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Abstract.  Advancing the state of the art of simulation in the social sciences
requires appreciating the unique value of simulation as a third way of doing
science, in contrast to both induction and deduction.  This essay offers advice for
doing simulation research, focusing on the programming of a simulation model,
analyzing the results and sharing the results with others.  Replicating other
people’s simulations gets special emphasis, with examples of the procedures and
difficulties involved in the process of replication. Finally, suggestions are offered
for building of a community of social scientists who do simulation.
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1. Simulation as a Young Field
�

Simulation is a young and rapidly growing field in the social sciences.
�

  As in
most young fields, the promise is greater than the proven accomplishments.  The
purpose of this paper is to suggest what it will take for the field to become mature
so that the potential contribution of simulation to the social sciences can be
realized.

One indication of the youth of the field is the extent to which published work
in simulation is very widely dispersed.  Consider these observations from the
Social Science Citation Index of 1995.

1.  There were 107  articles with "simulation" in the title."
�

  Clearly simulation
is an important field.  But these 107 articles were scattered among 74 different
journals.  Moreover, only five of the 74 journals had more than two of these
articles. In fact, only one of these five, Simulation and Gaming, was primarily a
social science journal.

�

  Among the 69 journals with just one or two articles with
"simulation" in the title, were journals from virtually all disciplines of the social
sciences, including economics, political science, psychology, sociology,
anthropology and education.  Searching by a key word in the title is bound to
locate only a fraction of the articles using simulation, but the dispersion of these
articles does demonstrate one of the great strengths as well as one of the great
weaknesses of this young field.  The strength of simulation is applicability in
virtually all of the social sciences. The weakness of simulation is that it has little
identity as a field in its own right.

2.  To take another example, consider the articles published by the eighteen
members of the program committee for this international conference.  In 1995
they published twelve articles that were indexed by the Social Science Citation
Index. These twelve articles were in eleven different journals, and the only
journal overlap was two articles published by the same person.  Thus no two
members published in the same journal.  While this dispersion shows how diverse
the program committee really is, it also reinforces the earlier observation that
simulation in the social sciences has no natural home.

______________________
�

I am pleased to acknowledge the help of Ted Belding, Michael Cohen, and Rick Riolo.
For financial assistance, I thank Intel Corporation, the Advanced Project Research Agency
through a grant to the Santa Fe Institute, and the University of Michigan LS&A College
Enrichment Fund.  Several paragraphs of this paper have been adapted from Axelrod
(1997b), and are reprinted with permission of Princeton University Press.
�

While simulation in the social sciences began over three decades ago (e.g.,  Cyert and
March, 1963), only in the last ten years has the field begun to grow at a fast pace.
�

This excludes articles on gaming and education, and the use of simulation as a strictly
statistical technique.
�

Three others were operations research journals, and the last was a journal of medical
infomatics.
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3.  As a final way of looking at the issue, consider citations to one of the
classics of social science simulation, Thomas Schelling’s Micromotives and
Macrobehavior (1978).  This book was cited 21 times in 1995, but these cites
were dispersed among 19 journals.  And neither of the journals with more than
one citation were among the 74 journals that had "simulation" in the title of an
article.  Nor were either of these journals among the 11 journals where the
program committee published.

In sum, works using social science simulation, works by social scientists
interested in simulation, and works citing social science simulation are all very
widely dispersed throughout the journals.  There is not yet much concentration of
articles in specialist journals, as there is in other interdisciplinary fields such as
the theory of games or the study of China.

This essay is organized as follows. The next section discusses the variety of
purposes that simulation can serve, giving special emphasis to the discovery of
new principles and relationships.  After this, advice is offered for how to do
research with simulation. Topics include programming a simulation model,
analyzing the results, and sharing the results with others.  Next, the neglected
topic of replication is considered, with detailed descriptions of two replication
projects.  The final section suggests how to advance the art of simulation by
building a community of social scientists (and others) who use computer
simulation in their research.

2. The Value of Simulation

Let us begin with a definition of simulation. "Simulation means driving a model
of a system with suitable inputs and observing the corresponding outputs."
(Bratley, Fox & Schrage 1987, ix).

While this definition is useful, it does not suggest the diverse purposes to
which simulation can be put.  These purposes include: prediction, performance,
training, entertainment, education, proof and discovery.

1. Prediction. Simulation is able to take complicated inputs, process them by
taking hypothesized mechanisms into account, and then generate their
consequences as predictions.  For example, if the goal is to predict interest rates in
the economy three months into the future, simulation can be the best available
technique.

2. Performance.  Simulation can also be used to perform certain tasks. This is
typically the domain of artificial intelligence. Tasks to be performed include
medical diagnosis, speech recognition, and function optimization. To the extent
that the artificial intelligence techniques mimic the way humans deal with these
same tasks, the artificial intelligence method can be thought of as simulation of
human perception, decision making or social interaction.  To the extent that the
artificial intelligence techniques exploit the special strengths of digital computers,
simulations of task environments can also help design new techniques.
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3. Training.  Many of the earliest and most successful simulation systems were
designed to train people by providing a reasonably accurate and dynamic
interactive representation of a given environment.  Flight simulators for pilots is
an important example of the use of simulation for training.

4. Entertainment.  From training, it is only a small step to entertainment.
Flight simulations on personal computers are fun. So are simulations of
completely imaginary worlds.

5. Education.  From training and entertainment it is only another small step to
the use of simulation for education. A good example, is the computer game
SimCity.  SimCity is an interactive simulation allowing the user to experiment
with a hypothetical city by changing many variables, such as tax rates and zoning
policy.  For educational purposes, a simulation need not be rich enough to suggest
a complete real or imaginary world.  The main use of simulation in education is to
allow the users to learn relationships and principles for themselves.

6. Proof.  Simulation can be used to provide an existence proof. For example,
Conway’s Game of Life (Poundstone 1985) demonstrates that extremely complex
behavior can result from very simple rules.

7. Discovery.  As a scientific methodology, simulation’s value lies principally
in prediction, proof, and discovery.  Using simulation for prediction can help
validate or improve the model upon which the simulation is based. Prediction is
the use which most people think of when they consider simulation as a scientific
technique.  But the use of simulation for the discovery of new relationships and
principles is at least important as proof or prediction.  In the social sciences, in
particular, even highly complicated simulation models can rarely prove
completely accurate. Physicists have accurate simulations of the motion of
electrons and planets, but social scientists are not as successful in accurately
simulating the movement of workers or armies.  Nevertheless, social scientists
have been quite successful in using simulation to discover important relationships
and principles from very simple models.  Indeed, as discussed below, the simpler
the model, the easier it may be to discover and understand the subtle effects of its
hypothesized mechanisms.

Schelling’s (1974; 1978) simulation of residential tipping provides a good
example of a simple model that provides an important insight into a general
process.  The model assumes that a family will move only if more than one third
of its immediate neighbors are of a different type (e.g., race or ethnicity). The
result is that very segregated neighborhoods form even though everyone is
initially placed at random, and everyone is somewhat tolerant.

To appreciate the value of simulation as a research methodology, it pays to
think of it as a new way of conducting scientific research.  Simulation as a way of
doing science can be contrasted with the two standard methods of induction and
deduction.  Induction is the discovery of patterns in empirical data.

�

  For

______________________
�

Induction as a search for patterns in data should not be confused with mathematical
induction, which is a technique for proving theorems.
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example, in the social sciences induction is widely used in the analysis of opinion
surveys and the macro-economic data.  Deduction, on the other hand, involves
specifying a set of axioms and proving consequences that can be derived from
those assumptions.  The discovery of equilibrium results in game theory using
rational choice axioms is a good example of deduction.

Simulation is a third way of doing science.  Like deduction, it starts with a set
of explicit assumptions.  But unlike deduction, it does not prove theorems.
Instead, a simulation generates data that can be analyzed inductively.  Unlike
typical induction, however, the simulated data comes from a rigorously specified
set of rules rather than direct measurement of the real world.  While induction can
be used to find patterns in data, and deduction can be used to find consequences
of assumptions, simulation modeling can be used as an aid intuition.

Simulation is a way of doing thought experiments.  While the assumptions
may be simple, the consequences may not be at all obvious.  The large-scale
effects of locally interacting agents are called "emergent properties" of the
system.  Emergent properties are often surprising because it can be hard to
anticipate the full consequences of even simple forms of interaction.

�

There are some models, however, in which emergent properties can be
formally deduced.  Good examples include the neo-classical economic models in
which rational agents operating under powerful assumptions about the availability
of information and the capability to optimize can achieve an efficient re-
allocation of resources among themselves through costless trading.  But when the
agents use adaptive rather than optimizing strategies, deducing the consequences
is often impossible; simulation becomes necessary.

Throughout the social sciences today, the dominant form of modeling is based
upon the rational choice paradigm.  Game theory, in particular, is typically based
upon the assumption of rational choice.  In my view, the reason for the dominance
of the rational choice approach is not that scholars think it is realistic.  Nor is
game theory used solely because it offers good advice to a decision maker, since
its unrealistic assumptions undermine much of its value as a basis for advice.  The
real advantage of the rational choice assumption is that it often allows deduction.

The main alternative to the assumption of rational choice is some form of
adaptive behavior.  The adaptation may be at the individual level through
learning, or it may be at the population level through differential survival and
reproduction of the more successful individuals.  Either way, the consequences of
adaptive processes are often very hard to deduce when there are many interacting
agents following rules that have non-linear effects.  Thus, simulation is often the
only viable way to study populations of agents who are adaptive rather than fully
rational.  While people may try to be rational, they can rarely meet the
requirement of information, or foresight that rational models impose (Simon,

______________________
�

Some complexity theorists consider surprise to be part of the definition of emergence, but
this raises the question of surprising to whom?
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1955; March, 1978).  One of the main advantages of simulation is that it allows
the analysis of adaptive as well as rational agents.

An important type of simulation in the social sciences is "agent-based
modeling."  This type of simulation is characterized by the existence of many
agents who interact with each other with little or no central direction.  The
emergent properties of an agent-based model are then the result of "bottom-up"
processes, rather than "top-down" direction.

Although agent-based modeling employs simulation, it does not necessarily
aim to provide an accurate representation of a particular empirical application.
Instead, the goal of agent-based modeling is to enrich our understanding of
fundamental processes that may appear in a variety of applications.  This requires
adhering to the KISS principle, which stands for the army slogan "keep it simple,
stupid."  The KISS principle is vital because of the character of the research
community.  Both the researcher and the audience have limited cognitive ability.
When a surprising result occurs, it is very helpful to be confident that one can
understand everything that went into the model.  Simplicity is also helpful in
giving other researchers a realistic chance of extending one’s model in new
directions.  The point is that while the topic being investigated may be
complicated, the assumptions underlying the agent-based model should be simple.
The complexity of agent-based modeling should be in the simulated results, not in
the assumptions of the model.

As pointed out earlier, there are other uses of computer simulation in which
the faithful reproduction of a particular setting is important.  A simulation of the
economy aimed at predicting interest rates three months into the future needs to
be as accurate as possible.  For this purpose the assumptions that go into the
model may need to be quite complicated.  Likewise, if a simulation is used to
train the crew of a supertanker, or to develop tactics for a new fighter aircraft,
accuracy is important and simplicity of the model is not.  But if the goal is to
deepen our understanding of some fundamental process, then simplicity of the
assumptions is important and realistic representation of all the details of a
particular setting is not.

3. Doing Simulation Research

In order to advance the art of simulation in the social sciences, it is necessary to
do more than consider the purpose of simulation. It is also necessary to be more
self-conscious about the process of doing the research itself.  To do so requires
looking at three specific aspects of the research process which take place once the
conceptual model is developed: the programming of the model, the analysis of the
data, and the sharing of the results.

3.1.  Programming a Simulation Model
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The first question people usually ask about programming a simulation model is,
"What language should I use?"  My recommendation is to use one of the modern
procedural languages, such as Pascal, C or C++.

�

The programming of a simulation model should achieve three goals: validity,
usability, and extendibility.

The goal of validity is for the program to correctly implement the model.  This
kind of validity is called "internal validity." Whether or not the model itself is an
accurate representation of the real world is another kind of validity that is not
considered here.  Achieving internal validity is harder than it might seem.  The
problem is knowing whether an unexpected result is a reflection of a mistake in
the programming, or a surprising consequence of the model itself.  For example,
in one of my own models, a result was so counterintuitive that careful analysis
was required to confirm that this result was a consequence of the model, and not
due to a bug in the program (Axelrod, 1997a). As is often the case, confirming
that the model was correctly programmed was substantially more work than
programming the model in the first place.
 The goal of usability is to allow the researcher and those who follow to run the
program, interpret its output, and understand how it works.  Modeling typically
generates a whole series of programs, each version differing from the others in a
variety of ways.  Versions can differ, for example, in which data is produced,
which parameters are adjustable, and even the rules governing agent behavior.
Keeping track of all this is not trivial, especially when one tries to compare new
results with output of an earlier version of the program to determine exactly what
might account for the differences.

The goal of extendibility is to allow a future user to adapt the program for new
uses.  For example, after writing a paper using the model, the researcher might
want to respond to a question about what would happen if a new feature were
added.  In addition, another researcher might want someday want to modify the
program to try out a new variant of the model.  A program is much more likely to
be extendible if it is written and documented with this goal in mind.

3.2. Analyzing the Results

Simulation typically generates huge amounts of data.  In fact one of the
advantages of simulation is that if there is not enough data, one can always run
the simulation again and get some more!  Moreover, there are no messy problems
of missing data or uncontrolled variables as there are in experimental or
observational studies.

Despite the purity and clarity of simulation data, the analysis poses real
challenges. Multiple runs of the same model can differ from each other due to
______________________
�

For small projects, it may be easiest to program within a graphics or statistical package,
or even a spreadsheet.  For a discussion of alternative programming languages, see
Axelrod (1997, 209f).
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differences in initial conditions and stochastic events. A major challenge is that
results are often path-dependent, meaning that history matters.  To understand the
results often means understanding the details of the history of a given run.   There
are at least three ways in which history can be described.

1. History can be told as "news," following a chronological order.  For
example, a simulation of international politics might describe the sequence of key
events such as alliances and wars.  This is the most straightforward type of story
telling, but often offers little in explanatory power.

2. History can be told from the point of view of a single actor. For example,
one could select just one of the actors, and do the equivalent of telling the story of
the "Rise and Fall of the Roman Empire."  This is often the easiest kind of history
to understand, and can be very revealing about the ways in which the model’s
mechanisms have their effects over time.

3. History can also be told from a global point of view.  For example, one
would describe the distribution of wealth over time to analyze the extent of
inequality among the agents.  Although the global point of view is often the best
for seeing large-scale patterns, the more detailed histories are often needed to
determine the explanation for these large patterns.

While the description of data as history is important for discovering and
explaining patterns in a particular simulation run, the analysis of simulations all
too often stops there.  Since virtually all social science simulations include some
random elements in their initial conditions and in the operation of their
mechanisms for change, the analysis of a single run can be misleading. In order to
determine whether the conclusions from a given run are typical it is necessary to
do several dozen simulation runs using identical parameters (using different
random number seeds) to determine just which results are typical and which are
unusual.  While it may be sufficient to describe detailed history from a single run,
it is also necessary to do statistical analysis of a whole set of runs to determine
whether the inferences being drawn from the illustrative history are really well
founded.  The ability to do this is yet one more advantage of simulation:  the
researcher can rerun history to see whether particular patterns observed in a single
history are idiosyncratic or typical.

Using simulation, one can do even more than compare multiple histories
generated from identical parameters.  One can also systematically study the
affects of changing the parameters.  For example, the agents can be given either
equal or unequal initial endowments to see what difference this makes over time.
Likewise, the differences in mechanisms can be studied by doing systematic
comparisons of different versions of the model.  For example, in one version
agents might interact at random whereas in another version the agents might be
selective in who they interact with.  As in the simple change in parameters, the
effects of changes in the mechanisms can be assessed by running controlled
experiments with whole sets of simulation runs.  Typically, the statistical method
for studying the effects of these changes will be regression if the changes are
quantitative, and analysis of variance if the changes are qualitative.  As always in
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statistical analysis, two questions need to be distinguished and addressed
separately:  are the differences statistically significant (meaning not likely to have
been caused by chance), and are the differences substantively significant
(meaning large enough in magnitude to be important).

3.3. Sharing the Results

After cycling through several iterations of constructing the model, programming
the simulation, and doing the data analysis, the final step in the research is sharing
the results with others.  As in most fields of research, the primary method of
sharing research results is through publication, most often in refereed journals or
chapter-length reports in edited collections.  In the case of social science
simulation, there are several limitations with relying on this mode of sharing
information.  The basic problem is that it is hard to present a social science
simulation briefly. There are at least three reasons.

1. Simulation results are typically quite sensitive to the details of the model.
Therefore, unless the model is described in great detail, the reader is unable to
replicate or even fully understand what was done. Articles and chapters are often
just not long enough to present the full details of the model. (The issue of
replication will be addressed at greater length below.)

2. The analysis of the results often includes some narrative description of
histories of one or more runs, and such narrative often takes a good deal of space.
While statistical analysis can usually be described quite briefly in numbers, tables
or figures, the presentation of how inferences were drawn from the study of
particular histories usually can not be brief. This is mainly due to the amount of
detail required to explain how the model’s mechanisms played out in a particular
historical context. In addition, the paucity of well known concepts and techniques
for the presentation of historical data in context means that the writer can not
communicate this kind of information very efficiently.  Compare this lack of
shared concepts with the mature field of hypothesis testing in statistics.  The
simple phrase "p < .05" stands for the sentence, "The probability that this result
(or a more extreme result) would have happened by chance is less than 5%."
Perhaps over time, the community of social science modelers will develop a
collection of standard concepts that can become common knowledge and then be
communicated briefly, but this is not true yet.

3. Simulation results often address an interdisciplinary audience. When this is
the case, the unspoken assumptions and shorthand terminology that provide
shortcuts for every discipline may need to be explicated at length to explain the
motivation and premises of the work to a wider audience.

4. Even if the audience is a single discipline, the computer simulations are still
new enough in the social sciences that it may be necessary to explain very
carefully both the power and the limitations of the methodology each time a
simulation report is published.
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Since it is difficult to provide a complete description of a simulation model in
an article-length report, other forms of sharing information about a simulation
have to be developed.  Complete documentation would include the source code
for running the model, a full description of the model, how to run the program,
and the how to understand the output files.  An established way of sharing this
documentation is to mail hard copy or a disk to anyone who writes to the author
asking for it.  Another way is to place the material in an archive, such as the
Interuniversity Consortium for Political and Social Research at the University of
Michigan.  This is already common practice for large empirical data sets such as
public opinion surveys.  Journal publishers could also maintain  archives of
material supporting their own articles. The archive then handles the distribution of
materials, perhaps for a fee.

Two new methods of distribution are available:  CD-ROM, and the Internet.
Each has its own characteristics worth considering before making a selection.

A CD-ROM is suitable when the material is too extensive to distribute by
traditional means or would be too time-consuming for a user to download from
the Web.  A good example would be animations of multiple simulation runs.

�

The primary disadvantage is the cost to the user of purchasing the CD-ROM,
either as part of the price of a book or as a separate purchase from the publisher.

The second new method is to place the documentation on the Internet. Today,
the World Wide Web provides the most convenient way to use the Internet.  By
using the Internet for documentation, the original article need only provide the
address of the site where the material is kept.  This method has many advantages.

1. Unlike paper printouts, the material is available in machine readable form.
2. Unlike methods that rely on the mail, using the Web makes the material

immediately available from virtually anywhere in the world, with little or no
effort required to answer each new request.

3. Material on the Web can be structured with hyperlinks to make clear the
relationship between the parts.

4. Material on the Web can be easily cross-referenced from other Web sites.
This is especially helpful since, as noted earlier, social science simulation articles
are published in such a wide variety of journals.  As specialized Web sites
develop to keep track of social science simulations, they can become valuable
tools for the student or researcher who wants to find out what is available.

�

5. Material placed on the Web can be readily updated.

______________________
�

A pioneering example will be the CD-ROM edition of Epstein and Axtell (1996)
published by the Brookings Institution. The CD-ROM will operate on both Macintosh and
Window platforms and contain the complete text as well as animations.
�

An excellent example is the Web site maintained by Leigh Tesfatsion, Iowa State
University. It specializes in agent-based computational economics, but also has pointers to
simulation work in other fields.  The address is http://
www.econ.iastate.edu/tesfatsi/abe.htm.
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A significant problem with placing documentation on the Web is how to
guarantee it will still be there years later.  Web sites tend to have high turnover.
Yet a reader who comes across a simulation article ten years after publication
should still be able to get access to the documentation.  There are no well-
established methods of guaranteeing that a particular Web server (e.g., at a
university department) will maintain a given set of files for a decade or more.
Computer personnel come and go, equipment is replaced, and budgetary priorities
change.  The researcher who places documentation on the Web needs to keep an
eye on it for many years to be sure it did not get deleted. The researcher also
needs to keep a private backup copy in case something does go wrong with the
Web server being used.

The Internet offers more than just a means of documenting a simulation. It
also offers the ability for a user to run a simulation program on his or her own
computer. This can be done through a programming environment such as Java
which allows the code that resides on the author’s machine to be executed on the
user’s machine.  A major advantage of this method of distributing a simulation
program is that the same code can be run on virtually any type of computer.  A
good example is a simulation of a model of the spread of HIV infection.  The
description of the model, an article about its motivation, and a working version
that can be run and even adapted by a distant user are all available on the Web.

�
	

One disadvantage of using Java is that it is slower in execution than a locally
compiled program.  Another disadvantage of using Java or a similar programming
environment is that there is no guarantee that the standards will be stable enough
to allow easy use in ten years.

Despite the need to assure the durability of one’s own Web site, placing
documentation and perhaps even executable programs on the Internet has so many
advantages that it is likely to become an important means of providing material
needed to supplement the publication of simulation research.

���

4. Replication of Simulations

Three important stages of the research process for doing simulation in the social
sciences have been considered so far: namely the programming, analyzing and
sharing computer simulations.  All three of these aspects are done for virtually all
published simulation models.  There is, however, another stage of the research
process that is virtually never done, but which needs to be considered. This is
replication.  The sad fact is that new simulations are produced all the time, but
rarely does any one stop to replicate the results of any one else’s simulation
model.

______________________
�
	

The site is http://www.nytimes.com/library/cyber/week/1009aids.html.
���

Documentation and source code for many of my own agent-based models are on the
Web at  http://pscs.physics.lsa.umich.edu/Software/ComplexCoop.html.
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Replication is one of the hallmarks of cumulative science.  It is needed to
confirm whether the claimed results of a given simulation are reliable in the sense
that they can be reproduced by someone starting from scratch.  Without this
confirmation, it is possible that some published results are simply mistaken due to
programming errors, misrepresentation of what was actually simulated, or errors
in analyzing or reporting the results.  Replication can also be useful for testing the
robustness of inferences from models.  Finally, replication is needed to determine
if one model can subsume another, in the sense that Einstein’s treatment of gravity
subsumes Newton’s.

Because replication is rarely done, it may be helpful to describe the procedures
and lessons from two replication projects that I have been involved with.  The
first reimplemented one of my own models in a different simulation environment.
The second sought to replicate a set of eight diverse models using a common
simulation system.

The first replication project grew out of a challenge posed by Michael Cohen:
could a simulation model written for one purpose be aligned or "docked" with a
general purpose simulation system written for a different purpose.  The two of us
chose my own cultural change model (Axelrod, 1997a) as the target model for
replication. For the general purpose simulation system we chose the Sugarscape
system developed by Joshua Epstein and Rob Axtell (Epstein and Axtell, 1996).
We invited Epstein and Axtell to modify their simulation system to replicate the
results of my model.  Along the way the four of us discovered a number of
interesting lessons, including the following (Axtell, Axelrod, Epstein and Cohen,
1996):

1. Replication is not necessarily as hard as it seemed in advance.  In fact under
favorable conditions of a simple target model and similar architectures of the two
systems, we were able to achieve docking with a reasonable amount of effort. To
design the replication experiment, modify the Sugarscape system, run the
program, analyze the data, debug the process, and perform the statistical analysis
took about 60 hours of work.

� �

2.  There are three levels of replication that can and should be distinguished.
We defined these levels as follows.

a. The most demanding standard is "numerical identity", in which the
results are reproduced exactly. Since simulation models typically use stochastic
elements, numerical equivalence can only be achieved if the same random
number generator and seeds are used.

b. For most purposes, "distributional equivalence" is sufficient.
Distributional equivalence is achieved when the distributions of results cannot be
distinguished statistically.  For example, the two  simulations might produce two
sets of actors whose wealth after a certain amount of time the Pareto distribution

______________________
� �

We were able to identify only two cases in which a previous social science simulation
was reprogrammed in a new language, and neither of these compared different models nor
systematically analyzed the replication process itself. See Axtell et al. (1996).
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with similar means and standard deviations. If the differences in means and
standard deviations could easily have happened solely by chance, then the models
are distibutionally equivalent.

c. The weakest standard is "relational equivalence" in which two models
have the same internal relationship among their results.  For example, both
models might show a particular variable as a quadratic function of time, or that
some measure on a population decreases monotonically with population size.
Since important simulation results are often qualitative rather than quantitative,
relational equivalence is sometimes a sufficient standard of replication.

3. In testing for distributional equivalence, an interesting question arises
concerning the null hypothesis to use.  The usual logic formulates the problem as
rejection of a null hypothesis of distributional identity.  The problem with this
approach is that it creates an incentive for investigators to test equivalence with
small sample sizes.  The smaller the sample, the higher the threshold for rejecting
the null hypothesis, and therefore the greater the chance of establishing
equivalence by failing to find a significant difference.  One way to deal with this
problem is to specify in advance the magnitude of the difference that will be
considered meaningful, and then use sample sizes large enough to reliably detect
this amount of difference if it exists.  (For more details see Axtell et al. 1996).

4. Even seemingly minor differences in two models can prevent the attainment
of distributional equivalence.  In the model of cultural change that we studied, the
agents were activated at random.  When this model was implemented in
Sugarscape, the agents were sampled without replacement, meaning that each
agent was activated once before any agent was activated a second time.
Unfortunately, in the original implementation of the model (Axelrod, 1997a), the
agents were sampled with replacement. This seemingly minor difference in the
two versions of the model made a noticeable difference in some very long
simulation runs. Had the model not been replicated, the effect of the sampling
decision would not have been appreciated.

This systematic replication study demonstrates that replication is a feasible,
although rarely performed, part of the process of advancing computer simulation
in the social sciences.  The lessons suggest that further replication would be
worthwhile. The concepts and methods developed for this particular study suggest
how further replications could be performed. The observation that seemingly
small differences mattered suggests that it would pay to find out whether this
experience was typical or not.  In particular it would pay to replicate a diverse set
of simulation models to see what types of problems arise.

Michael Cohen, Rick Riolo and I took up this challenge.  We selected a set of
eight core models to replicate. We selected these models using six criteria: (1)
their simplicity (for ease of implementation, explanation and understanding), (2)
their relevance to the social sciences, (3) their diversity across disciplines and
types of models, (4) their reasonably short run times, (5) their established
heuristic value and (6) their accessibility through published accounts.  Most of the
eight models meet at least five of these six criteria.  To be sure we included some
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models that we could completely understand, we selected one model from each of
the three of us.  The core models were:

1. Conway’s Game of Life from 1970 (see Poundstone 1985),
2. Cohen, March and Olson’s Garbage Can Model of Organizations (1972),
3. Schelling’s Residential Tipping Model (1974;1978),
4. Axelrod’s Evolution of Prisoner’s Dilemma Strategies using the Genetic

Algorithm (1987),
5. March’s Organizational Code Model (1991),
6. Alvin and Foley’s Decentralized Market (1992),
7. Kauffman, Macready and Dickenson’s NK Patch Model (1994, See also

Kauffman 1995.)
8. Riolo’s Prisoner’s Dilemma Tag Model (1997).
Cohen, Riolo and I implemented each of these models in the Swarm

simulation system developed at Santa Fe Institute under the direction of Chris
Langton.

� �

  In each case, we identified the key results from the original
simulations, and determined what comparisons would be needed to test for
equivalence.  After a good deal more work than we had expected would be
necessary, we were able to attain relational equivalence on all eight models.  In
most cases, the results were so close that we probably attained distributional
equivalence as well, although we did not perform the statistical tests to confirm
this.

We hoped to find some building blocks that were shared by several of these
models that could provide the basis for a set of useful simulation techniques.
Instead, we found little overlap. On the other hand, Riolo and Ted Belding
developed a useful tool for running batch jobs of a simulation program to execute
experimental designs.

���

 The most important discovery we made in replicating these eight models is
just how many things can go wrong.  Murphy’s Law seemed to be operating at full
strength: if anything can go wrong it will.  Listing the problems we discovered
and overcame may help others avoid them in the future.  Or if they can not be
avoided, at least they might be found more easily having been clearly identified at
least once before.

The list below does not include the errors that we made in reimplementing the
models, since the discovery and elimination of our own errors are just part of the
normal process of debugging programs before they are regarded as complete and

______________________
� �

Ted Belding did the replications for the models of Schelling, and Alvin and Foley.  For
details on the Swarm system, see the Santa Fe Institute Web site at www.santafe.edu.
�
�

This tool, called Drone, automatically runs batch jobs of a simulation program in Unix.
It sweeps over arbitrary sets of parameters, as well as multiple runs for each parameter set,
with a separate random seed for each run. The runs may be executed either on a single
computer or over the Internet on a set of remote hosts. See
http://pscs.physics.lsa.umich.edu//Software/Drone/index.html.
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ready for publication.
�
�

  Instead, the list below includes the problems we found in
the published accounts or the programs that they describe.  It should be noted that
while these problems made it more difficult for us to replicate the original results,
in no case did they make a major difference in the conclusions of the published
accounts.

The first category of problems was ambiguity in the published descriptions.
Ambiguities occurred in the description of the model, and in the presentation of
the numerical results.  Ambiguities in the description of the model included the
order in which the agents should be updated, and what to do when there was a tie.
Ambiguities in the description of the model included the meaning of a variable in
a figure, and the divisor used in a table.  Some of these ambiguities in the
published descriptions were resolved by seeing which of two plausible
interpretations reproduced the original data. This is a dangerous practice, of
course, especially if multiple ambiguities give rise to many combinations of
possibilities.  When the original source code was available (as it was for five of
the models), we could resolve ambiguities directly.

The second category of replication problems was gaps in the published
descriptions.  In two cases, published data was not complete enough to provide a
rigorous test of whether distributional equivalence was achieved or not.  In one of
these cases, the author was able to provide additional data.  The other gap in a
published description occurred when a variable in the program could take on
values of +1, 0 or -1, but was described in a way that made it appear to have only
two possible values.

The third category of replication problems was situations in which the
published description was clear, but wrong.  One example was a case where the
criteria for terminating a run of the model was not the same in the text as it was in
the runs of the model for which data were reported.  In another case, the
description in the main text of an article was inconsistent with the appendix of the
same article. Finally, there was a case in which the description in the text was a
clear, but an inaccurate description of the model embodied in the source code.

The fourth and final category of replication problems were difficulties with the
source code itself.  In one case, the only source code available was from a
printout so old that some of the characters were smudged beyond recognition.
The last case was probably the most interesting and subtle of all.  After a good
deal of effort we tracked down a difference between the original program and our
reimplementation to the difference in the way two computers represented
numbers.  While both computers represented floating point numbers with
considerable precision, they could differ in whether or not two numbers were
exactly the same.  For example, is 9/3 exactly equal to 2 + 1?  In one
implementation of the model it was, but in another implementation it was not. In

______________________
�
�

A great deal of effort was sometimes required to determine whether a given discrepancy
was due to our error or to a problem in the original work.
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models with nonlinear effects and path dependence, a small difference can have a
cascade of substantive effects.

5. Conclusion: Building Community

This paper has discussed how to advance the state of the art of simulation in the
social sciences.  It described the unique value of simulation as a third way of
doing science, in contrast to both induction and deduction.  It then offered advice
for doing simulation research, focusing on the programming of a simulation
model, analyzing the results and sharing the results with others.  It then discussed
the importance of replicating other people’s simulations, and provided examples
of the procedures and difficulties involved in the process of replication.

One final theme needs to be addressed, namely the building of a community of
social scientists who do simulation.  This paper began with the observation that
simulation studies are published in very widely dispersed outlets.  This is an
indication that social science simulators have not yet built strong institutional
links across traditional disciplinary boundaries, even though the work itself is
often interdisciplinary in content and methodology.  Certainly, the very existence
of conferences like this one demonstrates that a community of simulators can and
should be formed, and that the early steps are underway.  The question now is
what is would take to promote the growth and success of social science
simulation. My answer comes in three parts:  progress in methodology, progress
in standardization, and progress in institution building.

This paper has already discussed suggestions for progress in methodology.
The next step is to begin to establish the internal structure and boundaries of the
field.  In particular, converging on commonly accepted terminology would be
very helpful.  A host of terms is now used to describe our field. Examples are
artificial society, complex system, agent-based model, multi-agent model,
individual-based model, bottom-up model, and adaptive system.  Having
commonly accepted distinctions between these terms could certainly help specify
and communicate what simulation is about.

Hand-in-hand with developing the terminology, a shared sense of the internal
structure and boundaries of the field is needed.  For example, simulation in the
social sciences might continue to develop primarily within the separate disciplines
of economics, political science, sociology and so forth.  There are powerful forces
supporting disciplinary research, including the established patterns of professional
education, hiring, publication, and promotion. Nevertheless, if simulation is to
realize its full potential there must be substantial interaction across the traditional
disciplines.

Progress requires the development of an interdisciplinary community of social
scientists who do simulation. Progress also requires the development of an even
broader community of researchers from all fields who are interested in the
simulation of any kind of system with many agents. Certainly, ecology and
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evolutionary biology have a great deal to offer for the study of decentralized
adaptive systems.  Likewise, computer science has recently started to pay a great
deal of attention to how large systems of more or less independent artificial
agents can work with each other in vast networks.  And mathematics has
developed some very powerful tools for the analysis of dynamic systems.  Even
the playful field of artificial life offers many insights into the vast potential of
complex adaptive systems.  Conversely, social scientists have a great deal to offer
evolutionary biologists, computer scientists and others because of our experience
in the analysis of social systems with large numbers of interacting agents.

There are a variety of institutional arrangements that will facilitate the
development of these two communities of simulators. These arrangements include
journals devoted to simulation,

�
�

 professional organizations, conference series,
�
�

funding programs, university courses,
� �

 review articles, central Web sites,
� �

email discussion groups, 
� 	

textbooks, and shared standards of research practice.
Early examples of these institutional arrangements already exist.  To realize the
full potential of computer simulation will require the development of these
institutional arrangements for community building.  Who should be better able to
build new institutions than the researchers who use simulation to study real and
potential societies?

Appendix: Eight Models Used For Replication

Here is a brief description of the eight models selected by Michael Cohen, Robert
Axelrod, and Rick Riolo for replication.  For a fuller description of the models
and their results, see the cited material. For more information about the
replications see our Web site at http://pscs.physics.lsa.umich.edu//Software/
CAR-replications.html.

1. Conway’s Game of Life, 1970 (See Poundstone, 1985).

______________________
�
�

Examples of journals that have been favorable to simulation research include the
Journal of Economic Behavior and Organization, and the Journal of Computational and
Mathematical Organization Theory.
�
�

An example is the series of workshops on Computational and Mathematical
Organization Theory.  See http://www.cba.ufl.edu/testsite/fsoa/center/cmot/history. htm.
� �

The Santa Fe Institute already has two summer training programs on complexity, both
with an emphasis on simulation.  One program is for economists, and one program is for
all fields.  The University of Michigan Program for the Study of Complexity has a
certificate program in Complexity open to all fields of graduate study.
� �

Very useful web sites are www.santafe.edu,  www.econ.iastate.edu/tesfatsi/ abe.htm,
and  pscs.physics.lsa.umich.edu//pscs-new.html.
� 	

One such discussion group for social science simulation is organized by Nigel Gilbert
<Nigel.Gilbert@soc.surrey.ac.uk>.



18

Comment: Although this is not a social science model, it is one of the earliest
and most influential simulations of artificial life.

Metric (i.e., interaction neighborhood): 2 dimensional cellular automata.
Rules: An agent stays alive if 2 or 3 neighbors are alive, otherwise it dies. New

agent is born if exactly 3 neighbors are alive.
Sample result: Complex dynamic patterns arise from very simple rules applied

to simple initial conditions such as a glider or a R pentomino.

2. Cohen, March and Olsen’s Garbage Can (1972)
Comment: This is one of the most widely cited social science simulations.
Metric: organizational relations
Rules: An organization is viewed as collections of choices looking for

problems, issues and feelings looking for decision  situations in which they might
be aired, solutions looking for issues to which there might be an answer, and
decision makers looking for work.

Sample results: The timing of issues, and the organizational structure both
matter for outcomes.

3. Schelling’s Tipping Model (1974, 1978)
Comment: This is an early and well known simulation of an artificial society.
Metric: 2 dimensions, 8 neighbors
Rule: A discontented agent moves to nearest empty location where it would be

content.  An agent is content if more than one-third of its neighbors are of the
same color.

Sample result: Segregated neighborhoods form even though everyone is
somewhat tolerant.

4. Axelrod’s Evolution of Prisoner’s Dilemma Strategies (1987)
Comment: This study is widely cited in the genetic algorithms literature.
Metric: everyone meets everyone
Rule: A population of agents play the iterated Prisoner’s Dilemma with each

other, using deterministic strategies based upon the three previous outcomes.

(There are 270 such strategies.) A genetic algorithm is used to evolve a
population of co-adapting agents.

Sample result: From a random start, most populations of agents first evolve to
be uncooperative, and then evolve further to cooperate based upon reciprocity.

5. March’s Organizational Code (1991)
Comment: An good example of learning in an organizational setting.
Metric: 2 level hierarchy
Rules:  Mutual learning occurs between members of an organization and the

organizational code. The organizational code learns from the members who are
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good at predicting the environment, while all members learn from the
organizational code.

Sample result: There is a trade-off between exploration and exploitation. For
example, there can be premature convergence of the organizational code and all
the agents on incorrect beliefs

6. Alvin and Foley’s Decentralized Market (1992)
Comment: A good example of simulation used to study the robustness of

markets.
Metric: 1 dimensional ring
Rules: Exchange is initiated by agents who broadcast costly messages

indicating their interest in trade. Trade is accomplished by bilateral bargaining
between pairs of agents.  Agents use information from previous attempts at local
trade to calculate their search strategies.

Sample result: Limited rationality with decentralized advertising and trade can
do quite well, giving a substantial improvement in the allocation of resources and
average welfare.

7. Kauffman, Macready and Dickenson’s NK Patch Model (1995. See also
Kauffman 1995)

Comment: A very abstract model with an interesting result.
Metric: 2 dimensions
Rules: Each agent’s energy depends on state of several agents, forming a

rugged NK landscape.  The entire 120x120 lattice is partitioned into rectangular
patches. For each patch all possible single spin flips within the patch are
examined, and one is randomly chosen which leads to lower energy within the
patch.

Sample result: Ignoring some of the constraints (effects on agents beyond the
current patch) increases the overall energy temporarily, but is an effective way to
avoid being trapped on poor local optima.

8. Riolo’s Prisoner’s Dilemma Tag Model (1997)
Comment: A realization of John Holland’s theme about the value of arbitrary

tags on agents.
Metric: soup (anyone can meet anyone)
Rules: Pairs of agents meet at random.  If both agree, they play a 4 move

Prisoner’s Dilemma.  An agent is more likely to agree to play with someone with
a similar "color" (tag).  Strategies use 2 parameters: probability of C after C, and
probability of C after D. Evolutionary algorithm determines next generation’s
population.

Sample result: Tags provide a way for reciprocating agents to attain high
interaction rates, but then their success is undermined by "mimics" with the same
tag.  Although the meaning and success of a particular tag is temporary, tags help
sustain cooperation in the long run.
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