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Spatial Econometrics 
Updated October 21, 2010• Josh Mills 

 

Summary: This handout provides background on spatial econometrics, a relatively new 
extension of econometrics concerned with quantitatively modeling spatial dependence. The 
basic types of spatial econometric models are covered, as well as software packages that can 
estimate spatial econometric models. 
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Introduction 
Statistical models have traditionally focused on establishing links between some dependent 
variable with a number of factors, or explanatory variables. These models, however, do not 
take into account the concept of space. For example, a model predicting crash frequencies at 
signalized intersections may include observations from a certain geographical area, such as 
West Lafayette or Tippecanoe County, but may not account for the locations of these 
crashes. A series of signalized intersections along US-52, a main arterial in the Lafayette 
area, have high crash frequencies, but a typical statistical model, such as a negative binomial 
model, would not account for the fact that, for example, the intersection with Greenbush 
Road is close to the intersection with Union Street. These spatial relationships may be 
important. Since the Greenbush Road intersection is downstream from the Union Street 
intersection, anything that occurs at the Union Street intersection, such as a high number of 
crashes, may have some effect on the Greenbush Road intersection - in other words, there 
could be spillover effects. 
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Spatial relationships can also play an important role in economics. The opening of the Subaru 
plant in Lafayette, for example, resulted in changes to the local economy, changes to traffic 
patterns, and other changes in nearby areas. Workers at the Subaru plant commute from 
different locations in west central Indiana, and some of these workers may have moved to 
Lafayette from farther away areas, such as Rensselaer or Fowler, to have a shorter 
commute. Thus, the opening of the Subaru plant affected not just Tippecanoe County but 
also adjacent counties, such as Clinton, Benton, Warren, White, Montgomery, and Carroll 
counties - in other words, there were spillover effects. 
 
Spatial econometric models can account for these spillover effects. These types of models 
use a quantitative representation of spatial relationships for a certain area, known in the 
literature as a spatial weights matrix, for modeling purposes. Different types of spatial 
econometric models exist. Some models account for spatial spillovers, whereas other models 
account for variance over space. 
 
Spatial econometric models have been used to analyze determinant of economic growth in 
eastern China (Shanzi 2010), how spatial patterns in rainfall and growth affect participation in 
civil conflicts (Jensen and Gleditsch 2009), how urban public policies impact housing values 
(Baumont 2009), how insect derivatives mitigate whitefly damage in cotton (Richards et al. 
2008), whether creative people are attracted to places that allow creative activity to flourish 
(Wojan et al. 2007), the impacts of transportation infrastructure on property values (Cohen 
and Paul 2007), the impact of transit station location on land values in South Korea (Kim 
2007), factors that affect the growth rate of elephant populations in Africa (Frank and 
Maurseth 2006), spatial patterns of election results in Portugal (Caleiro and Guerreiro 2005), 
the spatial distribution of Internet adoption in European Regions (Billon et al. 2009), what 
factors influence rural-urban land conversion (Huang et al. 2009; Zhou and Kockelman 2008), 
and how urban residential development impacts water quality (Atasoy et al. 2006). 

The Ingredients for Spatial Econometric Models 
Prior to understanding spatial econometric models, it is important to determine whether one 
has the right type of data for such models. In general, these are the requirements for 
estimating spatial econometric models: 
 
1. A study area. What is the geographical scope of your study? Examples include: ZIP 
Codes in three adjacent states, pavement quality in different INDOT districts, crash 
frequencies in Tippecanoe County. 
 

2. A set of point-based or area-based data. Examples of point-based data include 
crashes, home sale prices for a neighborhood or community, and traffic intersections. 
Examples of area-based data include economic data at the state, county, or ZIP Code 
levels, polling data (such as election results for the 2008 general election), and traffic 
analysis zones. 
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3. A GIS-based file (such as an ESRI Shapefile) that graphically represents the 
locations of the data. Area-based data can generally be obtained online, usually from 
the Census Bureau, whereas point-based data, in transportation, are usually obtained 
from internal, non-public databases. Shapefiles can be generated through most 
geographical software packages including ArcGIS and TransCAD. 
 

4. Motivation for using spatial econometric models. This pertains to the main goals 
of your research. Is there some theory or example that shows evidence that, for 
example, home prices are affected by the prices of neighboring properties? 
Employment changes in one county affect adjacent counties? A full or nearly full 
parking lot will affect where a driver chooses to park? A literature review must be 
performed to determine that there is a reason to use spatial econometric models - 
otherwise, using these models would be akin to using a hammer to clean a window - 
the tool to address the research problem must be appropriate for the research 
problem. 

The Weights Matrix 
Suppose that for a model, the study area consists of the states of Ohio, Indiana, Illinois, and 
Kentucky. A spatial econometric model would then consist of four observations. A weights 
matrix is used to represent which of these spatial units (in this case, states) are neighbors of 
each other. There are multiple ways to specify a spatial weights matrix - distance, contiguity, 
economic distance, and others (see LeSage and Pace 2009, for example). Distance and 
contiguity are the most common types of weights matrices used. 
 
With a contiguity-based weights matrix, a state is a neighbor of another state if they 
share a common border. For this study area, Ohio would be a neighbor of Indiana and 
Kentucky but not Illinois. The two most commonly used contiguity-based criteria are rook 
contiguity and queen contiguity. These are discussed in detail in Bivand et al (2008). 
 
Distance-based weights matrices determine neighbors based on some distance threshold. 
For area-based data, such as states, the geometric centroid of each polygon is used to 
calculate this distance. For example, assume the centroid-to-centroid distance from Indiana 
to Kentucky was 150 miles and the centroid-to-centroid distance from Indiana to Illinois was 
100 miles. If a distance threshold of 125 miles were established, then any state that has a 
centroid-to-centroid distance of 125 miles from Indiana is considered a neighbor of Indiana. 
Illinois would be considered a neighbor of Indiana, whereas Kentucky would not be 
considered a neighbor. 
 
K-nearest-neighbors also uses the distance threshold concept but chooses a distance 
threshold such that each observation has exactly "K" neighbors. With a weights matrix based 
on the 2-nearest neighbors criterion, the two closest states, based on centroid-to-centroid 
distance, would be considered neighbors of the state of interest. For example, if the centroid-
to-centroid distance from Indiana to Ohio were 115 miles, then Illinois and Ohio would be 
considered neighbors of Indiana, but not Kentucky. 
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Weights matrices can be represented in multiple ways. The two most common types are the 
binary type, in which if a state is a neighbor of another state, its entry has a value of 1 and 0 
otherwise. The other type standardizes each row of the weights matrix such that each of 
its elements sum to one. For a given sample size N, weights matrices have dimension N X N. 
For this example, the weights matrix will have dimension 4 X 4. Table 1 shows a binary 
contiguity matrix for the study area, whereas Table 2 shows a row-standardized contiguity 
matrix. Tables 1 and 2 represent grid-based data, which is often used in remote sensing and 
image processing. 
 
The type of weights matrix used can potentially have a significant effect on the estimated 
model. Figure 1 shows a map of the Census tracts in Tippecanoe county with a queen-based 
contiguity matrix, a distance threshold matrix, and a 2-nearest neighbors matrix. Note how 
the distance threshold matrix (center) is considerably more dense than the other two 
matrices. 

Table 1: Binary style contiguity-based weights matrix. 

 

State Ohio Indiana Illinois Kentucky 

Ohio 0 1 0 1 

Indiana 1 0 1 1 

Illinois 0 1 0 1 

Kentucky 1 1 1 0 

 
Table 2: Row-standardized style contiguity-based weights matrix. 

 

State Ohio Indiana Illinois Kentucky 

Ohio 0 0.5 0 0.5 

Indiana 0.333 0 0.333 0.333 

Illinois 0 0.5 0 0.5 

Kentucky 0.333 0.333 0.333 0 

Note that the diagonals in both weights matrices have values of zero. As will be seen in the 
following section, spatial econometric models assume that each spatial unit not does consider 
itself to be its own neighbor. Violating this assumption can result in a considerably more 
complex model that cannot easily be interpreted. 
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Figure 1: Weights matrices for Tippecanoe County Census tracts. 

 

 

Spatial spillovers do not just affect an area's neighbors. They also affect the neighbors of the 
neighbors, rippling out until the spillover effects reach the limits of the study area. First-
order neighbors are the closest neighbors of a spatial unit based on the criterion used, such 
as what is represented in Tables 1 and 2. Second-order neighbors are the neighbors of those 
first-order neighbors. Third-order neighbors are the neighbors of the second-order neighbors 
(see LeSage and Pace 2009 for additional details). 
 

Consider the simple grid-based examples shown 
in Figure 2. The spatial unit of interest is 
represented by the X. First-order neighbors are 
represented by a 1, and second-order neighbors 
are represented by a 2. 
 

 
Numerical manipulation of large weights 
matrices can be computationally intensive using 

full matrix methods. A 3200 x 3200 weights matrix, for example, has 10,240,000 elements. 
However, a majority of these elements in a typical weights matrix have a value of zero. In 
the study area, it is unlikely that a typical weights matrix would consider a ZIP Code in 
southeastern Ohio to be a neighbor of a ZIP Code in northwestern Illinois. Sparse matrix 
methods can be used to “compress” large weights matrices and account for the large number 

of elements with a value of zero. LeSage and 
Pace (2009) discuss in detail the advantages of 
using sparse matrix methods over full matrix 
methods. 
 

To illustrate, consider the sparsity patterns of two different weights matrices for a study area 
(consisting of 3200 ZIP Codes), five nearest neighbors (5 NN) and seventy-five nearest 
neighbors (75 NN), shown in Figure 3. The layout of these sparsity patterns follows the 
same format as the weights matrices shown in Tables 1 and 2. White regions indicate zero 

2  2  2 

 1 1 1  

2 1 X 1 2 

 1 1 1  

2  2  2 

  2   

  1   

2 1 X 1 2 

  1   
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Figure 2: First-order and second-

order neighbors for rook contiguity 

(left) and queen contiguity (right). 

 



Institute of Transportation Engineers, Purdue Student Chapter engineering.purdue.edu/ITE 

Spatial Econometrics  Page 6 of 38 

values, while dark regions indicate nonzero values. Note that the 75 NN weights matrix (on 
the right) is considerably more dense than the 5 NN weights matrix. For both weights 
matrices, nonzero values comprise less than one-quarter of the total number of elements, 
illustrating why sparse matrix methods are necessary. 
 

 
 

Figure 3:  Sparsity patterns for the five nearest neighbors weights matrix (left) and the 

seventy-five nearest neighbors weights matrix (right). 

 

Spatial Econometric Models 
The concept of second-order, third-order, and higher-order effects can best be illustrated 
through the most common spatial econometric model, the spatial lag model. This model 
takes the form (LeSage and Pace 2009): 
 

y Wy Xρ β ε= + +   (1) 

 
where W  represents the spatial weights matrix, ρ  represents the spatial lag (or spatial 
autoregressive) parameter, and ε represents the vector of normally-distributed residuals. Eq. 
(1) can be rewritten as: 
 

( ) ( )1
y I W Xρ β ε−= − +   (2) 

 

where I  is the identity matrix. The term ( ) 1
I Wρ −−  is the spatial multiplier. Written out 

as an infinite series, we have (LeSage and Pace 2009): 
 

( ) 1 2 2 3 3 ...I W I W W Wρ ρ ρ ρ−− = + + + +   (3) 

 
This expansion of the spatial multiplier illustrates the impact on the second-order, third-
order, and higher-order neighbors. Note that, similar to the AR(1) coefficient in time series 
analysis, the dependent variable is on both sides of Eq. (1). Interpretation of these models, 
however, is considerably more complex than AR(1) models. Time moves in one of two 
directions. Spatial models are multidirectional - space, by its nature, moves in multiple 
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directions. The magnitude and impact of the spatial spillovers depend on the specification of 
the weights matrix - this is why the choice of the weights matrix is important. The weights 
matrices in Figure 2 yielded different spatial econometric models. 
 
In time series, independent variables are sometimes lagged by one or two time periods to 
see if previous values of those variables have significant effects. Similarly, independent 
variables can be spatially lagged. However, since space is multidirectional, the value of these 
spatially lagged variables is dependent on the weights matrix. A state-level spatially lagged 
employment variable for the 2 nearest-neighbors criterion, for example, would represent the 
average of the employment variable for the state of interest, averaged (or distributed) out 
among the two nearest neighbors. Thus, if this spatially lagged variable was significant, then 
employment would have some effect not only on the state of interest but also on the two 
nearest neighbors of that state. A variant of the spatial lag model that spatially lags all 
independent variables is known as the Spatial Durbin model (SDM, LeSage and Pace 
2009); 
 

y Wy X WXρ β λ ε= + + +   (4) 

 
where λ  is the vector of coefficients for spatially lagged independent variables WX . Use of 
this model as opposed to the spatial lag model in Eq. (1) can potentially remove omitted 
variable bias, discussed in detail in LeSage and Pace (2009). 
 
In the spatial lag model, spatial dependence was assumed to be present in the dependent 
variable. In the spatial error model, spatial dependence is assumed to be present in the 
disturbance term (but NOT the dependent variable), such that (LeSage and Pace 2009); 
 

( ) 1

y X

W u

I W u

β ε
ε λ ε

ε λ −

= +
= +

= −
   (5) 

 
where ε  again represents the disturbance, no longer distributed iid normal (identically and 
independently) and u  is now the iid normal set of disturbances. λ represents the spatial 
error parameter. ( ) 1

I Wλ −−  is another form of the spatial multiplier and has a similar 

pattern of decay of effects with distance. An similar model is the spatial moving average 
(SMA) model (Fingleton 2008): 
 

( )

y X

Wu u

I W u

β ε
ε λ

ε λ

= +
= +

= −
  (6) 
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As can be observed by comparing Eq. (5) and Eq. (6), the spatial multiplier is not present in 
the SMA model. The SMA model is used to model localized effects. By its specification, 
spatial effects will affect only the first-order neighbors as defined by the weights matrix. 
 
Spatial dependence can be modeled simultaneously, both in the dependent variable and in the 
disturbances. There are two such models: the spatial autocorrelation model (SAC), which 
combines Eq. (1) and Eq. (5), and the spatial autoregressive moving average model 
(SARMA), which combines Eq. (1) and Eq. (6). 
 
 

SAC:   
y Wy X

W u

ρ β ε
ε λ ε

= + +
= +    (7) 

 

SARMA:   
y Wy X

Wu u

ρ β ε
ε λ

= + +
= +   (8) 

 
 
Rewriting Eq. (7) yields (LeSage and Pace 2009): 
 

( ) ( ) ( )1 1 1
y I W X I W I Wρ β ρ λ ε− − −= − + − −   (9) 

 
Note that here, two different spatial multipliers affect the disturbance term. In theory, two 
different weights matrices can be used for the spatial lag and spatial error components. 
 
Geographically weighted regression (GWR) can be used to model spatial heterogeneity. 
Routines for GWR are available within R. The reader is directed to Fotheringham et al. 
(2002) for the technical details. 

Estimation and Testing for Spatial Dependence 
Moran's I statistic is the most general test statistic used to test for spatial dependence. 
Two inputs are required: (1) A variable of interest or residuals from a model estimated by 
OLS, and (2) A weights matrix. The test statistic takes the form (Bivand et al. 2008): 
 

( ) ( )

( )
1 1

2

1 1 1

n n

ij i j
i j

n n n

ij i
i j i

w y y y y
n

I

w y y

= =

= = =

− −
= ⋅

−

∑∑

∑∑ ∑
  (10) 

 
where ijw  represents elements of the spatial weights matrix for sample size n , and y  is the 

mean of the variable of interest. A p-value of this test statistic of 0.05 or lower indicates that 
spatial autocorrelation is present in some form. This test is not specific, however, about the 
nature of the spatial autocorrelation, whether it takes the form of spatial lag or spatial error. 
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The Moran test is implemented in a number of different software packages including ArcGIS, 
GeoDa, and OpenGeoDa. The Getis-Ord test (Bivand et al. 2008) is another general test for 
spatial autocorrelation. Variants of these tests exist that test for localized spatial correlation, 
and Local Indicators of Spatial Autocorrelation (LISA) statistics can also identify localized 
clusters of spatial dependence. See Anselin (2005) for a detailed discussion, with examples 
demonstrated in GeoDa.  
 
A set of Lagrange Multiplier (LM) tests for spatial autocorrelation specifically test for 
whether a spatial error, spatial lag, or SAC/SARMA model would be most appropriate. 
Lagrange Multiplier tests follow the following general form (Anselin 2006): 
 

1'LM S S−= I   (11) 
 
where S  is the score function and I  is the information matrix. Prior to defining these, it is 
necessary to define the log-likelihood equations for the spatial lag and spatial error models. 
Estimation is typically done through maximum likelihood (MLE), but more robust methods 
that account for heteroskedasticity use either two-stage least squares/instrumental variables 
(Kelejian and Prucha 1998; Bivand 2010) or generalized method of moments (Kelejian and 
Prucha 2007; Piras 2010). Generalized method of moments (GMM) estimators are 
particularly useful for large sample sizes. Sample size is typically not an issue with cross-
sectional spatial models but can become an issue with spatial panel models (Mills 2010). With 
large samples, MLE estimators require large memory allocation due to how estimation is 
performed. These memory allocations can be as large as 27 GB, which is well beyond the 
typical capacity of today's computers. 
 
The log-likelihood function for the spatial lag model is (Anselin 2006): 
 

( ) ( ) ( )21 1
, , ; ln 2 ln ln

2 2 2

y Wy Xn
L y I Wθ θ

θ

ρ β
β ρ π ρ

− −
Σ = − − Σ + − −

Σ
 (12) 

 
where θ  is the vector of parameters to be estimated, θΣ  is the variance-covariance matrix of 
the residuals, and I Wρ−  is the Jacobian. It is this Jacobian term that can dramatically 

increase computation time for large samples (Anselin 2006). 
 
The log-likelihood function for the spatial error model does not contain the Jacobian term, 
thus simplifying calculations (Anselin 2006): 
 

( ) ( ) ( )21 1
, ; ln 2 ln

2 2 2

y Xn
L yθ θ

θ

β
β π

−
Σ = − − Σ + −

Σ
  (13) 

 
With these log-likelihood functions in mind, we can now define the score function and the 
information matrix. The Score function is simply the first derivative of the log-likelihood 
function: 
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( )L
S

θ
θ

∂
=

∂
  (14) 

 
The information matrix is the expectation of the negative of the second derivative of the log-
likelihood function, or the Hessian: 
 

( )2

 '

L
E

θ
θ θ

 ∂
= −  ∂ ∂ 
I   (15) 

 
These two elements are used as the building blocks of LM tests, which are used in multiple 
areas of statistics. Knowledge of the inner workings of these types of functions, and 
maximum likelihood estimation theory in general, eases the understanding of more complex 
models such as spatial econometric models. The LM tests for spatial lag and spatial error 
have the null hypothesis that the spatial lag and spatial error parameters, respectively, are 
qual to zero. Both tests converge to a chi-squared distribution with one degree of freedom. 
The LM test for spatial lag is (Anselin 1988): 
 

( ) ( ) ( ) 2
[1]2

ˆ ˆ' ' '
 '

ˆ
d

WX M WX
LM tr W W WWρ

β β
χ

σ

 
 = + + →
 
 

  (16) 

 

where β̂  is the vector of parameters estimated by OLS, 2σ̂  is the estimated OLS variance-

covariance matrix, tr  represents the trace of a matrix (the sum of its diagonals), and M  is 
some fundamental idempotent matrix with 
 

( ) 1
' ' 'M I X X X X

−= −   (17) 

 
The LM test for spatial lag is: 
 

2

2
[1]

1 '
 

( ' ) '
de We

LM n
tr W W WW e e

λ χ = ⋅ ⋅ → +  
 (18) 

 
Robust variants of these tests also exist. These LM tests account for the possible presence 
of spatial lag for a spatial error model and vice versa. Another test also determines whether a 
SAC/SARMA model should be used. (Bivand et al. 2008). For these tests, the most 
appropriate model to use is determined by the p-value: The model whose test has the lowest 
p-value should be chosen for modeling. For example, if the spatial lag test yields a p-value of 
0.03 and the spatial error test yields a p-value of 0.12, then the spatial lag model would be 
most appropriate. 
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An alternative specification of the spatial lag model eliminates the use for a log-determinant. 
Rewriting Eq. (1), we have: 
 

( )
Sy X

S I W

β ε
ρ

= +
= −   (19) 

 
LeSage and Pace (2007) refer to this as the spatial autoregressive (SAR) specification. As 
observed by the log-likelihood function in Eq. (12), the presence of the log-Jacobian term can 
considerably complicate calculations. The matrix exponential spatial specification 

(MESS) eliminates the need for this term, such that 
 

( ) WS eαα =   (20) 

 
where α  is some real scalar parameter for the infinite series (LeSage and Pace 2007). The 
resulting log-likelihood is (LeSage and Pace 2007): 
 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2

2

2

2

1 1
, , ; ln 2 ln ln

2 2 2
1

; ln 2 ln ln ' '
2 2 2

S y Xn
L y S

n n
L y y S MS y

α β
β σ α π σ α

σ

α π σ α α

−
= − − + −

= − − −

 (21) 

 
Note that the second line represents a concentrated log-likelihood function. It is typical 
for the derivation of the log-likelihood functions of complex statistical models to involve 
simplification of the initial log-likelihood function. This is typically done through a 
combination of substitution and using the convenient properties of the calculations being 
used, which in this case is the exponential function. The shortcuts and assumptions used to 
concentrate the log-likelihood in Eq. (21) are discussed in detail in LeSage and Pace (2007). 
The spatial lag parameter can be inferred from: 
 

1 eαρ = −   (22) 

Interpretation of Spatial Econometric Models 
For spatial lag models, SDM models, or SAC/SARMA models, interpretations cannot be fully 
drawn from examining the estimated coefficients. Marginal effects, a commonly used 
measure in econometrics and statistics, are used to identify what changes take place with a 
ceteris paribus one-unit change in some independent variable. These marginal effects are 
particularly useful with spatial models. LeSage and Pace (2009) identified three types of 
marginal effects for these models: 
 
(1) Total effects, or the total effect on the dependent variable as a result of the one-unit 
change in some independent variable, 
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(2) Direct effects, the effect on the dependent variable for the spatial unit of interest. 
 
(3) Indirect effects, the net effect on the dependent variables of the neighbors (usually the 
first-order neighbors) of the spatial unit of interest. 
 
Consider this simple example: For an employment model in which the independent variable 
of interest is income, the direct effects have a value of 0.15, the indirect effects have a value 
of 0.08, and the total effects, therefore, have a value of 0.23. A two nearest-neighbors 
weights matrix is used, which means that each spatial unit has exactly two neighbors. 
Assume the spatial unit of interest is Tippecanoe County and the two nearest neighboring 
counties are White County and Clinton County. According to these marginal effects, a one-
unit increase in income will increase employment in Tippecanoe County by 0.15 percent and 
by an average of 0.04 percent in White and Clinton Counties. This example illustrates how 
the choice of the weights matrix could have a substantial impact on model interpretation. 

Spatial Panel Models: In Brief 
The spatial models described in the previous section are cross-sectional models. That is, that 
is, they are valid only for data taken at one point in time. Using these models with 
longitudinal, or panel data, which consist of observations for several cross-sectional units 
observed over a period of time, is akin to estimating a pooled model, in which cross-sectional 
and time-specific variance are not accounted for. While this can be done, it comes with the 
same risks as estimating a panel data model using ordinary least squares (OLS). Spatial 

panel models, which account for cross-sectional and time-specific variance as well as spatial 
and temporal correlation, have been developed by Elhorst (2003, 2010), Baltagi et al. (2007), 
Kapoor et al. (2007), and others. The one-way random-effects model, which captures within-
group (cross-sectional) variance in the intercept term, can be estimated with the following 
log-likelihood function (Elhorst 2010): 
 

( )πσ ρ ρ β
σ = = =

  
= − + − − − −   

  
∑∑ ∑

2

2 * *

2
1 1 1

1
log 2 log

2 2

N T N

N it ij jt it
i t j

NT
LL T I W y w y x   (23) 

 
where 
 

( )θ
=

= − − ∑*

1

1
1

t

it it it
i

y y y
T

 and ( )θ
=

= − − ∑*

1

1
1

t

it it it
i

x x x
T

   (24) 

 
where θ  represents the share of the cross-sectional variance of the overall variance with 

θ≤ ≤0 1  and 

( )µ

σθ
σ σ

=
+

2

2 2T
 (25) 
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where µσ 2  represents the between-group variance and σ 2 represents the residual, or within-

group variance. The corresponding asymptotic variance-covariance matrix is (Elhorst 2010): 
 

( )
σ

β θ σ
θ σ

σ σ

−
 
 
 
  = + −    
 −  

1* *

2

2

2 2

2 4

'
0 0

1
. , , 0 1

0
2

X X

N
AsyVar N

N NT

 (26) 

 
The estimation techniques and, particularly, the computing time for spatial panel models can 
be considerably more complex than the cross-sectional models. Evaluation of Eq. (23) all 
require estimation of the log-Jacobian using maximum likelihood methods. For example, the 
computational requirements of a 32,000 by 32,000 weights matrix (3200 ZIP Codes for ten 
years) represent a mountain summit that simply cannot be reached without the aid of 
supercomputer clusters. Spatial lag panel models with random region effects were estimated 
for the study area using MATLAB-based routines written by J. Paul Elhorst (2010) and 
James LeSage which use a Monte-Carlo approximation of the spatial weights matrix to 
reduce computation time (LeSage and Pace 2009) by a factor of over 3000, compared to using 
full maximum likelihood-methods. Even with these computationally efficient methods, 
however, estimation of models that simultaneously capture spatial correlation, random 
region effects, and serial correlation remains difficult without a considerably larger sample 
size. The reader is referred to the aforementioned studies for the technical details. 

Spatial Count Models 
The models described in previous sections pertain to normally distributed, continuous data, 
as spatial econometric models have their roots in the field of economics, where such data are 
common. Data in other disciplines, such as crash data in transportation, is often discrete and 
follows Poisson or negative binomial distributions. Estimation of such models cannot be done 
easily using maximum likelihood methods. Often, Bayesian methods using Markov Chain 
Monte Carlo (MCMC) routines must be used for model estimation. Poisson-lognormal, 
Poisson-gamma, and Poisson-lognormal with conditionally autoregressive (CAR) were used 
in Wang et al.'s study of how traffic congestion impacts road accidents in England (2009). 
Bayesian hierarchical models were used by Quddus (2008) to identify regional contributing 
factors to traffic crashes. Wakefield (2007) used Bayesian methods to model spatial 
dependence in male lip cancer incidence data. Griffith (2006) explored the differences 
between using Winsorization and spatial filtering with spatially correlated Poisson models. 
Gschlößl and Czado (2008) predicted the number of insurance claims data from a German car 
insurance company using a combination of Poisson, negative binomial, and zero-inflated 
models that incorporated spatial effects using a Gaussian CAR prior. Spatial CAR models 
were used to model bird point count surveys by Webster et al. (2008), and zero-inflated 
spatial CAR Poisson models were used by Agarwal et al. (2002) to model the pixel-based 
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spatial distribution of the terrestrial isopod, Hemilepistus reaumuri. Other estimation 
methods, such as quasi-likelihood (QL), have been explored by Lin (2010). The reader is 
referred to those studies, as well as textbooks by Haining (2003) and Lawson (2009) for 
additional details. 

Software for Spatial Econometric Analysis 
Several software packages can perform spatial econometric-related tests and estimate spatial 
econometric models. GeoDa and OpenGeoDa (Anselin 2010), available for free at the 
GeoDa Center, are used for exploratory data analysis and for preliminary tests for spatial 
correlation. They require the use of shapefiles, which can be created and exported by any 
number of GIS-based software packages. Anselin (2005) provides details on using the 
program. PySAL, a library for spatial analysis in Python, was also recently released by the 
center. 
 
LeSage (2010) has published a MATLAB-based econometrics toolbox, which can estimate 
many spatial econometric models, both using maximum likelihood and Bayesian methods. It 
also contains code for estimating spatial panel models, contributed primarily by Elhorst 
(2010). Documentation for the toolbox includes a special section for the spatial econometrics 
commands (LeSage 1999) as well as learning materials related to spatial econometrics 
(LeSage 1998). 
 
The majority of the spatial econometric models in the literature can be estimated using 
packages in the open-source R statistical package (Bivand 2010; Bivand et al. 2008; Millo and 
Piras 2010; Piras 2010). Most (but not all) of the functionality offered by GeoDa and LeSage's 
spatial econometrics toolbox. Packages for geographically weighted regression, spatial panel, 
and spatial count data models are also available in R, and spatial logit and probit models are 
available in MATLAB, as well as Bayesian methods for cross-sectional spatial econometric 
models for both continuous and discrete distributions.The tools available in R will be 
demonstrated in the following section. 
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An Application of Spatial Econometrics: Census Data in Tippecanoe 

County 
This example will demonstrate several add-on packages for R (see Purdue ITE 2010 for 
information on how to install and use add-on packages in R). These packages include: 
 
(1) spdep (Spatial econometric models) (Bivand 2010) 
(2) sphet (Spatial econometric models that account for heteroskedasticity) (Piras 2010) 
(3) UScensus2000 (Census 2000 demographic data and shapefiles) (Almquist 2010) 
(4) sp (Classes/methods for spatial data) (Pebesma and Bivand 2005; Bivand et al. 2008) 
(5) maptools (Tools for reading/manipulating spatial data) (Lewin-Koh and Bivand 2010) 
 
A number of add-on packages exist for R that can download and extract US Census 2000 
Summary File 1 shapefiles at the county, Census Designated Place (CDP), Metropolitan 
Statistical Area (MSA), Census block, and Census block group levels. In this example, SF1 
demographic data for Tippecanoe County, IN data will be downloaded and displayed. While R 
is strong with displaying graphics, using the multitude of possible options can be difficult to 
learn. Helper functions for displaying attractive maps have been written by the package's 
authors to facilitate the process. 
 

 
 

Figure 4: Census Tract map of Tippecanoe County, with default labels. 
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County-level data can be obtained using the COUNTY command. The sample code below will 
extract Census tract-level data for Tippecanoe County, Indiana and then display a map of the 
county (Figure 4 shows the Census tracts for Tippecanoe County, Indiana, created using the 
syntax below). 
 
Syntax 
tippecanoe<-county(name="Tippecanoe", state="indian a",level=c("tract")) 
plot(tippecanoe) 
text(coordinates(tippecanoe), labels=row.names(tipp ecanoe),cex=0.7) 
title("Tippecanoe County Census Tracts") 

 
The CEX command controls the font size. The TEXT and TITLE commands are used to add 
labels and a title to the map. Trial-and-error is often needed to properly display labels. 
 
The extracted data can be exported to an ESRI shapefile using the WRITEPOLYSHAPE 
command from the MAPTOOLS package. 
 
Syntax 
writePolyShape(tippecanoe,"F:/lots_of_data/tippecan oe.shp") 

 
The attribute table can be obtained using the ATTR command. 
 
Syntax 
tip_data<-attr(tippecanoe,"data") 

 
A primary variable of interest is population. The SPPLOT command can be used to display 
the distribution of population in the county. Note that the default color scheme tends to 
repeat colors and is counterintuitive. The COL.REGIONS option allows different color 
schemes to be used. The BPY.COLORS set, from the SP package, is best suited for black-
and-white printing. The maps below in Figure 5 show population data using the default color 
scheme (left) and the black-and-white-friendly color scheme (right). The number of colors to 
use (20 in this example) may need to be changed to avoid repeated colors. 
 
Syntax 
spplot(tippecanoe,"pop2000",col.regions=bpy.colors( 20)) 
spplot(tippecanoe,"pop2000",col.regions=heat.colors (20)) 
spplot(tippecanoe,"pop2000",col.regions=cm.colors(2 0)) 
spplot(tippecanoe,"pop2000",col.regions=topo.colors (20)) 
spplot(tippecanoe,"pop2000",col.regions=terrain.col ors(20)) 
spplot(tippecanoe,"pop2000",col.regions=rainbow(20) ) 
spplot(tippecanoe,"pop2000") 
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Output 

  
Figure 5: Displayed graphics using the default coloring scheme (left) and the 

bpy.colors black-and-white-friendly color scheme (right). 

 

Alternatively, maps can be created using the PLOT command (which uses a special method 
for SpatialPolygons, the class created using these commands). The syntax below shows a 
helper function written by the USCENSUS2000 package authors to simplify the process of 
displaying colors. This code is then used to display a population map of Tippecanoe County 
(see Figure 6) with a legend and using the helper function as an argument for COL. 
 
Syntax 
#  Helper functions and sample plotting code from 
#  Zack W. Almquist (2010). UScensus2000: US Census  2000 Suite of 
#  R Packages. R package version 0.07. 
#  http://CRAN.R-project.org/package=UScensus2000 
############################################ 
## Helper function for handling coloring of the map  
############################################ 
color.map<- function(x,dem,y=NULL){ 
 l.poly<-length(x@polygons) 
 dem.num<- cut(dem ,breaks=unique(ceiling(quantile( dem))),dig.lab = 6) 
 dem.num[which(is.na(dem.num)==TRUE)]<-levels(dem.n um)[1] 
 l.uc<-length(table(dem.num)) 
if(is.null(y)){ 
 ##commented out, but creates different color schem es  
 ## using runif, may take a couple times to get a g ood color scheme. 
 ##col.heat<-rgb( runif(l.uc,0,1), runif(l.uc,0,1) , runif(l.uc,0,1) ) 
 col.heat<-heat.colors(16)[c(14,8,4,1)] ##fixed set  of four colors 
}else{ 
 col.heat<-y 
 } 
dem.col<-cbind(col.heat,names(table(dem.num))) 
colors.dem<-vector(length=l.poly) 
for(i in 1:l.uc){ 
 colors.dem[which(dem.num==dem.col[i,2])]<-dem.col[ i,1] 
 } 
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out<-list(colors=colors.dem,dem.cut=dem.col[,2],tab le.colors=dem.col[,1]) 
return(out) 
} 
############################################ 
## End Helper function for handling coloring of the  map 
############################################ 
 
colors.use<-color.map(tippecanoe,tippecanoe$pop2000 ) 
plot(tippecanoe,col=colors.use$colors) 
 
title(main="Census Tracts of\n Tippecanoe County IN , 2000", 
sub="Quantiles (equal frequency)") 
legend("bottomright",legend=colors.use$dem.cut,fill =colors.use$table.colors, 
bty="o",title="Population Count",bg="white") 
text(coordinates(tippecanoe),labels=row.names(tippe canoe),cex=0.7) 

 
plot(tippecanoe,col=bpy.colors(5)) 
 

Output 

 
Figure 6: Color-theme map for Tippecanoe County (left) and West Lafayette, 

Indiana (right). 

 
The POLY.CLIPPER command can be used to extract community-level, or more formally, 
Census Designated Place (CDP) demographic data. In this example, demographic data for 
Census Tracts located in the city of West Lafayette will be extracted and then plotted using 
the PLOT command (see Figure 5). The BB.EPSILON parameter can be changed if the 
"clipped" data do not match the actual data. 
 
Syntax 
WestLafayette<-poly.clipper(name="West Lafayette",s tate="Indiana", 
level=c("tract"),bb.epsilon=0.01) 
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colors.use2<-color.map(WestLafayette,WestLafayette$ pop2000) 
 
plot(WestLafayette,col=colors.use2$colors) 
 
title(main="Census Tracts of\n West Lafayette IN, 2 000", 
sub="Quantiles (equal frequency)") 
legend("bottomright",legend=colors.use2$dem.cut,fil l=colors.use2$table.colors, 
bty="o",title="Population Count",bg="white") 
text(coordinates(WestLafayette),labels=row.names(We stLafayette),cex=0.7) 
 
# Compare to 
http://www2.census.gov/plmap/pl_trt/st18_Indiana/c1 8157_Tippecanoe/CT18157_A01.pdf 

 
 
Additional SF1 demographic data can be downloaded using the USCENSUS2000ADD 
package for each state. This requires knowledge of what each variable in the master SF1 file 
represents (http://www.census.gov/prod/cen2000/doc/sf1.pdf). For example, Census tract-
level population for different races, such as White alone (P003003), Black or African 
American alone (P003004), American Indian and Alaska Native alone (P003005), Asian alone 
(P003006), Native Hawaiian and Other Pacific Islander alone (P003007), or some other race 
alone (P003008) for the state of Indiana can be downloaded using the following syntax. 
 
Syntax 
add_me <- c("P003003","P003004","P003005","P003006" ,"P003007","P003008") 
IN_new <- demographics.add(dem=add_me,state="indian a",level=c("tract")) 

 
One concern with working with socioeconomic data is the presence of spatial 
autocorrelation. For example, the opening of the Subaru plant in Lafayette affected nearby 
surrounding areas, and over time, the spatial distribution of employment as well as traffic 
patterns began to change (the plant can be seen as a large traffic generator). Using the 
Tippecanoe County data set from the US Census section, changes in one Census tract may 
have effects on adjacent Census tracts. 
 
A numerical representation of a Census tract's "neighbors" can take the form of a spatial 
weights matrix. The spatial weights matrix can changed based on certain criteria. For 
example, a Census tract may be a neighbor if its border is contiguous to the Census tract of 
interest. Alternatively, a Census tract may be a neighbor if it is located within 10 miles of the 
Census tract of interest. The specification of the weights matrix may yield different findings, 
so great care should be taken when specifying a weights matrix. 
 
In this example, weights matrices will be defined using three criteria: queen contiguity, a 
distance threshold of 0.3 degrees (on a lat-long scale), and two nearest neighbors. This is 
accomplished using the SPDEP package and the POLY2NB, DNEARNEIGH, and 
KNEARNEIGH commands, respectively. The NB2LISTW command converts the resulting 
"neighbor lists" to formal weights matrices. The SUMMARY command can be used to display 
information on the percentage of nonzero entries in the weights matrix and the most and 
least connected regions. 
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Syntax 
tipxy <- coordinates(tippecanoe) 
 
tip.queen <- poly2nb(tippecanoe,queen=TRUE) 
tip.queenw <- nb2listw(tip.queen,style="W") 
summary(tip.queenw) 
 
tip.d <- dnearneigh(tipxy,3,10, longlat=TRUE) 
tip.dw <- nb2listw(tip.d,style="W") 
summary(tip.dw) 
 
tip.nn2 <- knn2nb(knearneigh(tipxy, k=2, longlat=TR UE)) 
tip.nn2w <- nb2listw(tip.nn2,style="W") 
summary(tip.nn2w) 

 
Output 
> summary(tip.queenw) 
Characteristics of weights list object: 
Neighbour list object: 
Number of regions: 37  
Number of nonzero links: 216  
Percentage nonzero weights: 15.77794  
Average number of links: 5.837838  
Link number distribution: 
 
 3  4  5  6  7  8  9 10 11  
 4  7  9  6  2  3  4  1  1  
4 least connected regions: 
indiana_581 indiana_599 indiana_609 indiana_627 wit h 3 links 
1 most connected region: 
indiana_562 with 11 links 
 
Weights style: W  
Weights constants summary: 
   n   nn S0       S1       S2 
W 37 1369 37 13.36039 155.3556 
>  
> tip.d <- dnearneigh(tipxy,3,10, longlat=TRUE) 
> tip.dw <- nb2listw(tip.d,style="W") 
> summary(tip.dw) 
Characteristics of weights list object: 
Neighbour list object: 
Number of regions: 37  
Number of nonzero links: 686  
Percentage nonzero weights: 50.10957  
Average number of links: 18.54054  
Link number distribution: 
 
 1  2  3  7  8 15 16 17 18 19 20 21 23 24 25 26 27 28  
 1  1  2  1  1  2  1  1  2  6  3  4  2  2  3  1  2  2  
1 least connected region: 
37 with 1 link 
2 most connected regions: 
6 30 with 28 links 
 
Weights style: W  
Weights constants summary: 
   n   nn S0       S1       S2 
W 37 1369 37 6.004295 155.7006 
>  
> tip.nn2 <- knn2nb(knearneigh(tipxy, k=2, longlat= TRUE)) 
> tip.nn2w <- nb2listw(tip.nn2,style="W") 
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> summary(tip.nn2w) 
Characteristics of weights list object: 
Neighbour list object: 
Number of regions: 37  
Number of nonzero links: 74  
Percentage nonzero weights: 5.405405  
Average number of links: 2  
Non-symmetric neighbours list 
Link number distribution: 
 
 2  
37  
37 least connected regions: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
33 34 35 36 37 with 2 links 
37 most connected regions: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
33 34 35 36 37 with 2 links 
 
Weights style: W  
Weights constants summary: 
   n   nn S0   S1  S2 
W 37 1369 37 26.5 164 

 
Plots of Tippecanoe County with each of the three types of weights matrices are shown 
below. 
 
Syntax 
plot(tippecanoe,col=colors.use$colors) 
plot(tip.queenw,tipxy,add=T,arrows=T) 
title("Tippecanoe County Census Tracts\nFirst-Order  Queen Contiguity Weights Matrix") 
legend("bottomright",legend=colors.use$dem.cut,fill =colors.use$table.colors, 
bty="o",title="Population Count",bg="white") 
 
plot(tippecanoe,col=colors.use$colors) 
plot(tip.dw,tipxy,add=T,arrows=T) 
title("Tippecanoe County Census Tracts\nDistance Th reshold Weights Matrix") 
legend("bottomright",legend=colors.use$dem.cut,fill =colors.use$table.colors, 
bty="o",title="Population Count",bg="white") 
 
plot(tippecanoe,col=colors.use$colors) 
plot(tip.nn2w,tipxy,add=T,arrows=T) 
title("Tippecanoe County Census Tracts\n2 Nearest N eighbors Weights Matrix") 
legend("bottomright",legend=colors.use$dem.cut,fill =colors.use$table.colors, 
bty="o",title="Population Count",bg="white") 
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Output 

 
Figure 1 (Repeated): Weights matrices for Tippecanoe County Census tracts 

 

Moran's I statistic can be used to test for the presence of spatial correlation. The test is 
general; it will only indicate whether spatial correlation is present for a given variable and 
weights matrix but not the type and nature of the spatial correlation. A local variant of this 
test can be used to identify localized effects. The global Moran test can be called using the 
MORAN.TEST command, and the local Moran test can be called using the LOCALMORAN 
command. With these commands and other commands in the SPDEP package, two required 
inputs are (1) a variable with associated data frame and (2) a weights matrix. The following 
example will conduct global and local Moran tests for all three weights matrices used for 
median age. 
 
Syntax 
moran.test(tip_data$med.age, listw=tip.queenw, rand omisation=TRUE, 
alternative="two.sided") 
localmoran(tip_data$med.age,listw=tip.queenw) 
 
moran.test(tip_data$med.age, listw=tip.dw, randomis ation=TRUE,alternative="two.sided") 
localmoran(tip_data$med.age,listw=tip.dw) 
 
moran.test(tip_data$med.age, listw=tip.nn2w, random isation=TRUE, 
alternative="two.sided") 
localmoran(tip_data$med.age,listw=tip.nn2w) 

 
Output 
> moran.test(tip_data$med.age, listw=tip.queenw, 
randomisation=TRUE,alternative="two.sided") 
 
        Moran's I test under randomisation 
 
data:  tip_data$med.age   
weights: tip.queenw   
  
Moran I statistic standard deviate = 4.5862, p-valu e = 4.514e-06 
alternative hypothesis: two.sided  
sample estimates: 
Moran I statistic       Expectation          Varian ce  
       0.38626142       -0.02777778        0.008150 43  
 
> localmoran(tip_data$med.age,listw=tip.queenw) 
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                Ii        E.Ii     Var.Ii        Z. Ii    Pr(z > 0) 
 [1,]  0.206493444 -0.02777778 0.21853933  0.501134 31 3.081383e-01 
 [2,]  0.707883360 -0.02777778 0.21853933  1.573667 63 5.778216e-02 
 [3,]  0.120428328 -0.02777778 0.16966535  0.359806 92 3.594958e-01 
 [4,]  0.626638276 -0.02777778 0.06303122  2.606610 22 4.572169e-03 
 [5,]  0.724343218 -0.02777778 0.21853933  1.608877 24 5.382159e-02 
 [6,]  0.265597465 -0.02777778 0.16966535  0.712240 85 2.381578e-01 
 [7,]  0.076769291 -0.02777778 0.09635439  0.336803 13 3.681327e-01 
 [8,]  0.803733603 -0.02777778 0.21853933  1.778702 82 3.764425e-02 
 [9,] -0.385436885 -0.02777778 0.13708270 -0.966001 86 8.329784e-01 
[10,]  0.029992909 -0.02777778 0.08277828  0.200793 35 4.204301e-01 
[11,] -0.491006634 -0.02777778 0.07191740 -1.727343 17 9.579470e-01 
[12,]  0.163722209 -0.02777778 0.13708270  0.517222 52 3.025004e-01 
[13,]  2.198026913 -0.02777778 0.16966535  5.403690 56 3.264177e-08 
[14,]  0.004998568 -0.02777778 0.29999596  0.059841 55 4.761409e-01 
[15,]  1.226686403 -0.02777778 0.16966535  3.045521 59 1.161385e-03 
[16,] -0.263560906 -0.02777778 0.13708270 -0.636826 90 7.378812e-01 
[17,]  0.166091741 -0.02777778 0.08277828  0.673831 54 2.502092e-01 
[18,]  2.111370907 -0.02777778 0.13708270  5.777628 94 3.788033e-09 
[19,]  2.113120264 -0.02777778 0.09635439  6.897000 26 2.655604e-12 
[20,]  0.087337229 -0.02777778 0.13708270  0.310914 24 3.779329e-01 
[21,]  0.548315149 -0.02777778 0.21853933  1.232332 04 1.089125e-01 
[22,]  1.241708947 -0.02777778 0.13708270  3.428758 03 3.031749e-04 
[23,]  0.196717580 -0.02777778 0.16966535  0.545017 92 2.928706e-01 
[24,]  0.094752566 -0.02777778 0.08277828  0.425878 24 3.350983e-01 
[25,]  0.043032952 -0.02777778 0.16966535  0.171910 53 4.317539e-01 
[26,]  0.001177819 -0.02777778 0.11380938  0.085830 87 4.658004e-01 
[27,]  0.333825161 -0.02777778 0.21853933  0.773512 16 2.196097e-01 
[28,]  0.002812258 -0.02777778 0.29999596  0.055849 88 4.777307e-01 
[29,] -0.233174902 -0.02777778 0.09635439 -0.661696 16 7.459170e-01 
[30,] -0.167675461 -0.02777778 0.16966535 -0.339636 17 6.329347e-01 
[31,] -0.013353467 -0.02777778 0.08277828  0.050134 52 4.800076e-01 
[32,]  0.570743355 -0.02777778 0.21853933  1.280308 67 1.002183e-01 
[33,]  0.550501459 -0.02777778 0.11380938  1.714149 02 4.325068e-02 
[34,] -0.037338030 -0.02777778 0.29999596 -0.017454 67 5.069631e-01 
[35,]  0.112424210 -0.02777778 0.16966535  0.340374 95 3.667871e-01 
[36,] -0.001067516 -0.02777778 0.16966535  0.064845 76 4.741484e-01 
[37,]  0.555040832 -0.02777778 0.29999596  1.064083 49 1.436454e-01 
attr(,"call") 
localmoran(x = tip_data$med.age, listw = tip.queenw ) 
attr(,"class") 
[1] "localmoran" "matrix"     
>  
> moran.test(tip_data$med.age,listw=tip.dw,randomis ation=TRUE,alternative="two.sided") 
 
        Moran's I test under randomisation 
 
data:  tip_data$med.age   
weights: tip.dw   
  
Moran I statistic standard deviate = -1.1376, p-val ue = 0.2553 
alternative hypothesis: two.sided  
sample estimates: 
Moran I statistic       Expectation          Varian ce  
     -0.087374415      -0.027777778       0.0027447 03  
 
> localmoran(tip_data$med.age,listw=tip.dw) 
                 Ii        E.Ii      Var.Ii        Z.Ii  Pr(z > 0) 
 [1,]  0.0559321813 -0.02777778 0.299995961  0.1528 3381 0.43926467 
 [2,]  1.0606898845 -0.02777778 0.462909222  1.5998 0708 0.05482069 
 [3,] -0.0484733887 -0.02777778 0.020716086 -0.1437 8858 0.55716629 
 [4,] -0.2750766049 -0.02777778 0.010372386 -2.4281 9026 0.99241281 
 [5,]  0.4515709284 -0.02777778 0.096354385  1.5442 4362 0.06126466 
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 [6,] -0.1489741719 -0.02777778 0.009079424 -1.2719 2220 0.89829962 
 [7,]  0.0551397508 -0.02777778 0.011764807  0.7644 5854 0.22229702 
 [8,] -0.6473311393 -0.02777778 0.013268622 -5.3785 5735 0.99999996 
 [9,]  0.1442183466 -0.02777778 0.023043418  1.1330 3993 0.12859874 
[10,] -0.0519429869 -0.02777778 0.020716086 -0.1678 9459 0.56666690 
[11,] -1.3745392667 -0.02777778 0.113809377 -3.9921 0233 0.99996725 
[12,] -0.4257045166 -0.02777778 0.025615732 -2.4862 7826 0.99354565 
[13,] -0.4185939909 -0.02777778 0.014897755 -3.2019 3242 0.99931745 
[14,] -0.0219231542 -0.02777778 0.023043418  0.0385 6786 0.48461746 
[15,] -0.4351306628 -0.02777778 0.028473860 -2.4140 5758 0.99211202 
[16,]  0.1257053491 -0.02777778 0.014897755  1.2574 7751 0.10429039 
[17,]  0.2266002394 -0.02777778 0.039334744  1.2826 0053 0.09981603 
[18,] -0.4762385687 -0.02777778 0.016668551 -3.4735 6598 0.99974320 
[19,] -0.5102774424 -0.02777778 0.031668238 -2.7113 4679 0.99664947 
[20,] -0.1450328165 -0.02777778 0.025615732 -0.7326 1891 0.76810455 
[21,] -0.1841051700 -0.02777778 0.016668551 -1.2108 3832 0.88702131 
[22,] -0.4858953297 -0.02777778 0.025615732 -2.8623 5530 0.99789747 
[23,] -0.0234759593 -0.02777778 0.039334744  0.0216 9022 0.49134753 
[24,] -0.0391713805 -0.02777778 0.023043418 -0.0750 5638 0.52991507 
[25,] -0.2036506956 -0.02777778 0.025615732 -1.0988 6813 0.86408721 
[26,] -0.2789170040 -0.02777778 0.025615732 -1.5691 3808 0.94169212 
[27,] -0.2060616718 -0.02777778 0.028473860 -1.0565 4729 0.85464088 
[28,] -0.0009528373 -0.02777778 0.025615732  0.1676 0439 0.43344726 
[29,]  0.1018165577 -0.02777778 0.010372386  1.2724 6743 0.10160354 
[30,]  0.0690149708 -0.02777778 0.009079424  1.0158 1278 0.15485927 
[31,] -0.1788089668 -0.02777778 0.020716086 -1.0493 3170 0.85298726 
[32,]  0.2546825894 -0.02777778 0.299995961  0.5157 0319 0.30303086 
[33,]  0.0863459778 -0.02777778 0.035261912  0.6077 4742 0.27167750 
[34,] -0.0509226207 -0.02777778 0.020716086 -0.1608 0531 0.56387663 
[35,]  0.0845357872 -0.02777778 0.013268622  0.9750 3296 0.16477195 
[36,]  0.0230185801 -0.02777778 0.013268622  0.4409 8078 0.32961346 
[37,]  0.6590758408 -0.02777778 0.951649005  0.7040 8613 0.24068957 
attr(,"call") 
localmoran(x = tip_data$med.age, listw = tip.dw) 
attr(,"class") 
[1] "localmoran" "matrix"     
>  
> 
moran.test(tip_data$med.age,listw=tip.nn2w,randomis ation=TRUE,alternative="two.sided") 
 
        Moran's I test under randomisation 
 
data:  tip_data$med.age   
weights: tip.nn2w   
  
Moran I statistic standard deviate = 4.5123, p-valu e = 6.414e-06 
alternative hypothesis: two.sided  
sample estimates: 
Moran I statistic       Expectation          Varian ce  
       0.57121056       -0.02777778        0.017621 79  
 
> localmoran(tip_data$med.age,listw=tip.nn2w) 
                Ii        E.Ii    Var.Ii        Z.I i    Pr(z > 0) 
 [1,] -0.028940190 -0.02777778 0.4629092 -0.0017084 9 5.006816e-01 
 [2,]  1.060689884 -0.02777778 0.4629092  1.5998070 8 5.482069e-02 
 [3,]  0.024712415 -0.02777778 0.4629092  0.0771489 9 4.692525e-01 
 [4,]  1.378186574 -0.02777778 0.4629092  2.0664571 0 1.939267e-02 
 [5,]  1.023406813 -0.02777778 0.4629092  1.5450092 0 6.117202e-02 
 [6,]  0.397557026 -0.02777778 0.4629092  0.6251482 3 2.659369e-01 
 [7,]  0.792357379 -0.02777778 0.4629092  1.2054175 6 1.140211e-01 
 [8,]  1.697665766 -0.02777778 0.4629092  2.5360209 5 5.606001e-03 
 [9,] -1.966497277 -0.02777778 0.4629092 -2.8494895 1 9.978105e-01 
[10,] -0.126939687 -0.02777778 0.4629092 -0.1457461 1 5.579391e-01 
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[11,] -0.959960881 -0.02777778 0.4629092 -1.3701032 9 9.146727e-01 
[12,]  0.161245626 -0.02777778 0.4629092  0.2778226 6 3.905742e-01 
[13,]  3.097872304 -0.02777778 0.4629092  4.5940153 3 2.173987e-06 
[14,]  0.044523534 -0.02777778 0.4629092  0.1062669 6 4.576853e-01 
[15,]  3.114686510 -0.02777778 0.4629092  4.6187285 0 1.930493e-06 
[16,] -0.195539797 -0.02777778 0.4629092 -0.2465731 2 5.973807e-01 
[17,]  0.079110774 -0.02777778 0.4629092  0.1571025 6 4.375820e-01 
[18,]  3.122996341 -0.02777778 0.4629092  4.6309421 2 1.820028e-06 
[19,]  3.280327291 -0.02777778 0.4629092  4.8621838 7 5.804885e-07 
[20,] -0.018726602 -0.02777778 0.4629092  0.0133032 3 4.946929e-01 
[21,]  1.358565368 -0.02777778 0.4629092  2.0376182 6 2.079406e-02 
[22,]  2.290767222 -0.02777778 0.4629092  3.4077491 1 3.275055e-04 
[23,]  0.115314586 -0.02777778 0.4629092  0.2103141 7 4.167112e-01 
[24,] -0.132312822 -0.02777778 0.4629092 -0.1536434 3 5.610546e-01 
[25,]  0.488951272 -0.02777778 0.4629092  0.7594775 9 2.237835e-01 
[26,]  0.257526645 -0.02777778 0.4629092  0.4193344 9 3.374858e-01 
[27,]  0.426145810 -0.02777778 0.4629092  0.6671674 3 2.523326e-01 
[28,]  0.002270312 -0.02777778 0.4629092  0.0441640 6 4.823868e-01 
[29,] -0.296100797 -0.02777778 0.4629092 -0.3943755 8 6.533481e-01 
[30,]  0.405519456 -0.02777778 0.4629092  0.6368512 4 2.621109e-01 
[31,]  0.342111832 -0.02777778 0.4629092  0.5436560 4 2.933391e-01 
[32,]  0.149665594 -0.02777778 0.4629092  0.2608025 7 3.971224e-01 
[33,] -0.372380785 -0.02777778 0.4629092 -0.5064903 2 6.937438e-01 
[34,]  0.005934234 -0.02777778 0.4629092  0.0495492 1 4.802408e-01 
[35,] -0.204757503 -0.02777778 0.4629092 -0.2601211 1 6.026148e-01 
[36,]  0.018681534 -0.02777778 0.4629092  0.0682849 3 4.727794e-01 
[37,]  0.300155060 -0.02777778 0.4629092  0.4819888 5 3.149069e-01 
attr(,"call") 
localmoran(x = tip_data$med.age, listw = tip.nn2w) 
attr(,"class") 
[1] "localmoran" "matrix"     

 
The tests indicate that spatial correlation is statistically significant under the queen 
contiguity and two nearest-neighbors weights matrices as noted by the p-values. Localized 
effects are particularly noticeable using queen contiguity. Suppose a model is to be estimated 
to predict median age at the census tract level and that this model will be a function of (1) 
The number of households with married couples without children, (2) The number of vacant 
households, and (3) The number of residents between the ages of 18-21. SPDEP includes a 
suite of statistical tests to be used on OLS residuals to test for different types of spatial 
correlation. These types are: 
 
(1) Spatial lag: Spatial correlation is present in the dependent variable. The dependent 
variable is thus a function of its spatial lag - for example, median age in one Census tract 
could be affected by median age in the neighbors of that Census tract. This is a 
multidimensional analogue of temporal autocorrelation - in autoregressive AR(1) correlation 
for example, the dependent variable is a function of the value of the dependent variable from 
a previous time period. 
 
(2) Spatial error: Spatial correlation is present within the disturbance term of the model. 
The closest analogue in time-series analysis is the first-order moving average MA(1). 
 
Spatial ARAR models simultaneously model spatial lag and spatial error. These series of 
tests can be called using the LM.LMTESTS command. In most cases, the "all" option should 
be used with the TEST statement. These tests require an OLS model estimated using the 
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LM command as an input. In this example, the aforementioned model will be estimated using 
OLS. The suite of tests will then be performed on the residuals from the OLS model using 
the two nearest-neighbors weights matrix. 
 
Syntax 
t1 <- med.age ~ 1 + marhh.no.c + hh.vacant + age.18 .21 
 
tt1 <- lm(t1, data=tip_data) 
summary(tt1) 
 
lm.LMtests(tt1, tip.nn2w, test="all") 

 
Output 
> t1 <- med.age ~ 1 + marhh.no.c + hh.vacant + age. 18.21 
>  
> tt1 <- lm(t1, data=tip_data) 
> summary(tt1) 
 
Call: 
lm(formula = t1, data = tip_data) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-6.5697 -2.2793  0.6591  2.2119  5.8904  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) 30.3273875  1.3892142  21.831  < 2e-16 *** 
marhh.no.c   0.0127016  0.0028821   4.407 0.000105 *** 
hh.vacant   -0.0249069  0.0093076  -2.676 0.011510 *   
age.18.21   -0.0021898  0.0004684  -4.675 4.79e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1  
 
Residual standard error: 3.147 on 33 degrees of fre edom 
Multiple R-squared: 0.6973,     Adjusted R-squared:  0.6698  
F-statistic: 25.34 on 3 and 33 DF,  p-value: 1.082e -08  
 
>  
> lm.LMtests(tt1, tip.nn2w, test="all") 
 
        Lagrange multiplier diagnostics for spatial  dependence 
 
data:   
model: lm(formula = t1, data = tip_data) 
weights: tip.nn2w 
  
LMerr = 0.369, df = 1, p-value = 0.5436 
 
 
        Lagrange multiplier diagnostics for spatial  dependence 
 
data:   
model: lm(formula = t1, data = tip_data) 
weights: tip.nn2w 
  
LMlag = 4.7202, df = 1, p-value = 0.02981 
 
 
        Lagrange multiplier diagnostics for spatial  dependence 
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data:   
model: lm(formula = t1, data = tip_data) 
weights: tip.nn2w 
  
RLMerr = 0.6127, df = 1, p-value = 0.4338 
 
 
        Lagrange multiplier diagnostics for spatial  dependence 
 
data:   
model: lm(formula = t1, data = tip_data) 
weights: tip.nn2w 
  
RLMlag = 4.964, df = 1, p-value = 0.02588 
 
 
        Lagrange multiplier diagnostics for spatial  dependence 
 
data:   
model: lm(formula = t1, data = tip_data) 
weights: tip.nn2w 
  
SARMA = 5.333, df = 2, p-value = 0.0695 

 
The p-values of the tests indicate that a spatial lag model (LMlag) or a spatial ARAR/ARMA 
model (SARMA) may be appropriate The robust spatial error and spatial lag tests (RLMerr 
and RLMlag, respectively) test for spatial error in the possible presence of spatial lag and 
vice versa. The spatial lag model can be estimated using the LAGSARLM command. A 
variant of this model, the spatial Durbin model, spatially lags all independent variables can be 
specified by TYPE="MIXED." In addition, if heteroskedasticity is a concern, the spatial lag 
model can be estimated using robust spatial two-stage least squares with the STSLS 
command. The example below will estimate a spatial lag model, a spatial Durbin model, and a 
2SLS spatial lag model without and with the robust estimator. 
 
Syntax 
ttt1 <- lagsarlm(t1, data=tip_data, tip.nn2w, type= "lag") 
summary(ttt1) 
 
ttt2 <- lagsarlm(t1, data=tip_data, tip.nn2w, type= "mixed") 
summary(ttt2) 
 
ttt3 <- stsls(t1, data=tip_data, tip.nn2w) 
summary(ttt3) 
 
ttt4 <- stsls(t1, data=tip_data, tip.nn2w, robust=T RUE) 
summary(ttt4) 

 
Output 
> ttt1 <- lagsarlm(t1, data=tip_data, tip.nn2w, typ e="lag") 
> summary(ttt1) 
 
Call:lagsarlm(formula = t1, data = tip_data, listw = tip.nn2w, type = "lag") 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-5.793641 -1.424237 -0.031659  1.918979  5.404923  
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Type: lag  
Coefficients: (asymptotic standard errors)  
               Estimate  Std. Error z value  Pr(>|z |) 
(Intercept) 23.57229130  3.40946154  6.9138 4.719e- 12 
marhh.no.c   0.01168842  0.00261014  4.4781 7.532e- 06 
hh.vacant   -0.02230890  0.00834930 -2.6719  0.0075 41 
age.18.21   -0.00181405  0.00043304 -4.1891 2.800e- 05 
 
Rho: 0.21633, LR test value: 4.4825, p-value: 0.034 244 
Asymptotic standard error: 0.10358 
    z-value: 2.0885, p-value: 0.036756 
Wald statistic: 4.3617, p-value: 0.036756 
 
Log likelihood: -90.557 for lag model 
ML residual variance (sigma squared): 7.7394, (sigm a: 2.782) 
Number of observations: 37  
Number of parameters estimated: 6  
AIC: 193.11, (AIC for lm: 195.6) 
LM test for residual autocorrelation 
test value: 0.28192, p-value: 0.59545 
 
>  
> ttt2 <- lagsarlm(t1, data=tip_data, tip.nn2w, typ e="mixed") 
> summary(ttt2) 
 
Call:lagsarlm(formula = t1, data = tip_data, listw = tip.nn2w, type = "mixed") 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-5.62446 -1.13030  0.17484  1.38252  5.60934  
 
Type: mixed  
Coefficients: (asymptotic standard errors)  
                  Estimate  Std. Error z value  Pr( >|z|) 
(Intercept)    29.17142603  6.28470222  4.6417 3.45 6e-06 
marhh.no.c      0.01367933  0.00300702  4.5491 5.38 7e-06 
hh.vacant      -0.02318035  0.00871656 -2.6593 0.00 78292 
age.18.21      -0.00163576  0.00045141 -3.6236 0.00 02905 
lag.marhh.no.c -0.00270135  0.00477833 -0.5653 0.57 18469 
lag.hh.vacant   0.01055218  0.01587041  0.6649 0.50 61166 
lag.age.18.21  -0.00108535  0.00067811 -1.6005 0.10 94787 
 
Rho: 0.040898, LR test value: 0.061938, p-value: 0. 80346 
Asymptotic standard error: 0.18387 
    z-value: 0.22243, p-value: 0.82398 
Wald statistic: 0.049473, p-value: 0.82398 
 
Log likelihood: -88.59219 for mixed model 
ML residual variance (sigma squared): 7.0324, (sigm a: 2.6519) 
Number of observations: 37  
Number of parameters estimated: 9  
AIC: 195.18, (AIC for lm: 193.25) 
LM test for residual autocorrelation 
test value: 0.18403, p-value: 0.66793 
 
>  
> ttt3 <- stsls(t1, data=tip_data, tip.nn2w) 
> summary(ttt3) 
 
Call:stsls(formula = t1, data = tip_data, listw = t ip.nn2w) 
 
Residuals: 
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      Min        1Q    Median        3Q       Max  
-5.888618 -1.294960 -0.069785  1.971233  5.543087  
 
Coefficients:  
               Estimate  Std. Error t value  Pr(>|t |) 
Rho          0.27735684  0.12185732  2.2761 0.02284 13 
(Intercept) 21.66674002  4.02844332  5.3784 7.513e- 08 
marhh.no.c   0.01140261  0.00280304  4.0679 4.743e- 05 
hh.vacant   -0.02157604  0.00898253 -2.4020 0.01630 57 
age.18.21   -0.00170807  0.00049367 -3.4599 0.00054 03 
 
Residual variance (sigma squared): 8.977, (sigma: 2 .9962) 
 
>  
> ttt4 <- stsls(t1, data=tip_data, tip.nn2w, robust =TRUE) 
> summary(ttt4) 
 
Call:stsls(formula = t1, data = tip_data, listw = t ip.nn2w, robust = TRUE) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-5.888618 -1.294960 -0.069785  1.971233  5.543087  
 
Coefficients:  
               Estimate Robust std. Error z value  Pr(>|z|) 
Rho          0.27735684        0.13701485  2.0243   0.04294 
(Intercept) 21.66674002        4.59981491  4.7104 2 .473e-06 
marhh.no.c   0.01140261        0.00263770  4.3229 1 .540e-05 
hh.vacant   -0.02157604        0.00537992 -4.0105 6 .060e-05 
age.18.21   -0.00170807        0.00042314 -4.0367 5 .422e-05 
 
Residual variance (sigma squared): 8.977, (sigma: 2 .9962) 

 
The spatial lag parameter is positive and statistically significant in all models except the 
spatial Durbin model. None of the spatially lagged independent variables in the spatial Durbin 
model are significant. Note that the p-values of the variables significantly changed with the 
robust spatial two-stage least squares model. Analysis of the marginal effects can show how 
neighboring Census tracts are impacted by changes in independent variables using the 
IMPACTS command. Standard errors can be calculated using Monte Carlo methods if the 
R=(number of iterations) and ZSTATS=TRUE options are specified. The example below 
will calculate marginal effects for the first spatial lag model. 
 
Syntax 
ttt1.i<- impacts(ttt1, listw=tip.nn2w, R=1000, zsta ts=TRUE, short=TRUE) 
summary(ttt1.i) 

 
Output 
> ttt1.i<- impacts(ttt1, listw=tip.nn2w, R=1000, zs tats=TRUE, short=TRUE) 
> summary(ttt1.i) 
Impact measures (lag, exact): 
                 Direct     Indirect        Total 
marhh.no.c  0.011817716  0.003097291  0.014915007 
hh.vacant  -0.022555682 -0.005911592 -0.028467273 
age.18.21  -0.001834119 -0.000480702 -0.002314821 
=================================================== ===== 
Simulation results (asymptotic variance matrix): 
Direct: 
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Iterations = 1:1000 
Thinning interval = 1  
Number of chains = 1  
Sample size per chain = 1000  
 
1. Empirical mean and standard deviation for each v ariable, 
   plus standard error of the mean: 
 
                Mean        SD  Naive SE Time-serie s SE 
marhh.no.c  0.011861 0.0027084 8.565e-05      7.858 e-05 
hh.vacant  -0.022851 0.0082045 2.594e-04      2.424 e-04 
age.18.21  -0.001839 0.0004122 1.303e-05      1.408 e-05 
 
2. Quantiles for each variable: 
 
                2.5%       25%       50%       75%     97.5% 
marhh.no.c  0.006770  0.010022  0.011786  0.013750  0.017072 
hh.vacant  -0.039178 -0.028256 -0.022808 -0.017174 -0.007361 
age.18.21  -0.002608 -0.002123 -0.001839 -0.001552 -0.001026 
 
=================================================== ===== 
Indirect: 
 
Iterations = 1:1000 
Thinning interval = 1  
Number of chains = 1  
Sample size per chain = 1000  
 
1. Empirical mean and standard deviation for each v ariable, 
   plus standard error of the mean: 
 
                 Mean        SD  Naive SE Time-seri es SE 
marhh.no.c  0.0031086 0.0007098 2.245e-05      2.06 0e-05 
hh.vacant  -0.0059890 0.0021503 6.800e-05      6.35 3e-05 
age.18.21  -0.0004821 0.0001080 3.416e-06      3.68 9e-06 
 
2. Quantiles for each variable: 
 
                 2.5%        25%        50%        75%      97.5% 
marhh.no.c  0.0017744  0.0026268  0.0030891  0.0036 038  0.0044743 
hh.vacant  -0.0102681 -0.0074056 -0.0059777 -0.0045 010 -0.0019292 
age.18.21  -0.0006834 -0.0005564 -0.0004821 -0.0004 066 -0.0002688 
 
=================================================== ===== 
Total: 
 
Iterations = 1:1000 
Thinning interval = 1  
Number of chains = 1  
Sample size per chain = 1000  
 
1. Empirical mean and standard deviation for each v ariable, 
   plus standard error of the mean: 
 
                Mean        SD  Naive SE Time-serie s SE 
marhh.no.c  0.014970 0.0034183 1.081e-04      9.918 e-05 
hh.vacant  -0.028840 0.0103548 3.274e-04      3.059 e-04 
age.18.21  -0.002321 0.0005202 1.645e-05      1.777 e-05 
 
2. Quantiles for each variable: 
 
                2.5%       25%       50%       75%     97.5% 
marhh.no.c  0.008545  0.012649  0.014875  0.017354  0.021546 
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hh.vacant  -0.049446 -0.035662 -0.028785 -0.021675 -0.009290 
age.18.21  -0.003291 -0.002679 -0.002322 -0.001958 -0.001295 

 
The most important output is displayed first (the remaining output consists of the standard 
errors for each type of impact). The "Direct" column represents the local impacts on a 
Census tract and the "Indirect" column represents the impacts on neighboring Census tracts. 
In this example, a one-unit change in the number of vacant household decreases the median 
age by -0.023 in the Census tract of interest and by a total of -0.0059 in the two nearest 
neighbors of that Census tract (or an average of -0.00295 per neighbor). 
 
Spatial error models can be estimated using the ERRORSARLM and the SPAUTOLM 
commands. The FAMILY option can be changed to estimate spatial moving average models 
(SMA) to capture localized impacts or conditionally autoregressive models (CAR). 
 
Syntax 
ttt5 <- errorsarlm(t1, data=tip_data, tip.nn2w) 
ttt6 <- spautolm(t1, data=tip_data, tip.nn2w, famil y="SAR") 
ttt7 <- spautolm(t1, data=tip_data, tip.nn2w, famil y="SMA") 
ttt8 <- spautolm(t1, data=tip_data, nb2listw(make.s ym.nb(tip.nn2), style="B"),  
family="CAR") 

 
Spatial error models can also be estimated by the Generalized Method of Moments (GMM) 
using the GMERRORSAR command. The GMARGIMAGE command can be used to 
visualize the argmin process used to find the spatial error parameter (lambda), and the 
HAUSMAN.TEST can be used to conduct a spatial Hausman test to test whether the 
coefficients estimated by OLS are significantly different from the coefficients estimated from 
the spatial error model. 
 
Syntax 
ttt100 <- GMerrorsar(t1, data=tip_data, listw=tip.n n2w,returnHcov=TRUE) 
summary(ttt100) 
 
# Map the argmin function used to find spatial erro r parameter lambda 
ttt100z<-GMargminImage(ttt100) 
levs <- quantile(ttt100z$z, seq(0, 1, 1/12)) 
image(ttt100z, breaks=levs, xlab="lambda", ylab="s2 ") 
points(ttt100$lambda, ttt100$s2, pch=3, lwd=2) 
contour(ttt100z, levels=signif(levs, 4), add=TRUE) 
 
# Test for significant differences between OLS, SEM  
 
Hausman.test(ttt100) 

 
Output 
> summary(ttt100) 
 
Call: 
GMerrorsar(formula = t1, data = tip_data, listw = t ip.nn2w, returnHcov = TRUE) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-6.42972 -2.95045  0.52438  2.14809  5.93364  
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Type: GM SAR estimator 
Coefficients: (GM standard errors)  
               Estimate  Std. Error z value  Pr(>|z |) 
(Intercept) 30.06981098  1.36436829 22.0394 < 2.2e- 16 
marhh.no.c   0.01302796  0.00286872  4.5414 5.588e- 06 
hh.vacant   -0.02559460  0.00861433 -2.9712  0.0029 67 
age.18.21   -0.00190071  0.00045651 -4.1635 3.133e- 05 
 
Lambda: 0.15942 
Number of observations: 37  
Number of parameters estimated: 6 
 
> Hausman.test(ttt100) 
 
        Spatial Hausman test (approximate) 
 
data:  med.age ~ 1 + marhh.no.c + hh.vacant + age.1 8.21  
Hausman test = 7.4996, df = 4, p-value = 0.1117 

 
The p-value indicates that the estimates are not significantly different, which implies that the 
spatial error model is unbiased (the null hypothesis assumes both the OLS and spatial error 
estimators are unbiased). Shown below is the argmin image. 
 

 
Figure 7: Argmin image from spatial error model estimated using generalized 

moments. 

 

Spatial ARAR models can be estimated using the SACSARLM command. This command can 
use two different weights matrices, one for the spatial lag term, the other for the spatial 
error term. In this example, a spatial ARAR model will be estimated using two nearest-
neighbors for the spatial lag term and the distance threshold matrix for the spatial error 
term. 
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Syntax 
ttt9 <- sacsarlm(t1, data=tip_data, listw=tip.nn2w, listw2=tip.dw) 
summary(ttt9) 

 
Output 
> ttt9 <- sacsarlm(t1, data=tip_data, listw=tip.nn2 w,listw2=tip.dw) 
> summary(ttt9) 
 
Call:sacsarlm(formula = t1, data = tip_data, listw = tip.nn2w, listw2 = tip.dw) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-5.294877 -1.471924  0.051992  1.694360  4.872865  
 
Type: sac  
Coefficients: (asymptotic standard errors)  
               Estimate  Std. Error z value  Pr(>|z |) 
(Intercept) 23.99263479  3.17055278  7.5673 3.819e- 14 
marhh.no.c   0.01235672  0.00246689  5.0090 5.470e- 07 
hh.vacant   -0.02572765  0.00793758 -3.2412   0.001 19 
age.18.21   -0.00180864  0.00041904 -4.3161 1.588e- 05 
 
Rho: 0.20227 
Asymptotic standard error: 0.095572 
    z-value: 2.1164, p-value: 0.034308 
Lambda: -0.68138 
Asymptotic standard error: 0.42412 
    z-value: -1.6066, p-value: 0.10815 
 
LR test value: 7.7691, p-value: 0.020558 
 
Log likelihood: -88.91372 for sac model 
ML residual variance (sigma squared): 6.9276, (sigm a: 2.632) 
Number of observations: 37  
Number of parameters estimated: 7  
AIC: 191.83, (AIC for lm: 195.6) 

 
Interestingly, the spatial error term is now (marginally) significant using a different weights 
matrix. Note that the magnitude of the spatial lag parameter did not significantly change 
when compared to the spatial lag model. A robust variant that corrects for heteroskedasticity 
can be estimated using the GSTSLS command from the SPHET package. 
 
Syntax 
# SAC with robust correction, sphet 
# Note how the p-value of the lag parameter drops t o 0.06 vs. 0.03 
# If you get a negative lag or rho parameter, sampl e size 
# may be too small 
 
ttt90 <- gstsls(t1,data=tip_data,listw=tip.nn2w,lis tw2=tip.dw,robust=TRUE) 
summary(ttt90) 
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Output 
> summary(ttt90) 
 
Call:gstsls(formula = t1, data = tip_data, listw = tip.nn2w, listw2 = tip.dw,  
    robust = TRUE) 
 
Residuals: 
       Min         1Q     Median         3Q        Max  
-5.3332468 -1.2382329 -0.0045799  1.6154866  4.9044 945  
 
Type: GM SARAR estimator 
Coefficients: (GM standard errors)  
              Estimate Std. Error z value  Pr(>|z|)  
Wyt          0.2309161  0.1254193  1.8412    0.0656  
(Intercept) 23.1157659  4.0966625  5.6426 1.675e-08  
marhh.no.c   0.0121537  0.0022757  5.3407 9.259e-08  
hh.vacant   -0.0252029  0.0051741 -4.8710 1.111e-06  
age.18.21   -0.0017689  0.0004084 -4.3312 1.483e-05  
 
Lambda: -0.67857 
Number of observations: 37  
Number of parameters estimated: 7 

 
The spatial lag models estimated previously assumed that the distance decay effect of spatial 
correlation (i.e. effects of neighbors increase with distance - one would not expect changes in 
North Vernon, in southeastern Indiana, to have an appreciable effect on West Lafayette) has 
a geometric functional form. The matrix exponential spatial lag model (MESS), on the other 
hand, assumes this decay function is exponential, as opposed to geometric. The spatial lag 
MESS model can be estimated In SPDEP using the LAGMESS command, which has a syntax 
similar to LAGSARLM and STSLS. 
 
Syntax 
ttt91 <- lagmess(t1, data=tip_data, tip.nn2w) 
summary(ttt91) 

 
Output 
Matrix exponential spatial lag model: 
 
Call: 
lagmess(formula = t1, data = tip_data, listw = tip. nn2w) 
 
Coefficients: 
               Estimate  Std. Error t value  Pr(>|t |) 
(Intercept) 23.32748316  1.30002938 17.9438 < 2.2e- 16 
marhh.no.c   0.01152244  0.00269711  4.2721 0.00015 44 
hh.vacant   -0.02203113  0.00871004 -2.5294 0.01638 48 
age.18.21   -0.00181454  0.00043834 -4.1396 0.00022 60 
 
Residual standard error: 2.9446 on 33 degrees of fr eedom 
Multiple R-squared: 0.66387,    Adjusted R-squared:  0.63331  
F-statistic: 21.725 on 3 and 33 DF,  p-value: 5.962 8e-08  
 
Alpha: -0.25515, standard error: 0.11982 
    z-value: -2.1294, p-value: 0.033219 
LR test value: 4.91, p-value: 0.026702 
Implied rho: 0.225199 
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Note that the spatial lag MESS parameter, which is implicit with the matrix exponential 
spatial lag model, is not significantly different when compared to the spatial lag parameter in 
the other models. 
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