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Agent-based models 

Agent-based models (ABMs) are computer representations of systems that 

are comprised of multiple, interacting actors (i.e., agents). In a land-use/cover 

change (LUCC) context, agents can include land owners, farmers, collectives, 

migrants, management agencies, and/or policy making bodies, all of whom make 

decisions or take actions that affect land-use patterns and processes. By 

simulating the individual actions of many diverse actors, and measuring the 

resulting system behavior and outcomes over time (e.g., the changes in patterns of 

land cover), ABMs can be useful tools for studying the effects on land-use/cover 

processes that operate at multiple scales and organizational levels and their 

effects.  

Agents are discrete entities that are defined in terms of both their attributes 

and their behaviors.  The attributes of agents can be continuous measurements, 

like age or wealth, or discrete categories, like farmer or member of a particular 

interest group.  The actions of agents can be scheduled to take place 

synchronously (i.e., every agent performs actions at each discrete time step) or 

asynchronously (i.e., agent actions are scheduled with reference to a clock or to 

the actions of other agents). The behaviors of agents can vary from completely 

reactive, i.e., agents only perform actions when triggered to do so by some 



external stimulus (e.g., actions of another agent), to goal-directed (e.g., through 

seeking of a particular goal). For example, an farmer agent could be programmed 

to plant corn every spring (i.e., a relatively reactive agent) or choose whether to 

plant and which crop to maximize return on investment, and plant at the time 

that is expected to produce the highest yield (i.e., a goal-directed agent).  Agent-

based models for LUCC research are nearly always spatially explicit, which 

means that the agents and/or their actions are referenced to particular locations on 

the Earth’s surface. For this reason, many agent-based models have either direct 

or indirect interaction with geographic information systems. 

ABMs belong to a category of models known as discrete event 

simulations, which run with some set of starting conditions over some period of 

time, allowing the programmed agents to carry out their actions until some 

specified stopping criterion is satisfied, usually indicated by either a certain 

amount of time or a specified system state. As such, ABMs are similar to discrete-

event models used in a wide range of fields, including individual-based models 

(IBMs) and gap models, which have been used in biology and ecology to simulate 

the behavior of animals and plants, respectively. 

ADVANTAGES OF AGENT-BASED MODELS 

ABMs have a number of strengths that contrast with traditional methods 

for modeling land-use/cover change. Important among these strengths is the 

ability to represent agent behavior explicitly while, at the same time, providing a 



range of options for representing behavior.  Traditional land-use models derive 

from rational utility theory, in which a land-use pattern is explained in terms of 

actors who maximize utility obtained from various land uses at various locations 

(in some models the agent decision is what land use to engage in at a location, in 

others it is where to locate a particular land use).   For example, rational utility 

theory is the basis for von Thünen’s models of agricultural land-use patterns 

around a city center, and later variants of this model.  In such traditional models, 

homogeneity is assumed in both the decision-making approach and in the 

factors that influence the utility calculation for each member of the population. 

Further, all agents are assumed to have perfect information about alternatives and 

about future utility, and to maximize utility in all situations.  Research in the 

behavioral sciences has produced a range of alternative behavioral models that 

can be implemented and evaluated with agent-based models.  For example: (a) 

heterogeneity in agent behavior can be represented by drawing parameters of a 

utility function from a statistical distribution, or using alternative decision making 

approaches for different agent types (e.g., residents evaluate aesthetics and 

distance to work and farmers evaluate crop price and yield); (b) rationality can be 

bounded by imposing limits on the amount of effort agents use to search for 

and/or evaluate alternatives; (c) alternatives to utility maximization can be 

included by, for example, using satisficing behavior, in which agents select 

alternatives that are “good enough” using heuristics to determine agent choices 



(e.g., based on simple psychological models); (d) randomness in environmental 

conditions, information availability, or decision outcomes can be incorporated 

through inclusion of stochastic processes.  

In addition to the richer behavioral representations afforded by ABMs, 

ABMs inherit several advantages from their computer-simulation heritage.  

Because an ABM is a dynamical system, the model can incorporate positive and 

negative feedbacks, such that the behavior of an agent has an influence on the 

subsequent behavior of other agents.  These feedbacks can be used to represent 

the endogeneity of various driving forces of land-use and land-cover 

change. For example, if the existing amount of developed land is a variable that 

predicts how much new land will be developed, then developed land area is an 

endogenously coupled variable. By representing the sequential effects of land 

development at each time step in the model, a simulation model can explicitly 

represent this endogeneity.  Other simulation models, like cellular automata, 

share this ability.  An important characteristic that distinguishes ABMs from 

cellular automata (CA) is that, whereas CA usually have a fixed interaction 

topology (i.e., which neighbors a cell interacts with is fixed by the cellular 

geometry), interactions in the ABM can be dynamically changed as the model 

runs, because they are defined at the agent level, rather than in terms of the 

partitioning of space. 



PURPOSE AND USE OF AGENT-BASED MODELS 

Like other modeling approaches, the use of ABMs might be summarized 

in two broad categories, namely explanatory and prognostic purposes.  The 

explanatory uses of models involve their use as a means to codify understanding 

about processes, evaluate the implications of assumptions, and evaluate the 

efficacy of this understanding relative to observations.  Prognostic uses of models 

involve their use for extrapolation of trends, evaluation of scenarios, and 

prediction of future states. Whether explanatory or prognostic, many projects that 

use ABMs begin with exploratory uses of the models to understand system 

processes and dynamics before building truly explanatory or prognostic models.  

In the context of land-use/cover change (LUCC) research that focuses on 

explanation and understanding land-related decision-making processes and their 

implications, ABMs serve as virtual land-use systems, or land use systems in 

silica, within which such land-related processes can be evaluated.  Such studies 

build on the tradition of complex systems research that has been referred to as 

“generative social science,” an approach elaborated by Joshua Epstein.  The goal 

of such studies is to understand the emergence of patterns, trends, or other 

characteristics observable in society or geography by generating them from 

models built to represent the actors but not, explicitly, the collective outcomes.   

For example, it is a common goal of LUCC studies to characterize the 

spatial patterns of landscapes through the calculation of metrics that describe the 



composition and configuration of land cover in a particular area. Such pattern 

metrics might be used to observe that forests are becoming more fragmented, that 

urban settlements are becoming more dispersed, or that grasslands are declining.  

A goal of agent-based modeling in these contexts could be to program plausible 

agent-level behaviors and interactions that, when run in a simulation, produce 

similar trends in the patterns as those observed through analysis of maps.  Such a 

model represents a candidate explanation for the emergence of the observed 

patterns. The challenges in such applications are (a) ensuring that the agent-level 

representations are plausible and (b) testing alternative models to identify the 

range of micro-behaviors that can produce a given macro-behavior. If that range 

is large, then the set of candidate explanations is too.    

Prognostic uses of ABMs in LUCC are most likely to be successful in the 

context of scenario development and policy analysis.  In such applications, an 

ABM whose mechanisms are well supported by empirical understanding and data 

can be used to evaluate the possible effects on model outcomes of changes in 

initial conditions, in information available to agents, in constraints or 

incentives to agent behavior, etc. Such analyses can be used to understand how 

system dynamics and outcomes can be affected by changing contexts.  An 

obvious application of such approaches is to evaluate the effects of system 

changes over which some agency or group has some control (e.g., for policy 



analysis), to evaluate the range of system effects a particular change in policy 

might be expected to have. 

Positive feedbacks, common in many such systems, can create system 

behavior referred to as path dependence, in which the path a process takes is 

very sensitive to both initial conditions and small variations in stochastic 

processes. For this reason, predictive modeling with agent-based models, or any 

models of systems that contain positive feedbacks, can be challenging.  Some 

land-use processes do contain feedbacks. A classic example is the development of 

certain industrial regions (e.g., Silicon Valley, USA) in which the returns to 

locating in a region increase as more and more facilities are located there.  

Because the location of such a large agglomeration of industries of a given type 

can be very sensitive to some early decisions that are hard to predict, the land-use 

system itself can be hard to predict.  The impulse to calibrate a model to fit 

existing data can result in an overfit model, in which the model is overly 

constrained so that it fits the data but is insufficiently general to represent the full 

range of possible outcomes from the system. 

BUILDING AGENT-BASED MODELS 

The process of building ABMs starts with conceptual modeling, in which 

the basic questions or goals, the elements of the system (i.e., agents and other 

features), the relevant behaviors of the agents, and the measurable outcomes of 

interest are identified. Depending on the goals of a particular model application, a 



model may involve the use of designed or empirically grounded agents.  If 

designed, the agents are endowed with characteristics and behaviors that 

represent, often simplified, conditions for testing specific hypotheses about 

general cases.  If empirically grounded, the agents are intended to represent real 

individuals or organizations for which data about decision making processes are 

available.  Similarly, the environment within which the agents act can be 

designed, i.e., given characteristics that are simplified to focus on specific 

attributes, or empirically grounded to represent specific places. In practice, a 

study may start with simple models, often with designed agents and 

environments, to evaluate and understand the dynamics of the system.  Where 

such understanding is more mature, and where a project has prognostic goals 

related to specific cases, a study would use empirically grounded agents and 

environments. 

Following conceptual modeling, the computer programs must be designed 

in ways that represent the conceptual model with fidelity and that are 

computationally efficient.  The design of an ABM program follows the 

framework of object-oriented programming.  As such classes of objects are 

defined, some of which are agents and some of which can include other 

computational objects, e.g., an object that observes and reports the outcomes of 

the models.  The defining characteristics of object-orientation include 

encapsulation, in which the attributes and methods of objects are bundled together 



so that the actions of objects and agents can be run independently, and 

inheritance, in which a sub-class of objects (or agents) inherits the attributes and 

methods of its super-class.  Inheritance makes it possible to efficiently define all 

agents, as a class with a set of attributes (e.g., type and color), and types of agents, 

as a sub-class with different sets of additional attributes and methods for each 

type.  

Once a program has been designed, the software must be written.  ABMs 

use object-oriented programming languages, like C++, Java, or Objective-C.  

There are several tools available to assist in building ABMs. Many ABMs are 

written using sets of software libraries that provide pre-defined routines 

specifically designed for use in agent-based modeling.  Perhaps the most 

prominent and early of these libraries was SWARM, originally developed at the 

Santa Fe Institute and programmed with Objective-C, but later supporting models 

written in Objective-C or Java.  Recent years have witnessed the development of 

several more libraries, including REPAST, ASCAPE, and MASON, all written 

with Java. Several systems based on Smalltalk have been developed and include 

CORMAS, which has a natural resource focus, and SDML. The object-oriented 

programming paradigm of ABMs allows for the incorporation of a range of other 

software libraries.  Importantly for LUCC research, libraries of geographic 

information systems (GIS), like GEOTOOLS, can enhance the functionality of 

ABMs, through provision of data management and spatial analytical functionality. 



In addition to software libraries, several packages provide routines and 

software environments that simplify the programming of ABMs and the building 

of visualizations based on these models.  Notable among these packages are 

STARLOGO, its derivative NETLOGO, and AGENTSHEETS. While these 

packages are comparatively much easier to use than the Java-based libraries, they 

also provide more limited functionality.   

Once a model has been coded, it must be verified, by running the model to 

test that the specific programmed behaviors perform as expected.  These tests can 

be posed as hypotheses about the behavior of the model under a range of different 

parameter settings.  The hypotheses should be ones for which the answer is 

known given the conceptual model as designed.  If the coded model returns 

different results, then the modeler should further evaluate the model for logical 

errors and programming mistakes. Given that complex systems can often return 

counter-intuitive results, however, care must be taken to determine whether the 

unexpected result is an error or a feature of the system. Only after the various 

methods programmed in the model have been tested in this way should the model 

be considered sufficient for scientific application. 

CALIBRATION AND VALIDATION 

Some of the hardest issues to deal with in building ABMs are related to 

calibration, i.e., setting model structure and parameter values in ways that 

accurately reflect a real-world situation, and validation, i.e., confirming that 



the model behaves substantially similarly to the way the target system behaves.  

Calibration typically requires data on the micro-level processes that the model is 

programmed to represent.  These data can be acquired through surveys, statistical 

analysis of empirical data (e.g., through hedonic price analysis), or experiments 

specifically designed to elicit decision-making strategies and factors.  Validation 

usually involves comparison of model outcomes, often at the macro-level, with 

comparable outcomes in the real world (e.g., land cover patterns).  Because the 

models are dynamic, these comparisons often require multi-temporal and spatially 

explicit data to fully evaluate that a model reflects dynamics accurately. Given the 

path dependence that can be present in land-use systems, comparison of a model 

that has multiple possible outcomes with a real world that has only one outcome 

presents new analytical challenges for agent modelers.  

 

See also Multiplicity; Pattern to process. 
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