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Abstract

Unlike parametric alternatives for time series generation, non-parametric approaches generate new values by conditionally
resampling past observations using a probability rationale. Observations lying �close� to the conditioning vector are resampled with
higher probability, �closeness� is defined using a Euclidean or Mahalanobis distance formulation. A common problem with these
approaches is the difficulty in distinguishing the importance of each predictor in the estimation of the distance. As a consequence,
the conditional probability and hence the resampled series, can offer a biased representation of the true population it aims to sim-
ulate. This paper presents a variation of the K-nearest neighbour resampler designed for use with multiple predictor variables. In the
modification proposed, an influence weight is assigned to each predictor in the conditioning set with the aim of identifying nearest
neighbours that represent the conditional dependence in an improved manner. The workability of the proposed modification is
tested using synthetic data from known linear and non-linear models and its applicability is illustrated through an example where
daily rainfall is downscaled over 15 stations near Sydney, Australia using a predictor set consisting of selected large-scale atmo-
spheric circulation variables.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Hydrologic time series models aim to reproduce rele-
vant statistical characteristics of the observed series to
aid in the planning, design, operation and management
of water resources. As the observed sequence is just one
realization amongst an infinite number that may have
occurred, reliance on only the historical series under-
represents the uncertainty associated with the resulting
design or management plan. This uncertainty is often
incorporated through the use of stochastic time series
approaches. These modeling approaches are broadly
grouped into parametric and non-parametric, the for-
0309-1708/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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mer being expressed via selected parameters (often esti-
mated as functions of sample moments), while the latter,
being formulated based on the observed (sampled) var-
iability through an empirically specified conditional
probability distribution. Non-parametric stochastic ap-
proaches offer an efficient alterative when sufficient data
are available. Their intuitive simplicity and transparency
have made them attractive and popular for use in
hydrology and other sciences.

Two non-parametric methods used commonly for
stochastic generation are kernel density estimation and
nearest neighbour resampling. Both have been used
extensively for a range of hydro-climatological applica-
tions [37,14,15,32,27,21,6,28,36,3,10,34,19]. Similarly,
considerable use of non-parametric nearest neighbour
methods has been made characterizing hydro-climato-
logical systems from a non-linear dynamical systems
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perspective (e.g. [1,29]). Readers are referred to a good
review paper by Sivakumar [30], on the use of these
methods in a non-linear dynamical context.

The rationale behind the above mentioned non-para-
metric approaches is to generate new realisations using a
conditional cumulative distribution function (CDF) that
is estimated using the observed data. This conditional
CDF is broadly expressed as:

P ðRtjXtÞ ¼
X

i

pi ð1aÞ

pi ¼
wðXt � XiÞP

jwðXj � XiÞ
ð1bÞ

where, Rt is a vector of predictands, Xt, Xj and Xi,
respectively, are multi-variate vectors (also called as fea-
ture vectors) containing predictor variables at times t, j

and i, pi is a weight or probability associated with obser-
vation i, w(Æ) is a measure of proximity of Xt to Xi or (Xj)
(indicative of the probability of selecting Ri as the basis
for simulating the new realisation Rt, this measure being
different depending on the non-parametric method used)
and P(RtjXt) is the conditional CDF based on which Rt

is simulated. Note that the subscript i or j is used to
denote an observation, while the subscript t is used to
denote the time step at which the conditional probability
distribution is formulated. Note also that if Xt is ex-
pressed as Rt�1, then the above formulation becomes
analogous to a classical multi-variate time series model
[23]. In the notations used above, one can think of Rt

as a vector of daily rainfall amounts or occurrences at
multiple locations in a region that are to be simulated
conditional to the predictors Xt that represent relevant
atmospheric indicators. This general formulation is spe-
cific to a stochastic downscaling model [19] which forms
one of the four examples presented later in the paper.
Note also that in the notations used above, vectors or
matrices have been represented as ‘‘bold’’, a notation
that will be followed elsewhere.

Nearest neighbour based resampling methods use
the classic bootstrap described by Yakowitz [35] and
Efron and Tibshirani [7]. An important issue in near-
est-neighbour resampling is the choice of a function
w(Æ) which defines the proximity of K-nearest neighbours
of a particular state. This study uses the K-nearest
neighbour bootstrap formulation proposed by Lall
and Sharma [14] which specifies the proximity w(Æ) in
(1b) as:

wðXt � XiÞ ¼
1

k
if k 6 K

¼ 0 if k > K
ð2Þ

where k denotes the number of observations whose dis-
tance to Xt is less than or equal to the distance between
Xt and Xi in the historical sample, and K is a specified
maximum value of k. A commonly used distance formu-
lation, the Euclidean distance nt,i between Xt and Xi is
written as:

nt;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

fsjðX j;i � X j;tÞg2

vuut ð3Þ

where the vector Xi consists of m predictor variables Xj,i,
j = 1, . . . ,m, and sj is the scaling weight for the jth pre-
dictor. It is also possible to use other distance measures
(for example see [36,31,34]). For other non-parametric
methods the exact formulation of (1a, b) varies (see
for example, Sharma [26] for a formulation using kernel
density estimation methods).

Predictor variables used in the calculation of Euclid-
ean distances are made dimensionless through standard-
ization using scaling weights. Scaling of variables
imparts an equal weight to each predictor in selection
of the nearest neighbours. Scaling is also necessary when
the feature vector consists of combination of discrete
and continuous variables [27,6]. The reciprocal of the
sample standard deviation of each predictor variable is
a common choice for the scaling weights [14,21,27,
10,3]. However, this distance formulation has been
noted to result in an improper representation of the con-
ditional distribution because of which application spe-
cific choices have been used in [4,6,3]. For similar
reasons, Yates et al. [36] and Wójcik and Buishand
[34] used modified representation of the distance mea-
sure in (3) by adopting the Mahalanobis distance, as
an alternative to the Euclidean distance based on the in-
verse of the predictor covariance matrix. Souza Filho
and Lall [31] used a modified Euclidean distance formu-
lation based on coefficients from a fitted multiple linear
regression model among the predictors and predictands.
These formulations are discussed in detail later in the
paper. The basic concept of expressing the contribution
of each predictor variable in defining the response has
also been recognized in the applications dealing with
the non-linear dynamics of hydrologic processes (see
for example [13,11]).

The Euclidean distance formulation in (3) considers
all predictors to be equally important in the estimation
of the conditional probability. In reality, however, each
predictor may have unequal importance and some of
them may be inter-correlated and may not be significant
at all. These less important, correlated or otherwise
redundant predictor variables tend to influence the esti-
mated distance metric and hence the conditional proba-
bility, leading to the resampled series offering a biased
representation of the true population it aims to simulate.

The effect of inclusion of surplus predictor variables
is shown using a synthetic example in Fig. 1 wherein a
sinusoidal series of the form z ¼ sinðuÞ þ e is plotted.
Thus, the z series is a function of only one predictor var-
iable u, a uniformly distributed random number varying
between 0 and 5p, e being a Gaussian error term
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Fig. 1. True, observed and predicted data points using KNN and KNN-W formulations—non-linear synthetic dataset. The points on the graph
indicate the series formed, thick continuous line indicates true sine curve, thin dashed line indicate the series generated by KNN and thin continuous
line indicates the series generated by KNN-W.
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(N(0, 0.2)). To demonstrate the effect of inclusion of
redundant predictor variables, we consider that the fea-
ture vector consists of three additional predictor vari-
ables, all uniformly distributed random variables
having the same range as u, independent of u, z and each
other. Giving all four predictors equal importance leads
to a biased estimate of the conditional mean from the
KNN conditional probability distribution. This bias is
much stronger at the two boundaries of the data,
and at the points that represent large changes in the
slope (peaks and troughs). An alternative formulation
(KNN-W) that considers an optimal scaling weight for
each predictor does not suffer from the same deficiency,
and is the focus of the present study.

The paper is organized as follows. A brief description
of different KNN alternatives, our proposed model
(KNN-W) and the procedure used to estimate the opti-
mal scaling weights are presented first. In the subsequent
section, we demonstrate the importance of inclusion of
optimal scaling weights by applying the different KNN
formulations to synthetic samples from known linear
and non-linear models, and extend the work to down-
scale synoptic atmospheric patterns in predicting the
rainfall at multiple point locations in a region near
Sydney, Australia. The last section presents the summary
and conclusions drawn from this research.
2. K-nearest neighbour resampling

2.1. Background

As described in the previous section, the K-nearest
neighbour approach estimates the conditional probabil-
ity on the basis of K-nearest neighbours of the condi-
tioning vector Xt. In essence, the K patterns in the
historical record that are most similar to the condition-
ing vector are identified, and the K sets of corresponding
predictands are specified as the most likely values the
system may assume at time step t. A common way of
defining similarity uses the Euclidean distance formula-
tion in (3). Recognizing the fact that the correlated
predictors may influence the selection of nearest neigh-
bours, Yates et al. [36] and Wójcik and Buishand [34]
used a modified representation of the distance measure
in (3) by adopting the Mahalanobis distance, as an alter-
native to the Euclidean distance and adopting the stan-
dardization based on the inverse of the predictor
covariance matrix. The Mahalanobis distance measure
is defined by:

nt;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXt � XiÞTC�1ðXt � XiÞ

q
ð4Þ

where T represents the transpose operation, C�1 is the
inverse of the predictor (X) covariance matrix and Xt

and Xi have their usual meaning. Note that when non-
diagonal terms in C are replaced with zero, the Maha-
lanobis distance in (4) reduces to the Euclidean distance
formulation in (3) for the case where the scaling weights
sj represent the reciprocal of the sample standard devia-
tion. While the Mahalanobis distance measure considers
the existing dependence amongst the predictor variables,
it ignores the dependence among the predictors and pre-
dictands, an important omission if some of the predic-
tors are redundant in the relationship being explored.

Recognising the relative importance of each predictor
in selecting the nearest neighbours, Souza Filho and Lall
[31] modified the Euclidean distance estimation based on
a weight on each predictor variable. This weight was
estimated as the slope coefficient of a linear regression
between standardized predictand and predictor sets,
the resulting distance being expressed as:
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nt;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

frjsjðX j;t � X j;iÞg2

vuut ð5Þ

where rj is the regression coefficient between the jth pre-
dictor and predictand, and Xt, Xi, sj and m have their
usual meaning. As the weight is estimated based on lin-
ear regression, the distance measure is optimal when
dependence is linear. However, the estimated weights
are not appropriate if the assumption of linearity is
strongly violated, a common case with real datasets in
hydrologic studies.

2.2. Modified KNN (KNN-W) model

In the modification proposed here, the Euclidean dis-
tance in (3) is modified to include an �influence� weight
for each predictor as follows:

nt;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

bjfsjðX j;i � X j;tÞg2

vuut ð6Þ

where, sj is the scaling weight as defined earlier, and bj is
the influence weight associated with the jth predictor.
The sum of all influence weight equals unity. Introduc-
tion of influence weights, b (b = [bj], j = 1, . . . ,m) aims
to define the information content of each predictor in
the estimation of the conditional cumulative probability
density P(RtjXt) irrespective of whether the underlying
relationship is linear or non-linear. In the simplest form,
all influence weights, b carry equal values and (6) re-
duces to (3), the traditional KNN model. If the relation-
ship between predictor and predictand is linear, the
influence weight bj closely follows the scaled value
r2

j=
Pm

i¼1r2
i of the regression coefficient rj of the Souza

Filho and Lall [31] KNN formulation in (5).
2.3. Estimation of the KNN-W influence weights

The scaling weight vector s (s = [sj], j = 1, . . . ,m),
number of nearest neighbours K and influence weight
vector b are the key to estimating accurately, the condi-
tional probability density in the KNN-W approach. The
scaling weight vector s is estimated as the reciprocal of
the sample standard deviation associated with each pre-
dictor variable. The influence weight vector b is ascer-
tained based on an optimization procedure using
leave-one-out cross-validation, while a trial-and error
criteria is used to estimate K, as described next.

Cross-validation (CV) is a commonly used basis for
measuring the predictive error associated with a model.
Cross-validation involves developing the model using
one part of the sample and assessing its accuracy by
applying it on the other, the process being repeated to
ensure that all observations are used in estimating
the prediction error. Leave-one-out cross-validation
(L1CV) is a special case of CV where the model is for-
mulated at each observed data point using all observa-
tions except the observation under consideration, and
applying the model to predict the observation that has
been left out. The procedure is repeated at all observed
data points and the differences of observed and pre-
dicted values at these data points provide a measure of
the predictive error. For the current application, an
appropriate set of values for the influence vector b is
ascertained by minimizing the predictive error associ-
ated with the model as assessed using L1CV. In the for-
mulation described next, this measure of the predictive
error is used to specify the log-likelihood associated with
the b, the optimal b being selected as the vector that re-
sults in the maximum log-likelihood score.

It may be mentioned here that as the estimation of
the best set of influence weights is exclusively based on
the minimization of the predictive error computed using
L1CV, the resulting conditional distribution may not
be optimal when assessed using statistics at a different
scale of aggregation (see for example the assessment of
a daily rainfall generation model using the variability
in rainfall at an annual time scale in Harrold et al.
[10]). If the aim is to formulate influence weights that
are optimal with respect to statistics estimated at multi-
ple scales, the likelihood function would need to be suit-
ably modified.

In addition to the influence weight vector b, the num-
ber of K-nearest neighbours is also an unknown that is
often difficult to specify in practice. The optimal value
of K depends on the number of observations from which
nearest neighbours are selected, the number of depen-
dent variables and the nature of the response variable�s
conditional probability distribution we aim to character-
ize. If the conditional distribution exhibits low variabil-
ity (meaning that the system has a high degree of
determinism built into it) a smaller K should be used.
In addition to the above factors, the optimal K has been
noted to differ when the conditional distribution is used
for time series simulation as compared to when used for
prediction (see for example [6]). In general, the optimal
K will be smaller when the purpose is time series simula-
tion than when the purpose is prediction. However, a
small value of K may lead to significant duplication of
the historic record in the simulated series. For a suffi-
cient sample size (�100 observations) and small number
of predictors (<6), Lall and Sharma [14] suggested that,
as a basic guideline, K can be chosen as the square root
of the length of the observations. For time series simula-
tion, Buishand and Brandsma [6] found better results
with small K (65). Lall and Sharma [14] have also advo-
cated use of generalized cross-validation for obtaining
the optimal K value for a particular application. Jaya-
wardena et al. [12] investigated selection of number of
nearest neighbours based on generalized degree of free-
dom using the dynamical system approach and found
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better results in comparison to the case when nearest
neighbours are arbitrarily selected.

With modifications in the likelihood formulation, the
approach we follow for estimating the influence weights
b can also be used for estimating the optimal value of K

for a particular application, number of predictor vari-
ables and length of observations. As the aim of this
study is to illustrate the importance of inclusion of the
influence weights in a multi-predictor formulation of
the K-nearest neighbour resampling, we opt not to in-
clude the number of nearest neighbours in the optimiza-
tion procedure described in the next section.

2.4. Adaptive metropolis algorithm

In the present study we have used the recently pro-
posed adaptive metropolis (AM) sampling approach
[8,17] to estimate the optimal values of the influence
weights b. The optimization procedure is based on the
maximization of log likelihood for continuous data:

lðRjhÞ ¼ �N
2

lnð2pr2Þ � 1

2r2

XN

t¼1

½Rt � gðXt; hÞ�2 ð7Þ

where l(Rjh) is the log likelihood, Rt is the observed and
g(Xt;h) the predicted value at time step t, Xt is the pre-
dictor vector at time t, r2 is the predictive error variance,
N is total number of observations, and h is the set of
model parameters. For the present application, we in-
clude r2, the predictive error variance and b, the influ-
ence weights as the parameters h to be optimised.
Note that g(Xt;h) is estimated using leave-one-out
cross-validation as described in the previous section, as
the expected value of the conditional probability distri-
bution specified in (2) and (6).

For the downscaling application presented later in
this section, the rainfall values at all stations are pooled
together to calculate the likelihood in (7). Thus, the
number of observations N is n · ns, where ns is the num-
ber of stations and n is the total number of observations
at each station.

The above likelihood formulation was used to ascer-
tain the optimal parameter vector h using the adaptive
metropolis (AM) algorithm [8,17]. This algorithm is
characterised by a proposal distribution based on the
estimated posterior covariance matrix of the parameters.
At step t, Haario et al. [8] consider a multi-variate nor-
mal proposal N(ht,Ct) with mean given by the current
value, where Ct is the proposal covariance. The covari-
ance Ct has a fixed value (C0) for the first few iterations
and is updated after a t0 iterations as:

Ct ¼
C0 t 6 t0

gCovðh0; . . . ; ht�1Þ þ geId t > t0

�
ð8Þ

where d is total number of parameters included in the
optimization algorithm, I is a d · d identity matrix, e is
a parameter chosen to ensure Ct does not become singu-
lar and g is a scaling parameter to ensure reasonable
acceptance rates of the proposed states.

The steps involved in implementation of the AM
algorithm are:

(a) Initialize t = 0 and set C0 as a diagonal matrix with
each diagonal term representing the variance asso-
ciated with the prior distribution for each
unknown.

(b) Update Ct for the current iteration number t using
(8).

(c) Generate a proposed value h* for h where h* �
N(ht,Ct). If parameter values are outside the para-
meter constraints, repeat the step again. The con-
straints for the b parameters are defined as:

Xm

j¼1

bj ¼ 1:0 and 0 < bj < 1:0 ð9Þ

These conditions ensure that the relative magni-
tude of each parameter is retained and it remains
bounded. New values of each b are generated be-
tween 0 and 1 and are summed up. If the sum of
b is nearly equal to 1 (±0.01 in the present applica-
tion), these are retained otherwise procedure is re-
peated again with the new set of b values. Retained
set of b is rescaled again so that it sums to one.

(d) Compute the log likelihood l(Rjh*) using (7)
following the L1CV procedure.

(e) Calculate the acceptance probability, a, of the
proposed parameter values using:

a ¼ min 1; exp½lðRjh�Þ þ pðh�Þ � lðRjhtÞ � pðhtÞ�f g
ð10Þ

where p(h) is the log prior distribution of h, the pri-
ors being specified as a uniform PDF over [0, 1] for
each element of the influence weight vector b, and
a scaled inverse-chi-square distribution v�2(m,k)
for the error variance r2, the parameters m and k
being specified depending on the nature of the
error associated with the true model. In the
synthetic examples presented in the next section,
m and k are specified as 0.5 and 10 whereas for
the real example these values are specified as 1.0
and 5, respectively.

(f) Generate u � U[0,1].
If u < a, accept ht+1 = h*, otherwise set ht+1 = ht.

(g) Repeat (b)–(f) a sufficient number of times to
ensure that the posterior distribution of the
parameter vector h has been sampled exhaustively.

The scaling parameter g and the stopping criterion
for our algorithm are based on the recommendations
of Marshall et al. [17] and Haario et al. [8]. A reasonable
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approach is to start the optimization with initial set of b
parameters being assigned equal values satisfying (9),
and consider r2 as the variance of the predictive error
estimated using these parameter values. In the results re-
ported next, the optimal h has been chosen as the one
that results in the maximum log-likelihood in (7) from
the assigned number of iterations. Standard convergence
tests [17] were used to assess the adequacy of the number
of iterations (15,000) assigned for each application, de-
tails on which are presented next.
3. Applications

This section illustrates the impact of using optimal
influence weights for K-nearest neighbour resampling
through four carefully designed experiments and four
KNN resampling alternatives. The first three experi-
ments use data from known synthetic models and are
designed to test the following hypotheses: (a) the influ-
ence weight should assume a value of zero when a pre-
dictor variable is redundant; (b) the influence weight
should be dictated by the information content each pre-
dictor has about the predictand(s); (c) the influence
weight should be able to account for the influence of
multi-collinearity among the predictor variables; and,
(d) inclusion of influence weights should result in an im-
proved performance of the model. The last experiment
presents an application to downscale rainfall using a sys-
tem of atmospheric circulation predictors, the aim being
to illustrate the improvements over the other KNN
formulations.

The resampling alternatives considered in the study
differ in the way the scaling of variables is accomplished.
The different scaling alternatives are: (i) reciprocal of
the standard deviation (KNN), defined using (3); (ii) in-
verse of the predictor covariance (KNN-M1), defined
using (4); (iii) regression coefficient vector of predictor
and predictand and reciprocal of the standard deviation
(KNN-M2), defined using (5) and (iv) influence weights
and reciprocal of the standard deviation (KNN-W),
defined using (6). While the second alternative (KNN-
M1) is based on the Mahalanobis distance measure,
other alternatives consider the Euclidean distance mea-
sure as the choice of the function in identifying the prox-
imity of K-nearest neighbours. It should be noted that
the KNN-M1 is based on the nearest neighbour proba-
bility metric defined in (1) and (2) and is different to that
outlined in Yates et al. [36] which, if used, selects the
nearest neighbour with a significantly higher probabil-
ity. For KNN-M2, regression coefficients relating the
predictors and predictand are estimated by carrying
out a multiple linear regression analysis. For the real
example, a pooled multiple linear regression is carried
out instead, for reasons that are discussed later in the
section.
3.1. Case studies using synthetic datasets

For all synthetic examples, the number of nearest
neighbours K was specified equal to square root of num-
ber of observations. This choice was compared with a
trial-and-error based estimate and found to be similar.
The performances of all the approaches are evaluated
by predicting the values in a leave-one-out cross-valida-
tion setting and comparing the mean square error
(MSE). The mean square error (MSE) is calculated
using the following:

MSE ¼ 1

N

XN

i¼1

ðzi � ẑiÞ2 ð11Þ

where, zi and ẑi, respectively, are the ith observed and
predicted values (observation or statistic) and N is the
total number of such values. Here, ẑi is estimated using
leave-one-out cross-validation, and hence MSE repre-
sents the predictive error that can be expected when
the model is applied to new data.

3.1.1. Linear dataset
A sample of 200 observations was generated using the

following linear model:

zi ¼ x1;i þ x2;i þ ei ð12Þ

where, i varies from 1 to 200, x1 and x2 are generated
from a standard normal PDF N(0,1), and e is a noise
term also from a normal distribution N(0, 0.7). Thus,
predictand z is a known function of x1 and x2 with both
contributing equally. To evaluate the capability of the
method at identifying redundant predictors, two addi-
tional variables, x3 and x4, both independent and
N(0, 1) are also included as predictors in the KNN
resampling algorithm. Given this configuration, an opti-
mal outcome from the KNN-W should assign nearly
equal influence weights (b1 and b2) to both x1 and x2

and negligible weights (b3 and b4) to x3 and x4 variables.
On the other hand, as KNN considers all variables to be
equally important and assigns equal weights to all of
them, one would expect the predictive error associated
with the KNN to be larger than that for the KNN-W.
As the relationship among predictors and predictand is
linear, KNN-M2 is expected to perform as well as
KNN-W. Also, as all predictors are independent of each
other, performance of KNN-M1 should be similar to
KNN.

Fig. 2 presents the box-plots of the posterior distribu-
tion of influence weights for KNN-W. The optimized
values of these parameters are also presented in Table 1.
This table also includes the influence weights for KNN
and KNN-M2 formulations. For KNN-M2 these
weights are equivalent to r2

j=
Pm

i¼1r2
i , where rj is regres-

sion coefficient for ith predictor as specified in (5). The
specification of influence weights for KNN-M1 model



Fig. 2. Box plot of influence weights b for each predictor of KNN-
W—linear synthetic dataset (Eq. (12)). Filled circles (d) indicate
optimized values of influence weights b and associated mean square
error (MSE). The whiskers extend to 1.5 times the inter-quartile range
of the data. Observations outside the whiskers are represented as ‘‘s’’.

Table 1
Optimized values of influence weights (b) for each predictor and
related mean square error (MSE) (using Eq. (11))—linear synthetic
dataset (Eq. (12))

Formulation Influence weights MSE · 102

b1 b2 b3 b4

KNN-W 0.500 0.470 0.020 0.010 64
KNN 0.250 0.250 0.250 0.250 84
KNN-M1 – – – – 85
KNN-M2 0.506 0.490 0.004 0.000 68

The influence weights for KNN-M2 are specified as r2
j =
Pm

i¼1r2
i , where

rj is the regression coefficient for the jth predictor and m is number of
predictors.
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is not straightforward. As can be seen from these results,
the KNN-W is able to recognize the inherent structure
of the model by identifying variables x3 and x4 as redun-
dant predictors with negligible influence weights, and
variables x1 and x2 as significant predictors with almost
equal influence weights, thus establishing the first two of
the four hypotheses we seek to test. As the relationship
among the predictors and the predictand is linear,
KNN-M2 is also able to identify the true nature of the
relationship and the scaled values of regression coeffi-
cients are found to be similar to the KNN-W influence
weights. Table 1 also presents the mean square error
(MSE) for all KNN formulations ascertained based on
the ability of these models to correctly predict the values
using leave-one-out cross-validation. The improved per-
formance of the KNN-W as compared to standard
KNN formulation establishes the last of the four
hypotheses that are formulated. As expected, KNN-
M2 provides MSE similar to KNN-W while KNN-M1
results are similar to KNN.
3.1.2. Non-linear dataset

The second case study is based on a non-linear data-
set. A number of theoretical studies relating non-linear
dynamics present proof of the possibility of very simple
deterministic relationships, like the one presented next,
resulting in highly complex outcomes, with sensitive
dependence on initial conditions [9,18]. For this study,
we generate a sample of 300 observations from an
order-1 self-exciting threshold autoregressive (SETAR)
non-linear model as described in Tong [33, pp. 99–101]
and Lall and Sharma [14]. The model structure is similar
to that of an order one autoregressive model except that
the parameters of the model adopt different values when
crossing a specified threshold. As discussed in Lall and
Sharma [14], the SETAR model structure resembles a
stream flow record from a catchment having multiple
causative mechanisms (such as an overland flow and a
coupled snowmelt and overland flow driven response).
The order-1 SETAR model is written as:

zi ¼ 0:4þ 0:8zi�1 þ ei if zi�1 6 0:0

zi ¼ �1:5� 0:5zi�1 þ ei otherwise ð13Þ

where i varies from 1 to 300, e represents noise from a
normal distribution N(0, 0.60), and z denotes the re-
sponse from the model. The auto correlation function
(ACF) and the partial auto correlation function (PACF)
provide a useful basis for ascertaining the structure of an
autoregressive moving average (ARMA) model [24].
Fig. 3 presents the ACF and PACF for the series gener-
ated using (13). A Markov order 6 dependence structure
can be concluded from these plots, under the assump-
tion that the dependence is linear. We use these results
to construct a feature vector consisting of six variables
[zi�1,zi�2, . . . ,zi�6] in the results presented next. As with
the previous example, we expect KNN-W to assign near
unit influence weight to the first predictor (b1 � 1) and
negligible influence weights to the remaining five predic-
tors (b2,b3,b4,b5 and b6 � 0). As now the relationship
among predictors and predictand is non-linear, we ex-
pect the performance of KNN, KNN-M1 and KNN-
M2 to be inferior as compared to the KNN-W.

The optimal values of influence weights are presented
in Table 2. This table also includes the influence weights
for KNN and KNN-M2 and associated MSE values for
all the formulations. As can be seen from these results,
the KNN-W is able to identify the five additional vari-
ables as surplus predictors with negligible influence
weights, and the lag one variable as the sole significant
predictor with a weight nearing unity. As can be inferred
from this table, the KNN-W results offer improvement
over other KNN formulations in terms of MSE.

An additional test was conducted to evaluate the per-
formance of all approaches to simulate the non-linearity
between the response and predictors. The predicted
observations from each model (zi) are divided into two



Fig. 3. Sample auto correlation function (ACF) and partial auto
correlation function (PACF) plots—non-linear SETAR model.

Table 3
Regression coefficients (slope and intercept) obtained from generated
[zi,zi�1] pairs for zi�1 6 0 and zi�1 > 0—SETAR model dataset (Eq.
(13))

Model formulations Regression coefficients

zi�1 6 0.0 zi�1 > 0.0

Slope Intercept Slope Intercept

True values 0.800 0.400 �0.500 �1.500
Generated data 0.700 0.317 �0.543 �1.430
KNN-W 0.626 0.217 �0.830 �1.154
KNN 0.322 �0.200 �0.856 �0.782
KNN-M1 0.303 �0.228 �0.887 �0.741
KNN-M2 0.456 �0.010 �1.012 �0.843

Note the performance of KNN-W is simulating coefficients that are
closest to those of the synthetic sample used.
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sub-sets depending on the values at the previous time
step (zi�1) being 60 or >0. A linear regression model
is fitted to each sub-set and regression coefficients esti-
mated. Table 3 presents the values of these coefficients
for all models and the synthetic sample used. It is appar-
ent that the non-linear dependence relationship between
zi and zi�1 is best simulated by the KNN-W
formulation.

3.1.3. Multi-collinear dataset

The third case study evaluates the performances of
KNN-W and other KNN formulations when the predic-
tors are highly correlated. The study is based on a sam-
ple of 200 observations generated using the following
linear model:

zi ¼ x1;i þ x2;i þ x3;i þ ei ð14Þ
where, i varies from 1 to 200, x1 and x3 are generated
from a standard normal PDF N(0, 1) and e is a noise
Table 2
Optimized values of influence weights (b) for each predictor and related m
(Eq. (13))

Formulation Influence weights

b1 b2 b3

KNN-W 0.909 0.008 0.006
KNN 0.167 0.167 0.167
KNN-M1 – – –
KNN-M2 0.288 0.422 0.030

The influence weights for KNN-M2 are specified as r2
j =
Pm

i¼1r2
i , where rj i

predictors.
term also from a normal distribution N(0,0.5). In order
to evaluate the affect of multi-collinearity among the
predictors on the performance of KNN formulations,
x2 is set equal to x1 times U(0,2), with U(0, 2) represent-
ing a uniformly distributed random variate between 0
and 2. Thus, predictand z is a known function of x1,
x2 and x3 with x1 and x2 being highly correlated (coeffi-
cient of correlation 0.87). An additional predictor vari-
able, x4, also N(0,1), is included as a redundant
predictor.

For the multi-collinear data set, as KNN assigns
equal weights to all predictors, one would expect the
predictive error associated with the KNN to be larger
than that for the KNN-W. As the relationship among
predictors and predictand is still linear, KNN-M2 is ex-
pected to perform as well as KNN-W. Also, as two pre-
dictors are highly correlated, performance of KNN-M1
is intuitively expected to be better than KNN, an expec-
tation that is contradicted by the results (Table 4).

The influence weights and MSE�s for the various
KNN formulations are presented in Table 4. As can
be seen from these results, the KNN-W and KNN-M2
assign weights that are comparable to each other (noting
that the weights for x1 and x2 exhibit greater variability
because of the high correlation). As was expected,
KNN-W and KNN-M2 perform better than KNN.
Interestingly, KNN-M1 performs worse than the regular
KNN formulation. We feel that this is because the influ-
ence of each predictor in KNN-M1 is based on the
ean square error (MSE) (using Eq. (11))—non-linear SETAR model

MSE · 102

b4 b5 b6

0.020 0.026 0.031 41
0.167 0.167 0.167 56
– – – 59
0.049 0.060 0.151 47

s the regression coefficient for the jth predictor and m is number of



Table 4
Optimized values of influence weights (b) for each predictor and
related mean square error (MSE) (using Eq. (11))—multi-collinear
dataset (Eq. (14))

Formulation Influence weights MSE · 102

b1 b2 b3 b4

KNN-W 0.505 0.354 0.139 0.001 52
KNN 0.250 0.250 0.250 0.250 65
KNN-M1 – – – – 96
KNN-M2 0.351 0.407 0.240 0.002 55

The influence weights for KNN-M2 are specified as r2
j =
Pm

i¼1r2
i , where

rj is the regression coefficient for the jth predictor and m is number of
predictors.
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dependence characteristics between the predictors, with-
out taking account of the dependence that exists be-
tween the predictors and the predictand. Were the
influence of all predictors on the response similar, and
they were correlated with each other, one could have ex-
pected the KNN-M1 to outperform all other alterna-
tives. As that is not the case here, the redundant
predictor ends up having a stronger influence, leading
to poor predictive results.

We have demonstrated that inclusion of influence
weights in defining Euclidean distances and thereby esti-
mating the conditional PDF results in an improvement
in the resampling procedure in both linear and non-lin-
ear settings. Similar improvements can be expected in an
application where the true form of the underlying model
is not known. This is demonstrated next by downscaling
rainfall at a network of raingauges near Sydney,
Australia.

3.2. Downscaling of rainfall near Sydney, Australia

The downscaling application uses 43 years (1960–
2002) of daily rainfall at 15 stations located around Syd-
ney, New South Wales, Australia for June (winter in the
southern hemisphere). In an earlier study Mehrotra
et al. [19] identified the mean sea level pressure (MSLP),
geopotential heights (GPH) at 700 h Pa and their gradi-
ents as plausible atmospheric circulation indicators of
the rainfall patterns in this region. Consequently, based
on the results of their study and the recommendations of
the meteorologists about the rainfall driving mechanism
about the region, a total of six atmospheric circula-
tion variables are identified as potential predictors for
the downscaling example. These consist of averaged
MSLP and the east–west and north–south gradients of
MSLP of the current as well as previous days over the
study region. The previous day average rainfall of the re-
gion is also identified as an additional predictor variable
for this example. The predictands in this application are
daily rainfall amounts at the 15 stations. A trial and er-
ror procedure is performed to find out the optimal value
of K, the number of nearest neighbours, and conse-
quently a value of K = 15, is adopted for use in all the
approaches considered for this example.

The influence weights for this example are estimated
using the optimization procedure and the likelihood
measure in (7) as described in the Section 2. Once the
influence weights are identified, we evaluate the perfor-
mances of all KNN formulations by predicting daily
rainfall amounts in a leave-one-out cross-validation set-
ting. The leave-one-out cross-validation is performed by
downscaling for day t based on the conditional CDF in
(2) and (3) with neighbours that do not include the data
for day t. Results from all the models are ascertained by
resampling 100 realisations of rainfall amounts for each
day of the observed record, based on which various per-
formance measures are computed.

The numerical comparison of these models is based
on the estimation of the mean square error (MSE) for
selected attributes of generated rainfall amounts and
occurrence. A graphical comparison is performed on
the basis of a performance measure indicating the suc-
cess at simulating wet or dry days similar to what is ob-
served. The mean square error in (11) for rainfall
amount/occurrence/associated attribute can be written
as:

MSE ¼ 1

N STN

XNS

l¼1

XT

j¼1

XN

i¼1

ðxl;i � x̂l;j;iÞ2 ð15Þ

where, xl,i is the ith observed value at lth station, x̂l;j;i is
the ith predicted rainfall amounts/occurrences/attribute
at the lth station and for the jth realization, N indicates
number of observations, NS is number of stations and T

is number of realizations. Note that the number of
observations is more (30 · 43) when estimating the
MSE for daily rainfall amount/occurrence, and less
when the MSE refers to amounts/occurrences under a
specific category (such as days on which fewer than
33% stations had rain) or a rainfall attribute (such as
monthly maximum rainfall). Note also that the series
of rainfall amount includes days with both zero and
non-zero amounts and results for the monthly maxi-
mum rainfall compare the historical monthly maximum
value to what is downscaled on the same day for each
year.

Table 5 presents the optimized values of influence
weights for all predictors and for KNN, KNN-W and
KNN-M2 approaches. As can be seen from the table,
KNN-W and KNN-M2 identify MSLP and north–
south gradient of MSLP as the most significant predic-
tors. All KNN formulations are also found adequate
in reproducing successfully the spatial rainfall distribu-
tion (results not included in the paper) due to the resam-
pling of an entire observed rainfall vector for a given day
at all stations in a single go. Table 6 provides the MSE
for various rainfall attributes of interest. Also included
are the percentage of stations at which a given model



Table 5
Optimized values of influence weights (b) for each predictor—multi-
site rainfall dataset

Formulation Influence weightsa

b1 b2 b3 b4 b5 b6 b7

KNN-W 0.107 0.314 0.249 0.065 0.027 0.186 0.051
KNN 0.143 0.143 0.143 0.143 0.143 0.143 0.143
KNN-M1 – – – – – – –
KNN-M2 0.145 0.340 0.340 0.007 0.049 0.116 0.002

The influence weights for KNN-M2 are specified as r2
j =
Pm

i¼1r2
i , where

rj is the regression coefficient for the jth predictor and m is number of
predictors.

a Predictor 1 represents average wetness fraction of the previous day,
predictors 2, 3, 4 and 5, 6 and 7, respectively, represent the average
MSLP, north–south gradient of MSLP and east–west gradient of
MSLP of the current and the previous day.
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is found to have the highest success in reproducing each
of the rainfall attributes tabled. Note that the rainfall
occurrence results are based on the assumption that a
day is wet if the rainfall amount on that day is greater
than or equal to 0.3 mm (after [10,5]). As can be inferred
from this table, inclusion of influence weights offers
improvements in the predicted results at a majority of
stations. It is important to note that these improvements
hold even when the stations are segregated based on the
fraction on which rain occurs. Hence one can conclude
that the KNN-W offers a better downscaling perfor-
mance than the other alternatives across a range of rain-
fall events (spotty convective events where few stations
receive rainfall to sustained frontal events where most
of the stations record rain).

To evaluate further the performance of a model,
attention is paid to the representation of the daily rain-
fall occurrences on each day classified as wet or dry.
This offers an additional means of evaluating the perfor-
mance of KNN-W as the influence weight estimation
procedure is based on the use of rainfall amounts and
hence does automatically translate into an improved
Table 6
Mean square error (MSE) for selected attributes of generated rainfall amou
minimum MSE—multi-site rainfall dataset

Attributes Mean square error (MSE)

KNN-W KNN KNN-M1

Daily rainfall amount (mm2) 89.1 97.3 96.8
Daily rainfall occurrence 0.258 0.268 0.275
Daily maximum rainfall (mm2) 1079 1184 1203
Less than 33% of stations are wet

Amounts (mm2) 11.9 14.7 14.9
Occurrence 0.178 0.184 0.188

33–66% of stations are wet
Amounts (mm2) 23.1 24.3 24.2
Occurrence 0.124 0.126 0.129

Greater than 66% of stations are wet
Amounts (mm2) 111.2 120.5 119.5
Occurrence 0.122 0.129 0.134
performance of the model when evaluating rainfall
occurrence results. Fig. 4 presents the success rates of
model predicted conditional and unconditional wet
and dry days at each station. The unconditional success
rate is defined as the ratio of number of days when both
observed and predicted values are either wet or dry to
the total number of days in the observed record. In case
of perfect match the success rate approaches unity. Sim-
ilarly, the conditional success rate of previous day being
wet (dry) is defined as the ratio of number of days when
both observed and predicted values of the current day
are either wet or dry with the previous day value in
the observed and predicted record being wet (dry). The
accurate reproduction of conditional wet and dry days
defines the day to day persistence of the daily rainfall
and also helps in representing the wet and dry spells of
longer durations. As such these are of prime concern
in catchment management studies. All the models under
estimate the success rates of wet and dry days. However,
KNN-W offers better results in reproducing these statis-
tics at majority of stations.

The overall divergence of predicted results from the
observed ones could be owing to the number of stations
and the choice of predictor variables considered in the
present application. This may be especially important
when evaluating the performance of KNN-M2 in the
above example. The basic requirement of KNN-M2 lies
in estimating accurately the regression coefficients of
predictors and predictand. As our real data set contains
multiple predictands (raingauge stations), pooled regres-
sion was used to estimate the regression coefficients of
KNN-M2 as per Souza Filho and Lall [31]. However,
it was found that with a higher number of stations (sim-
ilar experimental settings as of Mehrotra et al. [19] and
Mehrotra and Sharma [20]) than was used in the above
example, the basic assumption of pooled-regression be-
came invalid. This was due to the estimated regression
coefficients being significantly different when only coast-
nts and occurrences (using Eq. (15)), and percentage of stations with

Percentage of stations with minimum MSE

KNN-M2 KNN-W KNN KNN-M1 KNN-M2

97.7 87 0 13 0
0.264 93 0 7 0

1143 80 0 0 20

13.7 100 0 0 0
0.187 80 7 13 0

25.6 53 7 33 7
0.125 60 7 7 26

120.8 73 0 20 7
0.122 50 0 0 50
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Fig. 4. Success rates of number of days being wet and dry (a)
unconditional, (b) conditional on previous day being wet and (c)
conditional on previous day being dry in the predicted record for
KNN, KNN-W, KNN-M1 and KNN-M2 at each station—multi-site
rainfall dataset.
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al rainfall stations were used, as compared to the case
where inland stations were used (results not presented
here for lack of space but available from authors on re-
quest). It was only after this testing that the above
experimental design (15 raingauge stations located near
the coastal region) was finalized under the assumption
that they represent a meteorologically homogeneous re-
gion. This represents a limitation of the pooled regres-
sion approach and indirectly of KNN-M2 when
multiple responses are being modelled.

It was also felt that the atmospheric circulation vari-
ables selected as potential predictors are not adequate in
defining the temporal correlation of rainfall at each sta-
tion successfully. We feel that inclusion of a better mech-
anism explaining the lagged spatial distribution of
rainfall patterns can offer improved results. Readers
are refereed to one such downscaling formulation in
Mehrotra and Sharma [20], which uses the proposed
influence weight logic coupled with a framework for
defining persistence in the observed rainfall pattern at
the previous time-step as the basis for downscaling rain-
fall occurrence in a network of raingauges. Defining the
relative contribution of each predictor variable by influ-
ence weights, however, to some extent, helps overcome
this deficiency, which is the main focus of the present
study.
4. Summary and conclusions

We presented a variation of the traditional KNN
time series resampling approach to deal with the prob-
lem of using multiple predictors in the specification of
the conditional probability density. The utility of the
proposed approach is assessed by applying it to linear,
non-linear and multi-collinear synthetic datasets and
comparing the results with the other KNN formula-
tions. The results of the study indicate that the proposed
modification correctly identifies and simulates both
linear and non-linear dependence between the predictor
and predictands, even when predictors are strongly in-
ter-correlated. The modified formulation is also applied
to downscale daily rainfall using multiple predictors and
improvements in the results as compared to other KNN
formulations are noted.

The influence of magnitude of unexplained noise term
on the performances of various models was also investi-
gated thoroughly in the study using the synthetic data-
sets. This was achieved by varying the value of e in
Eqs. (12)–(14). All the models were run on the datasets
obtained by varying the e in increments of 0.2 starting
from 0.2 and ending at 1. As expected, the capability
of KNN-W in identifying the true form of relationship
decreases with the increase in the noise in the data.
However, still the MSE is found the lowest in compari-
son to other KNN formulations. The effect of noise,
number of predictors and non-linearity of predictor
and predictands on the selection of the number of near-
est neighbours was also investigated. In general, with the
increase in the noise, better results are obtained with the
large K. However, with the increase in the number of
predictors and non-linearity of the relationship of pre-
dictor and predictands, the optimal K tends to decrease
(detailed results of these investigations are available on
request from the authors).

The KNN-M1 considers existing dependence amongst
the predictor variables, however, ignores the dependence
among the predictors and predictands. KNN-M2 works
best when predictors and response are linear or near-
linear, and is a considerably simpler alternative equiva-
lent to KNN-W for modelling such systems. However,
with multiple response variables, estimation of the re-
gression coefficients using pooled-regression poses diffi-
culties, as one is required to assume that the same
relationship is valid between each response and the
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predictor set. This assumption is found especially want-
ing when variability amongst the responses is due to mul-
tiple causative mechanisms. The KNN-W approach is
far more general than any of the existing KNN alter-
natives, and is worthy of consideration whenever the
system behaves in a non-linear manner with different
influences of the associated predictors.

One of the significant advantages of the KNN frame-
work is the simplicity with which multiple predictor
variables can be accommodated in the feature vector.
The proposed modification can be used to find the sig-
nificance of the added predictor(s) as compared to the
existing predictors in defining the predictand(s). It is also
possible to include the number of nearest neighbour K,
for the given dataset, in the optimization procedure
using a modified version of the model likelihood.
The ‘‘curse of dimensionality’’ [25] is less felt in the
KNN-W formulation due to the reduced weight associ-
ated with redundant or irrelevant predictor variables.
Consequently, formulation of higher dimensional non-
parametric models, such as those used for disaggrega-
tion [32], multi-variate stochastic simulation [24] or
downscaling [19] is simplified through the use of the
influence weight logic proposed here.

Another possible field of application of the influence
weight logic presented here would be studies dealing
with the issue of non-linearity in the hydrological pro-
cesses using the nearest neighbour approach. The influ-
ence weight logic can help understand better the
behaviour of many hydrologic and meteorologic phe-
nomena which have been shown to exhibit non-linear
deterministic behavior (e.g., [16,22,1,2,29,30]).
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