
P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

Computational & Mathematical Organization Theory 4:1 (1998): 43–69
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands

SDML: A Multi-Agent Language
for Organizational Modelling

SCOTT MOSS, HELEN GAYLARD, STEVE WALLIS AND BRUCE EDMONDS
Centre for Policy Modelling, Manchester Metropolitan University, Aytoun Building, Manchester M1 3GH,
United Kingdom
email: s.moss@mmu.ac.uk, h.gaylard@mmu.ac.uk, s.wallis@mmu.ac.uk, b.edmonds@mmu.ac.uk

Abstract

A programming language which is optimized for modelling multi-agent interaction within articulated social
structures such as organizations is described with several examples of its functionality. The language is SDML,
a strictly declarative modelling language which has object-oriented features and corresponds to a fragment of
strongly grounded autoepistemic logic. The virtues of SDML include the ease of building complex models and
the facility for representing agents flexibly as models of cognition as well as modularity and code reusability. Two
representations of cognitive agents within organizational structures are reported and a Soar-to-SDML compiler is
described. One of the agent representations is a declarative implementation of a Soar agent taken from the Radar-
Soar model of Ye and Carley (1995). The Ye-Carley results are replicated but the declarative SDML implementation
is shown to be much less computationally expensive than the more procedural Soar implementation. As a result,
it appears that SDML supports more elaborate representations of agent cognition together with more detailed
articulation of organizational structure than we have seen in computational organization theory. Moreover, by
representing Soar-cognitive agents declaratively within SDML, that implementation of the Ye-Carley specification
is necessarily consistent and sound with respect to the formal logic to which SDML corresponds.

Keywords: simulation, organization, computational model, formal logic, cognition

1. Introduction

Implementors of computational models of organizations confront a trade-off between the
sophistication of the representation of individual cognition on the one hand and the com-
plexity of the modelled organization on the other. A more elaborate organizational structure
is associated in the literature with a simpler representation of individuals. We introduce in
this paper a programming language, SDML, which supports fast development of models
and can entail more complex representations of organizations than we have seen previously
in the literature.

SDML (“strictly declarative modelling language”) has been designed to facilitate flexible
multi-agent modelling of organizations. Unlike modelling architectures such as Soar, which
incorporates a specific cognitive theory in its agent architecture, SDML is a theory-neutral
programming language. However, the requirements underlying its development, and the
features whereby these are realised, mean that SDML can easily be used to represent
either simple or sophisticated agents and the nature of the social relations that exist among
them. Implementing models in SDML does not preclude the use of Soar’s particular

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

44 MOSS ET AL.

problem-solving architecture. Because that architecture has proved to be useful in a wide
range of computational models, Soar agents are being implemented in SDML.

Soar represents agents as implementations of Newell’s (1990) unified theory of cognition
and models written in Soar have specified at most two levels in a hierarchical organization
(for example, Ye and Carley 1995). A model in TASCCS (a “synthesis” of Double-AISS and
Plural-Soar) by Verhagen and Masuch (1994) was restricted to two agents due to the imple-
mentational limitations of Soar. Carley and Svoboda (1996) represent agents by a simulated
annealing algorithm or by a stochastic learning process specifically to get round the compu-
tational restrictiveness of Soar. So and Durfee (1996) represent organizations as general tree
structures comprised of homogeneous agents transmitting message packets to one another.

Tambe and Rosenbloom (1996) suggest that a limitation on the complexity of compu-
tational models of agent interaction is the agent architecture. For this reason, they extend
the Soar architecture to support the implementation of agents who build models of other
agents whose behaviour they must track in real time knowing that they are themselves being
tracked and modelled by the other agents. Tambe and Rosenbloom have not reported any
models with the sort of hierarchical relationships that are essential to representing agents
acting within organizations.

The features of SDML’s architecture that support multi-agent modelling are described
in Section 2. In Section 3, we describe an implementation of abstract organizations with
extensive multi-agent interaction. We describe in Section 4 how full Soar cognition is
implemented in SDML and in Section 5 we report an SDML implementation of a well-
known Soar model, Ye and Carley’s (1995) Radar-Soar. We demonstrate that the declarative
basis of SDML not only relates implementations of cognitive models to formal logic but the
features of SDML that establish that correspondence also make the SDML implementation
of Soar cognition much less computationally expensive.

Although we have implemented Soar-like cognition in this paper, we note that, as a general
programming language, SDML supports the same representations of cognition as any other
general programming language. In addition to the model reported in Section 3, examples
of other representations implemented in SDML are to be found in Gaylard (1997) or Moss
et al. (1995). None of these models has even the problem-space architecture of Soar.

2. SDML’s Multi-Agent Features

A number of basic requirements underlie SDML’s multi-agent features. Individual agents
must be able to incorporate rules determining their behaviour, including any or no cognitive
theory. For these purposes a declarative representation is appropriate because it enables us
to capture the distinction between behaviour and its underlying explanation. This distinction
is particularly salient with respect to social phenomena of an inherently emergent nature.
The ability to share rules among similar agents is convenient and this is enabled by SDML’s
object-oriented features. For multi-agent applications, we require the flexibility to represent
such structures as organizations with arbitrarily deeply nested levels of agents. Agents must
be able not only to communicate with each other, but also to maintain privacy in the sense of
restricted access to information. We further require the ability to represent organizations as
dynamic structures which change over time. Because SDML isstrictly declarative clauses

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 45

once asserted to a database may not be retracted. However, change is easily modelled using
time levels, an in-built feature of SDML whereby different databases are associated with
agents at different periods of time.

2.1. Syntax of Agent Rules

A rule in SDML hasantecedentsandconsequents. It may be read declaratively as stating
that, if the antecedents are true, then the consequents are also true. Both antecedents and
consequents consist ofclauses, which may be conjoined, disjoined, or negated in the case of
antecedents, and conjoined in the case of consequents.1 A clause consists of afunctorand a
number ofarguments. Typically, the arguments in rules are variables which are unified with
ground terms and thus instantiated when rules fire. Where the antecedents of a rule contain
variables, the rule specifies that the consequents are true for all bindings of the variables
such that the antecedents are true.2

The object-oriented features of SDML require that terms used as functors and arguments
must be defined as objects. Clause definitions specify a functor name and the number of
associated arguments and type restrictions for each. SDML’s types are discussed below.
Clauses are also specified to beinternal, private, or public. This is discussed below in
the context of agent communication. Finally, clauses are defined to be either forward- or
backward-chaining.

Corresponding to forward- and backward-chaining clauses in SDML are forward- and
backward-chaining rules which have these clauses in their consequents. Forward-chaining
rules are primary, and agents may have a number of forward-chaining rulebases corre-
sponding to different time levels specified by the user. We will return to the topic of
time levels below. When forward-chaining rules fire, their consequents are asserted to a
database, there being a database corresponding to each such rulebase. Each agent has a
single rulebase for each backward-chaining clause definition. Backward-chaining rules are
effectively procedures3 called by the antecedents of forward-chaining rules. Important uses
of backward-chaining rules are list-processing procedures similar to those in Prolog and
for substituting a mnemonic clause for more cumbersome but related groups of clauses in
forward-chaining rules.

SDML’s rules are fired using forward chaining by retrieving clauses from databases in
order to determine the bindings of variables such that the antecedents are true, substituting
those bindings in the consequents, and asserting the resulting clauses to databases. The
order in which rules are fired is not specified by the user, but is determined automatically
on efficiency grounds. SDML orders the rules according to dependencies among them,
dividing the rulebase into partitions whereby rules in a later partition are dependent upon,
rather than determiners of, rules in an earlier one.

2.2. Object-Oriented Features

SDML supports inheritance through two principal hierarchies.
The type hierarchy supports multiple inheritance. The standard type hierarchy, which

is extended by the programmer, is shown in figure 1. The user adds further subtypes, in

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

46 MOSS ET AL.

F
ig

ur
e

1.
T

he
ba

si
c

SD
M

L
ty

pe
hi

er
ar

ch
y.

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 47

particular, subtypes of Object, Agent and SDML’s predefined Agent subtypes. The type
Agent is distinguished from Object in that it has rulebases associated with it. The number
of such rulebases varies with the time levels defined by the user. Time levels are discussed
in several contexts below.

Agent is the principal type of interest here. Models are specified in terms of instances
of agents but these will not normally be instances of the type Agent but of a user-defined
subtype of Agent or one of its predefined subtypes (or of more than one of these). Clause
definitions and rules are specified in types and are inherited from them by their instances.
In this way, the rules for a number of identical agents can be defined in a shared type.
Similarly, agents which are not identical may nevertheless share certain rules by means of
a common supertype.

We will mention the uses of a number of the predefined Agent subtypes here. Composite
Agent and its subtypes facilitate the representation of multi-agent structures, as discussed
in more detail in the following section. Looping Agents iterate over time and thus any type
of agent which contains rulebases for user-defined time levels will have this as one of its
supertypes. Meta Agents have the ability to write to rulebases as if they were databases,
and thus these provide one means of implementing agents which learn.

2.3. Representing Multi-Agent Structures

The structure of multiple agent models is represented in SDML by the container hierarchy;
for instance, persons may be contained within departments contained within firms. The
outermost container is always theuniverse. The container hierarchy is related to the type
hierarchy principally by Composite Agent and its subtypes. The type Composite Agent
allows for the representation of agent hierarchies of arbitrary depth, since any agent within a
Composite Agent may itself be a Composite Agent. A type specifies the type of its container
and inherits some clause definitions via the container hierarchy.4 SDML’s in-built predicates
allow for specification in the rulebases of Composite Agents of those subagents which are
active (i.e., for which the rulebases will be fired) and, in the case of Serial Composite
Agents, the order in which subagents are activated.

The subtypes of Composite Agent are Serial, Parallel, and Merging Composite Agent.
At any time level, the rulebase of the container fires prior to those of its subagents. Serial
represents perhaps the most straightforward kind of structure within which subagents are
ordered so that each agent acts after, and on the basis of any information made available
by, preceding agents. The idea of a Merging Composite Agent is that the rulebases of
the agents are merged and the dependencies among the rules calculated as if they were in a
single rulebase. This allows extremely flexible and fine-grained interaction since it makes
communication among the merged agents effectively simultaneous. In a Parallel Agent,
the subagents act at a particular time level with knowledge of the results of others’ actions
at the previous time but in ignorance of others’ current actions. It is in these circumstances
that agents will want to generate models of each other. Parallel is the type of agent which
is primarily of interest for modelling cognition in a social context.

In a nested parallel structure there will often be a corresponding layer of time levels. For
example, corresponding to firms, departments, and persons, there may be years, months,

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

48 MOSS ET AL.

and days. Each agent at each level in the container hierarchy may have rulebases for each
time level, but it is likely that there is a bias towards less frequent decisions and actions
at the firm level and towards more frequent ones at the level of individual persons. A
common feature reflected in the Parallel Composite Agent type is uncertainty about others’
actions at the current time, and the duration of the current period of uncertainty may be
transparently represented in the choice of appropriate time level, corresponding to frequency
of interaction. The easy representation of such features is important as they give rise, in
part, to the need for cognition in a social setting.

2.4. Communication Among Agents

In SDML agents normally communicate by writing the results of their rule firing to their
databases or those of a container and reading the results of another agent’s rule firing from
that agent’s database or that of a shared container. Accessibility restrictions permitting,
agents can also read from or write to other agents’ databases using explicit addressing. The
default database to which a clause is asserted when a rule fires depends upon where that
clause is defined. If it is defined in the agent’s type or a supertype (i.e., inherited via that
type hierarchy) then it will be asserted to the agent’s own database. However, if the clause
definition is inherited via the container hierarchy then it will be asserted to the database of
the container where it is defined. It is often convenient for agents to share information via
the container as this does not require explicit addressing. This is especially so where the
structure of the organization may be changing, as discussed in the Section 2.5.

Uncertainty concerning other agents’ actions was mentioned above as an important fea-
ture which we require models to be able to represent if they are to be adequately expressive
with respect to social phenomena. Related to this, SDML allows for different accessibility
for agents to other agents’ databases. For example, some decisions and actions made by
a firm may never be directly accessible to other firms and, similarly, some actions of indi-
viduals within it may never be accessible to the firm. Clauses may be defined asprivate
to the agent orpublic, or, intermediate between these,internal to the defining container,
e.g., accessible to all agents within a firm but none outside it. There is also the facility, for
example, to make an agent’s clauses publicly readable but not writeable.

2.5. Modelling Change

Time levels have already been mentioned, in particular, in the context of their function
of enabling the user to specify appropriate frequencies of interaction which may vary
for different agents within the same model, and, indeed, for the same agent in different
roles. Here we will describe time levels in more detail and discuss their role in modelling
organizations as dynamic structures.

Time Level is an in-built type in the SDML type hierarchy. The default Time Level is
eternity, which is equivalent to the time it takes for all the forward-chaining rules (including
any backward-chaining procedures they call) in the universe to fire. The user is free to
specify any number of instances of Time Level and to associate any or none of these
with each Agent subtype used in a model. For each of its time levels, a type will have

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 49

an associated initial and final forward-chaining rulebase as well as the content rulebase
that fires iteratively between the initial and final rulebases at the lowest time level. Each
forward-chaining rulebase in turn has an associated database on which the results of rule-
firing are (by default, in the absence of explicit addressing) stored. Each rulebase need not
contain any rules or could contain merely a simple forward-chaining rule devised to call a
complex backward-chaining procedure.

We illustrate the order in which rulebases fire with a simple example. Suppose an agent
has time levels week and day,5 with 12 weeks and 7 days specified as the duration for each
of these time levels. Its initial week rulebase fires at week one, followed by the initial
day rulebase on day one, followed by the content rulebase for each remaining six days,
additionally the final day rulebase on day seven, followed by the initial day rulebase for
day one of week two, and so on, until the final week rulebase fires at the end of week
twelve.6 Where there are nested levels of agents, for any time level the initial rulebase
of a container fires before those of its subagents, then, similarly, the content rules of the
container are followed by those of subagents, but, however, the final rulebases of subagents
precede those of the container.

The distinctive contribution of time levels to organization modelling is in making it
straightforward to represent changing structures and relations. Recall that, while a type
defines its container type, subagents are only rendered active by clauses on the container’s
database. Clauses can be asserted to be true either permanently or for any duration in
accordance with the time levels defined for a model; for example, all day (equivalent to
every hour) or every day (equivalent to all week). This means that, where the organization
is regarded as static, each container’s subagents can be declared by asserting permanent
clauses at the start of a simulation. However, where volatility rather than stability is the
norm, it is possible to update the structure every day, reasserting the clause that was true on
the previous day only where no change is known to have taken place.

3. Modelling Organizations in SDML

In describing SDML’s container hierarchy, we used the example of firms containing depart-
ments which in turn contain persons. However, because SDML is theory-neutral, it allows
us to reject the idea that a firm or department can be, like a person, a cognitive agent.
In modelling organizations in SDML, we represent only our lowest-level agents as cogni-
tive agents with rules for making decisions.7 Hierarchical structure is represented, most
importantly from the modelling point of view, not by correspondence with the container
hierarchy, but by the different kinds of interactions which take place between different kinds
of agents. Similarly, agents are identified by the rules associated with their Agent subtype
(e.g., Department Manager) as well as by their position in the container hierarchy.

In order to illustrate the application of these modelling principles, we describe an abstract
representation for organizations which has been implemented in a model in SDML. This
illustrates how the distinction between the formal vertical hierarchy for the organization and
its horizontal structure, constituted by its business processes, may be captured. We assume
that, while the formal vertical hierarchy is fixed, the initial, formally imposed horizontal
structure comes to be superseded through the evolution of informal business processes.

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

50 MOSS ET AL.

These come to dominate to the extent that they better enable the organization’s agents to
meet their goals.

3.1. Representing an Organization in SDML

The formal vertical structure of the organization is represented in SDML by the container
hierarchy. The user is asked to specify the number of layers in this hierarchy as well as the
minimum and maximum span of control (i.e., number of subagents) for each department.
Each department is a Parallel Composite Agent containing departments or, in the case of
the lowest level in the department hierarchy, business processes as subagents. Business
processes are represented as simple Agents, which we term activity agents, and are the only
decision-making agents within the organization.8

The initial horizontal structure of the organization is created randomly but within con-
straints imposed by the vertical structure. Within each lowest level department pairs of
activities are combined to form composite activity agents (represented as simple Agents),
which are further combined in this binary fashion until a top-level composite activity for
the department is created. The top-level activities for each department sharing a common
containing department are then combined by means of the same processes to create the
top-level activity for this higher-level department. This process continues up the organi-
zational hierarchy until there is a complex composite activity, or business process, for the
organization as a whole.

A measure of the output, or performance, of business processes is determined by a
representation of the technological possibilities, which uses the features of SDML to ensure
that the same basic technology is available to all organizations even though the use of
the technology and the efficiency of the activities depending upon that technology will
differ according to its use and development by agents within each organization. A detailed
description is contained in Appendix 1. For the purposes of the present exposition, the
following summary will suffice:

Each composite activity is labelled with a number. This number is a factor used to multiply
the sum of the values of the component activities of the composite. This factor will be the
same for equivalent composite activities in all organizations. The product of that factor and
the sum is the value of the composite activity. In order to value every activity, it remains
only to determine the values of each elementary activity. These values are determined by
a network search by the activities themselves. The network search is a representation of
learning or R&D that is undertaken to improve productivity or reduce costs whether by
experience or purposive research.9 Activity agents incorporate the network search model
of R&D reported separately by Moss et al. (1996). Because of the object oriented features
of SDML and its modular structure, the module from the R&D module defining the network
searching agents could be inserted without change into the organization model reported here.

3.2. Dynamic Organizational Processes

This model has been devised to simulate the informal development of business processes
within the organization. It is assumed that each process looks for a partner with which to

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 51

combine in order to improve the value of their joint activity relative to the value of existing
joint activities. As noted above, the value of the joint activity will be determined by the
values of the individual activities and the combining factor. These structures are dynamic
because the basic level of productivity associated with each process changes each period as
a result of the enhancements generated internally within the atomic business processes and
represented here as network search.

The process that drives the dynamic processes is the search by individual agents for
alternative activities with which they can combine to produce more value. Agents’ search
is not constrained by the formal departmental structure of the organization. One effect of
formal organizational structure is to impose some order on the combination of activities.
Activities undertaken within one department engage in some level of cooperation before
cooperating with the activities in another department. But the individuals who undertake
the activities might prefer to combine in a different order than that facilitated and supported
by the formal structure and procedures. For example, more efficient production might
result if design teams were to consult with production teams before bringing in the sales
team even if the design and sales teams were within one division of the organization and
production in another. Alternatively, goods which have a commercially more successful
design might result if the design and sales teams were to collaborate before bringing in
the production team. The purpose of the modelling techniques is to support the design of
procedures and organizational structures that will enable actual organizations to investigate
such alternatives in order to improve on existing arrangements with minimum disruption to
the organization’s ongoing activities.

The process of informal organizational change captured by this model requires individual
activities to find other activities with which to combine. We do not assume that activities
know the whole of any abstract activity tree but that they can observe other activities with
which combination is feasible and communicate with them. They can ask each other the
values of their respective activities but they do not know the factor which multiplies the
sum of those values to give the value of the combined activity.

Though we have not implemented this possibility, there is nothing in the structure of the
model to prevent agents from lying about the values of their own activities. Consequently,
each activity will have to decide whether a potential collaborator is honest and reliable as
well as valuable. This will involve communication among the activities as well as evaluation
of experience with collaborators.

3.3. Communication Among Agents

Because the model, the organizations and the departments are all parallel composite contain-
ers, the activities in all departments of every organization are effectively acting in parallel.
One agent communicates directly with another by means of an at-clause in the consequent
of an instantiated rule. For example, if activity-1 wants to cooperate with activity-2, the
at-clause asserted by activity-1 would be

at activity-2 (cooperationOfferedBy self)

Activity-2 would not be able to read this clause until the following time period because

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

52 MOSS ET AL.

agents acting in parallel cannot perceive the results of any other agents’ actions in the same
period. In the next time period, activity-2 would find

last (cooperationOfferedBy ?anActivity)

unified the variable?anActivity with activity-1. An agent that always responded to an offer
of cooperation by accepting it would have a rule with the above clause as its antecedent
and, as a consequent,

at ?anActivity (cooperationOfferedBy self)

If the offer by activity-2 had remained standing, then in the third time period both activities
would know of the offer and the acceptance and could note that the collaboration had been
agreed.

In general, an agreement to collaborate takes at least two and normally three time pe-
riods to achieve among agents acting in parallel. In the first period, the first agent offers
collaboration to the second. In the second period, the second agent perceives the offer
of collaboration and signals acceptance. In the third period, each agent knows that the
other wants to collaborate and the collaboration is ratified. If, by chance or design, each of
two agents were to signal a desire to collaborate with the other at the same time, then the
ratification could take place in the following period.

In order to allow cooperation or collaboration agreements to be made within a single
“date” of the model, two time levels were defined: the period and the negotiatingRound.
The period is defined by the model agent and, so, applies to all agents contained in the
model. The negotiatingRound is defined by the organization agent and applies to itself
and all of its subagents that are, in this case, departments and activities. This allows for
communication among activities within organizations to take place between the occasions
on which the outputs from that organization are notified to the wider environment. In real
organizations, of course, communication and, say, production and sales are all going on at
the same time. The point of the negotiating rounds is to get more communication relative
to other activities than would be the case if the communication and other activities all took
place at a single time level. The model was implemented with these time levels so that
the activities could form collaborative arrangements and assess them in an environment
where the effectiveness of such an arrangement took some time to assess. The period is
therefore an accounting period with informal arrangements arising within the accounting
period. If, by way of contrast, it would be interesting to assess the effect of production
information on the negotiations leading to collaborative arrangements, then the period could
be set to take place within the negotiating round by changing the consequent of the time-
level-determining rule totimeLevels [negotiatingRound period] from timelevels [period
negotiatingRound].

3.4. Representing Cognition

Unlike Soar, SDML has no hardwired theory of cognition, so any agent cognition must
be represented by the user as sets of rules. The model reported here has a very limited

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 53

Figure 2. Rule for endorsing possible collaborators.

representation of cognition, with agents evaluating other agents as possible collaborators.
The basis for evaluation is an extension by Moss (1995) of the endorsements procedure
devised by Cohen (1985)10 as a method of conflict resolution for expert systems. We do
not claim either that agents in the model incorporate a wide range of cognitive abilities or
that their behaviour reflects an underlying theory of cognition.

Activity-agents have an endorsement scheme which gives values to tokens representing
individual endorsements. One agent might endorse another as “reliable”, “successful col-
laborator” or, indeed, “unreliable”, or “unsuccessful collaborator”. Endorsements can have
negative as well as positive values.11

Agents’ endorsements of other agents are the consequences of rule-based evaluation and
typically determine either further evaluation or some action. An example of the content rule
“possible collaborator” that is defined for individual activities is given in figure 2. The first
two clauses of the antecedent identify all abstract composite activities which include the
rule-calling individual activity.self in any rule is the agent’s self-reflexive symbol. The next
two clauses ensure that the potential collaboration is not with oneself. The final clause in
the antecedents is a backward-chaining clause that in the case of simple activities identifies
their abstractions with themselves or, if the possible collaborator is a composite activity,
finds the appropriate clause on the organization’s database which associates an abstract with
an actual composite activity.

In this case, then, rule-based evaluation results in the recognition that another activity
is a possible collaborator and this is manifested in the endorsement of the other agent as
possibleCollaborator.

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

54 MOSS ET AL.

Figure 3. Rule for offering cooperation.

In figure 3, we exhibit the rule-editing window for the rule that, if instantiated, entails
the offer of cooperation to another agent. The first two clauses ensure that the negotiating
round is not the first during the period (for which there is another rule). ThenotInferred
clause12 ensures that the activity was not already cooperating informally during the previous
negotiating round. The next two clauses identify the endorsement scheme of the agent and
find the best endorsement value of all other agents endorsed by this agent as possible
collaborators. TherandomChoice clause uses the period and round to uniquify the choice
made from all instantiations of its conjunctive subclause, which will identity all other agents
who have maximum endorsement value among all possible collaborators.

The consequents of this rule have already been discussed in Section 2.4.
After a collaboration has been agreed, other rules continue to add endorsements of the

collaborating agent to the activity’s database. For example, if the value of the collaboration
exceeds the sum of the individual activity values, then the activity endorses the collabo-
rating agent with the tokensuccessfulCollaborator. Otherwise, the collaborating agent is
endorsed with the tokenunsuccessfulCollaborator. Successful collaboration increases the
strength of the collaboration in the sense that the collaborator has a higher endorsement value
and therefore no other agent is likely to be offered cooperation. Unsuccessful collaboration
is doomed because the endorsement value of the collaborator declines each period.

As this example shows, the endorsements can be used both to identify subgroups of
possible collaborators and then to rank their desirability. They also allow the representation
of a form of learning whereby agents’ knowledge of good and poor collaborators is built
up over time. As suggested in Section 5, the use of endorsements could be an adjunct to
Soar cognition which renders it more effective for computational organization theory.

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 55

3.5. Development of the Model

Currently the model is highly abstract, with the effects of interactions among business
processes being simply represented by the numerical values associated with different com-
binations and the generic representation of output, “productivity”. The assumption that
each business process must collaborate with just one other in preference to all others is
clearly implausible. Furthermore, there is a lack of any meaningful agent cognition, since
agents’ decisions are made entirely by reference to abstract variables.

Further development will involve modelling the effects of agent cognition by imple-
menting a simple version of “bounded rationality” whereby agents are goal-directed, have
limited capacity, and operate under conditions of uncertainty. Related to this change, agents
will be explicitly associated with tasks with inputs and outputs. They may have individual
goals as well as those (possibly conflicting) imposed in the form of performance targets,
and these goals will be met by performing tasks and generating outputs. Agents have a
limited capacity and must therefore prioritize. There may be formally prescribed sources
for the necessary inputs to tasks, but these may be circumvented where alternatives (or more
direct routes to an original source) exist. Other agents will be evaluated on the basis of, for
example, reliability or unreliability, timeliness or delay. As well as trying to second-guess
the current actions of other agents, agents will be trying to assess the future impact of their
own current actions. Thus complex social phenomena may be expected to arise through the
interactions of relatively simple cognitive agents.

One aim in introducing a plausible13 model of agent cognition is enabling representation
of the effects of different organizational structures. For instance, given plausible constraints
on the capacities of individuals, there will be a greater overall capacity for information
exchange in a hierarchical organization than in a relatively flat one. On the other hand, given
agents’ needs to prioritize, relatively direct information exchange in the flat organization
may mean that information is more reliably transmitted. This is just one example of the
kind of trade-off between alternative organizational structures that the less abstract and
more explicit model of business process interaction will allow us to represent.

We do not suggest that cognition as presently represented in the model’s endorsement-
based evaluation is at all general and certainly it does not stem from any general cognitive
theory. For this reason, incorporating some theory of cognition such as the Soar imple-
mentation of Newell’s unified theory of cognition is a further natural step to take in the
development of SDML. This step will be especially useful because the flexibility of SDML
will support modifications to Soar cognition as a means of investigating the extent to which
implementation features affect the outcomes without violating the relationships and proce-
dures identified with Newell’s theory itself. This will address the difficulties raised by Hunt
and Luce (1992) in their point that Newell’s description of his unified theory of cognition
is not implementation specific. It will also provide a different perspective on the investi-
gation of the implications of different implementations from that of Cooper et al. (1996)
precisely because SDML is a general simulation language with strong supporting facilities
for modelling agent interaction with structured and hierarchical, as well as unstructured
environments. A natural development with SDML is to try different implementations of
the same theories of cognition that Cooper et al. considered, such as Johnson-Laird’s (1983)

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

56 MOSS ET AL.

theory of mental models or Barnard’s (1985) theory of interacting cognitive subsystems on
the behaviour and performance of organizations.

Implementing Soar cognition in SDML is the first step in this line of research.

4. SDML and Soar

Unlike Soar, SDML was developed precisely to capture multi-agent interaction in complex
environments, and, unlike SDML, Soar was built around an explicit and sophisticated
model of human cognition. Probably the most useful feature of Soar absent from SDML
is a hardwired learning mechanism known aschunking. SDML agents can learn, but the
mechanism must be encoded explicitly into rules. An implementation of Soar cognition in
SDML is well advanced and is described below. Although testing is not yet extensive, it
appears that SDML can accommodate the Soar theory of cognition within a complex and
flexible multi-agent framework.

4.1. Comparison Between SDML and Soar

Our intention here is not to provide a comprehensive comparative evaluation of the two
languages but, rather, to give an indication of the similarities and differences pertinent to
an implementation of Soar agents in SDML.

Rule firing is similar in the two languages. Soar’s rules, known asproductions, fire when
their conditions match data inworking memory. Soar keeps firing productions until all of
them with matching conditions have fired. Similarly, in SDML, rules fire whenever their
antecedents can be ascertained to be true (by matching the contents of databases), and firing
continues until there are no remaining rules with matching antecedents left to fire. In both
languages, a rule/production can contain variables, and it may be fired many times with
different bindings for the variables.

The primary difference with respect to rule firing is that, whereas the consequents of
SDML rules are asserted to databases immediately, Soar productions do not directly af-
fect working memory. Instead, changes are made topreference memory, and a decision
procedure is used to resolve thesepreferencesand determine the changes to be made to
working memory. Soar then fires productions again based on the new contents of working
memory, resolves preferences again, and continues with thiselaboration cycleuntil there
are no more changes to be made (which is known asquiescence). When quiescence is
reached, a new operator is chosen (according to preferences) to be performed next. If a
valid and unique operator cannot be determined, then animpassearises which is recorded
as a new state in the working memory (to be treated as a subgoal to be solved, in possibly a
different problem space, before continuing with the current goal). In either case, Soar goes
on to another elaboration cycle, and continues until the problem is solved. This process is
known as thedecisioncycle. It is worth mentioning that rules also fire until quiescence in
SDML. However, cycles are less common in SDML as the automatic calculation of rule
dependencies eliminates, wherever possible, the need to loop. As we shall see in Section 5,
the SDML rule dependencies mechanism can greatly reduce the computational overheads
associated with cognitive representations of agents.

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 57

A further difference is that, whereas Soar has retraction, SDML uses time levels to avoid
the need for retraction. In Soar, preferences that haveI-support(instantiation support) are
retracted when the productions that created them no longer hold. The effects of retraction
can easily be reproduced in SDML since what is true at one time period need not be true at
the next (and will not be inferred to still be true unless rules specify that it is). Preferences
with O-support(operator support), created in Soar whenoperatorsare used, are retained
whether or not the productions still hold (it is quite likely that they will not continue to hold
since operators modify the current state). A similar effect can be achieved in SDML by
specifying that the consequents of a rule are true permanently rather than just for the current
time period. When the rule fires, the clause is asserted to the agent’s permanent database
(i.e., corresponding to the time level eternity) rather than the current subdatabase.

In many rule-based systems, some sort of “conflict resolution strategy” is used in order
to decide which rule to fire next, at each stage of the rule firing process. In such systems,
firing one rule may retract or modify information that is already on a database which may,
in turn, prevent other rules from firing. In such cases, the choice of which rule to fire next
can evidently be crucial to the behaviour of the rulebase. Conflict resolution is avoided in
both SDML and Soar, but in different ways. SDML is strictly declarative, so retraction and
modification are both banned. Soar overcomes the need for conflict resolution by making
changes to a different area of memory; productions cannot affect each other at the same
point of the elaboration cycle.

4.2. Soar’s Problem Solving in SDML

Whereas SDML fires rules, Soar uses its rules to solve problems, as outlined above. What
is mainly involved in implementing Soar’s problem solving model (NNPSCM, for new
problem solving computational model) in SDML is explicitly writing the rules that enable
Soar to choose a single value from a number of acceptable ones. First, however, the
appropriate time levels corresponding to Soar’s problem-solving cycles must be specified.

In Soar, there are two kinds of cycles, the elaboration cycle within the decision cycle. The
elaboration cycle is required by Soar as, whenever a change is made in working memory,
Soar’s productions must be fired again. A time level corresponding to an elaboration would
not, however, be required in SDML, as the dependencies among rules are calculated such
that a dependent rule will automatically fire again following the firing of a determining rule.
What is required is a single time period corresponding to a decision, with looping over this
time level giving rise to the decision cycle. Corresponding to each decision time period, a
new state or operator will be chosen.

SDML rules can be written corresponding to the different functions of the NNPSCM
(listed in the Soar 7 User’s Manual) as follows:

• Operator proposal. These rules specify the operators that are acceptable, based on the
current state and the goal to be solved.
• Operator comparison. These rules specify how acceptable operators can be compared

(representing, for example, the knowledge that one operator is best, or better than another
operator).14

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

58 MOSS ET AL.

Figure 4. Overview of an NNPSCM agent rulebase in SDML.

• Operator selection. These rules specify how to select a single operator. If a single
operator cannot be selected, an impasse is detected.
• Operator application. These rules specify how an operator, chosen at the previous time

period, can be applied to yield a new state. These rules must ensure that aspects of the
state not modified by the operator are retained.
• State elaboration. These rules specify extra information that can be inferred about the

state.
• Operator termination. These rules specify the conditions under which operators have

been performed successfully.

Some extra rules will also be required for such tasks as copying the old state if no
operator has been performed, dealing with impasses, reporting useful information to the
user, and setting up the initial state. Such rules will generally be fired at the start or end
of the rulebase firing process. The order in which the rules are fired in SDML will be
determined automatically based on the dependencies between rules (some rules may be
mutually dependent and need to be fired repeatedly). The different NNPSCM functions
will not necessarily be performed in a strict ordering,15 but they will be fired roughly in the
order shown in figure 4.

In this way, a problem can be solved by a single NNPSCM agent in SDML. Alternatively, it
may be useful, especially for big problems, to use different subagents to solve subproblems.
Instead of representing the new state and problem space within the same agent when an
impasse occurs, a subagent can be created and its rules fired using a new time level. When
the subagent’s decision cycle has finished, due to the subproblem being solved or aborted,
the original agent continues with its decision cycle. This scheme enables rules applicable
to different problem spaces to be defined in the rulebases of different agent types. More
general rules, which are applicable to more than one problem space, can be placed in
the rulebases of supertypes. Thus, agents’ rulebases will only inherit rules applicable to the
problem currently being solved.

4.3. Compiling Soar into SDML

Another useful facility is that for compiling Soar productions into SDML rules. This can be
implemented using SDML’s meta-agents which can assert rules to other agents’ rulebases,

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 59

Figure 5. Overview of a Soar agent rulebase in SDML.

as if these were databases. Soar source code is first parsed to yield clauses representing
Soar productions, which are then compiled to yield SDML rules.16

In order to ensure that the compiled Soar agents have the same behaviour as in Soar itself,
a time level should be used corresponding to the elaboration cycle, rather than the decision
cycle.17 Therefore, the compiled Soar rules cannot affect each other within the same time
period, but instead retrieve information from the previous subdatabase (representing the
contents of working memory) and assert clauses representing preferences.

These preferences can then be resolved by generic SDML rules, asserting clauses repre-
senting working memory elements to the current subdatabase, or yielding impasses when
the preferences cannot be resolved. However, in practice, most attributes utilise very few
kinds of preference. Therefore, preference resolution can be optimised by the compiler
generating specific preference resolution rules for each attribute.

The preference resolution rules also detect quiescence, in which case an elaboration cycle
ends and preferences are resolved for operators. Within each time period, rules in the Soar
agent rulebase will be fired roughly as shown in figure 5.

Typically, the meta-agent fires its rules at the start of a simulation, to compile Soar
source code into SDML rules. The same rules may then be fired at many different time
periods during the simulation. If a learning mechanism, such as chunking, is implemented,
then further Soar productions (represented as SDML clauses) may be generated during a
simulation. When this happens, the meta-agent needs to fire its rules again, in order to
generate extra rules to assert to the Soar agent’s rulebase.

5. An SDML Implementation of Radar-Soar

Because SDML is a general programming language, there is wide scope for choosing a
particular form of implementing any model. As indicated above, the procedural nature of
Soar can be replicated by ensuring that every elaboration cycle takes place in its own time
period and, within elaboration cycles, the specification of problem-space agents ensures that
only one problem space applies at a time. In this section, we do not specify problem-space
agents. Instead, we implement a well-known but restricted version of Soar cognition as
declaratively as possible. We demonstrate that, as a result, cognitive agents behave as Soar
agents but do so in a fraction of the CPU time and with a fraction of the memory requirements.
Together with the representation of inter-agent communication as explicit addressing of
clauses to other agents’ databases and the bulletin-board function of containers, declarative
implementation of Soar cognition seems likely to be an important contribution to the increase
in the sophistication of representations of cognition combined with increased articulation
of modelled organizational structures.

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

60 MOSS ET AL.

Figure 6. Manager’s problem space structure.

In Radar-Soar (Ye and Carley 1995), there are two types of cognitive agent: the manager
of the radar station and the analysts of the information obtained by the station. The goal of
each agent is to decide whether each aircraft they can observe is friendly, neutral or hostile
and, in the case of the analysts, to communicate that decision to the manager. The problem-
space structure of the manager is given in figure 6 taken from (Ye and Carley 1995: 231).

The manager starts in the top-level problem space and moves successively to the com-
munication, command, interpret-response, decision-making and feedback-interpretation
problem spaces. With each problem space there are a number of tasks to be completed,
which achieve a subgoal associated with the problem space. If that subgoal is achieved,
then the agent pops back up to the problem space above or to the next problem space. If the
subgoal cannot be achieved, the agent drops down as from communication to command.

Radar-Soar is a particularly useful model to demonstrate the relationship between Soar
and SDML because it has an inherently simple structure due to the absence of chunking
from the model.

5.1. The Radar Model Structure in SDML

The information flows in Radar-Soar were straightforward to capture in SDML using the
container hierarchy. This is shown in figure 7. The environment (of type RadarEnvironment)
is a serial composite agent. Its subagents are the airspace and the radar station. In ordering
the activities of these two composite subagents in this way, the entry of aircraft into the
airspace (by generating an instance of aircraft) will be observed by agents in the radar

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 61

Figure 7. Container hierarchy of Radar-SDML.

station during the same time frame of the radar environment. The time frame in question is
the decision cycle—that time level during which all of the reasoning, learning and deciding
necessary to identify an aircraft (rightly or wrongly) is achieved. Within the identification
cycle are the elaboration cycles in which the agents in the radar station undertake the actions
and make the decisions necessary to achieve the goal or subgoal of the current problem space.

The purpose of the analysis sections (of type RadarAnalysisSection, a subtype of Paral-
lelCompositeAgent) is to filter the information available to individual radar analysts. Each
section is given three of the nine aircraft characteristics to observe and each analyst observes
only the characteristics given to its section.

If each problem space caused the agent to move on to a new elaboration cycle, or if
each problem space were associated with a subagent, then SDML would be following Soar
in representing cognitive acts procedurally. In the SDML implementation, however, every
problem space that needed resolving pertained within each elaboration cycle.

If we look at the cognitive process represented in the model as logic rather than as
procedure, then each agent proves that it is in each problem space on the basis of its current
circumstances including the other problem spaces it has proved itself to be in and the actions
it has proved to have been undertaken. Within each elaboration cycle, the agent will prove
in succession that it is in the top-level problem state but has not achieved its goal and so
should have one or more subgoals implying corresponding problem states with perhaps

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

62 MOSS ET AL.

further subgoals, and so on. Some of these problem states imply actions to achieve their
subgoals and, if it can, the agent will prove that the actions are implied by other conditions
which will themselves possibly be proved to hold by proving first that the conditions can
be satisfied in which those further conditions will be proved true.

Three of these declarative elaboration cycles are required in each decision cycle. In the
first elaboration cycle, the manager proves that communication is necessary in the form of
commands to the analysts to observe the aircraft and report their decision as to its status
as friendly, neutral or hostile. Without the reports of the analysts, no further propositions
can be proved. The analysts cannot perceive the commands in the same elaboration cycle
as they are given because their declarative processes are being undertaken in parallel with
those of the manager. In the second elaboration cycle, the manager can get no further than
in the first but the analysts can now perceive that, in the previous elaboration cycle, the
manager addressed two commands to their respective databases:observeandreport. With
these commands in their databases, the analysts have all of the clauses required directly
and indirectly to fire the rules which lead to their decisions based on mental models of the
status of the aircraft. One of these rules is explicitly to assert to the database of the manager
the analyst’s decision. In the third elaboration cycle, the manager perceives that in the
previous elaboration cycle all of the analysts reported their decisions and so the manager
now has all of the clauses required directly and indirectly to fire the rules required to reach
the manager’s own decision about the status of the aircraft.

A property of SDML is that all of these declarations can be made in parallel and, when
that happens, the whole process is logically consistent and sound relative to the fragment
of strongly-grounded autoepistemic logic that excludes classical negation but entails not-
inferred negation.

5.2. Results

We ran experiments with two simulation setups, both adopting specification from Carley
and Lin (forthcoming). In the first, the probability of an aircraft being in any one of the
three states was equal and the status was determined on the assumption that each property
of the aircraft independently contributed to its status. Mapping the property levels{low,
medium, high} into {1, 2, 3}, an aircraft is friendly if the sum of those values is less than 16,
neutral if in the range 17 to 19 inclusive and hostile if the sum is at least 20. In the second
setup, the contributions of each property to the state of the aircraft was non-decomposable.
The formula was

(2× F1× F2× F3)+ (2× F4× F5)+ F6+ F7+ (2× F7× F8× F9)

where F1 is the numerical value of the first property, F2 of the second, and so on. As in
Radar-Soar, the first analysis section could observe the first three properties, the second
section the second three and the third the last three. The values of this formula (which
Carley and Lin found to yield equal probabilities of aircraft state) were adopted.

The results from an experiment with decomposable aircraft properties are indicated in
figure 8. The success statistic is the cumulative proportion of correct decisions by the man-
ager. The expected success rate from choosing a state at random is a third. The manager in

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 63

Figure 8. Cumulative proportion of correct decisions—decomposable properties.

Figure 9. Cumulative proportion of correct decisions—non-decomposable properties.

every experiment run with this setup achieved a success rate of about half. Since no experi-
ment yielded a success rate of less than half, learning in this model clearly had some effect.

The manager did even better in the experiments with the non-decomposable properties.
As seen in figure 9, the success rate was in excess of 60 per cent which is the sort of success
rate that Ye and Carley (1995) reported.

5.3. The Efficiency Effect of Declarative Cognitive Representations

Ye and Carley report that the analysts and the manager each require some three hours of
CPU time to complete an experiment with 60 aircraft where learning from feedback ceases

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

64 MOSS ET AL.

after the first 30 are identified. The transcript from our experiments show that an experiment
of the same length but with learning throughout takes less than 30 minutes including all
decisions by all agents computed sequentially. Although our experiment was designed from
the problem space map and flow charts reported by Ye and Carley, the much more declarative
setup required one decision cycle for each aircraft and three elaboration cycles within each
decision cycle. These cycles are not the same as in Soar since within each elaboration cycle
the largest possible set of logically consistent steps are made. The SDML assumptions
mechanism eliminates the inconsistent steps.

Apparently, the forward-chaining mechanism of SDML together with its correspondence
to strongly grounded autoepistemic logic renders the whole process far more efficient than
Ye and Carley achieved with Soar. Whether this is a property of Soar or the Carley-Ye setup
or some more pervasive property of declarative and procedural modelling approaches is a
matter for further research. The Soar-to-SDML compiler reported in Section 4 will provide
a framework within which to address that question.

5.4. Extending Soar Cognition

Ye and Carley did not allow the Soar chunking mechanism to operate in Radar-Soar because
it is difficult to code, it only takes effect when meeting the same conditions encountered
previously, that when used “Soar tried to learn from the degree to which the previous model
matched, rather than from the features of the model (or current situation) that matched” and,
finally, previous results suggest that “the main mechanism for learning in Soar, learning
through chunking, is insufficient to capture social behaviour and organizational learning
that occurs in the face of novel situations” (Ye and Carley 1995: 244).

An alternative is to be found in the endorsements mechanism described in Section 3.
Agents could endorse their models and the components of the models. In effect, the
Ye-Carley Radar-Soar implementation endorses a model which has been selected and
yielded the correct status identification as having done so by replicating the model—
effectively adding to the weight of that model in determining the probability of choosing
it again when it is among the most applicable. It is also possible for the manager to en-
dorse individual analysts according to the number of times their individual decisions have
been correct or incorrect. The analysts could endorse the individual aircraft properties or
even property values for their predictive power. There is no reason not to look for non-
decomposability (cf. Moss 1995). The reusability of code supported by the object-oriented
features of SDML render the introduction of the endorsements mechanism straightforward,
though endorsing rules will have to be written.

Moreover, a little experimentation with the existing SDML version of Radar-Soar indi-
cates that the most successful mental models that imply a common decision also share a
subset of conditions so that generalizing these models to have fewer conditions (thereby to
cover a larger number of situations) is a promising direction to pursue.

These natural extensions of Radar-Soar together with the apparently huge difference in
computational expense with a declarative version of Soar cognition supports our belief that
SDML is a suitable platform from which to overcome the shortcomings of Soar as a vehicle
for computational organization modelling without necessarily modifying the individual

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 65

behaviour implied by Soar cognition. If we choose to modify that behaviour, then that, too,
is straightforward in SDML.

6. Conclusion

For sophisticated computational models of organizations, two requirements are primary.
These include the need for cognitive models of agents, together with multi-agent represen-
tations which enable us to capture the effects of agent interaction. These requirements are ba-
sic given such aims as capturing the relationship between individual cognition and emergent
phenomena at the social level (such as norms), or modelling the effects of organization-level
phenomena that necessarily impinge upon the individual, such as downsizing and business
process reengineering. Related to these basic needs are further considerations we have
outlined above, such as the need easily to represent the effects of change over time.

We have introduced SDML, a programming language designed to meet the requirements
of multi-agent modelling. Its development has focused upon this need, rather than that of
agent cognition, for a number of reasons. Members of the Soar community, we have seen,
point to the lack of a suitable architecture in which to easily develop and modify multi-agent
models as a major impediment to the development of sophisticated organizational models.
Overcoming this impediment with declaratively programmed cognitive models of agents
will enable us to determine how quickly (and whether) more complex phenomena emerge
at the organizational level as well as the nature of emergent organizational responses to, for
example, shifts in business strategy regimes. Soar already provides a widely used general
model of problem solving and, where required, this can be easily implemented in SDML
or, indeed, compilers written for Soar code in SDML.

The promise of SDML as a vehicle for more elaborate organizational modelling with cog-
nitive agents is supported by our demonstration that Radar-Soar reimplemented in SDML
and using SDML’s efficient forward-chaining declarative capabilities yields simulation se-
tups that achieve the same goals in many fewer steps but without loss of functionality. This
raises the question of whether more declarative implementations of cognitive theories are
inherently more efficient than procedural implementations and, if they are, whether they
are less compelling as representations of actual cognition.

From the point of view of organization theory, there are clear benefits from representations
of cognitive agents that are efficient within an artificial organization. If their cognition is
less realistic, then this is yet another trade-off of the sort that scientists face all of the time.
Whether there is such a trade-off and the extent to which we are constrained by that trade-off
in the analysis of real organizational processes is an important question to be addressed in
further research.

Appendix 1: Using SDML Features to Represent Technology:
Valuing Composite Activities

The determination and allocation of the factors used to calculate the values of composite
activities use the same features of SDML that are used to represent communication among

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

66 MOSS ET AL.

agents. They also make use of the facilities which support changing the agents that are
active within containing agents.

The factors used to multiply the sums of the components of a composite activity to
determine the composite activity value are generated for every organization by the setup
agent. The setup agent creates a number of feasible abstract activity trees. These include an
abstraction of the actual activity tree of each organization in the model. In addition, the user
is asked to specify a number of additional abstract activity trees and this number of trees is
created by the setup agent. The abstract activity trees are built up by a backward-chaining
clause which takes a randomized list of the organization’s activities and builds it up into a
binary tree structure.

One composite activity is generated for every node of every abstract activity tree. Because
these composite activities are generated by the model, they are subagents of the model
which are never asserted to be active subagents. Because they are never activated, the rules
of these composite activities never fire. They can therefore serve as abstract composite
activities which are themselves comprised of abstract activities and none of them have any
direct effect on the processes being simulated.

In order to match actual (i.e., active) activities with abstract activities, each abstract
activity and each actual activity is given an identifier. The individual activities in each
activity tree are put in alphanumerical order by symbol and given a serial number which is
determined by their respective positions in that order. The composite activities are given
identifiers constructed from the identifiers of the individual activities from which, directly
or indirectly, they are constructed. The actual activities are created by departments while
the abstract activities are created by the model. Whenever two individual activities want to
establish a new composite activity with one another, they are permitted to do so only if there is
an abstract activity with the same identifier as the new, actual composite activity would have.

The model agent assigns a realization of the U(0, 3] random number to each abstract
composite activity. This number is the factor used to multiply the sum of the values
of the constituent activities to yield the value of the actual counterparts of the abstract
composite activity. The actual counterparts will be those with the same identifiers as the
abstract composite activity. Because the clauses asserted with that number and the clauses
recording the identifier of each abstract composite activity are defined in the model agent
type, both the number and the identifier of each abstract composite activity can be accessed
by every agent contained by the model. The identifiers and values of the actual activities are
captured by clauses defined in the department agent type. since they are internally readable,
no other department can read the values of activities of any other department.

It is not actually necessary to store valuation factors of the abstract composite activities
on a database (though in some cases to do so might be efficient). When a new actual
composite activity is created, a valuation factor is calculated for the corresponding abstract
composite activity using a primitive clauserandomNumber <number> <clause>. The
number is instantiated by the primitive. The clause uniquifies that random number so that
if the random number primitive is called again with the same uniquifying clause, the same
random number will be unified with the first argument of the clause. This is a property
of a strictly declarative modelling environment: once a statement has been proved true it
is always true. So, if the uniquifying clause is distinguished by the identifier of the actual

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 67

composite activity, then any actual composite activity with the same identifier generated by
any organization in the model will have the same valuation factor.

In summary, we represent the technology of activity combination by the abstract activity
trees. Because of the container hierarchy and the facility for defining the readability and
writeability of clauses, it is straightforward to create and store the abstract activity trees and
their characteristics so that all organizations are subject to the same technological environ-
ment but they can develop and use the technologies in different ways. In particular, in the
model under discussion here, the organizations can exploit the technology to a greater or
lesser extent by R&D while organizing their use of the technology differently by adopting
different activity combinations and by building up the activity combinations in different
orders.

Acknowledgments

We are grateful to Kathleen Carley for answering a string of questions about details of
the implementation of Radar-Soar. We also thank the editor and two anonymous reviewers
for their supportive comments and suggestions. SDML is developed in VisualWorks 2.5.1
the Smalltalk-80 environment produced by ParcPlace-Digitalk. Free distribution of SDML
for use in academic research is made possible by the sponsorship of ParcPlace-Digitalk
(UK) Ltd. The research reported here was funded by the Economic and Social Research
Council of the United Kingdom under contract number R000236179 and by the Faculty of
Management and Business, Manchester Metropolitan University.

Running the SDML models reported here, or inspecting them with a view to implementa-
tion in other languages, requires the SDML language and a set of modules. The language can
be obtained by following the obvious links and instructions from http://www.cpm.mmu.ac.
uk/ and the relevant modules can be obtained by anonymous ftp from www.cpm.mmu.ac.uk/
pub/scott/radar3-0.sdm.

Notes

1. Conjunction of consequents applies to forward- but not backward-chaining rules.
2. The semantics are slightly different when thenotlnferred primitive is used.
3. A procedure in this context is to be understood as a collection of rules or clauses rather than a sequence of

actions. Consequently, these features do not makeSDML in any sense a procedural language in the computer
science sense.

4. The differences between this and inheritance via the type hierarchy are detailed in the following section.
5. The labels attached to time levels are arbitrary and thus need not be naturalistic. For instance, a genetic pro-

gramming agent reported by Edmonds et al. (1997) has been programmed using the time levels generation and
stage. This coexists in a model with other agents which use natural time levels corresponding to observations
from statistical data series.

6. We deliberately omit mention of eternity here in order to simplify the example!
7. It is not always practical, however, for the lowest-level agents to correspond to individual persons.
8. We assume that a business process at the lowest level may be carried out by a single person. We do not claim

that this is a realistic assumption.
9. Activity agents incorporate the network search model of R&D reported separately by Moss et al. (1996).

Because of the object-oriented features of SDML and its modular structure, the module from the R&D module
defining the network searching agents was inserted without change into the organization model reported here.

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

68 MOSS ET AL.

10. Cohen invented the endorsements mechanism as a method of conflict resolution for expert systems. Although
there in no conflict resolution for rules in a strictly declarative system, agents must still make choices among
mutually exclusive options and endorsements are used by agents (not by SDML per se) for that purpose.

11. It is also possible to endorse rules as being successfully applied or unsuccessfully applied in the sense that a
rule firing was or was not associated with better goal achievement.

12. SDML corresponds to a fragment of strongly grounded autoepistemic logic. There are two levels of negation
in such logics:notlnferred andnot. That is, until clauses have been proved false, they have simply not been
proved to be true. Proving full negation is computationally expensive so we allow that, for example, it is not
inferred that elephants are green rather than proving the non-existence of green elephants (by, presumably,
exhaustive search).

13. For this purpose we are concerned primarily with cognition within the particular context of the organizational
model, and thus not necessarily with such general approaches to cognition as that embodied in Soar. The
latter is a separate project, which we outline below.

14. Preferences would be used for this in Soar. Preferences between operators can be stored explicitly on databases,
but it may be more convenient when solving some problems in SDML to omit this step and compare operators
as part of the selection process.

15. Although such an ordering can be forced if desired.
16. SDML rules are compiled into Smalltalk before being fired. The resulting Smalltalk code is compiled into

bytecodes, which are finally compiled into machine code!
17. Or two time levels could be used, with the elaboration cycle time level within that of the identification cycle.

This is the arrangement implemented in Section 5.

References

Barnard, P.J. (1985), “Interacting Cognitive Subsystems: A Psycholinguistic Approach to Short-Term Memory,” in
A. Ellis (Ed.)Progress in the Psychology of Language, Hillsdale, NJ: Lawrence Erlbaum, Chapt. 6, pp. 197–258.

Carley, K.M. and D.M. Svoboda (1996), “Modeling Organizational Adaptation as a Simulated Annealing Process,”
Sociological Methods and Research, 25(1), 138–168.

Carley, K.M. and Zhiang Lin (forthcoming), “A Theoretical Study of Organizational Performance under Informa-
tion Distortion,”Management Science.

Cohen, P.R. (1985),Heuristic Reasoning: An Artificial Intelligence Approach, Boston: Pitman Advanced
Publishing Program.

Cooper, R., J. Fox, J. Farringdon and T. Shallice (1996), “A Systematic Methodology for Cognitive Modeling,”
Artificial Intelligence, 85, 3–44.

Edmonds, B.M. (1997), “Modelling Socially Intelligent Agents in Organisations,” AAAI Fall Symposium on
Socially Intelligent Agents and CPM Report No. 97-26 (http://www.cpm.mmu.ac.uk/cpmrep26.html).

Gaylard, H.L. (1997), “A Formal Re-analysis of the Effects of Task Decomposition Scheme and Organiza-
tional Structure on Organizational Performance and Robustness,” CPM Report No. 97-29 (http://www.cpm.
mmu.ac.uk/cpmrep29.html).

Hunt, E. and R. Luce (1992), “Soar as a World-View, Not a Theory,”Behavioral and Brain Sciences, 15(3),
447–448.

Johnson-Laird, P.N. (1983),Mental Models, Cambridge, UK: Cambridge University Press.
Moss, S. (1995), “Control Metaphors in the Modelling of Decision-Making Behaviour,”Computational Eco-

nomics, 8(4), 283–301.
Moss, S., B. Edmonds and H. Gaylard, “Modelling R&D Strategy as a Network Search Problem,”The Multiple

Linkages Between Technological Change and the Economy, Rome: CEIS.
Newell, A. (1990),Unified Theories of Cognition, Cambridge, MA: Harvard University Press.
So, Y. and E.H. Durfee (1996), “Designing Tree Structured Organizations for Computational Agents,”Computa-

tional and Mathematical Organization Theory, 2(3), Fall 1996.
Tambe, M. and P.S. Rosenbloom (1996), “Architectures for Agents that Track Other Agents in Multi-Agent

Worlds,” Intelligent Agents, II, Springer Verlag Lecture Notes in Artificial Intelligence(LNAI 1037).

P1: SMA/MBT

Computational & Mathematical Organization Theory KL575-02-Moss March 30, 1998 9:30

SDML 69

Verhagen, H. and M. Masuch (1994), “TASCCS: A Synthesis of Double-AISS and Plural-SOAR,” in K.M. Carley
and M.J. Prietula (Eds.)Computational Organization Theory, Hillsdale, NJ: Lawrence Erlbaum

Ye, M. and K.M. Carley (1995), “Radar-Soar: Towards an Artificial Organization Composed of Intelligent Agents,”
Journal of Mathematical Sociology, 20(2–3), 219–246.

Scott Moss is the director of the Centre for Policy Modelling at Manchester Metropolitan University. He is
the author of two books and some 80 articles on business strategy, economic theories of the firm and economic
systems, forecasting, the history of economic thought and methodology. Theleitmotifof this work is that, without
equilibrium concepts, economic issues could be analysed with greater realism and usefulness than is possible with
mainstream economic theories. He began using artificial intelligence techniques to represent human behaviour
about ten years ago and, since 1990, has had research grants approaching $1 million, edited a book on economics
and artificial intelligence, produced a further 20 or so articles and brought together the multi-disciplinary team
comprising the Centre for Policy Modelling.

Helen Gaylard obtained a B.A. (Hons) in Philosophy from the University of Wales in 1989 and an M.Sc. and
Ph.D. in Cognitive Science from the University of Birmingham in 1991 and 1995, respectively. From 1995 to
1997 she was employed at the Centre for Policy Modelling where she brought to the interdisciplinary team an
interest in psychologically plausible representations of agent cognition, communication and social interaction.
She is currently working in the Centre for Computational Linguistics at the University of Manchester Institute of
Science and Technology.

Steve Wallisreceived a B.Sc. in Computing and Information Systems in 1987, and a Ph.D. in Computer Science
in 1991, at the University of Manchester. His Ph.D. work involved integrating object-oriented and knowledge
representation techniques on a declarative basis. As a research officer in the University of Manchester, he developed
a declarative object-oriented simulation framework called FOOD, which was used in a prototype Computer Based
Training toolkit to teach fault-finding in industrial equipment. He also worked on the use of distributed objects
for multimedia communications. He has been a member of the Centre for Policy Modelling since 1992 where he
has led the design and undertaken the implementation of SDML. His recent publications are in both information
systems and economics.

Bruce Edmondsis the Senior Research Fellow in Logic and Formal Methods at the Centre for Policy Modelling.
His first degree was in Mathematics at Oxford and he is completing his Ph.D. on the definition of complexity
for formal systems at the Philosophy department of the University of Manchester. His academic interests and
recent publications include the philosophy and measurement of complexity, the methodology of modelling, the
application of evolutionary computation and the philosophy of economics and science. He maintains a fairly
comprehensive bibliography on complexity on the web and is an editor of the Journal of Memetics—Evolutionary
Models of Information Transmission.

