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Abstract

We develop for regression models trans-dimensional genetic algorithms

for the exploration of large model spaces. Our algorithms can be used in two

different ways. The first possibility is to search the best model according

to some criteria such as AIC or BIC. The second possibility is to use our

algorithms to explore the model space, search for the most probable models

and estimate their posterior probabilities. This is accomplished by the use

of genetic operators embedded in a reversible jump Markov chain Monte

Carlo algorithm in the model space with several chains. As these chains

run simultaneously and learn from each other via the genetic operators, our

algorithm efficiently explores the large model space and easily escapes local

maxima regions common in the presence of highly correlated regressors.

We illustrate the power of our trans-dimensional genetic algorithms with

applications to two real data sets.

Key Words: Model selection, Genetic algorithms, Markov chain Monte

Carlo, reversible jump MCMC.

1 Introduction

The usual approach for model selection is to use information criteria such as the

AIC (Akaike 1974) and/or BIC (Schwartz 1978) to discriminate between compet-

ing models. These criteria may be used to compare ARIMA time series models of

different orders, polynomial models, for variable selection in (generalized) linear

models, etc. In practical terms, the use of these criteria for model comparison

involves the model fit and computation of the criterion for each competing model.

However, in realistically complex cases the number of competing models may be
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quite large, thus evaluation of each competing model would be too costly and,

as a result, numerical techniques are necessary to efficiently explore model space.

Moreover, as a result of the presence of highly correlated regressors or ambigui-

ties in the model definition, the function to be optimized may present many local

maxima regions. Here, we develop trans-dimensional genetic algorithms that use

genetic operators embedded in a reversible jump Markov chain Monte Carlo algo-

rithm with several chains. As these chains run simultaneously and learn from each

other via the genetic operators, our algorithm efficiently explores the large model

space and easily escapes local maxima regions.

In this paper, we distinguish between the steps of model identification and

parameter estimation given the model. We assume that the estimation step may

be performed without too much computational effort, conditional on the model,

using standard statistical methods (and software). So, the main purpose here is to

propose an effective and semi-automatic method for the identification task. This is

accomplished by adapting the genetic algorithm to propose transdimensional jumps

in several MCMC chains which are run simultaneously and let the chains learn

from each other via genetic operators. The genetic algorithm is a highly effective

technique for maximizing irregular functions defined over high-dimensional spaces

(Holland 1975). Chatterjee et al. (1996) provide a good overview of statistical

applications of genetic algorithms.

Assume that the possible models can be enumerated as M1,M2, . . . ,Mc and

indexed by a model indicator k. Associated with each model there is a likelihood

function p(y|θk, k) depending upon an unknown parameter vector θk ∈ Θk of

length nk which may vary from model to model. We distinguish between the steps

of model identification and parameter estimation given the model. We assume that

for a given model Mk the estimation of θk may be performed without too much

computational effort using standard statistical methods (and software). Moreover,

we assume that a measure of model performance can be computed fairly fast. For

example, the measure of performance may be the logarithm of the model posterior

probability, the Akaike Information Criterion (AIC) of the Bayesian Information

Criterion (BIC). In particular, AIC and BIC for a given model take into account

the maximum likelihood function for that model and a penalizing term for model

complexity in terms of number of parameters, and are given by

AIC(θ̂k, k) = −2 log p(y|θ̂k, k) + 2nk

BIC(θ̂k, k) = −2 log p(y|θ̂k, k) + nk log T

and its minimum value will select the “best” model over all candidate models.

Model selection using these or any other information criterion may become an

issue when the number of competing models is high. Thus, the main purpose here

is to develop an effective and semi-automatic method for the identification task.
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This is accomplished by adapting a genetic algorithm to propose trans-dimensional

jumps in several MCMC chains which are run simultaneously and let the chains

learn from each other via genetic operators.

Genetic algorithms are highly effective for maximizing irregular functions de-

fined over high-dimensional spaces (Holland 1975). An introduction to some basic

genetic algorithms statistical applications can be found in Chatterjee et al. (1996).

Genetic algorithms have operators that borrow their interpretation from biological

evolution of species: selection, crossover and mutation. In the case of model space

exploration, we start the genetic algorithm with a population of models that is a

small subset of the competing models. In each iteration of the algorithm this pop-

ulation evolves according to the genetic operators. In the selection step, models

with high performance are more likely to remain in the next population. In the

crossover step, pairs of models are combined and generate offspring models that

are more likely to be accepted in the population if they have high performance. In

the mutation step, each individual model suffers a perturbation and the resulting

mutant is accepted or not in the population depending on its performance.

This genetic algorithm is a Markov chain and we compute the acceptance prob-

abilities associated with each genetic operator in such a way to guarantee that the

chain will converge to a distribution defined in terms of the measure of perfor-

mance. In particular, if the measure of performance of a model is proportional to

its posterior probability, then the chain will converge to the posterior distribution

on the model space. As a result, this genetic algorithm will provide estimates of

the most probable set of models and their respective posterior probabilities.

Assuming that the prior information is equivalent to the information con-

tained in one observation, the BIC provides an approximation (with error of order

O(n−0.5)) to the log of the Bayes factor for nested hypotheses (Kass and Wasser-

man 1995). Thus, in that case the posterior distribution on the model space may

be well approximated by the Boltzman distribution

P (Mk|y) ∝ exp{−BIC(θ̂k, k)/2}. (1)

We illustrate the application of our genetic algorithm with the BIC as the measure

of performance of the models. As a result, the chain of population models converges

in distribution to the Boltzman distribution in Equation (1). Nevertheless, given

specific priors for each competing model and provided the predictive distribution

for each model can be easily computed, we build our algorithm such that the

chain of population models is guaranteed to converge to the appropriate posterior

distribution on the model space.

This paper is organized as follows. Section 2 provides an introduction to fixed

dimension genetic algorithms. Section 3 describes variable dimension genetic algo-

rithms. Section 4 details our trans-dimensional genetic algorithm for model space
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exploration. Section 5 illustrates our algorithm with two real data applications.

Section 6 concludes with a brief discussion.

2 Fixed Dimension Genetic Algorithm

Suppose we wish to maximize a function g(θ) (typically called fitness function)

where θ is a L-dimensional vector (θ1, . . . , θL). We need to create a population

of M solutions θ1, . . . ,θM . Each cycle of the algorithm is comprised of the steps

selection, crossover and mutation which we now describe.

2.1 Selection Step

In this step the population is altered by allowing better solutions to remain with

high probability while poorer solutions are potentially removed from the popu-

lation. So, the selection step proceeds by drawing M elements θ∗1, . . . ,θ
∗
M with

replacement from the current population with probability wi proportional to their

fitness g(θi) and then solutions with a higher fitness have a larger probability of

being selected to form the next generation. Of course if g is not non-negative we

can use say wi ∝ exp(g(θi)).

2.2 Crossover Step

Now given this new population, we select a pair, say (θ∗i ,θ
∗
j , ), according to some

selection procedure and trade their values with a fixed probability pc. A pair can

be selected either uniformly from the current population or according to weights

wi ∝ exp(g(θi)). Given a pair, one possible scheme is the so-called one-point

crossover where we choose k ∈ {1, . . . , L− 1} and swap elements k, . . . , L, i.e.

(θ∗i,1, . . . , θ
∗
i,k, θ

∗
i,k+1, . . . , θ

∗
i,L)→ (θ∗i,1, . . . , θ

∗
i,k, θ

′
j,k+1, . . . , θ

′
j,L)

(θ∗j,1, . . . , θ
∗
j,k, θ

∗
j,k+1, . . . , θ

∗
j,L)→ (θ∗j,1, . . . , θ

∗
j,k, θ

′
i,k+1, . . . , θ

′
i,L)

where each swap is accepted with probability pc.

2.3 Mutation Step

Given this modified population, perturb each element with a small probability pm
by adding a random noise. The MCMC equivalent to this step is to update the

parameters according to a Metropolis-Hastings or Gibbs sampler scheme.
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3 Variable Dimension Genetic Algorithm

Define a population (k1,θ1), . . . , (kM ,θM) of model indicators and associated pa-

rameter vectors. Here the lenghts Li of the elements may vary from one model to

the next.

For each element compute wi ∝ g(ki,θi) and draw elements with replacement

from this population with probability wi (perhaps using the elitist strategy)

(k∗1,θ
∗
1), . . . , (k∗M ,θ

∗
M).

In the crossover step, randomly choose a pair (k∗i ,θ
∗
i ), (k

∗
j ,θ

∗
j) and trade values

on the portion of the vectors that are of the same length.

The mutation step involves trans-dimensional moves and we use a reversible

jump MCMC scheme (Green 1995). In this case the stationary distribution is

g(k,θ) and, as is usual in model selection problems, we restrict attention to certain

jump proposals. For the ith component in the population suppose that we propose

a move of type r from φi = (ki,θi) to φ′i = (k′i,θ
′
i) with probability Pr(φi) where

typically Li 6= Li′ . This can be done by generating a random vector u from a

proposal distribution q and choosing the proposed state as f(θi,u). This proposal

would then be accepted with probability min(1, A) where

A =
g(k′i,θi)Pr′(φ

′)q(u′)

g(ki,θi)Pr(φ)q(u)

∣∣∣∣
∂f(θi,u)

∂(θi,u)

∣∣∣∣ (2)

where Pr(φ) denotes the probability of proposing a move type r when in state φ

and r′ is the move in the opposite direction.

4 Variable Selection Problems

This is probably one of the most common settings for application of MCMC-based

model determination where we decide which parameters should be included in a

model. In a regression problem, for a set of p candidate variates X1, . . . , Xp and

allowing for any subset of variates to appear in the model, there are 2p possible

candidate models as each covariate can either be included or not. Typically, there

is substantial uncertainty about which subset of covariates should be included in

the model for any given data set.

We can uniquely describe each candidate model as Mi = (xi1, . . . , xip) where

xij = 1 if Xj is included in model Mi and xij = 0 otherwise. In a context where we

have a large number of candidate models, which is the situation of interest here,

it is more useful to derive an equivalent scalar model indicator k. As suggested in

Brooks et al. (2002), this can be easily accomplished by treating the vector Mi as
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a number expressed in base 2 and converting to the decimal equivalent by setting

k = 1 +

p∑

j=1

xij2
j−1 ∈ {1, . . . , 2p}.

We can easily map back to Mi by iteratively solving the equation 1+
∑p

j=1 xij2
j−1 =

k for xi1, . . . , xip.

In terms of the genetic algorithm we can now create a population of models

x = x1, . . . ,xM and propose between-model moves in each cycle using the genetic

operators. In this paper we use the BIC to distinguish between competing models

so that the fitness function (which is the target distribution here) is b(θk, k) ∝
exp(−BIC(θk, k)/2).

Our motivation to use BIC to compare models comes from its derivation as a

large sample approximation to twice the Bayes factor Schwartz (1978).

It is easy to see that b(θk, k) defines a discrete probability distribution over

the set of BIC values for each candidate model and the highest probability is

placed at the “best” model. The parameters θk within each model are estimated

via maximum likelihood using any statistical software (we use the package R).

In practice, however, computing the relevant BIC values for each possible model

can be very time consuming when the number of competing models is high. For

example, with 20 candidate covariates we would need to compute over one million

BIC values. If the data consists of a large number of observations then clearly any

time saving approach would be an attractive proposition.

The Boltzman distribution for each individual xi can be defined as

b(xi) ∝ exp{−BIC(xi)/2}

As usual in the Evolutionary Monte Carlo literature we augment the state of the

Markov chain to the population x and the Boltzman distribution of the population

is

b(x) =
∏

i=1

b(xi) ∝ exp

{
−
∑

i=1

BIC(xi)/2

}
.

The reversible jump MCMC algorithm is then used to obtain a sample from

this target distribution. After a burn-in period, the frequency with which each

model has been visited by the Markov chains estimates the probability of the

associated BIC value. The model with highest probability is then an estimate of

the “best” model. Also, a sensible non-Bayesian model averaging procedure can

be done based on these estimated probabilities. If ∆ is the quantity of interest

that retains its interpretation in all models, such as a future observation, then

p(∆|D) =
2p∑

i=1

p(∆|D,Mi)p(Mi|D).
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Of course, the idea is that the chain will not cover the entire model space as this

would require evaluating the BIC at each possible model. Rather, the objective

in this context is to explore the model space and capture the models with higher

probabilities. Thus, in any practical application of our algorithm the above sum

would include a much smaller number of terms based upon model probabilities.

We can go further and use the Occam’s window method of Madigan and Raftery

(1994) thus picking a small subset of parsimonious data-supported models.

In this particular implementation of the reversible jump MCMC, suppose that

we propose a move from model k with parameters θk to model k′ with parameters

θk′ with the whole set of new parameters estimated by maximum likelihood directly

in the k′-dimensional space. In terms of dimension matching, this is equivalent to

defining a k′-dimensional vector u = (u1, . . . , uk′) with the maximum likelihood

estimates and then setting the change of variables as θk′ = u and u′ = θ, i.e.

(θ′1, . . . , θ
′
k′ , u

′
1, . . . , u

′
k) = (u1, . . . , uk′ , θ1, . . . , θk)

which has unity Jacobian. So, given the current population x we propose a new

population x′ via genetic operators and accept with probability

min

(
1,

exp{−BIC(x′)/2}
exp{−BIC(x)/2}

P (x′,x)

P (x,x′)

)

where P (x,x′) is the probability of proposing a jump from population x to x′.

In what follows we describe the way in which we apply genetic operators to

propose trans-dimensional moves in this context.

4.1 Crossover Move

Given the current population of models x1, . . . ,xM we randomly select [M/2] pairs

of individuals without replacement and propose a new population as follows. For

a particular pair (xi,xj),

1. select those elements with different values K = {k : xik 6= xjk}

2. randomly choose k ∈ K

3. set x′ik = xjk and x′jk = xik

4. Accept this new population with probability min(1, A) where

A =
exp(−BIC(x′i)/2−BIC(x′j)/2)

exp(−BIC(xi)/2−BIC(xj)/2)

P (x′,x)

P (x,x′)

5. repeat the above steps for all [M/2].

7



where P (x,x′) is the probability of proposing a move from population x to pop-

ulation x′. We note that is this one-point crossover proposal the crosspoint k is

chosen uniformly so P (x,x′)=P (x′,x).

This updating scheme is repeated for all [M/2] pairs of individuals selected

without replacement from the population.

4.2 Mutation Move

A mutation step is proposed for each individual in the current population by either

including a new regressor with probability w, or deleting an existing one with

probability 1−w. Suppose that we are now updating individual xi and define the

set J = {j : xij = 0} of regressors not in the current model. If an inclusion is

proposed we randomly choose j ∈ J and set x′ij = 1. This move is accepted with

probability min(1, A) where

A =
exp(−BIC(x′i)/2)

exp(−BIC(xi)/2)

(1− w) |J |
w (|J |+ 1)

with J = {j : xij = 1}, i.e. the set of regressors included in the current model,

and |J | denotes the cardinality of J . Likewise, if a deletion is proposed we remove

a randomly chosen regressor by drawing j ∈ J and setting x′ij = 0. This move

is accepted with probability min(1, A−1). Of course an inclusion or deletion is

proposed with probability one if the cardinality of the set J is either 0 or p. This

updating scheme is repeated for all individuals in the population.

5 Real Data Examples

In this section we illustrate how our algorithm takes account of model uncertainty

about the variables to be included in the model.

5.1 Logistic Regression

We now illustrate how our algorithm works in the context of logistic regression

using a data set of risk factors associated with low infant birth weight. The data

appeared in Hosmer and Lemeshow (1989) and is available in the MASS library

of R. The dependent variable measures whether the weights of 189 babies was low

at birth and there are 8 potential covariates two of which are categorical (race

and number of previous premature labors, ptl). Table 1 shows a summary output

based on 5000 iterations of our algorithm (after a 5000 burn-in) for 10 chains in the

population. The columns show model probabilities, model indicator and inclusion

indicator (0 or 1) for each covariate. The last row shows the probabilities that
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each covariate is included in the model. Simulations took less than 2 minutes and

visited a bit more than half the number of candidate models.

Table 1: Low infant birth weight. Model posterior probabilities for the 10 most

visited models and covariates inclusion probabilities.

Model (k) Covariates indicator Model posterior

age lwt race smoke ptl ht ui ftv probability

35 0 1 0 0 0 1 0 0 0.0962

99 0 1 0 0 0 1 1 0 0.0673

51 0 1 0 0 1 1 0 0 0.0600

43 0 1 0 1 0 1 0 0 0.0599

107 0 1 0 1 0 1 1 0 0.0333

3 0 1 0 0 0 0 0 0 0.0294

115 0 1 0 0 1 1 1 0 0.0287

17 0 0 0 0 1 0 0 0 0.0239

19 0 1 0 0 1 0 0 0 0.0202

47 0 1 1 1 0 1 0 0 0.0202

Covariates

inclusion 0.190 0.696 0.140 0.381 0.349 0.659 0.376 0.081 –

probability

A visual summary of the output is shown in Figure 1 where each row corre-

sponds to a covariate and each column corresponds to a model. The corresponding

rectangle is black if the covariate is included in the model and white otherwise.

The basic idea of this plot was first proposed by Clyde (1999) and we follow

Raftery, Painter, and Volinsky (2005) making the width of each column propor-

tional to the model probability. Variables “lwt” (mother’s weight in pounds at

last menstrual period), “ht” (history of hypertension), “ui” (presence of uterine

irritability), “smoke” (smoking status during pregnancy) and “ptl” (number of pre-

vious premature labors) have moderate to high probabilities of being in the model

while “age” (mother’s age in years), “race” (mother’s race) and”ftv” (number of

physician visits during the first trimester) have lower probabilities.

5.2 Censored Survival Models

We illustrate the use of our algorithm in the context of Cox proportional hazards

using the well known data set of Fleming and Harrington (1991) concerning pri-

mary biliary cirrhosis, a rare autoimmune liver disease. We use the information on

312 randomized patients with the disease and the dependent variable is survival

time, from which 187 are censored. There are 15 potential predictors and most
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Figure 1: Image plot for the low infant birth weight data set.

Models visited by GA−MCMC
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variables have some missing data. This data set is available in the survival library

of R.

When censoring is present there are as many terms in the partial likelihood

(Cox, 1972) as there are events, d (< n). Volinsky and Raftery (2000) found that

using d instead of n in the penalty term of the BIC results in an improved criterion

and still satisfies the asymptotic properties shown by Kass and Wasserman (1995).

This is also the approach we adopt here.

We ran 10000 iterations of our algorithm, discarding the first 5000 as burn-in,

with 10 chains in the population. Simulations took around 3 minutes and 2047

models out of 32768 candidates were visited. A summary of the output is shown

in Table 2 for the 10 most visited models. The first row shows model probabilities

while the last column shows the probabilities that each covariate is included in the

model. A visual summary of the output is shown in Figure 2.

It is clear that the covariates “age” (patient’s age in years), “alb” (serum al-

bumin), “bili” (serum bilirunbin), “edtrt” (no edema, untreated or successfully

treated, unsuccessfully treated edema), “protime” (standardized blood clotting

time) and “copper” (urine copper) all have high probabilities of being in the model.

Two other variables, “sgot” (liver enzyme) and “stage” (histologic stage of disease)

do not appear in the best model but there is a great deal of uncertainty about

whether they should be included.
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Table 2: Estimates of model probabilities for the 10 most visited models using the

biliary cirrhosis data.

Probs 0.081 0.037 0.036 0.029 0.026 0.025 0.021 0.018 0.017 0.017 Prob.inc

age 1 1 1 1 1 1 1 1 1 1 0.999

alb 1 1 1 1 1 1 1 1 1 1 0.997

alkphos 0 0 0 0 0 0 0 1 0 0 0.038

ascites 0 0 0 0 0 0 0 0 0 0 0.012

bili 1 1 1 1 1 1 1 1 1 1 1.000

edtrt 1 1 1 0 1 1 1 1 1 1 0.916

hepmeg 0 0 0 0 0 0 0 0 0 0 0.012

platelet 0 0 0 0 0 0 0 0 0 0 0.014

protime 1 1 0 1 1 0 1 1 1 1 0.848

sex 0 0 0 0 0 0 0 0 0 0 0.020

sgot 0 0 0 0 0 0 1 0 1 1 0.101

spiders 0 0 0 0 0 0 0 0 0 0 0.007

stage 0 1 1 0 0 0 0 0 1 0 0.258

trt 0 0 0 0 0 0 0 0 0 0 0.011

copper 1 1 1 1 0 1 1 1 0 0 0.863

6 Discussion

In this paper we develop a new genetic algorithm for the exploration of high di-

mensional model spaces. We use genetic operators and reversible jump MCMC in

such a way to guarantee that the parallel chains converge to the models posterior

distribution. The main purpose was to propose an effective and semi-automatic

method for the identification of a subset of models that concentrates high posterior

probability.

We distinguish between the steps of model identification and parameter esti-

mation given the model by assuming that the estimation step may be performed

without too much computational effort, conditional on the model, using standard

statistical methods and software. This was accomplished by adapting the genetic

algorithm to propose jumps in several MCMC chains which are run simultaneously

and letting the chains learn from each other via genetic operators.

Two real data examples were included to show the potentialities of our algo-

rithm in practice. In both examples increasing the number of iterations and/or

population size led to similar results. We have applied the algorithm to other data

sets (both real and simulated) and obtained quite good results in terms of select-

ing the best models. Also, the R functions can be easily adapted to include other

classes of models.
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Figure 2: Image plot for the biliary cirrhosis data.
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