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ABSTRACT
The No-Free-Lunch theorems (NFLTs) are criticized for be-
ing too general to be of any relevance to the real world
scenario. This paper investigates, both formally and em-
pirically, the implications of the NFLTs for realistic search
algorithms. In the first part of the paper, by restricting our-
selves to a specific performance measure, we derive a new
NFL result for a class of problems which is not closed un-
der permutations. In the second part, we discuss properties
of this set which are likely to be true for realistic search
algorithms. We provide empirical support for this in [1].
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1. INTRODUCTION
The publication of the No-free-lunch theorems (NFLTs)

[2] led to an ongoing debate about its applicability to real-
world problems. In particular, the main argument against
the NFLT is its generality: it applies to the class of all
possible problems. Hence, the problems on which some al-
gorithms may fail will be, in most cases, artificial. In this
paper we attempt to connect the general framework of the
No Free Lunch Theorems (NFLTs) to real-world problems.

Let {ft} denote the set of fitness values that the algo-
rithm sampled during a run. The NFLTs consider any per-
formance measure which depends on this set. While this
is general enough to account to many possible performance
measures, more often than not, the only relevant perfor-
mance measure is the number of fitness evaluations it takes
to find an optimum point. In section 2, we restrict our at-
tention to this type of performance measures and derive a
new NFL result for a class of functions which is not closed
under permutation [3].
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The second part (section 3), which is the main result of the
extended version of the paper [1], analyzes the properties of
this set considering realistic search algorithms. It is mainly
based on simple observations regarding the nature of search
for realistic algorithms which are supported by empirical
results (given in [1]). Perhaps the basic component of the
NFL is the notion that an optimizer has to “pay” for its
superiority on one subset of functions with inferiority on
the complementary subset. Our main observation is that
approximately a NFL result might hold on a very small set of
functions. In particular, if algorithm a outperforms random
search on f1 there exists an f2 on which random search
outperforms algorithm a to the same degree. In other words
the performance of the algorithm over f1 and f2 is symmetric
w.r.t. random search.

In this paper, we will formulate, for realistic search algo-
rithms, a possible connection between these two complemen-
tary functions (f1 and f2). We will claim that this connec-
tion is general, i.e., that if this symmetry exists for (a, f1, f2)
it will exist for any other realistic search algorithm as well.
This suggests how the NFLT manifests itself in practice for
realistic search algorithms.

2. NO FREE LUNCH FOR GLOBAL OPTI-
MIZERS

Let X be an ordered finite set and f : X → R a fitness
function. Let fmax denote the highest fitness value of f .
This paper investigates the class of functions F X ≡ {fxi}
where xi, xj ∈ X and fxi is defined as follows:

fxi (xj) =

(

f(xj) if xj 6= xi,

fmax + 1 otherwise.
(1)

In other words, the function fxi is identical to f with the
exception that xi is set to be, explicitly, the global opti-
mum. The performance of an algorithm a on a function
fxi , P (a, fxi ), is defined as the expected number of fitness
evaluations it takes a to sample xi (i.e., the global optimum)
for the first time.

The performance of a search algorithm on the class F X

can be derived from its performance on the function f . In
particular, let ha

f (xi) denote the expected number of fitness
evaluations it takes algorithm a to sample xi for the first
time when executed on f – in other words, the first hitting
time for xi.
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The following is a simple consequence of our definition:

Lemma 1. ([1]) Let a be a search algorithm and f : X →
R a fitness function.

∀xi ∈ X P (a, fxi ) = ha
f (xi) (2)

The vector {ha
f (xi)} corresponds, therefore, to the ex-

pected performance of a on the class F X . The one-to-one
correspondence between P (a, fxi) and ha

f (xi) has interest-
ing consequences. Let us consider the vector {ha

f (xi)}. If we
restrict our attention to a non-resampling search algorithm
(or alternatively to a resampling one which is charged only
for distinct fitness evaluations) the set {ha

f (xi)} represents
the order in which the algorithm samples the search space
(given f). Irrespectively of the fitness function, the average
of {ha

f (xi)} equals the value (|X| + 1)/2 – which is the ex-
pected performance of the algorithm on any function f . This
implies a NFL result for the set F X .

Theorem 1. ([1]) Let f : X → Y be a fitness function
with one global optimum and P (a, f) denote the expected
number of fitness evaluations required to sample the global
optimum. For any non-resampling search algorithms, a1, a2

the following holds:
X

i

P (a1, f
xi ) =

X

i

P (a2, f
xi ) (3)

Constraining the way performance is measured we were
able to derive a new NFL result for a set of functions which
is not closed under permutation. We would like to focus,
however, on the properties of the set {ha

f (xi)} when it is
induced by realistic search algorithms.

3. BEYOND THE NFL
The formal analysis of the NFL, or similarly, the new re-

sult in the previous section can only take us up to a certain
depth. For example, if a is a deterministic non-resampling
search algorithm, the vector {ha

f (xi)} gives the order in
which the algorithm samples the points of the search space.
Take as an example the case where |X| = 4096, we can make
several general observations. For example, irrespective of
the algorithm, ∀aEx(ha

f (x)) = 2048.5 and hence all algo-
rithms, on average, have the same performance. In partic-
ular, the expected performance of random search is exactly
2048.5. Similarly, for any function on which a outperforms
random search (e.g. ha

f (x′) = 2048.5−1048.5) there exists a
function on which random search outperform a to the same
degree (e.g. ha

f (x′′) = 2048.5 + 1048.5).
The NFLT results cannot go beyond this point. For ex-

ample, knowing the identity of x′ in the example above, does
not give us any knowledge about the identity of x′′. In fact,
this is the fundamental observation of the NFLT: because we
have no a priori knowledge on the problem, x′′ can be any
solution from the set X \ {x′}. By restricting our attention
to realistic search algorithms, even if we are unable to define
formally what “realistic” means, the situation changes.

Let us define xmin to be the solution that a samples
with minimum number of fitness evaluations – i.e. xmin =
arg minx ha

f (x). We suggest that the distance of a solution
from xmin is a good indicator for the expected number of fit-
ness evaluation it takes to sample it. Remember that this is
equivalent, using our notation, to say that the performance
of a on the function fx is correlated to d(x, xmin) where
fxmin is the function for which a has the best performance.

Conjecture 1. Let a be a search algorithm and f a fit-
ness function. Define xmin = arg minx ha

f (x). d(x, xmin) is
a good indicator to the first hitting time for x (i.e., ha

f (x)).
That is, the bigger the distance the longer the first hitting
time.

The reason for that is the tendency of reasonable search
algorithms to sample points in the proximity of points with
high fitness value. If the landscape is not random, it causes
the algorithm to follow one (or more) trajectories. xmin

indicates the general direction that the algorithm takes. It
is our conjecture that the further a point is from this main
path the less likely it is to be sampled.

As a consequence of this property, knowing ha
f (xmin) we

can now make predictions for the first hitting time of any
solution in the search space. As our main concern is the
relation with the NFLTs, we will focus on the symmetry
that the NFLTs predict w.r.t. the performance of random
search. We make the following two predictions:

1. Let n denote the diameter of the landscape (i.e. the
biggest distance between two points). The expected
performance of a on fx for x such that d(xmin, x) =
n/2 is that of random search.

2. Let x = arg maxx′ d(x′, x). The average of the ex-
pected first hitting times for x and x equals the perfor-
mance of random search. That is (ha

f (x)+ ha
f (x))/2 =

(|X| + 1)/2.

Following this line of reasoning we made in [1] further
speculations which were supported empirically using mainly
genetic algorithms but also particle swarm optimization and
local search on several problems.

4. CONCLUSION
The NFLTs are criticized for being too general to be of any

relevance to real-world problems. In this paper we showed
(1) that by putting some constraints on the performance
measure it is possible to derive formal NFL results which
might be of more interest to the real-world scenario and (2)
trying to compromise between the size of the problem set
and the accuracy of the prediction, we were able to show that
approximately, averaged over any arbitrary problem and its
negation, the performance of realistic algorithms is similar.
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