

Avaliação de testes de diagnóstico

Prof. Wagner Hugo Bonat

Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná

Aplicação: Probabilidade condicional

- ▶ O que é um teste de diagnóstico?
- ► Instrumento capaz de diagnosticar uma doença com certa precisão.
- ▶ Valor de referência: Determina o resultado do teste como negativo ou positivo.
- ► Exemplos:
 - ► Exames de laboratório (ex. dosagem de glicose).
 - Exame clínico (ex. auscultação do pulmão).
 - Questionário (ex. Children's Depression Inventory).

Figura 1. Photo by Retha Ferguson from Pexels

Avaliação de testes de diagnóstico

- ▶ O teste é **útil** se identifica a presença da doenca com boa precisão.
- Como saber se um teste é útil?
 - ► Aplica-se o teste a dois grupos de pessoas: doentes e não-doentes.
 - Precisa de um teste de referência chamado de padrão ouro.
- ► Temos duas perguntas básicas para responder se um teste é útil ou não.
 - Qual a probabilidade do teste ser positivo dado que o paciente é doente? (sensibilidade)
 - Qual a probabilidade do teste ser negativo dado que o paciente não é doente? (especificidade)

▶ Para um teste aplicado a *n* pessoas que tipo de dados temos?

Teste				
Doença	+	-	Total	
Presente	a	b	a+b	
Ausente	С	d	c+d	
Total	a+c	b+d	n	

▶ Note que sabidamente temos a + bdoentes e c + d não doentes.

Como avaliar um teste?

- Vamos definir os eventos de interesse.
 - ► D Paciente é doente.
 - ▶ D^c Paciente não é doente.
 - ► T₊ Resultado do teste é positivo.
 - ► T_ Resultado do teste é negativo.
- Qual a probabilidade do teste ser positivo dado que o paciente é doente? (sensibilidade)
- Qual a probabilidade do teste ser negativo dado que o paciente não é doente? (especificidade)

- ► Assim, temos que
 - Sensibilidade: $P(T_+|D) = \frac{P(T_+ \cap D)}{P(D)} = \frac{a}{a+b}.$
 - ► Especificidade: $P(T_{-}|D^{c}) = \frac{P(T_{-}\cap D^{c})}{P(D^{c})} = \frac{d}{c+d}$

Teste		J.	
+	-11-	Total	
a	b	a+b	
С	d	c+d	
a+c	b+d	n	
	+ a c	+ - a b c d	

 Situação ideal: sensibilidade e especificidade próximas de 1.

Exemplo: Teste ergométrico

▶ Um estudo sobre o teste ergométrico, Wriner et al. (1979) compararam os resultados obtidos entre indivíduos com e sem doença coronariana. O teste foi definido positivo se observado mais de 1mm de depressão ou elevação do segmento ST, por pelo menos 0,08s, em comparação com os resultados obtidos com o paciente em repouso. O diagnóstico definitivo (classificação como doente ou não-doente) foi feito através de angiografia (teste padrão ouro). Os resultados foram:

	Teste		
Doença	+	1- 1	Total
Presente	815 (a)	208 (b)	1023 (a+b)
Ausente	115 (c)	327 (d)	442 (c+d)
Total	930 (a+c)	535 (b+d)	1465 (n)

Exemplo: Teste ergométrico (cont.)

Qual a probabilidade do teste ser positivo dado que o paciente é doente? (sensibilidade)

$$s = P(T_+|D) = \frac{P(T_+ \cap D)}{P(D)} = \frac{a}{a+b} = \frac{815}{1023} \approx 0.80.$$

Qual a probabilidade do teste ser negativo dado que o paciente não é doente? (especificidade)

$$e = P(T_-|D^c) = \frac{P(T_- \cap D^c)}{P(D^c)} = \frac{d}{c+d} = \frac{327}{442} \approx 0.74.$$

Exemplo: Tomografia computadorizada

▶ Lind and Singer (1986) estudaram a qualidade da tomografia computadorizada para o diagnóstico de metástase de carcinoma de fígado, obtendo os resultados apresentados na tabela abaixo. Um total de 150 pacientes foram submetidos a dois exames: a tomografia computadorizada e a laparotomia. Sendo que o último é tomado como padrão ouro, isto é, classifica o paciente sem erro.

	Teste		
Doença	+	-	Total
Presente	52 (a)	15 (b)	67 (a+b)
Ausente	9 (c)	74 (d)	83 (c+d)
Total	61 (a+c)	89 (b+d)	150 (n)

Exemplo: Tomografia computadorizada (cont.)

Qual a probabilidade do teste ser positivo dado que o paciente é doente? (sensibilidade)

$$s = P(T_+|D) = \frac{P(T_+ \cap D)}{P(D)} = \frac{a}{a+b} = \frac{52}{67} \approx 0,776.$$

Qual a probabilidade do teste ser negativo dado que o paciente não é doente? (especificidade)

$$e = P(T_-|D^c) = \frac{P(T_- \cap D^c)}{P(D^c)} = \frac{d}{c+d} = \frac{74}{83} \approx 0.892.$$

Quer saber mais sobre testes diagnóstico?

- ► Material baseado em http://www.leg.ufpr.br/~silvia/CEoo8/node33.html.
- Assuntos relacionados:
 - ► Valor de predição de um teste.
 - Combinação de testes de diagnóstico.