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Abstract

Three downscaling models namely Statistical Down-Scaling Model (SDSM), Long Ashton Research Station Weather

Generator (LARS-WG) model and Artificial Neural Network (ANN) model have been compared in terms various uncertainty

assessments exhibited in their downscaled results of daily precipitation, daily maximum and minimum temperatures. In case of

daily maximum and minimum temperature, uncertainty is assessed by comparing monthly mean and variance of downscaled

and observed daily maximum and minimum temperature at each month of the year at 95% confidence level. In addition,

uncertainties of the monthly means and variances of downscaled daily temperature have been calculated using 95% confidence

intervals, which are compared with the observed uncertainties of means and variances. In daily precipitation downscaling, in

addition to comparing means and variances, uncertainties have been assessed by comparing monthly mean dry and wet spell

lengths and their confidence intervals, cumulative frequency distributions (cdfs) of monthly mean of daily precipitation, and the

distributions of monthly wet and dry days for observed and downscaled daily precipitation. The study has been carried out using

40 years of observed and downscaled daily precipitation, daily maximum and minimum temperature data using NCEP

(National Center for Environmental Prediction) reanalysis predictors starting from 1961 to 2000. The uncertainty assessment

results indicate that the SDSM is the most capable of reproducing various statistical characteristics of observed data in its

downscaled results with 95% confidence level, the ANN is the least capable in this respect, and the LARS-WG is in between

SDSM and ANN.
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1. Introduction

Statistical downscaling methods such as multiple

linear regression, nonlinear regression (e.g. artificial

neural networks) and stochastic weather generators

are easier and less costly to implement as compared to

dynamical downscaling technique which requires
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limited-area models (LAMs) or regional climate

models (RCMs). Thus, statistical downscaling

methods are the most largely used in anticipated

hydrologic impact studies under climate change

scenarios. However, no study has specifically focused

on assessing uncertainty in downscaling results due to

different statistical downscaling methods. The goal of

this study is to compare three statistical downscaling

models namely Statistical Down-Scaling Model

(SDSM), Long Ashton Research Station Weather
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Generator (LARS-WG) and Artificial Neural Net-

work (ANN) by quantifying uncertainties in their

downscaled results using various uncertainty

measures.

The uncertainties in downscaling result from (a)

the concept on which the downscaling models are

based, and (b) from the data used. In this study,

different uncertainty assessment methods are used

along with robust statistical testing of the first and

second moments of the observed and downscaled

data. The most commonly used statistical methods for

assessing model uncertainty include analyzing the

statistical properties of the model errors (Kaleries

et al., 2001; Yar and Chatfield, 1990; Coleman and

Steele, 1989; Wahl, 2004; Loukas et al., 2002;

Montanari and Brath, 2004), sometimes along with

the confidence intervals for the estimates of means

and variances of model results (Caruso, 1999; Ang

and Tang, 1975). While the distribution of data is non-

Gaussian, analysis is further extended beyond

comparison of means and variances (Wilby et al.,

1998). As such, in the current study, in case of

uncertainty assessment in daily precipitation, in

addition to comparing means and variances, distri-

butions of monthly mean daily precipitation, monthly

dry and wet days as well as mean dry and wet-spell

statistics along with their confidence intervals have

been considered. Here, the uncertainty assessment

includes both the downscaling model results and the

corresponding observations. The analysis aims to

provide a comprehensive comparison of the SDSM,

LARS and ANN downscaling models in term of

uncertainties in their downscaled results using NCEP

reanalysis datasets. The paper is organized as follows:

a brief description of the study area and data is

provided in Section 2, followed by a description of

three downscaling experiments in Section 3. In

Section 4, the uncertainty analysis methods are

presented. In Section 5, the three downscaling models

have been compared based on the results of uncer-

tainty assessments. Finally, in Section 6, a compre-

hensive summary and conclusions are provided.
2. Study area and data

The study area selected for this research is a sub-

basin called Chute-du-diable with an area of
9700 km2, located in the Saguenay-Lac-Saint Jean

watershed in northern Quebec in Canada (Fig. 1). Two

meteorological stations inside that sub-basin namely

Chute-du-Diable (CDD) and Chute-des-Passes (CDP)

are used for the downscaling experiments. For each

station, forty years (1961–2000) daily precipitation,

daily maximum and minimum temperature records

have been used as predictands. Observed large-scale

NCEP (national centre for environmental prediction)

reanalysis atmospheric variables (Table 1) for the

same time period (1961–2000) have been used as

predictors (Kistler, et al, 2001).
3. Downscaling experiments

The first downscaling model is a multiple

regression based method and is referred to as

Statistical Down-Scaling Model (SDSM) (Wilby,

et al., 2002). During downscaling with the SDSM, a

multiple linear regression model is developed

between a few selected large-scale predictor variables

and local scale predictands such as temperature and

precipitation. The parameters of the regression

equation are estimated using the efficient dual simplex

algorithm. Large-scale relevant predictors (Table 1)

are selected using correlation analysis, partial corre-

lation analysis and scatter plots, and also considering

physical sensitivity between selected predictors and

predictand for the site in question. Precipitation is

modeled as a conditional process in which local

precipitation amounts are correlated with the occur-

rence of wet-days, which in turn correlated with

regional-scale atmospheric predictors. A wet day is

defined as a day with nonzero precipitation amount of

0.3 mm or more. As the distribution of daily

precipitation is skewed, a fourth root transformation

is applied to the original series to convert it to a

normal distribution, and then used it in regression

analysis. Temperatures are modeled as unconditional

process in SDSM, in which a direct link is assumed

between the large-scale predictors and local scale

predictand. No transformation is applied to daily

temperature data as daily temperature data are mostly

normally distributed. The model is structured as

monthly model for both daily precipitation and

temperature downscaling, in which case, twelve

regression equations are derived for twelve months



Fig. 1. Location map of the Saguenay–Lac–Saint–Jean watershed and the Chute-du-Diable sub-basin.
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using different regression parameters for each month

equation. The model is calibrated and validated

separately for daily precipitation, daily maximum

and minimum temperatures using thirty years
(1961–1990) predictors and predictand for calibration

and ten years (1991–2000) predictors and predictand

for validation. During calibration, mean and variance

of downscaled daily precipitation and temperature are



Table 1

Large-scale predictor variables selected for predicting the meteorological variables with SDSM and ANN methods

Predictor

variable

Description Precipitation Max. Temp. Min. Temp.

CDD CDP CDD CDP CDD CDP

SDSM ANN SDSM ANN SDSM ANN SDSM ANN SDSM ANN SDSM ANN

Temp Mean temperature ! ! ! ! ! ! ! ! ! ! ! !
mslp Mean sea level pressure ! ! ! !

p__u Zonal velocity component near

surface

! !

p5_u Zonal velocity component at

500 hPa height

! !

p8_u zonal velocity component at

850 hPa height

! !

p__v meridional velocity

component near surface

! ! ! ! ! ! ! ! ! ! !

p8_v Meridional velocity

component at 850 hPa height

! ! ! !

p__z Vorticity ! ! ! ! ! !

p_zh Divergence near surface ! !

p5zh Divergence at 500 hPa height ! !

p8zh Divergence at 850 hPa height ! ! ! !
p500 500 hPa geopotential height ! ! ! !

p850 850 hPa geopotential height ! ! ! ! !

s500 Specific humidity at 500 hPa height! ! ! ! ! ! !

s850 Specific humidity at 850 hPa height ! ! ! ! ! ! ! !
Shum Near surface specific humidity ! ! ! ! ! ! ! !

Note: All the predictors, with the exception of wind direction, have been normalized with respect to the 1961–1990 mean and standard deviation.
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adjusted by bias correction and variance inflation

factor to force model replicate the observed data. Bias

correction compensates for any tendency to over- or

under-estimate the mean of downscaled variables.

Variance inflation changes the variance of down-

scaled daily weather variables by adding or reducing

the amount of ‘white noise’ applied to regression

model estimates of the local process to better accord

with observations. Use of this stochastic (random)

component also enables the SDSM regression model

to produce multiple ensembles of downscaled weather

variables. One hundred ensembles of downscaled

daily precipitation, tmax and tmin have been generated

but only the first ensemble was used in uncertainty

analysis to maintain consistency with the ANN model,

which has generated only one ensemble. In uncer-

tainty analysis, we used total forty years downscaled

data, which includes thirty years calibration results

and ten years validation results. The reason for

choosing 40 years data length is that the larger data

length is capable of representing the true climatic

condition for the site in question including less

frequent climate events.

The second downscaling model is a stochastic

weather generator called Long Ashton Research

Station Weather Generator (LARS-WG) (Semenov

and Barrow, 1997, 2002). In LARS-WG, during

precipitation downscaling observed daily local station

precipitation of each month are analyzed using a

number of years historical data to obtain statistical

characteristics such as number of dry days, wet days

and mean daily precipitation in each month of a year.

This information is used to develop semi-empirical

distributions for the lengths of wet and dry day series

and daily precipitation amount. From these semi-

empirical distributions random values for wet and dry

day series are generated for each month, and for a wet

day, the precipitation value is generated from the

semi-empirical precipitation distribution. So, in

LARS-WG, precipitation modeling is also a two-

step process like the SDSM model conditioned on wet

and dry-days. Unlike SDSM, Temperature is modeled

as conditional process in LARS-WG, conditioned on

dry and wet status of the days. Mean and standard

deviation of daily maximum and minimum tempera-

ture of each month for a number of historical years are

calculated for wet and dry days and considered those

as statistical parameters for temperature downscaling.
The annual cycles of monthly means and standard

deviations are approximated by Fourier series, and the

residuals are approximated by a normal distribution.

In this way the statistical parameters of observed daily

precipitation and daily maximum and minimum

temperatures are derived, which are used to generate

number of ensembles replicating observed data or can

be modified by using changes observed in large-scale-

model generated precipitation and temperatures for

different periods of time in climate change impact

study. So, in LARS-WG downscaling unlike SDSM,

large-scale atmospheric variables are not directly used

in the model, rather, based on the relative monthly

changes in mean daily precipitation amount, daily wet

and dry series duration, mean daily temperature and

temperature variability (standard deviation) between

current and future periods predicted by a GCM, local

station climate variables are adjusted proportionately

to represent climate change. In this study, during

LARS-WG downscaling 40 years (1961–2000)

observed weather data (daily precipitation, daily

maximum and minimum temperature) are analyzed

to determine their statistical parameters. Those

statistical characteristics of the observed data have

been used to generate synthetic data for 300 years

during validation of the model. The statistical

characteristics of the observed and synthetic weather

data were analyzed to determine if there were any

statistically significant differences using t-test, F-test

and Chi-squared (c2) test. After having satisfactory

test results, the parameter files derived from observed

weather data during the model calibration process

were used to generate a number of ensembles of

synthetic weather data for the time period of 1961–

2000. Again, for the consistency with the ANN model,

only the first ensemble is used for deriving uncertainty

attributes of the downscaled results.

The third downscaling model is artificial neural

network (ANN), developed by Coulibaly et al., 2005.

This model is a non-linear regression type in which a

relationship is developed between a few selected

large-scale atmospheric predictors and basin scale

meteorological predictands. In developing that

relationship a time lagged feed forward network is

used in which inputs are supplied through tap delay

line and the network is trained using a variation of

backpropagation algorithm (Principle et al., 2000). A

slightly different approach is used in selecting
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predictors for the case of neural network downscaling.

First the networks are trained with all (the twenty two)

predictor variables as input to the networks. Then a

sensitivity analysis is done to determine the most

relevant predictors, which should be selected for

further retraining. Sensitivity analysis provides a

measure of the relative importance among the

predictors (inputs of the neural network) by calculat-

ing how the model output varies in response to

variation of an input. The network learning is disabled

during this operation such that the network weights

are not affected. The basic idea of sensitivity analysis

is that the inputs to the neural network are shifted

slightly and the corresponding change in the output is

reported. Each input is varied between its meanG
standard deviation while all other inputs are fixed at

their respective means. The network output is then

computed for a specified number of inputs above and

below the mean. This process is repeated for each

input. The sensitivity is calculated by dividing the

standard deviation of the output by the standard

deviation of the input, which was varied to create the

output. This way the most sensitive predictors are

selected as relevant predictor variables (Table 1) for

each neural network separately for precipitation,

maximum and minimum temperature downscaling.

The neural network is then retrained with the few

selected predictor variables independently for pre-

cipitation, tmax and tmin till acceptable validation

performance is achieved. The results show that, even

though the set of variables selected as most relevant to

ANN downscaling is not identical to SDSM down-

scaling predictors, some large scale predictor vari-

ables such as s500 (specific humidity at 500 hPa

height), p_v (meridional wind velocity component at

different levels), p500 (500 hPa geopotential height),

temp (mean surface temperature) and shum (near

surface specific humidity) are identified as relevant in

most of the cases. Several training experiments are

conducted with different combinations of input time

lags and number of neurons in the hidden layer till the

optimum network is identified. For the case of

downscaling of precipitation with ANN, a time lag

of six (days) and 20 neurons in the hidden layer gave

the best performing network. Note that only one

hidden layer and one output node are used in the ANN

model. Hyperbolic tangent activation function is used

at both the hidden and output layers of the neural
networks. In the case of temperature downscaling,

ANN with a time lag of three (days) and 12 neurons in

the hidden layer have performed the best, this

suggests that the predictand–predictors relationship

is less complex in the case of temperature down-

scaling. Unlike SDSM, precipitation is downscaled

with ANN as unconditional process by establishing

direct link between large-scale predictors and local

scale predictand (precipation). Moreover, the ANN

model structure is considered deterministic restricting

to simulate only one time series of downscaled daily

precipitation, tmax and tmin.
4. Uncertainty assessment in downscaled results

This section describes techniques of uncertainty

assessment used in this study in analyzing uncertain-

ties of downscaled daily temperature and precipitation

data. In case of daily temperature data, because of

their nearly normal distribution, the uncertainty has

been assessed with comparison of means and

variances of downscaled temperature data with

observed ones. In that comparison, deviations

(referred to as model errors) between downscaled

and observed monthly means and variances of daily

tmax and tmin have been evaluated at 95% confidence

level. Moreover, 95% confidence intervals in the

estimates of means and variances of downscaled

temperature in each month have been compared with

observed confidence intervals to assess whether the

downscaling models can reproduce uncertainty as

found in the observed data. In uncertainty assessment

of downscaled daily precipitation data, comparison of

means and variances should not be enough because of

non-normality of the distribution of daily precipitation

amount and also because of mixed distribution of wet

and dry days in a daily precipitation series. Therefore,

in assessment of uncertainty in downscaled daily

precipitation, in addition to comparing means and

variances, monthly mean dry-spell and wet-spell

statistics and their confidence intervals, distribution

of monthly mean of daily precipitation, and distri-

butions of monthly wet and dry days have been

compared. In comparing those statistics either

parametric or non-parametric approach can be

employed. An exploratory data analysis, discussed
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in the following section, can help one decide which

approach should be used.
4.1. Exploratory data analysis

The classical methods of statistical inference

depend heavily on the assumption that the data are

outlier-free and nearly normal, and that the data are

serially uncorrelated if they are collected with regular

time interval. If data are not nearly normal and not

outlier-free, the results of the classical methods of

statistical inference may be misleading. In such

situation, robust or nonparametric methods may be

used. As such, a graphical exploratory data analysis is

carried out to answer the following questions:

† Do the data come from a nearly normal distri-

bution?

† Do the data contain outliers?

† If the data were collected over time, is there any

evidence of serial correlation (correlation between

successive values of the data)?

A good picture of the shape of the distribution

generating the data and the presence of outliers can be

obtained by looking at the following collection of four

plots: a density plot, a histogram, a boxplot, and a

normal qq-plot. Density plots are essentially smooth

versions of histograms, which provide smooth

estimates of population frequency, or probability

density curves. Box plots are used for conveying

location and variation information in data; a box plot

identifies the middle 50% of the data, the median, and

the extreme points. A normal qq-plot (or quantile–

quantile plot) consists of a plot of the ordered values

of the data versus the corresponding quantiles of a

standard normal distribution (a normal distribution

with mean zero and variance one). If the qq-plot is

fairly linear, the data are reasonably Gaussian;

otherwise, they are not. Among those four plots, the

histogram and density plots give the best picture of the

distribution shape, while the box and normal qq-plots

give the clearest display of outliers.

As data are collected over time, the data may

exhibit serial correlation particularly for daily tmax and

tmin. This can be checked with time series and

autocorrelation function (ACF) plots. In time series

plots, by looking at a plot of data against time, one can
check obvious time series features, such as trends and

cycles. One can check the presence of less obvious

serial correlation by looking at a plot of autocorrela-

tion function for the data. The autocorrelation

function is a measure of the correlation between

Xtand XtCk for a given lag k, and can be calculated as

ACFðkÞ Z
CovðXt;XtCkÞ

VarðXtÞ

Z

1
nKk

PnKk

tZ1

ðXt K �XÞðXtCk K �XÞ

1
nK1

Pn

tZ1

ðXt K �XÞ2
(1)

The results of the exploratory data analysis are

described in Section 5.1. Based on those results the

following non-parametric tests have been used in this

study.
4.2. Non-parametric test for the difference of two

population means

One of the best nonparametric methods for

constructing a hypothesis test p-value for m1Km2

(difference of two population means), is the Wilcoxon

rank sum method (Conover, 1980; Lehmann, 1975).

This non-parametric test is also used in this study to

test the difference of the means of observed and

downscaled precipitation. In terms of hypothesis

testing, p-value has the following interpretation: the

p-value is the level of significance for which observed

test statistic lies on the boundary between acceptance

and rejection of the null hypothesis. At any

significance level greater than the p-value, one rejects

the null hypothesis, and at any significance level less

than the p-value one accepts the null hypothesis. For

example, if p-value is 0.03, one rejects the null

hypothesis at a significance level of 0.05, and accepts

the null hypothesis at a significance level of 0.01. A

detailed description of the theory of Wilcoxon rank

sum test can be found in Conover (1980) and

Lehmann (1975). As described in Conover (1980),

in case of hypothesis testing, one needs to combine

both samples into a single ordered sample and then

assign ranks to the sample values from the smallest to

the largest, without regard to which population each

value came from. Then the test statistic can be the sum
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of the ranks assigned to those values from one of the

populations. If the sum is too small (or too large),

there is some indication that the values from that

population tend to be smaller (or larger, as the case

may be) than the value from the other population.

Hence, the null hypothesis of no differences between

populations may be rejected if the ranks associated

with one sample tend to be larger than those of the

other sample.
4.3. Non-parametric test for the equality of two

population variances

While data are continuous but not normally

distributed, Levene’s test (Levene, 1960) is usually

used to test whether the two sample population

variances are equal or not. The computational method

employed here for Levene’s Test is a modification of

Levene’s original procedure by Brown and Forsythe

(1974). This method considers the distances of the

observations from their sample median rather than

their sample mean. Using the sample median rather

than the sample mean makes the test more robust

when the underlying data followed a skewed

distribution. The hypothesis for the Levene’s test

can be defined as:

H0 : s1 Z s2 Z :::: Z sk

Ha : si ssj for at least one pair ði; jÞ:

In performing Levene’s test, a variable X with sample

size N is divided into k subgroups, where Ni is the

sample size of the ith subgroup, and the Levene test

statistic is defined as:

W Z

NKkð Þ
Pk

iZ1

Ni
�ZiK �Z

� �2

kK1ð Þ
Pk

iZ1

PNi

jZ1

Zij K �Zi

� �2

(2)

where Zij is defined as:

Zij Z Xij K �Xi

�� �� (3)

where �Xi is the median of the ith subgroup, �Zi are the

group means of the Zij and �Zis the overall mean of the

Zij. The Levene’s test rejects the hypothesis that
the variances are equal if

W OFða;kK1;NKkÞ

where Fða;kK1;NKkÞ is the upper critical value of the F

distribution with kK1 and NKk degrees of freedom

at a significance level of a. The statistical software

Minitab (2003) has been used in performing the

Levene’s test.
4.4. Non-parametric confidence intervals in the

estimates of means and variances

Confidence intervals in the estimates of means and

variances provide information about uncertainty in the

estimates of mean and variances. In this study, the

most commonly used non-parametric technique,

bootstrapping has been used for finding the confidence

intervals of means and variances. The idea of

bootstrapping is to resample a large number of new

data sets with replacement from the original data set.

Starting with a sample size of n, the algorithm for

doing so is as follows:

1. Draw a new sample of size n with replacement

from the original sample.

2. Calculate the mean or variance of the new sample

call it m1.

3. Repeat steps 1 and 2, 1000 times, calling the ith

new sample mean or variance mi.

4. Plot the distribution of these 1000 sample means

or variances.

5. Construct the 95% confidence interval for the

mean or variances by finding the 2.5th and 97.5th

percentiles of this constructed distribution.

Using the S-PLUS function (S-PLUS 6, 2001), the

bootstrap confidence intervals for the estimated means

and variances have been calculated for daily

precipitation, daily maximum and minimum tempera-

tures for each month. For example, in estimating the

confidence interval for the mean of observed daily

precipitation in January for the time period of 1961–

2000, an observed sample of size nZ1240 (40 years

daily January data gives nZ40!31Z1240 data

points) has been used. Then 1000 new samples, each

of the same size as the observed data, are drawn with

replacement from the observed data. The 1000 re-

samples are drawn because this is the recommended
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minimum for estimating percentiles, required for

estimating confidence interval for the means and

variances (S-PLUS 6, 2001). The mean is first

calculated using the observed data and then recalcu-

lated using each of the new samples, yielding a

bootstrap distribution of the statistics of mean. From

this distribution, the bias-corrected and accelerated

(BCa) percentiles are estimated. The BCa percentile is

more accurate than the empirical percentile. The

empirical percentiles are simply the percentiles of the

empirical distribution of the replicates while the BCa

method transforms the specified probability values to

determine which percentile of the empirical distri-

bution most accurately estimate the percentiles of

interest, and then applying corrections for bias and

standard error, BCa confidence interval is estimated as

follows (DiCiccio and Efron, 1996):

2$5th percentile Z F z0 C
z0 Cz0:025

1Kaðz0 Caz0:025

� �
(4)

97$25th percentile Z F z0 C
z0 Cz0:975

1Kaðz0 Caz0:975

� �

(5)

where za is the a quantile of standard normal

distribution, z0 and a, namely bias-correction and

acceleration, are two parameters to be estimated, by

(2.8) and (6.6) in DiCiccio and Efron (1996). The bias

is defined as the difference between the values of the

statistics of interest, which are calculated from the

original data as well as using the bootstrap replicates,

and acceleration refers to the fact that the standard

error of the statistics of interest is not uniform over

differing values of the statistic.
4.5. Non-parametric goodness-of-fit test

Kolmogorov–Smirnov non-parametric goodness-

of-fit test has been used to compare cumulative

distribution function (cdf) of downscaled and

observed monthly mean daily precipitation as well

as for comparing distribution of monthly dry and wet

days series. The test can be described as follows.

Suppose, F1ðxÞ and F2ðxÞ are two cdfs of two sample

data of a variable x. The null hypothesis and the
alternative hypothesis concerning their cdfs are:

H0 : F1ðxÞ Z F2ðxÞ for all x

HA : F1ðxÞsF2ðxÞ for at least one value of x

and the test statistic, T is defined as

T Z supx F1ðxÞKF2ðxÞj j (6)

which is the maximum vertical distance between the

distributions F1ðxÞ and F2ðxÞ. If the test statistic is

greater than some critical value, the null hypothesis is

rejected.
5. Results and discussion
5.1. Exploratory data analysis

The exploratory data analysis plots of observed

(1961–2000) daily precipitation, daily maximum and

minimum temperatures at the Chute-du-Diable

(CDD) station for the month of January are shown

in Fig. 2. The histogram and density plots of daily

precipitation in Fig. 2, reveal a distinctly skewed

distribution, skewed toward the left. The distribution

is not normal, and probably not even ‘nearly’ normal.

The data may also possess outliers, which are

illustrated by the box and qq-plots in Fig. 2. The

box plot does not show any distinct shape, and the qq-

plot is not straight either. But in the case of daily

maximum and minimum temperatures as shown in

Fig. 2, the shape of the histogram and density plots

indicate normality of the data, and the box and qq-

plots show absence of distinct outliers in data.

Another exploratory data analysis plot consists of

the plots of time series and autocorrelation functions

for the observed (1961–2000) daily precipitation,

daily tmax and tmin at the station CDD for the month of

January are shown in Fig. 3. Those plots investigate

autocorrelation or serial dependency among data

points. The time series and ACF plots in Fig. 3 of

daily precipitation (showed only for 300 days) reveal

no possible significant serial correlation among data

points at 95% confidence level because all ACF

values lie within the 95% confidence bands (horizon-

tal dashed lines) for lags greater than 0. The ACF plots

of daily tmax and tmin in Fig. 3, suggest some serial



Fig. 2. Exploratory data analysis plots of observed (a) daily precipitation (top four plots); (b) daily tmax (middle four plots) and, (c) daily tmin

(bottom four plots) for the month of January at the Chute-du-Diable (CDD) station.
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Fig. 3. Time series and ACF plots of observed (a) daily precipitation (top two plots); (b) daily tmax (middle two plots), and (c) daily tmin

(bottom two plots) for the month of January at the station Chute-du-Diable (CDD).
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correlations at the first few lags, which diminishes at

higher lags.

Based on these graphical analyses results in Figs. 2

and 3, it can be assumed that the daily precipitation

data are not normal and may contain some outliers,

and do not have autocorrelation among data points.

On the other hand, daily temperature data seems to be

nearly normal, outlier free but correlated. It can

therefore be concluded that the daily precipitation as

well as temperature data do not hold all the

assumptions of parametric data analysis. Similarly,

the exploratory data analysis of downscaled and

observed daily precipitation, daily maximum and

minimum temperatures for all other months, which

are not shown here supports the same conclusion. As

such, in uncertainty assessment of downscaled daily

precipitation, daily maximum and minimum tempera-

tures, non-parametric approaches described in Sec-

tions 4.2–4.5 have been used. The following

subsections discuss the results of those assessments.

Note that both the calibration and validation data sets

are combined in order to obtain a larger data set of 40

years length, which is more representative of the true

climatic condition for the site in question including

the less frequent climate events.
5.2. Error evaluation in the estimates of means

The absolute downscaling model errors (absolute

values of the observed minus downscaled data) in the

estimates of mean daily precipitation, daily maximum

and minimum temperatures for each month have been

shown in Fig. 4 for the stations CDD and CDP. Those

errors are tested at 95% confidence level using non-

parametric Wilcoxon rank-sum test for daily precipi-

tation as described in Section 4.2. In daily precipi-

tation downscaling at the station CDD, the ANN

model errors are the least in most of the months

(Fig. 4). However, at 5% significance level, both the

SDSM and ANN models errors are found insignificant

for all months because all estimated p-values are

above 0.05 (see Table 2). The LARS model errors are

found significant in the month of June, July and

September while for other months the LARS model

errors are found insignificant at 5% significance level.

At the station CDP, all three models errors

are insignificant at 5% significance level because all
p-values of Wilcoxon rank-sum test are found above

0.05.

The model errors in downscaled daily maximum

temperatures are shown in Fig. 4 (two plots in the

middle row), indicate that the SDSM model errors are

the least for all months for both the stations CDD and

CDP. The reported p-values of the Wilcoxon rank sum

tests for the differences of means of observed and

downscaled data for all months are found high above

0.05 for SDSM model (see Table 3). This indicates

that the SDSM model errors in all months are

insignificant at 95% confidence level. The ANN and

LARS models errors in daily tmax downscaling are not

insignificant for all months. The p-values in Table 3

clearly indicate that in most of the months, the ANN

and LARS models errors are significant for both the

stations CDD and CDP. Similarly, the model errors

and the statistical significance test results for the daily

tmin are shown in Fig. 4 (bottom two plots) and

Table 4, respectively, which also concludes that in

daily tmin downscaling, the SDSM model produces the

least error in all months at 95% confidence level while

the ANN and LARS models errors are significant in

most of the months.

5.3. Error evaluation in estimates of variances

A comparative plots of the variances of observed

and downscaled daily precipitation, daily tmax and tmin

for each month are shown in Fig. 5 for both the

stations CDD and CDP. The equality of variances

between observed and downscaled daily precipitation,

daily tmax and tmin has been statistically tested in each

month at 95% confidence level using the Levene’s

test. The corresponding test results for daily precipi-

tation, daily tmax and tmin are shown in Tables 5–7,

respectively. In case of daily precipitation variance,

the graphical comparison in Fig. 5 shows that the

ANN model does not represent the variability closer

to the observed data, rather they show less variability,

while the SDSM and LARS models variability is

closer to the observed data. The variance test results in

Table 5 show that, in the case of ANN model, for all

months except January, February, March, May,

October and December at the station CDD, and

January, February, March and May at the station CDP,

the p-values are all found below 0.05. This supports

that the variances of the observed daily precipitation



Fig. 4. Model errors (absolute values) in downscaled daily (a) precipitation, (b) tmax, and (c) tmin.
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data and the ANN model simulated downscaled data

are not same at 5% significance level in most of the

months. On the other hand, the variance test results

between the observed and the SDSM and LARS

models simulation results show that the test p-values
are all above 0.05 in all months (Table 5). This

concludes that the observed and the SDSM and LARS

models simulated daily precipitation variability can

be considered statistically equal in all months with

95% confidence level.



Table 2

Test results (p-values) of the Wilcoxon rank sum test for the

difference of means of observed and downscaled daily precipitation

at 95% confidence level

Station CDD Station CDP

SDSM,

p-value

LARS,

p-value

ANN,

p-value

SDSM,

p-value

LARS,

p-value

ANN,

p-value

J 0.137 0.889 0.353 0.051 0.550 0.055

F 0.195 0.367 0.704 0.125 0.512 0.293

M 0.50 0.792 0.052 0.597 0.103 0.078

A 0.560 0.106 0.061 0.793 0.892 0.085

M 0.303 0.985 0.340 0.707 0.088 0.79

J 0.687 0.005 0.304 0.600 0.436 0.434

J 0.842 0.010 0.131 0.708 0.104 0.788

A 0.452 0.879 0.256 0.135 0.554 0.512

S 0.513 0.012 0.158 0.608 0.600 0.994

O 0.384 0.170 0.211 0.283 0.331 0.661

N 0.708 0.110 0.064 0.226 0.177 0.391

D 0.088 0.668 0.454 0.123 0.149 0.922

Table 4

Test results (p-values) of the Wilcoxon rank sum test for the

difference of means of observed and downscaled daily tmin at 95%

confidence level

Station CDD Station CDP

SDSM,

p-value

LARS,

p-value

ANN,

p-value

SDSM,

p-value

LARS,

p-value

ANN,

p-value

J 0.883 0.511 0.027 0.583 0.376 0.007

F 0.613 0.000 0.017 0.389 0.000 0.063

M 0.831 0.000 0.031 0.682 0.000 0.041

A 0.613 0.767 0.837 0.167 0.069 0.098

M 0.582 0.000 0.021 0.955 0.000 0.000

J 0.755 0.005 0.811 0.586 0.080 0.669

J 0.515 0.878 0.011 0.655 0.681 0.003

A 0.824 0.000 0.100 0.697 0.000 0.053

S 0.104 0.160 0.405 0.488 0.415 0.579

O 0.675 0.021 0.142 0.305 0.005 0.122

N 0.441 0.000 0.000 0.333 0.000 0.000

D 0.982 0.743 0.095 0.889 0.009 0.176
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In the case of daily tmax downscaling, the graphical

comparison of daily variances in each month between

the observed and downscaled data in Fig. 5 indicates

that the ANN model variability is not close enough

with the observed variability but the SDSM and

LARS models variability are closer to the observed

variability. The equality of variance test results (see

Table 6) at 95% confidence level indicate that the

ANN model variability can be considered equal with

the observed variability only in the months of
Table 3

Test results (p-values) of the Wilcoxon rank sum test for the

difference of means of observed and downscaled daily tmax at 95%

confidence level

Station CDD Station CDP

SDSM,

p-value

LARS,

p-value

ANN,

p-value

SDSM,

p-value

LARS,

p-value

ANN,

p-value

J 0.833 0.002 0.019 0.983 0.021 0.018

F 0.497 0.001 0.819 0.835 0.037 0.431

M 0.466 0.000 0.007 0.796 0.000 0.001

A 0.947 0.006 0.009 0.999 0.005 0.003

M 0.950 0.000 0.156 0.886 0.001 0.524

J 0.395 0.903 0.056 0.592 0.120 0.005

J 0.512 0.344 0.266 0.495 0.146 0.052

A 0.796 0.000 0.874 0.673 0.000 0.793

S 0.726 0.006 0.001 0.629 0.000 0.000

O 0.558 0.003 0.002 0.865 0.044 0.000

N 0.968 0.008 0.006 0.348 0.004 0.351

D 0.744 0.438 0.009 0.866 0.015 0.154
February, March, April, October and December at

the station CDD while at the station CDP they can be

considered equal in the months of February and April

only. The SDSM model variability can be considered

equal with the observed data in all months at the

stations CDD and CDP. For the LARS model,

the variance test of daily tmax for each month at the

station CDD indicates the same variability as of

the observed data in almost all months except in the

month of March. For the station CDP in the case of

LARS model, the variability between the observed

and simulated daily maximum temperature cannot be

considered equal in the months of March, May,

September and November.

In the case of daily tmin downscaling, the graphical

comparison of daily variances in each month in Fig. 5

shows that in some months the ANN model variability

is not close enough to the observed variability, while

the other two models variability seems to be closer to

the observed data. The test results of the equality of

variances (Table 7) reveal that, at the station CDD, the

ANN model variances are statistically equal with the

observed variability only in the months of April, May,

September and December. At the station CDP, they

are equal only in the months of October and

November for the ANN model. For the SDSM

model, the variance test results show that the

variability between the observed and downscaled



Fig. 5. Variances of the downscaled daily (a) precipitation, (b) tmax and (c) tmin.
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data can be considered equal in all months at the

stations CDD and CDP at 95% confidence level. For

the LARS model in case of daily tmin downscaling, in

the months of January, February, May, August,
November and December, the variability is found

equal at the station CDD and, at the station CDP that

equality is found in the months of January, February,

April, May, July, August and November.



Table 5

Test results (p-values) of the Levene’s test for the equality of

variances of the observed and downscaled daily precipitation at

95% confidence level

Station CDD Station CDP

SDSM,

p-value

LARS,

p-value

ANN,

p-value

SDSM,

p-value

LARS,

p-value

ANN,

p-value

J 0.390 0.880 0.068 0.256 0.343 0.107

F 0.595 0.424 0.638 0.591 0.147 0.332

M 0.656 0.887 0.650 0.844 0.646 0.153

A 0.127 0.614 0.051 0.370 0.268 0.001

M 0.227 0.224 0.215 0.140 0.847 0.084

J 0.182 0.060 0.033 0.876 0.705 0.025

J 0.530 0.147 0.002 0.501 0.326 0.000

A 0.626 0.992 0.031 0.397 0.224 0.000

S 0.562 0.299 0.050 0.312 0.442 0.009

O 0.851 0.347 0.122 0.051 0.10 0.002

N 0.525 0.730 0.080 0.617 0.847 0.001

D 0.547 0.584 0.574 0.845 0.327 0.019

Table 7

Test results (p-values) of the Levene’s test for the equality of

variances of the observed and downscaled daily tmin at 95%

confidence level

Station CDD Station CDP

SDSM LARS ANN SDSM LARS ANN

p-value p-value p-value p-value p-value p-value

J 0.791 0.855 0.004 0.669 0.464 0.006

F 0.671 0.207 0.000 0.994 0.749 0.005

M 0.166 0.000 0.018 0.933 0.000 0.000

A 0.969 0.000 0.274 0.735 0.779 0.000

M 0.294 0.308 0.092 0.085 0.246 0.000

J 0.324 0.000 0.000 0.394 0.000 0.000

J 0.272 0.040 0.000 0.596 0.140 0.000

A 0.630 0.078 0.000 0.944 0.112 0.000

S 0.781 0.000 0.001 0.660 0.035 0.000

O 0.538 0.000 0.950 0.764 0.000 0.916

N 0.246 0.101 0.001 0.526 0.100 0.263

D 0.470 0.176 0.231 0.865 0.000 0.000
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5.4. Confidence intervals in the estimates of means

The uncertainty in the estimates of means of the

observed and downscaled daily precipitation, daily

maximum and minimum temperatures has been

quantified by estimating confidence intervals about

means. Non-parametric bootstrap approach (described

in Section 4.4) has been used for estimating 95%

confidence intervals about their means in each month.
Table 6

Test results (p-values) of the Levene’s test for the equality of

variances of the observed and downscaled daily tmax at 95%

confidence level

Station CDD Station CDP

SDSM,

p-value

LARS,

p-value

ANN,

p-value

SDSM,

p-value

LARS,

p-value

ANN,

p-value

J 0.066 0.111 0.000 0.207 0.191 0.000

F 0.927 0.475 0.182 0.778 0.764 0.314

M 0.085 0.010 0.263 0.304 0.000 0.018

A 0.910 0.121 0.838 0.750 0.075 0.081

M 0.356 0.926 0.000 0.567 0.001 0.000

J 0.457 0.261 0.000 0.730 0.088 0.000

J 0.064 0.224 0.000 0.877 0.669 0.000

A 0.431 0.546 0.000 0.764 0.322 0.000

S 0.981 0.732 0.001 0.560 0.002 0.000

O 0.732 0.511 0.249 0.929 0.322 0.015

N 0.221 0.475 0.003 0.107 0.000 0.032

D 0.414 0.948 0.060 0.615 0.949 0.000
The plots of those confidence intervals are shown in

Fig. 6 for both the stations CDD and CDP (left three

plots are for the station CDD and the right three plots

are for the station CDP). The results are discussed

below.

In case of daily precipitation downscaling, the

graphical comparison of uncertainty in the estimates

of means of the observed and downscaled daily

precipitation indicates that at the station CDD, the

ANN model exhibited the least uncertainty in all

months. However, that uncertainty is not represen-

tative of the observed uncertainty of daily precipi-

tation in each month, because the observed

uncertainty of daily precipitation at each month is

found higher than the ANN model uncertainty. The

other two downscaling models (the SDSM and

LARS) exhibited uncertainty in downscaling daily

precipitation almost at the same level as exhibited

by the observed daily precipitation. The similar

results are obtained in daily precipitation down-

scaling in each month for the station CDP as shown

in Fig. 6.

In case of daily tmax downscaling (middle two plots

of Fig. 6), again, the ANN model uncertainty in the

estimates of means of daily tmax is not found

representative of the observed uncertainty in most of

the months compared to the other two downscaling

models. At the station CDD, the uncertainty in the

ANN model downscaled daily tmax is found almost



Fig. 6. Ninety-five percent confidence intervals for the estimates of mean daily (a) precipitation, (b) tmax, and (c) tmin.
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equal to the observed uncertainty only in the months

of February, March, October and November. On the

other hand, the SDSM simulated uncertainty at the

station CDD is found almost equal to the observed

uncertainty in almost all months except the month of
June. The LARS model uncertainty in downscaling

daily tmax at the station CDD is found almost equal to

the observed uncertainty in most of the months except

the months of February, April and August. At the

station CDP, the similar results are obtained; the ANN
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model represented the observed uncertainty the least,

the SDSM is the best and the LARS is in between.

The uncertainty in the estimates of means of

downscaled and observed mean daily tmin for each

month are also shown in Fig. 6 for the stations CDD

and CDP (two bottom plots). At the station CDD, in

case of the ANN model, the uncertainty in down-

scaled daily tmin cannot be considered representative

of the observed uncertainty in the months of

February, July and August. For the SDSM model,

the uncertainty in downscaled mean daily tmin may not

be considered equal with the observed uncertainty

only in the month of December; for the LARS model

those unequal months are January, March and April.

In downscaling daily tmin at the station CDP,

according to graphical comparison between uncer-

tainty of the observed and downscaled information, it

can be said that the ANN model had exhibited

uncertainties representative of the observed uncer-

tainty of daily tmin only in the months of July, August,

October and November. In case of SDSM, the

uncertainty is found representative of the observed

uncertainty in almost all months except January, July

and December. For the LARS model, the uncertainty

is found representative of the observed uncertainty in

seven months except the months of March, June, July,

October and December. Therefore, it can be said, in

general, the ANN model simulated uncertainty is the

least representative of the observed uncertainty, the

SDSM is the best and the LARS is in between.

5.5. Confidence intervals in estimates of variance

The uncertainty in the estimates of variances has

been quantified by calculating 95% confidence

intervals of variances of the observed and downscaled

daily precipitation, daily tmax and tmin in each month at

the stations CDD and CDP following the procedure

discussed in Section 4.4. The graphical comparison of

uncertainty is shown in Fig. 7. In case of daily

precipitation downscaling (top two plots of Fig. 7), at

the station CDD, the ANN model exhibited the least

uncertainty for 11 months but only three months’

(February, March and December) uncertainty is closer

to the observed uncertainty. For the SDSM model, at

the station CDD, the simulated uncertainty is found

closer to the observed uncertainty in most of the

months except January, June, October and December.
In the case of LARS simulation, at the station CDD,

the uncertainty in the estimates of variances of

downscaled daily precipitation is found closer to the

observed uncertainty in most of the months except

June and July. The similar trend is found at the station

CDP, that is, the ANN is the least representative of the

observed uncertainty in the estimates of variances, the

LARS is the most and the SDSM is in between.

In the case of uncertainty in the estimates of

variances of daily tmax downscaling as shown in

Fig. 7 (middle two plots), at the station CDD, the

ANN model showed the least uncertainty in most of

the months of the year but that uncertainty is found

closer to the observed uncertainty only in the months

of March, April and November. For the SDSM model,

the downscaled daily tmax at the station CDD showed

closer uncertainty to the observed data in most of the

months except January, May, June and November. In

case of LARS model downscaling of daily tmax at the

station CDD, in the most of the months the uncertainty

in the estimates of variances is found closer to the

observed data except January, February and Decem-

ber. In investigating uncertainty in daily tmax at the

station CDP, it is found that the ANN model

uncertainty is closer to the observed uncertainty

only in the months of March and November. For the

SDSM model downscaling of daily tmax at the station

CDP, the uncertainty is found closer to the observed

uncertainty in most of the months except May and

June. In case of LARS model downscaling of daily

tmax at the station CDP, the uncertainty is found closer

to the observed in 8 months except January, April,

September and December.

The uncertainty in the estimates of variances of

daily tmin at each month has been shown in Fig. 7 (two

bottom plots). The graphical comparison of observed

and downscaled confidence intervals of variances of

daily tmin for each month, indicates that at the station

CDD, the uncertainty in downscaled daily tmin is

found closer to the observed in seven months except

January, February, March, November and December.

In case of SDSM downscaling of daily tmin at the

station CDD, the uncertainty is found closer to the

observed in 8 months except January, February, April,

and December. For the LARS model downscaling of

daily tmin at the station CDD, the uncertainty of the

downscaled information is found closer to the

observed in 11 months except the month of



Fig. 7. Ninety-five percent confidence intervals for the estimates of variance of mean daily (a) precipitation, (b) tmax, and (c) tmin.
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November. At the station CDP, in case of ANN model

downscaling of daily tmin, the uncertainty is found

closer to the observed data in 7 months except

January, February, March, April and December. In the
case of SDSM model downscaling, the uncertainty is

found closer to the observed in 9 months except the

months of February, March and December. For

the LARS model downscaling of daily tmin,



Table 8

Kolmogorov-Smirnov goodness-of-fit test results (p-values) for

comparing distributions of monthly mean of daily precipitation

constructed using forty years (1961–2000) observed and down-

scaled daily precipitation data

Station CDD Station CDP

SDSM,

p-value

LARS,

p-value

ANN,

p-value

SDSM,

p-value

LARS,

p-value

ANN,

p-value

J 0.406 0.578 0.578 0.765 0.578 0.765

F 0.765 0.404 0.918 0.765 0.404 0.265

M 0.578 0.404 0.097 0.765 0.99 0.165

A 0.404 0.918 0.165 0.578 0.265 0.265

M 0.404 0.99 0.404 0.054 0.404 0.765

J 0.765 0.02 0.404 0.765 0.918 0.578

J 0.765 0.265 0.165 0.028 0.265 0.578

A 0.165 0.918 0.578 0.165 0.165 0.265

S 0.765 0.028 0.578 0.765 0.765 0.265

O 0.404 0.765 0.028 0.097 0.165 0.097

N 0.765 0.765 0.165 0.165 0.578 0.054

D 0.578 0.404 0.918 0.054 0.028 0.265
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the uncertainty is found closer to the observed

uncertainty in seven months except January, Febru-

ary, March, November and December. In general, the

SDSM and LARS models downscaled data exhibit

uncertainty closer to the observed data in most of the

months in terms of confidence intervals of the

estimates of variances. However, the ANN model

cannot exhibit the uncertainty at the same level of the

observed data in most of the months in terms of

confidence intervals in the estimates of variances.

5.6. Distribution of monthly mean of daily

precipitation

The distribution of monthly mean of daily

precipitation has been constructed using 40 years

(1961–2000) data. For each month in a year, daily

precipitation mean has been estimated, which gives

one data point for a particular month in a year. For 40

years, a series of forty data points of mean daily

precipitation for a particular month has been

constructed for observed as well as downscaled

daily precipitation data. Then, using that 40 years

data, the cumulative distributions of frequency (CDF)

of observed and downscaled monthly mean of daily

precipitation have been estimated, and compared

using Kolmogorov–Smirnov nonparametric good-

ness-of-fit test to evaluate whether the two sample

distributions come from the same population or not.

The test results (p-values) provided in Table 8,

indicate that for the station CDD during SDSM

downscaling, in all months p-values are found above

0.05 (95% confidence level), while for the LARS

model except June and September in all other months

p-values are found above 0.05, and for the ANN

model except October in all other months p-values are

found above 0.05—suggesting that all the three

downscaling models reproduce quite well the distri-

bution of monthly mean of daily precipitation at 95%

confidence level. Similarly, the analysis of the

downscaled results at the station CDP (Table 8),

shows that the SDSM model p-values are all above

0.05 except July, while the LARS model p-values are

all above 0.05 except December, and the ANN model

p-values are all above 0.05 in all months. This

analysis indicates again that all downscaling models

can reproduce the distribution of monthly mean of

daily precipitation at 95% confidence level.
5.7. Dry and wet spell length statistics

Dry and wet spell lengths for a particular month

can be defined as maximum number of consecutive

dry and wet days in that month, respectively. For

instance, if in a particular month of a given year,

maximum four consecutive days are found dry and

six consecutive days are found wet, then we consider

that the dry-spell and wet-spell lengths for that

particular month are 4 and 6, respectively. Dry and

wet spell lengths are of particular interest for

hydrologic modeling, and are thus considered as

additional criteria for assessing the downscaling

model performance. Using 40 years (1961–2000)

data, wet-spell and dry-spell lengths in each month

have been estimated for observed and downscaled

daily precipitation data. The arithmetic average of

the 40 data points of dry and wet spells in a

particular month provides mean statistics of dry and

wet-spell lengths for that particular month. Com-

parative plots of that statistics between observed and

downscaled daily precipitation are shown in Fig. 8

for both the stations CDD and CDP. At the station

CDD it is found that the ANN model consistently

underestimated dry-spell length for all months while

the other two models (LARS and SDSM) estimated

dry-spell length closer to the observed data.

The similar trend is found for the station CDP for



Fig. 8. Comparison of monthly mean dry-spell and wet-spell lengths between observed and downscaled daily precipitation.
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dry-spell length comparison. In wet-spell length

comparison, at the station CDD, from January to

May, the ANN model results are found closer to the

observed data, while in the rest of the months the

ANN model overestimated wet-spell lengths. The

other two models simulated wet-spell lengths are

found very close to the observed values at the station

CDD. At the station CDP, the ANN model over-

estimated wet-spell lengths for all months of the

years while the other two models wet-spell lengths

are found closer to the observed data. This analysis

indicates that in terms of mean wet and dry-spell

lengths comparison, the SDSM and the LARS

models performance can be considered at the same

level while the ANN model is further apart in

replicating observed spell statistics. This poor

performance of the ANN model may be due to
the fact that the ANN model tends to generate small

trace precipitation even in actual dry periods. To

further analyze the significance of the estimated dry

and wet spell lengths, uncertainty analysis of the

estimates of mean dry and wet spell lengths is

performed by calculating the 95% non-parametric

bootstrap confidence intervals of mean dry and wet-

spell lengths using the forty years data. The

uncertainty of the observed daily precipitation spell

lengths has been compared with the uncertainty of

the downscaled daily precipitation spell lengths. The

graphical plots of those uncertainty estimates are

shown in Fig. 9. By comparing those plots for the

stations CDD and CDP it appears that the SDSM

and the LARS models can in general closely

replicate observed uncertainty of mean (dry and

wet) spell lengths in almost all months while



Fig. 9. Ninety-five percent confidence intervals for the estimates of mean monthly wet-spell and dry-spell lengths of observed and downscaled

daily precipitation.
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the ANN model cannot. These results (Fig. 9) also

confirm the findings illustrated by Fig. 8.
5.8. Distribution of monthly dry and wet days

For further assessment of the downscaling

models in daily precipitation downscaling, distri-

butions of monthly dry and wet days have been

considered. In doing that analysis numbers of wet

and dry days in each month of a year have been

calculated using the 40 years (1961-2000) data. This

provides two series of wet and dry days with forty

data points in each series for each month. The

cumulative distribution of frequency (CDF) of those

calculated wet and dry series has been estimated in
each month for observed and downscaled daily

precipitation, and compared those distributions using

Kolmogorov–Smirnov goodness-of-fit test. The test

results are provided in Table 9. In case of SDSM

and LARS models, the p-values of the goodness-of-

fit test for wet and dry days distributions are all

found above 0.05, while the ANN model shows

different results. For the station CDD, only in six

months the p-values are found above 0.05 for

both wet and dry days, while at the station CDP, the

p-values in all twelve months are found at zero.

This indicates that the ANN model has a strong

limitation in reproducing distribution of wet and dry

days as found in the observed daily precipitation

data, while the SDSM and the LARS models can



Table 9

Kolmogorov-Smirnov goodness-of-fit test results (p-values) for comparing distribution of forty years (1961–2000) observed and downscaled

monthly wet and dry days

CDD CDP

SDSM LARS ANN SDSM LARS ANN

Wet-days Dry-days Wet-days Dry-days Wet-days Dry-days Wet-days Dry-days Wet-days Dry-days Wet-days Dry-

days

J 0.765 0.765 0.99 0.999 0.765 0.765 0.165 0.165 0.404 0.404 0.0 0.0

F 0.404 0.265 0.265 0.918 0.765 0.918 0.918 0.765 0.918 0.918 0.0 0.0

M 0.404 0.404 0.999 0.999 0.165 0.165 0.165 0.165 0.918 0.918 0.0 0.0

A 0.765 0.765 0.765 0.765 0.765 0.765 0.097 0.097 0.165 0.165 0.0 0.0

M 0.578 0.578 0.165 0.165 0.006 0.008 0.097 0.097 1.0 1.0 0.00 0.00

J 0.99 0.99 0.097 0.097 0.00 0.00 0.765 0.765 0.99 0.99 0.00 0.00

J 0.09 0.097 0.765 0.765 0.00 0.00 0.054 0.054 0.404 0.404 0.00 0.00

A 0.404 0.404 0.918 0.918 0.028 0.026 0.165 0.165 0.918 0.918 0.00 0.00

S 0.165 0.165 0.578 0.578 0.165 0.165 0.097 0.097 0.097 0.097 0.00 0.00

O 0.404 0.404 0.999 0.999 0.014 0.014 0.265 0.265 0.918 0.918 0.00 0.00

N 0.578 0.578 0.765 0.765 0.014 0.014 0.054 0.054 0.918 0.918 0.00 0.00

D 0.054 0.0541 0.765 0.765 0.918 0.918 0.265 0.265 0.765 0.765 0.00 0.00
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reproduce observed distribution of wet and dry days

in their downscaled daily precipitation data.
6. Summary and conclusion

The three statistical downscaling models namely

SDSM, LARS-WG and ANN have been compared by

assessing uncertainties in their downscaled results of

daily precipitation, daily maximum and minimum

temperatures. In the cases of daily maximum and

minimum temperature, uncertainty is assessed by

comparing monthly means and variances of down-

scaled and observed daily maximum and minimum

temperature for each month of the year at 95%

confidence level. In addition, uncertainties of the

monthly means and variances of downscaled daily

temperature have been calculated using 95% confi-

dence intervals, which are compared with the

observed uncertainties of means and variances. In

daily precipitation downscaling, in addition to

comparing means and variances, uncertainties have

been assessed by comparing monthly mean dry and

wet spell lengths and their confidence intervals, the

cumulative frequency distributions (cdfs) of monthly

mean of daily precipitation, and the distributions of

monthly wet and dry days for observed and down-

scaled daily precipitation.
In comparing means of daily maximum and

minimum temperatures, the SDSM model errors

(difference between observed and downscaled data)

are found insignificant in all months at 95%

confidence level but the ANN and LARS model

errors are found significant in most of the months

based on that criteria. In confidence interval

comparison of mean daily maximum and minimum

temperature, the SDSM was able to reproduce

observed uncertainty in its downscaled results in

almost all months of the year, the LARS performs

well in some months of the year, and the ANN in few

months of the year. In comparing variances of

observed and downscaled daily maximum and

minimum temperatures at each month of the year,

the SDSM model errors were insignificant in all

months of the year at 95% confidence level, the

LARS model errors were not insignificant in all

months, in some months they were insignificant and

in some months they were significant, and the ANN

model errors were insignificant in few months but

significant in most months of the year. In confidence

interval comparison of variances of daily maximum

and minimum temperatures in each month, the

SDSM and the LARS models were able to reproduce

observed uncertainty in their downscaled temperature

in almost all months of the year but the ANN model

was able only in few months of the year.
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For the daily precipitation downscaling, in

comparison of means of observed and downscaled

daily precipitation in each month, the errors were

found insignificant in all months at 95% confidence

level for all three models. In confidence interval

comparison of daily precipitation in each month, the

SDSM and the LARS models were able to

reproduce uncertainty very close to the observed

one in all months, while the ANN model was not

able to reproduce uncertainty close to the observed

one in all months. In variance comparison of daily

precipitation in each month, the SDSM and the

LARS models errors were insignificant in all months

at 95% confidence level but the ANN model errors

were not found insignificant in all months, in some

months they are significant and in some months they

were insignificant. In 95% confidence interval

comparison of daily precipitation variances in each

month, the SDSM and the LARS models were able

to reproduce uncertainty closer to the observed data

in most months of the year while the ANN model

was not able to reproduce observed uncertainty in

most months of the year. In cumulative frequency

distribution comparison of monthly mean of daily

precipitation, all three models were able to

reproduce observed distribution at 95% confidence

level. In comparison of monthly mean dry and wet

spell lengths and their uncertainty estimates with

95% confidence intervals, the SDSM and the LARS

models were able to reproduce spell statistics closer

to the observed data in all months while the ANN

model was not able to reproduce spell statistics

closer to the observed even in few months of the

year. Finally, in comparison of cdfs of monthly dry

and wet days, the SDSM and the LARS were able to

reproduce observed distributions in their downscaled

daily precipitation at 95% confidence level while the

ANN model was not able to reproduce observed

distributions in its downscaled daily precipitation at

that confidence level.

Based on this comprehensive and rigorous

assessment of uncertainty of downscaled daily

precipitation, daily maximum and minimum tem-

perature, it can be concluded that the SDSM is the

best statistical downscaling model, the LARS is the

second and the ANN is the third. The SDSM is

capable of reproducing almost all statistical charac-

teristics in its downscaled information at 95%
confidence level as found in the observed data.

The LARS is also capable of reproducing statistical

characteristics of the observed data in its down-

scaling results but not at the same level as the

SDSM can do. The ANN is the least capable of

reproducing the observed statistical characteristics in

its downscaling results specifically in daily precipi-

tation downscaling. The reasons for superiority of

one model with respect to the other can be attributed

to their respective modeling techniques. For

instance, in SDSM downscaling a regression

relationship is developed between sensitive large-

scale predictors and local scale predictand. That

relationship is further tuned by adjusting means and

variances of downscaled data by using bias

correction and variance inflation so that the model

can generate outputs closer to the observed data.

During variance inflation a white noise is added,

which makes the model stochastic and provides

capability of generating a number of ensembles of

downscaling results. Moreover, in the modeling

process, the SDSM considers daily precipitation

downscaling as a conditional process, in which

precipitation amount are conditioned on the occur-

rence of wet-days, which in turn is linked with large

scale atmospheric variables. On the other hand,

during downscaling with LARS model no large

scale atmospheric variables are used in the modeling

process. Instead, the model analyzes local scale

observed precipitation and temperature data to

derive statistical characteristics representing

observed data, and then change those statistical

parameters proportionately based on changes found

in the large-scale climate model respective vari-

ables. Similar to the SDSM, the LARS also

considers precipitation downscaling as a conditional

process in which case, empirical distributions of dry

and wet days and precipitation amount are created,

and random precipitation amounts are generated by

conditioning empirical distribution of precipitation

amount on the empirical distribution of wet-days.

However, this stochastic model can not supersede

the SDSM model, the reasons may be due to hybrid

nature of the SDSM model, which not only

considers deterministic relationship between predic-

tors and predictand but also refine that relationship

by using white noise in the model to account for the

relationship of the inputs and outputs unexplained
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by the deterministic model. LARS model also

produced significant errors in temperature down-

scaling in some months. The reason may be due to

the smooth curve fitting to the average daily mean

values for maximum and minimum temperature,

which caused large departures from the observed

data. However, overall, the ANN exhibits the most

noticeable shortcomings as compared to SDSM and

LARS. The ANN model did not consider precipi-

tation downscaling as a conditional process, rather it

established a direct nonlinear relationship between

large-scale predictors and local scale predictand

suppressing the precipitation occurring process,

which causes significant errors in downscaled daily

precipitation. Moreover, the ANN model considered

here is deterministic, restricting to create only one

time series. There is a scope of improvement of the

ANN model by making the network stochastic and

considering the precipitation downscaling as two

step process in which dry and wet days and

precipitation amount would be modeled separately.

However, one should question whether these

uncertainty assessment results remain stable under

future climate forcing scenario. In the case of

SDSM and ANN, the reliability of the results would

be at the same level because model parameters

would remain constant for future climate change

condition, only a different set of large scale

predictors will be used to represent climate changes.

The same is true for the LARS-WG model as well

because under future climate forcing, the observed

statistics of the climate variable for the site in

question would be altered by using changes found in

the respective climate model variables between

current and future periods produced by a global

circulation model. Therefore, under future climate

forcing, the respective performance of the three

downscaling models would likely remain the same

because under future conditions the uncertainty of

their results would be mostly governed by the

uncertainty of the GCM outputs.
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