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Abstract

We introduce intentional idiosyncratic play in a standard stochastic
evolutionary model of equilibrium selection, where the equilibria represent
distributional conventions between members of two classes. Intentional id-
iosyncratic play alters the standard evolutionary dynamic in ways that are
plausible in light of historical studies of institutional transitions. First,
transitions between institutions are induced only by the idiosyncratic play
of those who stand to benefit from the switch, while the opposite is true
in the standard (unintentional) approach. Second, where sub-population
sizes and error rates differ cross groups, the group whose interests are fa-
vored are those who engage in more frequent idiosyncratic play and who
are are less numerous. The opposite is true in the standard dynamic. The
conventions that are selected as stochastically stable under the intentional
idiosyncratic play dynamic differ from those selected under the standard
dynamic. Our dynamic selects the convention that implements the Nash
bargain, while the standard dynamic selects the Kalai-Smorodinsky bar-
gain. Institutional transitions are less frequent under the intentional dy-
namic, and its long run average selects the stochastically stable state more
reliably than the unintentional dynamic.
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1 Introduction

Some institutions are much more common than others across the sweep
of time and space. Markets, 50-50 crop shares, and monogamy are ex-
amples. Do these ways of organizing social interactions have common
properties that account for their frequent emergence and long-term per-
sistence? Why do feasible alternatives (direct barter, highly unequal crop
shares, and polyandry, for example), emerge infrequently, and typically
suffer rapid eclipse when they do? Can we say anything in general about
the properties of those very common institutions sometimes called “evo-
lutionary universals?”.

The development of stochastic evolutionary game theory (Foster and
Young (1990), Young (1993b), Kandori, Mailath, and Rob (1993),Young
(1993a),Binmore, Samuelson, and Young (2003) and its application to the
dynamics of economic and other institutions (Young (1995) and Young
and Burke (2001)) suggests an affirmative answer. Using these models,
institutions may be represented as conventions, and stochastic shocks that
induce idiosyncratic individual behaviors occasionally displace a popula-
tion from the neighborhood of one convention to another. When applied to
a contract game or other interactions governing distribution between eco-
nomic classes, the approach allows remarkably strong conclusions about
the nature of evolutionarily successful institutions. For example in Young
(1998), the resulting equilibrium selection process generates a long term
history in which populations tend to spend most of their time at conven-
tions that are Pareto-efficient, risk-dominant (in two by two games), and
(in a particular sense to which we will return) egalitarian.

Here we extend this approach by imposing empirically plausible restric-
tions on the process generating idiosyncratic play. The works above use
a standard adaptive learning dynamic, in which idiosyncratically playing
agents randomly draw strategies from their entire strategy set, effectively
replicating a mutation-like process. The approach we develop here is that
the error distribution is state dependent: when playing idiosyncratically,
agents draw from strategies that offer them a better payoff, should suffi-
ciently many others do the same, by comparison with their current payoff.
We thus introduce a minimal amount of forward-lookingness into an oth-
erwise myopic updating process.

As far as we are aware, no models involving state-dependent error dis-
tributions have been studied, although Bergin and Lipman(1996) and Van
Damme and Weibull(1999) have explored models with state-dependent er-
ror rates. Young(1993) shows, however, that the error distributions are
irrelevant to the stochastically stable state, provided they have full sup-
port. Therefore, we must examine state-dependent error distributions
that do not have full support, a condition that is natural given our inter-
pretation of idiosyncratic play as directed and not merely mistakes.

Our modification to the standard dynamic is motivated by our belief
that agents who act idiosyncratically in economic conflicts are acting in-
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tentionally, and thus do not “accidentally” experiment with contracts un-
der which they would do worse, should the contract be generally adopted.
We have in mind such idiosyncratic play as walking to work rather than
riding in the racially segregated (“Negro”) section of the bus or refusing
to exchange under the terms of a contract hat awards most of the joint
surplus to the other party (for example locking out overly demanding em-
ployees).

Like Van-Damme and Weibull(2001) and Bergin and Lipman (1996),
who conclude that “models or criteria to determine “reasonable” mutation
processes. should be a focus of research in this area, our idiosyncratic play
is state-dependent. But while these authors make error rates state depen-
dent, we make the distribution of idiosyncratic play across the strategy
space state-dependent. We do this in order to impose a particular struc-
ture on the process generating idiosyncratic play, one that we think cap-
tures an essential aspect of the process of institutional transitions, namely
the intentional violation of an existing norm motivated by dissatisfaction
with the status quo. (In our penultimate section we explore the effect of
economic polarization on the rate of idiosyncratic play, thereby making it
state dependent.)

There has been a large recent literature characterizing the stochasti-
cally stable equilibria of various classes of games. A strand of this liter-
ature has looked at bargaining games, where the set of strict Nash Equi-
libria are symmetric in strategy and are Pareto-optimal. Young(1993b)
examines the Nash demand game, and shows the Nash bargaining so-
lution is stochastically stable. Young(1998) examines contract games,
and shows that the Kalai-Smorodinsky solution is stochastically stable.
Troger(2002) studies stochastic stability in a “hold-up” model, where the
bargaining follows a first-stage investment decision. Agastya(2004) inves-
tigates stochastic stability in double-sided auctions, which can be repre-
sented as bargaining games where matches that do not exhaust the surplus
are decided by randomizing between the contracts that do fully divide the
surplus.

However, a common assumption in these papers, and the entire stochas-
tic adjustment literature, is that the idiosyncratic noise takes the form of
errors, in that there is no relevant systematic bias in the strategies played
when non-best-responses occur. A possible explanation for this omission
is that it might not matter; Young(1993a) shows that as long as errors
have full support, the stochastically stable state is unchanged. However,
as we will see, if we weaken the assumption of full support, we select dif-
ferent equilibria for some important classes of games.

Intentional idiosyncratic play, we will show, alters the standard evo-
lutionary dynamic in ways that are plausible in light of historical studies
of institutional transitions. First, transitions between institutions are in-
duced only by the idiosyncratic play of those who stand to benefit from
the switch, while the opposite is true in the standard (unintentional) ap-
proach. Second, as one would expect, in the intentional dynamic where
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sub-population sizes and error rates differ cross groups, the group whose
interests are favored are those who engage in more frequent idiosyncratic
play and who are are less numerous. The opposite is true in the standard
dynamic. The conventions that are selected as stochastically stable under
the intentional idiosyncratic play dynamic, not surprisingly, differ from
those selected under the standard dynamic. Our dynamic selects the con-
vention that implements the Nash bargain, while the standard dynamic
selects the Kalai-Smorodinsky bargain.

In order to establish a benchmark for contrast, in the next section we
reproduce a version the standard adaptive stochastic dynamic model and
point out some counter-intuitive implications of the institutional transi-
tion process that it supports. The main difference between our version
of the standard model and those mentioned above is that, in contrast to
Kandori, Mailath and Rob, we have two sub-populations (classes) and in
contrast to Young (and Foster), our agents have but a single period mem-
ory and best respond to the (known) distribution of play in the previous
period. These modeling differences do not alter the basic results of the
unintentional idiosyncratic play model under investigation here. In con-
trast to both we are interested in the dynamics given by substantial (non
vanishing) error rates and with differing group sizes.

In section 3 we introduce our intentional idiosyncratic play modifica-
tion and demonstrate the results mentioned above as well as two others:
i) institutional transitions under the intentional dynamic are among adja-
cent contracts (those that are the “neighbors” of the status quo contract
along the contract frontier in a finite contract space) while the standard
dynamic moves between extreme contracts, leapfrogging, as it were, across
large segments of the contract space; and ii) where the intentional and the
standard dynamic select the same convention, the selection under inten-
tional is more robust to substantial error rates (in the sense that the
population spends more of its time in the selected state).

In the penultimate section we introduce three extensions. First, we
show that the results of the intentional dynamic demonstrated above for
the contract game apply equally to the Nash demand Game. Second,
adapting van Damme and Weibull (2001), we show that we can generate
the rate of idiosyncratic play endogenously as the equilibrium of a sepa-
rate game embedded in the larger population dynamic here modeled (one
which would plausibly model the collective action problem facing those
seeking to displace the status quo). Finally, we adopt the measure of eco-
nomic polarization suggested by Esteban and Ray (1994) to capture the
insight that the rate of idiosyncratic play may be greater in more polar-
ized societies and hence state-dependent.
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2 Adaptive Stochastic Dynamics

We consider two large sets of agents, called classes(denoted R and C for
row and column), playing an assymmetric K-contract game. This has K
strategies, with payoff functions given by πR(i, j) = πC(i, j) = 0 if i 6= j,
and πR(i, i) = ai, π

C(i, i) = bi i ∈ (0, 1, ..., K − 1) otherwise. We order
the strategies such that if i < j then aj > ai and bj < bi, so the contracts
are ordered according to the row player’s preferences, and inversely to
the column player’s preferences. Clearly the diagonal of the game matrix
constitutes the set of Nash equilibria, and they are all Pareto-optimal.
For example, a simple 2 contract game, with both contracts specifying
the division of a unit good, is given by (with a0 < a1, bi = 1 − ai):

Contract 0 1

0 a0, 1 − a0 0, 0

1 0, 0 a1, 1 − a1

We also consider a matching dynamic with noise. Each period, a finite
number of players from each population are matched to play the above
contract game. Each time they are matched, agents choose a best re-
sponse to the distribution of strategies in the opposing population, or,
with small probability ε they play a non-best-response. However, if an
agent is matched in two consecutive rounds, there is a small probability
(1 − ν) that they play the same strategy they played last period. This
“inertia” is necessary to ensure convergence.

We can represent this dynamic via a stochastic dynamical system,
where the states are given by the number of each population playing
each strategy. The state space is given by X = ∆R × ∆C , where ∆R =
(n0, n1, n2..., nK−1|

P

i ni = N) and ∆C = (m0, m1,m2, ..., mK−1|
P

i mi =
M) where N is the size of the row population and M is the size of the col-
umn population. Each ni and mi is the number of the row and column
population, respectively, that is playing strategy i. Let p ∈ ∆R and
q ∈ ∆C be vectors denoting the number of agents playing each strategy
in the row and column population, respectively. We will often denote a
state as θ = (p, q) ∈ X.

The dynamic described above is a familiar myopic best-response dy-
namic with inertia, as in Young(1998),Samuelson(1997) and Agastya(2004).
Denote the best-response functions BRR(q) : ∆C → ∆R = eargmaxjqj aj

for the row population and BRC(p) : ∆R → ∆C = eargmaxjpjbj
for the

column population), where ei is the i’th standard basis vector of <N ( or
<M ). If there are multiple best responses, the agents randomize uniformly
over all of them.

With probability ν, each member of each population is given an op-
portunity to revise their strategy. Without introducing any errors, or
reasons to play anything different(e.g. conformity), they will just choose
the best-response to the distribution of play in the last period. This de-
fines a Markov process: P ν : X → X, defined by P ν(θ′|θ) = Prob(θ −
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(x1, x2)+x1BRR(q)+x2BRC(p)) where x1 ∼ Bin(N, ν), x2 ∼ Bin(M, ν)
where Bin(N, x) is a binomial distribution with N draws with probability
of success given by x.

Following Young(1998) we note that, for generic contracting games
and sufficiently large population sizes, the only recurrent classes of this
Markov process are the strict pure Nash equilibria, where both players
coordinate on the same contract.

Suppose that when agents can revise their strategies, they play a non-
best response with probability ε. Thus, with probability ε they play a
uniform distribution U . Later, we will use the following general distri-
bution: U(i, j) is the uniform distribution on the strategies i, i + 1, ...j,
with 0 weight on the other strategies. For the standard dynamic, the
error distribution is just U(0, K − 1 we just gives a Markov process de-
fined by: P ν,ε(θ′|θ) = Prob(θ− (x1, x2)+(x1−

PK−1
i=0 y1i)BRR(θ)+(x2−

PK−1
i=0 y2i)BRC(θ) + y1 + y2) where y1 ∼ MN(K, x1, U(0, K − 1) and

y2 ∼ MN(K, x2, U(0, K − 1), with MN(N, k, f) being the multinomial
distribution with N bins, k draws, and distribution f over the bins. Owing
to the unintentional nature of the errors, where mistakes that are poten-
tially beneficial are as likely as those that are potentially unfavorable, we
call this the U-dynamic

We are interested in the states that have positive weight in the distri-
bution µ(ν)∗ = limε→0µ(ν, ε), following Foster and Young(1990) we call
these stochastically stable states, with U-stability referring to stability
under the perturbation process described in the preceding paragraph.

The proofs in this literature have largely been done using a result
from Friedlin and Wentzell(1984), that expresses the ergodic distribution
of a finite irreducible Markov process as the sums of “tree potentials”.
This provides a useful method for characterizing the stochastically stable
states. Young(1993), defines the resistance of a transistion from state i
to state j as the unique Rij that satistfies 0 < limε→0P

ε
ji/ε

Rij < ∞. If
we build a complete weighed digraph on the states of the Markov process,
with each edge i, j having weight Rij , the recurrent class will be the root
of the in-branching1 with the least sum of edge weights. We will also call
this the minimal tree. See Young(1993) for details.

We shall make use of three propositions proved in Binmore-Samuelson-
Young(2004):

Proposition 2.1 (Local Resistance Test). If maxjRji < minjRij

then i is the root of the minimal tree.

Proposition 2.2 (Naive Minimization Test). . Take the least edge
exiting each node. If the resulting graph has a unique cycle containing

1a directed graph where every node save one has only one edge exiting it, The node with
no exiting edge is called the root.
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an edge that is maximal over all edges, deleting that edge will give the
minimal tree.

Proposition 2.3 (Binmore-Samuelson-Young 2004 Proposition
10). . If the set of contracts is given by 0, f(0), δ, f(δ), if f is strictly
concave and δ is sufficiently small, then the stochastically stable state, in
the U-dynamic, is the Kalai-Smorodinsky solution.

Our first observation is that the transitions betweens equilibria in the
contract game are instigated by the class that loses from the transition.
That is, the resistance of the transition from contract i to contract j is
given by

Rij = min(d
Mai

ai + aj
e, d

Nbi
bi + bj

e). (1)

If N=M is sufficiently large, then we can use the reduced resistances
rij = min( ai

ai+aj
, bi

bi+bj
). Note that if bi > bj and ai < aj then rij =

ai

ai+aj
< 1/2 < bi

bi+bj
= rji. So i is U-stable.

The fact that the unintentional dynamic takes the minimum of both
populations’ resistances means that the agents who are inducing the change
are those who stand to lose from the tip. The resistance of the transition
from i to j is the number of idiosyncratic plays made by the population
facing payoffs bi and bj . Similarly, the transistion from j to i is driven by
the idiosyncratic play of the population facing the payoffs ai and aj . The
most likely path between the two monomorphic states occurs when the
losers from the transistion make enough mistakes.

This observation gives rise to a number of corollary observations. a)
Having a larger group benefits you, and b) if the rates of idiosyncratic
play differ exponentially, then the side that mutates faster does worse.
We show this in the 2-contract case, and note that it generalizes to the
K-contract case easily.

Consider a 2-contract game with payoffs ((a0, b0), (a1, b1))(a0 > a1, b0 <
b1) . Assume the row population has population size N and the column
population is size M with N > M .

Contract 0 1

0 a0, b0 0, 0

1 0, 0 a1, b1

Then the resistances(see Young(1998) are given byRij = min(d Mai

ai+aj
e, d Nbi

bi+bj
e).

This is because with assymmetric group sizes, we cannot abstract from
the actual population sizes in computing the amount of idiosyncratic play
necessary for a transistion to occur, so we cannot follow Young in going
to reduced resistances, which divide all the resistances by the population
sizes.

Thus, if M and N are sufficiently large we divide all the resistances by
M , we can see that the resistances will be given byRij = min( ai

ai+aj
, d N

M
bi

bi+bj
e)
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In addition, assume the mutation rate for row is εT instead of ε, then
the resistances will be given by Rij = min(N ai

ai+aj
, TM bi

bi+bj
),

Thus, for T(or N/M) sufficiently large, the resistances will be R01 =
a0

a1+a0
, and R10 = a1

a1+a0
. We thus get that the transition from contract

1 to contract 0 occurs when the idiosyncratic play of the columns, who
prefer contract 1, that is causing the transition. Similarly for the tran-
sistion from 0 to 1 being driven by the idiosyncratic play of the row players.

When we have K contracts, ai, bi, i ∈ 0...K − 1, i < j → ai > aj , bi <
bj , this is also easy to see. Note that rij = min( ai

ai+aj
, Tbi

bj+bi
which is equal

to ai

ai+aj
for sufficiently large T, which is increasing in aj and decreasing

in ai. Suppose 1 is the contract with the highest row payoff a1. Let j
denote the second highest ak since the highest incoming edge to vertex 1
is aj/aj +a1, while the lowest outgoing edge is a1/a1 +aj . Since a1 > aj ,
this means that the minimum outgoing edge from 1 is greater than the
maximum incoming edge, so by the local resistance test, a1 is stochasti-
cally stable. So the population that is largest, or idiosyncratically plays
the least, does best.

3 Intentional Idiosyncratic Play

In sum, under the U-dynamic the individuals who induce transitions from
one contract to another always lose as a result. Two additional odd re-
sults follow from this: those who play idiosyncratically at a lower rate
and those who come from larger groups are favored in this dynamic. The
reason is that idiosyncratic play by members of a more numerous group
with lower rates of idiosyncratic play are less likely to induce a transition
(from which they would necessarily lose, if it occurred).

In order to overcome some of these problems with the U-dynamic, we
now define a new dynamic ΓI or the I-dynamic, where the error distribu-
tion chosen by agents is supported only on the strategies that would be
beneficial relative to the current state. This involves a degree of foresight,
something that is missing in the standard, purely myopic-with-errors dy-
namic.

3.1 Intentional Dynamics

This dynamic is somewhat more complicated, involving as it does state-
dependent error distributions. First, given θ = (p, q) define:

iR(θ) = mini(i|qi > 0)

iC(θ) = maxi(i|pi > 0)

The error distribution in our case is population- and state-dependent;
at state p, q the error distribution is U(iR(θ), K − 1) for the row popula-
tion, and U(0, iC(θ) for the column population. Therefore our transition
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probabilities are now given by equation 1, with the following modification.
Instead of yi ∼ MN(K, xi, U(0, K − 1)) in the above model, we have in-
stead that y1 ∼MN(K, x1, U(0, iR(θ)) and y2 ∼MN(K, x2, U(0, iC(θ))

Showing this process is ergodic is straightforward, albeit not trivial,
since our errors are not always supported on the entire strategy space.
Given state θ ∈ X, how can we get to state θ′ in a finite number of peri-
ods?. It suffices to show that we can get to the state (N, 0, 0, ..., 0), (0, 0, 0, ...,M)
from an arbitrary state θ = p, q, since then the errors are supported on
the entire strategy space, and therefore any state is accessible from θ. But
this follows from the fact that from θ the column population can mutate
to the state M, 0, ..., 0 and the same time that the row population mutates
to the state 0, 0, 0..., N which leads the row population to respond(with
no mutations) with N, 0, ..., 0, and the column population to respond with
0, 0, 0, .., 0,M .

It is clear that as ε→ 0, P ν,I(ε) → P ν . It is also clear that the process
converges exponentially. Let

RI
jk =

(

d
Maj

aj+ak
e if aj < ak

d
Nbj

bj+bk
e if bj < bk

Note that this is well-defined since all of the i are Pareto-optimal. This
reflects the fact that if one class loses from a transition to a particular equi-
librium, it will never idiosyncratically play the strategy corresponding to
that equilibrium. Thus the transition will be generated by the idiosyn-
cratic play of the other, opposing population. The class that stands to
benefit from the transition must overcome the resistance of the would-be
loser by generating so much idiosyncratic play that the best-response of
the losing population is to play a strategy that, when the strategy is an
equilibrium, gives them a lower payoff than the current equilibrium.

This definition only makes sense in our particular context, where we
restrict our attention to contract games, where every Nash-equilibrium is
Pareto-optimal, so that there are no mutually beneficial contracts from
which both classes gain.

It is obvious that ∞ > limε→0
P

ν,ε,I
jk

(ε)

ε
RI

jk

> 0, since, when we only allow

one population to idiosyncratically play, that this is the smallest number
of non-best-responses required to make a transistion.

Definition 3.1. We call a contract I-stable if it is the stochastically stable
state when transition resistances are defined as above.

We call trees with RI(RU ) edge weights I-trees(U-trees.From theorem
1 in Young(1993), we know that the I-stable state is contained in the root
of the minimal I-tree.

For the rest of this section, we will omit the I superscript from the
resistances unless there is some ambiguity.
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Table 1: Example 1
Contract 0 1 2

0 5,60 0,0 0,0
1 0,0 12,20 0,0
2 0,0 0,0 36,1

Table 2: U-Resistances for Example 1
Root/Trees

0 0.266 0.297 0.266
1 0.341 0.310 0.169

2 0.371 0.544 0.371

Proposition 3.2. Assume equal class sizes and idiosyncratic play rates,
then:
a) In 2-contract games, the risk-dominant equilibrium is I-stable.
b) In symmetric contract games, the U-stable equilibrium is I-stable.

Proof. a)Follows from the fact that RI
01 = a0

a1+a0

>= b1
b0+b1

= RI
10 iff

RU
01 = min( a0

a0+a1

, b0
b1+b0

) < min( a1

a0+a1

, b1
b1+b0

) = RU
10 b)Follows trivially

since in symmetric games Rjk = RI
jk, so the minimal U-tree is also the

minimal I-tree.

After this, one might be tempted to think that there is no substan-
tial difference between U-stability and I-stability, however, the example
in Table 1 illustrates otherwise.

The I-stable contact is 0, while the U-stable contract is 1. Table 2, con-
sisting of tree resistances illustrates the calculations for the U-dynamic(3
trees for each root).

Thus the lowest tree, with resistance 0.169 has root 1. The actual tree
is given in Figure 1.

r Contract 0

rContract 1

rContract 2

?�
�
��

5
17

1
61
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Table 3: I-Resistances for Example 1
Root/Trees

0 1.583 1.455 1.830
1 1.500 1.628 1.733
2 1.935 1.702 1.689

However, with intentional error distributions(the I-dynamic), the tree
resistances are given in Table 3. The full set of trees is given in Appendix
B.

So the minimal U-tree has root 0, with resistance 1.455, shown in fig-
ure 2. The full set of trees is given in Appendix B.

r Contract 0

rContract 1

rContract 2

�
�

�	

@
@
@R

12
17

36
48

Note that the U-stable state in example 1 is the Kalai-Smorodinsky
solution(a1/b1 = amax/bmax), while the Intentionally Stable State is the
Nash Solution(a0b0 = maxiaibi). This is a general difference, as illus-
trated by the proposition below 2.

Proposition 3.3. Assume equal group sizes, and let the contracts be
given by (ai, bi = f(i)), ai = iδ, i ∈ (1, ...., 1/δ − 1) where f is a strictly
decreasing, strictly convex function. Then, for δ sufficiently small, the I-
stable contract is the one that maximizes the Nash product sf(s), assuming
it lies in the set of contracts.

Proof. See Appendix.

When agents’ errors are restricted to be a uniform distribution sup-
ported only on strategies that could give them a higher payoff, the re-
sults can be different from the unintentional errors case. Counter to
the Binmore-Samuelson-Young result presented above, we show that the
Nash solution is I-stable. The difference stems from the fact that the
intentional resistances are always lowest to adjacent contracts, while the
Binmore-Samuelson-Young result depends on the fact that with uninten-
tional errors, the lowest resistances are for the transistions to the extreme
contracts, i.e. those that are best for one side. This is illustrated by the
comparison between the minimal I-tree and U-tree in the figures above.
We find this “leapfrogging” feature of the U-dynamic to be historically

2We have also proved this for the arbitrary 3x3 contract game.
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implausible, compared to the “neighboring” transistion feature of the I-
dynamic.

3.2 Population and Mutation Rates

We first note that under the I-dynamic, the relative population and id-
iosyncratic play rates operate in exactly the opposite direction than the
analogous variables in the U-dynamic. Smaller groups with higher rates
of idiosyncratic play are favored. To illustrate this, consider a 2-contract
game with payoffs ((a0, b0), (a1, b1))(a0 > a1, b0 < b1). Assume that
contract 1, favoured by the column players is risk-dominant, so that
a1b1 > a0b0 . Assume the row population has population size N and
the column population is size M with N > M . Assume also that the
rate of mutations differ by a power T , so that the row population makes
mistakes at a rate εT , while the column population plays idiosyncratically
at the rate ε.

The resistances in the intentional dynamic will be RI
01 = M a0

a0+a1
and

RI
10 = TN b1

b0+b1
. Contract 0 will be I-stable iff RI

01 > RI
10 which is the

case if M/TN > b1a0+b1a1

b0a0+b1a0
> 0 Thus, if the row population is sufficiently

large, or the row mutation rate is sufficiently slow (large T), then the risk-
dominant contract may not be selected if it favors the column population.

For the K contract case, we can easily make a simpler statement,
without tight specifications of the precise difference in idiosyncratic play
rates or population size necessary to secure the best contract for a given
size. Again suppose that the row population has population M, and
the best contract for them is K-1. Then choosing M, N,T such that
N

aK−1

aK−1+ai
= RI

(K−1)i < minjR
I
j(K−1) = minjMT

bj

bj+bK−1

∀i. Then, by

the local resistance test, the K’th contract is I-stable.

3.3 Convergence

In this subsection we compare the convergence properties of our modified
I-dynamic to the standard U-dynamic. We will demonstrate two facts:
1) the maximum waiting time until the system arrives in the stable state
is higher in our model than in the standard dynamic. 2) For ε that are
not arbitrarily small, the I-dynamic spends much more time in its stable
state than the U-dynamic.

Both of these observations are straightforward consequences of our
definition. 1) follows since the maximum waiting time is a function of
the resistance of the minimal tree. So, since the I-dynamic has higher
resistances in general, it will take longer for any particular transition to
occur, and, for generic games, the maximum waiting time is at least as
large as under the U-dynamic. A simple way of seeing this follows from
noting that in the contract game, all of the RI are greater than 1/2, while
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the RU are all less than 1/2. Since all trees must have the same number
of edges, it must be that the resistance of the minimal I-tree is greater
than the resistance of the minimal U-tree.

To get a more precise result, we use a result from Ellison(2000), that
bounds thmaximum waiting time until the first entry into the stable state
as a function of the modified coradius of a state x, which is a measure
of how difficult to enter x. Note that the modified Coradius (written
CRI∗, see Ellison(2000)) of the I-stable equilbirum is given by the re-
sistance of the transition from either of the adjacent contracts (if δ is
small these will be close), and so, without loss of generality, we can write
CRI ∗ (iNash) = aNash+δ

aNash+aNash+δ
. But, CRU ∗ (iKS) = amin

amin+aKS
.

If the Nash and KS solutions are both in the contract set, then we can
see that, for sufficiently small δ

CRU ∗ (iKS) = min(
a0

a0 + aKS
,

bK−1

bK−1 + bKS
<

a0

a0 + aKS

=
1

1 + aKS/δ
<

1

1 + aNash

aNash+δ

=
aNash + δ

aNash + aNash + δ
= CRI ∗ (iNash)

Since the maximum waiting time until first making a transistion to
the stable state is O(εCR∗), this shows that the I-dynamic is slower, in
the sense of taking longer to reach the stable state, than the U-dynamic.
However, we are not overly discouraged by these long transistion times,
as the literature has developed numerous mechanisms for speeding up the
waiting time, from local interaction (Ellison 1993) to errors in the pay-
offs(Binmore, Samuelson, Vaughan 1995).

Another limit, one that has been somewhat neglected in the literature,
is the rate of convergence as ε→ 0.Young(1998a) proves that in symmetric
2x2 games, the convergence properties of the model are reasonable, in that
for any ε, we can find a population size that will guarantee that at least
1− ε/2 of the agents are playing the stochastically stable(U-stable, in our
language) equilibrium with probability arbitrarily close to 1. However,
Young’s result relies on letting the population size get arbitrarily large.
We are interested in the finite population properties of the model, because
we are concerned with the transition process that actually occur between
different contracts in groups of historically relevant sizes. Taking either
arbitrarily large population sizes or arbitrarily small idiosyncratic play
rates means that transitions will almost never occur. While this might
be helpful to understand why an observed contract may be stable, it is
less helpful in understanding the mechanism that generates transitions
between contracts. In addition, Binmore-Samuelson-Young prove in their
paper that if the dynamics are continuous, taking the population size to
infinity before taking ε to 0 selects a different contract than taking ε → 0
first. It is not clear which of either of these processes beast illuminates
real historical processes.
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Do the results for the limit as ε goes to zero indeed hold for non-
vanishing error rates? We illustrate the answer to this question for the
2x2 case equal population sizes, and with no inertia(ν = 0), although
we think the idea generalizes. Let α = a0

a0+a1
, and β = b0

b0+b1
. With-

out loss of generality, assume that 0 is both I and U stable, and that
α < β ⇐⇒ 1 − β < 1 − α. Note also that α < 1/2 < β. The dynamic
is therefore best response, and we ignore the cases where the limit cycle
(1, 0) → (0, 1) → (1, 0) is reached, and assume the population size N is
such that the mixed equilibrium is never reached.

This gives us a transition matrix that looks like:

Contract 0 1
0 1 − u u
1 v 1 − v

The ergodic distribution for this matrix is given by µ(0) = v/u +
v, µ(1) = u/v + u. We will look at different values for d and c under
the two dynamics. With the U-dynamic, both populations can engage in
sufficient idiosyncratic play to engender a transistion. So first define:

PR =

N
X

k=dαNe

 

N

k

!

εk(1 − ε)N−k

PC =
N
X

k=dβNe

 

N

k

!

εk(1 − ε)N−k

QR =

N
X

k=d(1−α)Ne

 

N

k

!

εk(1 − ε)N−k

QC =
N
X

k=d(1−β)Ne

 

N

k

!

εk(1 − ε)N−k

(2)

Let uU (ε) = PR+PC and vU (ε) = QR+QC. So the ergodic distribution
is defined by µU (0, ε) = vU/vU + uU . Let pI = PC and qI = QA, then
µI (0, ε) = uI/uI + vI .

Proposition 3.4. µU (0, ε) ≥ µI(0, ε)

Proof. This follows immediately from establishing that uU/vU −uI/vI ≥
0 ⇐⇒ PR+PC

QR+QC
> PC/QR ⇐⇒ QRPR > QCPC . Now note that if

we write L(α) = QCPC , then L(β) = QRPR and L is a single peaked
function that achieves its unique maximum at 1/2. Thus QRPR is larger
since 1/2−α > β−1/2 > 0, which follows from the fact that α < 1/2 < β
and α < 1 − β.

Figure 3 illustrates the magnitude of the difference as a function of ε.

In short, the I-dynamic has attractive features: the people who induce
transitions are those who benefit, higher rates of idiosyncratic play and
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Figure 1: a0 = b0 = 1 and a1 = 1.3 and b1 = .7 for various values of ε

smaller group size are beneficial, and the predictions of of the model are
robust under substantial rates of idiosyncratic play. But like the models
using the U-dynamic, it is quite abstract, the restrictions on the error-
generating process are quite minimal, and has so far it has been applied
to a single institutional setting, the contract game. Can the model be
extended to encompass other settings and a less minimalist conception of
idiosyncratic play?

4 Nash Demand and Double-Sided Auc-

tions

We now consider the effects of intentional idiosyncratic play in alternative
specifications of the bargaining game. We first consider the Nash demand
game, the stochastically perturbed properties of which were examined by
Young(1993b). The difference between the Nash demand Game and the
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contract game is that in the former, agents get their offer even if the of-
fers don’t agree with their opponents. Contracts that don’t exhaust the
surplus can be struck. That is, in our previous notation, now if i < j then
ai > aj , bi < bj , just as before, but now the off-diagonal payoffs are not
all 0. In particular, if i < j then the payoff matrix is given by:

Contract i j

i ai, bi 0, 0

j aj , bi aj , bj

A recent paper by Agastya(2004) explores the stochastic stability of
various equilibria in a two sided auction game. In the double-auction
game, the payoffs are similar to the Nash demand game, except if the
agents fail to exhaust the surplus, with probability ρ the agents’ payoff is
what the agents would have received in contract i and with probability
1−ρ the payoff is what they would have received at contract j. The game
matrix is given below.

Contract i j

i ai, bi 0, 0

j ρaj + (1 − ρ)ai, ρbj + (1 − ρ)bi aj , bj

Proposition 4.1. If the strategy space is as in Proposition 3.3, but the
payoff structure is either (1) Nash demand or (2) double-sided auction
games, the I-stable contract approximates the Nash Bargaining solution

Proof. Suffices to show this for the Nash demand game, the argument is
the same for the Double-Sided Auction. This result follows from the fact
that rI

ij = f(si) − (f(sj)/f(si), if si < sj and rI
ij = si − sj/si, if si > sj

which is exactly the value of rU
ij = min(

f(si)−f(sj

f(si)
U dynamic

The reason they agree is that the off-diagonal payoffs make the pop-
ulation that stands to lose from a transition more willing to accomodate
the idiosyncratic play of the opposing population. The lowest number of
idiosyncratic plays required to make a transition from i to j is equal to the
resistance of the population that stands to lose, because they do not have
to take 0 if they mismatch, but instead get a positive payoff. Thus, since
the U-stable is determined by the lowest resistance transitions, and the
lowest resistance transitions happen to be those generated by the idiosyn-
cratic play of the population that stands to benefit from the transition,
the U-stable and I-stable states are identical.

5 State-Dependent Mutation Rates

In this section we explore alternative, state-dependent idiosyncratic play
rates under our assumption of state-dependent idiosyncratic distributions.
The first subsection adapts a result from Van-Damme and Weibull(1999)
to the case where individuals are not determining their error rates as an
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individual choice problem, but instead we look at the error rates as the
outcome of a N-player public goods game.

5.1 Collective Action

Our purpose here is to generate the ε probability of idiosyncratic play
endogenously, as the equilibrium of a separate, within-population model.
We can show that our results above are robust to ε modelled as the mixed
strategy Nash equilibrium of a particular public-good game specification.

Let εi be the probability that agent i (in a population of size N)
plays idiosyncratically. Let θ be a state of the system. B(θ) is a func-
tion that computes the prospective payoff from idiosyncratic play that
the population is currently at θ. δ represents a behaviorial parameter,
for example the “pleasure of agency”(Wood 2003), or the effectiveness
of within-population political organization. Many empirical studies(e.g.
Wood 2003, Snyder and Tilly 1972, McAdam 1986, Thompson 1959) of
insurgent collective action argue that the actual material payoffs to a class
are of only secondary importance, they matter only insofar as they facili-
tate the psychological predisposition to revolt(Moore 1978). However, we
maintain the assumption that the δ parameter is very small in relation-
ship to the payoffs involved in the larger population game. Our aim is to
show that relatively small individual probabilities of engaging in collec-
tive action can still generate population-level historical transitions among
institutions.

Suppose each agent adopts a mixed strategy, deviating from the sta-
tus quo conventions (say, by striking) and with probability ε and best re-
sponding with probability 1−ε. Then we write the payoffs to an agent i in
population j choosing to strike with prob εi as πi,j(ε1, ε2, ....εN , δ, B(θ)) =
u(ε1, ...εN , δ, B(θ)) − v(εi)
, with u continuous and increasing in all arguments, and v continous, in-
creasing, and convex.

We also assume that πi,j
εi

(0, σ−i, 0, B(θ)) = 0∀σ−i, ∀θ ∈ X where σ−i

is an N-1 vector of the other players strategies. This assumption just says
that the best-response when there are no gains to collective action is to
never participate. We assume that this payoff function is identical for
all agents in a given population, so we suppress the i superscript. The
first-order conditions characterizing the Nash equilibrium are

πj
εi

(ε1, ε2, ....εn, δ,B(θ)) = uεi
− v′(εi) = 0

We restrict ourselves to symmetric Nash equilibria (which exist since
the strategy space is compact and convex and all the payoff functions are
symmetric) , εi = εj , ∀i, j, and thus just write

πj
i (ε, δ, B(θ)) = 0∀i
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This implicitly defines a continuous function εj(δ, B(θ)) and limδ→0 ε
j(δ,B(θ)) =

0. We borrow the terms nice, similar, and regular from Van Damme and
Weibull, but redefine them so that they apply in our public-goods game
setting, rather than the individual choice setting explored in their paper.

Definition 5.1. πi is nice if limδ→0ε
i(δ, λB(θ))/εi(δ, B(θ)) > 0∀λ >

0, θ ∈ X

Definition 5.2. π1, π2 are similar if limx→0ε
1(δ, B(θ))/ε2(δ, B(θ)) >

0∀θ ∈ X

Definition 5.3. π1, π2 is a regular function profile if both are nice and
they are similar.

Proposition 5.4. Given a K-contract game, if π1, π2 is a regular function
profile, then the I-stable state is the same as that with constant error rates
at all states.

Proof. By proposition 3 in Van-Damme and Weibull, regularity implies

that for θ, θ′ ∈ X there exist α, β, δ such that β > limδ→0
ε1(δ,B(θ)

ε2(δ,B(θ′)
> α

sinceX is finite, we can find α, β, δ such that ∀θ, θ′ ∈ X, β > limδ→0
ε1(δ,B(θ)

ε2(δ,B(θ′)
>

α. Therefore all the ε go to 0 at the same rate at all states, so the resis-
tances are unchanged, and the I-stable state is unchanged.

Examples of CA-games that admit regular function profiles are not
hard to find. Consider the game given by the utility functions: πi(ε1, ε2, ....εN , δ, B(θ) =
δB(θ)ΠN

j=0εj − ε2i /2 for player i in the row population.

This gives first-order conditions δB(θ)Πj 6=iεj − εi = 0∀i ∈ (0, ...., N).
If we consider only symmetric Nash equilibria (characterized by a common
value of ε for all players), we get δB(θ)εn−1 − ε = 0, which, restricting
ourselves to non-zero solutions, gives us that εR(δ,B(θ)) = (δB(θ))2−n

Then, clearly, limδ→0
εR(δ,B(θ))

εR(δ,B(θ′))
= (B(θ)/B(θ′))2−n > 0 so the functions

πi are nice.

If the i’the player in the column population of identical size N, faces a
similar within population payoff function given by ψi(ε1, ε2, ....εN , δ, B(θ)) =
δB(θ)ΠN

j=0εj − ε2i /2, then the identical calculation shows that the ψi are

nice. A trivial computation then shows that limδ→0
εR(δ,B(θ))

εC(δ,B(θ))
> 0∀θ ∈ X,

which implies regularity.

5.2 Polarization and Conflict

While we have already implicitly introduced a function profile that is not
similar when we considered different idiosyncratic rates above, in this sub-
section we develop an empirically relevant non-nice error function. First
notice that any error function of the form δB(θ) is not nice if B is non-
constant, since there will be states θ, θ′ such that limδ→0

ε(δ,B(θ))
ε(δ,B(θ′))

= 0
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But what functions are empirically plausible for a choice of B? We
would like to capture the idea that idiosyncratic play will be greater in
highly polarized societies. Esteban and Ray(2004) introduce and axiom-
atize a measure of polarization. Polarization is related to inequality, but
is independent of it, and the Esteban and Ray measure is designed to
capture two effects of a trait distribution: identity and alienation. Iden-
tity is a measure of how closely one is related to ones nearest neigh-
bors in the distribution, and alienation is a measure of how far away
one and ones neighbors are from other groups in the distribution. Este-
ban and Ray estimate the polarization of various income distributions,
and find increased conflict where polarization is high. Formally, given a
discrete distribution of a real-valued trait p(w), polarization is given by
Ψ(f) =

P

x

P

y p
α+1
x py|x− y|, where α ∈ [.25, 1].

This maps naturally onto our state-space, consisting as it does of
a distribution of strategies and concomitant payoffs. We get that, for
θ = (p, q) ∈ X

Ψ(θ) =
1

(M +N)2
(

K−1
X

i=0

K−1
X

j=0

pi
pi

N +M

α
pjM

−1|aiqi − ajqj |

+
K−1
X

i=0

K−1
X

j=0

qi
qi

N +M

α
qjN

−1|bipi − bjpj | +

K−1
X

i=0

K−1
X

j=0

qi
qi

N +M

α
pj |bi

pi

N
− aj

qj

M
| +

K−1
X

i=0

K−1
X

j=0

pj
pj

N +M

α
qi|bi

pi

N
− aj

qj

M
|) (3)

This expression is the sum of the within-class polarization in both
classes(the first two terms), then the second two terms measure the be-
tween class polarization. At a recurrent contract i (θ = Nei,Mei ∈ X),
the within-class polarization is 0(since all agents play the same contract
and get the same payoff), and the between-class polarization is given

by Ψ(ei, ei) = ( N
N+M

α+1 M
N+M

+ M
N+M

α+1 N
N+M

)|ai − bi|, which for any
given contract, is maximized when the relative population sizes are the
same(1/2) and the contract payoffs are as distant as possible, and mini-
mized when the contracts divide the prize equally .

If we let a state-dependent idiosyncratic play rate be given by ε(δ, θ) =
δ1/1+Ψ(θ), it is easy to see that if the polarization at a given state is very
high, its stability will be reduced. Assume only two contracts and equal
population sizes, for example:

Example 2
Contract 0 1

0 .2, 5 0, 0

1 0, 0 1, 1
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Note that both have the same risk-factor, so in the absence of state-
dependent idiosyncratic play, both should be I-stable. However, if we use
ε(δ,Ψ(θ) = δΨ(θ), and note that the polarization at 0 is .5α+14.8 (the
polarization at 1 is 0). Taking α = 1 we get that RI

01 = 1
1+Ψ(Ne0,Ne0)

5
6

=

5/(6 × 2.2) < 1/1.2 = RI
10 so 1 becomes the only I-stable state. The

essence of the calculation is that the unequal, polarized state has a higher
level of idiosyncratic play.

6 Conclusion

Transitions among real institutions take place under conditions vastly
more complex than the models we have considered. Not without reason
did the historian Eric Hobsbawm identify institutional change as the most
difficult problem in the study of history and society. Notwithstanding its
abstract nature, the strength of the stochastic approach is that formalizes
a dynamic of institutional emergence and demise that highlights two criti-
cal aspects of real historical processes. The first is the structure of payoffs
given by the different conventions and the resulting conflicts of interest
surrounding the real historical equilibrium selection process. The second
is deviant challenges to the status quo and the occasional concession of
best-responding members of the opposing group that occasionallyresults
when the level of deviance is sufficiently great. The end of Communist
rule in many countries and the demise of Apartheid in South Africa ap-
pear to reflect this pattern.

The stochastic evolutionary approach thus provides a framework open
to further steps towards historical realism. Among these are an account
of the way in which technical change alters the shape of the contract set,
in some periods making highly unequal bargains stochastically stable, and
others favoring more egalitarian outcomes. Another is an explicit model-
ing of non-conformism with the terms of the status quo and particularly
its behavioral foundations and its realization through various forms of
state-dependent collective action.

20



7 Appendix A

To prove proposition 3.3 we first need a lemma:

Lemma 7.1. The least cost edge exiting a given node i is to an adjacent
node.

Proof. any edge going to the right(j > i has resistance rij = f(ai)/(f(ai)+
f(ai + (j − i)δ) since f is decreasing, the lowest edge exiting to the right
will have j = i + 1 . Similarly, any edge going to the left(j < i) has
resistance rij = ai/ai + jδ, which will be lowest for j = i− 1

Proof of Proposition: aj∗ = argmaxai
aif(ai). We will use the Naive

Minimization test. Take the least edge from each node, I claim that all
the nodes less than j∗ point to the immediate right, and all the nodes
greater than j∗ point to the immediate left.

Given s, f(s) a1 < s < a2 note that sf(s) is a convex function of s,
therefore it has a unique maximum at aj∗. Therefore sf(s) is increasing
for s < aj∗ and decreasing for s > aj∗.

Now, consider a node i < j∗, we just need to show that f(ai)
f(ai)+f(ai+δ)

<
ai

ai+ai−δ
, which would show that the transition to the right is cheaper than

the transition to the left. This is equivalent to f(ai+δ)/f(ai) > (ai−δ)/ai

subtracting 1 from both sides, we get f(ai+δ)−f(ai)
f(ai)

> −δ/ai which is ap-

proximately equal to (for small δ) f ′(ai)ai + f(ai) > 0 which reduces to
(aif(ai))

′ > 0 which is given by our statement that sf(s) is increasing.
The case i > j∗ follows symmetrically, with the least edge pointing to the
left. However, the actual Nash product maximand j∗ can have an edge
exiting to the left or to the right, which will give us a cycle of length 2.

We must show that the edge exiting j∗ is maximal over the whole
tree. Note that the edge exiting j∗ will have resistance equal to rj∗j∗+1 =

f(j∗)
f(j∗)+f(j∗+1)

or rj∗j∗−1 = j∗
j∗−1+j∗

. Since rj,j+1 is strictly increasing in j
for j < j∗ and rj−1,j is strictly decreasing in j for j > j∗, it follows that
the edge exiting j∗ is maximal over the entire tree, since it is greater than
all the edges to the right and to the left. QED.
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8 Appendix B:I-resistance Trees

Trees rooted at contract 0.
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For each root, the least I-resistance tree is indicated by *. The min-
imum of these, indicated by **, identifies contract 0 as the root of the
minimal I-tree.
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