Lista 2 CE210 (parte A), semestre 2012-1

Prof. Elias T. Krainski

Out-2012

- 1. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n da distribuição $U(0, \theta)$, com $\theta > 0$. Considere as hipótestes $H_0: \theta > 5$ e $H_1: \theta < 5$. Seja $Y_{(n)} = max(X_1, ..., X_n)$ e um teste que rejeita H_0 se $Y_{(n)} < 3$.
 - (a) Determine a função poder do teste
 - (b) Esboce um gráfico da função poder do teste para n = 10 e n = 30
 - (c) Determine o tamanho do teste
- 2. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n de uma distribuição Bernoulli (θ) , com $\theta \in (0, 1)$. Considere as hipótestes $H_0: \theta < 0.3$ e $H_1: \theta > 0.3$. Seja $\hat{Y} = \frac{\sum_{i=1}^n Y_i}{n}$ e um teste que rejeita H_0 se $\hat{Y} > 0.5$.
 - (a) Determine a função poder do teste
 - (b) Esboce um gráfico da função poder do teste para n=10 e n=100
 - (c) Determine o tamanho do teste
- 3. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n=3 da distribuição Poisson (θ) . Considere as hipóteses $H_0: \theta < 5$ e $H_1: \theta > 5$. Calcule o valor p, considerando os dados 4, 3, 7.
- 4. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n=3 da distribuição Bernoulli(5, θ). Considere as hipóteses $H_0: \theta < 0.5$ e $H_1: \theta \neq 0.5$. Calcule o valor p, considerando os dados 2, 4, 3.
- 5. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n=3 da distribuição Normal $(\theta, 1)$. Considere as hipóteses $H_0: \theta < 5$ e $H_1: \theta > 5$. Calcule o valor p, considerando os dados 4, 3, 7.
- 6. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n=3 da distribuição Normal $(\theta, 1)$. Considere as hipóteses $H_0: \theta < 3$ e $H_1: \theta \neq 3$. Calcule o valor p, considerando os dados 6, 5, 3.
- 7. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n da distribuição $N(\theta, \sigma^2)$, com σ^2 conhecido. Obtenha o teste UMP para testar $H_0: \theta < \theta_0 \times H_1: \theta > \theta_0$
- 8. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n da distribuição $N(\mu, \theta)$, com μ conhecido. Obtenha o teste UMP para testar $H_0: \theta < \theta_0 \times H_1: \theta > \theta_0$
- 9. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n da distribuição $Bernoulli(\theta)$. Obtenha o teste UMP para testar $H_0: \theta > \theta_0 \times H_1: \theta < \theta_0$

- 10. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n da distribuição $Poisson(\theta)$. Obtenha o teste UMP para testar $H_0: \theta < \theta_0 \times H_1: \theta > \theta_0$
- 11. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n da distribuição $Gamma(\alpha, \beta)$, com α conhecido. Obtenha o teste UMP para testar $H_0: \beta > \beta_0 \times H_1: \beta < \beta_0$
- 12. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n da distribuição $Gamma(\alpha, \beta)$, com β conhecido. Obtenha o teste UMP para testar $H_0: \alpha > \alpha_0 \times H_1: \alpha < \alpha_0$
- 13. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n da distribuição $N(\theta, \sigma^2)$, com σ^2 conhecido. Obtenha o teste de RMV para testar $H_0: \theta = 0 \times H_1: \theta \neq 0$
- 14. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n da distribuição $N(\theta, \sigma^2)$, com σ^2 desconhecido. Obtenha o teste de RMV para testar $H_0: \theta = 0 \times H_1: \theta \neq 0$
- 15. Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de tamanho n da distribuição $N(\mu, \theta)$, com μ conhecido. Obtenha o teste de RMV para testar $H_0: \theta = 3 \times H_1: \theta \neq 3$