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Abstract

This paper presents an approach to combine competent crossover and mutation operators
via probabilistic model building. Both operators are based on the probabilistic model building
procedure of the extended compact genetic algorithm (eCGA). The model sampling procedure
of eCGA, which mimics the behavior of an idealized recombination—where the building blocks
(BBs) are exchanged without disruption—is used as the competent crossover operator. On the
other hand, a recently proposed BB-wise mutation operator—which uses the BB partition infor-
mation to perform local search in the BB space—is used as the competent mutation operator.
The resulting algorithm, called hybrid extended compact genetic algorithm (heCGA), makes
use of the problem decomposition information for (1) effective recombination of BBs and (2)
effective local search in the BB neighborhood. The proposed approach is tested on different
problems that combine the core of three well known problem difficulty dimensions: deception,
scaling, and noise. The results show that, in the absence of domain knowledge, the hybrid
approach is more robust than either single-operator-based approach.

1 Introduction

Genetic Algorithms (GAs) that solve hard problems quickly, reliably, and accurately are known as
competent GAs (Goldberg, 2002). In contrast to traditional GAs, competent GAs use recombination
operators that are able to capture and adapt themselves to the underlying problem structure. In
this way, competent GAs successfully solve decomposable problems with bounded difficulties within
a polynomial (often subquadratic) number of function evaluations.

Basically, competent GAs take problems that were intractable to traditional GAs and renders
them tractable requiring only a subquadratic number of function evaluations. However, for large-
scale problems, even a subquadratic number of fitness evaluations can be very demanding. This
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is especially true if the fitness evaluation requires a complex simulation or computation. So, while
competence leads a problem intractable to tractable, efficiency enhancement takes it from tractable
to practical. One of the efficiency-enhancement techniques for GAs is hybridization.

Hybridization typically involves combining the global-search capabilities of genetic algorithms
with local-search methods that often includes domain- or problem-specific knowledge (Moscato,
1989; Sinha, 2003; Krasnogor, 2002; Hart, 1994). While hybridization is often used in applying GAs
to solve real-world problems, systematic methods for hybridizing and designing competent global
and local-search methods that automatically identify the problem decomposition and important
problem substructures are however lacking.

Therefore, in this paper we present a hybridization of a competent recombination operator that
effectively exchanges key substructures of the problem, and a competent mutation operator that
efficiently searches for best substructures in the building blocks (BBs) partition. Specifically, we
use the probabilistic model-building methodology of extended compact genetic algorithm (eCGA)
(Harik, 1999) to determine the effective problem decomposition and the important substructures (or
building blocks) of the underlying search problem. The probabilistic model, which automatically
induces good neighborhoods, is subsequently used for two distinct purposes:

1. Effective recombination of BBs that provides rapid global-search capabilities

2. Effective search in the BB neighborhood that locally provides high-quality solutions (Sastry
& Goldberg, 2004a).

The key idea is to obtain the benefits from both approaches, recombination without disrupting the
BBs, and mutation (local search) that rapidly searches for the best BBs in each partition.

The next section reviews some of the work done on the discussion “crossover versus mutation”.
Section 3 introduces the extended compact GA, and its selectomutative counterpart is described
in the subsequent section. Next, in Section 5, we describe the proposed hybrid extended compact
genetic algorithm (heCGA) and outline other possible hybridization configurations. In Section 6,
computational experiments are performed, in different problem difficulty dimensions, to evaluate
the behavior of the proposed approach. Finally, we point out some lines of future work followed by
a summary and conclusions.

2 Crossover versus Mutation

Since the early days in the genetic and evolutionary computation (GEC) field that one of the hot
topics of discussion has been the benefits of crossover versus mutation and vice-versa. Crossover
and mutation search the genotype space in different ways and with different resources. While
crossover needs large populations to effectively combine the necessary information, mutation works
best when applied to small populations during a large number of generations.

In genetic algorithms, significant attention has been paid to the design and understanding of
recombination operators. Systematic methods of successfully designing competent selectorecombi-
native GAs have been developed based on decomposition principles (Goldberg, 1999). Depending
on the technique used to discover the problem decomposition, competent selectorecombinative GAs
can be classified into the following categories (Goldberg, 2002):

• Perturbation techniques (Goldberg, Korb, & Deb, 1989; Goldberg, Deb, Kargupta, & Harik,
1993; Kargupta, 1996; Munetomo & Goldberg, 1999; Yu, Goldberg, Yassine, & Chen, 2003;
Heckendorn & Wright, 2004);

• Linkage adaptation techniques (Harik & Goldberg, 1997; Chen & Goldberg, 2002);
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• Probabilistic model building techniques (Pelikan, Goldberg, & Lobo, 2002; Pelikan, 2002;
Larrañaga & Lozano, 2002; Bosman, 2003).

Mutation, on the other hand, is usually a secondary search operator which performs a random
walk locally around a solution and therefore has received far less attention. However, in evolutionary
strategies (ESs) (Rechenberg, 1973), where mutation is the primary search operator, significant
attention has been paid to the development of mutation operators. Several mutation operators,
including adaptive techniques, have been proposed (Rechenberg, 1973; Schwefel, 1977; Bäck, 1996;
Beyer, 1996; Hansen & Ostermeier, 2001). The mutation operators used in ESs are powerful
search operators, however, the neighborhood information is still local around a single solution.
In fact, when solving boundedly difficult GA-hard problems, local neighborhood information is
not sufficient, and a mutation operator which uses local neighborhood requires O(lk log l) function
evaluations1 (Mühlenbein, 1992), which for moderate values of k, grows extremely fast and the
search becomes inefficient compared to competent GAs.

Spears (1993, 2002) did a comparative study between crossover and mutation operators, and
showed that there were some important features of each operator that were not captured by the
other. These results provide a theoretical justification for the fact that the role of crossover is the
construction of high-order building blocks from low-order ones. Clearly, mutation can not perform
this role as well as crossover. However, in terms of disruption, mutation can provide higher levels of
disruption and exploration, but at the expense of preserving alleles common to particular defining
positions (Spears, 1993).

Sastry and Goldberg (2004b) analyzed the relative advantages between crossover and mutation
on a class of deterministic and stochastic additively separable problems. For that study, the authors
assumed that the crossover and mutation operators had perfect knowledge of the BBs partition and
effectively exchanged or searched among competing BBs. They used facetwise models of conver-
gence time and population sizing to determine the scalability of each operator-based algorithm.
The analysis shows that for additively separable deterministic problems, the BB-wise mutation
is more efficient than crossover, while for the same problems with additive Gaussian noise the
crossover-based algorithm outperforms the mutation approach. The results show that the speed-up
of using BB-wise mutation on deterministic problems is O(

√
k log m), where k is the BB size and

m is the number of BBs. In the same way, the speed-up of using crossover on stochastic problems
with fixed noise variance is O(

√
km/ log m).

Over the years, several researchers have identified that the robustness and strengths of GAs lies
in using crossover and mutation. For example, Goldberg (1983, 1999) uses the analogues of two
different innovation modes to explain the mechanisms of selectorecombinative and selectomutative
GAs and has developed innovation intuition to explain the effectiveness of combining the recombi-
nation and mutation. A related approach is hybridization which has often been used in GAs as an
efficiency-enhancement technique (Hart, 1994).

Hybrid GAs combine the typical steps of GAs with local search methods that use some sort of
domain or problem specific knowledge. Many applications of GAs in industry follow this approach
in order to gain from the benefits of hybridization. Hybrid GAs are also referred as memetic
algorithms (Moscato, 1989) or genetic local search methods. A complete survey on this topic
is available elsewhere (Sinha, 2003; Krasnogor, 2002; Hart, 1994). Typically, the motivation for
incorporating local search methods into GAs comes from the fact that local search helps GAs to
achieve a faster convergence and to refine the solutions obtained by the GA (reducing the fitness
variance in the population).

1Being l the problem size and k the BB size.
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However, most hybridization methods are ad hoc and automatic methods of identifying and ex-
ploiting problem decomposition in both global search and local search methods are lacking. There-
fore, in this paper, we investigate the efficiency-enhancement capabilities of combining competent
recombination and mutation operators. Specifically, we focus on probabilistic-model-building-based
operators to propose a competent hybrid GA. In probabilistic model building genetic algorithms
(PMBGAs) the variation operators are replaced by building and sampling a probabilistic model
of promising solutions. This procedure tries to mimic the behavior of an ideal crossover operator,
where the BBs are mixed without disruption. One of the state-of-the-art PMBGAs is the extended
compact genetic algorithm (Harik, 1999), that uses marginal product models (MPMs) to repre-
sent the problem decomposition. Based on this probabilistic model building procedure, Sastry and
Goldberg (2004a) recently proposed a BB-wise mutation operator that performs local search in the
building block space. In the same line of work, we propose a competent hybrid GA that combines
a BB-wise crossover operator with a BB-wise mutation operator via probabilistic model building.
We name this approach as probabilistic model building hybrid genetic algorithm (PMBHGA). Note
that conceptually a PMBHGA is different from a typical hybrid PMBGA in the sense that the lo-
cal search that is performed is based on the probabilistic model instead of using specific problem
knowledge, which turn it into a more general applicable hybridization.

3 Extended Compact Genetic Algorithm

The extended compact genetic algorithm (eCGA) (Harik, 1999) is based on the idea that the
choice of a good probability distribution for promising solutions is equivalent to linkage learning.
The eCGA uses a product of marginal distributions on a partition of genes. This kind of probability
distribution belongs to a class of probability models known as marginal product models (MPMs).
For example, the following MPM, [1,3][2][4], for a 4-bit problem represents that the 1st and 3rd

genes are linked, and the 2nd and 4th genes are independent.
In eCGA, both the structure and the parameters of the model are searched and optimized to

best fit the data (promising solutions). The measure of a good MPM is quantified based on the
minimum description length (MDL) principle, that penalizes both inaccurate and complex models,
thereby leading to an optimal distribution. According to this principle, good distributions are
those under which the representation of the distribution using the current encoding, along with
the representation of the population compressed under that distribution, is minimal. Formally,
the MPM complexity is given by the sum of model complexity, Cm, and compressed population
complexity, Cp. The model complexity, Cm, quantifies the model representation in terms of the
number of bits required to store all the marginal probabilities. Let a given problem of size l with
binary encoding, have m partitions with ki genes in the ith partition, such that

∑m
i=1 ki = l.

Then each partition i requires 2ki − 1 independent frequencies to completely define its marginal
distribution. Taking into account that each frequency is of size log2(n+1), where n is the population
size, the model complexity Cm is given by

Cm = log2(n + 1)
m∑

i=1

(2ki − 1). (1)

The compressed population complexity, Cp, quantifies the data compression in terms of the entropy
of the marginal distribution over all partitions. Therefore, Cp is given by
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Extended Compact Genetic Algorithm (eCGA)

(1) Create a random population of n individuals.

(2) Evaluate all individuals in the population.

(3) Apply s-wise tournament selection (Goldberg, Korb, & Deb, 1989).

(4) Model the selected individuals using a greedy MPM search procedure.

(5) Generate a new population according to the MPM found in step 4.

(6) If stopping criteria is not satisfied, return to step 2.

Figure 1: Steps of the extended compact genetic algorithm (eCGA).

Cp = n
m∑

i=1

2ki∑
j=1

−pij log2(pij), (2)

where pij is the frequency of the jth gene sequence of the genes belonging to the ith partition.
In other words, pij = Nij/n, where Nij is the number of chromosomes in the population (after
selection) possessing bit sequence j ∈ [1, 2ki ] for the ith partition. Note that a BB of size k has 2k

possible bit sequences where the first is denoted by 00...0 and the last by 11...1.
The eCGA performs a greedy MPM search at every generation. The greedy search starts with

the simplest possible model, assuming that all variables are independent (like in the compact GA
(Harik, Lobo, & Goldberg, 1999)), and then keeps merging partitions of genes whenever the MDL
score metric is improved. This process goes on until no further improvement is possible. An
algorithmic description of this greedy search can be found elsewhere (Sastry & Goldberg, 2004a).

As we can see in Figure 1, the extended compact GA is similar to a traditional GA, where the
variation operators (crossover and mutation) are replaced by the probabilistic model building and
sampling procedures. The offspring population is generated by randomly choosing subsets from the
current individuals, according to the probabilities of the subsets stored in the MPM.

Analytical models have been developed for predicting the scalability of PMBGAs (Pelikan,
Goldberg, & Cantú-Paz, 2000; Pelikan, Sastry, & Goldberg, 2003). In terms of number of fitness
evaluations necessary to converge to the optimal solution, these models predict that for additively
separable problems the eCGA scales subquadratically with the problem size: O(2km1.5 log m).
Sastry and Goldberg (2004a) empirically verified this scale-up behavior for the eCGA.

4 Probabilistic Model Building BB-wise Mutation Algorithm

The probabilistic model building BB-wise mutation algorithm (BBMA) (Sastry & Goldberg, 2004a)
is a selectomutative algorithm that performs local search in the building block neighborhood. In-
stead of using a bit-wise mutation operator that scales polynomially with order k as the problem
size increases, the BBMA uses a BB-wise mutation operator that scales subquadratically, as shown
by Sastry and Goldberg (2004a). For BB identification, the authors used the probabilistic model
building procedure of eCGA. However, other probabilistic model building techniques can be used
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Extended Compact Mutation Algorithm (eCMA)

(1) Create a random population of n individuals and evaluate their fitness.

(2) Apply s-wise tournament selection (Goldberg, Korb, & Deb, 1989).

(3) Model the selected individuals using a greedy MPM search procedure.

(4) Choose the best individual of the population for BB-wise mutation.

(5) For each detected BB partition:

(5.1) Create 2k − 1 unique individuals with all possible schemata in the current BB partition.
Note that the rest of the individual remains the same and equal to the best solution
found so far.

(5.2) Evaluate all 2k−1 individuals and retain the best for mutation in the other BB partitions.

Figure 2: Steps of the extended compact mutation algorithm (eCMA).

with similar or better results. In this work, we restrict ourselves to the probabilistic model building
procedure of eCGA, so from now on we refer to this instance of BBMA as the extended com-
pact mutation algorithm (eCMA). Once the linkage groups are identified, an enumerative BB-wise
mutation operator (Sastry & Goldberg, 2004b) is used to find the best schema for each detected
partition. A description of the eCMA can be seen in Figure 2.

The performance of the BBMA can be slightly improved by using a greedy heuristic to search for
the best among competing BBs in each partition. Even so, the scalability of BBMA is determined
by the population size required to accurately identify the BB partitions. Therefore, the number of
function evaluations scales as O(2km1.05) ≤ nfe ≤ O(2km2.1) (Sastry & Goldberg, 2004a; Pelikan,
Sastry, & Goldberg, 2003).

It should be also noted that on BBMA the linkage identification is only done at the initial
stage. This kind of offline linkage identification works well on problems of nearly equal salience,
however, for problems with non-uniformly scaled BBs, the linkage information needs to be updated
at regular intervals. This limitation will be empirically shown in our experimental results.

5 Probabilistic Model Building Hybrid Genetic Algorithm

In Sections 3 and 4, we presented two competent operators for solving additively decomposable
hard problems, based on the probabilistic model building procedure of eCGA. Therein, we use
the same procedure to build the probabilistic model and combine both operators in the same
algorithm. Similar to eCGA, our hybrid extended compact genetic algorithm (heCGA) models
promising solutions in order to be able to effectively recombine the BBs and perform effective local
search in their space.

As we can see in Figure 3, the heCGA starts like the regular eCGA (steps 1-4), but after the
model is built the linkage information is used to perform BB-wise mutation in the best individual
of the population. After that, heCGA updates the BB frequencies of the model (found on step 4)
based on the BB instances of the mutated solution. This is done by increasing the frequency of each
BB instance of the new best individual (the one that was mutated) by s and decreasing each BB
instance of the previous best solution by s, where s is the number of individuals that participate in
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Hybrid Extended Compact Genetic Algorithm (heCGA)

(1) Create a random population of n individuals.

(2) Evaluate all individuals in the population.

(3) Apply s-wise tournament selection (Goldberg, Korb, & Deb, 1989).

(4) Model the selected individuals using a greedy MPM search procedure.

(5) Apply BB-wise mutation to the best individual.

(6) Update the frequencies of the MPM found on step 4 according to the BBs instances present
on the mutated individual:

(6.1) Increase the BB instances frequencies of the mutated individual by s.

(6.2) Decrease the BB instances frequencies of the previous best individual by s.

(7) Generate a new population according to the updated MPM.

(8) If stopping criteria is not satisfied, return to step 2.

Figure 3: Steps of the hybrid extended compact genetic algorithm (heCGA).

each selection tournament. Note that we can also replace the copies of the best individual by the
mutated one, with a similar overall effect2. Finally, we generate a new population according to the
updated model, and repeat these steps until some stopping criteria is satisfied.

It should be noted that eCGA, and consequently eCMA and heCGA, can only build linkage
groups with non-overlapping genes. However, the BB-wise mutation operator and this BB-wise
hybrid GA can be extended to other linkage identification techniques that can handle overlapping
BBs such as the Bayesian optimization algorithm (BOA) (Pelikan, Goldberg, & Cantú-Paz, 1999)
or the dependency structure matrix driven genetic algorithm (DSMDGA) (Yu, Goldberg, Yassine,
& Chen, 2003).

As mentioned earlier, the performance of the BB-wise mutation operator can be slightly im-
proved using a greedy procedure to search for the best among competing BBs. This can be par-
ticularly useful if we consider other ways to integrate BB-wise mutation with BB-wise crossover.
An alternative way to combine these operators would be to apply a stochastic BB-wise mutation
to all individuals in the population. This way, instead of having the traditional bit-wise mutation
with a certain probability to be applied to each bit, we would have a BB-wise mutation with a
certain probability to be applied to each BB partition in each individual. In this kind of scheme
it is important to spend less than 2k − 1 function evaluations when searching for each optimal BB
schema, specially if we use high probabilities of applying BB-wise mutation.

Another approach is to heuristically choose which individuals will be BB-mutated, and instead
of mutating all BBs just mutate one or some randomly (or again heuristically) chosen. For example,
a clustering criteria can be used where only the centroid of each cluster is mutated. In this paper,
we limit our study to the first proposed hybrid scheme using deterministic BB search and leave the

2Note that if tournament selection without replacement is used the best individual gets exactly s copies. However,
when using tournament selection with replacement the best individual will get s copies on average, but can also get
0 or n copies. Therefore, we use tournament selection without replacement.
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other possibilities as future work.

6 Experiments

In this section we perform computational experiments in various problems of bounded difficulty.
Following a design approach to problem difficulty (Goldberg, 2002), we test the described algorithms
on a set of problems that combine the core of three well known problem difficulty dimensions:

1. Intra-BB difficulty: Deception;

2. Inter-BB difficulty: Scaling;

3. Extra-BB difficulty: Noise.

For that, we assume that the problem at hand is additively decomposable and separable, such that

f(X) =
m−1∑
i=0

fi(xIi), (3)

where Ii is the index set of the variables belonging to the ith subfunction. As each subfunction is
separable from the rest, each index set Ii is a disjoint tuple of variable indexes.

For each algorithm, we empirically determine the minimal number of function evaluations to
obtain a solution with at least m−1 building blocks solved, that is, the optimal solution with an error
of α = 1/m. For eCGA and eCMA, we use a bisection method (Sastry, 2001) over the population
size to search for the minimal sufficient population size to achieve a target solution. However, for
heCGA an interval halving method (Deb, 1995) is more appropriate given the algorithm behavior
as the population increases, as will be shown later (Figure 5). The results for the minimal sufficient
population size are averaged over 30 bisection runs. In each bisection run, the number of BBs
solved with a given population size is averaged over another 30 runs. Thus, the results for the
number of function evaluations and the number of generations spent are averaged over 900 (30x30)
independent runs. For all experiments, tournament selection without replacement is used with size
s = 8.

6.1 Problem 1: Deception

As the core of intra-BB difficulty, deceptive functions are among the most challenging problems
for competent GA candidates. This kind of functions normally have one or more deceptive optima
that are far away from the global optimum and which misleads the search in the sense that the
attraction area of the deceptive optima is much greater than the one of the optimal solution. A
well known deceptive function is the k-trap function (Ackley, 1987; Deb & Goldberg, 1993) defined
as follows:

ftrap(u) =
{

1 if u = k

1 − d − u ∗ 1−d
k−1 otherwise

(4)

where u is the number of 1s in the string, k is the size of the trap function, and d is the fitness
signal between the global optimum and the deceptive optimum. In our experiments we use d = 1/k.
Considering m copies of this trap function, the global boundedly deceptive function is given by
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fd(X) =
m−1∑
i=0

ftrap(xki, xki+1, . . . , xki+k−1). (5)

Figure 4 presents the results obtained for the boundedly deceptive function. The number of BBs
(or subfunctions) is varied between 2 and 20, for k = {4, 5}. As we can see, eCGA needs smaller
populations than eCMA and heCGA to solve the problem, however, takes more function evaluations
than both algorithms. This happens because in eCGA (1) the BBs are discovered in a progressive
way and (2) more generations are required to exchange the right BBs. Although increasing the
population size for eCGA accelerates the BB identification process, additional generations are still
needed to mix the correct BBs into a single individual. Since eCGA (like every selectorecombinative
GA) always have to spend this mixing time, relaxing the BB identification process (using smaller
populations, thus saving function evaluations) to a certain point seems to be the best way to tune
eCGA performance.

The scalability difference between eCGA and eCMA is not surprising and was verified before
(Sastry & Goldberg, 2004a; Sastry & Goldberg, 2004b). The similarity between eCMA and heCGA
performances leads us to conclude that the best way to use heCGA on deterministic and uniformly
scaled boundedly deceptive functions, and the problems that are bounded by this one, is to set a
large enough population size to get the problem structure in the first generation, and then perform
BB local search to achieve the global optimum.

These results suggest that there is no direct gain of heCGA over eCMA for this problem,
however, there is another observation that can be made. From a practitioner point of view, heCGA
is a more flexible search algorithm since it gets the optimal solution within a bigger range of
population size values. In Figure 5, the number of function evaluations for heCGA to get the
target solution (for k = 4 and m = 10), as the population size increases, is shown. Only population
sizes that solve m−1 BBs on average (over 30 runs) are shown in the plot. The plotted points form
four increasing lines. In each line, as the population increases the number of function evaluations
also increases until it falls down into a lower line and then keeps increasing again. This behavior
repeats itself until the population size is enough to discover all3 correct BB partitions in the first
generation, being the problem solved by the enumerative BB local search procedure of heCGA in
the initial generation. Each discontinuity between lines represents a decrease in the number of
generations necessary for heCGA to successfully solve the problem. This happens because, as the
population size is increased, the model building procedure can capture more and more correct BB
partitions, improving the ability of BB local search to quickly solve the problem.

6.2 Problem 2: Deception + Scaling

In this problem, the inter-BB difficulty is explored together with the intra-BB difficulty. Here, we
use the boundedly deceptive function used above, but now each subfunction fitness contribution to
the overall fitness is exponentially scaled. The weight of each BB fitness contribution is given by
powers of 2, being our exponentially scaled boundedly deceptive function defined as

fds(X) =
m−1∑
i=0

2iftrap(xki, xki+1, . . . , xki+k−1) (6)

This function has the interesting property that a high scaled subfunction gives more fitness con-
tribution than the sum of all subfunctions below it. When solving this problem with a GA in the

3In our specific case, m − 1 partitions due to the stopping criteria used.
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Figure 4: Population size (top), number of function evaluations (middle), and number of generations
(bottom) required by eCGA, eCMA, and heCGA to successfully solve m−1 BBs for the boundedly
deceptive function with k = {4, 5} and m = [2, 20]. The results for population size are averaged over
30 runs, while the number of function evaluations and generations is averaged over 900 independent
runs.
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Figure 5: Number of function evaluations required by heCGA to successfully solve m − 1 BBs for
the boundedly deceptive function with k = 4 and m = 10. The results are averaged over 30 runs.
Only population sizes that solve m − 1 BBs on average are shown.

initial generations, the signal that comes from the low-salient BBs is negligible when faced with the
decision making that is being done between the high-salient BBs. Whenever the higher BBs are
solved, the next higher scaled BBs will have their time of attention by the GA, and so on. Given
this property, the correct BB partitions can only be discovered in a sequential way, which contrast
with the uniformly scaled case where the problem structure can be captured in the first generation
with a sufficient large population size. Therefore, eCMA is not able to solve exponentially scaled
problems with reasonable population sizes, as was point out before (Sastry & Goldberg, 2004a).
The model built based on the selected initial random individuals will only be able to get the high-
salient BB partitions, failing the rest. As Sastry and Goldberg (2004a) proposed for future work,
the model of eCMA has to be updated at a regular schedule to be able to capture the BBs structure
in a sequential manner.

Figure 6 empirically shows that eCMA needs exponential population sizes to achieve the target
solution. In heCGA the model is updated every generation and the BB-wise mutation can benefit
from that. Nevertheless, heCGA spends approximately the same number of function evaluations
to solve the problem than the regular eCGA. In this case, heCGA behaves similarly to eCGA,
preferring a reasonable population size, enough to get the most relevant BBs and then keep going
sequentially to the remaining ones. In terms of number of generations, heCGA scales as the eCGA,
although for some m heCGA takes one less generation, which is not significant in terms of function
evaluations.

Figure 7 shows the number of function evaluations that heCGA needs to solve this problem
as the population size increases. Here, we can see that the number of function evaluations grows
almost linearly with the population size. Since increasing the population size won’t reveal much
more correct BB partitions, the effect on the overall search process is minor.

Looking at the behavior of heCGA on both uniformly and exponentially scaled problems, we
can observe distinct dynamics for each problem. In the uniformly scaled case, heCGA has a
similar behavior to eCMA, which is the algorithm that perform better. For the exponentially
scaled problem, heCGA changes completely its dynamics behaving like eCGA, that is known to
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Figure 6: Population size (top), number of function evaluations (middle), and number of gener-
ations (bottom) required by eCGA, eCMA, and heCGA to successfully solve m − 1 BBs for the
exponentially scaled boundedly deceptive function with k = {4, 5} and m = [2, 20]. The results for
population size are averaged over 30 runs, while the number of function evaluations and generations
is averaged over 900 independent runs.
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Figure 7: Number of function evaluations required by heCGA to successfully solve m − 1 BBs for
the exponentially scaled boundedly deceptive function with k = 4 and m = 10. The results are
averaged over 30 runs. Only population sizes that solve m − 1 BBs on average are shown.

perform much better than eCMA. Also in this case, no direct gain is achieved by heCGA over
the best algorithm. Nevertheless, we can observe what seems to be the greatest advantage of
the proposed approach: robustness. For both problems, heCGA obtains the same performance
as the one obtained by the best algorithm for each domain. To get a better insight on these
observations, we perform additional experiments with a problem with additive exogenous noise,
which is considered to be the core of the extra-BB difficulty dimension.

6.3 Problem 3: Deception + Noise

Noise is a common factor in many real-world optimization problems. Sources of noise can include
physical measurement limitations, incomplete sampling of large spaces, stochastic simulation mod-
els, human-computer interaction, among others (Arnold, 2002). Furthermore, evaluation-relaxation
techniques (Sastry, 2001) are commonly used in genetic and evolutionary algorithms (GEAs) for
performance enhancement, bringing an additional source of noise to the original optimization prob-
lem. Thus, analyzing the heCGA performance in noisy environments is important to strengthen
the robustness claims verified for the first two problems.

For our experiments, we assume that the exogenous noise follows a Gaussian distribution with
mean 0 and variance σ2

N . To make the problem even more challenging, we try to optimize a noisy
version of the uniformly scaled boundedly deceptive function used before. This function is defined
as follows

fdn(X) = fd(X) + G(0, σ2
N ) (7)

To overcome the noise with eCMA, each function evaluation in the BB local search phase needs
to be performed over an average of function evaluations. The number of times that each individual
needs to be evaluated, to allow correct decision making between competing BBs, depends on the
noise variance. Therefore, to obtain the optimal results for eCMA in noisy conditions we need
to run 2 bisections methods, one over the initial population size and the other over the number
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Figure 8: Population size (top), number of function evaluations (middle), and number of generations
(bottom) required by eCGA, eCMA, and heCGA to successfully solve m − 1 BBs for the noisy
boundedly deceptive function with k = 4 and m = {5, 10}. The results for population size are
averaged over 30 runs, while the number of function evaluations and generations is averaged over
900 independent runs.
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Figure 9: Number of fitness samples (ns) used in each averaged fitness evaluation in eCMA for the
noisy boundedly deceptive function, with k = 4 and m = {5, 10}. Each value ns is averaged over
900 runs.

of fitness samples that is necessary to correctly evaluate an individual. First, we run a bisection
method to get the minimal population size that generates a model with at least m − 1 correct BB
partitions. Then, for each population that captures the target dependencies, a second bisection
method is performed over the number of fitness samples to obtain the minimal number of times
that an individual needs to be evaluated, in order to achieve a final solution with the BBs detected
by the model optimally solved.

Figure 8 depicts the results obtained for a uniform scaled boundedly deceptive function with
additive noise for k = 4 and m = {5, 10}. As the noise-to-signal ratio σ2

N/(σf/d)2 increases, two
different scenarios can be identified. For small values of noise, as σ2

N/(σf/d)2 → 0, the picture
painted here is somewhat similar to the deterministic case, where eCMA and heCGA perform better
than eCGA. However, in this case eCMA performs slightly worst than heCGA. This is given to the
fact that in here we force the MPM to detect at least m − 1 partitions, when in the deterministic
case we just care if eCMA obtains a final solution with m − 1 BBs correct.

When the noise increases the behavior of the algorithms changes. Considering the tested cases,
k = 4 and m = {5, 10}, the scenario changes around σ2

N/(σf/d)2 = 0.001. At this point, eCGA
starts to perform better than eCMA, which is expected given that crossover is likely to be more
useful than mutation in noisy environments (Sastry & Goldberg, 2004a). However, heCGA, which
was behaving like eCMA (using bigger population sizes to solve the problem in the first generation)
to small noise values, starts performing similarly to eCGA, that is known to be a best approach than
eCMA to moderate-to-high noise values. This change in heCGA behavior can be better observed
in the population size and number of generations plots.

In Figure 9, it is shown the minimal number of fitness samples necessary to eCMA correctly
decide between competing BBs in noisy conditions. Note that in heCGA the BB local search
phase doesn’t use the averaging technique used in eCMA, since we want to test heCGA in various
difficulty dimensions as a black-box method. Based on this results, the robust behavior of heCGA
still stands for noisy conditions, confirming the observations made in Sections 6.1 and 6.2.
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7 Future Work

The results presented in this paper are promising and warrants additional research in the following
topics:

– Other hybridization configurations. Although we outlined other possible hybridization config-
urations, further experiments should be done with those and other possible hybrid schemes.
Designing an optimal hybrid scheme is not an easy task, since that can depend strongly on
problem nature. A partial answer to this question can be shaped recurring to the global-local
search hybrid theory (Goldberg & Voessner, 1999).

– Combination with other enhancement techniques for PMBGAs. One interesting topic to in-
vestigate is if the robustness verified here for heCGA still stands when used together with
other recently developed enhancement techniques for PMBGAs such as BB-wise fitness es-
timation (Sastry, Pelikan, & Goldberg, 2004; Pelikan & Sastry, 2004) and BB-wise niching
(Sastry, Abbass, & Goldberg, 2004)

– Problems with overlapping building blocks. In our experiments we have considered non-
overlapping BBs, however, many problems can have different BBs that share common com-
ponents. The effect of overlapping interactions between variables has been studied before
(Goldberg, 2002), where it was showed to be similar to that of exogenous noise. Based on
our results, heCGA is likely to perform as the eCGA, which perform better than eCMA for
this kind of problems. However, when considering problems with overlapping BBs, the prob-
abilistic model used by the algorithms in this paper (MPM) can no long capture overlapping
dependencies. For that, more powerful PMBGAs such as BOA (Pelikan, Goldberg, & Cantú-
Paz, 1999) need to be used. Thus, the utility of a BB-wise mutation operator in BOA’s main
loop needs to be further explored.

– Hierarchical problems. An important class of nearly decomposable problems is hierarchical
problems, in which the BB interactions are present at more than a single level. Presently,
the hierarchical BOA (hBOA) (Pelikan & Goldberg, 2001) can solve hierarchical problems in
tractable time. Nevertheless, further investigation deserves to be done to study the utility of
a BB-wise mutation operator for this kind of problems, and if improvements can be obtained
when combined with hBOA.

– Application to real-world optimization problems. One of the main motivations for designing
competent GAs that solve boundedly difficulty problems quickly, reliably and accurately is to
achieve competence when solving real-world problems that are bounded in difficulty by this
kind of test functions. Therefore, experiments on real-world problems should be performed
to validate the proposed approach as a robust real-world solver.

8 Summary & Conclusions

In this paper, we have proposed a probabilistic model building hybrid GA based on the mechanics
of eCGA. The proposed algorithm—the hybrid extended compact GA (heCGA)—combines the
BB-wise crossover operator from eCGA with a recently proposed BB-wise mutation operator that
is also based on the probabilistic model of eCGA (Sastry & Goldberg, 2004a). Basically, heCGA
makes use of the BBs partition information to perform (1) effective recombination of BBs and
(2) effective local search in the space of BBs. We performed experiments on three different test
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functions that combine important difficulty dimensions: deception, scaling, and noise. Our results
showed that, independently from the faced difficulty dimension(s), the hybrid extended compact
GA obtained the best performance, imitating the behavior of the best approach (crossover-based
or mutation-based) for each problem.

The results presented in this work indicate the robustness of using both search operators—
crossover and mutation—in the context of PMBGAs, as it is known to be advantageous for tradi-
tional GEAs. Given the observed robustness of heCGA, one can thing of applying it in a “black-box
system” basis, where the solver is expected to perform well on problems bounded by the ones of
our test suite.
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