
A State Space Model for Wind Forecast

Correction

Valérie Monbet1, Pierre Ailliot2, and Anne Cuzol1
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France
(e-mail: pierre.ailliot@univ-brest.fr)

Abstract. The accuracy of numerical weather forecasts is crucial in many engi-
neering applications, especially for the management of renewable energy. In this
paper, we give a short overview of methods used to improve local weather forecast.
Then we propose a new state space model in order to correct bias and phase errors
in numerical wind forecasts. We present some results for real life data.
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1 Introduction

The accuracy of numerical weather forecasts is crucial in many engineering
applications, especially for the management of renewable energy. It is well
known that the Numerical Weather Prediction (NWP) is globally good but
local predictions may present some weakness, in particular bias and phase
errors are frequently observed. For example, if we look at the passage of a
storm, the level bias is the error on the predicted intensity of the storm and
the phase error comes from an incorrect prediction of the onset of the storm.
These errors are due to the presence of incorrect physical parametrizations,
numerical dispersion or wrong boundary conditions.

Due to the important development of wind farms all over the world, there
is an extensive litterature concerning local improvement of numerical weather
forecast. In Section 2, we give a short overview of the different approaches.

Several authors (Dee and da Silva (1998), Galanis et al. (2002)) have
suggested using a linear state space model, in which the hidden process de-
scribes the ’error’ of the numerical model. Then, the prediction obtained by
the numerical model is corrected in real time from the observations, that are
enables, using the Kalman filter. A key benefit of this model is to enable
adaptive learning of the forecast error.

In this paper, we extend this model. We assume that the error can be
broken down into two parts: a level bias and a phase error. Because these
two terms are not directly observable, they are included in the hidden state
of the model, which becomes non-linear. We assume that the dynamic of the
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hidden state is described by an Ornstein-Uhlenbeck process, which can deal
with irregular observation dates.

In Section 3, a time continuous version of the model of Dee and da Silva
(1998) is described. Then, in Section 4, the phase error is added to the first
model. Finally, in Section 5, the performance of the models is illustrated by
some tests on real data.

2 State of the Art

There is an important litterature concerning the local improvement of Nu-
merical Weather Prediction (NWP). The proposed models can be classified
in three groups. The first consists in purely deterministic models, the second
in purely stochastic models and the last in the combination of deterministic
and stochastic models.

2.1 Numerical weather models

Many authors propose to improve large scale NWP by adding a local atmo-
spheric model to the global one, in order to better take into account the local
specificities of the geography. Such local models generally allow a significant
improvement of the local forecasts but their development is very expensive.
The classical operational approach is to assimilate observed data by varia-
tional methods (Evensen, 2007).

2.2 Purely stochastic models

The main idea, in the purely stochastic models, is that the information needed
to predict the future is include in the historical data. The method of Box and
Jenkins (1976) is undoubtedly the most usual model for wind time series.
It consists in modelling the process by the sum of a deterministic seasonal
component and a stationary autoregressive moving average (ARMA) process.
No physical information is included in the model.

2.3 Combining numerical and stochastic models

The second approach consists in a combination of numerical weather models
and stochastic models. In practice, the short-term numerical forecast pro-
vides a first guess of the state of the atmosphere. The observations bring
then additional informations which allow to improve the prediction. The use
of short-range forecasts as a first guess has been universally adopted in op-
erational systems.
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Regression models In most papers, the stochastic model is a regression
model which is used to predict the local wind given atmospheric variables
computed by the numerical weather model. The parameters of the statisti-
cal model are estimated from historical data. The regression model may be
a simple linear model but, in many applications, artificial neural networks
are used. The main advantage of linear models is their interpretability, but
artificial neural networks models can lead to better predictions if the local
meteorology is complex.

Some authors propose more sophisticated statistical models. For instance,
Lange et al. (2006) use different regression models for different weather types.
von Bremen et al. (2007) perform an Empirical Orthogonal Functions analysis
in order to reduce the dimension of the space of the explanatory variables.

These regression models generally lead to a good improvement of the
forecast for small scale problems. However, one of their limitations is that
they do not take into account the observations sequentially.

Sequential data assimilation An alternative to regression models, dis-
cussed above, is to used state space models in order to assimilate the obser-
vations sequentially (Evensen, 2007).

When data assimilation proceeds sequentially in time, the numerical weather
model organizes and propagates the information from previous observations
forward in time. The information from new observations is used to modify the
model state, to be as consistent as possible with them and the previous in-
formation. Extensions of Kalman filter are usually used. In these approaches,
the computation of the numerical weather model is generally expensive.

Dee and da Silva (1998) and later Galanis et al. (2002) also consider a
state space model, but where the numerical forecast plays the role of a control.
In fact, the forecast error is supposed to be additive. It is then represented
by the hidden process, since it is not directly observable. The model is given
by

{

Xt = αXt−1 + β + σǫt

Y obs
t = Y for

t + Xt + σobsǫobs
t

(1)

where Xt denotes the forecast error, Y obs
t and Y for

t denote respectively the

observed process and the corresponding forecast process. ǫt and ǫobs
t are two

independent Gaussian white noise processes. The parameters α, β, σ and

σobs are unknown and they are to be estimated.

One of the main advantages of state space models is that they allow
to compute a smooth adaptative correction of the wind predicted by the
numerical model. In the sequel of this paper, we will expand model (1).
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3 An adaptative biais correction

Firstly, we write a continuous time version of the model (1), in order to be
able to take into account varying observation time steps. The forecast error
is still additive and non observable. The model is written as follows.

• Hidden state process: X is an Ornstein-Uhlenbeck process in R

dXt = α(Xt − µ)dt + σdWt (2)

where Wt a standard Brownian motion. Xt is then a continuous time
Markovian process with the transition density fonction p(Xt+Dt|Xt) be-
ing Gaussian with mean aDtXt + bDt and standard deviation sDt and,

aDt = exp(−α ∗ Dt), bDt = µ(1 − aDt), s2
Dt =

σ2(1−a2

Dt
)

2α
. Dt denotes a

time increment.
• Observation process: The observation process is observed at discrete times

tk(k = 1 · · · , n) and

Y obs
tk

= Y for
tk

+ Xtk
+ σobsǫtk

(3)

where ǫtk
is a continuous time Gaussian white noise process with mean 0

and variance 1. The variable Y for
tk

can be seen as a deterministic control.

In order to compute a prediction at time t + Dt given the available ob-

servations yobs
t1

, ..., yobs
tn

, with tn ≤ t, until time t, one estimates

E[Xt+Dt|y
obs
t1

, ..., yobs
tn

] using the Kalman filter and the prediction is given
by

yfor
t+Dt + E[Xt+Dt|y

obs
t1

, ..., yobs
tn

].

In practice, some forecasts yfor
t1

, yfor
t2

, ..., yfor
tn

and y
for
t+Dt may be unavailable.

In this case, they are computed by a linear interpolation.

4 An extension: bias and phase correction

Weather forecasts may not only present bias errors but also some phase errors.
In the following model, we add the phase error as a second component of the
hidden state. The bias and phase errors are supposed to be independent.

• Hidden state process: X = (B,∆) is defined on R
2 with B and ∆ two

independent Ornstein-Uhlenbeck processes,

{

dBt = αB(Bt − µB)dt + σBdWt

d∆t = α∆(∆t − µ∆)dt + σ∆dVt
(4)

where Wt and Vt are standard Brownian motions.
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• Observation process: The observation process is given by

Y obs
tk

= Y for
tk+∆t

+ Btk
+ σobsǫtk

(5)

with ǫt a continuous time Gaussian white noise process with mean 0 and
variance 1.

We can notice here that the observation equation is nonlinear due to the
introduction of the phase ∆t.

To compute the prediction Y at time t+Dt from observations yobs
t1

, ..., yobs
tn

available until time t (with tn ≤ t), one estimates p(Xt+Dt|y
obs
t1

, ..., yobs
tn

) by
particle filtering (Doucet et al., 2001) and the prediction is given by

E[Yt+Dt|y
obs
t1

, ..., yobs
tn

]

where Y true
t = Y for

t+∆t
+ Bt. Again, a linear interpolation is used to compute

yfor
t when it is not available.

5 Numerical results

In this section, we present and discuss some numerical results obtained with
the models introduced in the previous sections on 3 months (2007/11 to
2008/02) of wind data at Brest’s Airport (Point coordinates : 48.3N, 4.2W).

More precisely, we consider forecast data obtained from the National Op-
erational Model Archive & Distribution System of the National Oceanic and
Atmospheric Administration (NOAA). We use the forecasts of the Global
Forecast System which runs a global model. Every day, we consider the nu-
merical forecast computed at 00:00 and we use the in situ observations avail-
able until 18:00 the same day to predict the wind speed at 19:00, 20:00,...,
until 23:00 the day after. This is illustrated on Figure 1 : the observations be-
fore the vertical line are used to predict the wind for the period after the line.
In situ observations are available at irregular time step (typically 30 minutes
between successive observations with missing data). The ’pure’ numerical
forecasts obtained from the NOAA have been compared with the corrected
forecasts obtained with the two models introduced in Sections 3 and 4. For
comparison purpose, we have also computed forecasts obtained with a ’pure’

stochastic model : Y obs
t is supposed to be an Ornstein-Uhlenbeck process

with parameters estimated by the maximum likelihood method.

The maximum likelihood estimates of the parameter (aDt, bDt, sDt, σ
obs)

of the bias correction model (2)-(3) are computed by a gradient based method.
But the various attempts which we have made to compute the maximum
likelihood estimates for the model described in section 4 have been unsuc-
cessful. This problem is known be to difficult ; see (Coquelin et al., 2007)
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for a recent review of methods to compute MLE in non-linear state-space
models). We hope to address this in a future paper. Finally, the parame-
ters values have been fixed arbitrarily, based on heuristic arguments. The
problems will have to be studied in a forthcoming paper. So, in practice, the
estimates obtained for the linear model (2)-(3) are considered as a first guess

for (aDt, bDt, sDt, σ
obs) and then the other parameters are fitted by empirical

reasoning based on the data.

02/03 02/04 02/05
0

5

10

15

20

Fig. 1. Prediction obtained with the different methods for a given day. Point-solid
line: observation time series, point-dashed line: prediction of pure numerical model,
dashed line: linear model (bias correction), dotted line: prediction of pure numerical
model shifted by the phase correction, solid line: prediction of nonlinear model
(bias+phase correction).

Figure 1 shows that both state-space models allow to correct the bias
present in the numerical weather prediction for this specific date.

The dotted line corresponds to the numerical forecast shifted by the es-
timated phase ; by looking at the peaks, on can see that some phase errors
are identified. But the memory of the phase process decreases very fast.

Figure 2 shows the Root Mean Square Error (RMSE) between the predic-
tion and the observations. It shows that pure stochastic models give better
forecasts of the wind speed than NWP for short forecast horizons (until about
3 hours). The hybrid methods combining a numerical model and a stochastic
model allows to improve significantly over NWP. For some specific weather
situations, the phase helps the improvement. However, on specific examples
the introduction of the phase error does not reduce the RMSE comparing to
the bias correction linear model. The model should be validated on longer
time series. Moreover, other variables like the wind direction and spatial in-
formation should be included in order to help identifying the phase errors.
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Fig. 2. Root Mean Square Errors between observations and forecasts. Point-dashed
line : pure numerical model, dashed line: linear model (bias correction), solid line:
nonlinear model (bias+phase correction), dotted line: pure stochastic model

References

Box, G.E.P., Jenkins, G.M., (1976). Time series analysis, forecasting and control.

(revised edn.) Holden-Day, San Francisco.
Coquelin, P.A., Deguest, R., Munos. R., (2007). Numerical methods for sensitivity

analysis of feynman-kac models. Research report, INRIA, January 2007.
Dee, D., and da Silva, A.M., (1998). Data assimilation in the presence of forecast

bias. Quart. J. Roy. Meteor. Soc.,124, 269-295.
Doucet A., de Freitas N., Gordon N., (eds) (2001) Sequential Monte Carlo Methods

in Practice. Springer-Verlag.
Evensen, G., (2007). Data Assimilation, the Ensemble Kalman Filter, Springer Ver-

lag.
Galanis, G., and Anadranistakis, M., (2002). A one dimensional Kalman filter for

the correction of 2 m-temperature forecasts. Meteorological Applications, 9,
437–441.

Lange, M., Focken, U., Meyer, R., Denhardt, M., Ernst, B. and Berster, F., (2006)
Optimal Combination of Different Numerical Weather Models for Improved
Wind Power Predictions. In : Proceedings of 6th International Workshop on
Large-Scale Integration of Wind Power and Transmission Networks for Offshore
Wind Farms.

von Bremen, L., Saleck, N. and Heinemann, (2007). Enhanced regional forecasting
considering single wind farm distribution for upscaling. In : J. Phys.: Conf.

Ser. , 75.


