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Abstract One of the main concerns of Public Health surveillance is the
detection of clusters of disease, i. e., the presence of high incidence rates
around a particular location, which usually means a higher risk of suf-
fering from the disease under study (Aylin et al. 1999). Many methods
have been proposed for cluster detection, ranging from visual inspection
of disease maps to full Bayesian models analysed using MCMC. In this
paper we describe the use and implementation, as a package for the R
programming language, of several methods which have been widely used
in the literature, such as Openshaw’s GAM, Stone’s test and others. Al-
though some of the statistics involved in these methods have an asymp-
totical distribution, bootstrap will be used to estimate their actual
sampling distributions.

Keywords Spatial statistics Æ Epidemiology Æ Disease cluster detection Æ
R programming language

JEL Classification C60 Æ C88

We would like to thank co-editor Dr. Manfred M. Fischer and four anonymous referees
for their suggestions and comments to improve this paper. The help of Dr. Roger Bivand
has also been of great value. Furthermore, this work has been partly funded by Consellerı́a
de Sanitat and EUROHEIS Project (code SI2.329122, 2001CVG2-604). The authors wish
to express their regard and gratitude to Prof. Juan Ferrándiz-Ferragud who died during
the revision of this paper. Juan was the main researcher of the Spanish EUROHEIS
group, and was really a master for all the people involved in the project.
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1 Introduction

Clusters of disease can be defined in several ways, but probably the simplest
one is to say that a cluster is a set of neighbouring areas where far more cases
than expected appear during a concrete period of time. For this reason,
Public Health Authorities have always been concerned with the investigation
of these kind of clusters.

The beginning of Spatial Epidemiology is without doubt Snow’s study
(Snow 1854) of an outbreak of cholera in London, the focus of which he found
by plotting the location of those people affected on a city map, noticing that
most cases were concentrated around a water pump. After this study, many
methods have been developed to detect spatial clusters of disease.

Most methods described in this paper have repeatedly appeared in the
bibliography and have been widely used in real studies. Furthermore, we
describe the use of a new package for the R statistical programming language
(Ihaka and Gentleman 1996) called DCluster which implements routines to
use all these methods. Although there are several packages for clustering
available in R, they provide general methods and none of them is devoted to
spatial clusters of disease.

DCluster can be downloaded from CRAN, at http://cran.r-project.org,
or from the first author’s web site at http://matheron.uv.es/�virgil/Rpack-
ages/, where extra documentation is also available.

The paper is structured as follows. Section 2 introduces the general
structure of the data available for the problem of cluster detection followed
by Sect. 3, the most popular and used statistical models. Next, we will briefly
describe methods implemented in DCluster (Sect. 4), bootstrap procedures
(Sect. 5) and a brief outline of package DCluster (Sect. 6). We explore the use
of these methods using real data in Sect. 7. Finally, the conclusions of this
paper are available in Sect. 8.

2 Data structure

Let us suppose that our study area is divided in to n non-overlapping regions
(which may be, for e.g., counties, provinces or municipalities). Data are
usually available as counts, i.e., number of deaths or affected people in each
region.

Oi will represent the observed number of cases in region i, Ei its expected
number, which can be calculated in several ways, and Pi the population at
risk in region i. By O+, E+ and P+ we will represent the sums of observed
cases, expected cases and population over all regions in the study area.

Usually, population is stratified according to age and sex and, sometimes,
a measure of deprivation or poverty. This stratification is useful in order to
control for the effect of these variables which are known to be important to
the analysis. Other covariates can be incorporated into standardisation in a
similar way (Ferrándiz et al. 2004).

Pij will represent population at risk at stratum j in region i. It is clear that
Pi=

P
j Pij. Oij and Eij can be defined in a similar way.
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Eij is often calculated using indirect standardisation (Jenicek and Cléroux
1982). Briefly, if we have a reference population from which we know their
incidence ratesðrij ¼ O0ij=P 0ijÞ at each stratum, then Eij=Pij rj.

When the reference population is the same as the population under study,
standardisation is called internal and it holds that O+=E+ (Morris and
Wakefield 2000).

Finally, regions will be located by their centroids, which mark the centre
of the total area. These centroids are usually not taken as the geometrical
centre, but are weighted according to the actual distribution of the popu-
lation within the region.

3 Statistical models for diseases

As a first approximation, we will consider the Oi’s to be independent and
drawn from a Poisson distribution whose mean is hiEi (Wakefield et al.
2000a), where hi is the relative risk, which measures the local deviation of the
disease. If the relative risk is much higher than 1 it is likely that a risk excess
exists in the region.

The maximum likelihood estimator for hi, called the standardised mor-
tality ratio (SMR), is bhi ¼ Oi=Ei: This estimation can be used to create
thematic maps to show the spatial risk of the disease.

Unfortunately, the variance of this estimator is proportional to 1/Ei, so
values arising from rare diseases or areas with small populations (where the
number of expected cases is really low) may lead to poor estimates.

Conditioning on O+ leads to a Multinomial model (Whittermore et al.
1987), in which the size is O+ and probabilities are given by expression (E1/
E+,..., En/E+). This model is often used when performing Monte Carlo
simulations to estimate distributions of different statistics (Best et al. 2001).

Notice that this model is equivalent to randomly distributing the total of
observed cases among all the regions proportionally to Ei.

Sometimes the Poisson model is too strict in the sense that it imposes
mean and variance to be equal. When data exhibits some kind of overdi-
spersion, the Poisson distribution is unlikely to be the best choice (Dean
1992).

Clayton and Kaldor (1987) propose the use of a hierarchical Bayesian
model in which relative risks hi are drawn from a Gamma distribution with
two fixed hyperparameters. Conditioned on hi, observed counts Oi are
independent realizations of a Poisson distribution whose mean is hiEi:

Oijhi � PoðhiEiÞ
hi � Gaðm; aÞ ð1Þ

As a consequence, Oi is distributed following a Negative Binomial with size m
and probability a/(a+Ei). m and a are usually estimated via Empirical Bayes
using equations proposed by Clayton and Kaldor (1987).

The M.L.E. for hi is now (Oi+m)/(Ei+a), which provides a smoothed
estimator of the relatives risks. These estimators are frequently used when
performing disease mapping.
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4 Implemented procedures

Methods implemented in package DCluster can be classified as general and
focused, as discussed by several authors, such as Besag and Newell (1991)
and Tango (1995). This distinction is made depending on whether the
method is used to locate clusters in the study area or to assess the presence of
a cluster around a given region.

Furthermore, we have considered other groups of statistics that provide a
global measurement of clustering, homogeneity among relative risks or
spatial autocorrelation.

Section 5 describes how tests described below can be carried out by means
of bootstrap following a unified, general and straightforward procedure.

4.1 Tests for homogeneity

These methods can be used as a first approach to the problem and to
investigate if relative risks are homogeneous (i.e., equal) in the study area.
Different relative risks may lead to zones where they tend to be higher (or
lower) than expected and, hence, a cluster may appear.

4.1.1 Pearson’s chi-square statistic

This statistic is used for testing goodness of fit to a given distribution.
Basically, it compares observed and expected data in the following way:

T ¼
Pn

i¼1ðOi � EiÞ2

Ei
: ð2Þ

Test hypotheses are as follows:

H0 : h1 ¼ � � � ¼ hn ¼ k
H1 : Not H0:

In the case where k is unknown, Ei must be substituted by Ei O+/ E+ in
expression (2) and statistic T is asymptotically distributed as a Chi-square
with n�1 degrees of freedom (Potthoff and Whittinghill 1966a, b).

Usually, k is supposed to be 1. In this case, no modification to Ei is needed
and the degrees of freedom are n.

When internal standardisation is used the case is slightly different. Since
O+=E+, k must be 1 and the degrees of freedom are n�1.

Note that this statistic is also sensitive to low observed cases and that non-
homogeneitymay not only be related to high relative risks but also to low ones.

4.1.2 Potthoff-Whittinghill’s test

Potthoff andWhittinghill (1966b) assume that data come from aMultinomial
distribution and consider the locally most powerful test for the following
hypotheses:
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H0 : h1 ¼ � � � ¼ hn ¼ k
H1 : hi � Gaðk2=r2; k=r2Þ:

It should be noted that the alternative hypotheses means that relative risks
are drawn from a Gamma distribution with mean k and variance r2.

The statistic involved in the test is:

PW ¼ Eþ
XOiðOi � 1Þ

Ei
; ð3Þ

which asymptotically is normally distributed, with mean O+(O+�1) and
variance 2(n�1)O+(O+�1).

This is a general test for homogeneity and k is supposed to be unknown.
Note that if internal standardisation was carried out, then the hypotheses of
homogeneity imply k to be equal to 1.

4.2 Spatial autocorrelation

Statistics presented in this section measure spatial autocorrelation (Cliff and
Ord 1981) of the data. Usually the quantities involved are SMRs or residuals
from a previously fitted model, such as those described in Section 3 or, for
example, any other suitable generalised linear model (McCullagh and Nelder
1989). By working with residuals, we search for correlation among what
remains unexplained by our primary model. When using SMRs we expect to
find regions where they tend to be higher (or lower).

As stated in Cliff and Ord (1981), when using the two statistics described
below, the null hypothesis for the theoretical tests is different for residuals
and SMRs. However, bootstrap overcomes this problem since it provides a
unified way of assessing significance by means of a Monte Carlo test.

Spatial Autocorrelation may be a source of overdispersion in the data
(Cressie 1993). For this reason, testing for autocorrelation also is important
to decide which model better represents our data, as discussed in Sect. 5.

4.2.1 Moran’s I statistic

Moran (1948) proposes a statistic, called the I statistic, which is very close to
the correlation coefficient between two variables:

I ¼
n
P

i

P
j WijðZi � ZÞðZj � ZÞ

2ð
P

i

P
j WijÞ

P
kðZk � ZÞ2

: ð4Þ

As mentioned before, Zi may be either residuals (Oi�Ei) or SMRs (Oi/Ei). W
is a matrix which measures proximity between regions and it can be defined
in different ways. For example, Wij can be 1 if regions i and j have a common
boundary (and 0 otherwise) or the inverse of the distance between their
centroids.
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It has been shown that this statistic is quite robust to changes in sampling
distribution (Zoellner and Schmidtmann 1999). Several authors point out
that Moran’s I performs badly when heterogeneous populations are involved
(Walter 1993) and have proposed modifications to this statistic (Oden 1995;
Waldhör 1996; Assunçao and Reis 1999).

4.2.2 Geary’s c statistic

Geary’s c statistic (Geary 1954) is defined in a similar way to Moran’s I:

c ¼
ðn� 1Þ

P
i

P
j WijðZi � ZjÞ2

2ð
P

i

P
j WijÞ

P
kðZk � ZÞ2

: ð5Þ

Note that now the differences between two values are computed instead of
their deviation from the mean. W is, again, a matrix that measures proximity
between regions.

4.3 General clustering

These methods provide a general measurement of clustering in the whole
area. For this reason, they are not suitable for detecting localised clusters. In
addition, these methods may fail to detect global clustering when actual
clusters are small or scattered in the study area.

4.3.1 Whittermore’s statistic

The statistic proposed by Whittermore et al. (1987) is based on the distance
between all pairs of cases and is defined as:

W ¼ n� 1

n
rTDr

rT ¼ O1=Oþ; . . . ;On=Oþ½ �
D ¼ ðdijÞ distance between centroids:

(

ð6Þ

This statistic has been very criticised by Tango (1999) because only the
observed number of cases are taken into account and not the discrepancies
between observed and expected cases.

4.3.2 Tango’s statistic for general clustering

Was proposed by Tango (1999) as a modification to Whittermore’s statistic
by incorporating expected cases as follows:

T ¼ ðr � pÞTAðr � pÞ
rT ¼ ½O1=Oþ; . . . ;On=Oþ�
pT ¼ ½E1=Eþ; . . . ;En=Eþ�
A ¼ ðaijÞ closenessmatrix

8
><

>:
ð7Þ
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Tango suggests aij ¼ expf�dij=/g; where dij is the Euclidean distance be-
tween regions i and j (i.e., between their centroids) and / is a positive con-
stant used to measure the strength of dependence between zones.

4.4 Scan statistics

These methods define a window which is moved across the whole study area
to test whether regions lying inside this window are a cluster. Some of these
methods, specially GAM, have been highly criticised because they perform
many non-independent tests. Openshaw et al. (1987) argue that, on the other
hand, the level of the local tests can be corrected and there is no bias in the
investigation of cluster locations because data have not been explored a
priori.

Unfortunately, the overall level of the simultaneous tests carried out is not
controlled in the case of GAM and Besag and Newell’s statistic. This overall
control is the main contribution by Kulldorff and Nagarwalla, who propose
the selection of the most likely cluster.

4.4.1 Openshaw’s GAM

This was probably the first scan method proposed (Openshaw et al. 1987). It
is based on creating a grid over the study region and centring circles of a
given radius at these points.

For each circle, a local test is performed to decide whether it is a cluster or
not. Those circles which are found to be a cluster are drawn on the map. In
this way, we can get an idea of where clusters may be by inspecting those
areas where more circles were drawn.

By default, the test implemented in this package compares the local ob-
served number of cases to the quantile of level a of a Poisson distribution
whose mean is the local expected number of cases. Local observed and ex-
pected number of cases are just the sum over these quantities along regions
whose centroids fall within the circle.

4.4.2 Besag & Newell

This method was developed by Besag and Newell (1991) to detect clusters of
size k+1, that is, regions that, when grouped together, reach k+1 observed
cases.

Taking each case as the centre of a possible cluster, the other regions are
sorted according to the distance from this, and the number of regions needed
until k cases are found are computed (Li). The observed number of regions to
obtain k cases will be called li.

Then, it is tested whether li is low enough to be a cluster or, what is
equivalent, the probability of finding k or more cases in these li regions.
When data come from a Poisson distribution this probability is:
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p-value ¼ PðLi � liÞ ¼ PðCases � kjk ¼ E�i Þ ¼ 1�
Xk�1

s¼0

expðE�i ÞðE�i Þ
s

s!
ð8Þ

k represents the mean of the underlying Poisson distribution while E�i is the
sum of the expected number of cases over these li regions.

4.4.3 Kulldorff & Nagarwalla

Kulldorff and Nagarwalla (1995) also create a grid and they consider, for a
given point, the set (Z) of all possible circles centred there containing up to a
fraction of the total population. For each one of these circles, let us call it z
(with z2Z), they are concerned with the probability of there being a case
given the population at risk is inside this circle (pz) and the probability of
there being a case given the population at risk is outside z (qz). If pz is much
higher than qz then circle z can be thought of as a cluster.

For this reason, they propose the following test at each point:

H0 : pz ¼ qz

H1 : There is a cluster z such that pz > qz:

They compute the maximum likelihood ratio, under the assumption of a
Poisson model and conditioning on the total number of observed cases. It is
equivalent to considering this statistic:

KN ¼ maxz2Z
LðzÞ
L0

; ð9Þ

where L0 and L(z) are defined as:

L0 ¼
OOþ
þ ðPþ � OþÞPþ�Oþ

P Pþ
þ

ð10Þ

LðzÞ ¼
/ðOz; PzÞ/ðOþ � Oz; Pþ � PzÞ if Oz

Pz
> Oþ�Oz

Pþ�Pz

L0 if Oz
Pz
� Oþ�Oz

Pþ�Pz

(

; ð11Þ

where /(O, P)=OO (P�O)P-O/PP.
Oz (Pz) represents the sum of the observed number of cases (population at

risk) over all regions whose centroids lie within circle z.
Probability values can be calculated by means of bootstrap or Monte

Carlo simulations, as explained in Sect. 5.

4.5 Focused tests

Unlike scan methods, the method presented here considers a single pre-
established or previously known region around which the hypothesis of
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clustering is tested. This region usually contains a putative pollution source
thought to affect public health. Examples of such sources are nuclear plants
(Stone 1988), waste incinerators (Diggle et al. 1997) and petrochemical
complexes (Pekkanen et al. 1995).

A bias will be introduced in the study if these methods are employed in
regions that have been suggested after looking through data. This is due to
the fact that we try to assess whether the observed number of cases is sig-
nificantly high after knowing that it is actually high. Then, the probability of
rejecting null hypotheses will be increased.

4.5.1 Stone’s Test

Supposing that all regions are sorted according to distance to the central
region, Stone (1988) proposes to check for a descending trend from the
source with this test:

H0 : h1 ¼ � � � ¼ hn ¼ k
H1 : h1 � � � � � hn;

which is performed with this statistic:

T ¼ max1�j�n

Pj
i¼1 Oi

Pj
i¼1 Ei

: ð12Þ

Again, if k is supposed to be unknown, the expected number of cases must be
multiplied by O+/E+.

5 Bootstrap

Since the sampling distributions of statistics described in Sect. 4 can be
difficult to derive, we propose the use of bootstrap to estimate them. The
idea is to choose a suitable model or distribution for the data under the
null hypotheses and to simulate the observed number of cases in every
region. For each simulation the value of the statistic being used is cal-
culated.

After a number of simulations have been computed, we have an
approximation to the sampling distribution under the null hypotheses of this
statistic and probability values can be easily calculated.

In other words, bootstrap provides a set of values that are an approxi-
mation to the sampling distribution of the statistic whatever the method or
sampling model. Thus, the (one-tailed) probability value is obtained as the
number of samples whose value is higher than the observed value of the
statistic, divided by the total number of samples plus one.

Four possible procedures (which are explained below) seem to be ade-
quate: permutation (non-parametric) bootstrap, Multinomial bootstrap
(Wakefield et al. 2000b), Poisson bootstrap (Morris and Wakefield 2000) and
Negative Binomial bootstrap (Clayton and Kaldor 1987) from the Poisson-
Gamma model.
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The last three proposals are based on models explained in Section 3. Note
that the use of these methods is conditioned by whether our data exhibit
extra-variation (Dean 1992). If this is not the case, Poisson or Multinomial
bootstrap may be used. If overdispersion (also called extra-variation) may be
related to analysed data, Negative Binomial sampling is a better choice.

If O+ is high compared to the number of regions n, then Multinomial and
Poisson bootstrap will produce similar results, because the Multinomial
distribution can be obtained from n Poisson distributions by conditioning on
O+. When O+ is high, small variations will not strongly affect the Multi-
nomial distribution.

Permutation bootstrap is based on redistributing relative risks or resid-
uals among all regions without replacement. It has been used when assessing
spatial dependence between neighbouring regions by means of spatial
autocorrelation (Cliff and Ord 1981).

6 DCluster overview

First of all, data must be stored in a data frame with at least the following
columns: Observed (number of cases), Expected (number of expected cases),
Population (total population at risk), x (centroid easting coordinate) and y
(centroid northing coordinate). Those functions related to Spatial Auto-
correlation and General Clustering also need to be passed a list of bound-
aries and weights, stored in an object of class listw, implemented in package
spdep.

Package spdep contains a number of structures and routines focused on
the assessment of spatial dependence. Moran’s I and Geary’s c are calculated
using functions moran and geary, available in this package, and object listw
is used to describe neighbours and weights.

Whittermore’s statistic and Tango’s statistic also use this kind of object to
store neighbours and weights. Although weights used are globally standar-
dised, significance is not affected because this standardisation is performed
by dividing all weights by the same constant. Since significance is based on
bootstrap, it is not affected by this transformation because all simulated
values are also rescaled.

Package boot has been used to compute bootstrap by means of function
boot. This function needs the data frame mentioned before as input, the
statistic to compute, the basic model for sampling data, and the number of
replicates to be done.

For every statistic presented in Sect. 4 several functions have been
implemented. Basically, one to compute its value given a data set and two
more to be used in bootstrap, be it non-parametric (permutation) or para-
metric (Multinomial, Poisson or Negative Binomial).

Once bootstrap is performed, an object of type boot is returned by
function boot. This object can be plotted to obtain a histogram of the
simulated values (where the observed value is also marked) and a normal qq-
plot. This graphic gives a quick and easy answer to whether observed data
are significant or not.
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For scan statistics there is a main function called opgam, which imple-
ments a standard Openshaw GAM. This function basically needs a data set,
a way to build the grid (which can be done in several ways) and a function,
which we call iscluster, to assess whether the local area being inspected at
each point of the grid is a cluster or not. This provides a general framework
that has been used in the implementation of other scan methods.

For every scan statistic described above, a version of iscluster has been
implemented following general guidelines (which are explained in package
documentation). The object returned by these functions is a data frame
containing coordinates (x and y) of points marked as clusters, values of the
statistic (statistic), associated probability values (p value) and size of the
clusters (expressed as number of regions forming the centre). No boot object
is returned this time, since they are only used in local calculations.

Function opgam returns all this information for the points found to be
significant according to the significance level chosen by the user. Nothing is
returned for the points that were not clusters.

It is worth saying that for Besag and Newell’s statistic, exact p-values are
calculated when sampling from Multinomial or Poisson distributions. In
future, exact calculation of the p-value for Stone’s Test will also be added
(Stone 1988).

7 Example

In order to illustrate the use of package DCluster, a brief example using real
data is provided below. The data employed are the number of cases of
sudden infant death syndrome (SIDS) in North Carolina between years 1974
and 1978. They are described, for example, by Cressie and Chan (1989) and
Cressie (1993).

These data are available in package spdep, and they have been refor-
matted to accomplish DCluster requirements. Population at risk is the
number of births, while the expected number of cases have been calculated
by PiO+/ P+. Neighbours used in the analysis are those provided in package
spdep, while map boundaries have been downloaded from the U.S. Census
Bureau web site (at http://www.census.gov) and maps have been created with
package RArcInfo (Gómez-Rubio and López-Quı́lez 2005).

Figure 1 shows a histogram and a boxplot, which provide a brief sum-
mary of SIDS data.

Figure 2 shows relative risks estimators (SMRs) and smoothed relative
risks estimators. There it is shown how areas with extremely high or low
relative risks are smoothed. Two clusters are clearly found on these maps to
the south and northeast.

In order to choose a suitable sampling model, a likelihood ratio test was
performed between a fitted Negative Binomial model and a fitted Poisson
model, showing that the Negative Binomial fitted the data better (p value of
0). Tests based on statistics PB and P 0B proposed by Dean (1992) were also
carried out and their resulting p-values were both 0. These results led us to
use a Negative Binomial distribution when bootstrapping.
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Figure 3 shows results for tests of homogeneity (Pearson’s Chi-square
and Potthoff-Whittinghill’s) under the null hypothesis of data drawn from a
Poisson distribution. A histogram of simulated values of both statistics,
together with their observed value (dashed line), and a normal qq-plot are
displayed. Since observed values are significant for both methods we reject
null hypotheses of homogeneity and believe that data are overdispersed.
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Fig. 1 Histogram and boxplot of SIDS data
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Fig. 2 Relative risks estimators (SMRs) and smoothed relative risks estimators (Pois-
son-Gamma model)
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These results agree with those provided by likelihood ratio test and
Dean’s test and thus, we are supported in using a Negative Binomial dis-
tribution when sampling.

Estimated parameters for the prior Gamma distribution are bm ¼ 4:630689
and ba ¼ 4:395678:

Under the assumption that data come from a Negative Binomial distri-
bution, with the Gamma parameters obtained from an Empirical Bayes
estimation using equations provided by Clayton and Kaldor (1987), prob-
ability values related to observed number of cases have been plotted
(Choynowski 1959) in Fig. 4. It shows that just a few isolated areas have
been marked as significant, which means that with this distribution, data
apparently do not cluster around any location.

Autocorrelation measures calculated for residuals are shown in Fig. 5.
The weights used were 1 if counties share boundaries, and 0 if otherwise. It is
clear that data exhibit some kind of spatial correlation because observed
values are found in the tails of sampling distributions. In this case permu-
tation bootstrap was used, instead of sampling from a Negative Binomial
distribution.

Histogram of t 

t*

D
en

si
ty

50 100 150 2000.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

–3 –2 –1 0 1

60
80

10
0

12
0

14
0

16
0

Quantiles of Standard Normal

t*

Histogram of t 

t*

D
en

si
ty

350000 450000 550000

0.
0e

+
00

4.
0e

06
8.

0e
06

1.
2e

05

–3 –2 –1 0 1

35
00

00
45

00
00

55
00

00

Quantiles of Standard Normal

t*

32 32

Fig. 3 Chi-square Test and Potthoff-Whittinghill’s Test (Poisson model)
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These results mean that there are zones in the study area where residuals
are quite similar, be they high or low. When they are significantly high, these
regions constitute a cluster. Note that it is also possible that spatial auto-
correlation is due to groups of areas that have low risks (Cliff and Ord 1981),
but we will not investigate this case.

General clustering statistics (Whittermore’s and Tango’s) are shown in
Fig. 6. They do not show any evidence of general clustering because ob-
served values of these statistics fall in highly probable regions of their
sampling distributions. This fact can be explained by considering that really
significant regions, under the null hypothesis of data distributed according to
a Negative Binomial distribution, are isolated and, hence, there is no global
tendency to cluster.

Since these methods are designed to detect global trends, clusters that are
small or weak will not be detected by them, which is probably the case here.

Scan methods described before were also employed, and Table 1 sum-
marises parameters used. The significance level has been set to 0.002 for
GAM, as proposed by Openshaw et al. (1987). With regard to the other two
methods, significance has been set as 0.05, as proposed by their respective
authors (Besag and Newell, 1991; Kulldorff and Nagarwalla, 1995). Results
are difficult to compare, since only Kulldorff and Nagarwalla’s method
controls the overall significance level.
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GAM clearly marks just one area as a cluster in the northeast. The results
of this method are clearly sensitive to the grid step and radius selected, so it is
often useful to try different values of these parameters.

Kulldorff and Nagarwalla’s method marked 20 counties as being part of a
cluster, which can be found grouped in two zones (i.e., two real clusters), to
the south and northeast. Notice that these counties have high SMRs as
shown in Fig. 2. Some of the regions in the latter cluster have been pointed
out by GAM too.

Besag and Newell’s method was tested with cluster size 20 (k=19), which
is over three times the mean of the observed number of cases in North
Carolina. This method has marked two regions to the northeast and another
to the south as significant centres of clusters. More tests should be performed
by varying the size of the cluster since it may happen that a cluster exists but
its size is different from 20. This analysis is outside the illustrative scope of
this paper.

Cressie and Chan (1989) mention that they removed Anson County from
their study because of its high residual. This county was considered a cluster
by Kulldorff and Nagarwalla’s statistic.

Since this high residual may be due to an unknown risk factor in the
county which may be the responsible of the appearance of a cluster, Stone’s
Test was carried out over Anson County.

Note that this test must be performed before examining the data, since a
bias is produced by trying to apply Stone’s Test on those regions with the
highest relative risks. This will produce an increment in the probability of
being significant.

Table 1 Parameters used when testing scan methods

Method Grid Radius Sig. level

GAM Step=radius/5 50 km 0.002
B. & N. Centroids 20 cases 0.05
K. & N. Centroids £ 0.2 tot. pop. 0.05
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Fig. 7 Results from several scan methods and Stone’s Test (Poisson-Gamma model)
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Therefore, the test is only to illustrate the method since the cluster is
specified after seeing the data. The result is shown in Fig. 8, which clearly
suggests that there is a cluster around Anson County.

8 Concluding remarks

In this paper we have presented different methods used for exploratory
analysis of epidemiological data and detection of spatial clusters of disease.
We have implemented all these methods and have developed a package
called DCluster for the R programming language which is freely available. A
suitable bootstrap has also been proposed to estimate sampling distributions
of statistics involved in the analysis.

Moreover, an example using North Carolina SIDS data has been dis-
cussed. We plan to compare the behaviour of all these methods under the
different bootstrap samplings in order to see which methods are more robust.
This is especially useful when working with real data, since their distribution
will remain unknown.

We also expect to add other methods to this package in the future.
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