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GARCH Model I

The GARCH(p,q) model,

Y = e\ Iy, e~ D(Oa 1)
p q

hy = w+ Z &ith—z' + Z Bilve_;.
i=1 i=1

h;: conditional variance of y; given {vy;—1, y1—2, . .. }

¢;: 1.1.d. errors

D(0,1): denotes a distribution with mean zero and variance 1
w >0

a >0,1=1,....p

B;>0,i=1,....q

oyl i<
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The conditional likelihood function of the model,

10) = T h " *pelyr//he), s = max(p, q).

t=s+1

0 = (90,91, .. '79p+q>: (W,Ckl, .. .,Oép,ﬁl, o 76(1)/'

There are a number of proposals in the literature to introduce
skewness in unimodal symmetric distributions. In particular,
Fernandez and Steel (1998) presented a general method for
transforming any continuous unimodal and symmetric distribution
into a skewed one by changing the scale at each side of the mode.
They proposed the following class of skewed distributions indexed by
a shape parameter v € (0, o0), which describes the degree of
asymmetry,

2

v+ 1/
with s(z|y = 1) = f(x).

s(xly) =

{f G) Ijo.00) (%) + [ (793)[(—oo,0)(97)} v > 0.
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We compare the following different distributions for the error term:
symmetric normal distribution, standardized Student-t distribution,

the generalized error distribution and their skewed versions.

error dist. parameters

stardard normal )

symmetric standardized t 0=0,v), v>2
standardized GED 0 = (0,v), v € (0,2)
skew normal 0= (0,v)

asymmetric skew t 0=0,v,y),v>2 v>0
skew GED 0= (0,v,y), rve(0,2),y>0
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Figure 1: Density functions of the standard normal, standardized Student-t with 5 de-
grees of freedom, Laplace and GED with v = 1.5
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Figure 2: Density functions of the skew normal, skew Student-t and skew GED.
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Priors Distributions for GARCH Model I

¢; = log (1_9j> ~ N(0,07), j=1,...,p+q

gbozlog( % ) where 7% = (1/n)> 97

y2—90

Tails thickness parameter for the GED: ) = log ( > ~ N(0,07).

2—U

Degrees of freedom for the Student-t: v ~ Exponential(3), 5 = 0.1.

Skewness parameter for the Skew normal, skew ¢ and skew GED:
v ~ N(0,0.6471) truncated to v > 0, in which case,

Var(v) =057, E(y)~=1and P(0<~y<1)~0.58.

Prior is centered around the symmetric version of the distribution

and gives approximately equal weights to left and right skewness.
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Random Walk Metropolis for the GARCH I

1. Set initial values for the GARCH parameters 8'” and transform to
" € RY.

2. Atiteration j, generate a vector from the random walk kernel,
¢ = qb(j_l) +€,e€~ N(0,7Y)
3.1f i e’ /(1 + %) < 1set V) = ¢’ with probability
(¢ )p(d) }
l(@)p(o) |

otherwise reject the move and set oY) = pU—Y,

o(, @) = min {1,

4. Repeat until convergence.

In step 2 above, 7 is a constant to tune the acceptance rate and X is
estimated from the approximate Hessian matrix of the target density
evaluated at its mode.
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Approximating the marginal likelihood I

Chib and Jeliazkov (2001)

p(ylé’;i Mz>p(9;k|Mz>

WM = = oty )

(8, $)q(¢|0)7(0]y) = (6", 6)q(6]6")7(0"|y)

4

[ a6.6 106 1076110 15 (g0 g)g(64100)
w(O'ly) = ~

~ _ J * '
/ a(6°,0)4(06")d6 J Y (67, 6Y))
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Table 1: Daily Exchange Rates of various currencies relative to the US dollar. Estimates

of posterior model probabilidades.

normal t GED skew normal skew t skew GED
Australian Dollar 0.0000 0.0183 0.0123 0.0000 0.0586 0.9108
British Pound 0.0000 0.6283 0.0007 0.0000 0.3707 0.0003
Canadian Dollar  0.0000 0.1335 0.0002 0.0000 0.8655 0.0008
French Franc 0.0000 0.2376 0.0001 0.0000 0.7623 0.0001
German Marc 0.0000 0.2648 0.0000 0.0000 0.7351 0.0001
Japanese Yen 0.0000 0.0801 0.0000 0.0000 0.9198 0.0000

Ricardo Ehlers

GARCH Models via Bayes Factors

10



X Bayesian Statistics Brazilian Meeting, March 2010

Figure 3: MCMC paths, density estimates and autocorrelations for the GARCH(1,1)
with skew Student errors (Canadian Dollar exchage rates).
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Concluding Remarks I

e The main contribution was to provide computational tools for
estimating and comparing GARCH models using MCMC methods

and an approximation to the Bayes factor.

e Other recent approaches to model comparison via marginal

likelihood estimation are currently under investigation.

e The methods developed in Friel and Pettit (2008), Chen (2005),
Chib and Jeliazvok (2005) are very promissing and we seek to

adapt them to the context of models in the GARCH family.

e For real time series we found evidence in favour of skewed
distributions for the error term. Similar findings are reported by

other authors (see for example Cappuccio et al. 2004).
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