222.

— 2003: The Canadian updateable model output statistics (UMOS) system: Validation
against perfect prog. Wea. Forecasting , 18, 288–302.

Woodcock, F. and C. Engel, 2005: Operational consensus forecasts. Wea. Forecasting , 20,
101–111.

Yao, H. and A. Georgakakos, 2001: Assessment of Folsom Lake response to historical and
potential future climate scenarios 2. Reservoir management. J. Hydrol., 249, 176–196.

Zhong, S., H.-J. In, X. Bian, J. Charney, W. Heilman, and B. Potter, 2005: Evaluation of
real-time high-resolution MM5 predictions over the Great Lakes region. Wea. Forecasting ,
20, 63–81.

67



Chapter 3

Short-Range Ensemble Forecasts in

Complex Terrain. Part I:

Meteorological Evaluation4

3.1 Introduction

The effect of horizontal resolution and ensemble size on a regional short-range ensemble
forecast (SREF) system is assessed for probabilistic forecasts of 24-h accumulated precipi-
tation in complex terrain. Model error has a larger impact on surface variables in the short
range (Stensrud et al., 2000) than on free atmosphere variables in the mid range; therefore
model error, being a large source of forecast uncertainty in short-range forecasts, must be
accounted for to maximize SREF utility (Eckel and Mass, 2005; Jones et al., 2007), partic-
ularly for mesoscale sensible weather elements. Therefore a multi-model SREF is used here
rather than a multi-initial-condition SREF.

In a recent SREF study of the surface elements mean sea-level pressure (MSLP), tem-
perature, and wind in the mountainous U.S. Pacific Northwest, Eckel and Mass (2005)
found that a multi-model system outperformed a system that used variations of a single
model. Eckel and Mass (2005) also found that an ensemble of unequally-likely members
can be skillful as long as each member occasionally performs well, and that the inclusion
of finer-resolution models led to greater ensemble spread as smaller scales of atmospheric
motion were modeled.

One of the keys to skillful quantitative precipitation forecasts (QPF) in complex terrain
is high-resolution modeling, to capture the orographic and variable-surface flux components
of precipitation distribution. Employing very high-resolution models is crucial to capture
variability at small scales (Hamill et al., 2000; Eckel and Mass, 2005).

4A version of this chapter has been accepted for publication. McCollor, D. and R. Stull, 2008: Hydrome-
teorological Short-Range Ensemble Forecasts in Complex Terrain. Part I: Meteorological Evaluation. Wea.
Forecasting.
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In a study of a SREF system in the cool season over complex terrain by Eckel and Mass
(2005), the impact of model error remained significant even where forecast uncertainty was
largely driven by synoptic-scale errors originating from analysis uncertainty. In complex ter-
rain, many mesoscale weather phenomena, particularly cool season precipitation, are driven
by the interaction between the synoptic-scale flow and underlying mesoscale topographic
irregularities and boundaries.

A summary of results from Du et al. (1997), who analyzed a 25-member ensemble of
QPFs, includes the finding that 90% of the improvement found in using an ensemble average
was obtainable using an ensemble size as small as 8-10 members. Further results from
that paper report that an ensemble QPF from an 80 km grid model is more accurate
than a single forecast from a 40 km grid model, and that SREF techniques can provide
increased accuracy in QPF even without further improvement in the forecast model system.
Wandishin et al. (2001) found that even ensemble configurations with as few as five members
can significantly outperform a higher-resolution deterministic forecast. An analysis of a
global ensemble prediction system (EPS) for 24-h QPF (Mullen and Buizza, 2002) found
that coarser-resolution, larger-member ensembles can outperform higher-resolution, smaller-
member ensembles in terms of the ability to predict rare precipitation events.

This paper addresses the issue of SREFs for hydrometeorologic applications in complex
terrain. The principal input into a hydrologic model, which produces forecasts of river stages
or reservoir inflow, is the precipitation over the associated watershed (Krzysztofowicz et al.,
1993). The objective of the paper is to compare the skill of 24-h accumulated QPF from
various SREF configurations of three independent mesoscale NWP models run as multiple-
resolution nested systems.

Section 3.2 describes the location, the models used in the SREF, and the dataset of veri-
fying observations. Section 3.3 introduces the verification metrics for probabilistic forecasts,
and section 3.4 gives the results. Conclusions are summarized in section 3.5.

3.2 Methodology

3.2.1 Location and Observation Data

Southwestern British Columbia is a region of complex topography characterized by high
mountains, glaciers, fjords, and land/ocean boundaries. The region, lying between 48◦ and
51◦ North latitude on the west coast of North America, is subject to land-falling Pacific
cyclones and frontal systems, especially during the cool season months from October through
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March.
Precipitation data for this study were collected from a meso-network of 27 gauges within

15 small watersheds in southwestern British Columbia (see Fig. 3.1 for a reference map).
Twenty-four of the stations are part of the hydrometric data collection program in support
of reservoir operations for BC Hydro Corporation. The other three stations are operated
by the Meteorological Service of Canada. Observations consist of 24-h accumulation of
precipitation of all types (where solid and mixed precipitation are measured in liquid form)
based on the 12 UTC (Universal Coordinated Time, Z) synoptic hour.

Forecast-system performance can be verified against model-based gridded analyses or
against actual point observations. Gridded analyses offer more data for investigation
through widespread coverage. However gridded analyses are subject to model-based er-
rors and smoothing errors, both of major concern in regions of complex terrain. Even
though point observations are subject to instrumentation error and site-representativeness
error, it is preferable to verify forecasts against observations as opposed to model analyses
(Wilson, 2000; Hou et al., 2001).

The observation stations used in this study range in elevation from 2 m AMSL at coastal
locations to 1969 m AMSL in high mountainous watersheds. Because of the complex terrain
in the study region and the fact that hydrologic models are often calibrated with station
precipitation records, it was important in this study to verify forecasts against actual ob-
servations.

More information about the stations used in this study is shown in the summary hyp-
sometric curve provided in Fig. 3.2 (watershed elevation area bands from all 15 watersheds
are combined in this summary hypsometric curve). 67% of the stations are below 500 m
elevation (the MSL to 500 m elevation band represents 13% of the area of the watersheds).
18% of the stations are between 500 m and 1500 m elevation, representing 44% of the area
of the watersheds. The highest 15% of the stations, located between 1500 m and 1969 m,
represent 19% of the area of the watersheds. Elevations above 2000 m, representing the
highest 24% of the area of the watersheds, remain ungauged, with the highest peak in the
watersheds at 2600 m.

Also shown in Fig. 3.2 is a cumulative total precipitation curve, and average daily station
precipitation from each station. This information reflects the nature of the non-uniform and
rugged terrain, in that higher elevation stations can be further from the ocean and in the
rain-shadow of other mountains, and may lie within mountain ranges more parallel with
the predominant flow, therefore do not receive the highest precipitation amounts. Lower
elevation stations, because of their open exposure to landfalling Pacific frontal systems and
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orientation on mountain ranges perpendicular to the moist onshore flow, receive relatively
high precipitation amounts.

3.2.2 Numerical Models and Study Dates

The Geophysical Disaster Computational Fluid Dynamics Centre (GDCFDC), in the De-
partment of Earth and Ocean Sciences at the University of British Columbia in Vancouver,
runs a real-time suite of three independent nested limited-area high-resolution mesoscale
models over the region of interest. For the study presented here, the coarse-resolution
(108 km horizontal grid spacing) outer nests of these models were all initialized using the
National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM)
model (previously Eta model) at 90 km grid spacing. Time-varying lateral boundary con-
ditions were also extracted from the NAM forecasts.

Ensemble forecasts of 24-h accumulated total precipitation were available from an
archive of the three real-time limited-area model (LAM) runs over two consecutive wet
seasons, October 2003 through March 2004 and October 2004 through March 2005. The
Mesoscale Compressible Community (MC2) model is a fully compressible, semi-implicit,
semi-Lagrangian, non-hydrostatic mesoscale model (Benoit et al., 1997). One-way nesting
is applied to produce model output at horizontal grid spacings of 108, 36, 12, 4, and 2 km.
The Penn State/NCAR Mesoscale model (MM5) is a fully compressible, non-hydrostatic,
sigma-coordinate model designed to simulate and predict mesoscale and regional-scale at-
mospheric circulations (Grell et al., 1994). The MM5 is run for the same five grids, but
with 2-way nesting. The Weather Research and Forecast (WRF) model (Skamarock et al.,
2005) is a non-hydrostatic mesoscale model, run for three grids (108, 36, and 12 km) with
two-way nesting applied.

The LAM gridded precipitation forecast values were interpolated to the precipitation-
gauge locations using a 2D cubic spline. The interpolation uses a 16-point (4 by 4) stencil,
where the interpolated point is always inside the center square of the stencil.

It is important to incorporate uniquely different models in a SREF design, as opposed to
a varied-model technique (a varied-model technique incorporates differing combinations of
model physics and sub-grid scale parameterization methods in a single model), to improve
ensemble spread characteristics. Eckel and Mass (2005) found that even with extensive
variations of a single model, a multi-model SREF design vastly outperformed a varied-
model SREF design in representing model uncertainty.

Precipitation duration from individual extratropical weather systems in the cool sea-
son can vary from hours to days, so there is no obvious choice for choosing a particular

71



Chapter 3. Short-Range Ensemble Forecasts. Part I: Meteorological Evaluation

time-window for accumulation totals. Precipitation gauges available for this study record
precipitation accumulation at one-hour intervals. However, the choice of verifying 24-h pre-
cipitation accumulation totals was made for two reasons. First, water managers often require
daily timestep precipitation forecasts for input into hydrologic models. Second, lengthening
the accumulation period beyond 1-, 3-, 6-, or 12-h accumulations monotonically and signif-
icantly enables clearer evaluation of model QPF skill (Wandishin et al., 2001; Stensrud and
Yussouf, 2007) as opposed to timing differences. For example, if a model forecast erred by
delaying the start of a 12-h rainstorm by 4 h, then this rainfall would be missed entirely by
some of the 1- and 3-h accumulation forecasts. The 6-h and 12-h forecasts would capture
part of the storm, while only the 24-h forecast would be considered entirely accurate. Of
course there will be instances in which timing of storms will affect even the 24-h accumu-
lation window, but this impact is statistically lessened, and QPF assessment improved, by
using the 24-h forecast over a large number of days.

The suite of nested LAMs is designed so that the lower resolution models (108 km)
encompass a large enough domain that weather features advected in from the boundaries
are incorporated throughout the 60-h forecast window of the GDCFDC models. Succes-
sive higher-resolution models (36 km and 12 km) incorporate smaller domains, eventually
focussing on the region of interest with the highest resolution models (4 km and 2 km).

In building a SREF for hydrometeorologic forecasting of precipitation, the question arises
as to how to best incorporate these forecast models of multiple resolution into a viable EPS.
A viable EPS requires enough ensemble members to reflect and characterize the spread of
observations so that the probability distribution of the forecasts is, ideally, indistinguishable
from the probability distribution of the observations.

Including lower-resolution models that incorporate a much larger domain may benefit
the SREF design by increasing spread in the ensemble. Nutter et al. (2004) showed that
ensembles that use a larger domain produce greater spread than smaller-domain ensembles
because the use of periodically updated, coarse lateral boundary conditions can filter out
short waves and reduce the amplitude of nonstationary waves entering from the larger-
domain model. Alternately, previous research (Mass et al., 2002) has indicated that forecast
skill for precipitation in mountainous terrain improves as grid spacing decreases from 36 to
12 km. But Mass et al. (2002) found that verification scores generally degrade as resolution
is further increased from 12 to 4 km as overprediction develops over windward slopes and
crests of terrain (though for heavy precipitation amounts on windward slopes, the transition
from 12 to 4 km enhances the forecast accuracy).

Lower-resolution models may not have the topographic resolution necessary to ade-
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quately resolve terrain-influenced precipitation patterns, but they have proven to contribute
to model diversity and hence improve ensemble spread. Extremely high-resolution models
may not incorporate accurate enough sub-grid scale parameterizations to characterize in-
dividual cloud precipitation processes. In addition, computer-resource limitations prohibit
running a large-member, high-resolution-only multi-model system.

Since nested-grid LAMs by design produce forecasts across a widely-varying scale of
resolution, this paper investigates the benefits of including multiple resolution LAMs to
increase ensemble size (hence improve spread) in a SREF system. This approach of including
multi-resolution nested LAMs in a SREF is supported by Wandishin et al. (2001), who
concluded that including less skillful members can add skill in a mixed-ensemble system.

Each of the three models was initialized at 00Z and run for 60 hours. The nesting nature
of the models means that the 108 km run begins at the 00Z initialization time. For the
model with one-way nesting, the next 36 km nested run begins 3 hours later, at 03Z; the
next 12 km nested run begins at 06Z; and the 4 km nested run begins at 09Z. Since all
models are initialized with a dry start, there will be spin-up errors in the early portion of
each run, which lead to a dry bias in the model forecasts by not including precipitation that
is occurring at initialization time.

To partially ameliorate the spin-up problem, and because the one-way nesting model
relies on a lagged forecast start time for the higher-resolution nested runs as outlined in the
previous paragraph, we chose to ignore the first 12 h (00Z to 12Z) of the forecast, and use
forecast hours 12 to 36 as “day one”. The forecasts from the period T+36 to T+60 of each
model ensemble member were extracted to form the “day-two” forecast.

Not all forecast days were available due to model-run failures; the 2 km runs were
especially susceptible to missing forecast days, which led to the decision not to include 2 km
forecast runs in the ensemble with the present operational configuration. There remained
5027 forecast-observation pairs for the day-one forecast and 4737 forecast-observation pairs
for the day-two forecast in this study.

Different configurations of a SREF system were constructed from the dataset to measure
the influence of including lower-resolution and/or higher-resolution LAM ensemble members
on the performance of the EPS. The full 11 member suite of ensemble members (all11)
included MC2 (108 km, 36 km, 12 km, 4 km), MM5 (108 km, 36 km, 12 km, 4 km),
and WRF (108 km, 36 km, 12 km) models. A suite of eight ensemble members (hires8)
including all but the lowest (108 km) resolution models was constructed to measure the
performance of the higher-resolution models only. Another suite of six medium-resolution
ensembles (mres6) included the 36 km and 12 km LAMs only. The mres6 configuration was
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included to examine the effect of excluding both the lowest (108 km) and highest (4 km)
resolution models. The final suite (vhires5) included the five very highest-resolution LAMs
only (12 km and 4 km). Table 3.1 provides a summary of the SREF configurations.

3.3 Verification Procedures

A single verification score is generally inadequate for evaluating all of the desired information
about the performance of a SREF system (Murphy and Winkler, 1987; Murphy, 1991).
Different measures, emphasizing different aspects and attributes of forecast performance,
should be employed to assess the statistical reliability, resolution, and discrimination of an
EPS. A standardized set of evaluation methods, scores, and diagrams to interpret short to
medium-range ensemble forecasts is provided in Hamill et al. (2000) and is incorporated
here to assess a SREF system for hydrometeorological forecasts. We use degree of mass
balance (DMB), mean error (ME), mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE), Pearson correlation (r), linear error in probability space
(LEPS), Brier skill score (BSS) including relative reliability and resolution terms, relative
operating characteristic (ROC) curves derived from hit rate (H) and false alarm rate (F),
and rank histograms. A description of these evaluation methods is provided in Appendix C.
The reader is referred to Toth et al. (2003) or Wilks (2006) for comprehensive descriptions
of the verification measures.

It is impossible to objectively assess the probabilistic quality of an individual ensemble
forecast. Ensemble forecast systems must be verified over many cases. As a result, the
scoring metrics described in Appendix C are susceptible to several sources of noise (Hamill
et al., 2000): improper estimates of probabilities arising from small-sized ensembles; insuf-
ficient variety and number of cases leading to statistical misrepresentation; and imperfect
observations making true forecast evaluation impossible.

A complete evaluation of ensemble mesoscale forecast models involves many different
verification methods and scores, observation criteria, interpretation of results, and defini-
tion of user needs. In fact, a succinct and satisfactory approach to ensemble mesoscale
verification remains elusive (Davis and Carr, 2000; Mass et al., 2002). Traditional objec-
tive approaches based on verification at fixed observing locations are greatly influenced by
timing and spatial errors, as well as deficiencies of the observing network. The value of
high-resolution numerical forecasts is clearly user-dependent, and one verification system
cannot address the needs of all forecast users. The verification in this study is designed for
a hydrometeorological user needing to forecast water inflow into hydro-electric reservoirs.
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3.4 Results

First, the performance of individual ensemble members is described and compared against
other members. Reliability and resolution of EPS performance are found next using the
Brier skill score. Probabilistic values are assigned to forecasts based on the number of
ensembles exceeding a particular threshold, and are used to create ROC curves. Finally,
we describe the extent that individual ensemble members are equally likely to verify by
employing rank histogram diagrams.

3.4.1 Error Performance of Individual Ensemble Members

An important criterion in an EPS is that both forecasts and observations have similar
distributions. Precipitation follows a distinctly asymmetrical distribution that is highly
skewed to the right (tail towards high precipitation values) with a physical limit of zero
precipitation on the left. Such highly non-normal distributions require analysis methods
that are both resistant (not overly influenced by outliers) and robust (independent of the
underlying distribution). In this study we employ box-and-whisker diagrams and linear
error in probability space, LEPS, (see Appendix C) to meet these requirements.

There are 11 available ensemble members, as defined in Table 3.1. Model and observation
box-and-whisker percentiles are seen in Fig. 3.3 for day-one forecasts and in Fig. 3.4 for day-
two forecasts. The median of all observations (rain-days and non-rain-days combined) is
approximately 2 mm day−1 indicating that half of the station-days in the cool-season sample
experienced precipitation of at least 2 mm day−1. The boxplots show percentiles only above
the median because detail in this portion of the distribution is of most hydrometeorological
importance. The ordinate is logarithmic, to adequately display the full range of values.

The ensemble members show that the distributions for all models resemble the distri-
bution for the observations at the 75 percentile, especially for the day-one forecast. As
the model distributions move into the climatologically rarer precipitation events (the 90
percentile, 95 percentile, 99 percentile, and the maximum event) a trend emerges showing
that as the resolution increases the model distributions more closely resemble the distribu-
tion of the observations. The two highest-resolution model distributions, MM5-4 km and
MC2-4 km, very closely resemble the distribution of the observations for the day-one fore-
cast. The three 12 km model distributions show reasonable agreement with the distribution
of the observations, except for slight differences for the very rare events distinguished by
the 99 percentile and maximum value categories. The lower-resolution model distributions,
108 km and 36 km, do not capture the rare events (90th percentile and higher) as well as the
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high-resolution model distributions for both day-one and day-two forecasts. For the day-two
forecast, the lowest-resolution model distributions diverge somewhat from the distribution
of the observations even at the 75 percentile.

A LEPS skill score with the climatological median as a reference is shown in Fig. 3.5 for
the day-one forecasts and in Fig. 3.6 for the day-two forecasts. In terms of LEPS the 108 km
models perform the poorest, followed in general by the 36 km models for both forecast days.
The 12 km and 4 km models exhibit the best results.

In addition to LEPS, standard summary measures to examine error performance of
individual ensemble members in this study have been calculated, and include degree of
mass balance (DMB), Pearson product moment correlation, mean error, mean absolute
error, and root mean square error (see Appendix C for a summary of the equations used
for the meteorological statistical analysis of the individual ensemble members).

DMB values indicate that all 108 km and 36 km resolution models exhibit an under-
forecast tendency (DMB < 1) averaged over all stations in this region of complex terrain,
for both forecast days one and two (see Fig. 3.7). DMB values exhibit a clear trend of
improving mass balance for the higher-resolution models, so that the MM5-12 km, WRF-
12 km, MM5-4 km, and MC2-4 km all exhibit nearly perfect mass balance in the day-one
forecasts. Day-two forecasts follow a similar trend as their day-one counterparts in terms
of improving mass balance with the higher-resolution models, however even the highest-
resolution models show a slight tendency to under-forecast in the day-two timeframe.

Mean error improves dramatically with higher resolution. The finest-resolution models
exhibit negligble mean error (less than 0.5 mm day−1) for the day-one forecasts. The mean
error shows the same trend towards underforecasting for the coarser-resolution models as
exhibited by DMB. Day-one forecasts show improvement in mean error over the day-two
forecasts.

The mean absolute error of the forecasts is highly consistent across models and resolu-
tions, between 5 mm day−1 and 7.5 mm day−1. Day-two forecasts show consistently higher
mean absolute error than corresponding day-one forecasts.

The mean error and mean absolute error results can be explained in light of the defi-
nition of mean error as an overall measure of systematic bias in the forecasts (Jolliffe and
Stephenson, 2003). NWP model forecasts contain systematic biases due to imperfect model
physics, initial conditions, and boundary conditions (Cheng and Steenburgh, 2007). Also,
NWP models prognose fields at gridpoint locations that represent a volume average, yet ob-
servations are taken at a specific location. Cheng and Steenburgh (2007) also made the point
that bias results from differences between model and actual station elevation, plus nearby
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topographic influences too small to be represented in the model. These systematic biases
are model-resolution dependent as different-resolution versions of a model will represent
local topography differently. Higher-resolution models should represent local topography
better and have less bias than lower-resolution models. This is evident in the results shown
in Fig. 3.7. Systematic bias can be addressed and corrected for via post-processing of the
forecasts (Cheng and Steenburgh, 2007; Yussouf and Stensrud, 2007; McCollor and Stull,
2008a).

Random error has positive variance but zero mean. Therefore random error is a com-
ponent of mean absolute error, but not mean error. Random error is a function of model
physics and parameterization schemes and is driven by how well the forecast model per-
forms in representing the atmosphere. Random error cannot be improved by post-processing
model forecasts. The core model must be improved to diminish random error. Therefore
no significant variations in mean absolute error is evident among the different resolutions
in our results. Random error can be reduced by making ensemble averages.

The root mean square error of the forecasts is highly consistent across all models and
resolutions, between 10 mm day−1 and 15 mm day−1. Day-two forecasts exhibit consistently
higher rms error than corresponding day-one forecasts.

Correlation between forecasts and observations is highly consistent among models, res-
olutions, and forecast days. The Pearson product moment correlation is between 0.65 and
0.75 for all models for both day-one and day-two forecasts. The finer-resolution models
(12 km and 4 km) tend to show a higher correlation between forecasts and observations
than the coarser-resolution models (108 km and 36 km). Day-one forecasts exhibit slightly
higher correlation than the corresponding day-two forecasts.

Summarizing the above results, an intercomparison among all models and resolutions
indicates a definite trend toward higher similarity among forecast-observation distributions
for the finer-resolution models. A trend toward better mass balance and improving mean
error statistics are found in the finer-resolution models. Mean absolute error, root mean
square error, and correlation show little variation among different-resolution models, but do
show improving error statistics moving from the day-two forecast to the day-one forecast.

The differences between the coarser-resolution and finer-resolution models varies across
different metrics, indicating that each of the 11 members have the potential for contribut-
ing to improving the quality of an ensemble prediction system for 24-h precipitation. As
described in section 3.2, the full 11-member ensemble was subdivided into smaller ensem-
bles to test the contribution of the coarse-resolution and fine-resolution members relative
to the full suite of ensemble members. The following sections employ verification measures
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designed for an EPS to examine the contribution of the coarse-resolution and fine-resolution
members in building an operational SREF system.

3.4.2 Brier Skill Score: Resolution and Reliability

Brier skill score results (BSS∞, see Appendix C), incorporating an adjustment factor so
that the different SREF systems composed of different size ensembles can be effectively
compared, and including relative reliability and relative resolution components, are shown
in Fig. 3.8 (5 mm day−1 precipitation threshold), Fig. 3.9 (10 mm day−1 threshold),
Fig. 3.10 (25 mm day−1 threshold), and Fig. 3.11 (50 mm day−1 threshold). The reference
system for the Brier skill score is the climatological forecast in which the probability of the
event is derived from the average of all observations in the sample.

The full 11-member ensemble shows the best Brier skill score (BSS∞, consisting of best
reliability and resolution components) for all four thresholds for the day-one forecast and for
the higher precipitation thresholds for the day-two forecast. For the 5 mm day−1 thresh-
old day-two forecast, the 11-member ensemble shows similar skill to the fine-resolution
8-member and medium-resolution 6-member SREF systems.

The very fine-resolution 5-member SREF performs the worst in terms of Brier skill
score, for all thresholds and for both forecast days, while the fine-resolution 8-member
SREF is generally second best and the medium-resolution 6-member SREF is generally
third best. Thus, increasing membership size, even at the expense of including coarser-
resolution members, is advantageous in terms of reliability and resolution across a wide
range of 24-h precipitation thresholds, for this case study. All SREF configurations show
skill relative to climatology.

The reliability diagrams for the full 11 member ensemble for different 24-h precipitation
thresholds are shown in Fig. 3.12 for the day-one forecasts, and in Fig. 3.13 for the day-two
forecasts. The SREF exhibits reasonably good reliability as indicated by the reliability
diagrams. The reader is referred to Hamill (1997) or Wilks (2006) for a display of a variety
of hypothetical reliability diagrams useful in gauging different degrees of reliability and
sharpness. The forecasted probabilities match the observed relative frequencies fairly well,
though the 5 mm day−1 and 10 mm day−1 thresholds show slight overforecasting at the
higher probabilities for both forecast days one and two. The zig-zag to the distribution of
points in the rarer 25 mm day−1 and 50 mm day−1 event threshold reliability diagrams
indicates that these results exhibit signs of small sample size. Reliability diagrams for higher
thresholds, 75 mm day−1 and 100 mm day−1 (not shown), exhibit a highly erratic pattern
due to the small statistical sample realized at these high precipitation thresholds.
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Reliability diagrams for the other SREF systems are not shown, but relative reliability
for the full 11-member system (Figs. 3.8 through 3.11) tends to be better than for the other
lower-member systems.

The SREF system exhibits a high degree of sharpness, especially at the higher precipi-
tation thresholds of 10 mm day−1, 25 mm day−1, and 50 mm day−1 (see insert histograms
in Figs. 3.12 and 3.13). The high degree of sharpness indicated by the forecast systems
ensures that the forecasts do not cluster near the climatological mean.

3.4.3 ROC Curves

The transformed ROC curves for the four SREF systems for different 24-h precipitation
thresholds are shown in Figs. 3.14 and 3.15. ROC area skill scores greater than 0.4 indicate
reasonable and useful discriminating ability; values 0.6 or higher indicate good discriminat-
ing ability; and ROC area skill scores of 0.8 indicate excellent discriminating ability (Buizza
et al., 1999; Bright et al., 2005; Yuan et al., 2005; Stensrud and Yussouf, 2007).

Table 3.2 examines the ability of the EPS to discriminate among events by compar-
ing ROC area skill scores for all four different SREF configurations in detail. All four
SREF configurations are able to discriminate between events by exhibiting ROC skill scores
greater than 0.6 for each threshold, for both forecast days. ROC skill scores increase as the
precipitation threshold increases for the day-one forecasts, with little difference among the
different SREF configurations. ROC skill scores are lower for the day-two forecasts than
for the day-one forecasts, indicating a deterioration in discriminating ability with forecast
period. Discriminating ability, as measured by ROC skill scores for the day-two forecast,
also increases with precipitation threshold up to the 25 mm day−1 threshold. The forecasts
for the 50 mm day−1 threshold for the day-two forecast indicate a marked decrease in
discriminating ability compared to the 25 mm day−1 threshold, the opposite trend to the
day-one forecasts (also evident from the ROC curves for the day-two forecasts in Figs. 3.14
and Fig. 3.15).

The plotted points of the actual ROC curves tend to cluster more toward the lower
left-hand corner of the curve for higher precipitation thresholds, therefore, the full trans-
formed curves (see Appendix C) contain more area and reflect higher skill scores. This does
not hold true for the day-two 50 mm day−1 threshold forecasts as the SREF systems lose
discriminating ability at these high-threshold, rare events in the longer-range day-two time-
frame. These results are consistent with an analysis of transformed ROC curves performed
by Wilson (2000).
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3.4.4 Equal Likelihood

The rank-histogram (Talagrand) diagrams for the day-one and day-two forecasts for the full
11-member ensemble are shown in Fig. 3.16. The measure of the flatness of the histograms,
δ, for the different SREF configurations is given in Table 3.3.

The rank histogram for the full 11 member ensemble exhibits a U shape, indicating the
spread of the ensemble is under-dispersive for 24-h precipitation forecasts. Eliminating en-
semble members, as is done in the other three SREF configurations, can only exacerbate the
EPS problem of under-dispersal. Table 3.3 shows that δ >> 1 for all SREF configurations
for both forecast days one and two, indicating a lack of spread among all ensembles. The
normalized Reliability Index (RI), shown in Table 3.4, also shows that the full 11 mem-
ber ensemble provides the best reliability and that reliability does, in fact, improve with
increasing ensemble size.

Poor ensemble spread (underdispersion) is a well known limitation of an EPS, especially
SREFs that forecast precipitation and other surface weather elements. However, ensem-
bles still possess skill equal to or better than a single deterministic forecast run at higher
resolution (Wandishin et al., 2001). Eckel and Mass (2005) showed, through a display of
rank histograms, that model diversity plays a much greater role for surface sensible weather
elements (wind speed and temperature) than for other synoptic variables (50 kPa height
and MSLP).

3.5 Conclusions

Forecasts of 24-h precipitation generated by a short-range ensemble forecast system have
been analyzed to study the usefulness of such forecasts in a hydrologic ensemble prediction
system. Precipitation is the key forecast parameter in hydrologic modeling for the 15 small
watersheds included in this study.

In this study, three different limited-area mesoscale models (MC2, MM5, and WRF) are
run in a nested fashion, generating forecasts at up to four different telescoping resolutions
(horizontal grid spacings of 108 km, 36 km, 12 km, and 4 km). This paper addresses the
question of whether it is beneficial to include the low (108 km) and high (4 km) resolution
members to increase the size of the ensemble, knowing the limitations of mesoscale models
at very low (poor topographic representation) and very high (inadequate sub-grid scale
parameterization) resolutions.

The results of this study for precipitation in complex terrain show that it is best to
include all available resolution models in the SREF configuration, even at the expense
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of including coarser-resolution (e.g. 108 km) members that exhibit higher errors and lower
correlation with observations. The finer-resolution members (e.g. 4 km) exhibited the lowest
error characteristics of the suite of individual members, so should definitely be included
in the ensemble. Therefore it appears that the noted weakness of very high resolution
models (inadequate sub-grid scale parameterization) does not preclude incorporating the
4 km resolution models into the SREF examined in this research. It is more likely that
inadequate sub-grid scale parameterization may begin to adversely affect SREF members
with resolutions on the order of 1 km. More research is needed to evaluate the effectiveness
of such extremely high-resolution LAMs.

The benefit of including more members includes improved reliability and resolution, as
proven by analyzing components of the Brier skill score. Including more coarse-resolution
members does not inhibit discrimination, as shown by analyzing ROC scores. In terms of
equal likelihood, the full 11-member ensemble exhibits under-dispersion of the ensemble (a
trait common amongst other ensemble prediction systems), as did all SREF configurations
examined in this paper. However the full 11-member ensemble did exhibit the greatest
reliability relative to the other tested configurations.

Day-two forecasts exhibit a definite deterioration in error characteristics, Brier skill score,
and discrimination over day-one forecasts. However the variations are generally slight and
day-two forecasts remain skillful in terms of the stated probabilistic verification measures.

The evidence gleaned from previous SREF studies and the results presented here indicate
that SREF performance, in terms of skill and dispersion, may be increased by incorporating
certain model run procedures. The spin-up problem of mesoscale models can be avoided
or lessened by increasing the data assimilation/pre-forecast period for the higher-resolution
model runs. Including the very-fine (2 km or finer) resolution nested model runs would
generate increased ensemble dispersion at the smaller scales, but the error characteristics
of these extremely fine-resolution models need to be examined, as noted above.

Precipitation forecasting on the scale of small pluvial watersheds can be a daunting task,
especially on the west coast of North America where the upwind Pacific data void introduces
greater uncertainty (Hacker et al., 2003; McMurdie and Mass, 2004; Spagnol et al., 2004)
into the initial conditions of numerical weather forecasts than for regions in the center and
on the eastern side of the continent. Forecast precipitation amounts over small watersheds
depend largely on the storm track, and a shift of a few tens of kilometers to the north or
south can make a significant difference between a “correct forecast” and a “miss” or “false
alarm” of high precipitation that leads to high inflow (Weber et al., 2006).

Support for the development of ensemble hydrometeorological prediction systems is a
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predecessor to the goal of a skillful coupled precipitation-runoff ensemble forecast system.
This paper is part I of a two-part evaluation study that recent investigations (Yuan et al.,
2005) confirm must be performed for atmospheric variables that have historically not been
scrutinized. Part II concludes this series of papers by incorporating user-dependent eco-
nomic analyses to ensure a full suite of forecast evaluation methodologies are addressed in
determining the usefulness of the SREF system.
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Figure 3.1: Reference map for the area of study in southwestern British Columbia, Canada.
27 weather-station locations (dots) representing 15 watersheds (black lines) are depicted
in the figure. Station elevation ranges from 2 m to 1969 m above MSL. The reservoirs
are numbered and listed by name in Table 2 of the companion paper (McCollor and Stull,
2008b).

83



Chapter 3. Short-Range Ensemble Forecasts. Part I: Meteorological Evaluation

Figure 3.2: Summary hypsometric curve (solid line) and cumulative total precipitation curve
(dashed line). Individual stations (squares) are indicated on the curves. The total area of
the 15 watersheds in this study is 7899 square km. The total cumulative precipitation for
all 27 stations over the study period is 87,324 mm. The triangles indicate the average
daily station precipitation as a percentage of the station with the highest average daily
precipitation (15 mm day−1).
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Figure 3.3: Box and whisker plots for 11 members of the ensemble for the day-one forecast
of 24-hour precipitation amount. The ensemble average and associated observations are
also included. The black horizontal bar indicates the median of each sample (rain-days
and non-rain-days combined). Increasing percentiles (lighter colored bars) indicate 75, 90,
95, and 99 percentiles. The topmost “whisker” indicates the maximum value. The plots
indicate that the distributions of the higher resolution models more closely resemble the
distribution of the observations for events greater than 2 mm day−1.
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Figure 3.4: Same as Fig. 3.3 but for the day-two forecast.
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Figure 3.5: The LEPS (linear error in probability space) skill score for ensemble members
for the day-one forecasts. Values closer to one are better. The LEPS skill score com-
pares the cumulative distributions of each model ensemble member with the corresponding
distribution of the observations. Discrepancies in the distributions near the center of the
distributions detract more from the LEPS skill score than discrepancies in the extreme
regions that correspond to rarer events. The coarsest-resolution members show a clear
deterioration of skill compared to the finer-resolution members.
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Figure 3.6: The LEPS skill score for ensemble members for the day-two forecasts. Values
closer to one are better. The coarsest-resolution members show a clear deterioration of
skill compared to the finer-resolution members, as for the day-one forecasts. In general the
day-two forecasts are slightly less skillful than the day-one forecasts in terms of the LEPS
skill score.
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Figure 3.7: Error characteristics of individual ensemble members for the full 11-member
ensemble for day-one forecasts (black) and day-two forecasts (grey). M refers to the MM5
model, C the MC2 model, and W the WRF model. The associated number is the model
resolution (km).
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Figure 3.8: Brier skill score (one is perfect), relative reliability (zero is perfect) and relative
resolution (one is perfect) for the SREFs for forecast days one and two. The precipitation
threshold is 5 mm day−1. The configuration encompassing all 11 ensemble members (from
108 km down to 4 km for all three models) performs better for the day-one forecast than
the other configurations with fewer ensemble members. The four SREF configurations show
similar Brier skill scores for the day-two forecast. Note that resolution deteriorates in the
day-two timeframe while reliability is consistent for both day-one and day-two forecasts.
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Figure 3.9: Same as Fig. 3.8 but for the 10 mm day−1 precipitation threshold. The
configuration encompassing all 11 ensemble members performs best for both the day-one
and day-two forecasts at this threshold.
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Figure 3.10: Same as Fig. 3.8 but for the 25 mm day−1 precipitation threshold. The
configuration encompassing all 11 ensemble members performs best for both day-one and
day-two forecasts at this threshold.
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Figure 3.11: Same as Fig. 3.8 but for the 50 mm day−1 precipitation threshold. The
configuration encompassing all 11 ensemble members performs best at this threshold.
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Figure 3.12: Reliability diagrams from the full 11-member ensemble for the day-one forecasts
for precipitation thresholds of 5 mm day−1, 10 mm day−1, 25 mm day−1, and 50 mm day−1.
The abscissa in these graphs is forecast probability, and the ordinate is observed relative
frequency. The straight diagonal line indicates perfect reliability. The inset diagrams de-
pict sharpness, where the abscissa is forecast probability and the ordinate is the relative
frequency of use.
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Figure 3.13: Same as Fig. 3.12 but for the day-two forecasts.
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Figure 3.14: ROC curves for the full 11-member (top) and high resolution 8-member (bot-
tom) ensemble prediction systems for precipitation thresholds 5 (crosses), 10 (squares),
25 (circles), and 50 mm day−1 (diamonds). The area under the ROC curves provides a
measure of discrimination skill. Table 3.2 provides a summary of the ability of the SREF
system to discriminate among events for all four different SREF configurations.

96



Chapter 3. Short-Range Ensemble Forecasts. Part I: Meteorological Evaluation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False alarm rate

H
it 

ra
te

Day−one forecast

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False alarm rate

H
it 

ra
te

Day−two forecast

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False alarm rate

H
it 

ra
te

Day−one forecast

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False alarm rate

H
it 

ra
te

Day−two forecast

Figure 3.15: Same as Fig. 3.14 but for the medium resolution 6-member (top) and very
high resolution 5-member (bottom) ensemble prediction systems.
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Figure 3.16: Rank histogram diagrams for day-one (top) and day-two (bottom) forecasts
for the full 11-member SREF configuration. The values of δ >> 1 for each forecast day
indicate that the histogram is not flat.
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Table 3.1: List of ensemble members for all four different SREF configurations. The “all11”
configuration includes all three mesoscale model forecasts at all available horizontal res-
olutions. The “hires8” configuration includes all available members except the coarsest
(108 km) members. The “mres6” configuration includes the medium-resolution mesoscale
models at 12 km and 36 km. The “vhires5” configuration consists of the five highest-
resolution models only, at 4 km and 12 km.

Number Label Description all11 hires8 mres6 vhires5
1 MM5-108 MM5 108km resolution

√
2 MM5-36 MM5 36km resolution

√ √ √
3 MM5-12 MM5 12km resolution

√ √ √ √
4 MM5-4 MM5 4km resolution

√ √ √
5 MC2-108 MC2 108km resolution

√
6 MC2-36 MC2 36km resolution

√ √ √
7 MC2-12 MC2 12km resolution

√ √ √ √
8 MC2-4 MC2 4km resolution

√ √ √
9 WRF-108 WRF 108km resolution

√
10 WRF-36 WRF 36km resolution

√ √ √
11 WRF-12 WRF 12km resolution

√ √ √ √
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Table 3.2: Values of ROC area skill scores for all four different SREF configurations for
forecast days one and two. Values of ROC area skill scores closer to 1 are better. ROC
area skill scores greater than 0.6 indicate good discriminating ability; scores 0.8 or higher
indicate excellent discriminating ability. All four SREF configurations exhibit good to excel-
lent discriminating ability. Discrimination generally increases with increasing precipitation
threshold, except for the day-two 50 mm day−1 threshold. Discrimination deteriorates
moving from the day-one to day-two forecast.

Day-one forecast
SREF Configuration 5 mm 10 mm 25 mm 50 mm
all11 0.77 0.82 0.84 0.89
hires8 0.77 0.82 0.85 0.88
mres6 0.76 0.81 0.85 0.90
vhires5 0.75 0.82 0.84 0.88

Day-two forecast
SREF Configuration 5 mm 10 mm 25 mm 50 mm
all11 0.68 0.74 0.80 0.75
hires8 0.69 0.74 0.82 0.71
mres6 0.69 0.74 0.81 0.76
vhires5 0.68 0.73 0.82 0.73
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Table 3.3: Values of flatness δ for all four SREF configurations for forecast days one and
two, where δ = 1 indicates a perfectly flat rank histogram. Values of δ >> 1 indicate under-
dispersion in the ensemble forecasts. All four EPS configurations exhibit under-dispersion,
a common trait amongst mesoscale SREFs.

SREF Configuration Day-one forecast Day-two forecast
all11 50 81
hires8 51 83
mres6 40 66
vhires5 42 76
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Table 3.4: Values of Reliability Index RI for all four SREF configurations for forecast days
one and two. Lower values of RI are better with a value of zero indicating perfect flatness
of the rank histogram. RI is normalized so that ensembles of different size can be compared
with one another. The full 11-member ensemble shows the best RI values. Reliability,
as measured by this Reliability Index, improves with increasing ensemble size and shorter
forecast period.

SREF Configuration Day-one forecast Day-two forecast
all11 8.54 10.5
hires8 10.7 12.9
mres6 11.7 13.8
vhires5 13.9 16.7
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Chapter 4

Short-Range Ensemble Forecasts in

Complex Terrain. Part II:

Economic Evaluation5

4.1 Introduction

Part I of this two-part paper (McCollor and Stull, 2008) documents the meteorological eval-
uation of a short-range ensemble forecast (SREF) system for hydrometeorological applica-
tions in complex terrain. A standardized set of evaluation methods, scores, and diagrams
(as described in Hamill et al. 2000) was employed to compare and judge the meteorological
skill of the SREF system. However, skill and dispersion measures of the meteorology alone
do not give a complete assessment of SREF forecast value (Anderson-Berry et al., 2004).

Complete evaluation of the benefit of a forecast system should consider the weather
sensitivity and decision-making processes of a particular end user or group of users. Societal
and environmental impacts are also important components of weather forecast evaluation,
however, in most cases economic impacts are easier to directly identify and quantify.

In a study by Roulston et al. (2006), laboratory experiments documented the ability
of non-specialist weather forecast users to make sound decisions. That study showed how
users increase their expected economic reward while reducing their exposure to risk by
incorporating quantitative estimates of weather forecast uncertainty into their decisions.

We employ economic skill measures to evaluate user-dependent hydrometeorological fore-
casts. Two economic models adapted for the hydro-electric energy sector are examined in
this paper: a cost/loss ratio decision model and a utility-maximizing decision-theory model.
The economic models are applied in an operations assessment at Jordan River, a hydro-
electric facility on the southwest coast of Vancouver Island, British Columbia, Canada.

5A version of this chapter has been accepted for publication. McCollor, D. and R. Stull, 2008: Hydrom-
eteorological Short-Range Ensemble Forecasts in Complex Terrain. Part II: Economic Evaluation. Wea.
Forecasting.
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Figure 4.1 includes a photo of the Jordan River site plus three other reservoir facilities in
this region of complex terrain.

Forecast evaluation using economic models applicable to the hydro-electric sector is in-
troduced in section 4.2. Application of the models to probabilistic forecasts from a SREF
system is given in section 4.3. A case study application is presented in section 4.4, and
conclusions are provided in section 4.5.

4.2 Forecast Evaluation via Economic Models

4.2.1 Background

In rapid runoff response pluvial watersheds (the subject of this study), fore-knowledge
of inflow allows optimal reservoir operation under a set of given operating constraints.
Operating constraints may include, for example, optimizing the depth (hydraulic pressure
head) to maximize electrical generation, avoiding spill under high inflow events, maintaining
minimum flow requirements under dry conditions to provide adequate water for fish survival
and aquatic habitat, and maintaining stationary reservoir levels under fluctuating inflow
conditions to enhance recreational usage.

Uncertainty in future rainfall, hence uncertainty in future reservoir inflow, poses signif-
icant problems for reservoir operators tasked with meeting stated operating constraints.
Minimizing future inflow uncertainty through the knowledgeable use of probabilistic fore-
casts can be analyzed with suitable economic models.

4.2.2 Cost/Loss Model

Fore-knowledge of high inflow allows a reservoir operator to draft (i.e., lower the water level
of) a reservoir ahead of the inflow event. This allows the operator to obtain full value of the
water by routing all reservoir water through the turbines and generators before and during
the event. Thus the operator can capture all the precipitation-induced runoff without being
forced to release excess water (and by-pass the revenue producing generators) downstream.
This action is colloquially known as “digging a hole in the reservoir” to capture subsequent
inflow. In the managed watersheds analyzed in this study, the dominant source of higher
inflow is rainfall events produced by land-falling Pacific frontal systems impinging on the
mountainous coastal terrain of southwest British Columbia (see Fig. 3.1 in the companion
paper for a reference map of the region).

There is an economic risk associated with operating a reservoir in the manner outlined
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above. If no action is taken prior to a high inflow event, the excess water flowing into the
reservoir is released or spilled without generating revenue, hence incurring an economic loss
from the value of that water. If the operator does in fact generate power in advance of the
high inflow event, an economic cost is entailed involving hydraulic head loss from lowering
the reservoir elevation, which may not be offset if the forecast inflow event does not occur.

Economic forecast value can be addressed using the concept of a simple (static) cost/loss
ratio decision model (Murphy, 1977; Katz and Murphy, 1997; Richardson, 2000; Zhu et al.,
2002; Richardson, 2003). Sensible weather forecast examples employing a cost/loss ratio
decision model in specific weather forecast evaluations are provided in the literature for road-
weather forecasts (Thornes and Stephenson, 2001), air quality forecasts (Pagowski and Grell,
2006), severe weather forecasts (Legg and Mylne, 2004, 2007), precipitation forecasts from
a global ensemble prediction system (Mullen and Buizza, 2002), precipitation forecasts over
the southwestern United States (Yuan et al., 2005), temperature forecasts for the energy
sector (Stensrud and Yussouf, 2003), and medium-range flood predictions for watersheds in
low-relief terrain (Roulin, 2007). A description of the cost/loss model as applied here to
reservoir operations is provided below.

A reservoir operator has essentially two alternative courses of action to choose from,
either draft the reservoir or not. The choice depends partly on the capacity of the reservoir
to hold additional water, and largely on the precipitation forecast, since precipitation is
highly correlated with inflow in these particular watersheds (see Fig. 4.2 for an example of
precipitation-inflow correlation). Each action has an associated cost (from head loss) and
leads to an economic benefit (minimize lost revenue due to forced spill) depending on the
precipitation (hence inflow) that occurs. The task of the reservoir operator is to choose the
appropriate action in each instance that will minimize both the cost and the expected loss
over the long term.

The cost/loss model is especially useful in this study because it shows how probabilistic
forecasts can be used in the decision-making process, and provides a measure of the benefit
of probabilistic forecasts over deterministic or ensemble average forecasts. In the case at
hand, the forecast user (the reservoir operator) is sensitive to the specific daily precipita-
tion forecast thresholds analyzed in the companion paper: 5 mm day−1, 10 mm day−1,
25 mm day−1, and 50 mm day−1.

The four possible combinations of action and occurrence (with the net cost depending
on what happened and what action was taken) are summarized in Table 4.1. A separate
analysis will be performed for each precipitation threshold. In Table 4.1, a is the number of
hits (successful event forecasts), b is false alarms (forecast but not observed), c is the number
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of misses (observed but not forecast), and d refers to correct rejections (neither forecast nor
observed). Hits and false alarms both incur a cost of taking preventative action (C), since
the operator drafts the reservoir whenever the event is forecast. Misses are associated with
a loss due to lack of prevention (L). Correct rejections incur no expenses either way. The
reservoir operator acts to minimize the average long term loss by taking appropriate action
on each occasion.

The economic value (V ) of the forecasts are defined in terms of expenses, E, in an
equivalent manner as skill scores for meteorological forecasts (Richardson, 2003):

V =
Eclimate − Eforecast

Eclimate − Eperfect
(4.1)

where the mean climate expense Eclimate is the least expensive of two options, (1) always
take protective action, thus incurring a constant cost C but never experiencing a loss L,
or (2) never take protective action, which involves no cost but will result in total losses
equivalent to oL, where o is the climatological base-rate probability of the event occurring.
Therefore, Eclimate = min(C, oL). Given perfect knowledge of future events, the reservoir
operator would take action only when the event was going to occur, and therefore would only
incur costs at the climatological base rate. The mean expense would then be Eperfect = oC.

The sample mean expense of the forecast is calculated by multiplying the relative fre-
quencies of each of the four possible outcomes listed in Table 4.1 by the corresponding
expense, resulting in:

Eforecast =
a

n
C +

b

n
C +

c

n
L (4.2)

where n = a+b+c+d is the total number of forecast/observation pairs. Thus, the economic
value equation (4.1) becomes:

V =
min(r, o) − r

n(a + b) − c
n

min(r, o) − or
(4.3)

where r = C/L is the specific user’s cost/loss ratio.
Summarizing the event categorization described by the binary contingency table elements

(a, b, c, and d) into hit rate H = a
a+c , false alarm rate F = b

b+d , and (as already suggested)
climatological base rate o = a+c

n allows equation (4.3) to be written as:

V =
min(r, o) − F (1 − o)r + Ho(1 − r) − o

min(r, o) − or
(4.4)
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The introduction of hit rate H and false alarm rate F into the evaluation of forecast value
shows that potential economic value for the cost/loss decision model is uniquely determined
from relative operating characteristic (ROC) curves of H versus F (see Appendix C of the
companion paper). Additionally, the introduction of the forecast user into the determination
of forecast value shows that different users of the same forecast will derive different potential
benefits depending on that user’s specific cost/loss ratio.

For a particular SREF system and a given precipitation threshold, the value V of the
forecasts is solely determined by the user’s cost/loss ratio. By plotting V as a function
of cost/loss ratio, r, a water resource manager can determine if the full ensemble forecast
system provides more value than a deterministic forecast or the ensemble mean forecast.

For a reliable ensemble forecast system, maximum value for a particular user will be
obtained by choosing a forecast probability equal to the user’s particular cost/loss ratio,
r (Richardson, 2000, 2003). Also, the maximum value of V always occurs when r = o.
Therefore, forecast users whose C/L happens to equal the climatological base-rate frequency
o for a particular event gain the most value from the probability forecasts.

4.2.3 Decision Theory Model

The cost/loss model described in section 4.2.2 is a binary-decision model. Other techniques
that incorporate economic decision-making for continuous input/output variables (Katz and
Murphy, 1997; Smith et al., 2001) such as precipitation and power production can also be
applied to reservoir planning processes.

In certain situations a reservoir operator may be tasked with maintaining a constant-
level reservoir under variable inflow conditions. Optimal use of probabilistic forecasts may
be analyzed using a maximum-utility decision theory economic model. In decision-theory
models, optimal decisions in uncertain environments are associated with the maximum of
expected rewards.

Formal decision theory was originally developed in the first half of the twentieth century
by mathematicians aiming at modeling the process by which optimal rational decisions
are made (Baldi, 2001). In this model, a decision maker in an uncertain environment is
faced with a choice of possible actions. Each action has an associated consequence. The
consequences are not known with certainty but are expressed as a probability of occurrence.
The optimal decision-making strategy is to maximize the expected value (i.e., maximize
gain or minimize loss), where expected value refers to a weighted average taken over all
possible probabilistic states of the environment. Thus, decision theory naturally leads to
probabilistic determination, and an ensemble forecast is a method to define such weights or
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probabilities.
Economic decison theory is based on the concept of utility, in which users can assign

a value or utility “U ” to each potential outcome (Katz and Murphy, 1997; Smith et al.,
2001). A utility function is a mathematical transformation from money to utility, reflecting
the perceived worth of each outcome (instead of the absolute worth) to the decision maker.
Let the user’s decision be represented by a continuous variable, x, and the outcome be
represented by a continuous variable y. If the probability distribution function (PDF) of y

is p(y) then the expected utility for a given decision, E[U ](x), is:

E[U ](x) =
∫

y
U(x, y)p(y)dy (4.5)

The user can make the choice X that maximizes their expected utility:

E[U ](X) = max(E[U ](x)) (4.6)
x

The expected utility hypothesis in economics (Laffont, 1989) states that the utility of a
user facing uncertainty is calculated by considering the utility in each possible state and
constructing a weighted average, the weights being the user’s estimate of the probability of
each state. For hydrometeorological analysis, the user must define a utility function that
describes the benefit or loss incurred based on a particular reservoir operation decision. The
uncertainty in the decision is derived from uncertainty in future rainfall, and the probability
of such an uncertain rainfall event is determined from the SREF prediction system.

The utility function for this hydrologic model is adapted from another renewable energy
source (wind generation) utility function as decribed by Smith et al. (2001). Short-term
rainfall, hence reservoir inflow, is a major factor in determining the capacity to supply
electrical energy to the grid. The reservoir operator must be able to forecast generation in
advance, subject to maintaining a constant-level reservoir (for the benefit of recreational and
other users), since failure to provide energy specified in a contract will lead to purchasing
energy at market prices to meet a pre-specified contractual delivery.

The reservoir manager must decide in advance how much energy their operations will
supply the grid on the next day, stipulated by a contract energy production Kc. This energy
is sold at a price Sc. If actual production, Ka, falls short of the contractual amount, the
manager must replace the missing energy at a market price Sm. If the reservoir manager is
assumed to be risk neutral, then the applicable utility function is given by:
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U = Sc · Kc Ka ≥ Kc

U = Sc · Ka − Sm · (Kc − Ka) Ka < Kc (4.7)

The expected utility can be evaluated by assigning a probability pk to each potential
energy production amount Ka:

E[U ](Ka) =
∑

k

pk · U(Ka, k) (4.8)

4.3 Results

4.3.1 Cost/Loss Model

The forecast user (in this case a reservoir manager) is faced with the question of how high
the forecast probability of a particular event needs to be before the threat is great enough to
warrant taking preventative action. The decision maker needs to set a threshold probability
pt and take preventative action only when the forecast probability exceeds pt. By varying
pt over 0/M, 1/M, 2/M, ...1, where M is the number of ensemble members employed in the
SREF, a sequence of hit H vs. false-alarm F rates can be plotted that traces out the ROC
curve for the SREF system (see section 3.4.3). Different value traces V are then plotted
as a function of C/L [see equation (4.4) for each distinct point (F ,H) corresponding to
each particular pt on the ROC curve]. The value curves for each precipitation threshold are
displayed in Fig. 4.3 for the day-one forecasts and in Fig. 4.4 for the day-two forecasts.

In each of the individual V vs. C/L graphs shown in Figs. 4.3 and 4.4, the envelope
curve (displayed with a heavy solid line) shows the optimum value of the SREF system,
obtained when each decision maker employs the probability threshold pt that maximizes V

for their specific C/L. As seen in Figs. 4.3 and 4.4, the envelope curve is never less than any
of the individual pt curves, indicating that no particular single forecast will benefit different
users utilizing different cost/loss ratios. The maximum value (Vmax) of the envelope curve
for V occurs at that value of C/L equal to the climatological base rate o, and is seen to shift
toward smaller cost/loss ratios (lower o hence rarer events) with increasing precipitation
threshold.

The shape of the Vmax envelope curves for the day-one forecasts are similar to those
for the day-two forecasts, for all four precipitation thresholds. This indicates little change
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in relative value among different users employing different cost/loss ratios in their decision
making. However the Vmax envelope curve is shifted downward slightly in the day-two fore-
casts compared to the day-one forecasts, indicating that, as expected, the measured value
of the forecasts decreases as the forecast range is extended. If the probabilistic forecasts
were extended into the mid-range (3 to 10 day forecasts), the Vmax envelope curve would
necessarily collapse as forecast skill approaches climatology [equation (4.1)]. A similar as-
sessment for mid-range forecasts (a potential avenue for future research), would indicate
how far into the future these forecasts maintain positive economic value.

Plotting the envelope Vmax vs. C/L allows a clearer view of how different forecast users
benefit from the probabilistic nature of SREF systems, especially when plots of deterministic
forecasts and ensemble-average forecasts are included for comparison. In Figs. 4.5 and 4.6
(for day-one and day-two forecasts, respectively), the maximum potential value curves are
plotted along with a best-deterministic forecast and an ensemble-average forecast. The best-
deterministic forecast was chosen among the individual SREF members as the one with the
best error characteristics (see section 3.4.1), namely the very-high resolution MM5-4 km
model. The ensemble-average forecast is the equally-weighted average of all SREF system
member forecasts. The ensemble-average forecast is included for comparison, although in
practice caution is advised in using this forecast because it may not represent a physically-
realizable solution to the model equations (in the manner that the average of the numbers
on a six-sided die, 3.5, is not a physically-realizable outcome of rolling the die).

The plots in Figs. 4.5 and 4.6 indicate that the SREF system provides the best eco-
nomic value for both day-one and day-two forecasts, all precipitation thresholds, and all
cost/loss ratios. Also, these figures show positive economic value to all users at the high-
est precipitation threshold of 50 mm day−1. However for lower precipitation thresholds,
reservoir managers employing the very lowest cost/loss ratios progressively lose value as the
precipitation threshold lowers from 25 mm day−1 to 10 mm day−1 to 5 mm day−1. The
advantage of a probabilistic forecast system is evident from the fact that the ensemble pre-
diction system (EPS) exhibits a larger range of forecast users that can economically benefit
from the forecasts than either the deterministic forecasts or the ensemble-average forecasts
(namely, the dotted and dashed curves are narrower and lower than the ensemble envelope
curve).

For the higher-precipitation thresholds of 25 mm day−1 and 50 mm day−1 the ensemble-
average forecast outperforms the deterministic forecast in terms of value, however, the
probabilistic forecasts are even more advantageous as they extend the valuable range of the
forecasts to a broader cast of users. At the lowest precipitation threshold of 5 mm day−1 the
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measured maximum values Vmax of the SREF system, the deterministic forecast, and the
ensemble-average forecast are the same. As the thresholds and their impact on reservoir op-
erations increase, the measured maximum value Vmax of the SREF system becomes greater
than that of the deterministic and ensemble-average forecasts.

Information about choosing the correct probability threshold pt for each decision maker
can be shown by plotting value V as a function of pt for different C/L (see Fig. 4.7 for
the day-one forecasts and Fig. 4.8 for the day-two forecasts). The plots show that reservoir
managers with low C/L = 0.2 who have low costs but potentially high losses benefit from
taking action (pre-generating electricity thus lowering the reservoir in advance of a forecast
precipitation event) at a precipitation-threshold-exceedance probability as low as 10%.

As C/L increases to 0.6 for specific reservoirs, the managers should wait until the prob-
ability of an event is 30% before taking preventative action. For managers of a reservoir
with C/L = 0.8, the associated high cost of lowering the reservoir in advance of a forecast
inflow event and limited potential losses from forced release or spill mean that they should
wait until forecasts are in the 70% to 80% range before pre-generating.

Day-one SREF system forecasts are measureably better than day-two forecasts. The
plots in Figs. 4.7 and 4.8 indicate the trend that the probability of an event in the day-two
forecast timeframe should be about 10% higher than the probability in the equivalent day-
one forecast to ensure the same value ensues from action taken. In other words, reservoir
managers operating a reservoir with C/L = 0.2 could pre-generate in the day-two time-
frame when precipitation event forecast probability reaches 20%. Managers operating a
reservoir with C/L = 0.8 can take preventative action two days before a forecast event of
5 mm day−1 or 10 mm day−1, but the probability of occurrence must be close to 90%.
This effect is less evident for 25 mm day−1 precipitation events and is non-evident for
50 mm day−1 events, likely because the smaller number of cases for these climatologically
rarer events introduces sampling errors into the analysis (as shown in section 3.4.2).

Looking more closely at the relation between precipitation threshold and value for dif-
ferent SREF combinations, Figs. 4.9 and 4.10 show this relation for the day-one forecasts
and day-two forecasts, respectively. The full ensemble SREF provides value for a greater
range of users at all precipitaton thresholds, compared to the deterministic forecast and the
ensemble-average forecast. As the precipitation threshold increases, the forecasts provide
value to more and more users toward lower C/L values.

There are specific links between the economic-value analysis of the cost/loss model and
the ROC analysis presented in section 3.4.3. Figure 4.11 shows the ROC curve for the day-
one forecasts with a 10 mm day−1 threshold alongside the corresponding maximum value
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envelope curve. The deterministic high-resolution forecast and ensemble-average forecast
are each represented by single points on the ROC diagram. These points are shown con-
nected with straight-line segments to the upper-right and lower-left corners of the ROC
diagram.

The deterministic forecast point and the ensemble-average forecast point both lie near
the probability forecast ROC curve. This suggests that basic forecast system performance
is similar for all three forecast systems. The benefit of the probability forecast depends on
the varying needs of different users. As seen on the value curve, all three forecast systems
show similar value for a narrow range of users with C/L values between about 0.3 and 0.4.
For C/L values outside this range the ensemble forecasts prove most economically valuable.

An example using ensemble precipitation forecasts in a cost/loss model for specific reser-
voirs is given in section 4.4.1.

4.3.2 Decision Theory Model

The utility functions calculated from equation (4.7) for Jordan River operations indicate
the variation of utility with pricing structure. The particular utility function explored here
displays increasing penalties as the Sm/Sc ratio increases, and increasing benefits as higher
energy contract amounts are selected. The penalties and benefits increase jointly with the
precipitation threshold indicated.

An example using ensemble precipitation forecasts to maximize the expected value func-
tion for Jordan River is given in section 4.4.2.

4.4 Case Studies

4.4.1 Cost/Loss Model

Model Development

In this section we provide a practical example of the cost/loss model evaluation for specific
watersheds in southwest British Columbia. The case study represents a simplification of
reservoir management and operational constraints, and is intended to examine the value of
probabilistic precipitation forecasts for inflow into reservoirs.

The power produced from the generator of a hydropower facility depends on the net hy-
draulic head available to the turbine and the flow through the hydraulic conveyance facility
(e.g., canal, intake, or penstocks) (see Fig. 4.12), as given by the following equation (Gul-
liver, 1991):
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P = ηγQtH (4.9)

where:

P = generator power output (W)

η = turbine/generator efficiency as a fraction

γ = specific weight of water = 9807 Nm-3 at 5◦ C

Qt = flow through the turbine (m3s-1)

H = difference in elevation (termed “head”) between the reservoir level and turbine
(m)

The energy, K (in Joules) produced by the generator operating for time T (in seconds)
under constant flow conditions Qt is given by:

K = PT (4.10)

The market value, ν ($) of this energy is the quantity of energy K times the selling price
per unit value of energy, S ($/J):

ν = KS = PTS (4.11)

Electric energy is typically bought and sold in units of either kilowatt-hour (kWh) or
megawatt-hour (MWh), and the price of electrical energy is typically quoted in dollars per
MWh. The conversion factor between Joules and MWh is 1MWh=3.6x109J.

We will use the following general variables to describe the hydrometeorological forecast
inflow model (we use a time-increment of one day for all measurements, calculations, and
forecasts):

h2 = the difference between the lowered reservoir elevation and the low-level intake
(m)

h3 = the difference between the reservoir at full operating level and the lowered
reservoir elevation prior to an expected inflow event (m)

Qs = the water that spills past the generator (m3) without producing any power
(hence lost revenue)

We will also use the following reservoir-specific constants in describing the model:
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h1 = nominal head [the height difference between the low-level intake and the turbine
(m)]

Qb = the daily base inflow (m3)

Ar = the surface area of the reservoir (m2)

G = the space in the reservoir available for storage (m3) = (h2 + h3) · Ar.
When the reservoir is full, H = h1 + h2 + h3. If the reservoir is lowered an amount

h3 in anticipation of a rainfall-induced inflow event, the overall head H will be reduced to
H = h1 + h2, resulting in less power production.

The cost/loss ratio for a particular reservoir is determined in the following way. The loss
that would ensue if the reservoir was full during an inflow event is the value of the water
Qs that spills past the generator without producing any power (hence any revenue).

The amount of loss, L ($), would be:

L = PLTS = ηγQs(h1 + h2 + h3)TS (4.12)

where PL is lost power. Qs is the amount of water spilled if the reservoir is not lowered a
distance h3:

Qs = Ar · h3 (4.13)

The cost of preventing the reservoir from spilling results from operating the reservoir at
a lower head, h1 +h2, in anticipation of an inflow event, vs. power produced at h1 +h2 +h3

(effectively operating at a net head of h3):

C = ηγQth3TS (4.14)

The flow through the turbine, Qt, is at least equal to the baseflow Qb.
The C/L value is then:

C/L =
Qbh3

Arh3(h1 + h2 + h3)
=

Qb

Arh1 + G
(4.15)

The C/L value can then be calculated for individual reservoirs. See Table 4.2 for the
physical parameters of the reservoirs included in the study, and Table 4.3 for the associated
ratios for this basic cost/loss model.

Equation (4.15) shows that small C/L values are associated with reservoirs with large
surface areas, high head, large storage, and low baseflow. This type of reservoir is typically
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found in regions of high mountains and deep valleys where most of the reservoir inflow
stems from precipitation-generated surface runoff (climatically high rainfall zones). Con-
versely, large C/L values are associated with reservoirs with small surface areas, low head,
low storage, and high baseflow. This type of reservoir would typically be found in areas
of low, rolling relief where much of the reservoir inflow derives from sub-surface aquifers
(climatically low rainfall zones). The reservoirs included in this study are of the former
sub-type and are characterized by very low C/L values.

We can further refine the C/L values calculated by equation (4.15). The cost of operating
a reservoir at a lower head may be realized for multiple days, until the next precipitation
event occurs. The length of time until the next precipitation event is estimated by 1/o, the
inverse of the climatological frequency of the event. In this manner, C/L is defined:

C/L =
Qb

o(Arh1 + G)
(4.16)

A further refinement in the cost/loss model is realized by eliminating the constraint of
a constant price of energy, S. In real-time energy markets, the price of energy fluctuates
hourly so that energy lost at one time and recouped at another time may not have the same
value. In the cost/loss model examined here, the energy lost through spill may be valued at
a contract price Sc, while the energy lost through head-loss must be replaced at a market
price, Sm. In this case, C/L would be:

C/L =
Sm

Sc
· Qb

o(Arh1 + G)
(4.17)

Table 4.3 also lists the C/L values for individual reservoirs (for precipitation threshold
50 mm day−1) incorporating the climatological frequency of the event [equation (4.16)] and
the variable price of energy [equation (4.17)].

Example

We can provide an estimate of the actual sample expense of the ensemble forecasts by
evaluating the elements of Table 4.1 for a particular set of forecasts for a particular reservoir.
In this example we will use the set of two cool season forecasts for Jordan River. The actual
sample expense of the forecasts can be calculated in a similar manner as equation (4.2):

Eactual = a · C + b · C + c · L + d · 0 (4.18)
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where a, b, c, and d are the elements of Table 4.1 (also called hits, false alarms, misses, and
correct rejections, respectively). The summary of the cost/loss table elements for Jordan
River and a 50 mm day−1 precipitation threshold are given in Table 4.4. Separate calcula-
tions are included for the full ensemble, the ensemble average, and the best deterministic
forecast. The cost/loss ratio for Jordan River that incorporates the climatological frequency
of the 50 mm day−1 event and a constant market price for energy is C/L = 0.068. This
C/L value is used for the calculations. The turbine/generator efficiency, η, is assumed to
be 0.90 (Gulliver, 1991), and the cost of energy is assumed constant at $50/MWh6.

Dollar value estimates for L can be calculated from equations (4.12) and (4.13). The
resulting cost estimates for cost/loss operating decisions at Jordan River based on the
50 mm day−1 precipitation threshold are given in Table 4.4. The full ensemble provides
a net benefit (lower cost) of $80,000 ($40,000 annually) or 8% improvement compared
to the deterministic forecasts, and a net benefit of $545,000 ($272,500 annually) or 57%
improvement compared to the ensemble average forecasts.

4.4.2 Decision Theory Model

In this section we provide a practical example of the decision theory model for a specific
watershed in southwest British Columbia. As with the cost/loss model, this case study
represents a significant simplification of reservoir operating decisions, and is intended to
examine the value of probabilistic precipitation forecasts derived from SREF-generated
ensembles.

The energy produced by the reservoir outflow, Qout, is given by equation (4.10). If the
constraint to maintain a level reservoir is met, then Qout = Qin. Forecasts of day-one 24-
hour precipitation and associated daily inflow observations from Jordan River on southwest
Vancouver Island were used in this analysis. The linear Pearson correlation coefficient for
Jordan River is 0.88 (see Fig. 4.2). Therefore the hydrologic response (inflow) to rainfall
can be approximated by a linear function Qin = κR = Qout = Qt.

The energy, K, is evaluated from equations (4.9) and (4.10):

K = ηγκRHT (4.19)

The utility function [equation (4.7)] can then be evaluated in terms of the energy produced
from different precipitation events, R. The probabilities assigned to forecasting different

6Source: U.S. Energy Information Administration, Form EIA-861, Annual Electric Power Industry Re-
port. The price quoted is the latest available average wholesale price of electricity for the United States
(2005).
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precipitation amounts, pk, are derived from the SREF system forecasts of 24-hour precipi-
tation for Jordan River, and the resultant expected value is calculated from equation (4.8).
The results (using day-one forecasts) are shown in Fig. 4.13 where profit7 (relative to per-
fect forecasts) is shown as a function of the market price to contract price ratio Sm/Sc.
For comparison purposes, Fig. 4.13 also includes the profit from operating the reservoir
using climatology to assign probabilities, as well as the SREF ensemble average and the
deterministic forecasts from the MM5-4 km forecast model.

The results show that when the contract price is equivalent to the market price, there is
little difference whether using the full ensemble, the ensemble average, or the deterministic
single forecast to provide probability estimates. Note that using climatologic representative
probabilities results in a loss for all values of Sm/Sc. However, as the spread between the
market price and contract price widens and the Sm/Sc ratio increases, a different profit
scenario emerges. The ensemble average forecast provides the greatest profit, followed
closely by the full 11-member ensemble. The profit realized by using the deterministic
high-resolution forecast drops quickly relative to the SREF forecasts.

4.5 Conclusion

Weather forecasts are made and used under the assumption that forecast users can take
preventative action, prior to a predicted weather event, that provides more benefit to the
user than having no forecast at all. This assumption should be specifically tested to aid
weather forecast providers in improving their forecasts, and to assist weather forecast users
in assessing the benefit of the forecasts to them.

Forecasts can be tested by assessing both their meteorological skill and their economic
value. Forecast skill is generally determined by assessing the accuracy of a forecast-producing
system relative to a given standard such as climatology, persistence, or another forecasting
system. Forecast skill will vary among different forecast-producing systems, but remains
user-independent. The companion paper assessed the meteorological skill of a short-range
ensemble forecast system designed to provide one and two-day precipitation forecasts in
complex mountainous and coastal terrain.

Forecast value is a separate assessment of a forecasting system that takes into account
diverse needs and benefits attributed to different forecast users. This paper comprises

7Profit as used in this context is the difference between generation revenue and contract costs for unde-
livered energy. There are many other costs associated with hydropower generation, such as water license
fees and transmission charges, that are not included in the profit calculations here.
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an economic value-assessment of the same set of forecasts that provided the basis for the
meteorological skill assessment described in the companion paper.

The particular forecast users studied here are water resource managers tasked with
making efficient and effective use of rainfall that ultimately drives hydro-electric power
in rainfall-fed mountain-coastal reservoirs.

Employing a static cost/loss economic model adapted to reservoir operations for hydro-
electric managers, a forecast system that provides a suite of ensemble members provides
positive economic value for a broader range of users than either a single fine-resolution
forecast model or a single forecast composed of the ensemble average. Secondly, the study
showed that different forecast users, characterized by specific cost/loss ratios, require differ-
ent precipitation probability thresholds to trigger preventative actions. Users with different
cost/loss ratios correspond to operators of reservoirs with different head-loss parameters,
different sizes of reservoirs, and different base-flows (e.g., lower C/L value applies to reser-
voirs with low base inflows, high head, large areal reservoirs, and high storage, typical of
rainfall-fed mountain watersheds). The larger economic benefit of probabilistic forecasts is
achieved by allowing users to match forecast probabilities with cost/loss ratios specific to
their particular operational needs.

Decision theory, employing a utility function designed specifically for market selling of
hydro-electric energy from rapid-response rainfall-dominated reservoirs, was used to quan-
tify the positive impact (profit generation) from employing an EPS to generate probabilistic
forecasts. The forecasts generated by the SREF system analyzed in Part I are superior to
a single, high-resolution deterministic forecast in maximizing profit from the particular
hydro-electric facility (Jordan River) studied here, with the ensemble-averaged forecasts
outperforming the full suite of ensembles by a relatively small margin.

Examining the results from the cost/loss model and the decision theory model provides
insight into how different economic models can yield complementary information from nu-
merical weather models. Modes of operations, operational constraints, and economic op-
erating environments will likely vary among different hydro-electric reservoirs; therefore
different economic models may be required to assess operating strategy for different reser-
voir operations. In section 4.4.1, the cost/loss model was applied to reservoir operations in
order to minimize spill and head loss, with no constraints on reservoir level (the reservoir
could be lowered in anticipation of an inflow event without regard to other concerns or
stakeholders). In the cost/loss example, the SREF employing the full ensemble provided
the greatest benefit, followed fairly closely by the deterministic model forecast, with the
ensemble average forecast far behind. In section 4.4.2, a decision theory model was applied
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to reservoir operations under an added constraint on reservoir level (the reservoir level must
be maintained at a constant level) and a set deliverable contract price (and variable market
purchase price) for energy. In this case the ensemble average provided the greatest bene-
fit, followed closely by the full ensemble, and the deterministic forecast lagged far behind.
Therefore the system constraints (on reservoir operations and market pricing) may partially
dictate what economic model best fits operational requirements, and an economic analysis
based on that particular economic model may dictate what numerical weather guidance to
choose to maximize economic benefit. Other valid economic models, such as a decision tree
model (Ang and Tang, 1984; ReVelle et al., 2004), may prove valuable in future research
incorporating many complex constraints and alternative utility functions and responses into
a decision-making model.

Employing economic models such as a static binary cost/loss model, or a continuous
decision-theory model, is a preliminary step in assessing the value of ensemble-based pre-
cipitation forecasts to water resource managers. The ultimate goal of ensemble forecasting
for reservoir operating planners is to be able to translate the uncertainty in future weather
into uncertainty in runoff and inflow, and ultimately the amount of energy generated at
a particular reservoir/hydro-electric facility [related examples can be found in Carpenter
and Georgakakos (2001) and Yao and Georgakakos (2001)]. The uncertainty in overall
inflow must also incorporate uncertainty in the hydrologic model that translates forecast
precipitation and temperature into reservoir inflow. Future research will include a hydrome-
teorologic model driven by probabilistic meteorological input variables to determine inflows,
and ultimately available energy.
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Figure 4.1: Photos of four BC Hydro dams in southwestern British Columbia. Clockwise
from upper left: Jordan dam, Daisy dam, Wahleach dam and La Joie dam. Daisy dam is
seen spilling 700 m3s−1 after very heavy rain in mid October 2003.
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Figure 4.2: Daily precipitation vs. daily inflow for Jordan River on southwest Vancouver
Island. The daily inflow (top graph, flow rate in m3 day−1) is determined from reser-
voir elevation and outflow measurements for the Jordan River reservoir system. The daily
precipitation (bottom graph, in mm day−1) was observed at a precipitation gauge in the
middle of the watershed. The period of observations is from April 2003 through March
2005. The Pearson correlation coefficient for these two graphs is 0.88, indicating a high cor-
relation between daily precipitation and daily reservoir inflow. For reservoirs throughout
the study region the average Pearson correlation coefficient between daily precipitation and
daily inflow is 0.70.
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Figure 4.3: Forecast value as a function of cost/loss ratio (C/L) for day-one forecasts.
Precipitation thresholds are as indicated on the figures. The thin curves represent forecast
value calculated for different probability thresholds pt. The thin curves begin with the
lowest probability threshold pt = 1/11 (dotted line) and continue through increasing values
of pt ending with the highest threshold pt = 11/11 (dashed line). The heavy solid line shows
the envelope curve of optimal value (where each user chooses the probability threshold that
maximizes the value for their specific cost/loss ratio).
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Figure 4.4: Forecast value as a function of cost/loss ratio (C/L) for day-two forecasts. The
information presented is in the same form as for Fig. 4.3.
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Figure 4.5: Forecast value envelope as a function of C/L for day-one forecasts. Precip-
itation thresholds are as indicated on the figures. The dashed line is the deterministic
high-resolution forecast and the dotted line is the ensemble-average forecast (the abscissa
is plotted with a logarithmic axis for C/L to enhance clarity). Since the maximum value
occurs at the climate frequency of the threshold event, the curves for the more extreme
events are concentrated around lower C/L values.
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Figure 4.6: Forecast value envelope as a function of C/L for day-two forecasts. The infor-
mation presented is in the same form as in Fig. 4.5.

129



Chapter 4. Short-Range Ensemble Forecasts. Part II: Economic Evaluation

0 0.2 0.4 0.6 0.8 1
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

probability threshold p
t

V
al

ue

5 mm day−1

0 0.2 0.4 0.6 0.8 1
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

probability threshold p
t

V
al

ue

10 mm day−1

0 0.2 0.4 0.6 0.8 1
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

probability threshold p
t

V
al

ue

25 mm day−1

0 0.2 0.4 0.6 0.8 1
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

probability threshold p
t

V
al

ue

50 mm day−1

Figure 4.7: Forecast value as a function of probability threshold for day-one forecasts.
Precipitation thresholds are as indicated on the figures. Different cost/loss ratios are shown
as a solid line (C/L = 0.2), dashed line (C/L = 0.4), dotted line (C/L = 0.6), and dash-dot
line (C/L = 0.8). A value of 1.0 indicates perfect forecasts for users while values below zero
indicate that climatological forecasts are more valuable. The graphs show that users with
higher C/L values must wait for a higher probability forecast of the given event from the
suite of ensembles (i.e., the likelihood of the event occurring is more certain) before taking
action to receive value from the forecasts.
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Figure 4.8: Forecast value as a function of probability threshold for day-two forecasts. The
information presented is in the same form as for Fig. 4.7.
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Figure 4.9: Each bar in the figure spans the portion of the C/L range having positive value
for different SREF configurations and for different precipitation thresholds for the day-one
forecast. The bars are labelled with the SREF configurations for the full ensemble, the
very-high resolution deterministic forecast, and the ensemble-average forecast. Longer bars
provide value to a wider range of users.
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Figure 4.10: Same as Fig. 4.9 except for the day-two forecast.
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Figure 4.11: The relationship between ROC and forecast value. Curves are for day-one
forecasts with precipitation threshold of 10 mm day−1. The ROC curve in the left figure with
the SREF probability threshold pt square markers corresponds to the thick solid envelope
value curve in the right figure. The dashed line in both figures is the very-high resolution
deterministic forecast and the dotted line in both figures is the ensemble-average forecast.
The open circles on the dashed line and the dotted line in the figure on the left represent the
very-high resolution deterministic forecast point and the ensemble-average forecast point,
respectively. The relative merit of ROC and forecast value as determined by these curves
is discussed in the text.
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Figure 4.12: The reservoir schematic diagram for the cost/loss economic model discussed
in the text.
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Figure 4.13: Profit as a function of the market/contract price ratio for different forecast
configurations. The profit for each different configuration is calculated relative to a baseline
maximum possible profit (if the weather forecasts were perfect).
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Table 4.1: Cost/loss contingency table of precipitation forecasts and observations. The
number of hits is given by a, b refers to false alarms, c is number of misses, and d is the
number of correct rejections. Actions resulting from a forecast incur a cost C, while losses
L result from each observed event that was not forecast. Correct rejections incur no cost
and result in no loss. An event is when the precipitation exceeds a threshold.

Observed Not observed
Forecast a (C) b (C)
Not forecast c (L) d (0)
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Table 4.2: Reservoir physical parameters for cost/loss calculations.

Daily base Nominal Reservoir Reservoir
inflow head storage area
Qb h1 G Ar

Index Reservoir (x106 m3) (m) (x106 m3) (km2)
1 Alouette 1.8 38 155 16
2 Buntzen 2.0 116 202 1.8
3 Carpenter 4.4 340 928 48
4 Clowhom 3.1 44 45 8.0
5 Comox 2.9 104 106 30
6 Coquitlam 2.0 116 202 12
7 Daisy 4.2 291 46 43
8 Downton 3.5 54 722 24
9 Elsie 1.8 224 77 0.8
10 Hayward Lake 0.86 38 24 3.0
11 Jordan River 1.0 265 28 1.7
12 Seton 1.6 45 9.0 25
13 Stave 9.6 38 36 62
14 Upper Campbell 6.7 43 82 67
15 Wahleach 0.60 573 66 4.9
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Table 4.3: Cost/loss ratios for the reservoirs in this study.

including market price
basic including o value Sm/Sc = 2.5

Index Reservoir model (50 mm day−1 threshold) (50 mm day−1 threshold)
1 Alouette 0.0024 0.074 0.18
2 Buntzen 0.0048 0.15 0.37
3 Carpenter 0.00026 0.0080 0.020
4 Clowhom 0.0078 0.24 0.61
5 Comox 0.00091 0.029 0.071
6 Coquitlam 0.0012 0.038 0.094
7 Daisy 0.00034 0.011 0.026
8 Downton 0.0017 0.054 0.13
9 Elsie 0.0074 0.23 0.58
10 Hayward Lake 0.0063 0.20 0.50
11 Jordan River 0.0022 0.068 0.17
12 Seton 0.0014 0.044 0.11
13 Stave 0.0035 0.11 0.27
14 Upper Campbell 0.0018 0.057 0.14
15 Wahleach 0.00021 0.0066 0.016
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Table 4.4: Cost/loss contingency table summary of actual precipitation forecasts and ob-
servations for Jordan River for the 50 mm day−1 precipitation threshold. The summary
includes the full ensemble, the deterministic forecasts from the MM5-4 km model, and the
ensemble average. The actual sample expense, Eactual, is determined as a function of L
through the cost/loss ratio for Jordan River (C/L = 0.068). The cost is estimated by
evaluating L as explained in the text.

hit false miss Eactual cost
alarm estimate

(a) (b) (c)
Full ensemble 4 0 3 3.27L $955,000
Deterministic 4 4 3 3.54L $1,035,000
Ensemble average 2 0 5 5.14L $1,500,000
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Chapter 5

Evaluation of Probabilistic

Medium-Range Temperature

Forecasts from the North

American Ensemble Forecast

System8

5.1 Introduction

Accurate weather forecasts help mitigate risk to those economic sectors exposed to weather-
related business losses. Astute business operators can also incorporate accurate weather
forecasts for financial gain for their organization. Probabilistic forecasts are especially
useful in making economic decisions because the expected gain or loss arising from a par-
ticular weather-related event can be measured directly against the probability of that event
actually occurring. For the example of hydro-electric systems, temperature affects the de-
mand for electricity (from electric heaters and air conditioners) and the resistance (therefore
maximum electric load capacity) of transmission lines. In high-latitude countries river-ice
formation affects hydro-electric generation planning during winter. Temperature effects on
hydro-electric systems also include the height above the ground of transmission lines (lines
sag closer to the ground as temperatures rise) and precipitation type (rain vs. snow), an
important factor determining inflow response in watersheds.

Of course, weather-forecast accuracy diminishes as the forecast lead time increases; this
is true for probabilistic forecasts as well as deterministic forecasts. This paper aims to
analyze a set of mid-range probabilistic temperature forecasts and measure the quality and

8A version of this chapter has been submitted for publication. McCollor, D. and R. Stull: Evaluation of
Probabilistic Medium-Range Temperature Forecasts from the North American Ensemble Forecast System.
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value of the forecasts as a function of lead time. Decision makers using this forecast system
will then have a valid estimate of how far into the future these particular forecasts provide
valuable information.

This chapter builds on the probabilistic ensemble prediction system (EPS) analysis tech-
niques incorporated in chapter 3 by extending the evaluation of surface-based numerical
temperature forecasts through the mid-range and out to the limit of existing operational
numerical weather guidance. This chapter includes a further refinement of the Brier Skill
Score (the continuous ranked probability skill score) to analyze the forecasts. This chap-
ter builds on the post-processing techniques introduced in chapter 2 to bias correct these
mid- and long-range ensemble forecasts. This chapter also includes an economic evaluation
component using the cost/loss model that was integrated into the analysis of chapter 4. A
future research project is planned to investigate the meteorological skill and economic value
of probabilistic precipitation forecasts from EPS mid-range forecasts.

Probability estimates of future weather are most often derived from an ensemble of indi-
vidual forecasts. Many short-range ensemble forecast (SREF) systems, designed to provide
forecasts in the day-one and day-two timeframe, provide high-quality probabilistic forecasts
by varying models and/or model physics to derive their ensemble members (Stensrud et al.,
2000; Eckel and Mass, 2005; Jones et al., 2007; McCollor and Stull, 2008b). Medium-range
ensemble forecast (MREF) systems, necessary for probabilistic forecasts beyond day two,
can be designed to represent the errors inherent in synoptic flow patterns in the mid-range
period (Buizza et al., 2005; Roulin and Vannitsem, 2005; Tennant et al., 2007).

The idea of combining ensemble forecasts from different national meteorological cen-
ters, thus taking advantage of different modes of ensemble member generation and greatly
increasing overall ensemble size, resulted in the formation of the North American Ensem-
ble Forecast System (NAEFS) (Toth et al., 2006). We investigate the quality and value of
NAEFS daily maximum and minimum temperature forecasts for ten cities in western North
America.

Section 5.2 describes the forecasts and observations analyzed in the MREF study. Sec-
tion 5.3 describes the verification metrics used to evaluate the probabilistic forecasts and
discusses the results, and section 5.4 summarizes the findings and concludes the paper.

5.2 Methodology

Temperature forecasts were obtained and stored in real time via public access to the North
American Ensemble Forecast System. The NAEFS is a joint project involving the Meteoro-
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logical Service of Canada (MSC), the United States National Weather Service (NWS) and
the National Meteorological Service of Mexico (NMSM). NAEFS was officially launched in
November 2004 and combines state-of-the-art ensembles developed at MSC and NWS.

The grand- or super-ensemble provides weather-forecast guidance for the 1-16 day period,
allowing for inclusion of ensemble members from different generating schemes. Note that
at the time this study was done, NAEFS products were considered experimental in nature.

The original configuration of the NWS-produced ensembles consisted of one control
run plus 14 perturbed ensemble members produced by a bred-vector perturbation method
(Buizza et al., 2005; Toth and Kalnay, 1993). This initial-condition perturbation method
assumed that fast-growing errors develop naturally in a data assimilation cycle and that
errors will continue to grow through the medium-range forecast cycle. The original MSC
EPS configuration consisted of one control run plus 16 perturbed ensemble members. The
perturbation approach developed at MSC (Houtekamer et al., 1996; Buizza et al., 2005)
generated initial conditions by assimilating randomly perturbed observations. This multi-
model approach ran different model versions (involving variable physical parameterizations)
incorporating a number of independent data assimilation cycles. At the time of this study,
no forecasts were available from the NMSM.

In addition, it must be noted that ensemble system design, including strategies to
sample observation error, initial condition error, and model error, as well as address-
ing the issue of member resolution vs. ensemble size, is continually evolving. Re-
cent information describing current national ensemble prediction systems can be found
in a report from a November 2007 workshop on ensemble prediction (available on-
line at http://www.ecmwf.int/newsevents/meetings/workshops/2007/ensemble prediction/
wg1.pdf, accessed April 12, 2008). Current details on improvements to the MSC
EPS are also available online (at http://www.ecmwf.int/newsevents/meetings/workshops/
2007/MOS 11/presentations files/Gagnon.pdf, accessed April 14 2008).

In May 2006 the NWS EPS changed its initial perturbation generation technique to the
Ensemble Transform with rescaling (ETR) technique, where the initial perturbations are
restrained by the best available analysis variance from the operational data assimilation
system (Wei et al., 2008). In March 2007 the NWS ensemble increased to 20 members
integrated from an 80-member ETR-based ensemble. In July 2007 MSC increased its en-
semble size from 16 to 20 members (see http://www.smc-msc.ec.gc.ca/cmc/op systems/
doc opchanges/genot 20070707 e f.pdf, accessed April 17, 2008) to conform to the NWS
ensemble size. MSC also increased the horizontal resolution of the members and extended
the physical parameterization package. The complete current status of the MSC EPS
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can be found at http://www.ecmwf.int/newsevents/meetings/workshops/2007/ensemble
prediction/presentations/houtekamer.pdf (accessed April 17, 2008).

Forecasts for day one through day fifteen were retrieved from the on-line NAEFS over
the period 15 February 2007 through 1 October 2007. An ensemble size of 32 members
was maintained throughout this period, to maintain consistency in the process, despite
operational changes at the national centers as described above. Ten city locations (five
in Canada and five in the U.S.) were chosen to represent different climate regimes in far
western North America (see Table 5.1 for the list of North American cities in the study).
For each day and each city, the forecast valid at 00 UTC [4 pm local (Pacific Standard)
time] was verified against the observed maximum temperature; the forecast valid at 12 UTC
(4 am local time) was verified against the observed minimum temperature.

Forecast-system performance can be verified against actual point observations or against
model-based gridded analyses. Gridded analyses directly from the models generally offer
more data for investigation. However gridded analyses are subject to model-based data-
estimation errors and smoothing errors. Even though point observations are subject to
instrumentation error and site-representativeness error, it is preferable to verify forecasts
against observations as opposed to model analyses (Hou et al., 2001).

The mean error of the maximum and minimum temperature forecasts for each ensemble
member for each forecast day was evaluated from the sample. Random errors caused by
initial-condition and model/parameterization errors can be reduced by using an ensemble
of forecasts. Bias in the forecasts is largely attributable to local terrain and topographic
effects poorly represented in the forecast models. Bias is evaluated by calculating the mean
error in the forecasts, and can be reduced via post-processing of the direct model output
(DMO).

Regarding post-processing, the authors previously found (McCollor and Stull, 2008a)
that a 14-day moving-average filter was effective in reducing bias in a medium-range maxi-
mum and minimum temperature forecast sample. Therefore a 14-day moving-average filter
is applied here to each of the ensemble member forecasts (for each station location and each
forecast lead time) to minimize the bias in the DMO forecasts. Care was taken in this study
to ensure the method is operationally achievable. That is, only observations that would be
available in a real-time setting for each forecast period were used in the moving-average
filter. For example, all day-five forecasts included a moving-average filter incorporating
forecast-observation pairs from 19 days prior to the forecast valid time through 6 days prior
to the forecast time to achieve a 14-day moving average bias correction.

This method of error reduction for ensemble prediction is known as the bias-corrected
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ensemble (BCE) approach (Yussouf and Stensrud, 2007). The scheme responds quickly
to any new station locations, new models or model upgrades. The results of the filter
application are presented in Fig. 5.1. Mean error in the DMO ensemble average daily
maximum temperature forecasts, ranging from -3.6◦C (day-one forecasts) to -2.6◦C (day 15
forecasts), was reduced to 0.0◦C (day-one forecasts) to +0.6◦C (day 15 forecasts) in the post-
processed forecasts. Similarly, mean error in the DMO ensemble average daily minimum
temperature forecasts, near -1.5◦C throughout the 15-day forecast cycle, was reduced to the
0.0◦C to +0.3◦C range in the post-processed forecasts. These bias-corrected forecasts are
used in the subsequent ensemble evaluations in this paper.

The final phase in designing an ensemble prediction system lies in choosing a weighting
scheme for the individual ensemble members in the computation of the ensemble average.
In addition to applying equal weighting to all ensemble members by simply averaging all
members, Yussouf and Stensrud (2007) explored performance-based weighted BCE schemes
wherein unequal weights, based on individual member’s past forecast accuracy, are assigned
to each ensemble member prior to calculating the ensemble mean forecast. However, results
from the Yussouf and Stensrud (2007) study indicated there is no significant improvement
over original 2 m temperature BCE forecasts when performance-based weighting schemes are
applied to the EPS individual members. Therefore a BCE approach computing the ensemble
average from equally-weighted ensemble members is chosen for our study of medium-range
temperature forecasts.

5.3 Results and Discussion

A single verification score is generally inadequate for evaluating all of the desired infor-
mation about the performance of an ensemble prediction system (Murphy and Winkler,
1987; Murphy, 1991). Different measures, emphasizing different aspects and attributes of
forecast performance, should be employed to assess the statistical reliability, resolution, and
discrimination of an EPS. A standardized set of evaluation methods, scores, and diagrams
to interpret ensemble forecasts is provided in Hamill et al. (2000) and is incorporated here
to assess a MREF system for daily maximum and minimum temperature forecasts. The
reader is referred to Wilks (2006) or Toth et al. (2003) for comprehensive descriptions of
verification measures.
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5.3.1 Skill Scores

Initial assessment of the forecasts utilized a root mean squared error skill score (RMSESS)
and a Pearson correlation skill score (CORRSS) evaluated for the ensemble average. A
general skill score definition is given by:

Skill score =
score − scoreref

scoreperfect − scoreref
(5.1)

where scoreref is the score for the reference forecasts. In this case the reference forecasts
are the climatological mean values of maximum and minimum temperatures for each indi-
vidual city location, for each day, averaged over the 30 year normal period 1971-2000. The
scoreperfect is the score the forecasts would have received if they were perfect. Skill scores
range from zero (for no skill, or skill equivalent to the reference forecasts) to 1 (for perfect
forecasts). Negative skill score values indicate the forecasts are worse than the reference
forecasts.

RMSESS and CORRSS were evaluated for the average of the 32 ensemble members for
each of the forecast days one through fifteen. The results are shown in Fig. 5.2. Both
the RMSESS and CORRSS for the ensemble average forecast indicate similar results in
terms of forecast skill. Forecast skill, as expected, is highest for the day-one forecast, and
gradually diminishes. By day nine, forecast skill is negligible compared to the climatological
reference forecasts. By day 10 the forecasts show no skill compared to the climatological
reference forecasts, and for days 11 through 15 the NAEFS forecasts have worse skill than
climatological forecasts.

Fig. 5.2 also compares the ensemble average forecast with the deterministic five-day
forecast from the MSC operational Global Environmental Multiscale (GEM) model (Côté
et al., 1998a,b). Forecast skill is comparable between the ensemble average and deterministic
forecast early in the forecast period, but the ensemble average outperforms the deterministic
forecast in terms of RMSESS and CORRSS as the forecast period progresses.

A summary of the equations used for the meteorological statistical analysis of the MREF
is provided in Appendix C.

5.3.2 Continuous Ranked Probability Score

The continuous ranked probability score (CRPS) (Hersbach, 2000) is a complete general-
ization of the Brier score. The Brier score (Brier, 1950; Atger, 2003; McCollor and Stull,
2008b) is a verification measure designed to quantify the performance of probabilistic fore-
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casts of dichotomous event classes. The discrete ranked probability score (RPS) (Murphy,
1969; Toth et al., 2003) extends the range of the Brier score to more event classes. The
CRPS extends the limit of the RPS to an infinite number of classes. The CRPS has several
distinct advantages over the Brier score and the RPS. First, the CRPS is sensitive to the
entire permissable range of the parameter. In addition, the CRPS does not require a sub-
jective threshold parameter value (as does the Brier Score) or the introduction of a number
of predefined classes (as does the RPS). Different choices of threshold value (Brier score)
or number and position of classes (RPS) result in different outcomes, a weakness in these
scores not shared with CRPS.

The CRPS can be interpreted as an integral over all possible Brier scores. A major
advantage of the Brier score is that it can be decomposed into a reliability component, a
resolution component, and an uncertainty component (Murphy, 1973; Toth et al., 2003).
In a similar fashion, Hersbach (2000) showed how the CRPS can be decomposed into the
same three-part components:

CRPS = Reli − Resol + Unc (5.2)

The CRPS components can be converted to a positively-oriented skill score (CRPSS) in
the same manner the Brier score components are converted to a skill score (BSS) (McCollor
and Stull, 2008b):

CRPSS =
Resol
Unc

− Reli
Unc

= relative resolution − relative reliability

= CRPSRelResol − CRPSRelReli

CRPSS results are shown in Fig. 5.3. The CRPSS was calculated on forecast and obser-
vation anomalies, defined as the difference between the forecast or the observation and the
climatological value for that city location on a particular date. The forecasts are reliable
throughout the forecast period, as indicated by the CRPSRelReli term being near zero for
all forecasts. The CRPSRelResol term however, hence the CRPSS, is highest for the day-one
forecast and exhibits diminishing skill as the forecast period extends through the day 12
forecast. For forecast days 13 through 15, both maximum and minimum daily temperature
forecasts exhibit negligible or no skill compared to the reference term.
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5.3.3 ROC Area

The relative operating characteristic (ROC) is a verification measure based on signal detec-
tion theory (Mason, 1982; Mason and Graham, 1999; Gallus et al., 2007) that provides a
method of discrimination analysis for an EPS. The ROC curve is a graph of hit-rate versus
false-alarm-rate for a particular variable threshold (see Appendix C for definitions of these
terms and for the contingency table basis for this analysis).

Perfect discrimination is represented by a ROC curve that rises from (0,0) along the
Y-axis to (0,1) then horizontally to the upper right corner (1,1). The diagonal line from
(0,0) to (1,1) represents zero skill, meaning the forecasts show no discrimination among
events. The area under the ROC curve can then be converted to a skill measure as in equa-
tion (5.1), where scoreref is the zero-skill diagonal line (ROCArea = 0.5) and scoreperfect

is the area under the full ROC curve, equal to 1. The ROC area skill score is then
ROCSS = 2 ROCArea - 1.

The hit-rate and false-alarm-rate contingency table was evaluated on forecast and obser-
vation anomaly thresholds. The ROC daily maximum temperature anomaly threshold was
defined as 5◦C over the climatological value for the day (+5◦C anomaly threshold), and the
daily minimum temperature anomaly threshold was 5◦C below the climatological value for
the day (-5◦C anomaly threshold).

A 5◦C anomaly threshold was chosen because this value produces a significant devia-
tion from normal electrical load in cities and is therefore an important factor for planning
generation requirements and power import/export agreements. A 10◦C anomaly threshold
would produce an even greater impact on generation planning and power import/export,
but there was not enough data available in our study to produce reliable results. In a future
study we would like to acquire enough data to examine forecast skill for these temperature
extremes.

Results for the ROCSS for the 5◦C temperature anomaly threshold for the full range
of the 15-day forecast period are shown in Fig. 5.4. Actual ROC area curves for the daily
maximum forecasts for a subset of the forecast period is shown in Fig. 5.5.

The ROCSS indicates that both maximum- and minimum-daily forecasts exhibit consis-
tent and very good discrimination through forecast day six. Both maximum- and minimum-
daily forecasts exhibit diminishing, but measurable discrimination skill from forecast day
seven through forecast day 12. The daily minimum temperature forecasts show slightly
higher skill than the daily maximum temperature forecasts through this period. For fore-
cast days 13, 14, and 15, the ROCSS is close to zero and somewhat noisy indicating no skill
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in the forecasts.

5.3.4 Economic Value

Potential economic value for the cost/loss decision model (Murphy, 1977; Katz and Murphy,
1997; Richardson, 2000; Zhu et al., 2002; Richardson, 2003; McCollor and Stull, 2008c)
is uniquely determined from ROC curves. The cost/loss ratio (C/L) model shows how
probabilistic forecasts can be used in the decision-making process, and provides a measure
of the benefit of probabilistic forecasts over single ensemble-average forecasts.

Fig. 5.6 shows forecast value (Richardson, 2003) as a function of C/L value for daily
maximum temperature forecasts with a +5◦C anomaly threshold. Maximum value occurs
at the climate frequency for the event, and users with a C/L value equal to the climate
frequency derive most value from the forecasts.

Fig. 5.6 also shows the value calculated for the ensemble average forecasts. The maximum
value for the ensemble average forecasts is less than the maximum value for the forecasts
incorporating the full suite of ensemble members. The discrepancy between the maximum
value for the ensemble forecasts and the maximum value for the ensemble average forecasts
widens with projected forecast period. Additionally, the cast of users (described by different
cost/loss ratios) that gain benefit (show positive value) from the forecasts is wider for the
full ensemble forecasts than for the ensemble average forecasts.

A graph depicting the decay of forecast maximum value with projected forecast period
is shown in Fig. 5.7. The maximum value is slightly higher for minimum temperature
forecasts than for maximum temperature forecasts, and the forecasts lose very little of their
initial value through forecast day six. Maximum value lessens but remains positive through
forecast day eleven. Forecasts for days 12 through 15 indicate the value of these forecasts
is little better than climatology.

Plotting forecast value as a function of probability threshold pt for different C/L values
(Fig. 5.8) is a way of showing how different forecast users can benefit individually from the
same set of ensemble forecasts. The probability threshold pt is the point that a decision
maker should take action on the basis of the forecast to derive most value from the forecasts.
Low cost/loss ratio forecast users (C/L = 0.2 in Fig. 5.8) can take advantage of the ensemble
forecasts by taking action at very low forecast probabilities through forecast day eight. High
C/L forecast users (C/L = 0.8) must wait until the forecast probability is much higher,
and can gain positive value from the forecasts only through forecast day four.
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5.3.5 Equal Likelihood

In a perfectly realistic and reliable EPS, the range of the ensemble forecast members repre-
sents the full spread of the probability distribution of observations, and each member of the
ensemble exhibits an equal likelihood of occurrence. Actual EPSs are rarely that perfect.
The rank histogram, also known as a Talagrand diagram (Anderson, 1996; Talagrand et al.,
1998), is a useful measure of equal likelihood and of reliability (Hou et al., 2001; Candille
and Talagrand, 2005) of an EPS.

A perfect EPS in which each ensemble member is equally likely to verify for any particular
forecast exhibits a flat rank histogram. Ensemble forecasts with insufficient spread to ade-
quately represent the probability distribution of observations exhibit a U-shaped histogram.
Rank histograms derived from a particular EPS can also exhibit an inverted-U-shape, in-
dicative of too much spread in the ensemble members compared to the observations. Rank
histograms can also be L-shaped (warm bias), or J-shaped (cool bias). Operational ensem-
ble weather forecasting systems in the medium lead-time range (3-10 days ahead) exhibit
U-shaped analysis rank histograms, implying the ensemble forecasts underestimate the true
uncertainty in the forecasts (Toth et al., 2003).

A subset of rank histogram plots for the EPS daily maximum temperature forecasts is
provided in Fig. 5.9, for forecast days two, four, six, eight, ten, and twelve. These plots show
that early in the forecast period, especially through forecast day four, the rank histograms
do exhibit a ‘U’ shape, with excess values in the outermost bins. This means the EPS is
under-dispersive through forecast day four; the spread in the EPS is not indicative of the
spread in the actual observations. However the rank histogram is symmetric, confirming
that the bias-corrected temperature forecasts are indeed unbiased.

Forecast days 6 through 12 display a progressively flatter histogram, indicating the EPS
spread increases with forecast lead time and the EPS spread essentially matches the spread
of the observations beyond forecast day six. Similar results (Fig. 5.10) were obtained from
a rank histogram analysis of the EPS daily minimum temperature forecasts. However, this
better spread is associated with worse skill, as shown previously in sections 5.3.1 and 5.3.2.

A measure of the deviation of the rank histogram from flatness is given in Candille and
Talagrand (2005) for an EPS with M members and N available forecast/observation pairs.
The number of values in the ith interval of the histogram is given by si. For a flat histogram
generated from a reliable EPS, si = N/(M + 1) for each interval i. The quantity

Δ =
M+1∑
i=1

(si − N

M + 1
)2 (5.3)
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measures the deviation of the histogram from a horizontal line. For a reliable system, the
base value is Δ0 = NM/(M + 1). The ratio

δ = Δ/Δ0 (5.4)

is evaluated as the overall measure of the flatness of an ensemble prediction system rank
histogram. A value of δ that is significantly larger than 1 indicates the system does not
reflect equal likelihood of ensemble members. A value of δ that is closer to 1 indicates the
ensemble forecasts are tending toward an equal likelihood of occurrence, and therefore are
more reliable.

Fig. 5.11 provides an analysis of the rank histograms for the MREFs studied here. Early
in the forecast period, for forecast days one, two, and three, δ is much greater than ten.
Therefore the MREF system for forecast days one through three exhibits insufficient, but
successively increasing spread to adequately represent the variability in the observations.
For forecast days four and five the MREF exhibits δ values successively smaller, but still
greater than five, so that evidence of slight under-dispersion remains. For forecast days be-
yond day five, the δ values derived from this MREF system (values between one and five),
as indicated in Figs. 5.9-5.11, indicate ensemble spread is very slightly under-dispersive,
though nearly sufficient spread is realized in the ensembles to represent the observations
in the analysis. Spread does improve as the forecast period increases, however this im-
provement in spread is negated by the deterioration in skill at the longer forecast periods.
This skill vs. spread relationship is demonstrated in a trade-off diagram, described in the
following section.

Skill-spread Trade-off Diagram

We define a new spread score as:

Spread score = 1/δ (5.5)

A plot of skill score on the ordinate and this spread score on the abscissa (as the forecast
projection progresses from day 1 through day 15) shows the trade-off between higher skill
but lower spread early in the forecast period and degraded skill but better spread later in the
forecast period. A skill-spread trade-off diagram with the continuous ranked probability skill
score (CRPSS) vs. the spread score is shown in Fig. 5.12, and a similar trade-off diagram
displaying the ROC skill score (ROCSS, for the 5◦C temperature anomaly threshold) is
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shown in Fig. 5.13.
Both Figs. 5.12 and 5.13 display the change of skill and spread with forecast projection,

for both daily minimum and daily maximum temperature forecasts. Beyond forecast day 11
or 12 (indicated by a dotted line in these figures), the skill becomes negligible and the spread
stops improving, or even lessens in some cases. The authors suggest that this relationship
between skill and spread could be explored further with the aid of this skill-spread trade-off
diagram, with different parameters, more data sets and other skill measures. One interesting
application of this skill-spread diagram would analyze the variation of skill with spread as
the number of individual members in an ensemble prediction system is varied. The diagram
could be used, for example, to find the fewest number of members needed to reach a specific
level of skill, for a specific forecast projection, in order to optimize the use of computer
resources in ensemble system design.

5.4 Summary and Conclusions

The skill and value of medium-range maximum and minimum NAEFS temperature forecasts
are evaluated here for the seven-month period of 1 March through 1 October 2007. However,
caution must be used when objectively assessing the quality of ensemble forecasts. Ensemble
forecast systems must be verified over many cases. As a result, the scoring metrics described
here are susceptible to several sources of noise (Hamill et al., 2000). For example, improper
estimates of probabilities will arise from small-sized ensembles. Also, insufficient variety and
number of cases will lead to statistical misrepresentation. Finally, imperfect observations
make true forecast evaluation impossible.

Two standard verification skill score measures designed for continuous deterministic fore-
cast variables, a RMSE skill score and a Pearson correlation skill score, were applied to the
mean of the bias-corrected ensemble forecasts. These measures both showed that the ensem-
ble means of these city temperature forecasts from the NAEFS possessed skill (compared to
climatology) through forecast day nine, though for forecast days eight and nine the forecast
skill was marginal. These skill scores also indicated that daily maximum temperature fore-
casts were slightly more skillful than daily minimum temperature forecasts for the period
analyzed.

This study then incorporated verification measures specifically designed for probabilistic
forecasts generated from the bias-corrected set of all 32 ensemble members. The continuous
ranked probability score (CRPS), particularly useful for evaluating a continuous ensemble
variable, indicated skill in the EPS through day 12. The CRPS also supported the previous
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finding for the ensemble mean that daily maximum temperatures are slightly more skillful
than the daily minimum forecasts.

The ROC area skill score, designed to indicate the ability of the EPS to discriminate
among different events, showed that the EPS forecasts were indeed skillful (for 5◦C temper-
ature anomaly thresholds) in this regard through day 12. ROC evaluation is characterized
by stratification by observation, and discrimination is based on the probabilities of the fore-
casts conditioned on different observed values, or likelihood-base rate factorization in the
parlance of the Murphy and Winkler general framework for forecast verification (Murphy
and Winkler, 1987; Potts, 2003).

ROC analysis leads to economic evaluation through a cost/loss measure of value. Cost/loss
analysis indicated that overall, the EPS provides some economic value through day 12. How-
ever the maximum value, assigned to the user whose C/L value is equal to the climatological
base rate for the event in question, diminishes markedly through this forecast range. Ad-
ditionally, the range of users, defined by different cost/loss ratios, diminishes considerably
beyond forecast day six. The C/L analysis also provides proof that the full suite of ensem-
ble forecasts provides value to a greater range of users than the single ensemble average
forecasts.

Rank histograms provide a method to test if the dispersion, or spread, of the ensemble
forecasts represents the dispersion in the actual observations, a vital component in a reli-
able EPS. In the NAEFS forecast sample examined here, the forecasts were decreasingly
underdispersive early in the forecast cycle, for forecast days one through five. The fore-
casts exhibited marginal underdispersion for forecast days six and beyond. A new trade-off
diagram is proposed to show the interplay between skill and spread.

One aspect of interest uncovered in this study is the comparison of forecast skill between
daily maximum and daily minimum temperature forecasts. The skill scores evaluated for
the ensemble mean forecast (RMSESS and CORRSS) indicated that daily maximum tem-
perature forecasts were somewhat more skillful than daily minimum temperature forecasts
through the first nine days of the forecast period (Fig. 5.2). These skill scores indicate
no skill in the forecasts, for either daily maximum or daily minimum forecasts, for forecast
day 10 (compared to the climatological reference forecasts). Beyond day 10, the MREF fore-
casts fare worse than climatological forecasts, with daily maximum temperature forecasts
now proving worse than daily minimum temperature forecasts.

Daily maximum temperature forecasts also prove slightly better than daily minimum
temperature forecasts when compared using the CRPSS (Fig. 5.3), throughout the 15 day
range of MREF forecasts. The ROCSS, on the other hand, indicates daily minimum tem-
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perature forecasts show better discrimination than daily maximum temperature forecasts
(Fig. 5.4). In terms of forecast spread, both daily maximum and daily minimum tempera-
ture forecasts possess similar spread for all forecasts beyond day one (Fig. 5.11). We do not
have enough information to determine if the difference in skill between daily maximum and
daily minimum temperature forecasts is an artifact of the scoring metric, the models in the
MREF, or the fact that the 00 and 12 UTC forecasts don’t necessarily correspond to the
times of maximum and minimum daily temperatures. Investigation of this difference in skill
between maximum and minimum temperature forecasts is an avenue for future research.

In summary, the bias-corrected NAEFS provides skill in the deterministic ensemble av-
erage, for the forecasts analyzed in this study, through forecast day nine. Employing the
full range of 32 ensemble members to provide probabilistic forecasts of daily maximum and
minimum temperature extended the skill of the NAEFS through an additional three forecast
days, through day 12.

Summarizing the findings for the ensemble average forecasts, and in comparing MREF
forecasts in a continuous mode, daily maximum temperature forecasts were slightly more
skillful than daily minimum temperature forecasts. Shifting to discriminating ability (using
+/-5◦C anomaly thresholds), daily minimum temperature forecasts provided slightly better
discriminating ability than daily maximum temperature forecasts.

Many sectors of the economy, such as hydro-electric energy generation, transmission, and
distribution, are susceptible to financial risk driven by changing temperature regimes. This
study has shown that business managers savvy enough to incorporate ensemble temperature
forecasts provided by the NAEFS can mitigate that risk quite far into the future (potentially
12 days depending on user requirements).
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Figure 5.1: Mean error for ensemble average DMO forecasts (squares) and ensemble average
post-processed forecasts (circles) for daily maximum temperatures (upper panel) and daily
minimum temperatures (lower panel) for forecast days 1 through 15. Values near zero are
best.
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Figure 5.2: RMSE (upper panel) and correlation (lower panel) skill scores for daily maxi-
mum (squares) and minimum (circles) temperature forecasts for forecast days 1 through 15.
The ensemble average forecast (solid line) is compared with a deterministic operational
forecast (dashed line). A skill score of one is best.
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Figure 5.3: Continuous ranked probability skill score for ensemble daily maximum (upper
panel) and minimum (lower panel) temperature anomaly forecasts. The CRP skill score
(circles) equals the relative resolution (dashed line with x markers) less the relative reliability
(* markers). A skill score of one is best.
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Figure 5.4: ROC area skill score for ensemble daily maximum temperature forecasts with a
+5◦C anomaly threshold (squares) and daily minimum temperature forecasts with a -5◦C
anomaly threshold (circles). A skill score of one is best.
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Figure 5.5: ROC Area plots for a subset of the forecast period for daily maximum temper-
ature anomaly +5◦C threshold. The plots range from ROC curve for day 2 (dot), day 4,
day 6, day 8, day 10, and day 12 (dot-dash). The dashed line is the zero-skill line.
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Figure 5.6: Forecast value as a function of cost/loss ratio (C/L) for ensemble daily maximum
forecasts (+5◦C anomaly threshold). The solid line represents the value of the full ensemble
and the dotted line the value of the ensemble mean. A value of one is best.
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Figure 5.7: Cost/loss ratio (C/L) maximum value for ensemble daily maximum tempera-
tures with a +5◦C anomaly threshold (squares) and minimum temperatures with a -5◦C
anomaly threshold (circles). A value of one is best.
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Figure 5.8: Value as a function of probability threshold pt for cost/loss ratio C/L=0.2
(solid), C/L=0.4 (dash), C/L=0.6 (dot) and C/L=0.8 (dot-dash). The forecasts are daily
maximum temperature forecasts with a +5◦C anomaly threshold. A value of one is best.
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Figure 5.9: Rank histograms for the ensemble of daily maximum temperatures. A flat
histogram indicates non-dispersive reliable forecasts. A U-shaped histogram indicates the
ensemble forecasts are under-dispersive.
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Figure 5.10: Rank histograms for the ensemble of daily minimum temperatures. A flat
histogram indicates non-dispersive reliable forecasts. A U-shaped histogram indicates the
ensemble forecasts are under-dispersive.
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Figure 5.11: Rank histogram δ score for ensemble daily maximum (squares) and daily
minimum (circles) temperature forecasts. A value of one is best.
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Figure 5.12: A trade-off diagram of CRPSS vs. spread score (1/δ) for daily maximum
temperature (squares) and daily minimum temperature (circles) forecast anomalies. The
scores progress from the day 1 forecast (upper left) through the day 15 forecast (lower right).
Values of one are best for both skill score and spread score, showing the trade-off between
high skill but low spread early in the forecast period, and degraded skill but better spread
later in the forecast period. After day 11 (dotted line) the skill is negligible and the spread
stays the same or lessens.
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Figure 5.13: Similar to Fig. 5.12 but for ROCSS vs. spread score (1/δ).
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Table 5.1: Ten cities for which forecast and associated verifying observations were evaluated.
ICAO is the International Civil Aviation Organization.

City ICAO Identifier Latitude Longitude
High Level, Alberta CYOJ 58.6◦ N 117.2◦ W
Peace River, Alberta CYPE 56.2◦ N 117.4◦ W
Fort St. John, British Columbia CYXJ 56.2◦ N 120.7◦ W
Victoria, British Columbia CYYJ 48.6◦ N 123.4◦ W
Vancouver, British Columbia CYVR 49.2◦ N 123.2◦ W
Seattle, Washington KSEA 47.4◦ N 122.3◦ W
Spokane, Washington KGEG 47.6◦ N 117.5◦ W
Portland, Oregon KPDX 45.6◦ N 122.6◦ W
Sacramento, California KSAC 38.5◦ N 121.5◦ W
Bakersfield, California KBFL 35.4◦ N 119.1◦ W
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Chapter 6

Conclusions

Improving NWP precipitation and temperature forecasts to benefit electricity generation
summarizes the goal of this research project. The research presented in this dissertation
has achieved this goal.

6.1 Summary of Methods and Procedures

Post-processing numerical temperature and precipitation forecasts and assessing the eco-
nomic value of probabilistic hydrometeorological forecasts provides a measurable benefit to
electricity generation systems. The first component of the method derived here established
a viable and accurate technique of post-processing temperature and precipitation forecasts.
Second, a full assessment of the meteorological quality and economic value of short-range
ensemble precipitation forecasts provided the analysis necessary before synthesizing the
forecasts into hydro-electric reservoir inflow models. Third, a complete evaluation of the
quality and value of long-range bias-corrected ensemble temperature forecasts (required
hydro-electric information for anticipating precipitation phase, electric load, energy market
prices, and river-ice-front movement) concluded the research phase of this dissertation.

Both systematic error and random error degrade the quality and value of hydrome-
teorological numerical weather forecasts. Post-processing numerical model weather forecasts
successfully minimizes systematic error attributable to poor representation of topography
in the model, a technique especially suitable in regions of complex terrain. Post-processing
relies on estimating past bias between forecasts and observations to predict future error in
the forecasts. Bias-correcting results in reliable forecasts with negligible mean error.

Ideally the forecasts should be corrected for systematic error on a conditional basis,
since different weather regimes and evolving models result in different, or conditional, bias
factors. Conditional bias assessment remains difficult to achieve in a real-time operational
forecast environment, so this study measured and assessed unconditional bias in the fore-
casts. A short window-length ensures that bias-correction adapts quickly to weather regime
or model changes (emulating conditional bias-correction), while a long window-length pro-
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motes statistical stability. The study quantified optimal window-length facilitating these
two competing factors.

The study compared seven competitive methods for daily maximum and minimum tem-
perature forecasts, and three different methods for daily quantitative precipitation forecasts
(in Chapter 2). The study assessed a set of forecasts produced for 19 observing sites within
the complex terrain of southwest British Columbia, Canada. Achieving the goal of this first
segment of the research required the development of an optimal post-processing scheme to
calibrate systematic error in temperature and precipitation forecasts. The scheme must be
easy to implement operationally, and must balance statistical stability with quick adapta-
tion to changing weather regimes and model changes.

Post-processing cannot reduce random error in the forecasts. Only improving the actual
forecast model reduces random error. Running a suite of different forecasts, termed a
forecast ensemble, and assessing the resulting forecast probability distribution quantifies
random error in the forecasts. Determining the user-dependent economic value of a forecast
system requires such an assessment of forecast probability.

To generate a suite of different forecasts, a forecast ensemble designer will vary the
computational components of a single model, will include output from different models, or
will change the initial conditions in numerous runs of a single model. Combining all these
methods into one probabilistic forecast results in a super-ensemble.

A judicious assessment of short-range ensemble forecasts of daily quantitative precip-
itation in this study utilized an arsenal of probabilistic forecast evaluation measures (in
Chapter 3). A suite of three models running in different resolution configurations produced
the forecasts. The forecasts were assessed over two consecutive 6-month wet seasons for 27
observing sites representing 15 hydro-electric watersheds in complex terrain. The evaluation
measures extract important information for hydrometeorological users about the quality of
probabilistic precipitation forecasts. Forecast quality comprises a complete analysis of reli-
ability, resolution, skill, sharpness, discrimination, and spread.

Incorporating user needs into forecast evaluation upgrades an assessment of forecast
quality to one of forecast value (see Chapter 4). Differing users, evaluating a set of forecasts
assigned a particular level of quality, prescribe different measures of value to the same set
of forecasts. Utilizing two different economic models provided a specific measurement of
forecast value for the hydro-electric sector. A cost/loss model adapted here specifically for
the hydro-electric energy sector initiated an overall assessment of forecast value dependent
on particular watershed, reservoir, and hydraulic-head configuration. A decision-theory
model adapted here to represent a single hydro-electric reservoir operation resulted in a

177



Chapter 6. Conclusions

direct monetary comparison between an ensemble forecast system and single deterministic
forecasts.

Combining the successful post-processing approach devised in Chapter 2 (to minimize
systematic error) with the meteorological and economic analyses presented in Chapters 3
and 4 (to assess probabilistic ensemble forecasts), a bias-corrected super-ensemble prediction
system (presented in Chapter 5) refined a set of raw temperature forecasts into a valuable
decision-making tool for hydro-electric generating system operators.

6.2 Summary of Findings

The results and findings of this research are summarized here:

• The best post-processing methods for minimizing mean error in daily maximum and
minimum temperature forecasts included moving-weighted average methods and a
Kalman-filter method. The optimal window-length for the moving-weighted average
methods proved to be 14 days (McCollor and Stull, 2008b).

• The best post-processing methods for achieving mass balance in daily quantitative
precipitation forecasts were a moving-average method and the best easy systematic
estimator method. The optimal window-length for moving-average quantitative pre-
cipitation forecasts was 40 days (McCollor and Stull, 2008b).

• Given an operational precipitation forecast ensemble built from different models, each
running at different resolutions, the best ensemble configuration included all models at
high, medium, and low resolution to maximize reliability, resolution, skill, sharpness,
discrimination, and spread performance (McCollor and Stull, 2008c).

• In rainfall-dominated regions of complex topography, reservoir operators managing
high head, large storage, large areal reservoirs with low base inflows should drive their
ensemble-based forecast decisions with reservoir-specific low cost/loss ratios (McCollor
and Stull, 2008d).

• A reservoir-operation model based on decision theory and variable energy market pric-
ing showed that applying an ensemble-average or full-ensemble precipitation forecast
provided a much greater profit than using only a single deterministic high-resolution
forecast (McCollor and Stull, 2008d).
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• A bias-corrected super-ensemble prediction system consisting of 32 members produc-
ing daily maximum and minimum temperature forecasts for ten cities in western North
America exhibited skill nine days into the future when using the ensemble average,
and 12 days into the future when employing the full ensemble forecast (McCollor and
Stull, 2008a).

6.3 Discussion and Recommendations

This dissertation proved that bias-correcting temperature and precipitation forecasts and
providing users with an ensemble-generated probability distribution of forecasts provides
concrete monetary benefits to the hydro-electric energy sector. This dissertation provides
explicit details of methods to post-process forecasts and generate quality ensembles to build
a valuable decision-making tool for this extremely important sector of any regional or na-
tional economy. The techniques documented in this dissertation work exceedingly well in
the complex topography and extreme climatic regimes of western North America. These
methods embody no intrinsic limitations preventing their similar application in any other
geographic region with a viable energy generation sector, or in fact any temperature or
precipitation dependent sector of the economy.

Future work to further improve the post-processing techniques presented in Chapter 2
would include a multivariate approach to weighting error estimates. Including variables
such as integrated water vapour and flow direction in a multivariate approach would likely
prove beneficial in a post-processing technique to improve precipitation forecasts. However
much more training data is needed for multivariate approaches that calibrate forecasts
conditioned on specific events.

A multi-model approach is also a cost-effective way to reduce error in forecasts. A
combination of a model-averaging approach (Ebert, 2001) and the bias-correction techniques
presented here may prove beneficial (Delle Monache et al., 2006), especially for precipitation
forecasting.

Another approach that may provide positive results is autoregressive-moving average
(ARMA) modelling of direct-model-output (DMO) error. ARMA models of meteorological
time series gained popularity in the late 1970’s and early 1980’s, after Box and Jenkins
(1976) published readily accessible statistical methodology for applying ARMA models to
time series analysis. However meteorological ARMA models of the time were limited to
seasonal analyses applications such as drought index modeling, monthly precipitation, and
annual streamflow (Katz and Skaggs, 1981). ARMA techniques do provide a method to
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estimate future error between DMO and observations using optimized weighted past er-
ror measurements. Currently, however, major efforts in using ARMA and Box-Jenkins
approaches are concentrated in the financial world. Complex ARMA schemes depend criti-
cally on developmental data (as does MOS) and hence perform poorly after changes to the
underlying model.

The next stage of research, building on the work presented in this dissertation, should
quantify the quality and value of probabilistic precipitation forecasts in a medium-range
ensemble forecast system (day three and beyond). The results of a medium-range ensemble
forecast system for precipitation would complement the results documented for temperature
presented in Chapter 5.

Another important avenue for hydrometeorological research would adapt the methods
prescribed in this dissertation to short-range high-inflow ensemble forecasting. The daily
time-step for precipitation and temperature forecasts selected in this dissertation would
change to a 6-hourly or 3-hourly timestep projected 24 or 48 hours into the future. Such a
high-inflow forecasting system design should operate on a 6 or 12-hour update cycle for the
duration of a high-rainfall event.

The techniques of numerical weather forecast post-processing and methods of forecast
quality and value assessment adapted in this dissertation for hydro-electric generation could
transfer to the wind-power generation sector. Wind-power generation capacity accounts
for approximately 0.5% of the world’s power generation (Gil, 2007). Over 60% of the
world’s installed wind power capacity resides in Europe, and 16% resides in the USA. India,
Japan, and Canada produce only a small portion of their domestic electric power with
windfarms. Wind power represents one of the fastest growing renewable-energy technologies,
renowned for its many advantages: it is non-carbon based, it reduces a nation’s dependence
on conventional non-renewable carbon-based sources, and it diversifies a nation’s energy
portfolio. Wind power is touted as one of the most cost-effective methods of electricity
generation available; costs have fallen around 90% during the last 20 years. Accurate
wind-speed forecasts would improve efficiency and add value to an integrated wind-power
electrical generation system in much the same way hydrometeorological forecasts aid hydro-
power systems.

Water resource managers operating a reservoir face many complex decisions. An au-
tomated, skillful, reliable ensemble streamflow forecast product is conceptually appealing
(Schaake et al., 2007). Schaake (ibid.) described an “end-to-end” forecast system that
explicitly accounts for the major sources of uncertainty in the forecasting process, including
hydrologic model and initial basin-state error as well as atmospheric model and initial-
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condition error. The meteorological component of the end-to-end forecasting system pro-
vides atmospheric forcing for the hydrologic model that has been downscaled and converted
to calibrated, bias-corrected temperature and quantitative precipitation forecasts. In this
dissertation I have shown explicitly how to perform these crucial steps to improve proba-
bilistic forecast quality.

Schaake (ibid.) stated that, as part of the Hydrologic Ensemble Prediction Experiment
(HEPEX) project, end-to-end forecasting systems are just beginning to be assembled, and
there are many basic and applied science questions that remain to be answered in order to
build and promote the rapid development of useful systems. In this dissertation I have also
shown that economic models, (e.g., the cost/loss and decision theory models adapted in this
dissertation), integrated onto the stream of information flowing through atmospheric and
hydrologic models, would truly constitute an end-to-end decision process proving extremely
valuable to water resource managers.
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Appendix A

Kalman Filter Bias Correction

The Kalman filter (KF) is a recursive, adaptive technique to estimate a signal from noisy
measurements (Bozic, 1994; Zarchan and Musoff, 2005). Kalman filter theory provides re-
cursive equations for continuously updating error estimates via observations of a system
involving inherent unknown processes. The KF has been employed as a predictor bias-
correction method during post-processing of short-term NWP forecasts. Thorough descrip-
tions of KF theory, equations, and applications to weather forecast models can be found
in the meteorological literature (Homleid, 1995; Roeger et al., 2003; Delle Monache et al.,
2006). The KF approach is adapted here for daily maximum and minimum temperature
forecasts.

Recent bias values are used as input to the KF. The filter estimates the bias in the
current forecast. As in the other post-processing methods examined in this study, the
expected bias in the current forecast as estimated by the KF is removed from the current
DMO forecast. The new corrected forecast should have improved error characteristics over
the original DMO forecast.

Let xk be the bias between the forecast and the verifying observation valid for time step k.
The bias xk is the signal we would like to predict for the next forecast period (at k+1). The
future bias is determined by a persistence of the current bias plus a Gaussian-distributed
random term wk of variance σ2

w: xk+1 = xk + wk.
Similarly our measurements yk of the bias are assumed to be noisy, with random error

term vk (of variance σ2
v): yk = xk + vk. The objective is to get the best estimate of xk,

which is termed x̂k, by minimizing the expected mean-square error p = E[(x − x̂)2].
The recursive nature of the technique is characterized by a continuous update-predict

cycle. The measurement update, or “corrector” portion of the cycle, is determined by the
following equations:

Compute the Kalman gain β:

βk =
pk−1 + σ2

w

pk−1 + σ2
w + σ2

v

(A.1)
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Update the estimate x̂k:
x̂k = x̂k−1 + βk[yk − x̂k−1] (A.2)

Finally, update the error covariance term pk:

pk = (pk−1 + σ2
w)(1 − βk) (A.3)

The ratio r is defined as σ2
w/σ2

v . A value of r = 0.01 is used in this study, as suggested
from previous studies (Roeger et al., 2003; Delle Monache et al., 2006).

The time update, or “predictor” portion of the cycle, is determined by:

x̂k+1 = x̂k (A.4)

pk+1 = pk + σ2
w (A.5)

Initial starting values of x̂(0) and p(0) are chosen to start the process. The equations
converge quickly so that the results are not sensitive to the particular initial values which
begin the process.
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Appendix B

Statistical Significance Hypothesis

Test

Statistical significance tests are formulated to determine the likelihood that an observed out-
come could have arisen by chance instead of design. For the 24-hour QPFs analyzed in this
study, a non-parametric hypothesis test methodology designed for precipitation forecasts
[see Hamill (1999) for details of the method] was employed.

The technique is based on resampling. The null hypothesis for the resampling test is that
the difference in DMB between each of the SNL, MA, and BES forecasts and the baseline
DMO forecast is zero:

H0 : DMBPP − DMBDMO = 0.0 (B.1)

and the alternative hypothesis:

HA : DMBPP − DMBDMO �= 0.0 (B.2)

where DMBPP is the DMB of the post-processing method SNL, MA, or BES, and DMBDMO

is the DMB of the direct model output. Assume a non-symmetric two-sided test with signif-
icant level α = 0.05. Create a virtual time series by resampling the existing set of forecasts
to form a test statistic consistent with the null hypothesis above. The test statistic,

(̂DMBPP − ̂DMBDMO), (B.3)

is calculated using equation (2.3) in Chapter 2 section 2.2.2. The virtual (∗1) resampled test
statistic time series consistent with the null hypothesis is generated by randomly selecting
either the post-processed forecast or the DMO baseline forecast for each day and calculating
the DMB for this time series. A second virtual (∗2) randomly-selected time series is formed
using the alternate selection of post-processed and DMO forecasts. The resampled test
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statistic,
(̂DMB

∗
1 − ̂DMB

∗
2), (B.4)

is repeated 1000 times to build a null distribution.
The final step is to determine whether (̂DMBPP − ̂DMBDMO) can be considered to fall

within the distribution of (̂DMB
∗
1 − ̂DMB

∗
2) values (the null hypothesis), or whether the

null hypothesis can be rejected. The virtual time series resampled distributions are utilized
to compute the locations t̂L and t̂U such that

Pr∗[(̂DMB
∗
1 − ̂DMB

∗
2) − t̂L] =

α

2
, and

Pr∗[(̂DMB
∗
1 − ̂DMB

∗
2) − t̂U ] = 1 − α

2
(B.5)

where Pr∗ represents the probabilities numerically calculated from this distribution. Then,
H0 is rejected if

(̂DMBPP − ̂DMBDMO) < t̂L or (̂DMBPP − ̂DMBDMO) > t̂U

In graphical displays of the post-processed forecast results, the values of tU and tL are
represented by statistical significance error bars. Forecast differences outside the interval
expressed by the error bars may be considered statistically significant for the particular α.
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Appendix C

Equations for Meteorological

Statistical Analysis

Given fk as forecast precipitation value of the kth forecast, yk as the corresponding ob-
served value, f as mean forecast value, y as mean observed value, and N as the number of
forecast-observation pairs, then the following definitions apply:

Degree of mass balance (DMB) (Grubǐsić et al., 2005):

DMB =
∑N

k=1 fk∑N
k=1 yk

(C.1)

DMB is the ratio of the predicted to the observed net water mass over the study period.
Values of DMB < 1 indicate that 24-hour precipitation is under-forecast by the models.
A value of DMB ≈ 1 indicates the 24-hour precipitation forecasts are in balance with the
observations.

Mean error (ME):

ME = f − y (C.2)

Mean absolute error (MAE):

MAE =
1
N

N∑
k=1

|fk − yk| (C.3)

Mean Square Error:

MSE =
1
N

N∑
k=1

(fk − yk)2 (C.4)

Root Mean Square Error (RMSE):

RMSE =
√

MSE (C.5)
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Pearson correlation r :

r =
∑N

k=1(fk − f)(yk − y)√∑N
k=1(fk − f)2

∑N
k=1(yk − y)2

(C.6)

Linear error in probability space:

Linear error in probability space (LEPS) is defined as the mean absolute difference
between the cumulative frequency of the forecasts and the cumulative frequency of the
observations (Déqué, 2003). LEPS ensures that error in the center of the distribution is
treated with more importance than error found in the extreme tail of the distribution. A
LEPS skill score can be defined with the climatological median as a reference (Wilks, 2006).

Brier score (reliability and resolution):

The most widely used EPS evaluation score is the Brier score (Brier, 1950; Atger, 2003;
Gallus et al., 2007), designed to quantify the performance of a probabilistic forecast of
a dichotomous event. The Brier score (BS ) is defined as the mean square error of the
probability forecast:

BS =
1
N

N∑
k=1

(pk − ok)2 (C.7)

where N is the number of forecasts, pk is the probability that forecast precipitation will
exceed a given threshold (estimated by the number of ensemble members that exceed that
threshold), and ok is the verifying observation (equal to 1 if the observed precipitation
exceeds the threshold, 0 if it does not). The Brier score is negatively oriented, in that a
score of 0 is a perfect forecast and increasing Brier score values, to a maximum of 1, indicate
deteriorating performance.

Murphy (1973) showed how equation (C.7) could be partitioned into three parts, mea-
suring the degree of reliability, resolution, and uncertainty in the forecasts and associated
observations. In Murphy’s decomposition, the verification dataset contains J different prob-
ability forecast values, where nj is the number of cases in the jth forecast category. For
each forecast category j, the average of the observations in that category is determined:

oj =
1
nj

∑
k∈nj

ok (C.8)

Additionally, the overall sample climatology of the defined event is measured as the average

190



Appendix C. Equations for Meteorological Statistical Analysis

of all observations:

o =
1
N

N∑
k=1

ok (C.9)

Given definitions (C.8) and (C.9), equation (C.7) can be rewritten:

BS =
1
N

J∑
j=1

nj(pj − oj)2 − 1
N

J∑
j=1

nj(oj − o)2 + o(1 − o) (C.10)

where the first term is the reliability component. Reliability is the correspondence between a
given probability and the observed frequency of an event in those cases the event is forecast
with the given probability. The reliability term quantifies the information provided in a
reliability diagram.

The second term is the resolution component. The resolution term indicates the extent
that the different forecast categories do in fact reflect different frequencies of occurrence of
the observed event.

The last term in the decomposition is the uncertainty. The uncertainty term denotes the
intrinsic difficulty in forecasting the event but depends on the observations only, not on the
forecasting system.

The Brier score can be converted to a positively-oriented skill score:

BSS = 1 − BS

BSref
(C.11)

The reference system is often taken to be the low-skill climatological forecast in which the
probability of the event is equal to o for all forecasts. The Brier score for such climatological
forecasts is BSref = BSc = o(1 − o).

The Brier skill score is then expressed:

BSS =
resolution

uncertainty
− reliability

uncertainty
= relative resolution − relative reliability

A perfect forecast would have the relative resolution equal to one and the relative reliability
equal to zero.

An adjustment factor must be included in the calculations for Brier skill score to account
for SREF systems with different ensemble sizes. Richardson (2001) provided a method to
compensate for the effect of ensemble size on the Brier skill score. The relationship between
BSSM (the Brier skill score for an EPS represented by M members) and BSS∞ (the Brier
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skill score for the full underlying probability distribution of forecasts as M → ∞) is:

BSS∞ =
M · BM + 1

M + 1
(C.12)

The Brier skill score BSS∞ can then be expressed as a sum of the relative resolution
component and relative reliability component of the Brier score decomposition:

BSS∞ =
M · BSSMrel res

+ 1
M + 1

− M · BSSMrel reliab

M + 1
(C.13)

Reliability:

Reliability is an essential attribute of the quality of probabilistic forecasts (Atger, 2003).
Reliability is often represented with the aid of a reliability diagram of observed relative
frequency ok vs. forecast probability pk (Wilks, 2006; Toth et al., 2003; Clark et al., 2004;
Gallus et al., 2007). Ensemble forecasts are converted to probabilistic forecasts by deter-
mining what percentage of the ensemble members meet the specific event criterion. In the
current study the event criterion is that 24-hour precipitation exceeds a threshold value of
5 mm, 10 mm, 25 mm, or 50 mm.

Ideally the probabilistic forecast/observation points lie on the diagonal of the reliability
diagram, indicating the event is always forecast at the same frequency it is observed. The
reliability component of the Brier score in graphical representation is the weighted, averaged,
squared distance between the reliability curve and the 45◦ diagonal line. If the points lie
above (below) the diagonal it means the event is underforecast (overforecast). Reliability
curves with a zig-zag shape centered on the diagonal indicate good reliability represented
by a small sample size. Poor reliability can be improved substantially by appropriate
a posteriori calibration and/or post-processing of forecasts delivered from an established
system, though it is a difficult task to achieve in a real-time operational EPS (Atger, 2003).

Associated with reliability is sharpness, which characterizes the relative frequency of oc-
currence of the forecast probabilities. Sharpness is often depicted in a histogram indicating
the relative occurrence of each forecast probability category. If forecast probabilities are
frequently near zero or near 1 then the forecasts are sharp, indicating the forecasts devi-
ate significantly from the climatological mean, a positive attribute of an ensemble forecast
system. Sharpness measures the variability of the forecasts alone, without regard to their
corresponding observations; hence it is not a verification measure in itself. In a perfectly
reliable forecast system, sharpness is identical to resolution.
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Resolution:

A useful probabilistic forecast system must be able to a priori differentiate future weather
outcomes, so that differing forecasts are, in fact, associated with distinct verifying observa-
tions. This is the most important attribute of a forecast system (Toth et al., 2003) and is
called resolution.

Resolution cannot be improved through simple adjustment of probability values or statis-
tical post-processing. Resolution can be gained only by improving the actual forecast-model
engine that produces the forecasts.

ROC curve:

Discrimination, which is the converse of resolution, reflects an EPS’s ability to distin-
guish between the occurrence and non-occurrence of forecast events; in other words the
sensitivity of the probability that an event was forecast conditioned on whether or not the
event was observed. In the case that observed frequencies of forecast events monotonically
increase with increasing forecast probabilities, resolution and discrimination convey the
same information about an EPS (Buizza et al., 2005). Resolution and discrimination are
based on two different factorizations of the forecast/observed pair of events, as described in
the distributions-oriented approach to Murphy and Winkler’s (Murphy and Winkler, 1987)
general framework for forecast verification.

The relative operating characteristic (ROC) is a verification measure based on signal
detection theory that offers a way to examine the discrimination of an EPS (Mason, 1982;
Mason and Graham, 1999; Gallus et al., 2007). The ROC curve is a graph of hit-rate versus
false-alarm rate (see below for definitions of these terms and Table C.1 for the contingency
table basis for this analysis). The ROC measure is based on stratification by observations,
and therefore is independent of reliability and instead provides a direct measure of resolu-
tion. The ROC measure is particularly valuable in assessing the general issue of ensemble
size/configuration versus model resolution. Additionally, potential economic value for the
cost/loss decision model (Murphy, 1977; Katz and Murphy, 1997; Richardson, 2000; Zhu
et al., 2002; Richardson, 2003) is uniquely determined from ROC curves (see Chapter 4 for
an economic analysis of the probabilistic forecasts).

Contingency-table analysis equations:

Given event counts a, b, c, and d from Table C.1, the hit rate H and false alarm rate F

are defined as:
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Hit Rate H:
H =

a

a + c
(C.14)

False Alarm Rate F :
F =

b

b + d
(C.15)

Perfect discrimination is represented by a ROC curve that rises from (0,0) along the
Y-axis to (0,1) then straight to (1,1). The diagonal line represents zero skill meaning the
forecasts show no discrimination among events. The area under the ROC curve (ROCArea)
is a measure of skill that can be used to compare different probabilistic forecast systems.
Perfect discrimination results in a ROC area value of 1.0 while the no-skill diagonal corre-
sponds to a ROC area value of 0.5. From these values a ROC skill score (ROCSS) can be
defined to range from 0 (no-skill forecasts) to 1 (perfectly discriminating forecasts):

ROCSS = 2 · ROCArea − 1 (C.16)

ROC area is determined from Az, the area under the modelled ROC on probability axes
(Mason, 1982; Swets and Pickett, 1982; Swets, 1988; Mason, 2003). In practice, the ROC
curve is transformed (see Figs. C.1 and C.2) to a plot on normal deviate axes that results in
a straight line [under the assumption of a normal (Gaussian) probability distribution (Swets
and Pickett, 1982)]. The straight line can be estimated from the data using a least-squares
method of linear interpolation. The slope and y-axis-intercept of this line can be used to
evaluate z(A):

z(A) =
sΔm

(1 + s2)1/2
(C.17)

where s is the slope of the line and Δm is the y-axis-intercept (with the sign reversed).
Transforming z(A) back to probability space through the use of the cumulative standard-
ized normal distribution gives Az as the area under the ROC curve on probability axes.

Equal likelihood:

Rank histograms, also known as Talagrand diagrams (Anderson, 1996; Talagrand et al.,
1998), provide a necessary but not sufficient test for evaluating whether the forecast and
verification are sampled from the same probability distribution. The rank histogram is a
useful measure of the realism of an ensemble forecast system (Hou et al., 2001), providing
a measure of reliability (Candille and Talagrand, 2005). For an ensemble forecast with M

members, there will be M + 1 intervals defined by the members, including the two open-
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ended intervals. A rank histogram is built by accumulating the number of cases that an
observation falls in each of the M + 1 intervals.

In an ideal ensemble, the range of the ensemble forecast members represents the full
spread of the probability distribution of observations, and each member exhibits an equal
likelihood of occurrence; hence the resulting rank histogram is flat. Ensemble forecasts with
insufficient spread to adequately represent the probability distribution of observations are
indicated by a U-shaped histogram. Rank histograms computed from operational ensembles
are commonly U-shaped, which is traditionally interpreted as the consequence of the lack
of ensemble spread in the EPS (Anderson, 1996; Atger, 2003). Alternately, U-shaped rank
histograms may be interpreted as a consequence of conditional model biases (Hamill, 2001),
rather than point to a weakness of the method used for generating the ensemble.

A measure of the deviation of the rank histogram from flatness is described by Candille
and Talagrand (2005) for an EPS with M members and N available forecast/observation
pairs. The number of values in the ith interval of the histogram is given by si. For a reliable
system in which the histogram is flat, si = N/(M + 1) for each interval i. The quantity

Δ =
M+1∑
i=1

(si − N

M + 1
)2 (C.18)

measures the deviation of the histogram from flatness. For a reliable system, the base value
is Δ0 = NM/(M + 1). The ratio

δ = Δ/Δ0 (C.19)

is evaluated as the overall measure of the flatness of an ensemble prediction system rank
histogram. A value of δ that is significantly larger than 1 indicates the system does not
reflect equal likelihood of ensemble members.

An alternative summary index based on the rank histogram, called a “reliability index”
(RI), has recently been introduced by Delle Monache (2005); see also Delle Monache et al.
(2006). The RI measures the variation of the rank histogram from its ideal “flat” shape
and is normalized so that ensembles of different sizes can be compared with each other.
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Table C.1: Contingency table for hit rate and false alarm rate calculations. The counts a,
b, c, and d are the number of events in each category, out of N total events.

Observed Not observed
Forecast a b
Not forecast c d
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Figure C.1: Left: ROC values transformed to standard normal deviates of hit rate H and
false alarm rate F . Crosses are the actual transformations, while the dashed line is the
least squares straight-line fit. Right: ROC curves transformed back to probability axes.
Original ROC points are shown by crosses connected together by a solid line. Transforming
the straight-line from the plots on the left back to probability axes gives the dashed line
in the plots on the right. The area under the transformed, or modelled ROC curve is Az.
Upper plots: day-one full 11-member ensemble forecasts with the 5 mm day−1 precipitation
threshold. Lower plots: the same ensemble but for the rarer 50 mm day−1 precipitation
threshold.
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Figure C.2: Same as fig. C.1 except for the highest resolution ensemble vhires5.
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