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Abstract

Clustered competing risks data are a complex failure time data scheme. Its

main characteristics are the cluster structure, which implies a latent within-cluster

dependence between its elements, and its multiple variables competing to be the one

responsible for the occurrence of an event, the failure. To handle this kind of data,

we propose a full likelihood approach, based on generalized linear mixed models

instead the usual complex frailty model. We model the competing causes in the

probability scale, in terms of the cumulative incidence function (CIF). A multinomial

distribution is assumed for the competing causes and censorship, conditioned on the

latent effects that are accommodated by a multivariate Gaussian distribution. The

CIF is specified as the product of an instantaneous risk level function with a failure

time trajectory level function. The estimation procedure is performed through the

R package TMB (Template Model Builder), an C++ based framework with efficient

Laplace approximation and automatic differentiation routines. A large simulation

study was performed, based on different latent structure formulations. The model

fitting was challenging and our results indicated that a latent structure where both

risk and failure time trajectory levels are correlated is required to reach reasonable

estimation.
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1 Introduction

Competing risks data, and more generally failure time data, can be modeled in two

possible scales: the hazard and the probability scale, with the former being the most

popular. A competing risks process can be seen as the multivariate extension of a failure

time process, having multiple causes competing to be the one responsible for the desired

event occurrence, properly, a failure. In Figure 1 a visual aid is provided considering m

competing causes, where zero represents the initial state.
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Figure 1: Illustration of competing risks process.

Failure time data is the branch of Statistics responsible to handle random variables

describing the time until the occurrence of an event, a failure (Kalbfleisch and Prentice;

2002; Hougaard; 2000). The time until a failure is called survival experience, and is the

modeling object. To accommodate the number of possible causes for a failure there is

the competing risks data scheme. More specifically, its clustered version with groups of

elements sharing some non-observed latent dependence structure.

When this framework is applied in real-world situations, we have to be able to handle

with the nonoccurrence of the desired event, by any of the competing causes, for, let us

say, logistic reasons (short-time study and outside scope causes are some examples). This,

generally noninformative, nonoccurrence of the event is called censorship.

When the elements under study are organized in clusters (a family, e.g.), it opens

space to what is called family studies. In family studies, the goal is to accommodate

the non-observed latent dependence and try to understand the relationship between the

family elements. In other words, how the occurrence of an event in a subject affects the

survival experience for the same or similar event.

The survival experiences is usually modeled in the hazard (failure rate) scale, and

with the latent within-cluster dependence accommodation we have what is called a frailty

model (Clayton; 1978; Vaupel et al.; 1979; Liang et al.; 1995; Petersen; 1998). The use

of frailty models implies in complicated likelihood functions and inference routines done

via elaborated and slow EM algorithms (Nielsen et al.; 1992; Klein; 1992) or inefficient

MCMC schemes (Hougaard; 2000). With multiple survival experiences, the general idea

is the same but with even more elaborated likelihoods (Prentice et al.; 1978; Therneau

and Grambsch; 2000) or mixture model approaches (Larson and Dinse; 1985; Kuk; 1992).
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When in the hazard scale, the interpretations are in terms of hazard rates. A less

usual scale but with a more appealing interpretation is the probability scale. For com-

peting risks data, the work on the probability scale is done by means of the cumulative

incidence function (CIF) (Andersen et al.; 2012), with the main modeling approach be-

ing the subdistribution (Fine and Gray; 1999). In family studies or populational studies,

where the main interest relies on describing and understanding, in terms of regressors, the

long-run behavior of a process, the CIF is a suitable modeling choice having the bonus of

the interpretation in terms of the probability scale.

For clustered competing risks data there are some available options but with a lack

of predominance. The options vary in terms of likelihood specification, with its majority

being designed for bivariate CIFs, where increasing the CIF’s dimension is a limitation.

Some of the existing options are (i) nonparametric approaches (Cheng et al.; 2007, 2009);

(ii) linear transformation models (Fine; 1999; Gerds et al.; 2012; He et al.; 2022); (iii)

semiparametric approaches based on composite likelihoods (Shih and Albert; 2009; Ced-

erkvist et al.; 2019), estimating equations (Scheike and Sun; 2012; Cheng and Fine; 2012),

copulas (Scheike et al.; 2010), or mixtures (Naskar et al.; 2005; Shi et al.; 2013).

Besides the interpretation, by modeling the CIF it is possible to specify complex

within-cluster dependence structures. We follow Cederkvist et al. (2019) and work with

a CIF specification based on its decomposition in instantaneous risk and failure time tra-

jectory functions, with both being cluster-specifics and possible correlated. Instead of an

elaborated composite likelihood approach, as a modeling framework, we use a generalized

linear mixed model (GLMM) specification. Through a GLMM we have a straightfor-

ward full likelihood specification, easy to virtually extend to any number of competing

causes, and capable to allow for complex CIF structures. To make the estimation and

inferential process the most efficient as possible we take advantage of state-of-art compu-

tational libraries and efficiently implemented routines under the TMB (Kristensen et al.;

2016) package of the R (R Core Team; 2021) statistical software.

The class of generalized linear models (GLMs) (Nelder and Wedderburn; 1972) is prob-

ably the most popular statistical modelling framework. Despite its flexibility, the GLMs

are not suitable for dependent data. For the analysis of such data, Laird and Ware (1982)

proposed the random effects regression models for longitudinal/repeated-measures data,

and Breslow and Clayton (1993) presented the GLMMs for the analysis of non-Gaussian

outcomes. In this framework, we can accommodate all competing causes of failure and

censorship under a multinomial probability distribution. The latent within-cluster de-

pendence is accommodated via a multivariate normal distribution, and the cause-specific

CIFs via the model’s link function.

The main goal of this article is to propose a likelihood approach for parameter es-

timation and inference in the context of clustered competing risks data with a flexible

within-cluster dependence structure. The model specification is based on the approach of
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Cederkvist et al. (2019) which in turn resembles the GLMM framework. However, for pa-

rameter estimation, we propose a full likelihood approach where the marginal likelihood

function is obtained using the Laplace approximation. On the other hand, Cederkvist

et al. (2019) employed an intricate composite likelihood combined with Adaptative Gaus-

sian Quadrature. The main advantage of our approach is the computational efficiency

allowing us to use state-of-art numerical libraries for automatic differentiation and par-

alell computation.

The main contributions of this article are: (i) introducing the modeling of cause/cluster-

specific CIFs of clustered competing risks data into an efficient implementation of the

GLMMs framework; (ii) performing a extensive simulation study to check the proper-

ties of the maximum likelihood estimator to learn the cause-specific CIF forms and the

feasibility of the within-cluster dependence structure.; (iii) providing R code and C++

implementation for the used GLMMs.

The work is organized as follows. Section 2 presents the CIF specification and the

multinomial GLMM. Section 3 presents the estimation and inferential routines. Section 4

presents the performed simulation studies to check the model viability. Finally, the main

contributions of the article are discussed in Section 5.

2 Model

2.1 Cluster-specific cumulative incidence function (CIF)

Consider that the observed follow-up time of a subject is given by T = min(T ∗, C), where

T ∗ denote the failure time and C denote the censoring time. Given the possible covariates

x, for a cause-specific of failure k, the cumulative incidence function (CIF) is defined as

Fk(t | x) = P[T ≤ t, K = k | x] =
∫ t

0

fk(z | x) dz

=

∫ t

0

λk(z | x) S(z | x) dz, t > 0, k = 1, . . . , K,

where fk(t | x) is the (sub)density for the time to a type k failure. The subdensity is

composed by the cause-specific hazard function or process λk(t | x), representing the

instantaneous rate for failures of type k at time t given x and all other failure types

(competing causes). If we sum up all cause-specific hazard functions we get the overall

hazard function λ(t | x). From the overall hazard function we arrive in the overall survival

function,

S(t | x) = P[T > t | x] = exp

{
−
∫ t

0

λ(z | x) dz
}
,
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the second function that compose the subdensity fk(t | x). A comprehensive reference

for all these definitions is the book of Kalbfleisch and Prentice (2002).

To take into consideration our clustered/family structure, we follow the same CIF

specification of Cederkvist et al. (2019). For two competing causes of failure, the cause-

specific CIFs are specified in the following manner

Fk(t | x, u1, u2, ηk) = πk(x, u1, u2)︸ ︷︷ ︸
cluster-specific

risk level

×Φ[wkg(t)− xγk − ηk]︸ ︷︷ ︸
cluster-specific

failure time trajectory

, t > 0, k = 1, 2, (1)

i.e., as the product of a cluster-specific risk level with a cluster-specific failure time tra-

jectory, resulting in a cluster-specific CIF. What makes these components cluster-specific

are u = {u1, u2} and η = {η1, η2}, Gaussian distributed latent effects with zero mean

and potentially correlated,
u1

u2

η1

η2

 ∼ Multivariate

Normal



0

0

0

0

 ,


σ2
u1

cov(u1, u2) cov(u1, η1) cov(u1, η2)

σ2
u2

cov(u2, η1) cov(u2, η2)

σ2
η1

cov(η1, η2)

σ2
η2


 .

The cluster-specific risk levels are modeled by a multinomial logistic regression model

with latent effects, i.e.

πk(x,u) =
exp{xβk + uk}

1 + exp{xβ1 + u1}+ exp{xβ2 + u2}
, k = 1, 2, (2)

where the βk’s are the coefficients responsible for quantifying the impact of the covariates

in the cause-specific risk levels. For individuals from the same cluster/family, at the same

time point, the βks have the well-known odds ratio interpretation.

The second component of Equation 1 is the cluster-specific failure time trajectory

Φ[wkg(t)− xγk − ηk], t > 0, k = 1, 2,

where Φ(·) is the cumulative distribution function of a standard Gaussian distribution.

With regard to the function g(t), it plays a crucial role since the proposed CIF separation

is only possible with it. It is used a time t transformation given by

g(t) = arctanh

(
t− δ/2

δ/2

)
, t ∈ (0, δ), g(t) ∈ (−∞, ∞),

where δ depends on the data and cannot exceed the maximum observed follow-up time τ ,

i.e. δ ≤ τ . With this Fisher-based transformation the value of the cluster-specific failure

time trajectory is equal 1 at time δ. Consequently, Fk(δ | x, u, ηk) = πk(x | u) and

6



we can interpret π1(x | u) and π2(x | u) as the cause-specific cluster-specific risk levels

at time δ. The cluster-specific survival function is given by S(t | x, u, η) = 1 − F1(t |
x, u, η1)− F2(t | x, u, η2).

A direct understanding of all coefficients/parameters in Equation 1 can be reached

via the top-placed illustrations in Figure 2. We consider two competing causes, without

covariates, and plot the cluster-specific CIF of just one failure cause. We see that:

• The β’s are related to the curve’s maximum value, i.e. bigger the β highest the CIF;

• The γk’s are the coefficients responsible for quantifying the impact of the covari-

ates in the cause-specific failure time trajectories, i.e. the shape of the cumulative

incidence. We see that the γ’s are also related with an idea of midpoint and con-

sequently, growth speed. The fact that γk enters negatively in the cluster-specific

failure time trajectory makes that a negative value causes an advance towards the

curve, whereas a positive value causes a delay;

• Last but not least, the w’s. With negative values we have a decreasing curve and

with positive values an increasing curve, the behavior of interest.

Figure 2: Curve behaviors for different parameter settings, showing then the correspond-
ing parameter effects in a cluster-specific cumulative incidence function (CIF).
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Remains to talk about the within-cluster dependence induced by the latent effects in

u and η. To help in the discussion, the bottom-plots on Figure 2 illustrates the cluster-

specific CIF for a given failure cause in a model without covariates, let us call it failure

cause 1 (in total we have two). The latent effects u1 and u2 always appear together in

the cluster-specific risk level, as consequency they have a joint effect on the cumulative

incidence of both causes. As we can see in Figure 2, an increase in uk will increase

the risk of failure from cause k. The interpretation of cov(η1, η2) and cov(u1, u2) is

straightforward, and those values are in most of the cases positive, as said in Cederkvist

et al. (2019). With regard to cov(uk, ηk), negative values are the common situation. A

negative correlation between ηk and uk imply that when ηk decreases, uk increases and

conversely when ηK increases, uk decreases. In other words, an increased risk level is

reached quickly and a decreased risk level is reached later, respectively. With regard to

cross-cause correlation between η and u, positive values are the common situation where

late onset of one failure cause is associated with a high absolute risk of another failure

cause.

2.2 Model specification

The generalized linear mixed model (GLMM) for clustered competing risks data is speci-

fied in the following hierarchical fashion. By simplicity, we focus on two competing causes

of failure but an extension is straightforward. For two competing causes of failure, the

failure or censorship, y, of a subject i, in the cluster/family j and time t, is modeled by

yijt | {u1j, u2j, η1j, η2j} ∼ Multinomial(p1ijt, p2ijt, p3ijt)


u1

u2

η1

η2

 ∼ MN



0

0

0

0

 ,


σ2
u1

cov(u1, u2) cov(u1, η1) cov(u1, η2)

σ2
u2

cov(u2, η1) cov(u2, η2)

σ2
η1

cov(η1, η2)

σ2
η2




pkijt =
∂

∂t
Fk(t | x, u1, u2, ηk) (3)

=
exp{xkijβk + ukj}

1 +
∑K−1

m=1 exp{xmijβm + umj}

× wk
δ

2δt− 2t2
ϕ

(
wkarctanh

(
t− δ/2

δ/2

)
− xkijγk − ηkj

)
,

k = 1, 2.

The probabilities are given by the derivative w.r.t. time t of the cluster-specific CIF. The

choice of a multinomial logistic regression model ensures that the sum of all predicted
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cause-specific CIFs does not exceed 1. Considering two competing causes of failure, we

have a multinomial with three classes. The third class exists to handle the censorship and

its probability is given by the complementary to reach 1. To better describe these curve

behaviors we have Figure 3.

Figure 3: Cluster-specific cumulative incidence function (CIF) curves and their derivatives
(dCIF) for a random scenario with two competing causes.

This framework in Equation 3 results in what we call multiGLMM, a multinomial

GLMM to handle the CIF of clustered competing risks data. For a random sample, the

corresponding marginal likelihood function is given by

L(θ ; y) =
J∏

j=1

∫
ℜ4

π(yj | rj)× π(rj) drj

=
J∏

j=1

∫
ℜ4

{
nj∏
i=1

nij∏
t=1

(
(
∑K

k=1 ykijt)!

y1ijt! y2ijt! y3ijt!

K∏
k=1

p
ykijt
kijt

)
︸ ︷︷ ︸

fixed effect component

}
×

(2π)−2|Σ|−1/2 exp

{
−1

2
r⊤
j Σ

−1rj

}
︸ ︷︷ ︸

latent effect component

drj

=
J∏

j=1

∫
ℜ4

{
nj∏
i=1

nij∏
t=1

K∏
k=1

p
ykijt
kijt︸ ︷︷ ︸

fixed effect

}
(2π)−2|Σ|−1/2 exp

{
−1

2
r⊤
j Σ

−1rj

}
︸ ︷︷ ︸

latent effect component

drj, (4)

where θ = [β γ w σ2 ρ]⊤ is the parameters vector to be maximized. In our framework,

a subject can fail from just one competing cause or get censor, at a given time. Thus,

the fraction of factorials in the fixed effect component is made only by 0’s and 1’s. The

matrix Σ is the variance-covariance matrix, which parameters are given by σ2 and ρ.

To each cluster j we have a product of two components. The fixed effect component,

given by a multinomial distribution with its probabilities specified through the cluster-
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specific CIF (Equation 1) and, the latent effect component, given by a multivariate Gaus-

sian distribution. To each subject i that composes a cluster j we have its specific fixed

effects contribution. The likelihood in Equation 4 is the most general as possible, allowing

for repeated measures to each subject. Since all subjects of a given cluster shares the same

latent effect, we have just one latent effect contribution multiplying the product of fixed

effect contributions. As we do not observe the latent effect variables, rj, we integrate out

in it. With two competing causes of failure we have four latent effects, a multivariate

Gaussian distribution in four dimensions. Consequently, for each cluster, we approximate

an integral in four dimensions. The product of these approximated integrals results in the

called marginal likelihood, to be maximized in θ.

3 Estimation and inference

Our goal is to estimate the parameter vector θ = [β γ w σ2 ρ]⊤. The likelihood for θ

can be written as

L(θ | y,u) =
I∏

i=1

ni∏
j=1

f(yij | ui,β,Σ) f(ui | Σ). (5)

From standard probability theory is easy to see that in the right-hand side (r.h.s.) we

have a joint density, consequently, Equation 5 represents what is called a full or joint

likelihood function. The latent effect u is latent, i.e. we do not observe it. To handle this

we use the Laplace approximation.

If we have a joint density we can just integrate out the undesired variable resulting in

L(θ | y) =
I∏

i=1

∫
Rui

[
ni∏
j=1

f(yij | ui,β,Σ) f(ui | Σ)

]
dui

=
I∏

i=1

∫
Rui

f(yi,ui | θ) dui,

(6)

a marginal density that keeps the parameters {σ2 ρ} of the integrated variable. To

handle this integration step a clever choice is to take advantage of the exponential family

structure together with the Gaussian latent effects distribution. These ideas converge

to an adaptive Gaussian quadrature with one integration point, also known as Laplace

approximation (Molenberghs and Verbeke; 2005; Shun and McCullagh; 1995; Tierney and

Kadane; 1986; Wood; 2015).

We may approximate an analytically intractable integral in a way to obtain a tractable

closed-form expression allowing the numerical maximization of the resulting marginal

likelihood function (Bonat and Ribeiro Jr; 2016). The Laplace approximation has been
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designed to approximate integrals in the form∫
Rui

exp{Q(ui)}dui ≈ (2π)nu/2 |Q′′(ûi)|−1/2 exp{Q(ûi)}, (7)

where Q(ui) is a known unimodal bounded function, and ûi is the value for which Q(ui)

is maximized. A advantage of the Laplace approximation approach in a GLMM is the

exponential family structure. In a usual GLMM the response follows a one-parameter

exponential family distribution that can be written as

f(yi | ui,θ) = exp
{
y⊤
i (xiβ + ziui)− 1⊤

i b(xiβ + ziui) + 1⊤
i c(yi)

}
,

where b(·) and c(·) are known functions. This general and easy to compute expression

together with a (multivariate) Gaussian distribution, highlights the convenience of the

Laplace method. The Q(ui) function to be maximized can be expressed as

Q(ui) = y⊤
i (xiβ + ziui)− 1⊤

i b(xiβ + ziui) + 1⊤
i c(yi)

− nu

2
log(2π)− 1

2
log |Σ| − 1

2
u⊤

i Σ
−1 ui.

(8)

The approximation in Equation 7 requires the maximum ûi of the function Q(ui). As

we assume a Gaussian distribution with a known mean for the latent effects, we have the

perfect initial guess for a Hessian-based maximization method, as the Newton-Raphson

(NR) algorithm. Bonat and Ribeiro Jr (2016) presents the generic expressions for the

derivatives required by the NR method, given by the following:

Q′(u
(k)
i ) = {yi − b′(xiβ + ziu

(k)
i )}⊤ − u

(k)
i

⊤
Σ−1,

Q′′(u
(k)
i ) = −diag{b′′(xiβ + ziu

(k)
i )} −Σ−1.

The marginal log-likelihood function returned by the Laplace approximation, to each

individual or unit under study i, is as follows:

l(θ | yi) = logL(θ | yi) =
n

2
log(2π)− 1

2
log
∣∣diag{b′′(xiβ + ziûi)}+Σ−1

∣∣
+ y⊤

i (xiβ + ziûi)− 1⊤
i b(xiβ + ziûi) + 1⊤

i c(yi)

− nu

2
log(2π)− 1

2
log |Σ| − 1

2
û⊤

i Σ
−1 ûi,

that can now be numerically maximized over the model parameters θ = [β γ w σ2 ρ]⊤

using a quasi-Newton method as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm (Nocedal and Wright; 2006) or the PORT routines (Dennis et al.; 1981; Gay; 1990),

all available in the R (R Core Team; 2021) statistical software.

We use an efficient Laplace approximation routine implemented in TMB (Kristensen
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et al.; 2016). Besides state-of-art linear algebra libraries and the possibility of performing

the computations in parallel, TMB also offers an efficient implementation of automatic

differentiation (Nocedal and Wright; 2006; Wood; 2015; Peyré; 2020), the state-of-art

in gradients computation. In TMB the user should write its likelihood function in a C++

template file and then load it on R. This last characteristic makes TMB general (a vast range

of models being allowed to be written) and powerful (low-level C++model implementation).

4 Simulation studies

To verify the practical viability of our model we performed an extensive simulation study.

As main complicator factors, we may mention the competing causes imbalance, where we

typically have much more censorships than actual failures; and the high dimensionality

problem, having a considerable number of parameters to estimate in both fixed and latent

effects layers.

One of the main questions surrounding our model that we tried to tack down in this

study was, if even when in the possession of a high correlated sample in the latent field, we

are able to estimate all variance and covariance parameters. To answer this question we

worked with four different models, with each one differentiating from the other in terms of

latent effects structure. We had a model with (i) latent effects only on the risk level; (ii)

only on the failure time trajectory level; (iii) on both levels but without cross-correlations,

called a blog-diag model; and (iv) a model with all possible correlations presented, called

as a complete model. In Figure 4 a visual representation of these latent effects structures

is presented, in terms of the corresponding variance-covariance matrices.

Figure 4: Simulation study variance-covariance matrix model designs, considering two
competing causes of failure and consequently, four latent effects.

Besides the four latent effects structures, we worked with two CIF configurations

High CIF configuration : {β1 = −2, β2 = −1.5, γ1 = 1, γ2 = 1.5, w1 = 3, w2 = 4};

Low CIF configuration : {β1 = 3, β2 = 2.5, γ1 = 2.6, γ2 = 4, w1 = 5, w2 = 10}.
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Those two sets of parameter values together with the following variance-covariance

structure values arise in CIF curves with peaks around 0.15 (low incidence scenario) and

0.60 (high incidence scenario). For numerical efficiency reasons, we worked with the log-

variances and the Fisher-z-transformation of the correlation parameters.

σ2
u1

= 1

σ2
u2

= 0.7

σ2
η1

= 0.6

σ2
η2

= 0.9,

Correlation structure =

u1 u2 η1 η2


1 0.1 −0.5 0.3 u1

1 0.3 −0.4 u2

1 0.2 η1

1 η2

.

We also considered three cluster sizes (2, 5, and 10) and three sample sizes (5000, 30000,

and 60000). We had 72 scenarios (4 latent effects structures × 2 CIF configurations

× 3 cluster sizes × 3 sample sizes). For each scenario, we simulated 500 samples. In

total, 36000 (72 × 500) model fittings. In the smallest scenario, we had 500 clusters,

in the biggest one, 30000 clusters. The number of clusters is the number of Laplace

approximations to be performed. With two competing causes of failure, we have a model

with 16 parameters (6 in the fixed effect layer, 3 for each competing cause; and 10 in the

latent effects layer, 4 variances, and 6 covariance parameters).

All models were run, in a parallelized fashion, in one of the two following Linux

systems:

System 1 12 Intel(R) Core(TM) i7-8750H CPU @2.20GHz processors with 16GB RAM;

System 2 30 Intel(R) Xeon(R) CPU E5-2690v2 @3.00GHz processors and 206GB RAM.

The non-complete models (involving 2D Laplace approximations) are kind of fast,

taking always less than 5 minutes of processing. In the most expensive scenarios (30K

4D Laplaces), the complete model takes 30 minutes. In terms of parameters estimation,

the non-complete models fail to learn the data. They appear to be not structured enough

to capture the data characteristics, showing that a full correlated latent field is really the

most appropriate choice.

In the supplementary materials, we have several graphs summarizing the parameters

estimate bias. In each figure, we have the estimate bias and its uncertainty described by

a Wald-based confidence interval, i.e. ± 1.96 the bias standard deviation. We chose to

use this uncertainty representation based on the point estimates instead of the standard

error computations, since in several scenarios the model fails to compute all the standard

errors, caused by Hessian numerical instabilities.

When we assume a non-zero cross-correlation structure (complete model), the im-

provements in terms of bias reduction are huge when compared with the non-complete

models. The mean biases get very close to zero, the standard deviations decrease 50% or

more, compared with the non-complete models, and the high CIF scenarios are the ones
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with a much smaller bias-variance. All this is accomplished through the consideration of

the cross-correlations.

In the simpler models, with a latent structure just in one level, is hard to see some

significant difference between the clusters and sample sizes. With the complete model, in

the other hand, the difference is clear: as we increase the clusters and the sample sizes,

the bias-variance decreases. The mean-bias is basically always the same. The biggest

bias-variances are obtained in the log-variances. A final remark to be made is about

convergences. With the simpler models, not all of them work, having in some scenarios

(generally the ones with 60 thousand data points) a 50∼60% convergence rate. With the

complete model, basically, almost all fits reach convergence (∼95% performance).

About the implied mean-CIF curves, in Figure 5 we have the high CIF scenario curves

and in Figure 6 the low CIF scenario curves. Since for all models we have a latent structure

for the within-cluster dependency, the inherent idea is that this also affect the fixed-effect

parameter estimates. By taking its average in each of the seventy-two scenarios, we are

able to construct the mean CIF curves.
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Figure 5: High cumulative incidence function (CIF) scenario curves. cs means the cluster
size (2, 5, and 10), and 5, 30, and 60K means the sample size.

In Figure 5 is clear that with the complete model we get a perfect fit in all scenarios.

The risk and time models estimate well the curve shape parameters but they fail to learn

the max incidence. A compensation between curves is clear. In the low CIF scenarios in

Figure 6, the estimation is clearly more difficult. The overall fits were bad. For the failure

cause 2, the estimation quality is not so bad. The problem is when we look to the failure

cause 1. The best joint fit is still with the complete model.
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Figure 6: Low cumulative incidence function (CIF) scenario curves. cs means the cluster
size (2, 5, and 10), and 5, 30, and 60K means the sample size.

5 Discussion

The general goal of this paper was the proposition and evaluation of a maximum like-

lihood estimation approach for the analysis of clustered competing risks data. Focused

on the probability scale, by means of the cumulative incidence function (CIF), instead

of the usual hazard scale (Kalbfleisch and Prentice; 2002). We modeled the clustered

competing risks on a latent-effects framework, a generalized linear mixed model (GLMM)

(McCulloch and Searle; 2001), with a multinomial distribution for the competing risks

and censorship, conditioned on the latent-effects. The within-cluster latent dependency

was accommodated by a multivariate Gaussian distribution.
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The failures by the competing causes and their respective censorships are modeled by

means of the CIF (Kalbfleisch and Prentice; 2002; Andersen et al.; 2012). The CIF was

accommodated in our GLMM framework in terms of the link function (McCullagh and

Nelder; 1989), as the product of two functions, one responsible to model the instantaneous

risk and the other the failure time trajectory, both in a cluster-specific fashion. This

particular GLMM formulation is what makes our model, particular. Thus, we have what

we call a multiGLMM: a multinomial GLMM for clustered competing risks data.

The two-function product CIF formulation was taken from Cederkvist et al. (2019)

but there they use a different estimation framework, a composite likelihood framework

(Lindsay; 1988; Cox and Reid; 2004; Varin et al.; 2011). Here we do a full likelihood

analysis instead. A composite approach is generally used when a full likelihood approach

is impossible or computationally impracticable. Our goal here was to assess a full like-

lihood framework taking advantage of state-of-the-art computational libraries together

with efficient algorithm implementations. We have all this with the R (R Core Team;

2021) package TMB (Kristensen et al.; 2016).

The applications in focus here were family studies. Besides the within-cluster/family

dependence, this kind of study is characterized by involving big samples, generally, pop-

ulations. Also, generally having a high number of small clusters, families, and a lot

of censorship. A maximum likelihood approach with the use of efficiently implemented

Laplace approximations (Tierney and Kadane; 1986; Bonat and Ribeiro Jr; 2016) together

with an automatic differentiation (AD) (Wood; 2015; Nocedal and Wright; 2006) routine,

all via TMB, is able to efficiently handle with a high number of clusters, independent of its

size. The multinomial distribution assumption, on its own, is an excellent probabilistic

choice since it can accommodate virtually any number of competing causes of failure and

its censorship. The presence of those two characteristics in our multiGLMM makes it an

efficient and scalable modeling framework for clustered competing risks data.

Even with our modeling framework being virtually able to handle any number of

competing causes of failure, we restrained ourselves to work here with only two of them.

With two competing causes, we have a 4 × 4 covariance matrix for the latent effects,

which implies ten covariance-matrix parameters, which is already a lot of parameters

to be estimated in a latent structure. Since our goal was to assess the viability of the

maximum likelihood estimation method, we kept it with two causes.

The so-called complete model, with latent effects on both risk and failure time tra-

jectory levels with cross-correlations, presented the best results. In its biggest scenario,

with 60000 data points and clusters of size 2, i.e. 30000 four-dimension integral approxi-

mations, the model fitting took 30 minutes, in parallel. Before TMB, we did a complete R

implementation writing our own Laplace approximation (Bonat and Ribeiro Jr; 2016) and

Newton-Raphson gradients and Hessian, by hand. In a scenario with 20000 data points

and clusters of size 2, it took around 30 hours, in parallel. In summary, by using TMB we
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were able to increase the model size 3 times and to decrease the computational time 60

times. An incredible performance gain.

Also with the complete model, we performed a Bayesian analysis via tmbstan (Mon-

nahan and Kristensen; 2018). tmbstan enables MCMC sampling (Gelfand and Smith;

1990; Diaconis; 2009) from a TMB model object using Stan (Stan Development Team;

2019, 2020). Sampling was performed based on the probably state-of-art MCMC sampler

algorithm, a Hamiltonian Monte Carlo (HMC) algorithm with the No-U-Turn Sampler

(NUTS) extension (Hoffman and Gelman; 2014). We performed just one Bayesian model

fitting in a modest scenario with 5000 data points and clusters of size 2. It took around

1 whole week of parallelized processing. The results were basically the same as the ones

obtained with TMB but this high computational time just reinforces the MCMC framework

limitation.

We proposed an ideally complete latent-effects formulation. The main underlying idea

of the simulation study was to see in which scenarios we would be able to learn all the

involved mean and covariance parameters. As part of that, simpler formulations were

proposed. As result, we got that latent effects only in the risk level did not work. The

optimization appears to got lost as if something was missing. Inserting latent effects

only in the failure time trajectory level returned better results, but still not satisfactorily

good. In most of the evaluated scenarios, the block-diagonal model appeared to be in the

middle of them, as a compromise. The best results (smallest parameter estimates biases)

were obtained with the complete model. The complete model works fine, mainly in the

scenarios of high CIF configuration, and also as expected, as the sample size increases.

As an alternative to our model, we have two possible paths. We could instead of a con-

ditional modeling framework (GLMM/latent-effects model), employ a marginal modeling

framework. In this framework, instead of caring about the specification of a probability

distribution to the competing causes conditioned on the latent effects, we just care about

the specification of a mean and a variance structure. This approach does not have a

likelihood function per se, but the estimation procedure tends to be easier than with the

GLMM one. Marginal modeling frameworks that can be used here are the semiparametric

linear transformation model (He et al.; 2022), also with the advantage of the non-necessity

of modeling the censoring distribution, and the multivariate covariance generalized linear

model (McGLM) (Bonat and Jørgensen; 2016; Bonat; 2018). How to exactly model the

CIF of clustered competing risks data in this framework, is something to still be figured

out.

The other path is by the use of a different way of modeling the dependence struc-

ture. Instead of a latent-effects approach, we could use copulas (Embrechts; 2009; Scheike

et al.; 2010; Masarotto and Varin; 2012; Krupskii and Joe; 2013). How to do that is some-

thing to still be figured out in terms of which kind (conditional or marginal) and version

(Archimedean-, Gauss-, Maltesian-, t-, hyperbolic-, zebra-, and elliptical-) of copula to
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use, besides the estimability issue.

The C++ and R code for fitting our multiGLMM is available at http://leg.ufpr.br/

~henrique/papers/multiglmm/.

Supplementary material

Figure 7: Parameter β1 bias with ± 1.96 standard deviations. cs means the cluster size,
and 5-30-60k the sample size. Bar width is given by the number of converged fittings.
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Figure 8: Parameter β2 bias with ± 1.96 standard deviations. cs means the cluster size,
and 5-30-60k the sample size. Bar width is given by the number of converged fittings.

Figure 9: Parameter γ1 bias with ± 1.96 standard deviations. cs means the cluster size,
and 5-30-60k the sample size. Bar width is given by the number of converged fittings

.

20



Figure 10: Parameter γ2 bias with ± 1.96 standard deviations. cs means the cluster size,
and 5-30-60k the sample size. Bar width is given by the number of converged fittings.

Figure 11: Parameter w1 bias with ± 1.96 standard deviations. cs means the cluster size,
and 5-30-60k the sample size. Bar width is given by the number of converged fittings.
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Figure 12: Parameter w2 bias with ± 1.96 standard deviations. cs means the cluster size,
and 5-30-60k the sample size. Bar width is given by the number of converged fittings.

Figure 13: Parameter log(σ2
1) bias with ± 1.96 standard deviations. cs means the cluster

size, and 5-30-60k the sample size. Bar width is given by the number of converged fittings.
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Figure 14: Parameter log(σ2
2) bias with ± 1.96 standard deviations. cs means the cluster

size, and 5-30-60k the sample size. Bar width is given by the number of converged fittings.

Figure 15: Parameter log(σ2
3) bias with ± 1.96 standard deviations. cs means the cluster

size, and 5-30-60k the sample size. Bar width is given by the number of converged fittings.
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Figure 16: Parameter log(σ2
4) bias with ± 1.96 standard deviations. cs means the cluster

size, and 5-30-60k the sample size. Bar width is given by the number of converged fittings.

Figure 17: Parameter z(ρ12) bias with ± 1.96 standard deviations. cs means the cluster
size, and 5-30-60k the sample size. Bar width is given by the number of converged fittings.

24



Figure 18: Parameter z(ρ34) bias with ± 1.96 standard deviations. cs means the cluster
size, and 5-30-60k the sample size. Bar width is given by the number of converged fittings.

Figure 19: Parameter {z(ρ13), z(ρ24), z(ρ14), z(ρ23)} bias with ± 1.96 standard devia-
tions. cs means the cluster size, and 5-30-60k the sample size. Bar width is given by the
number of converged fittings.
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