Lista de análise de superfície resposta Prof. Elias T. Krainski - Disciplina CE074 - semestre 20102

		nale V (verdadeiro) ou F (falso) às frases a seguir sobre experimentos com confundito com blocos.
	(a)	() A análise de superfície resposta é aplicável quando os fatores são quantitativos.
	(b)	() A construção de uma superfície resposta é feita estimando-se um modelo de primeira ou de segunda ordem.
	(c)	() A análise de superfície resposta combina técnicas estatísticas e matemáticas para encontrar o ponto ótimo.
	(d)	($$) Os níveis dos fatores do ponto ótimo são aqueles que isoladamente proporcionam a melhor resposta.
	(e)	() Em experimentos fatoriais, não é possível encontrar um ponto ótimo apenas estudando um fator de cada vez.
	(f)	() O ponto ótimo é encontrado estimando-se um modelo de segunda ordem.
	(g)	($$) O ponto ótimo nem sempre está dentro do espaço amostral experimental considerado.
	(h)	() O método da máxima inclinação ascendente (ou descendente) é indicado quando o ponto ótimo não está na região amostral utilizada.
	(i)	() Os experimentos ao longo da trajetória de máxima inclinação é uma coleta de dados para analisar a região ótima.
	(j)	() Se o ponto ótimo existe, então esse ponto pode ser encontrado pelas derivadas parciais da equação do modelo de primeira ordem em relação a cada fator.
	(k)	() Ao se encontrar o ponto estacionário, é necessário verificar se é um máximo, mínimo ou ponto de sela.
	(l)	() Os autovalores da matriz construida a partir dos coeficientes dos termos de primeira ordem do modelo de segunda ordem são utilizados para analisar a superfície quando o ponto estacionário está na região estudada.
	(m)	() Um experimento $2\hat{k}$ não é adequado para estimar um modelo de segunda ordem.
	(n)	() A adição de pontos centrais num experimento $2\hat{k}$ tem por objetivo coletar dados para testar falta de ajuste do modelo de primeira ordem.
	(o)	$(\ \)$ O planejamento central composto tem por objetivo coletar dados para estimar um modelo de segunda ordem.
2.	Cons	sidere os dados da tabela a seguir:
	(a)	Estime os coeficientes do modelo com os termos de primeira e segunda ordem.
	(b)	Faça um gráfico da superfície resposta. Você diria que o ponto ótimo está na região amostral em estudo?

(c) Encontre os valores de x1 e x2 que fornecem o ponto ótimo.

(d) Encontre o valor da resposta no ponto ótimo.(e) Esse ponto é de máximo, mínimo ou de sela?

id	x1	x2	у
1	-1.00	-1.00	61.0
2	-1.00	1.00	63.9
3	1.00	-1.00	58.8
4	1.00	1.00	46.0
5	0.00	0.00	50.2
6	0.00	0.00	50.0
7	0.00	0.00	50.6
8	0.00	0.00	49.4
9	0.00	0.00	49.4
10	1.42	0.00	52.4
11	-1.42	0.00	66.2
12	0.00	1.42	52.1
_13	0.00	-1.42	59.9

3. Considere os coeficientes em cada alternativa a seguir encontre os valores de x1 e x2 que fornecem o ponto ótimo, encontre o valor da resposta no ponto ótimo e verifique se esse ponto é de mínimo, máximo ou de sela.

(a) (Intercept)	x1	x2	I(x1^2)	I(x2^2)	x1:x2
49.88	3.77	-3.02	4.77	3.13	-4.58
(b) (Intercept)	x1	x2	I(x1^2)	I(x2^2)	x1:x2
49.84	-2.88	4.23	2.82	-5.16	4.97
(c) (Intercept) 50.16	x1	x2	I(x1^2)	I(x2^2)	x1:x2
	5.20	4.13	-5.49	-3.01	-3.35